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Abstract
When doing classification, it has often been observed that datasets may exhibit different levels of

difficulty with respect to how accurately they can be classified. That is, there are some datasets

which can be classified very accurately by many classification algorithms, and there also exist

some other datasets that no classifier can classify them with high accuracy. Based on this ob-

servation, we try to address the following problems: a)what are the factors that make a dataset

easy or difficult to be accurately classified? b) how to use such factors to predict the difficul-

ties of unclassified datasets? and c) how to use such factors to improve classification. It turns out

that the monotonic features of the datasets, along with some other closely related structural prop-

erties, play an important role in determining how difficult datasets can be accurately classified.

More importantly, datasets which are comprised of highly monotonic data, can usually be classi-

fied more accurately than datasets with low monotonically distributed data. By further exploring

these monotonicity based properties, we observed that datasets can always be decomposed into a

family of subsets while each of them is highly monotonic locally. Moreover, it is proposed in this

dissertation a methodology to use the classification models inferred from the smaller but highly

monotonic subsets to construct a highly accurate classification model for the original dataset. Two

groups of experiments were implemented in this dissertation. The first group of experiments were

performed to discover the relationships between the data difficulty and data monotonic properties,

and represent such relationships in regression models. Such models were later used to predict the

classification difficulty of unclassified datasets. It seems that in more than 95% of the predictions,

the deviations between the predicted value and the real difficulty are smaller than 2.4%. The sec-

ond group of experiments focused on the performance of the proposed meta-learning approach.

According to the experimental results, the proposed approach can consistently achieve significant

improvements.
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Chapter 1

Introduction
How to efficiently and effectively analyze datasets of data grouped into classes has always been a

crucial challenge in data mining research. Currently, there are numerous algorithms in use which

infer classification models from such datasets. Next, these classification models may be used to

infer the class values of new data points for which the class values are unknown. Such algorithms

infer classification models by implementing various, and often times, quite diverse strategies. Ex-

amples include support vector machines (SVMs) [39, 7, 9], neural networks [30, 40, 47], decision

trees [6, 36, 1], and logic-based approaches [43, 26, 24, 17, 13], just to name a few.

An interesting observation derived from numerous studies (see, for instance, [39, 24, 40]) is that

often times some datasets may be analyzed very accurately by a wide spectrum of classifiers while

other datasets may not be analyzed as easily. In other words, it seems like there are “easy” datasets,

“difficult” datasets and datasets of intermediate degrees of difficulty when one is interested on

how easily they can be analyzed accurately by classifiers. Therefore, in this study the difficulty

of a dataset is evaluated by the average classification accuracy when it is analyzed by various

classifiers, the lower the accuracy, the more difficult the dataset is. Furthermore, in this dissertation

this property is also defined as the learnability of datasets.

This study focuses on this very issue. That is, the main research question studied here is how

one can predict whether a given dataset would be analyzed accurately by a wide spectrum of clas-

sifiers. A theoretical analysis and some computational results provided in the following sections

indicate that a property in data known as the monotonicity property plays a central role in deter-

mining whether a given dataset is “easy,” “difficult” or of intermediate degree of difficulty when

one focuses on the above classification task. More importantly, it is also observed that some mono-
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tonic based properties are strongly related to their monotonic property, and which could be used to

accurately predict the learnability of datasets.

At present, if one wishes to determine whether a given dataset can be easily classified with

high accuracy, then that dataset has to be analyzed by many classifiers. The inferred models are

evaluated in terms of how accurate they are when they are fed with new data points of hidden class

values. However, such an approach may have a number of weaknesses. First, it might be a time

consuming approach, as many different classifiers need to be employed. Second, even if the results

are highly conclusive at the end of such a tedious study, one still does not really know what makes a

dataset easy or difficult to be classified accurately. Furthermore, if a dataset is deemed as a difficult

one because a number of classifiers have difficulty inferring accurate models, does it mean that this

dataset is truly a hard one? After all, which classifiers should be used in such studies? How many

of them? Currently, such questions cannot be answered objectively.

Therefore, a theoretical understanding of what makes a dataset easy or hard, based on its struc-

ture alone, is of paramount importance in this area of data mining research. Furthermore, if one

knows that a given dataset is a hard one because of properties pertinent to this dataset, then a new

classifier which outperforms existing ones even by a few percentage points, might be considered

as an important contribution. On the other hand, if a new classifier performs only slightly better

when dealing with easy datasets, then such news might not be as important.

It is observed that when datasets are comprised of highly monotonic data, then they can be

classified accurately by most methods while datasets that are not comprised of highly monotonic

data, tend to be more difficult to be accurately analyzed by classifiers. Then the challenge becomes

what happens if a given dataset does not exhibit strong monotonicity, is there any way to make it

easier to be accurately classified, perhaps after some data manipulations? The present dissertation

provides an answer to this very important question.

In summary, our research is concerned with the following issues: what are the factors that impact

the difficulty of datasets, how to derive such factors, how to use them to evaluate the difficulty of

2



the datasets objectively, under what conditions is the proposed approach applicable, and more

importantly, how to use the previous results on poorly monotonic data, such that the classification

accuracies can be improved.

The rest of the dissertation is organized as follows. Section 2 introduces the notion of mono-

tonicity and also provides the definitions of the monotonic features considered in this study. The

third section illustrates how some binary datasets were generated for this study. The fourth section

demonstrates how the monotonic characteristics of datasets can be used to predict their classifica-

tion difficulty. This is done for some binary datasets and some continuous datasets. The fifth section

provides a way to pre-process the raw data to make them easier to accurately classify, while the

sixth section shows a meta-learning approach to improve the classification on any numeric datasets.

Finally, this dissertation ends with the main conclusions of our study.

3



Chapter 2

Introduction to Monotonicity
2.1 The Monotonic Property in Datasets
Because monotonicity plays a central role in the developments described in our research, this

section presents a brief discussion of the notion of monotonicity and some key developments in this

area. This discussion on monotonicity is important even for datasets that are not purely monotonic.

This is true because as it is explained later, even when monotonicity is partially present in a dataset,

then one may still be able to reach certain important conclusions when the learnability of that

dataset is concerned.

For a simple and intuitive illustration of what is monotonicity in data, let us consider the follow-

ing hypothetical situation. Suppose an analyst is interested in studying how a personal computer

(PC) may crash under various software application loading scenarios. This analyst has observed

that when certain software applications are loaded simultaneously, then the PC may crash. As there

are n possible applications to be loaded, the state of the PC may be represented in terms of binary

vectors in n dimensions. The analyst has observed that under certain loading scenarios the PC may

crash (class value 1), while under some other loading scenarios the PC may not crash (class value

0).

For instance, if a word processor, a photo editor and a video editor are loaded simultaneously,

then the PC may crash (class value 1). Suppose that for n=10 (i.e., there are up to 10 applications to

be loaded), the previous scenario is represented by the following binary vector: V1 = (0100101000),

where the three 1s represent the loading of the previous three applications, respectively. Then one

may argue, that if the previous three applications have been loaded and then two more are loaded

in addition (such as the ones represented by the following vector: U1 = (0110101010)), then the

PC may crash as well (class value 1).

4



This is reasonable to assume because the new state of the PC describes a situation that is even

more strenuous than the previous one, under which nevertheless the PC would crash. Please also

observe that for these two vectors the following is true: U1 > V1. In a similar manner, if the PC

does not crash under a given software loading scenario, say, the one represented by the vector V2

= (0100001110), then most likely it will not crash under the loading scenario U2 = (0100001010),

which represents a lighter case. In other words, if a Boolean function f exhibits the following

property: f (U)≥ f (V ), for any two vectors U and V such that U ≥V , then we say that the function

f is monotonically increasing.

More formally, let {0,1}n denote the binary space defined on n Boolean attributes. A Boolean

function defined on this space is a mapping from {0,1}n into {0,1}. Suppose that two binary

vectors U and V from {0,1}n are given where U = (u1,u2,u3, . . . ,un) and V = (v1,v2,v3, . . . ,vn),

and ui, vi = 0 or 1 for any i = 1,2,3,. . . ,n. Then, there are three possible cases as described in the

following definitions.

Definition 2.1: A binary vector U ∈ {0,1}n is said to be greater than or equal to another vector

V ∈ {0,1}n , denoted as U ≥V , if and only if (iff) ui ≥ vi, for i = 1,2,3, . . . ,n, where ui(vi) denotes

the ith element of vector U(V ).

Definition 2.2: A binary vector U ∈ {0,1}n is said to be less than or equal to another vector

V ∈ {0,1}n , denoted as U ≤V , iff ui ≤ vi, for i = 1,2,3, . . . ,n, where ui(vi) denotes the ith element

of vector U(V ).

Definition 2.3: Given two vectors U,V ∈ {0,1}n, they are said to be unrelated to each other iff

neither one is greater than or equal to the other. Otherwise, they are called related.

If a vector U is greater than another vector V , then one can also say that vector U proceeds

vector V , or in other words, that vector V follows vector U . For some illustrative examples of the

above, consider the four vectors in {0,1}4 defined as follows: V = (1011), W = (0011), P = (0001)

and Q = (1001). Then according to the previous definitions, it follows that V > W and W > P,

5



and it is easy to get V > P as well. Moreover, the vectors W and Q are unrelated. The following

definition provides the notion of monotone Boolean functions formally.

Definition 2.4: A Boolean function f defined on {0,1}n, is called monotonically increasing iff

f (U) ≥ f (V ) for all U,V ∈ {0,1}n, and U ≥ V . If f (U) ≤ f (V ) for all pairs of vectors U,V ∈

{0,1}n such that U ≥V , then such Boolean function is called monotonically decreasing.

In this dissertation when we say monotone Boolean function we will mean an increasing one

unless it is otherwise specified. The first known study on monotonicity is due to Dedekind [14].

Other early studies are due to Church [11] and Ward [45] where they studied the number of all

Boolean monotone functions for dimensions n = 1,2,3, . . . ,7. An interesting development is due

to Hansel [23] who introduced the notion of Hansel chains. Some early learning complexity issues

for inferring monotone Boolean functions were studied in [38, 22, 19, 28, 3, 32]. More recent

studies on learning monotone Boolean functions from training data can be found in [41, 43].

2.2 Key Definitions Related to Monotonicity
Given a monotone Boolean function f from {0,1}n into {0,1}, some vectors in {0,1}n play a

critical role in defining this function f . These are what is known as upper zero and lower unit

vectors [23, 41, 43]:

Definition 2.5: A vector V ∗ is called a lower unit of a monotone Boolean function f iff f (V ∗)

= 1 and f (V )< f (V ∗), for any vector V <V ∗.

Definition 2.6: A vector V ∗ is called an upper zero of a monotone Boolean function f iff f (V ∗)

= 0 and f (V )> f (V ∗), for any vector V >V ∗.

Definition 2.7: Given a monotone Boolean function f the union of the set of the lower units with

the set of the upper zeros is the set of its border vectors.

For any monotone Boolean function f , the set of all lower units and the set of all upper zeros

are unique, and either one of these two sets uniquely identifies f [41].

6



2.2.1 Purely Monotonic Binary Datasets

Next, it is assumed that given is a binary dataset, say D, comprised of two mutually exclusive and

exhaustive subsets of binary vectors classified by some monotone Boolean function f . The analyst

may or may not know the definition of this function f . The first subset, denoted as D+, has all the

vectors classified as positive, while the second subset, denoted as D−, has all the vectors classified

as negative. Obviously, D = D+∪D−.

Definition 2.8: A binary dataset D is a purely monotonic binary dataset iff any positive vector

V ∈ D+ is either greater than any negative vector U ∈ D− or the vectors V and U are unrelated.

If the condition described in the previous definition is not satisfied, the dataset is called a non-

purely monotonic binary dataset. Next, the previous concepts of upper zeros, lower units, and

border points of monotone Boolean functions can be easily adapted in the context of a purely

monotonic binary dataset D. This is accomplished in terms of the following definitions:

Definition 2.9: Given a purely monotonic binary dataset D, a vector V ∗ ∈ D+ is called a lower

unit of the dataset D iff for any V ∈ D+, V ∗ <V or the vectors V ∗ and V are unrelated.

Definition 2.10: Given a purely monotonic binary dataset D, a vector V ∗ ∈ D− is called an

upper zero of the dataset D iff for any V ∈ D−, V ∗ >V or the vectors V ∗ and V are unrelated.

Definition 2.11: Given a purely monotonic binary dataset D, the union of the set of its lower

units with the set of its upper zeros is the set of its border points.

The previous concepts can be easily extended to functions and datasets that are not binary.

This can happen if the attributes take on ordinal values and thus one can compare vectors as was

the case with only binary attributes. Algorithm 1 can be used to identify the border points of a

purely monotonic dataset (no necessarily only binary). As illustrative examples of these concepts,

consider the dataset in {0,1}4 depicted in Table 2.1. The lower units of D are the vectors: {(1100),

(1010)}, while the upper zeros of D are the vectors: {(0110), (1001), (0101)}. The set of its border

points is the union of the previous two sets.

7



TABLE 2.1: An example of a purely monotonic dataset D in {0,1}4.

Positive vectors (1111), (1110), (1101), (1011), (1100), (1010)
Negative vectors (0110), (1001), (0101), (0100), (0001), (0000)

Algorithm 1: Find all the border points in a purely monotonic dataset D.
Input : E+, E−; /*Two mutually exclusive sets of positive and negative vectors in D,

respectively.*/
Output: LU,UZ; /*Two sets of the lower units and the upper zeros, respectively.*/

1 for each e+i ∈ E+ do
2 for each e+j ∈ E+ do
3 if e+j > e+i then
4 Remove e+j from E+;
5 end
6 end
7 end

8 for each e−i ∈ E− do
9 for each e−j ∈ E− do

10 if e−j < e−i then
11 Remove e−j from E−;
12 end
13 end
14 end

15 LU ← E+ and UZ← E−;
16 Return LU, UZ;

2.2.2 Non-purely Monotonic Binary Datasets

Some real-life datasets, however, may not be purely monotonic. That is, in such datasets one may

encounter positive vectors which may be less than some negative vectors. When this happens, then

the previous defined concepts should be modified to become the extended lower units, the extended

upper zeros, and the extended border points of the dataset.

To be more specific, if a binary dataset is not purely monotonic then it can be decomposed

into groups of vectors such that within each pair of groups the monotonic property holds locally.

In particular, such dataset can be divided into several unique class groups. Each group contains

the vectors with same class value, while the class values between adjacent groups are different.

Moreover, for any two groups of such vectors with different class values, all the vectors in one
8



group precede or are unrelated to the vectors in the other group. In this way, any two groups of

vectors of opposite class values can comprise a purely monotonic binary dataset.

Suppose that given is a binary dataset D which is not purely monotonic. Then, its sub-groups

can be derived as follows:

1. Find out all the positive vectors in D which precede or are unrelated to all negative vectors.

Next, they are removed from D to form a positive sub-group.

2. From the remaining vectors, find out all the negative vectors which precede or are unrelated

to the rest of the positive vectors. Next, they are removed from D to form a negative sub-

group.

3. Repeat steps (1) and (2) until the dataset D becomes empty.

Based on such unique class groups, the concept of extended border points can be defined as

follows:

Definition 2.12: Given a positive sub-group G, a vector V ∗ ∈G is called an extended lower unit

of the sub-group G iff for any V ∈ G, then V ∗ <V or the vectors V ∗ and V are unrelated.

Definition 2.13: Given a negative sub-group G, a vector V ∗ ∈ G is called an extended upper

zero of the sub-group G iff for any V ∈ G, then V ∗ >V or the vectors V ∗ and V are unrelated.

Definition 2.14: Given a non-purely monotonic binary dataset D, the union of the set of its

extended lower units with the set of its extended upper zeros forms the set of its extended border

points.

Once the sub-groups are determined as above, the border points of each sub-group can be de-

termined by implementing Algorithm 1 within each sub-group. As was the case with the deter-

mination of the (regular) lower unit and upper zero vectors, an algorithm can be easily designed

to determine the extended lower unit and extended upper zero vectors. Algorithm 2 shows such

an approach with a time complexity of O(m2), where m is the number of vectors in the training

dataset.
9



Algorithm 2: General approach to find extended border points in a non-purely monotonic
dataset.
Input : E+, E−; /*Two mutually exclusive sets of positive and negative vectors,

respectively.*/
Output: ELU,EUZ; /*Two sets of the extended lower units and the extended upper zeros,

respectively.*/

1 ELU ← φ,EUZ← φ;

2 while E+ 6= φ or E− 6= φ do
3 Subset+← φ,Subset−← φ;
4 for each e+i ∈ E+ do
5 if There is no e−j ∈ E− such that e−j > e+i then
6 Subset+← Subset+∪ e+i ;
7 Remove e+i from E+;
8 end
9 end

10 for each e−i ∈ E− do
11 if There is no e+j ∈ E+ such that e+j > e−i then
12 Subset−← Subset−∪ e−i ;
13 Remove e−i from E−;
14 end
15 end
16 ELU ← ELU ∪ f indLowerUnits(Subset+); /* Apply Algorithm 1 */
17 EUZ← EUZ∪ f indU pperZeros(Subset−); /* Apply Algorithm 1 */
18 end
19 Return ELU, EUZ;

As illustrative examples of the concepts of extended lower units, extended upper zeros, and

extended border points, one can consider the dataset in {0,1}5 depicted in Table 2.2. The extended

lower units of D are the vectors:{(11001), (10111), (00001), (01100), (10110)}, while the extended

upper zeros of D are the vectors:{(11110), (01101), (10011), (10010), (00110)}. The set of its

border points is the union of the previous two sets.

TABLE 2.2: An example of a non-purely monotonic dataset D in {0,1}5.

Positive vectors (11111), (11101), (10111), (11001), (11100),
(10110), (01001), (01100), (00001)

Negative vectors (11110), (01101), (10011), (00110), (00101),
(10010), (10000), (00100)
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FIGURE 2.1: The poset for the dataset in Table 2.1 and its border points.

FIGURE 2.2: The poset for the dataset in Table 2.2 and its border points.

2.3 Graphical Representation in Two Dimensions
The previous concepts of the various types of border vectors become easier to comprehend if one

considers them in the context of a 2-dimensional partially ordered set or poset (see, for instance,

[41, 43]). Such a poset is defined as follows:

Definition 2.15: Given a dataset D, its two dimensional poset representation is a graph whose

nodes correspond one-to-one to vectors of D. Furthermore, there is an arrow from a node U to a

node V , iff U >V .

When a poset representation is used, the data depicted in Table 2.1 correspond to Figure 2.1,

while the data in Table 2.2 correspond to Figure 2.2. For the sake of simplicity of the presentation,

arrows are shown only for adjacent nodes. One may observe that these graphs can be organized in

terms of layers as shown in these figures. The corresponding border vectors (upper zeros and lower

units) are also shown in these two figures.
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2.4 Data with both Positive and Negative Attributes
In the previous considerations it was assumed that all the binary attributes are positive. That is, if

an attribute has the value 1, then somehow this contributes to the chances for a given vector to be

of the positive class value. For instance, in the earlier PC related example, if a particular software

item is loaded (i.e., the attribute that corresponds to the loaded/not-loaded state for that software

item has value 1), then this contributes to the chances for a vector to be of the positive class value

(i.e., the “PC crashes” class value).

Although this may not be as critical for the binary case (as a given binary attribute may be

assigned value 1 or 0 depending on how one defines them), it becomes critical when one considers

the case when attributes have continuous values. For instance, in a setting with continuous attribute

values one may wish to study, say, the performance of a car engine. Then, one may have two

mutually exclusive and exhaustive states as follows: The engine needs immediate maintenance

(this is the “positive” class or class value 1) or the engine does not need immediate maintenance

(this is the “negative” class or class value 0).

