Louisiana State University

LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2013

Exploring the Learnability of Numeric Datasets

DiLin
Louisiana State University and Agricultural and Mechanical College, fengzhongdi@gmail.com

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool dissertations

b Part of the Computer Sciences Commons

Recommended Citation

Lin, Di, "Exploring the Learnability of Numeric Datasets" (2013). LSU Doctoral Dissertations. 1836.
https://digitalcommons.lsu.edu/gradschool_dissertations/1836

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in

LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1836?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1836&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

EXPLORING THE LEARNABILITY OF NUMERIC DATASETS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The School of Electrical Engineering and Computer Science
Computer Science and Engineering Division

by
Di Lin
B.S., FuZhou University, 2003
M.S., Louisiana State University, 2011
August 2013

Acknowledgements

Over the past six years I have received support and encouragement from a great number of indi-
viduals. Dr.Evangelos Triantaphyllou has been a mentor, colleague, and friend. His guidance has
made this a thoughtful and rewarding journey. I would like to thank my dissertation committee of
Dr.Jian Zhang and Dr. Jianhua Chen, for their support over the past couple years as I moved from

an idea to a completed study.

il

Table of Contents

Acknowledgements i i it i it it e e e e e e et e e e e ii
Abstract o i e e e e e e e e e e e e e e e viii
Chapter 1: Introduction ¢ i i i i ittt ittt o oenesensoenes 1
Chapter 2: Introduction to Monotonicityt ittt vttt v 4
2.1 The Monotonic Property in Datasets 4
2.2 Key Definitions Related to Monotonicity 6
2.3 Graphical Representation in Two Dimensions 11
2.4 Data with both Positive and Negative Attributes 12
2.5 Graphical Representation for Datasets With Positive and Negative Attributes 15
2.6 Typesof Pairsof Vectors 17
Chapter 3: The Experimental Design for Binary Datasets 20
3.1 Design Issues of Experiments with Some Artificial Binary Datasets 20
3.2 Generating the Binary Experimental Datasets 21
3.3 Classifiers from WEKA 26
Chapter 4: The Experimental Study 28
4.1 Parameters Used to Describe the Monotone Structure of a Dataset 28
4.2 Experiments with Binary Datasets 31
4.3 Experiments with Some Continuous Datasets 38
Chapter 5: A Meta-Learning Approach 00, 47
5.1 The Motivation of the Meta-Learning Approach 47
5.2 DataPre-processingo e 48
5.3 ThePilotStudy 50
5.4 The Proposed Approach to Improve Classifications 51
5.5 A Monotonicity-Based Classification Approach 52
Chapter 6: Experiments For Meta-Learning Approach 59
6.1 Some Preliminaries on the Experiments 59
6.2 The Experimental Results 60
6.3 Analysis of the experimental results 0oL, 72
Chapter 7: Conclusions i i i it i ittt ittt o oo esoneonses 79
7.1 AnOverview of thisResearch 79
7.2 Significance of the Findings of this Research. 80

iii

v

List of Tables

2.1

22

2.3

24

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1

6.1

6.2

An example of a purely monotonic dataset D in {0, 1}4 8
An example of a non-purely monotonic dataset Din {0,1}>. 10

An example of a purely monotonic binary training dataset when positive/negative
attributes are taken into consideration. 16

An example of a non-purely monotonic binary training dataset when positive/negative
attributes are taken into consideration. oL 16

The number of AMP2 and CMP pairs in the complete n-attribute binary datasets
that are generated by the approach dessribed in Section3.2.3. 24

The seven monotonic characteristics of the numeric datasets. 29

The regression models generated for different dimensions of artificial binary datasets. 33

Details of the regression models listed in Table 4.2. 33
The information of the datasets listed in Table 4.5. 37
The regression models generated for some real-life binary datasets. 37
Experimental results from the real-life binary datasets listed in Table 4.5.. 38
Regression models generate from some real-life continuous datasets. 41
Experimental results from real-life continuous datasets listed in Table 4.7. 42