In this hypothetical example an attribute that expresses the noise level of the engine could be

a positive attribute. This is true because the higher the noise level is, the more likely is that the

engine needs immediate maintenance (i.e., it is of the positive class). On the other hand, the number

of miles per gallon of fuel could be a negative attribute as the higher the value of that attribute is,

the less likely is that the engine to need immediate maintenance.

It is important to state here that in some real-life applications, attributes may not be purely

positive or negative. That is, as the value of such attributes increases, it is possible to have certain

levels beyond which the chances to be in one class value versus another, may alternate.

For instance, consider a healthy life-style study where among other attributes one of the at-

tributes is the amount of daily exercise a person may pursue. For simplicity, assume that the class

values are “healthy life-style” (the positive class) and “not healthy life-style” (the negative class).

As the amount of exercise increases, say, from 20 minutes per day to 40 minutes, then to 60 min-
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utes and so on, the chances that we will be in the positive class increase accordingly. However,

there is some value for this particular attribute where more increase to its value may not lead to

higher chances to be in the positive class. For instance, if one exercises at abusive levels, say 12 or

even 14 hours a day, then that may cause some health related problems. For the previous reasons,

in this study positive and negative attributes are defined in a non-rigorous manner as follows:

Definition 2.16: An attribute with binary values is called a positive attribute if when it has

value 1, then it is more likely for vectors to be in the positive class. Otherwise, it is called a

negative attribute.

Definition 2.17: An attribute with ordinal values is called a positive attribute, if when the values

increase, then it is more likely for vectors to be in the positive class. Otherwise, it is called a

negative attribute.

The following sections will distinguish between positive and negative attributes only. Cases like

the one described above, may lead to situations where datasets are not purely monotonic. As it was

explained earlier, for non-purely monotonic binary datasets one can decompose them into regions

where monotonicity holds locally. Obviously, a dataset with lots of such regions is less overall

non-purely monotonic than a dataset with just a few such regions. How this factor and other ones

related to monotonicity may impact the learnability of datasets is studied in the following sections.

2.4.1 Identifying the Positive and Negative Attributes

From the previous discussion it follows that there are alternative ways to define what is positive

and negative attributes. Thus, there are alternative ways to quantify the way how to determine such

attributes. In this study the following approach is used.

Each pair of positive-negative vectors is considered. For each attribute i, let Np,i indicate the

number of times attribute i in the positive vectors is greater than the same attribute i in the negative

vectors when all pairs are considered. Similarly, let Nq,i indicate the number of times attribute i in

the negative vectors is greater than the same attribute i in the positive vectors. Then, if Np,i > Nq,i,

the attribute i is assumed to be a positive attribute. If Np,i < Nq,i, it is assumed to be a negative
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attribute. Finally, if Np,i = Nq,i, then attribute i is designated as either positive or negative with

probability 50%. One may observe here that as more training data are added to a given dataset, the

groups of positive and negative attributes may change.

2.4.2 Comparing Vectors with Both Positive and Negative Attributes

Once the positive and the negative attributes have been determined, two n-dimensional vectors V

and W (with binary and/or ordinal attributes) can be defined as follows: V = ((vp1,vp2,vp3, . . . ,vpx),

(vn1,vn2,vn3, . . . ,vny)), and W =((wp1, wp2, wp3, . . . , wpx), (wn1, wn2, wn3, . . . , wny)), where n = x+y.

The elements vpi and wpi indicate the positive attributes of the vectors V and W , respectively, while

vq j and wq j indicate the negative attributes of them. In light of this enhancement, the previous

definitions of vectors defined on only positive attributes can be expanded accordingly.

In the new setting a vector V is said to be greater than or equal to (i.e., it precedes) vector W

(denoted as V �W ) iff vpi ≥ wpi, for i = 1,2,3, . . . ,x, and vni ≤ wni, for i = 1,2,3, . . . ,y. In this

case one may also say that vector W is less than or equal to (i.e., it follows) vector V (denoted

as W � V ). As before, when any of these two ordering relationships can be defined between two

vectors, we say that such vectors are related. Otherwise, they are called unrelated. Please note

that now the symbols � and � are used instead of the previous ≥ and ≤ symbols, respectively.

For any pair of vectors V and W defined as above, if either their positive groups or negative

groups are unrelated, then the vectors V and W are unrelated too. Furthermore, the vectors V and

W are unrelated when they have different number of attributes in either their positive or negative

group. It should also be noted here that if both the positive and negative groups of vector V are at

the same time greater than or smaller than those of vector W , then the vectors V and W are still

unrelated.

For some illustrative examples of the above, consider the four binary vectors defined as follows:

V = ((010), (111)), W = ((110), (011)), P = ((100), (010)) and Q = ((011), (110)). Then according

to the previous definitions, it follows that W � V and Q � V . All other pairs are comprised of

unrelated vectors.
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FIGURE 2.3: The complete poset when n=4, x=2, and y=2.

2.5 Graphical Representation for Datasets With Positive and
Negative Attributes

As was the case with binary data that have only positive attributes, the enhanced type of binary

data which are defined on both positive and negative binary attributes can be represented graph-

ically in terms of posets as well. Figure 2.3 depicts the poset for the complete 4-attribute binary

dataset which has two positive attributes and two negative attributes. It is an illustrative example of

constructing a poset for such kind of 4-attribute binary dataset. Any 4-attribute binary dataset with

two positive and two negative attributes can be defined in this format, but with less than 16 mem-

bers is a subset of the one displayed in Figure 2.3. Then, such a binary dataset can be graphically

represented accordingly, and this idea can be expanded to display any dataset (i.e., not only binary)

with ordinal attributes in two dimensions, provided that the number of vectors is manageable.

The earlier definitions of lower units, upper zeros, border points of purely monotonic datasets

still hold as long one defines the ordering relations between pairs of vectors in terms of the two

groups of positive and negative attributes. Table 2.3 presents a simple 5-dimensional dataset with

purely monotonic data which is defined on three positive attributes and two negative attributes.

The same data are also depicted in Figure 2.4 in terms of a poset, and along with the corresponding

lower unit and upper zero vectors.

Finally, Table 2.4 presents a dataset which is not purely monotonic and it is defined on three pos-

itive attributes and two negative attributes. The corresponding poset representation and a graphical

depiction of its lower units and upper zeros are given in Figure 2.5.
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TABLE 2.3: An example of a purely monotonic binary training dataset when positive/negative at-
tributes are taken into consideration.

Positive vectors ((111),(00)), ((111),(01)), ((111),(10)), ((110),(10)), ((111),(11))
((011),(10)), ((011),(11))

Negative vectors ((101),(00)), ((101),(01)), ((100),(00)), ((010),(10)), ((100),(01))
((001),(01)), ((000),(10)), ((100),(11)), ((001),(11))

FIGURE 2.4: The poset for the dataset listed in Table 2.3 and its border points.

TABLE 2.4: An example of a non-purely monotonic binary training dataset when positive/negative
attributes are taken into consideration.

Positive vectors ((111),(00)), ((111),(10)), ((110),(10)), ((101),(00)), ((010),(10))
((000),(10)), ((111),(11)), ((011),(11)), ((101),(01))

Negative vectors ((111),(01)), ((100),(00)), ((011),(10)), ((001),(10)), ((100),(01))
((100),(11)), ((001),(01)), ((001),(11))

FIGURE 2.5: The poset for the dataset listed in Table 2.4 and its border points.
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By following the approach described above, the dataset listed in Table 2.4 can be divided into

four sub-groups, as shown in Figure 2.5. Based on these sub-groups, the extended lower units are

{((110),(10)), ((101),(00)), ((000),(10)), ((011),(11)), ((101),(01))}, and the extended upper zeros

are {((111),(01)), ((100),(00)), ((011),(10)), ((100),(01)), ((001),(01))}.

2.6 Types of Pairs of Vectors
The previous sections formally introduced some key relationships between any two vectors by

mostly ignoring their class values. That is, two vectors are either related to each other or are unre-

lated. This section discusses how two vectors can be related by also considering their class values.

Let us assume that each vector in a dataset is classified to be either positive or negative. By

considering such class values, there are five possible relationships between the two vectors in any

pair of such vectors. These relationships are: a positive vector V precedes another positive vector

W ; a positive vector V precedes a negative vector W ; a negative vector V precedes a positive vector

W ; a negative vector V precedes a negative vector W ; or the vectors V and W are unrelated.

For any pair of vectors V and W , if the vectors are related and they have the same class value,

they are said to comprise a pair which is in agreement with the monotonic property, or an AMP

pair. In the situation when a negative vector V precedes a positive vector W (i.e., V �W ), the pair

comprised in this order is in conflict with the monotonic property (or it is a CMP pair).

For a pair of vectors V and W where a positive vector V precedes a negative vector W , their class

values do no conflict with the monotonic property. This indicates that if one has V �W and knows

that vector V has been classified as positive, then the vector W can be either positive or negative

without conflicting with the monotonic property. A similar observation follows if V �W and the

vector W has been classified as negative. Then the vector V can be either positive or negative.

Given the above discussion, from now on two monotonically related vectors V and W of the same

class value will be said to comprise a pair which is in agreement with the monotonic property of

type 1, or an AMP1 pair. For another pair of vectors V and W , where V �W and the class value

of V is positive while the class value of W is negative, it is called a pair in agreement with the
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monotonic property of type 2, or an AMP2 pair. If the vectors V and W are unrelated, then the class

value of one vector has no effect on that of the other. In this case, they comprise a monotonically

neutral pair (or an MNP pair). As it is shown in the experimental section, these types of pairs of

vectors play a crucial role in determining how easily a dataset can be accurately analyzed by a

large spectrum of classifiers.

More formally, suppose that given are two distinct vectors V and W defined on n attributes

(binary or ordinal in general) and have the same positive and negative attributes. It is also assumed

that there are only two classes; the positive and the negative. Next, all the possibilities of the

relative relations between any two vectors V and W and their class values are formally introduced

as follows:

Definition 2.18: Two numeric vectors V and W, where V �W, constitute a pair which is in

agreement with the monotonic property of type 1, denoted as an AMP1 pair, iff they have the same

class value.

Definition 2.19: Two numeric vectors V and W, where V �W, constitute a pair which is in

agreement with the monotonic property of type 2, denoted as an AMP2 pair, iff the class of vector

V is positive while the class of vector W is negative.

Definition 2.20: Two numeric vectors V and W, where V �W, constitute a pair which is in

conflict with the monotonic property, denoted as a CMP pair, iff the class value of V is negative,

while the class value of vector W is positive.

Definition 2.21: Two numeric vectors V and W form a monotonically neutral pair, denoted as

an MNP pair, iff they are unrelated.

Figure 2.6 depicts a collection of positive and a collection of negative training examples when n

= 4, x = 2, and y = 2. This training dataset is comprised of four positive vectors (denoted with

squared shapes) and three negative ones (denoted with oval shapes), and it is a subset of the

dataset decipted in Figure 2.3. Then, according to the definitions given above, some examples

of AMP1 (ordered) pairs are as follows:{((11),(00)), ((11),(01))}, {((11),(00)), ((11),(10))} and
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FIGURE 2.6: Some examples of different types of monotonically related pairs.

{((10),(00)), ((10,(01))}. Some examples of AMP2 (ordered) pairs are {((11),(01)), ((10),(01))}

and {((11),(00)), ((10),(00))}. The only example of a CMP (ordered) pair is {((10),(00)), ((10),(10))}.

Some examples of MNP pairs are {((11),(10)), ((10),(01))} and {((10),(00)), ((11),(01))}.
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Chapter 3

The Experimental Design for Binary Datasets
This section explores the roles of some potentially important characteristics of numeric datasets,

which could be used to predict how difficult it is to analyze a given dataset accurately. As it was

stated earlier, the main research hypothesis is that such difficulty is primarily related to the mono-

tonic characteristics of a dataset, even if monotonicity occurs partially (i.e., when there are CMP

pairs in the datasets).

3.1 Design Issues of Experiments with Some Artificial Binary
Datasets

The binary datasets used in this set of experiments were created in different sizes with the value

of n (dimensions) ranging from 6 to 60. In each individual experiment, the training data and the

testing data are binary datasets with the same number of dimensions (attributes).

As it was stated earlier, this study defines the “difficulty” or learnability of a dataset as how dif-

ficult it is to be accurately classified. This is indicated by the average accuracy when it is analyzed

by multiple classifiers. The lower the value, the more difficult it is. Moreover, it is assumed that

the false positive and the false negative errors are of the same penalty cost. The purpose of the

experiments is to generate accurate regression models, which use the monotonic characteristics of

the training datasets as the independent variables to formulate their difficulties.

In order to do that, a group of artificial binary datasets were studied in this family of experiments.

This group was comprised of “easy” datasets, “difficult” datasets, and datasets with intermediate

degrees of difficulty. Four kinds of binary datasets were therefore generated with different mono-

tonic characteristics as follows:

1. Random datasets. Such datasets contain vectors with randomly assigned class values. In

general, they are expected to have intermediate degrees of difficulty.
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2. Datasets without CMP pairs. They are expected to be easy to classify accurately.

3. Datasets which have lots of CMP pairs. This is the opposite case to the one described above.

Such datasets are expected to be difficult to classify accurately.

4. Pairs of datasets which have exactly the same border points but have very different numbers

of AMP1 pairs. It is expected that the ones with more AMP1 pairs are easier to classify

accurately.

3.2 Generating the Binary Experimental Datasets
3.2.1 Generating Random Datasets

The random datasets were generated in a straightforward way. Given are the number of attributes

n and the number of selections K. Next, K vectors were selected with replacement with equal

probability (i.e., equal to 1/2n). Any duplicate vectors were deleted to make sure that each vector

appears only once in the generated dataset. The number of distinct vectors among the K ones is

denoted as N (i.e., K ≥ N). After that, every vector was assigned to class values 1 or 0 (for positive

or negative, respectively) with probability equal to 0.50. The positive/negative attributes of these

datasets are unknown, but they can be later determined by the way described in Section 2.4.1. It

should be stated here that in this way datasets may not be generated completely randomly as some

bias may be present [42].

3.2.2 Generating Datasets Which do not Contain Any CMP Pairs

In order to generate such datasets, one should first decide on the numbers of positive attributes (x)

and negative attributes (y), such that x+ y = n and x,y ≥ 0. The vectors in these datasets have n

attributes while the first x attributes are considered as positive, and the next y attributes as negative.

After that, a complete (i.e, one of size 2n) n-attribute binary dataset is represented as a 2-D

poset, and it is divided into three groups: the positive group, the negative group and the unlabeled

group. This is done by determining the values of K1,K2 and K3, such that K1+K2+K3 = n+1 and

K1,K2,K3 ≥ 0. The top K1 layers comprise the positive group; the vectors located in these layers
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are labeled as positive. The bottom K3 layers comprise the negative group; all the vectors located

in these layers are labeled as negative. The vectors located in the middle layers are unlabeled.

The following describes how to generate an n-attribute binary dataset with N vectors for given

K1,K2,K3,x, and y values. It makes sense that by increasing the value of K1 and decreasing the

value of K3, there should be more positive vectors in the generated dataset, and vice versa.

1. Create a complete n-attribute binary dataset D. This dataset should contain 2n different binary

vectors.

2. Randomly select a vector V from D without replacement. Determine the layer i in which it

is located by using i = x−P1 + y−P2, where P1 is the number of the positive attributes in

V that are set to value “1” and P2 is the number of the negative attributes in V that are set to

value “0”, then do the following:

(a) If i ≤ K1, it is a positive vector.

(b) If i > K1 +K2, it is a negative vector.

(c) If K1 < i ≤ K1 +K2, then it can be randomly assigned to either the positive or the neg-

ative class with probability equal to 0.50. However, one needs to check if this vector

violates monotonicity. For example, if at first a vector is randomly assigned to the neg-

ative class, and it precedes some positive vectors generated during previous iterations,

then it should be changed to positive to maintain monotonicity.

3. Repeat Step 2) N times to generate N distinct vectors.

3.2.3 Generating Datasets Which Contain Many CMP Pairs

This case is the opposite of the previous one. The challenge is, given the same parameters n,x,y,

and N as defined in the previous section, how to assign the class values to these N binary vectors

such that the generated dataset has the maximum (or at least a very high) number of CMP pairs?

Please recall that two monotonically related positive-negative vectors comprise either an AMP2

pair or a CMP pair. However, according to the way one constructs the 2-D poset, the number of
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AMP2 pairs should be always larger than that of the CMP pairs. Therefore, the number of CMP

pairs should be just less than the number of AMP pairs.

One solution to achieve this goal is to first consider the complete n-attribute binary dataset in

its 2-D poset, and label the vectors according to the layers they belong to. More specifically, the

vectors in the same layer have the same class value, and their class values are different than those

of vectors located at adjacent layers. That is, the top layer, which is comprised of the single vector

that has all positive attributes set to “1” and all negative attributes set to “0”, is assigned to the

positive class. The second layer is assigned to negative, the third layer to positive, the fourth layer

to negative, and so on.

Some experiments were performed to evaluate this method, and Table 3.1 shows some of the

experimental results. One can observe from this table that by applying this method, an n-attribute

complete binary dataset can have a very similar number of AMP2 and CMP pairs.

Therefore, by using given values for n, x and y, the aim is to have a random dataset with N

vectors (where N ≤ 2n) such that it has a very large (but not necessarily the maximum) number of

CMP pairs. A way to achieve this goal is to first consider the complete case (that is, the case with

all 2n vectors). Next, each vector is assigned to a class value in the way mentioned above. Finally,

randomly select N distinct vectors from this complete set. This is how the third group of datasets

were generated for this computational study.

It should be stated here that depending on different selections of vectors, an attribute may be

recognized as a positive one in some derived datasets, but be considered as a negative one in some

other derived datasets, according to the way described in Section 2.4.1.

3.2.4 Generating Datasets Which Have the Same Border Points but Very
Different Monotonic Characteristics

The fourth group of datasets studies the roles CMP and AMP1 pairs play in the learnability of

datasets. This group of datasets considered triplets of datasets as follows. First, a dataset was

generated randomly as described in Section 3.2.1. Such a dataset may or may not have CMP pairs.
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TABLE 3.1: The number of AMP2 and CMP pairs in the complete n-attribute binary datasets that
are generated by the approach dessribed in Section 3.2.3.

Number of Attributes Number of AMP2 pairs Number of CMP pairs Ratio
n= 5 61 60 1.017
n= 6 182 182 = 1
n=10 14,762 14,762 = 1
n=15 3,587,227 3,587,226 ≈ 1
n=20 871,696,100 871,696,100 = 1
n=25 2.118 ×1011 2.118 ×1011 = 1
n=30 5.147 ×1013 5.147 ×1013 = 1
n=40 3.039 ×1018 3.039 ×1018 = 1
n=50 1.794 ×1023 1.794 ×1023 = 1
n=60 1.060 ×1028 1.060 ×1028 = 1

Based on this dataset, two extreme cases are introduced. The first extreme case is to build a dataset

which has the same (extended) border points, the same number of positive and negative vectors

but has the highest possible number of AMP1 pairs. This is denoted as Type I extreme case. The

second extreme case is similar to the first one but the interest now is to build a dataset with the

smallest possible number of AMP1 pairs. This is denoted as Type II extreme case.

Suppose a given dataset is defined on n binary attributes with x positive attributes and y negative

attributes, it has N1 positive vectors, N2 negative vectors, and the sizes of the LU and UZ sets are

equal to S1 and S2, respectively. First, let us assume that it contains no CMP pairs, and its border

points (i.e., all the LU and UZ vectors) can therefore be determined by using Algorithm 1. Based

on this information, two datasets are generated in order to represent the previous two extreme cases

as far as the number of AMP1 pairs is concerned.

To begin with, one needs to first remove all the vectors from the dataset except the border points,

and the same number of vectors will be regenerated to be covered by these border points. For the

case of the LUs, a vector is said to be “covered” by a lower unit if and only if it precedes this lower

unit. For the case of the UZs, a vector is said to be “covered” by an upper zero if and only if it

follows this upper zero. For instance, if the vector ((010), (11)) is an LU, then it covers the vector

((110), (11)).
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Algorithm 3: Generate an extreme case for a purely monotonic dataset D.
Input : A purely monotonic dataset D.
Output: D Extreme. /* The extreme case of D */

1 Pos← φ, Neg← φ, D Extreme← φ, LU← Lower units of D, UZ←Upper zeros of D;
2 N1← Number of positive vectors in D, N2← Number of negative vectors in D;
3 S1← Number of vectors in LU, S2← Number of vectors in UZ;
4 n← Number of attributes in D; En← Complete n-attribute binary dataset;
5 for Every vector V ∈ En except the LU and UZ do
6 if V is covered by some members in LU then
7 Pos← Pos∪V;
8 end
9 if V is covered by some members in UZ then

10 Neg← Neg∪V;
11 end
12 end
13 Sort the vectors in Pos in descending order by the number of LU members each vector is

covered;
14 D Extreme←D Extreme ∪ {The first N1−S1 vectors in Pos} ∪ LU;
15 Sort the vectors in Neg in descending order by the number of UZ members each vector is

covered;
16 D Extreme← D Extreme ∪ {The first N2−S2 vectors in Neg} ∪ UZ;
17 Return D Extreme ; /* This is for Type I extreme case. */

Every vector except the border points in En (i.e., the binary space of dimension n) is examined

to see by how many LUs it is covered. Next,these vectors are ranked in descending order. Finally,

the top N1−S1 vectors together with the LUs, are introduced as the new positive vectors.

The negative examples are obtained in an analogous manner. All the vectors except the border

points in En are ranked in descending order by how many UZs they are covered by. The top

N2−S2 vectors and all the UZs are introduced as the new negative examples. This is how the Type

I extreme case is generated from a random dataset which has no CMP pairs. This new dataset has

many AMP1 pairs because of the way the new positive and negative points are determined.

The Type II extreme case of a given dataset with no CMP pairs can be derived in a similar

manner as the previous one. However, in this case the vectors are organized in ascending order by

how many border points they are covered by. Now this dataset has positive and negative vectors

which are covered by the least number of border points in the LU and UZ sets. This is how two new
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Algorithm 4: Generate an extreme case for a dataset D which has some CMP pairs.
Input : A dataset D.
Output: D Extreme. /* The extreme case of D, which now has some CMP pairs */

1 CMP Vectors← φ,Monotonic Vectors← φ;
2 for Every vector Vi ∈ D do
3 if Vi is found in CMP pairs then
4 CMP Vectors←CMP Vectors∪Vi;
5 end
6 end
7 Monotonic Vectors← D−CMP Vectors;
8 Use Algorithm 3 (choose different sorting orders to get different extreme types) to derive a

dataset D1 from Monotonic Vectors;
9 D Extreme← CMP Vectors∪D1;

10 Return D Extreme ;

datasets are derived from a single random dataset without CMP pairs. The previous two approaches

are summarized as Algorithms 3. In this algorithm, if one sorts out the vectors in descending order

(as is currently shown in Algorithms 3), then the Type I extreme case dataset will be derived as

dataset Dextreme. If however, the vectors are sorted out instead in ascending order, then the dataset

Dextreme will represent the Type II extreme case of the the original dataset D.

Next, let us assume that a given dataset D contains some CMP pairs. By removing all its vec-

tors that are observed in the CMP pairs, it becomes a dataset with less number of observations

and which has no CMP pairs. This is exactly the same type of dataset discussed in the previous

case. Thus, from this reduced dataset one can derive two new datasets by implementing Algo-

rithm 3 (with different sorting orders). The new generated datasets, together with the vectors that

were removed earlier, form the two extreme cases of the dataset D. This approach is described as

Algorithm 4.

3.3 Classifiers from WEKA
The classifiers used in these experiments are: a decision tree (J48) [6], a Bayes network [12], a

naive Bayes [29], a logistic regression [18], an RBF network [25], a Kstar [27], an LWL [10],

an LBK [10], an AdaBoost [21], a Multi-Boost [8], a VFI (Voting Feature Intervals) [15], an
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ADTree (Alternating Decision Trees) [20], a BFTree (Best First Tree) [34], a random Forest [4],

and SMO [39].

In the experiments, WEKA [46] was implemented as the classification tool. It was used to imple-

ment the previous set of classifiers, the parameters of these classifiers are kept at default values as

set by WEKA. The experiments used a 10-fold cross validation approach in order to decrease vari-

ance. Moreover, each dataset was analyzed by all the classifiers, and the accuracies of the inferred

models were recorded. The average accuracy of these models was used as a measure to express

their difficulty in learning (i.e., their learnability value).
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Chapter 4

The Experimental Study
4.1 Parameters Used to Describe the Monotone Structure of a

Dataset
In order to further explore the relationships between the monotonic characteristics of the datasets

and their difficulties, linear regression models were generated using these characteristics as the

independent variables, and the difficulties of the datasets as the dependent value.

As discussed above, the difficulty of a dataset can be derived as the average accuracy when it is

classified by the classifiers listed in Section 3.3. Moreover, the monotonic characteristics described

in Table 4.1 were considered to be strong indicators of the datasets difficulty. In this study, the

monotonic characteristics P1 to P6 were used as the independent (explanatory) variables to build

the models. The reason why P7 is excluded is because P7 = 1−P2−P5.

The effectiveness of the chosen monotonic characteristics is in part indicated in Figure 4.1. This

figure shows some experimental results performed on binary datasets which have 8 attributes, and

each of them contains between 120 and 190 vectors. As can be observed in this figure, it seems

that with an increasing number of CMP pairs, the difficulty of accurately analyzing datasets also

increases. It also shows that when more unique vectors are observed in CMP pairs, the average

accuracy of the derived classification models is going down. Furthermore, given two datasets, the

one with more extended border points seems to be more difficult to accurately classify.

At this point one may question what happens if a function is used to transform the data in

a different form and possibly dimensionality. This happens, for instance, when kernel functions

are used in classification [2, 33]. If the data transformations used can change the ordering (e.g.,

greater than or equal than) between pairs of vectors, then the values of the six key parameters

denoted as P1,P2, . . . ,P6 may change as well. Depending on the way these six parameters change,
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TABLE 4.1: The seven monotonic characteristics of the numeric datasets.

P1 = Number of unique vectors found in CMP pairs
Number of all vectors in the training dataset

The ratio of the unique vectors
that appear in the CMP pairs.

P2 = Number of CMP pairs
Number of all possible pairs

The ratio of all possible pairs
that are CMP pairs.

P3 = Number of CMP pairs
Number of all possible positive-negative pairs

The ratio of the positive-negative
pairs that are CMP pairs.

P4 = Number of extended border points
Number of vectors in the training dataset

The ratio of the vectors that are
extended border points.

P5 = Number of all AMP1 pairs
Number of all possible pairs

The ratio of all possible pairs
that are AMP1 pairs.

P6 = Number of monotonically related pairs of vectors
Number of all possible pairs

The ratio of the pairs that are
monotonically related.

P7 = Number of all AMP2 pairs
Number of all possible pairs

The ratio of all possible pairs that
are AMP2 pairs.

FIGURE 4.1: Relationships between average accuracy and some monotonic features for binary
datasets when n = 8. They may have different positive/negative attributes.

the transformed dataset may become easier or more difficult to be analyzed. However, if the data

transformation cannot affect the ordering of pairs of vectors (and assuming the class values are

not affected either), then the learnabilities of the original and transformed datasets will remain

identical.

The experiments were performed as follows. First a list of n-attribute numeric datasets were

collected as the experimental datasets. Their vectors had been classified as either “postive” or
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“negative.” Furthermore, they should present various levels of difficulties, that is, some of the

datasets can be classified with high accuracies, while some others should be classified with low

accuracies.

Next, the collected experimental datasets were split into two groups as the training and the

testing data. Each dataset in the training group was analyzed in two aspects. First it was analyzed by

the classifiers mentioned in Section 3.3. The average of the classification accuracies was recorded

as its level of difficulty in learning (i.e., its learnability value). Next, its monotonic characteristics

were calculated by using the formulas listed in Table 4.1.

After that, a group of linear regression models were generated using the PROC REG function in

SAS [37]. The quality of the models was evaluated by their R-Square values and their performance.

The models with higher R-Square values are usually more accurate in predicting the difficulty of

the testing datasets. The performance of the models can be assessed as follows. First the monotonic

characteristics of the testing datasets and their difficulties were calculated in the same way as that

of the training datasets. Next, such monotonic characteristics were used in the generated regression

models to predict the difficulties of the corresponding testing datasets. The difference between the

predicted difficulties and the real difficulties are what is of interest. If the deviations were small, a

regression model was believed to be an accurate one. Therefore, the mean of the deviations is an

important evaluator as well.

Furthermore, the variance of the deviations is another issue. Two regression models A and B may

have similar means of deviations. However, the deviations produced by model A may have a large

variance while the ones produced by model B are more stable. That is, model A may make some

predictions very accurately but be very inacurate in some other predictions. Meanwhile, model B

does all the predictions with similar deviations. In such cases one would prefer model B since it

has less risk of generating meaningless predictions (i.e., predictions that are very different from the

actual values). Therefore, in this study, the deviations were analyzed by their mean and their 95%

confidence intervals.
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The next two sections provide the details of the experiments performed on some binary and

continuous numeric datasets, respectively. The experimental results would be provided together

with the analysis.

4.2 Experiments with Binary Datasets
4.2.1 Experiments on Artificial Binary Datasets

The monotonic characteristics of the datasets are the monotonic relationships between its pairs of

vectors. If a dataset has too few pairs of vectors that are monotonically related, then the values of

its monotonic characteristics P1 to P6 will all be close to 0, and therefore no useful information can

be provided when generating regression models.

Therefore, the immediate problem is, what is the precondition under which the proposed ap-

proach can generate accurate regression models? A set of experiments were designed to explore

this issue. The experimental datasets used in this set of experiments are some artificial binary

datasets with dimensions n = 10, 14, 18 and 22. Each dataset had from 400 to 1,500 vectors and

each vector was labeled as either “positive” or “negative.”

At the beginning, the experimental datasets were categorized by their dimensions, four groups of

datasets were therefore generated. Furthermore, the datasets in each group were further split into

several experimental groups by their monotonic characteristic P6 (the ratios of the pairs that are

monotonically related), and each experimental group had around 300 datasets. A list of regression

models were generated from these experimental groups, and their R-Square values are what is of

interest. Figure 4.2 shows some of the experimental results.

As one can observe from this figure, the R-Square values of the models were consistently above

0.92 when the experimental datasets have more than 6% pairs of vectors that are monotonically

related. In other words, it seems that under this simple condition the quality of the models can be

somehow ensured. Therefore, this study only focuses on numeric datasets that have more than 6%

monotonically related pairs.
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FIGURE 4.2: The R-Square values of the models generated from artificial binary datasets with
different dimensions.

The above four groups of datasets for n=10, 14, 18 and 22 served as pilot tests. Next, artificial

datasets were generated according to the procedures described in Section 3.2. Now the dimensions

ranged from 8 to 60. In these experiments, the datasets were grouped by their dimensions, and each

group contained about 450 datasets, where 350 of them were randomly selected for training and

the remaining 100 were used for testing. Furthermore, according to the way they were generated,

the difficulty of these datasets would also vary significantly. The quality of the regression models

would be evaluated by their R-Square values and also their performance in predicting the difficul-

ties of the testing datasets. Tables 4.2 and 4.3 list some experimental results on these datasets.

As one can observe from this table, when there are sufficient number of vectors that are mono-

tonically related in a dataset, the difficulty of this dataset can be accurately predicted by analyzing

its monotonic characteristics. The R-Square values for all the models listed in this table are greater
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TABLE 4.2: The regression models generated for different dimensions of artificial binary datasets.

Dimensions Regression models
N= 8 Y = 0.532 + 9.345×P1 - 22.55×P2 - 0.312×P3 - 0.236×P4 + 1.734×P5 + 0.209×P6

N= 10 Y = 0.737 + 10.19×P1 - 44.48×P2 - 0.103×P3 - 0.260×P4 + 1.104×P5 - 0.013×P6
N= 13 Y = 0.891 + 10.43×P1 - 41.27×P2 - 0.387×P3 - 0.330×P4 + 0.307×P5 + 0.151×P6
N= 17 Y = 0.746 + 14.42×P1 - 71.86×P2 - 0.189×P3 - 0.253×P4 + 0.019×P5 + 0.628×P6
N= 20 Y = 0.686 + 26.76×P1 - 87.84×P2 - 0.126×P3 - 0.118×P4 - 1.017×P5 + 0.879×P6
N= 25 Y = 0.857 + 26.78×P1 - 56.75×P2 - 0.092×P3 - 0.384×P4 + 1.147×P5 - 0.201×P6
N= 30 Y = 0.789 + 18.16×P1 - 46.25×P2 - 0.170×P3 - 0.216×P4 + 0.084×P5 + 0.133×P6
N= 35 Y = 0.746 + 11.64×P1 - 71.38×P2 - 0.189×P3 - 0.253×P4 + 0.019×P5 + 0.628×P6
N= 40 Y = 0.686 + 23.86×P1 - 78.85×P2 - 0.126×P3 - 0.118×P4 - 1.017×P5 + 0.879×P6
N= 45 Y = 0.857 + 22.35×P1 - 69.11×P2 - 0.092×P3 - 0.384×P4 + 1.147×P5 - 0.201×P6
N= 50 Y = 0.789 + 18.03×P1 - 76.25×P2 - 0.164×P3 - 0.216×P4 + 0.084×P5 + 0.133×P6
N= 60 Y = 0.789 + 16.63×P1 - 59.64×P2 - 0.170×P3 - 0.143×P4 - 0.043×P5 + 0.167×P6

TABLE 4.3: Details of the regression models listed in Table 4.2.

Dimension Number of vectors Difficulties R-Square Mean of 95% confidence
in each experimental of the training value of the intervals of

dataset datasets the modelsdeviation the deviations
n= 8 120 to 190 53.85% to 96.73% 0.986 1.806% 1.565% to 2.047%
n=10 400 to 600 52.66% to 93.97% 0.928 2.513% 1.710% to 2.118%
n=13 800 to 1,200 55.87% to 91.57% 0.937 2.415% 1.732% to 2.937%
n=17 1,200 to 1,600 56.83% to 93.66% 0.927 2.208% 1.833% to 2.583%
n=20 1,200 to 1,600 53.12% to 96.78% 0.943 2.376% 1.973% to 2.779%
n=25 1,200 to 1,600 54.51% to 95.33% 0.928 2.632% 2.136% to 3.128%
n=30 1,200 to 1,600 56.78% to 96.46% 0.942 2.517% 1.968% to 3.055%
n=35 1,200 to 1,600 56.37% to 93.60% 0.925 2.226% 1.879% to 2.573%
n=40 1,200 to 1,600 57.47% to 93.27% 0.932 2.562% 2.086% to 3.308%
n=45 1,200 to 1,600 55.87% to 95.96% 0.937 2.396% 1.832% to 2.960%
n=50 1,200 to 1,600 55.29% to 94.45% 0.939 2.452% 1.973% to 2.931%
n=60 1,200 to 1,600 53.58% to 93.32% 0.942 2.523% 2.074% to 3.031%

Average 0.939 2.387% 1.846% to 2.928%
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than 0.925, and some can be as high as 0.986. Therefore, these models present very strong rela-

tionships between the monotonic characteristics of the training datasets and their difficulties.

The performance of the models are encouraging in predicting the difficulties of the testing

datasets. The mean of all the deviations is 2.387%, and in 95% of the cases, the difference between

the predicted difficulties and the real difficulties is less than 2.928%. This observation indicates

that the generated regression models are very accurate.

In Table 4.3 and consecutive tables some of the classifiers performed quite poorly. This is indi-

cated by the low values of the range of classification difficulties (which can be as low as in the 50s

percentage points). However, the inferred regression models could predict low or high accuracies

(e.g., learnability levels) of the classifiers used quite accurately as indicated by the high R-Square

values of these regression models. For stability reasons we dropped the top two best and bottom

two worse classification accuracy values in order to block out any outlier behaviors by some of the

classifiers used in this study.

A related question at this point is which classifiers to include and which not to include. This

question cannot be answered in a generally accepted manner. This study included a wide range of

well-known classifiers from Weka. One may always argue why a given classifier was included or

not included in this group. In the future new significantly accurate classifiers may be introduced.

In that case, one may include them in a similar study. This point reveals that there is a need to have

a “representative” group of classifiers that could be used to standardize the quantification of the

proposed learnability metric.

In traditional applications, in order to evaluate how difficult it is to accurately classify an n-

attribute binary dataset, such a dataset has to be analyzed by a set of classifiers. The times spent for

each classification are different depending on the classification algorithms. For some algorithms,

such as the Decision Tree (J48) and the Bayes Analyze, the classification can be done quickly.

However, if one uses SVM or KStart algorithms, they usually need long processing time. Further-

more, in order to reduce the variance, one may need to implement the 10 or 20 cross-validation
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scheme, which makes the analysis time even longer. Therefore, it is quite time consuming to get

the actual average accuracy from a set of classifiers. However, by analyzing the monotonic charac-

teristics, one can easily predict the difficulty of such datasets accurately. It only takes O(N2) time

to get all the monotonic characteristics and not much time to use the appropriate regression model,

where N is the number of the observations in the dataset.

4.2.2 Experiments on Some Real-Life Binary Datasets

In order to further validate the effectiveness of the models, this section uses the same approach to

analyze the difficulties of some real-life binary datasets. These are: the Spect [44], the Adult, the

Mushrooms, the W1a, and the Covtype [31] datasets.

The experimental datasets in this section were generated as follows. The Spect dataset has 22

binary attributes and about 17% of its pairs of vectors are monotonically related. In this set of

experiments, 200 experimental datasets were generated by randomly selecting various subsets of

vectors from Spect. Moreover, there are 123 binary attributes in the Adult dataset and it has about

32,000 vectors. In this study, three groups of subsets were generated from this dataset as additional

experimental datasets. To be more specific, the datasets in the first group contain only 20-attribute

vectors, the datasets in the second and the third groups have 40 and 60 attributes, respectively. They

are denoted as experimental groups Adult 20, Adult 40, and Adult 60. Furthermore, in order to

ensure the precondition that all the experimental datasets should have more than 6% monotonically

related pairs, such experimental datasets were generated in the way described in Algorithm 5.

For instance, in generating the Adult 60 experimental datasets, 60 attributes were randomly

selected from the entire 123 ones, all duplicated 60-attribute vectors were removed, and 10 vectors

were randomly selected without replacement. Next, all the remaining 60-attribute vectors were

compared to these 10 vectors, the vectors that are monotonically related to at least one of them

were selected to form a sample space. A total of 6,000 vectors were therefore selected. After that,

500 groups of vectors were randomly selected from the sample space, and each group had about
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1,200 to 1,600 vectors. The vectors in these groups were labeled in the way described in Section

3.2 to generate 500 experimental datasets with different levels of difficulties.

Furthermore, the Mushrooms dataset has 112 binary attributes and 8,124 vectors, the W1a dataset

has 300 binary attribute and 50,000 vectors, and the Covtype dataset has 38 binary datasets and

580,000 vectors. Algorithm 5 was again applied to each of these datasets, and eight experimen-

tal groups were generated and were named as Mushrooms 20, Mushrooms 40, Mushrooms 60,

W1a 20, W1a 40, W1a 60, Covtype 20 and Covtype 38. The details of such datasets are provided

in Table 4.4, their derived regression models are listed in Table 4.5.