Some characteristics of the regression models generated independently of the test-

ing data. The actual regression models are shown in Table 4.10. 44
Regression models for datasets listed in Table 4.9. 45
Some Characteristics of the Experimental Datasets. 50
Some experimental results when analyzed the Abalone datasets. 63
Some experimental results when analyzed the Blood donation datasets. 64

\%

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

Some experimental results when analyzed the Yeast datasets. 65
Some experimental results when analyzed the Car evaluation datasets. 66
Some experimental results when analyzed the Auto_MPG datasets. 67
Some experimental results when analyzed the Mammo datasets. 68
Some experimental results when the 5-attribute artificial datasets were analyzed. . . 69

Some experimental results when the 6-attribute and 7-attribute artificial datasets
were analyzed. L 70

Some details of experiments when using Decision Tree (J48) as the base classifier. . 74

Some details of experiments when using Artificial Neural Network as the base
classifier. L 74

Some details of experiments when using ADTree as the base classifier. 75

Some details of experiments when using Support Vector Machine as the base clas-

The details of the linear regression models for the experimental results listed in
Table 6.9. e 76

The details of the linear regression models for the experimental results listed in
Table 6.10.. 77

The details of the linear regression models for the experimental results listed in
Table 6.11.. o e 77

The details of the linear regression models for the experimental results listed in
Table 6.12.. e 77

vi

List of Figures

2.1

22

2.3

24

2.5

2.6

4.1

4.2

4.3

5.1

5.2

6.1

The poset for the dataset in Table 2.1 and its border points. 11
The poset for the dataset in Table 2.2 and its border points. 11
The complete poset when n=4, x=2,and y=2. 15
The poset for the dataset listed in Table 2.3 and its border points. 16
The poset for the dataset listed in Table 2.4 and its border points. 16
Some examples of different types of monotonically related pairs. 19

Relationships between average accuracy and some monotonic features for binary
datasets when n = 8. They may have different positive/negative attributes. 29

The R-Square values of the models generated from artificial binary datasets with
different dimensions. 32

The R-Square values of the models generated from continuous experimental groups

with different levels of monotonicity. oL 40
Different cases of scenarios of the monotonicity observed in functions. 48
The relationship between the difficulty of the datasets and P,y values. 51
Experimental results with different ratios of training and testing vectors. 60

vii

Abstract

When doing classification, it has often been observed that datasets may exhibit different levels of
difficulty with respect to how accurately they can be classified. That is, there are some datasets
which can be classified very accurately by many classification algorithms, and there also exist
some other datasets that no classifier can classify them with high accuracy. Based on this ob-
servation, we try to address the following problems: a)what are the factors that make a dataset
easy or difficult to be accurately classified? b) how to use such factors to predict the difficul-
ties of unclassified datasets? and ¢) how to use such factors to improve classification. It turns out
that the monotonic features of the datasets, along with some other closely related structural prop-
erties, play an important role in determining how difficult datasets can be accurately classified.
More importantly, datasets which are comprised of highly monotonic data, can usually be classi-
fied more accurately than datasets with low monotonically distributed data. By further exploring
these monotonicity based properties, we observed that datasets can always be decomposed into a
family of subsets while each of them is highly monotonic locally. Moreover, it is proposed in this
dissertation a methodology to use the classification models inferred from the smaller but highly
monotonic subsets to construct a highly accurate classification model for the original dataset. Two
groups of experiments were implemented in this dissertation. The first group of experiments were
performed to discover the relationships between the data difficulty and data monotonic properties,
and represent such relationships in regression models. Such models were later used to predict the
classification difficulty of unclassified datasets. It seems that in more than 95% of the predictions,
the deviations between the predicted value and the real difficulty are smaller than 2.4%. The sec-
ond group of experiments focused on the performance of the proposed meta-learning approach.
According to the experimental results, the proposed approach can consistently achieve significant

improvements.

viii

Keywords:Data mining, classification models, monotonic property, decomposition approaches,
binary datasets, monotonicity, monotonic characteristics, monotone functions, regression models,

data analysis.