Algorithm 5: Generate experimental datasets which have adequate number of monotonically
related pairs
Input : A list of n-attribute vectors Vectors, K, N, and M
Output: M number of n-attribute binary datasets that have many pairs of vectors to be

monotonically related.
1 Sample Space← /0;
2 Randomly select K vectors from Vectors without replacement, they form a subset called

Initial K.
3 while Sample Space has less than N vectors and the Vectors is not empty do
4 Randomly select a vector V from Vectors;
5 if V is monotonically related to at least one vector Vk ∈ Initial K then
6 Sample Space← Sample Space∪V
7 end
8 end
9 Generate M binary datasets from Sample Space in the way described in Section 3.2.

10 Return the generated binary datasets;

Table 4.6 shows the experimental results on these real-life binary datasets. As one can observe

from this table, the monotonic characteristics of the datasets are strong indicators of their diffi-

culties. This is supported by the fact that the average R-Square value of the models is 0.954, and

when such models were used to predict the difficulties of the testing datasets, in about 95% of the

cases, the differences between the predicted difficulties and the real difficulties were no more than

2.345%.
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TABLE 4.4: The information of the datasets listed in Table 4.5.

Datasets Number of vectors Number of Difficulties R-Square
in experimental training of the training value of

datasets datasets datasets the models
Spect 140 to 200 150 67.56% to 94.47% 0.964

Adult 20 1,000 to 1,200 400 56.69% to 91.28% 0.958
Adult 40 1,400 to 1,600 400 61.28% to 92.68% 0.954
Adult 60 1,400 to 1,600 400 60.25% to 93.47% 0.945

Mushrooms 20 1,000 to 1,200 400 59.47% to 93.54% 0.948
Mushrooms 40 1,400 to 1,600 400 55.71% to 94.75% 0.953
Mushrooms 60 1,400 to 1,600 400 57.88% to 93.56% 0.929

W1a 20 1,000 to 1,200 400 53.58% to 96.87% 0.945
W1a 40 1,400 to 1,600 400 60.59% to 92.57% 0.977
W1a 60 1,400 to 1,600 400 54.58% to 94.15% 0.951

Covtype 20 1,000 to 1,200 400 57.97% to 95.66% 0.955
Covtype 38 1,400 to 1,600 400 56.12% to 93.86% 0.934

Average 0.954

TABLE 4.5: The regression models generated for some real-life binary datasets.

Datasets Regression models
Spect Y = 0.637 + 6.35×P1 - 12.45×P2 - 11.35×P3 - 0.436×P4 + 1.104×P5 + 0.217×P6

Adult 20 Y = 0.576 + 4.24×P1 - 15.34×P2 - 10.86×P3 - 0.265×P4 + 1.186×P5 + 0.331×P6
Adult 40 Y = 0.587 + 8.43×P1 - 17.38×P2 - 11.19×P3 - 0.372×P4 + 1.123×P5 + 0.356×P6
Adult 60 Y = 0.557 + 5.39×P1 - 11.98×P2 - 12.32×P3 - 0.351×P4 + 1.245×P5 + 0.415×P6

Mushrooms 20 Y = 0.734 + 9.31×P1 - 25.32×P2 - 17.24×P3 - 0.783×P4 + 0.897×P5 + 0.478×P6
Mushrooms 40 Y = 0.786 + 7.32×P1 - 21.44×P2 - 16.98×P3 - 0.673×P4 + 0.942×P5 + 0.375×P6
Mushrooms 60 Y = 0.772 + 6.29×P1 - 27.43×P2 - 17.38×P3 - 0.683×P4 + 1.106×P5 + 0.416×P6

W1a 20 Y = 0.685 + 5.59×P1 - 19.32×P2 - 19.28×P3 - 0.356×P4 + 1.033×P5 + 0.176×P6
W1a 40 Y = 0.678 + 7.25×P1 - 18.24×P2 - 18.35×P3 - 0.376×P4 + 1.105×P5 + 0.156×P6
W1a 60 Y = 0.691 + 6.67×P1 - 19.11×P2 - 21.31×P3 - 0.386×P4 + 1.042×P5 + 0.166×P6

Covtype 20 Y = 0.721 + 6.92×P1 - 7.472×P2 - 14.61×P3 - 0.537×P4 + 1.053×P5 + 0.205×P6
Covtype 38 Y = 0.732 + 8.35×P1 - 8.272×P2 - 13.88×P3 - 0.561×P4 + 0.964×P5 + 0.198×P6
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TABLE 4.6: Experimental results from the real-life binary datasets listed in Table 4.5.

Datasets Number of vectors Number of Mean of 95% confidence
in experimental testing the intervals of

datasets datasets deviation the deviations
Spect 140 to 200 50 1.105% 0.859% to 1.351%

Adult 20 1,000 to 1,200 100 1.828% 1.496% to 2.160%
Adult 40 1,400 to 1,600 100 2.017% 1.658% to 2.376%
Adult 60 1,400 to 1,600 100 2.146% 1.775% to 2.517%

Mushrooms 20 1,000 to 1,200 100 1.745% 1.451% to 2.039%
Mushrooms 40 1,400 to 1,600 100 2.074% 1.683% to 2.465%
Mushrooms 60 1,400 to 1,600 100 2.341% 1.985% to 2.697%

W1a 20 1,000 to 1,200 100 1.659% 1.357% to 1.961%
W1a 40 1,400 to 1,600 100 1.939% 1.429% to 2.449%
W1a 60 1,400 to 1,600 100 2.142% 1.432% to 2.652%

Covtype 20 1,000 to 1,200 100 1.868% 1.697% to 2.159%
Covtype 38 1,400 to 1,600 100 2.147% 1.828% to 2.366%

Average 1.906% 1.467% to 2.345%

4.3 Experiments with Some Continuous Datasets
The above experimental results are very encouraging. However, can these results be generalized

more? After all, the above experiments only analyzed binary datasets. In these cases the population

space is small and the vectors are simple (they are comprised by 0s and 1s). What about the case

when datasets are comprised by vectors with continuous attributes? Therefore, a new family of

experiments were designed and implemented to test the robustness of the proposed monotonicity

based approach by analyzing some continuous datasets.

4.3.1 Generating Experimental Datasets

In this family of experiments, the experimental data were generated from nine continuous datasets

selected from the UCI Machine Learning Repository. These datasets are the Abalone, the Yeast, the

Ecoli, the Diabetes, the Blood test, the Liver, the Iris, the Strength, and the Strike [44], and each

has from 600 to 4,800 vectors. They are considered as the target datasets in these experiments.

It was observed that the vectors in some datasets are assigned to more than two categories,

the Abalone, the Yeast and the Iris are some of the examples. However, our research focuses on

two-class classifications, Therefore, for a dataset which contains more than two categories, a set
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of two-class subsets were generated by randomly selecting any two classes of vectors from the

original dataset. For instance, there are three categories of vectors in the Iris dataset: the Setosa

vectors, the Versicolour vectors and the Virginica vectors. A dataset D1 with only two classes can

be comprised by vectors from the categories Setosa and Versicolour, the categories Versicolour and

Virginca, or the categories Setosa and Virginca.

Furthermore, in order to get enough experimental datasets, a new dataset can be created by

randomly selecting a portion of the vectors from D1 without replacement. Different samplings

may generate experimental datasets with different monotonic characteristics, and one can use this

approach to create sufficient observations.

Similar to the binary case, the experimental data in this set of experiments should also be com-

prised of datasets with different levels of difficulty. The difficulties of the experimental datasets can

be somehow impacted during their generations by including different number of vectors from dif-

ferent categories. For example, in generating the Blood datasets, if 80% of the vectors are chosen

from class 1( people donated blood in March 2007), and the rest are chosen from class 0 (people

did not donate blood in March 2007), then for most of the classifiers, the accuracies of the derived

classification models should be higher than 80%. Since they are believed to be more sophisticated

than the most intuitive guess: “all of them are class 1 vectors.” By carefully selecting vectors from

different categories, one can generate training datasets that have different levels of difficulty.

Moreover, it is also noticed that the dimension of the target datasets are varied from n = 4 to n = 7.

Therefore, for each target dataset which has more than 4 attributes, several groups of experimental

datasets can be generated from them with different dimensions. For instance, the Abalone dataset

has 7 continuous attributes denoted as {A1, A2, A3, A4, A5, A6, A7}. Therefore, based on which

group of 4-attribute datasets can be generated by randomly selecting four of its attributes, such

as {A1, A2, A3, A4}, or {A3, A4, A6, A7}, the selected attributes, combined with the class values,

formed some of the desired datasets. This 4-attribute experimental group is denoted as Abalone 4.
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FIGURE 4.3: The R-Square values of the models generated from continuous experimental groups
with different levels of monotonicity.

Furthermore, another group of 5-attribute datasets, called Abalone 5, can be generated in a similar

way by randomly selecting 5 attributes, and so did the groups of Abalone 6 and Abalone 7.

According to the previous experimental results, the quality of the generated regression models

was ensured when the experimental datasets have sufficient pairs of vectors that are monotoni-

cally related. Some experiments were performed to find out the appropriate value of this criterion.

In these experiments, 13 experimental groups were selected, and the datasets in an experimental

group were further split into two categories. These are, the ones that have more than 6% pairs of

vectors that are monotonically related, and the ones that have less than 6% pairs of vectors that are

monotonically related. Next, regression models were generated by analyzing datasets in each of

the categories and their R-Square values were recorded.

As one can observe from Figure 4.3, the quality of the models are unpredictable and inaccurate

when they were generated from datasets with less than 6% monotonically related pairs. However,

when the training datasets have more than 6% monotonically related pairs, the R-Square values

of the models are consistently above 0.93. This indicates that the generated models are reliable.

Therefore, this study only concentrated on datasets that have more than 6% of pairs that are mono-

tonically related. Some groups of datasets, such as Yeast 7, Ecoli 6, and Ecoli 7, because they have

too few pairs of monotonically related vectors, were not analyzed in this study.
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TABLE 4.7: Regression models generate from some real-life continuous datasets.

Datasets Regression models

Abalone 4 Y = 0.637 + 7.65×P1 - 11.76×P2 - 11.63×P3 - 0.526×P4 + 0.905×P5 + 0.194×P6
Abalone 5 Y = 0.628 + 7.22×P1 - 9.436×P2 - 16.14×P3 - 0.428×P4 + 1.625×P5 + 0.252×P6
Abalone 6 Y = 0.665 + 7.14×P1 - 14.25×P2 - 14.42×P3 - 0.129×P4 + 1.425×P5 + 0.284×P6
Abalone 7 Y = 0.632 + 6.67×P1 - 13.14×P2 - 17.53×P3 - 0.421×P4 + 1.351×P5 + 0.145×P6

Yeast 4 Y = 0.715 + 5.67×P1 - 14.63×P2 - 12.62×P3 - 0.355×P4 + 1.254×P5 + 0.169×P6
Yeast 5 Y = 0.709 + 6.12×P1 - 13.47×P2 - 13.73×P3 - 0.625×P4 + 1.154×P5 + 0.205×P6
Yeast 6 Y = 0.712 + 5.75×P1 - 15.48×P2 - 11.74×P3 - 0.278×P4 + 1.186×P5 + 0.311×P6
Ecoli 4 Y = 0.612 + 8.34×P1 - 12.74×P2 - 13.63×P3 - 0.259×P4 + 1.171×P5 + 0.265×P6
Ecoli 5 Y = 0.617 + 8.42×P1 - 15.75×P2 - 12.45×P3 - 0.341×P4 + 1.059×P5 + 0.258×P6

Diabetes 4 Y = 0.676 + 7.46×P1 - 13.54×P2 - 15.62×P3 - 0.453×P4 + 1.185×P5 + 0.165×P6
Diabetes 5 Y = 0.678 + 7.42×P1 - 12.55×P2 - 16.65×P3 - 0.486×P4 + 1.326×P5 + 0.185×P6

Blood 4 Y = 0.682 + 8.32×P1 - 12.63×P2 - 16.35×P3 - 0.253×P4 + 1.205×P5 + 0.215×P6
Blood 5 Y = 0.674 + 8.34×P1 - 11.78×P2 - 13.84×P3 - 0.354×P4 + 1.247×P5 + 0.236×P6
Liver 4 Y = 0.667 + 7.53×P1 - 16.74×P2 - 17.74×P3 - 0.452×P4 + 1.104×P5 + 0.298×P6
Liver 5 Y = 0.658 + 7.34×P1 - 14.54×P2 - 18.73×P3 - 0.354×P4 + 1.115×P5 + 0.258×P6
Liver 6 Y = 0.662 + 9.23×P1 - 17.36×P2 - 14.34×P3 - 0.159×P4 + 1.157×P5 + 0.275×P6

Iris Y = 0.876 + 3.11×P1 - 13.63×P2 - 17.35×P3 - 0.428×P4 + 1.095×P5 + 0.265×P6
Strength 4 Y = 0.634 + 5.36×P1 - 17.76×P2 - 22.37×P3 - 0.327×P4 + 0.985×P5 + 0.106×P6
Strength 5 Y = 0.631 + 3.46×P1 - 16.73×P2 - 19.56×P3 - 0.452×P4 + 0.968×P5 + 0.257×P6
Strength 6 Y = 0.627 + 6.75×P1 - 13.47×P2 - 21.96×P3 - 0.356×P4 + 1.015×P5 + 0.162×P6
Strength 7 Y = 0.633 + 9.42×P1 - 12.57×P2 - 17.78×P3 - 0.251×P4 + 1.077×P5 + 0.168×P6

Strike 4 Y = 0.675 + 6.32×P1 - 18.36×P2 - 15.15×P3 - 0.352×P4 + 1.256×P5 + 0.325×P6
Strike 5 Y = 0.667 + 7.11×P1 - 13.55×P2 - 13.36×P3 - 0.174×P4 + 1.174×P5 + 0.286×P6

By using the approaches described above, each experimental group (for instance, Abalone 5,

Iris, or Yeast 6) were generated and each contains from 300 to 550 2-class continuous experimental

datasets. Furthermore, such datasets present different levels of difficulty.

4.3.2 Experiments When the Training and Testing Datasets Were
Originated from the Same Target Dataset

This section explores the power of monotonicity by studying “relevant” datasets. That is, the train-

ing and testing datasets used in this set of experiments were originated from the same target dataset.

In studying these training datasets, one can use the same strategy as described in the binary case to

generate regression models, and next use them to evaluate the difficulty of the testing datasets.
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TABLE 4.8: Experimental results from real-life continuous datasets listed in Table 4.7.

Datasets Number of Number of Difficulties R-Square Mean of 95% confidence
training testing of the training value of the intervals of
datasets datasets datasets the models deviation the deviations

Abalone 4 450 100 57.69% to 93.58% 0.952 1.105% 0.859% to 1.351%
Abalone 5 450 100 56.97% to 96.25% 0.948 1.228% 0.725% to 1.731%
Abalone 6 450 100 58.25% to 95.48% 0.938 1.267% 0.736% to 1.798%
Abalone 7 450 100 60.33% to 92.47% 0.941 1.209% 0.817% to 1.601%

Yeast 4 400 100 58.44% to 91.23% 0.925 1.458% 1.012% to 2.104%
Yeast 5 400 100 58.36% to 94.33% 0.933 1.325% 0.917% to 1.733%
Yeast 6 400 100 57.37% to 95.21% 0.957 1.439% 1.005% to 1.873%
Ecoli 4 120 80 58.26% to 94.76% 0.948 1.539% 1.115% to 1.963%
Ecoli 5 120 80 59.85% to 93.87% 0.925 1.542% 1.136% to 1.948%

Diabetes 4 120 80 64.57% to 92.59% 0.948 1.878% 1.451% to 2.305%
Diabetes 5 120 80 63.14% to 94.88% 0.955 1.698% 1.208% to 2.188%

Blood 4 200 100 58.36% to 93.26% 0.954 1.528% 1.215% to 1.814%
Blood 5 200 100 61.56% to 94.37% 0.956 1.564% 1.103% to 2.205%
Liver 4 120 80 57.24% to 95.22% 0.941 1.458% 1.015% to 1.901%
Liver 5 120 80 56.87% to 94.18% 0.944 1.465% 1.069% to 1.871%
Liver 6 120 80 57.13% to 96.24% 0.927 1.598% 1.157% to 2.039%

Iris 120 80 90.68% to 100% 0.835 2.328% 0.885% to 3.771%
Strength 4 300 100 59.56% to 93.69% 0.966 1.287% 0.763% to 1.811%
Strength 5 300 100 61.27% to 94.85% 0.958 1.316% 0.982% to 1.650%
Strength 6 300 100 60.34% to 93.56% 0.951 1.613% 1.298% to 1.928%
Strength 7 300 100 58.47% to 94.78% 0.953 1.625% 1.157% to 2.093%

Strike 4 200 100 61.58% to 95.19% 0.945 1.898% 1.426% to 2.370%
Strike 5 200 100 59.87% to 94.32% 0.940 1.877% 1.397% to 2.357%
Average 0.944 1.306% 1.024% to 1.588%

Some details of these regression models are provided in Tables 4.7 and 4.8. As one can observe

from these tables, the training datasets represent diverse levels of difficulty, and the average R-

Square values of the generated regression models is equal to 0.944.

Moreover, Table 4.8 lists the deviations when such models were used to predict the difficulties

of the testing datasets. According to this table, the mean of all the deviations is equal to 1.306%.

Furthermore, the same confidence interval scheme was implemented as in the binary case to test

their variance. As it is indicated from this table, for most of the predictions, their deviations are not

larger than 1.588%.
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Let us use the Abalone 4 experimental datasets as an example here. In these experiments, a total

of 550 4-attribute subsets were generated from the target dataset Abalone with different levels of

difficulty.

Among these subsets, 450 of them were randomly chosen and were used to generate a regression

model. That model was next applied to analyze the remaining 100 testing datasets. In these 100

predictions, the mean of the deviations was equal to 1.105% with 95% confidence interval (0.859%,

1.351%). Statistically speaking, 95% of the predictions differ from the actual values by no more

than 1.351%. This provides strong evidence that the generated regression model is of high quality.

4.3.3 Evaluating the effect of monotonic characteristics over different
target datasets

The training and testing data in this family of tests were somehow “irrelevant.” In other words,

the training and the testing data used in this set of experiments were originated from different

target datasets. More specifically, these experiments were implemented in two scenarios. In the first

scenario, the training data were comprised of datasets of the same dimensions and were originated

from all target datasets.

For example, there are nine groups of 4-attribute datasets in this study, with a total number of

2,850 datasets. Among these datasets, 2,030 of them were randomly selected and aggregated to

form a composite training dataset. A regression model was trained from such training data, and

was later used to analyze the difficulties of the remaining datasets in each group. The derived

deviations were also recorded to assess its quality.

Table ?? provides the derived regression models and the experimental results. As one can ob-

serve from this table, the R-Square values of the regression models are all above 0.924, and these

models can predict the difficulties of the testing datasets with very little deviations.

For instance, when predicting the difficulties of the testing datasets generated from the Ecoli 4

datasets, the mean of the 80 deviations was 1.587% and in 95% of the cases the deviations were

less than 2.158%.
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TABLE 4.9: Some characteristics of the regression models generated independently of the testing
data. The actual regression models are shown in Table 4.10.

Training R-Square Testing Testing Means of the 95% confidence
Datasets group size deviations intervals of

the deviations
0.927 Abalone 4 550 2.824% 2.320% to 3.320%

Comprised by all 0.910 Ecoli 4 200 1.732% 1.455% to 2.010%
4-attribute datasets 0.919 Diabetes 4 200 2.770% 2.355% to 3.184%

except the ones 0.923 Blood 4 300 3.772% 3.446% to 3.996%
being tested 0.920 Liver 4 200 3.384% 2.937% to 3.831%

0.914 Strike 4 300 2.458% 2.147% to 2.769%
Average 0.911 2.733% 2.189% to 3.277%

0.931 Abalone 5 550 2.715% 2.426% to 3.004%
Comprised by all 0.914 Ecoli 5 200 1.862% 1.275% to 2.449%

5-attribute datasets 0.912 Diabetes 5 200 2.854% 2.463% to 3.245%
except the ones 0.930 Blood 5 300 3.428% 2.816% to 4.040%

being tested 0.916 Liver 5 200 3.294% 2.864% to 3.724%
0.934 Strike 5 300 2.366% 1.852% to 2.880%

Average 0.922 2.719% 2.241% to 3.197%
Comprised by all 0.889 Abalone 6 550 2.953% 2.498% to 3.408%

6-attribute datasets 0.893 Yeast 6 500 3.524% 2.886% to 4.126%
except the ones 0.907 Liver 6 200 3.462% 2.773% to 4.151%

being tested 0.912 Strength 6 200 3.354% 2.563% to 4.145%
Average 0.900 3.323% 2.625% to 4.021%

In general, the deviations produced by these regression models are somewhat greater than the

ones listed in Table 4.8, but most of them are still less than 2.4%. This observation indicates that

the generated regression models are reliable and effective.

In the second scenario, the training data were totally irrelevant (independent) of the testing

data. That is, the training datasets were selected from different experimental groups than the

testing datasets. For example, there are four groups of 6-attribute datasets, these are: Abalone 6,

Yeast 6, Liver 6, and the Strength 6. Suppose the current task is to evaluate the difficulties of the

Liver 6 datasets. Then the training data would be comprised by all the Abalone 6, Yeast 6, and the

Strength 6 datasets. While all the Liver 6 datasets were used for testing.

In these sets of experiments, the testing datasets were quite different from the training datasets.

For instance, the training data may use different measuring units from the testing data, such as

inches used in training datasets but kilograms used in the testing ones. It is also possible that in the
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TABLE 4.10: Regression models for datasets listed in Table 4.9.

Testing Regression models
dataset

Abalone 4 Y = 0.672 + 11.25×P1 - 15.62×P2 - 11.63×P3 - 0.526×P4 + 0.877×P5 + 0.184×P6
Diabetes 4 Y = 0.592 + 8.596×P1 - 9.582×P2 - 12.24×P3 - 0.526×P4 + 0.943×P5 + 0.185×P6

Blood 4 Y = 0.635 + 12.52×P1 - 12.56×P2 - 12.68×P3 - 0.549×P4 + 1.105×P5 + 0.179×P6
Liver 4 Y = 0.663 + 7.418×P1 - 9.581×P2 - 11.55×P3 - 0.675×P4 + 1.026×P5 + 0.194×P6

Iris Y = 0.878 + 7.584×P1 - 12.25×P2 - 11.42×P3 - 0.425×P4 + 0.936×P5 + 0.187×P6
Strength 4 Y = 0.654 + 8.593×P1 - 11.86×P2 - 10.35×P3 - 0.488×P4 + 0.852×P5 + 0.193×P6

Strike 4 Y = 0.625 + 9.524×P1 - 12.73×P2 - 10.89×P3 - 0.782×P4 + 0.871×P5 + 0.252×P6
Abalone 5 Y = 0.636 + 7.685×P1 - 9.526×P2 - 11.69×P3 - 0.457×P4 + 0.845×P5 + 0.204×P6
Diabetes 5 Y = 0.587 + 9.563×P1 - 11.62×P2 - 10.34×P3 - 0.257×P4 + 1.025×P5 + 0.196×P6

Blood 5 Y = 0.686 + 9.475×P1 - 10.85×P2 - 9.546×P3 - 0.527×P4 + 1.089×P5 + 0.221×P6
Liver 5 Y = 0.637 + 10.52×P1 - 8.574×P2 - 12.65×P3 - 0.274×P4 + 0.890×P5 + 0.204×P6

Strength 5 Y = 0.685 + 10.75×P1 - 7.563×P2 - 11.57×P3 - 0.341×P4 + 0.857×P5 + 0.187×P6
Strike 5 Y = 0.638 + 11.53×P1 - 8.524×P2 - 12.54×P3 - 0.367×P4 + 0.957×P5 + 0.186×P6

Abalone 6 Y = 0.629 + 11.48×P1 - 12.01×P2 - 10.76×P3 - 0.428×P4 + 0.942×P5 + 0.198×P6
Yeast 6 Y = 0.653 + 12.56×P1 - 11.89×P2 - 12.45×P3 - 0.547×P4 + 1.024×P5 + 0.204×P6
Liver 6 Y = 0.661 + 10.75×P1 - 10.35×P2 - 10.34×P3 - 0.251×P4 + 1.063×P5 + 0.214×P6

Strength 6 Y = 0.639 + 9.586×P1 - 10.54×P2 - 11.77×P3 - 0.674×P4 + 1.124×P5 + 0.189×P6

training datasets all the numeric values are in float point format but in the testing datasets all the

values are integer. Furthermore, it is possible that the training and testing datasets were generated

from totally different application domains, such as the case between the Blood datasets for training

and the Iris datasets for testing. However, according to the experimental results listed in Table 4.9

(by using the regression models listed in Table 4.10), the difficulties of the testing datasets can still

be accurately predicted by regression models generated from learning some irrelevant datasets of

the same dimension. This is supported by the fact that in analyzing 4-attribute datasets, most of

the predictions can have deviations within 3.277%. In analyzing 5-attribute datasets, the predicted

deviations are in the range of (2.241% to 3.197%). In assessing the difficulties of the 6-attribute

datasets, even though the training size is small, that is, too few experimental groups were selected

for training, it is still ensured that 95% of the predictions are different than the real values by no

more than 4%.

Based on the above observations, it seems that even though datasets may differ in many ways,

they always exhibit similar learnability patterns when one considers their monotonic characteris-
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tics. The relationships between the difficulty of the datasets and their monotonic characteristics

were similar for all the numeric datasets of the same dimension.

Under this conclusion, for any numeric datasets that have sufficient number of monotonically

related pairs, one may accurately predict their difficulties without implementing any classifiers, but

by only spending O(N2) time to compute their monotonic characteristics and a fixed time to apply

the appropriate regression model. Furthermore, although the regression models generated in these

experiments were sufficiently accurate, the training size is still relatively small, and the regression

models may not be the most accurate. It is believed that when more target datasets are collected

for training, the generated regression models may become even more accurate.
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Chapter 5

A Meta-Learning Approach
5.1 The Motivation of the Meta-Learning Approach
As one can observe from previous sections, it is found that when datasets are comprised of highly

monotonic data, then they can be classified accurately by most methods while datasets that are

not comprised of highly monotonic data, tend to be more difficult to be accurately analyzed by

classifiers. In other words, datasets which have very few CMP pairs are “easy” ones, while datasets

which have many CMP pairs are “difficult” ones.

The next question to ask is what happens if a given dataset does not exhibit strong monotonic-

ity. Could the previous developments still be somehow applicable, perhaps after some data ma-

nipulations? Our research suggests that the answer to this very important question is quite often

affirmative.

To see this consider the following metaphor. Figure 5.1, part (a), depicts a perfectly (increasing)

monotone linear function in two dimensions (2-D). Part (b) of the same figure depicts a function

which is not perfectly monotonic. However, the function in part (b) can be decomposed into a se-

quence of perfectly monotone functions. These are alternating increasing and decreasing monotone

functions as shown in part(c) of Figure 5.1.

It turns out that any dataset, even ones that exhibit no monotonicity at all, can be decomposed

into a family of strongly monotone subsets. This is analogous to the situation depicted in parts

(b) and (c) in Figure 5.1. Therefore, the central ideas explored in this part of research are how

to decompose a non-monotonic dataset into a family of strongly monotonic subsets and how to

derive classification models from the smaller, but strongly monotonic, subsets. The second task is

how to determine a procedure for combining the individual classification models and build a single

model for the original dataset. The final task is to determine under what conditions the proposed
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FIGURE 5.1: Different cases of scenarios of the monotonicity observed in functions.

decomposition approach is beneficial. For instance, does the number of derived monotone subsets,

their relative sizes, and so on, play a detrimental role in determining whether the proposed approach

might contribute to more accurate classifications?

5.2 Data Pre-processing
The ultimate goal of this approach is to always train the classification models on “easy” datasets.

Therefore, the following Pkey parameter becomes the most important criterion in doing the data

manipulation (it is also the same as parameter P3 in Table 4.1). As it is also indicated in Figure 4.2,

in order to make this monotonic property to be meaningful, at least 4% of all possible distinct pairs

of vectors should be monotonically related.

Pkey= Number of CMP pairs
Number of distinct positive-negative pairs of vectors

In order to further explore the role of the single parameter Pkey, six numeric datasets collected

from the UCI Machine Learning Repository are considered. These datasets were used in an exten-

sive pilot study, they have 600 to 4,800 vectors (data points) and come from a wide spectrum of

application domains. The chosen datasets are the Abalone, the Yeast, the Blood donation, the Car

evaluation, the Auto MPG, and the Mammo. In the experiments, each derived experimental dataset

had more than 4% pairs of vectors that were monotonically related. Thus, the monotonic properties

in them would be meaningful and potentially significant.

48



The previous six datasets were used to build numerous two-class datasets for testing purposes in

this pilot study. If a dataset was defined on more than two classes, two-class datasets were created

as follows. First, two classes were selected randomly among the multiple classes to form two-class

experimental datasets. Arbitrarily, one class was considered as the positive observations while the

other was treated as the negative one. For instance, the Abalone dataset is originally defined on 29

classes. Thus the testing dataset with code name Aba 5 7 indicates that class 5 is considered as the

positive data while class 7 as the negative data.

A different way to form positive and negative data was employed by aggregating classes to-

gether. For instance, the dataset with code name Aba 51̂1 71̂2 indicates that the data collected

from classes 5 and 11 were aggregated to form the positive data while data collected from classes

7 and 12 were aggregated to form the negative data.

Some datasets were originally defined on two classes. Then, testing datasets were generated by

randomly selecting a predetermined portion of data from the original dataset. For instance, from the

two-class Blood donation dataset, random selections of 65% of the original data were used without

replacement to form such testing datasets. These datasets were denoted as Blood 1, Blood 2, . . . ,

Blood 50. Besides the Blood donation dataset, the datasets derived from the Car evaluation, the

Auto MPG, the Mammo and the Yeast datasets were treated in a similar manner.

The Car evaluation dataset has some ordinal attributes. Thus, equivalent numerical values were

used for such attribute values to reflect the appropriate order. For instance, attribute values equal

to {very high, high, med, low} were replaced by the numbers {4, 3, 2, 1}, respectively.

An effort was also made to create datasets of various representative degrees of difficulty. To

see how this was done, one needs to consider two extreme cases: One with a balanced two-class

dataset (i.e., one with almost equal number of positive and negative data points) and one with

highly skewed data (for instance, by far more positive data points than negative ones). Then, the

question is: which of these two scenarios is more likely to have many CMP pairs? The answer

seems to be under the first scenario, and the computational studies described next seem to support
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TABLE 5.1: Some Characteristics of the Experimental Datasets.

Original datasets The number of Range of the average accuracy
experimental when they were classified

datasets by multiple classifiers
Abalone 400 53.62% to 92.54%
Blood 600 57.23% to 92.37%
Yeast 400 55.02% to 91.83%
Car 400 80.42% to 92.53%

Auto MPG 300 51.54% to 91.29%
Mammo 400 56.85% to 92.47%

this argument. Eventually, testing datasets of various representative Pkey values (that reflect the

percentage of vectors involved in CMP pairs) were generated (see also Figure 5.2).

The testing classifiers and classification tools used in this part of the study were the same as the

ones described in Section 3.3. We used the previous experimental environment to analyze these

two-class datasets, too.

5.3 The Pilot Study
The computational experiments were run in two steps. First, the experimental datasets were ana-

lyzed by the classifiers listed in the previous section. The average classification accuracies derived

in this way were considered to be their classification difficulties (i.e., the learnability values). Next,

at the second step, the CMP pairs were identified and the value of the Pkey parameter was computed.

It should be stated here that the above approach is a heuristic one. If a different set of training

data collected from the same orgininal dataset is analyzed this way, then it is possible that some

attributes may be classified differently as positive and negative. However, the more representative

a training dataset is to the original dataset, the more likely is that the attributes will be classified

more accurately.

Table 5.1 lists some details of the experimental datasets used in this pilot study. Next, the diffi-

culties of some of the experimental datasets, together with their key monotonic property denoted

by the parameter Pkey, were plotted together in 2-D graphs as shown in Figure 5.2. Each graph
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FIGURE 5.2: The relationship between the difficulty of the datasets and Pkey values.

presents the experimental results observed by analyzing a group of datasets as described in the

previous section.

As one can observe from this figure, when the number of CMP pairs increases, the datasets

become more difficult to be accurately classified. This is quite clear by observing the plots of the

results by analyzing the Abalone, the Blood donation, the Yeast, the Auto MPG, and the Mammo

based datasets. In these plots one can also observe that there are results for a wide spectrum of

values on the horizontal axis. The classification accuracies for these datasets range from rather low

values to very high ones. On the other hand, when datasets based on the Car evaluation dataset are

considered, then almost always the classification accuracies are high (more than 80%). This means

that these subsets are always easy ones. As one can observe from this plot, the Car evaluation

based experimental datasets all have very few CMP pairs (less than 4%). This is another aspect

that supports the previously detected tendency that easy datasets tend to have very few CMP pairs.

5.4 The Proposed Approach to Improve Classifications
The previous pilot computational results suggest that datasets with few CMP pairs are easier to

analyze than those with more CMP pairs. Therefore, a reasonable idea is to try to partition a

dataset into two groups of positive and negative subsets such that pairs of positive-negative subsets
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have no or very few CMP pairs. This approach is described formally as Algorithm 6. Before this

approach is used, one first needs to determine the positive and the negative attributes as described

in the Section 2.4.1. The proposed approach is comprised of two main steps that are iterated until

the original dataset is completely partitioned. For a given dataset D this is described as follows:

1. Find out all positive vectors in D which either precede or are unrelated to all negative vectors.

Next, they are removed from D to form a positive subset. If no such positive vectors exist,

then we create an empty positive subset.

2. From the remaining vectors, find out all negative vectors which either precede or are unre-

lated to the rest of the positive vectors. Next, they are removed from D to form a negative

subset. If no such positive vectors exist, then we create an empty negative subset.

3. Repeat steps 1 and 2 until the training dataset D becomes empty.

This approach is of O(N2) time complexity, where N is the number of vectors in the training

dataset D. Moreover, at the end of this approach the training dataset D has been partitioned into

two groups of 1-class subsets. The first group of such 1-class subsets is comprised of all the positive

subsets while the other group is comprised of all the negative ones. Depending on the dataset used,

some of the previous subsets may end up to be empty. The positive subsets will be denoted as

Gp1,Gp2, . . .Gpm, while the negative ones will be denoted as Gn1,Gn2, . . .Gnm.

Furthermore, according to the way such subsets are generated, for every pair of positive subsets

Gpi and Gp j, where j > i, the vectors in Gpi always either precede or are unrelated to all the

vectors in Gp j. A similar relationship exists for any pair of negative subsets Gni and Gn j, where

j > i. Also, for a pair of subsets Gpi and Gni the vectors in Gpi always either precede or are

unrelated to all the vectors in Gni.

5.5 A Monotonicity-Based Classification Approach
The previous section described how a dataset can be decomposed into two groups of one-class

subsets. These subsets are alternating, for instance, a positive subset is followed by a negative one,
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Algorithm 6: A monotonic-based approach to partition a dataset
Input : Dataset D
Output: PositiveSets,NegativeSets /*PositiveSets and NegativeSets are the sets of the

positive and negative subsets, respectively*/

1 PositiveSets← φ,NegativeSets← φ;
2 E+← all positive vectors in dataset D;
3 E−← all negative vectors in dataset D;

4 while E+ 6= φ or E− 6= φ do
5 Subset+← φ,Subset−← φ;
6 for each e+i ∈ E+ do
7 if There is no e−j ∈ E− such that e−j � e+i then
8 Subset+← Subset+∪ e+i ;
9 Remove e+i from E+;

10 end
11 end
12 for each e−i ∈ E− do
13 if There is no e+j ∈ E+ such that e+j � e−i then
14 Subset−← Subset−∪ e−i ;
15 Remove e−i from E−;
16 end
17 end
18 PositiveSets← PositiveSets∪Subset+ ;
19 NegativeSets← NegativeSets∪Subset−;
20 end
21 Return PositiveSets, NegativeSets;

which is followed by a positive subset, and so on. Also, any pair of positive and negative subsets

can form a two-class experimental dataset which contains no CMP pairs (by switching the class

values of the vectors, if necessary). Therefore, according to the previous analyses, classification

models derived from such experimental datasets should be more accurate in classifying their data

points rather than the model derived from the original (and larger) dataset. However, a new crit-

ical question needs to be considered at this point. Given a new vector (data point) of unknown

class value, which model(s) should classify it? There are many models now derived from the new

generated subsets and the original dataset.

In order to answer this question, one first needs to examine the nature of the vector to be clas-

sified and somehow determine which model (or models) is (are) the most appropriate to classify
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it. For this, one needs to determine which subset(s) of training data (derived after the previous de-

composition approach has been applied) is (are) the most closely related to this new vector. Such

notion of “the most closely related” will be treated under the scope of monotonicity. In the fol-

lowing considerations a new vector is assigned to one of three mutually exclusive and exhaustive

categories. These three categories are denoted as Type I, Type II and Type III category of testing

vectors. Algorithm 7 describes how this categorization can be done.

Type I vectors

A new vector V is placed in this category if and only if it can be covered by a single subset G

(which is either a positive or a negative one). In this study, the subset G is said to cover V if and

only if G contains two vectors P and Q such that P � V � Q. According to the way these subsets

are generated, at most one subset can be found to satisfy this criterion.

Type II vectors

Suppose that a new vector V is not of Type I as defined above. However, if two vectors P and Q

can be identified such that P∈Gi and Q∈G j, where Gi and G j are two subsets with the same class

value where j > i, and P�V � Q, then the vector V is called to be of Type II.

Type III vectors

If a new testing vector V is neither a Type I nor a Type II testing vector, then it is called to be a

Type III testing vector.

The previous three categories for grouping a new testing vector are used to design the classifi-

cation process for assigning a class value to it. This is explained in the following subsections.

5.5.1 How to Classify Type I Testing Vectors

If a testing vector V has been assigned to the Type I category, that means it is covered by a single

subset G, where G can be either a positive subset or a negative one.

First, suppose that G is a positive subset. Then, when one of the negative subsets is considered

along with this positive subset G, one can form a two-class experimental dataset which possesses
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Algorithm 7: Identify the types of the testing vectors.
Input : Positive training subsets Gp, negative training subsets Gn, and a testing vector V
Output: Type of V

1 for each subset G, G ∈ Gp or G ∈ Gn do
2 if There are two vectors P and Q in G, such that P�V � Q then
3 Return V as a Type I vector;
4 end
5 end
6 if There exist two subsets Gi, G j, and either Gi, G j ∈ Gp or Gi, G j ∈ Gn. If one can find a

vector P ∈ Gi and a vector Q ∈ G j such that P�V � Q then
7 Return V as a Type II vector;
8 else
9 Return V as a Type III vector;

10 end

two important properties: (a)Its positive subset has two positive vectors P and Q and P � V � Q,

and (b) it contains no CMP pairs. Thus, according to previous discussions, the classification model

derived from this experimental dataset would be more accurate in classifying the data point V .

Hence, the next step is to consider all such combinations (G, Gni) for i = 1,2,3, . . . ,m, and apply

the original classification algorithm (i.e., Decision Tree, ANN, SVM, etc. classification approach)

and derive m classification models. The class value of the testing vector V can be determined by

taking the majority vote among these m models. The fact that the testing vector V can be placed

between two training vectors (i.e., P and Q) which both are positive does not necessarily mean that

the vector V should also be classified as positive by each one of the m models.

The second possibility is when the vector V is located between two negative training vectors.

Now the subset G is comprised of negative training data. Then it should be treated in an anal-

ogous manner. In this case there are m two-class experimental datasets denoted as (Gpi, G) for

i = 1,2,3, . . . ,m. The rest of the steps are the same as in the previous case. This process is formally

described as Algorithm 8.

5.5.2 How to Classify Type II Testing Vectors

The methodology for classifying Type II testing vectors is similar to that for classifying Type I

vectors. That is, a given base classifier is applied to analyze a group of training subsets and the
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Algorithm 8: The approach to classify type I testing vectors.
Input : Two groups of one-class training subset Gp and Gn, testing vector V , classification

algorithm C
Output: Class value of V

1 Classifier List← φ ;

2 Find out one-class training subset G, such that there exist two vectors P and Q in G, and
P�V � Q;

3 if G ∈ Gp then
4 for each one-class subset Gni ∈ Gn do
5 S = G∪Gni ;
6 Classifier List← Apply C to analyze S;
7 end
8 else
9 for each one-class subset Gpi ∈ Gp do

10 S = G∪Gpi ;
11 Classifier List← Apply C to analyze S;
12 end
13 end
14 Use all the classifiers in the Classifier List to classify V and perform majority voting on the

classification results;
15 Return the result of the majority voting;

derived classification models are used to classify the testing vector V . By performing the majority

vote on the classification results, the class value of V can be therefore determined.

The next question is, how to generate such classification models? A Type II testing vector cannot

be covered by a single one-class subset. However, it can always be covered by the combination of

multiple same-class subsets. In other words, one can always find two subsets which have the same

class value (Gpi and Gp j, or Gni and Gn j, for example), such that there exist a vector P ∈ Gpi(Gni)

and a vector Q ∈ Gp j(Gn j) where i < j and P�V � Q.

Therefore, based on the values of i and j, one can form a training subset S where S = Gpi ∪

Gni ∪Gp(i+1) ∪Gn(i+1) ∪ ·· · ∪Gp j ∪Gn j, and it is easy to find out that S covers V . In this study,

the desired training subset S should be comprised by the subsets where j− i is minimized. In other

words, the goal is to find out the fewest subsets whose combination can cover the vector V .

By applying the base classifier C to analyze S, a classification model can be therefore generated.

Furthermore, more sub classification models can be generated by using the same classifier C to
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analyze the combination of S and the rest of the training data. For instance, a training subset

S0 can be generated as S0 = S∪Gpk ∪Gnk, where k < i, another subset S1 can be generated as

S1 = S∪Gpk ∪Gnk ∪Gp(k+1) ∪Gn(k+1), where k > j, and so on. There are 2num number of such

combinations where num = 2× (m− j + i). For reason of simplicity, the other training subsets

were generated by combining pairs of unused positive-negative training subsets with S, one at a

time. That is, the training subsets Sk = S∪Gpk ∪Gnk, where 0 ≤ k < i or j < k ≤ m. A total of

m− j+ i− 0+ 1 (including the set S itself) number of training subsets were used to generate the

desired learners.

To summarize, a Type II testing vector V should be classified as follows:

1) Find out the training subset S, S = Gpi ∪Gni ∪Gp(i+1) ∪Gn(i+1) ∪ ·· · ∪Gp j ∪Gn j, where

0≤ i < j ≤ m. S should cover vector V and the value of j− i is minimized.

2) For all other pairs of positive-negative subsets Gpk and Gnk, they are combined with S, one

at a time, to form a group of training subsets. That is, Sk = S∪Gpk ∪Gnk for all 0 ≤ k < i or

j < k ≤ m.

3) Analyze such Sk and S subsets, compare their Pkey parameter values to that of the entire train-

ing data, and select only the ones which have smaller Pkey values. According to the key observation

described in Section 2, they are more likely to result in more accurate classifiers.

4) Use the base classifier on all selected training subsets. The derived classification models are

used to classify the testing vector V . The class value of V is determined by the result of the majority

vote.

It should be noted that the training datasets generated in this way may contain some CMP pairs.

That is why they should be compared to the original datasets in terms of their Pkey values. The mo-

tivation for having step 3, is to have subsets that are more likely to lead to more accurate classifiers

than the original dataset as a whole. The entire process is formally illustrated in Algoirthm 9.
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Algorithm 9: The approach to classify Type II testing vectors.
Input : Two groups of one-class training subsets Gp and Gn, testing vector V , classification

algorithm C, the value of monotonic property Pkey in the original training dataset,
denoted as Pkey−original .

Output: Class value of V
1 Determine i, j to form a subset S, S←Gpi∪Gni∪Gp(i+1)∪Gn(i+1) · · ·∪Gp j∪Gn j, such that S

covers V and j− i is minimized;
2 Classifier List← the classifier learned from applying C to analyze S ;
3 for each k,1≤ k < i or j < k ≤ m do
4 Sk = S∪Gpk∪Gnk;
5 if The value of monotonic property Pkey derived from Sk is smaller than Pkey−original then
6 Classifier List← Classifier List ∪ the classifier learned from applying C to analyze

Sk;
7 end
8 end
9 Use all the classifiers in Classifier List to classify V , perform majority voting on the

classification results;
10 Return majority voting result;

5.5.3 Minimum Size of the Derived Training Subsets

The two families of subsets derived as described earlier, play a key role in the quest for improving

classification accuracy. However, it is possible occasionally such subsets to be of too small size. If

subsets of too small size are used, then the benefits of using purely monotonic subsets for inferring

highly accurate classification models from training data may be canceled. This is possible because

too small subsets may not be as representative as larger subsets. Such problems happen with most

methods that infer models from data. In this study a limit was used for the minimum size of such

subsets. This limit was determined empirically, and it was set at 30. That is, if a subset had less

than 30 members then it was ignored.
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Chapter 6

Experiments For Meta-Learning Approach
6.1 Some Preliminaries on the Experiments
Some experiments were designed and performed to test the performance of the proposed approach.

The experimental datasets used in these experiments were as follows: a) All the experimental

datasets mentioned in Section 2.2.1; a total of 2,500 datasets were used. b) 1,800 massive datasets.

The latter ones were generated to simulate some difficult datasets. They were created by randomly

selecting datasets from part a). Next, the vectors in these selected datasets were randomly assigned

to class values “positive” or “negative” with probability equal to 0.50. They are grouped by their

dimensions into three groups denoted as Mass 5,Mass 6 and Mass 7 in this study.

Moreover, the proposed approach is a meta-learning approach. Thus, any classification algo-

rithm can be used as the base classifier C in Algorithms 8 and 9. Four widely used classification

algorithms were used as the base classifiers in this study. These are: a decision Tree, a support

vector machine (SVM), an ADTree, and an artificial neural network(ANN). Moreover, 10 rounds

of cross validations were implemented in the classifications to decrease the variance.

It is noticed that the ratio of the testing and training vectors is an important factor that impacts the

classification accuracy. Generally speaking, with more vectors selected for training, the generated

classification model is expected to be more complete and therefore more accurate. Currently, the

setting of this ratio is empirical. In order to find out a reasonable ratio, several experimental datasets

were randomly selected and analyzed to study the impact of this factor.

In this study, each selected dataset was partitioned into a group of training and testing subsets.

The ratios of training size over testing size for each dataset in each partition were varied from 1%

to 99%. In each scenario, the datasets were first analyzed by simply implementing the dicision tree.

After that, they were analyzed by the proposed approach using the decision tree as the base clas-
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FIGURE 6.1: Experimental results with different ratios of training and testing vectors.

sifier. In these classifications, a 10-cross validation approach is applied to reduce the classification

variance. The experimental results are plotted in Figure 6.1.

The graphs listed in Figure 6.1 are organized as follows. In each graph the X-coordinate indi-

cates the percentage of vectors that were selected for training, and the Y-coordinate indicates the

classification accuracies when analyzing testing vectors under various cases. The datasets used in

this figure are: Aba 5 11, Yea 1 4, Blood 2, and Car 17. As one can observe from Figure 6.1, the

classification improvements become stable when the ratios of the training data reside in the range

of (20%, 85%). Therefore, in these experiments, 60% of the vectors were randomly selected for

training and the rest were used for testing.

6.2 The Experimental Results
In order to better evaluate the effectiveness of the proposed approach, its performance was com-

pared to some other meta-learning approaches, such as the Bagging [5],Boosting [16], and HBA [35].

In this study, each experimental dataset was analyzed under the following scenarios:
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1. It was analyzed by using a base classification algorithm C. The corresponding classification

accuracy is denoted as ACCc−name.

2. It was analyzed by the proposed approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCProposed .

3. It was analyzed by the Bagging approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCBagging.

4. It was analyzed by the Boosting approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCBoosting.

5. It was analyzed by the HBA approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCHBA.

6. It was analyzed by using C as the base classifier, its Type I and Type II vectors were analyzed

by the proposed approach, and its Type III vectors were classified by the HBA approach. The

corresponding classification accuracy is denoted as ACCCombined .

7. Its relative maximum possible improvement rate (denoted as ImprovementRMP1) was cal-

culated. This parameter indicates the relative maximum improvement that the proposed ap-

proach achieves over the maximum possible improvement. For example, as shown in Ta-

ble 6.2, when one analyzes the Blood 42 dataset using SVM as the base classifier, the pro-

posed approach can obtain an improvement of 79.2% - 63.5% = 15.7% with respect to the

classification accuracy compared with the base classifier. However, it is noticed that the

maximum possible improvement that one may obtain by simply applying SVM to classify

Blood 42 is 100%-63.5% = 36.5%. Therefore, the relative maximum possible improvement

rate by using the proposed approach should be 15.7% / 36.5% = 43.0%. This is a more

descriptive way to assess the impact of the proposed approach.
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8. In a similar manner the relative maximum possible improvement was calculated when the

ACCc−name is compared to the ACCCombined value. This relative improvement value is denoted

as ImprovementRMP2 in Tables 6.1 to 6.8.

Some experimental results are provided in Tables 6.1 to 6.8, while the datasets Abalone, Blood,Yeast,

Car, Auto MPG, Mammo, together with the 5, 6, and 7-attribute artificial datasets were used as the

training data, respectively. Each of these tables is organized in the following format. The first row

of the table lists the names of the experimental datasets. From the second row to the bottom of

the table, every eight rows comprise a block that displays the experimental results of analyzing the

corresponding experimental dataset under different classification scenarios. There are four such

blocks in each table which are separated by a narrow blank gap, and each of them uses a different

classification algorithm as the base classifier.

According to the experimental results, when one compares the results obtained by using the

base classifier alone with the results obtained by using the proposed approach, the proposed ap-

proach always outperforms the stand-alone classifiers. When one examines the results for the

Abalone, Blood donation, Yeast, Auto MPG and Mammo datasets, the proposed method can fre-

quently achieve more than 10% improvement in classification accuracy. Such improvements can

be as high as 21%. An example is the case of analyzing the Blood 2 dataset by using SVM as

the base classifier (Table 6.2). In terms of the relative maximum possible improvement measures,

the values of their ImprovementRMP1 are mostly distributed in the range of (10%, 55%), while

their ImprovementRMP2 values are mostly ranged in (20%, 75%). In the case of analyzing the Car

datasets, the obtained classification improvements were less significant. However, the improve-

ments are always present and frequently are more than 2%, in terms of the relative maximum

possible improvement measures, their ImprovementRMP1 values are consistently more than 10%

and their ImprovementRMP2 values are consistenly more than 20%, as are the cases of classify-

ing other datastes. Why sometimes the improvements are significant and some times are not, is

discussed in the next paragraph.
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TABLE 6.1: Some experimental results when analyzed the Abalone datasets.

Datasets Aba 7 11 Aba 58 9 Aba 67 1114 Aba 612 8 Aba 511 9

ACCDecisionTree 77.6% 64.6% 90.8% 70.8% 67.4%
ACCProposed 83.3% 77.0% 92.8% 79.1% 75.3%
ACCBagging 76.2% 66.2% 90.8% 73.2% 68.7%
ACCBoosting 77.1% 63.7% 91.2% 71.4% 68.7%

ACCHBA 84.3% 80.7% 93.2% 82.7% 78.1%
ACCCombined 87.1% 83.4% 94.1% 86.8% 84.7%

ImprovementRMP1 29.4% 35.0% 21.7% 28.4% 24.2%
ImprovementRMP2 42.4% 53.1% 35.8% 54.7% 53.0%

ACCSV M 77.3% 65.7% 87.7% 71.4% 70.2%
ACCProposed 80.6% 80.7% 90.3% 77.4% 76.3%
ACCBagging 76.2% 66.4% 87.7% 72.1% 69.7%
ACCBoosting 78.3% 65.7% 87.7% 72.9% 70.9%

ACCHBA 82.7% 82.1% 92.3% 80.2% 79.4%
ACCCombined 85.6% 86.4% 94.8% 85.5% 83.4%

ImprovementRMP1 14.5% 43.7% 21.1% 20.9% 20.4%
ImprovementRMP2 36.6% 61.8% 45.8% 56.8% 49.7%

ACCADTree 76.1% 64.4% 90.4% 66.4% 67.0%
ACCProposed 79.9% 75.4% 92.6% 74.8% 74.5%
ACCBagging 77.4% 65.7% 90.4% 67.2% 69.5%
ACCBoosting 75.8% 66.2% 90.4% 69.1% 67.9%

ACCHBA 82.5% 79.7% 93.2% 78.7% 78.4%
ACCCombined 86.4% 85.3% 94.9% 84.8% 85.8%

ImprovementRMP1 15.9% 30.9% 22.9% 25.0% 22.7%
ImprovementRMP2 43.1% 58.7% 46.9% 54.8% 57.0%

ACCANN 74.8% 64.4% 89.0% 73.2% 68.9%
ACCProposed 79.8% 76.4% 91.6% 78.5% 76.4%
ACCBagging 73.9% 64.7% 89.0% 75.8% 70.1%
ACCBoosting 74.8% 65.7% 89.0% 74.9% 72.7%

ACCHBA 82.9% 79.3% 93.8% 80.0% 79.4%
ACCCombined 87.6% 84.4% 95.9% 84.8% 86.2%

ImprovementRMP1 19.8% 33.7% 23.6% 19.8% 24.1%
ImprovementRMP2 50.8% 56.2% 62.7% 43.3% 55.6%
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TABLE 6.2: Some experimental results when analyzed the Blood donation datasets.

Datasets Blood 2 Blood 13 Blood 35 Blood 42 Blood 47

ACCDecisionTree 64.6% 72.5% 65.7% 68.2% 80.9%
ACCProposed 83.1% 79.2% 74.1% 81.3% 81.7%
ACCBagging 67.2% 73.5% 67.2% 69.5% 80.9%
ACCBoosting 65.3% 72.8% 67.2% 68.9% 80.9%

ACCHBA 87.6% 82.2% 78.7% 82.7% 84.6%
ACCCombined 91.3% 85.8% 83.4% 85.3% 85.9%

ImprovementRMP1 52.2% 24.4% 24.5% 41.2% 4.19%
ImprovementRMP2 75.4% 48.4% 51.6% 53.8% 26.2%

ACCSV M 61.4% 65.7% 63.9% 63.5% 77.7%
ACCProposed 82.7% 77.7% 70.0% 79.2% 82.3%
ACCBagging 60.8% 68.1% 63.9% 65.7% 75.9%
ACCBoosting 61.7% 67.4% 63.9% 64.2% 76.8%

ACCHBA 81.6% 82.9% 73.7% 81.9% 83.4%
ACCCombined 83.3% 87.3% 79.5% 86.2% 87.3%

ImprovementRMP1 55.1% 35.0% 16.9% 43.0% 20.6%
ImprovementRMP2 49.4% 50.2% 35.9% 56.5% 35.9%

ACCADTree 67.0% 74.5% 68.0% 68.3% 80.2%
ACCProposed 85.1% 81.0% 76.4% 82.4% 84.1%
ACCBagging 68.1% 74.5% 69.7% 69.5% 80.2%
ACCBoosting 67.7% 74.5% 66.8% 68.3% 80.7%

ACCHBA 86.9% 82.4% 79.2% 81.7% 85.6%
ACCCombined 92.7% 86.5% 85.8% 84.4% 87.4%

ImprovementRMP1 54.8% 25.5% 26.3% 44.5% 19.7%
ImprovementRMP2 77.9% 47.1% 55.6% 50.8% 36.4%

ACCANN 63.3% 71.7% 67.9% 67.0% 80.2%
ACCProposed 82.1% 78.6% 74.8% 78.1% 83.2%
ACCBagging 62.8% 72.6% 67.9% 66.4% 80.7%
ACCBoosting 64.7% 71.7% 66.8% 68.7% 80.9%

ACCHBA 84.3% 80.5% 77.7% 82.5% 85.2%
ACCCombined 90.7% 85.7% 84.6% 86.2% 86.6%

ImprovementRMP1 51.2% 24.4% 21.5% 33.6% 15.2%
ImprovementRMP2 74.7% 49.5% 52.0% 58.2% 32.3%
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TABLE 6.3: Some experimental results when analyzed the Yeast datasets.

Datasets Yea 3 Yea 17 Yea 21 Yea 28 Yea 49

ACCDecisionTree 64.1% 68.0% 73.6% 78.7% 83.6%
ACCProposed 69.4% 76.1% 79.6% 85.4% 85.3%
ACCBagging 65.7% 67.6% 73.5% 79.8% 83.6%
ACCBoosting 64.1% 68.7% 74.4% 78.8% 83.6%

ACCHBA 72.3% 79.9% 82.6% 87.5% 87.4%
ACCCombined 78.5% 83.3% 85.5% 88.6% 89.5%

ImprovementRMP1 14.7% 25.3% 22.7% 31.5% 10.3%
ImprovementRMP2 40.1% 47.8% 45.1% 46.5% 36.0%

ACCSV M 63.9% 67.1% 71.8% 78.5% 82.9%
ACCProposed 69.8% 75.7% 78.6% 84.4% 85.6%
ACCBagging 64.1% 68.2% 70.6% 79.6% 83.3%
ACCBoosting 63.9% 67.6% 73.3% 76.8% 81.7%

ACCHBA 72.8% 78.3% 81.8% 87.0% 87.2%
ACCCombined 77.4% 80.4% 84.9% 87.8% 89.8%

ImprovementRMP1 16.3% 26.1% 24.1% 27.4% 15.8%
ImprovementRMP2 37.3% 40.4% 46.4% 43.3% 40.3%

ACCADTree 61.4% 69.2% 72.6% 79.5% 83.4%
ACCProposed 68.8% 75.4% 79.7% 82.9% 86.1%
ACCBagging 60.7% 69.2% 73.6% 79.8% 83.3%
ACCBoosting 59.8% 68.6% 71.4% 79.5% 83.4%

ACCHBA 71.9% 79.9% 82.1% 86.5% 89.4%
ACCCombined 76.6% 84.9% 85.9% 87.6% 91.2%

ImprovementRMP1 19.2% 20.1% 25.9% 16.6% 16.2%
ImprovementRMP2 39.3% 50.9% 48.5% 39.5% 47.0%

ACCANN 62.0% 66.7% 73.4% 76.4% 82.5%
ACCProposed 68.6% 75.7% 79.5% 83.3% 84.8%
ACCBagging 63.4% 66.2% 71.2% 76.7% 81.2%
ACCBoosting 62.0% 67.6% 74.8% 78.5% 80.7%

ACCHBA 72.4% 78.3% 83.8% 87.0% 86.4%
ACCCombined 76.6% 80.4% 86.9% 89.8% 88.5%

ImprovementRMP1 17.4% 27.1% 22.9% 29.2% 13.1%
ImprovementRMP2 38.4% 41.1% 50.7% 56.8% 34.3%
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TABLE 6.4: Some experimental results when analyzed the Car evaluation datasets.

Datasets Car 4 Car 21 Car 36 Car 39 Car 48

ACCDecisionTree 89.2% 88.9% 86.4% 85.0% 84.3%
ACCProposed 91.0% 89.6% 88.2% 86.5% 87.3%
ACCBagging 89.2% 89.1% 86.4% 85.7% 83.9%
ACCBoosting 89.2% 88.9% 86.4% 85.0% 84.3%

ACCHBA 93.3% 91.5% 92.7% 88.5% 89.2%
ACCCombined 94.6% 92.7% 93.6% 91.2% 92.5%

ImprovementRMP1 16.6% 6.30% 13.2% 10.0% 19.1%
ImprovementRMP2 50.0% 34.2% 52.9% 41.3% 52.2%

ACCSV M 89.9% 88.5% 85.5% 85.0% 86.0%
ACCProposed 91.2% 89.3% 88.0% 87.7% 89.5%
ACCBagging 90.1% 87.8% 86.4% 85.7% 85.4%
ACCBoosting 89.4% 88.5% 85.9% 85.0% 85.7%

ACCHBA 93.3% 92.2% 91.7% 89.5% 90.0%
ACCCombined 94.7% 93.5% 93.4% 90.8% 92.7%

ImprovementRMP1 12.9% 6.96% 17.2% 18.0% 25.1%
ImprovementRMP2 47.5% 43.5% 54.5% 38.7% 47.9%

ACCADTree 88.1% 87.7% 85.3% 79.3% 81.0%
ACCProposed 88.9% 89.0% 88.0% 81.1% 83.9%
ACCBagging 88.1% 88.2% 85.3% 80.7% 81.4%
ACCBoosting 88.1% 87.7% 84.9% 80.7% 80.7%

ACCHBA 92.3% 90.5% 89.7% 84.5% 85.2%
ACCCombined 94.3% 94.7% 93.6% 87.5% 87.9%

ImprovementRMP1 6.72% 10.6% 18.4% 8.70% 15.3%
ImprovementRMP2 52.1% 56.9% 56.5% 39.6% 36.3%

ACCANN 88.9% 86.9% 85.0% 84.3% 82.7%
ACCProposed 89.7% 89.2% 87.0% 85.7% 85.7%
ACCBagging 88.6% 87.5% 86.4% 84.3% 82.7%
ACCBoosting 89.4% 87.5% 86.4% 85.0% 82.7%

ACCHBA 90.3% 90.5% 89.7% 87.4% 87.5%
ACCCombined 91.7% 92.7% 91.6% 89.7% 88.3%

ImprovementRMP1 7.20% 17.6% 13.3% 8.91% 17.3%
ImprovementRMP2 25.2% 44.3% 44.0% 34.4% 32.3%
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TABLE 6.5: Some experimental results when analyzed the Auto MPG datasets.

Datasets Auto 16 Auto 34 Auto 57 Auto 135 Auto 364

ACCDecisionTree 67.5% 73.5% 75.6% 68.5% 82.5%
ACCProposed 78.4% 77.9% 79.8% 77.3% 86.6%
ACCBagging 68.7% 75.4% 76.7% 68.7% 83.3%
ACCBoosting 69.4% 74.8% 74.3% 67.7% 83.6%

ACCHBA 79.3% 77.6% 80.5% 77.5% 87.8%
ACCCombined 82.2% 78.7% 81.7% 79.4% 89.8%

ImprovementRMP1 33.5% 16.6% 17.2% 27.9% 23.4%
ImprovementRMP2 45.2% 19.6% 25.0% 34.6% 41.7%

ACCSV M 68.1% 74.8% 75.3% 68.2% 83.2%
ACCProposed 78.7% 78.5% 79.8% 78.8% 87.9%
ACCBagging 69.8% 75.4% 77.5% 69.3% 84.3%
ACCBoosting 71.5% 75.9% 76.7% 68.4% 84.7%

ACCHBA 79.8% 779.5% 79.5% 79.5% 88.9%
ACCCombined 81.5% 80.1% 79.9% 79.9% 90.5%

ImprovementRMP1 33.2% 14.7% 18.2% 33.3% 28.0%
ImprovementRMP2 42.0% 21.0% 18.6% 36.8% 43.5%

ACCADTree 66.7% 73.7% 74.8% 67.5% 83.1%
ACCProposed 74.6% 77.5% 78.5% 76.9% 86.9%
ACCBagging 68.5% 73.5% 75.6% 67.5% 84.3%
ACCBoosting 67.8% 74.8% 74.4% 68.9% 83.9%

ACCHBA 76.3% 78.7% 80.6% 75.7% 88.9%
ACCCombined 77.2% 79.4% 81.1% 77.8% 89.7%

ImprovementRMP1 23.7% 14.4% 14.7% 28.9% 22.5%
ImprovementRMP2 31.5% 21.7% 25.0% 31.7% 39.1%

ACCANN 67.4% 74.2% 76.2% 67.3% 82.7%
ACCProposed 78.5% 78.6% 81.5% 75.6% 86.2%
ACCBagging 68.7% 75.7% 77.6% 68.7% 83.3%
ACCBoosting 69.5% 74.9% 75.7% 66.9% 82.8%

ACCHBA 79.8% 78.9% 82.4% 75.9% 88.9%
ACCCombined 81.5% 79.5% 83.3% 79.8% 90.1%

ImprovementRMP1 34.0% 17.1% 22.3% 25.4% 20.2%
ImprovementRMP2 43.3% 20.5% 29.8% 38.2% 42.8%
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TABLE 6.6: Some experimental results when analyzed the Mammo datasets.

Datasets Mammo 4 Mammo 28 Mammo 69 Mammo 81 Mammo 97

ACCDecisionTree 74.5% 65.3% 72.6% 86.3% 78.6%
ACCProposed 81.2% 70.8% 79.6% 88.7% 84.5%
ACCBagging 76.5% 66.5% 73.3% 86.5% 82.4%
ACCBoosting 75.3% 65.9% 72.8% 84.6% 83.1%

ACCHBA 81.9% 71.2% 80.7% 87.8% 86.4%
ACCCombined 82.3% 71.6% 81.4% 89.1% 87.7%

ImprovementRMP1 26.3% 15.9% 25.5% 17.5% 27.6%
ImprovementRMP2 30.6% 18.2% 32.1% 20.4% 42.5%

ACCSV M 75.3% 68.5% 73.5% 87.1% 78.8%
ACCProposed 83.3% 73.4% 82.9% 87.6% 83.6%
ACCBagging 76.5% 70.1% 74.5% 87.1% 81.2%
ACCBoosting 75.9% 69.8% 73.2% 87.1% 82.5%

ACCHBA 84.6% 74.6% 83.5% 87.3% 85.4%
ACCCombined 87.4% 74.9% 85.1% 87.9% 86.6%

ImprovementRMP1 32.4% 15.6% 35.4% 3.88% 22.6%
ImprovementRMP2 49.0% 20.3% 43.8% 6.2% 36.8%

ACCADTree 74.2% 67.7% 71.8% 86.9% 78.6%
ACCProposed 79.6% 73.5% 79.6% 88.1% 83.7%
ACCBagging 75.4% 69.8% 73.7% 86.9% 79.8%
ACCBoosting 74.8% 68.5% 74.3% 87.1% 78.4%

ACCHBA 80.8% 74.4% 80.9% 89.2% 83.9%
ACCCombined 82.2% 74.7% 82.7% 89.5% 85.4%

ImprovementRMP1 20.9% 18.0% 27.7% 9.16% 23.8%
ImprovementRMP2 31.0% 21.7% 38.7% 19.8% 31.8%

ACCANN 73.6% 66.4% 72.2% 86.6% 77.9%
ACCProposed 77.6% 73.5% 78.7% 87.9% 83.6%
ACCBagging 74.7% 67.6% 73.6% 86.8% 78.7%
ACCBoosting 73.6% 68.1% 74.3% 87.5% 77.9%

ACCHBA 78.5% 73.2% 80.5% 88.9% 85.1%
ACCCombined 79.8% 75.8% 81.8% 89.3% 85.8%

ImprovementRMP1 15.2% 21.1% 23.3% 9.70% 25.8%
ImprovementRMP2 23.5% 28.0% 34.5% 20.1% 35.7%
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TABLE 6.7: Some experimental results when the 5-attribute artificial datasets were analyzed.

Datasets Mass 5 7 Mass 5 15 Mass 5 38 Mass 5 54 Mass 5 66
ACCDecisionTree 47.2% 51.6% 49.7% 46.8% 51.3%

ACCProposed 59.7% 63.1% 57.4% 57.8% 62.2%
ACCBagging 46.8% 53.7% 51.3% 50.1% 54.5%
ACCBoosting 48.6% 52.1% 50.7% 49.8% 53.6%

ACCHBA 51.4% 55.3% 53.8% 49.8% 56.6%
ACCCombined 60.6% 64.4% 58.1% 58.5% 63.9%

ImprovementRMP1 23.7% 23.8% 15.3% 20.7% 22.4%
ImprovementRMP2 25.4% 26.4% 16.7% 22.0% 25.9%

ACCSV M 47.8% 52.3% 48.2% 47.6% 50.9%
ACCProposed 58.6% 58.7% 59.1% 59.4% 61.8%
ACCBagging 46.1% 52.9% 49.3% 49.5% 53.7%
ACCBoosting 47.8% 51.6% 51.4% 48.9% 53.5%

ACCHBA 51.4% 57.3% 54.2% 52.1% 55.4%
ACCCombined 59.8% 59.9% 60.3% 59.0% 62.9%

ImprovementRMP1 20.7% 13.4% 21.0% 22.5% 22.1%
ImprovementRMP2 23.0% 15.9% 23.4% 21.8% 24.4%

ACCADTree 48.1% 51.3% 49.2% 49.8% 51.6%
ACCProposed 58.7% 57.5% 57.2% 59.3% 61.8%
ACCBagging 46.8% 52.1% 48.6% 51.3% 54.3%
ACCBoosting 47.2% 51.8% 50.9% 52.2% 55.1%

ACCHBA 54.4% 55.3% 52.5% 57.6% 57.8%
ACCCombined 59.6% 59.4% 59.6% 62.2% 62.1%

ImprovementRMP1 20.4% 12.7% 15.7% 18.9% 21.1%
ImprovementRMP2 22.2% 16.6% 20.5% 24.7% 21.7%

ACCANN 46.9% 50.7% 48.4% 48.5% 51.1%
ACCProposed 57.3% 58.8% 57.3% 60.2% 62.8%
ACCBagging 46.9% 50.7% 49.1% 53.4% 55.4%
ACCBoosting 47.4% 52.2% 50.4% 54.9% 54.6%

ACCHBA 51.4% 54.8% 53.8% 58.7% 57.8%
ACCCombined 58.5% 59.1% 58.2% 62.1% 63.3%

ImprovementRMP1 19.6% 16.4% 17.2% 22.7% 23.9%
ImprovementRMP2 21.8% 17.0% 19.0% 26.4% 24.9%
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TABLE 6.8: Some experimental results when the 6-attribute and 7-attribute artificial datasets were
analyzed.

Datasets Mass 6 14 Mass 6 36 Mass 6 41 Mass 7 28 Mass 7 33 Mass 7 53
ACCDecisionTree 47.2% 52.4% 53.5% 48.6% 54.3% 55.2%

ACCProposed 56.5% 60.8% 59.8% 57.6% 63.3% 64.3%
ACCBagging 48.4% 54.7% 53.5% 52.2% 55.4% 54.9%
ACCBoosting 47.0% 52.5% 54.3% 51.6% 54.9% 56.7%

ACCHBA 50.4% 54.6% 57.6% 55.3% 59.8% 58.9%
ACCCombined 56.1% 61.9% 60.1% 59.8% 65.2% 65.2%

ImprovementRMP1 19.7% 21.5% 13.5% 17.5% 19.7% 20.3%
ImprovementRMP2 21.8% 23.7% 14.2% 21.8% 23.9% 22.3%

ACCSV M 47.8% 50.9% 52.8% 49.4% 53.8% 56.6%
ACCProposed 57.3% 61.8% 58.8% 60.4% 62.7% 64.3%
ACCBagging 48.4% 54.1% 51.5% 53.2% 55.4% 56.7%
ACCBoosting 49.2% 52.6% 52.2% 54.4% 56.3% 58.1%

ACCHBA 51.9% 54.7% 56.4% 58.7% 59.8% 62.2%
ACCCombined 58.4% 62.1% 59.8% 62.2% 63.8% 65.0%

ImprovementRMP1 19.9% 21.6% 12.7% 21.7% 19.3% 17.7%
ImprovementRMP2 20.8% 22.7% 14.8% 25.3% 21.6% 19.4%

ACCADTree 48.8% 51.5% 54.1% 48.7% 54.9% 54.8%
ACCProposed 57.6% 60.3% 62.2% 58.5% 62.2% 63.7%
ACCBagging 50.6% 53.5% 54.3% 52.3% 56.5% 55.6%
ACCBoosting 51.4% 54.3% 53.7% 53.1% 54.7% 57.5%

ACCHBA 52.5% 55.8% 59.8% 57.8% 60.1% 59.8%
ACCCombined 58.9% 61.1% 64.2% 60.5% 63.5% 65.2%

ImprovementRMP1 17.4% 19.1% 17.6% 19.1% 16.2% 19.7%
ImprovementRMP2 22.5.7% 20.5% 22.0% 23.0% 19.1% 23.0%

ACCANN 48.6% 51.1% 53.5% 49.4% 54.5% 53.9%
ACCProposed 58.2% 60.7% 60.3% 58.7% 64.1% 62.8%
ACCBagging 52.5% 54.4% 54.5% 52.1% 56.5% 54.5%
ACCBoosting 53.7% 52.6% 55.6% 51.9% 54.6% 53.7%

ACCHBA 51.4% 52.8% 59.8% 58.3% 58.9% 60.7%
ACCCombined 61.7% 63.3% 62.3% 62.7% 64.2% 62.2%

ImprovementRMP1 21.5% 19.9% 14.6% 18.4% 21.0% 19.3%
ImprovementRMP2 24.4% 20.9% 18.9% 26.3% 21.3% 18.0%
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In most of the scenarios, it is more difficult to improve an effective classification model (the one

that can classify the target dataset with high accuracy) than one of poor quality models (the one that

classifies the target dataset with low accuracy). The two relative maximum possible improvement

rates (ImprovementRMP1 and ImprovementRMP2) provide better measures for expressing improve-

ments. As one can observe from these tables, this is the reason why the proposed approach provides

only little improvements when it analyzed the Car datasets. However, since the classification mod-

els used to classify the Car datasets are already accurate enough, little improvements in such cases

can be very important. This is why it is very critical to observe that the values of ImprovementRMP1

in most of the cases are higher than 10%. When ImprovementRMP1 is considered, then these values

are often times greater than 30%. This is another way, and perhaps more representative, to express

the improvements achieved by the proposed approach. As it can be seen from the computational

results, the proposed approach can be beneficial to a wide range of datasets of various degrees of

classification difficulty.

Furthermore, the performance of the proposed approach dominates that of the Bagging and

Boosting approaches. It is noticed that in these tests the performances of the Bagging and Boosting

approaches were often unpredictable. That is, sometimes, these methods produced better results

when compared to the stand-alone classifiers, while other times they produced inferior results. On

the other hand, the proposed approach always outperformed the stand-alone classifiers as well as

the Bagging and Boosting approaches.

When comparing the proposed approach to HBA, one may observe that the proposed approach

is more effective than the HBA when analyzing difficult datasets (see also Tables 6.7 and 6.8).

Even though in some cases the HBA is more effective than the proposed approach, the HBA ap-

proach takes longer processing time than the proposed one. Moreover, as it can be observed from

Tables 6.1 to 6.8, the proposed approach can classify Type I and Type II testing vectors more

accurately than the HBA. This is the motivation for combining the proposed approach with the

HBA one. The combined approach classifies all Type I and Type II vectors by using the pro-
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posed monotonicity-based approach, while only the rest of the vectors (i.e., those of Type III) are

classified by using the HBA approach. The corresponding classification results are given by the

ACCCombined values. As one can observe from these tables, the values of ACCCombined is always

higher than the values of ACCHBA and any of the other methods tested and compared.

More importantly, when analyzed the artificial datasets (i.e., the datasets generated with class

values randomly assigned to their vectors), the proposed approach outperformed any other tested

approach in a profound way (see also Tables 6.7 and 6.8). When the stand-alone classifiers were

used in these datasets, in many cases the classification accuracies were below 50%. Therefore, such

classifications are of limited practical benefit. Even when the Bagging and Boosting approaches

were used on these datasets, the classification accuracies were still too low as they cannot be

more than 50% consistently. However, as one can see from the previous tables, by implementing

the proposed approach, the classification accuracies were always greater than 50%, which makes

the classifications meaningful. Furthermore, even when analyzing these very difficult datasets,

the proposed approach can still obtain around 10% improvement in classification accuracy fre-

quently. In terms of the previous relative measure for expressing classification improvements, the

achieved improvements were often times higher than 15% for ImprovementRMP1 and 20% for

ImprovementRMP2.

6.3 Analysis of the experimental results
Based on the above discussions, the proposed monotonicity-based approach is very effective in ob-

taining classification improvements. However, it is observed that the performance of this approach

may vary. That is, for some experimental datasets, the implementation of this approach can lead to

significant improvements, while for some other experimental datasets, only small improvements

can be obtained.

This section will explore this phenomenon by performing an analysis on the previous experi-

mental results. It explores the factors that may impact the performance of the proposed approach,

and more importantly, how such factors impact the performance.

72



Tables 6.9 to 6.12 present the analysis of some of the datasets listed in Tables 6.1 to 6.8, while

the classifiers Decision Tree, Arti f icial Neural Network, ADTree and Support Vector Machine

are used as the base learner, respectively. Moreover,the following factors are what is of interest:

1. The average classification accuracy when the Original Classi f ier is used to classify the

entire testing dataset in 10-cross validations. This is denoted as F1.

2. The average classification accuracy when the Derived Classi f iers are also used to facilitate

the classifications on the testing dataset in 10-cross validations. This is denoted as F2.

3. The average percentage of the testing vectors which are Type I vectors in the 10-cross vali-

dation. This is denoted as F3.

4. The average classification accuracy when Type I vectors are classified by the Original Classifier

in 10-cross validations. This is denoted as F4.

5. The average classification accuracy when Type I vectors are classified by the Derived Classifiers

in 10-cross validations. This is denoted as F5.

6. The average percentage of the testing vectors which are Type II vectors in the 10-cross

validation. This is denoted as F6.

7. The average classification accuracy when Type II vectors are classified by the Original Classifier

in 10-cross validations. This is denoted as F7.

8. The average classification accuracy when Type II vectors are classified by the Derived Classifiers

in 10-cross validations. This is denoted as F8.

As one can observe from Table 6.9, for all these experimental datasets, their derived F5 and

F8 values are much higher than that of F4 and F7. This observation supports the argument that

the Derived Classi f iers can classify a portion of the testing vectors much more accurately than
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TABLE 6.9: Some details of experiments when using Decision Tree (J48) as the base classifier.

Datasets F1 F2 F3 F4 F5 F6 F7 F8
Aba 7 11 77.6% 83.3% 28.6% 75.4% 98.8% 14.7% 72.4% 84.6%
Aba 58 9 64.6% 77.0% 36.7% 63.8% 97.4% 11.4% 69.4% 92.3%
Blood 2 64.6% 83.1% 47.4% 65.3% 98.2% 28.1% 67.3% 88.9%

Blood 42 68.2% 81.3% 27.6% 71.7% 99.3% 19.1% 66.9% 91.4%
Yea 21 73.6% 79.6% 22.8% 77.4% 97.7% 12.6% 75.7% 85.3%
Yea 49 83.6% 85.3% 11.6% 85.4% 98.5% 12.7% 86.6% 90.6%
Car 21 89.2% 91.0% 29.3% 89.5% 100% 17.6% 92.7% 98.2%
Car 48 84.3% 87.3% 27.4% 86.1% 94.7% 14.9% 84.4% 92.5%

Auto 34 73.5% 77.9% 36.2% 74.8% 88.6% 13.4% 72.9% 78.7%
Auto 135 68.5% 77.3% 38.7% 69.3% 90.7% 21.4% 67.6% 81.4%
Mammo 4 74.5% 81.2% 25.9% 74.8% 92.3% 16.7% 76.7% 89.7%

Mammo 69 72.6% 79.6% 22.5% 71.5% 94.4% 20.3% 73.5% 87.4%
Mess 5 15 51.6% 63.1% 23.5% 50.8% 71.1% 14.5% 51.7% 68.4%
Mess 5 38 49.7% 57.4% 31.2% 53.7% 76.7% 31.3% 49.3% 70.1%
Mess 6 14 46.8% 57.8% 28.9% 49.8% 75.4% 19.8% 44.1% 68.7%
Mess 6 36 51.3% 62.2% 25.3% 51.7% 83.4% 15.4% 50.8% 74.3%
Mess 7 28 48.6% 57.6% 20.1% 48.7% 78.5% 17.8% 47.9% 72.3%
Mess 7 33 54.3% 63.3% 19.8% 53.4% 79.5% 19.6% 52.6% 69.8%

TABLE 6.10: Some details of experiments when using Artificial Neural Network as the base classi-
fier.

Datasets F1 F2 F3 F4 F5 F6 F7 F8
Aba 7 11 77.6% 83.8% 28.6% 75.5% 98.6% 14.7% 72.3% 84.7%
Aba 58 9 64.6% 77.7% 36.8% 63.1% 97.5% 11.4% 68.5% 92.5%
Blood 2 64.6% 83.6% 46.5% 65.5% 98.2% 28.1% 67.1% 88.1%

Blood 42 68.2% 81.6% 27.4% 70.6% 99.6% 19.1% 66.2% 91.8%
Yea 21 73.8% 79.1% 22.4% 75.2% 97.4% 12.6% 75.7% 86.2%
Yea 49 83.1% 85.8% 11.7% 84.9% 98.7% 12.7% 86.1% 91.4%
Car 21 89.2% 90.5% 29.3% 88.2% 100% 17.6% 91.9% 97.9%
Car 48 84.3% 87.5.3% 27.4% 85.9% 94.7% 14.9% 83.4% 91.9%

Auto 34 73.5% 76.9% 36.2% 73.8% 88.6% 13.4% 72.1% 78.1%
Auto 135 68.5% 77.4% 38.7% 69.6% 90.2% 21.4% 67.0% 81.8%
Mammo 4 74.5% 81.8% 25.9% 74.5% 92.6% 16.7% 76.8% 89.4%

Mammo 69 72.6% 79.4% 22.5% 71.7% 93.9% 20.3% 73.1% 87.5%
Mess 5 15 51.6% 62.8% 23.5% 52.1% 71.2% 14.5% 51.2% 69.2%
Mess 5 38 49.7% 57.9% 31.2% 52.8% 76.7% 31.3% 50.5% 71.4%
Mess 6 14 46.8% 57.1% 28.9% 50.6% 75.4% 19.8% 45.1% 68.9%
Mess 6 36 51.3% 62.8% 25.3% 51.9% 83.8% 15.4% 50.4% 74.5%
Mess 7 28 48.6% 58.1% 20.1% 49.1% 77.9% 17.8% 47.4% 72.4%
Mess 7 33 54.3% 63.8% 19.8% 53.8% 80.5% 19.6% 52.2% 69.1%
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TABLE 6.11: Some details of experiments when using ADTree as the base classifier.

Datasets F1 F2 F3 F4 F5 F6 F7 F8
Aba 7 11 77.6% 82.3% 28.6% 75.4% 98.1% 14.7% 72.4% 84.7%
Aba 58 9 64.6% 77.5% 36.7% 63.8% 97.3% 11.4% 69.4% 92.8%
Blood 2 64.6% 83.7% 47.4% 65.3% 98.8% 28.1% 67.3% 88.2%

Blood 42 68.2% 81.7% 27.6% 71.7% 98.9% 19.1% 66.9% 90.4%
Yea 21 73.6% 79.1% 22.8% 77.4% 97.2% 12.6% 75.7% 85.8%
Yea 49 83.6% 85.9% 11.6% 85.4% 98.8% 12.7% 86.6% 90.8%
Car 21 89.2% 90.2% 29.3% 89.5% 100% 17.6% 92.7% 98.2%
Car 48 84.3% 86.9% 27.4% 86.1% 94.8% 14.9% 84.4% 92.8%

Auto 34 73.5% 77.2% 36.2% 74.8% 88.6% 13.4% 72.9% 79.2%
Auto 135 68.5% 77.8% 38.7% 69.3% 90.7% 21.4% 67.6% 81.8%
Mammo 4 74.5% 81.8% 25.9% 74.8% 92.8% 16.7% 76.7% 89.4%

Mammo 69 72.6% 78.5% 22.5% 71.5% 93.9% 20.3% 73.5% 88.4%
Mess 5 15 51.6% 63.5% 23.5% 50.8% 71.5% 14.5% 51.7% 68.5%
Mess 5 38 49.7% 57.7% 31.2% 53.7% 76.2% 31.3% 49.3% 71.2%
Mess 6 14 46.8% 56.6% 28.9% 49.8% 75.7% 19.8% 44.1% 69.5%
Mess 6 36 51.3% 62.5% 25.3% 51.7% 83.4% 15.4% 50.8% 74.8%
Mess 7 28 48.6% 57.7% 20.1% 48.7% 77.9% 17.8% 47.9% 72.8%
Mess 7 33 54.3% 63.9% 19.8% 53.4% 79.8% 19.6% 52.6% 69.2%

TABLE 6.12: Some details of experiments when using Support Vector Machine as the base classifier.

Datasets F1 F2 F3 F4 F5 F6 F7 F8
Aba 7 11 77.6% 82.9% 28.6% 75.4% 98.3% 14.7% 72.4% 85.1%
Aba 58 9 64.6% 75.8% 36.7% 63.8% 96.5% 11.4% 69.4% 92.6%
Blood 2 64.6% 81.8% 47.4% 65.3% 97.6% 28.1% 67.3% 88.1%

Blood 42 68.2% 81.4% 27.6% 71.7% 98.5% 19.1% 66.9% 90.6%
Yea 21 73.6% 80.4% 22.8% 77.4% 97.6% 12.6% 75.7% 85.9%
Yea 49 83.6% 84.6% 11.6% 85.4% 98.5% 12.7% 86.6% 90.1%
Car 21 89.2% 90.8% 29.3% 89.5% 100% 17.6% 92.7% 98.9%
Car 48 84.3% 87.6% 27.4% 86.1% 94.7% 14.9% 84.4% 91.5%

Auto 34 73.5% 78.5% 36.2% 74.8% 89.2% 13.4% 72.9% 77.1%
Auto 135 68.5% 78.1% 38.7% 69.3% 90.0% 21.4% 67.6% 82.5%
Mammo 4 74.5% 81.7% 25.9% 74.8% 91.5% 16.7% 76.7% 88.6%

Mammo 69 72.6% 79.2% 22.5% 71.5% 94.9% 20.3% 73.5% 87.9%
Mess 5 15 51.6% 63.6% 23.5% 50.8% 72.2% 14.5% 51.7% 68.9%
Mess 5 38 49.7% 56.9% 31.2% 53.7% 76.1% 31.3% 49.3% 71.3%
Mess 6 14 46.8% 57.3% 28.9% 49.8% 75.5% 19.8% 44.1% 69.2%
Mess 6 36 51.3% 61.8% 25.3% 51.7% 83.9% 15.4% 50.8% 75.4%
Mess 7 28 48.6% 57.4% 20.1% 48.7% 77.8% 17.8% 47.9% 72.9%
Mess 7 33 54.3% 63.6% 19.8% 53.4% 78.6% 19.6% 52.6% 68.9%
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TABLE 6.13: The details of the linear regression models for the experimental results listed in Ta-
ble 6.9.

Experimental Coefficient Coefficient Coefficient Coefficient R-Square
Datasets of F3 of F4 of F6 of F7 Value
Abalone 0.398 -1.754 2.214 -0.856 0.826
Blood 0.289 -0.854 1.135 -0.391 0.904
Yeast 2.313 -1.342 1.432 -2.682 0.823
Car 1.482 -1.439 0.894 -1.432 0.844

Auto MPG 0.867 -2.134 1.295 -0.851 0.839
Mess 5 2.185 -0.943 2.439 -0.493 0.865
Mess 6 4.328 -3.593 2.118 -3.688 0.792
Mess 7 0.587 -1.175 0.556 -2.214 0.819

the Original Classi f ier. This is exactly the reason why the proposed approach can consistently

generate more accurate classifications.

For example, the dataset Aba 58 9 has 36.7% of its testing vectors as Type I vectors, and 11.4%

as Type II vectors. Furthermore, when classifying its Type I vectors by using the Original Classi f ier,

only 63.8% of them can be correctly classified. However, the Derived Classi f iers can accurately

classify 97.4% of them. Meanwhile, by using the proposed approach, about 92.3% − 69.4% =

22.9% of the Type II testing vectors can be more accurately classified by the Derived Classi f iers.

Therefore, one can observe about 77.0%-64.6% = 12.4% overall classification improvement by im-

plementing the proposed approach when analyzing the dataset Aba 58 9. In terms of the measure

that expresses the relative improvement, the value is equal to 35%.

In order to better understand how such factors impact the effectiveness of the proposed approach,

several linear regression models were created using the classification improvements (the difference

between the factors F1 and F2) as the dependent variable, while the factors F3, F4, F6,and F7 were

used as the independent variables. The R-Square values of the models and the coefficients of the

independent variables is what is important. Furthermore, a statistical package by SAS was used to

generate such linear regression models. Tables 6.13 to 6.16 list the regression models derived from

analyzing the experimental results shown in Tables 6.9 to 6.12, respectively.
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TABLE 6.14: The details of the linear regression models for the experimental results listed in Ta-
ble 6.10.

Experimental Coefficient Coefficient Coefficient Coefficient R-Square
Datasets of F3 of F4 of F6 of F7 Value
Abalone 0.385 -1.635 1.562 -0.256 0.808
Blood 0.549 -1.024 1.822 -0.892 0.859
Yeast 2.951 -1.852 2.300 -2.100 0.910
Car 2.252 -1.153 1.210 -1.325 0.855

Auto MPG 1.027 -2.634 1.821 -0.632 0.845
Mess 5 2.525 -0.258 2.025 -1.025 0.896
Mess 6 4.188 -3.521 2.952 -2.845 0.801
Mess 7 0.627 -4.263 1.310 -2.962 0.789

TABLE 6.15: The details of the linear regression models for the experimental results listed in Ta-
ble 6.11.

Experimental Coefficient Coefficient Coefficient Coefficient R-Square
Datasets of F3 of F4 of F6 of F7 Value
Abalone 0.562 -1.582 2.695 -0.520 0.833
Blood 0.629 -0.364 1.522 -0.361 0.895
Yeast 1.553 -1.698 1.251 -1.252 0.862
Car 1.852 -1.469 1.105 -1.424 0.852

Auto MPG 0.967 -2.524 1.365 -0.885 0.841
Mess 5 1.265 -0.625 2.025 -0.639 0.806
Mess 6 3.652 -2.365 2.362 -2.526 0.841
Mess 7 1.125 -1.962 1.258 -2.852 0.823

TABLE 6.16: The details of the linear regression models for the experimental results listed in Ta-
ble 6.12.

Experimental Coefficient Coefficient Coefficient Coefficient R-Square
Datasets of F3 of F4 of F6 of F7 Value
Abalone 0.125 -1.785 2.365 -0.251 0.842
Blood 0.203 -0.254 1.125 -0.896 0.896
Yeast 2.962 -1.361 1.185 -2.155 0.864
Car 1.222 -1.98 0.362 -1.985 0.825

Auto MPG 0.256 -2.234 1.510 -0.120 0.817
Mess 5 2.362 -0.693 2.124 -1.012 0.836
Mess 6 4.126 -3.123 2.352 -3.228 0.825
Mess 7 0.587 -1.645 0.450 -2.863 0.842
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As one can observe from these tables, the R-Square values in most of the models are more

than 0.80, which indicates a satisfactory goodness of fit. Furthermore, the coefficients of the inde-

pendent factors are consistent across the tables, that is, the factors which have positive(negative)

coefficients in one table also have positive(negative) coefficients in all other tables. This obser-

vation indicates that some factors have positive impact to the classification improvements, while

some other factors impact the improvements in a negative way.

To be more specific, the factors which have positive coefficient are directly proportional to the

classification improvements. The increase of their values can help to obtain more accurate classifi-

cations. These are the factors F3 and F6. In the opposite case, if the factors have negative coefficients

in the models, then they are inversely proportional to the improvements. An increase of their values

will result in less significant improvements when implementing the proposed approach. These are

the factors F4 and F7.

In other words, when implementing the proposed approach to analyze a dataset, the more of

its testing vectors happen to be Type I or Type II vectors, the higher improvements can be ex-

pected. This is supported by the fact that the Type I and Type II vectors can be much more accu-

rately classified by the Derived Classi f iers. Meanwhile, when analyzing easy datasets, that is,

datasets which can be accurately classified by the Original Classi f ier, such as the ones with

high F4 and F7 values, little improvements can be obtained. This happens because when the

Original Classi f iers are effective enough, then there is no significant difference between the per-

formance of the Original Classi f ier and the Derived Classi f iers. Similar conclusions are reached

when the two relative measures for expressing accuracy are used.

78



Chapter 7

Conclusions
7.1 An Overview of this Research
Our research focused on the problems of how to evaluate the classification difficulty, or learnabil-

ity, of numeric datasets by exploring some monotonicity-based characteristics of the data. More

importantly, how to use such characteristics to improve the classification accuracy. In the experi-

ments described in this dissertation, the difficulty of a dataset is indicated by the average accuracy

when it is classified by a wide set of classifiers. It proposes that such difficulty can be accurately

predicted by analyzing some monotonic characteristics of the dataset, and different types of nu-

meric datasets may show similar relationships between their monotonic characteristics and their

difficulty in learning. Furthermore, by further exploring the monotonic properties of the datasets,

it shows a meta-learning approach to improve the classification accuracies on all numeric datasets.

The definition of monotonicity is first discussed in Section 2 and then further explored by con-

sidering the attributes with positive/negative effects. Two vectors are said to be monotonically

related if and only if they are defined on the same positive/negative attributes and one precedes

another. Furthermore, by considering their class values, a pair of related vectors may comprise an

AMP1 pair, an AMP2 pair, or a CMP pair. After one considers all possible pairs of vectors, some

special vectors, called border points or extended border points, can be determined accordingly. By

analyzing such monotonically related vectors and the border points, the key monotonic features of

datasets can be determined.

Several groups of experiments were designed and performed to explore the relationships be-

tween the difficulty of numeric datasets and their monotonic characteristics. The details are pro-

vided in Section 4. According to the experimental results, regression models generated by deter-
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mining the monotonic characteristics of the numeric datasets can be used to evaluate their difficul-

ties very accurately.

One of the main contributions of our study is to propose and demonstrate that the monotonic

features of numeric datasets play an important role in determining their difficulty. Furthermore, by

analyzing these monotonic features, one can generate regression models that can accurately predict

such difficulty for numeric datasets provided that the datasets have enough number (i.e., more than

4%) of monotonically related vectors. In the experiments of analyzing continuous datasets, even

though continuous datasets may differ in many ways, they still present similar key relationships

between their monotonic features and their classification difficulties.

Based on the above observation, we proposed an approach for dividing a difficult to classify

training dataset into a group of easily to classify subsets. As result, classifiers derived from the

smaller datasets tend to be much more accurate than the classifier derived when the original dataset

is used as a whole. When the classifiers from the smaller datasets are combined together, the

combined classification system performs consistently better than the original classifier derived

from the entire dataset.

The proposed approach has been compared against the stand-alone approach for a number of

well-known classifiers. It has also been compared to Boosting and Bagging approaches as well

as the HBA approach [35]. In all occasions, the new approach outperformed all the previous ap-

proaches on a wide range of tests. For the HBA case, a combined approach is proposed as well

which is profoundly more powerful than any other approach. This is a meta-heuristic approach, as

it can be used in conjunction with any known classifier, and offers an exciting potential to signifi-

cantly improve classification results in many cases.

7.2 Significance of the Findings of this Research
Before this research if one wanted to determine how difficult or easy a dataset is to classification

analysis (i.e., what is called here its learnability value), he/she would had to extensively analyze

the dataset in terms of many classifiers and collect statistical information. Such an approach is
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time consuming and also might be biased as one does not know which classifiers to use for this

examination. But even more important, one would have no clue why a given dataset is difficult or

easy for classification analysis. Thus, one would have to repeat this tedious approach with any new

dataset.

The main conclusion of this research, however, provides a satisfactory answer to this challenge.

It demonstrates that the monotonicity properties of numeric datasets are the main factors which im-

pact their classification difficulty. Moreover, a method is introduced which uses some key mono-

tonic properties to build regression models, and data from the experimental results. The derived

regression models are quite powerful in predicting the classification difficulty quite accurately for

many datasets.

Comparing to the traditional approach, the proposed method takes much shorter time without

significantly compromising on accuracy. Furthermore, it only uses the monotonic relationships

between pairs of vectors in the target dataset, and it is not concerned on what classifier will be

used. That is, the only required data are dataset specific.

The above discovery is great contribution. However, there is another major contribution as well.

It uses these results to improve classification accuracy when a classifier is used. This was demon-

strated in Section 6. Which provides a general method for improving classification accuracy in

various application domains.

First of all, the proposed approach is a meta-learning approach, and thus any classification al-

gorithm can be used as the base classifier. Next, it works with any numeric dataset regardless the

application domain, measurement units and so on. Last but not least, this approach can improve the

classifications on any dataset provided that all attributes can somehow be converted into ordinal

ones.

The classification improvement gained by implementing the proposed approach is significant

and stable, according to the experimental results. The relative maximum possible improvement

was frequently above 25%, regardless the difficulty of the experimental dataset used for the test.
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Moreover, there exist some very difficult datasets that most of the classifiers cannot classify them

with more than 50% accuracy. In this particular scenario traditional methods are doing meaningless

classifications since they perform no better than the most naive random guessing. However, by

analyzing the monotonic properties of difficult datasets, the proposed approach can always classify

them with more than 50% accuracy, which makes classification more meaningful.

In summary, this research addressed successfully the following important challenges that had de-

fied explanation until now: a) What factors make a dataset easy or difficult? b) How these factors

impact the data difficulty? c) How to evaluate the data difficulty by analyzing these factors? and d)

How to use such factors to improve classification? The answers to these challenges not only solve

an existing mystery in data analysis, but also forge a solid foundation for future studies on mono-

tonicity, such as monotonicity in transfer learning and in cases under different misclassification

costs for the various types of error that may occur during the classification process. Considering

the bright prospects of using monotonicity in data analysis, the end of this research is just a new

beginning.
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