X

Chapter 1

Introduction

How to efficiently and effectively analyze datasets of data grouped into classes has always been a
crucial challenge in data mining research. Currently, there are numerous algorithms in use which
infer classification models from such datasets. Next, these classification models may be used to
infer the class values of new data points for which the class values are unknown. Such algorithms
infer classification models by implementing various, and often times, quite diverse strategies. Ex-
amples include support vector machines (SVMs) [39, 7, 9], neural networks [30, 40, 47], decision
trees [6, 36, 1], and logic-based approaches [43, 26, 24, 17, 13], just to name a few.

An interesting observation derived from numerous studies (see, for instance, [39, 24, 40]) is that
often times some datasets may be analyzed very accurately by a wide spectrum of classifiers while
other datasets may not be analyzed as easily. In other words, it seems like there are “easy” datasets,
“difficult” datasets and datasets of intermediate degrees of difficulty when one is interested on
how easily they can be analyzed accurately by classifiers. Therefore, in this study the difficulty
of a dataset is evaluated by the average classification accuracy when it is analyzed by various
classifiers, the lower the accuracy, the more difficult the dataset is. Furthermore, in this dissertation
this property is also defined as the learnability of datasets.

This study focuses on this very issue. That is, the main research question studied here is how
one can predict whether a given dataset would be analyzed accurately by a wide spectrum of clas-
sifiers. A theoretical analysis and some computational results provided in the following sections
indicate that a property in data known as the monotonicity property plays a central role in deter-
mining whether a given dataset is “easy,” “difficult” or of intermediate degree of difficulty when

one focuses on the above classification task. More importantly, it is also observed that some mono-

tonic based properties are strongly related to their monotonic property, and which could be used to
accurately predict the learnability of datasets.

At present, if one wishes to determine whether a given dataset can be easily classified with
high accuracy, then that dataset has to be analyzed by many classifiers. The inferred models are
evaluated in terms of how accurate they are when they are fed with new data points of hidden class
values. However, such an approach may have a number of weaknesses. First, it might be a time
consuming approach, as many different classifiers need to be employed. Second, even if the results
are highly conclusive at the end of such a tedious study, one still does not really know what makes a
dataset easy or difficult to be classified accurately. Furthermore, if a dataset is deemed as a difficult
one because a number of classifiers have difficulty inferring accurate models, does it mean that this
dataset is truly a hard one? After all, which classifiers should be used in such studies? How many
of them? Currently, such questions cannot be answered objectively.

Therefore, a theoretical understanding of what makes a dataset easy or hard, based on its struc-
ture alone, is of paramount importance in this area of data mining research. Furthermore, if one
knows that a given dataset is a hard one because of properties pertinent to this dataset, then a new
classifier which outperforms existing ones even by a few percentage points, might be considered
as an important contribution. On the other hand, if a new classifier performs only slightly better
when dealing with easy datasets, then such news might not be as important.

It is observed that when datasets are comprised of highly monotonic data, then they can be
classified accurately by most methods while datasets that are not comprised of highly monotonic
data, tend to be more difficult to be accurately analyzed by classifiers. Then the challenge becomes
what happens if a given dataset does not exhibit strong monotonicity, is there any way to make it
easier to be accurately classified, perhaps after some data manipulations? The present dissertation
provides an answer to this very important question.

In summary, our research is concerned with the following issues: what are the factors that impact

the difficulty of datasets, how to derive such factors, how to use them to evaluate the difficulty of

2

the datasets objectively, under what conditions is the proposed approach applicable, and more
importantly, how to use the previous results on poorly monotonic data, such that the classification
accuracies can be improved.

The rest of the dissertation is organized as follows. Section 2 introduces the notion of mono-
tonicity and also provides the definitions of the monotonic features considered in this study. The
third section illustrates how some binary datasets were generated for this study. The fourth section
demonstrates how the monotonic characteristics of datasets can be used to predict their classifica-
tion difficulty. This is done for some binary datasets and some continuous datasets. The fifth section
provides a way to pre-process the raw data to make them easier to accurately classify, while the
sixth section shows a meta-learning approach to improve the classification on any numeric datasets.

Finally, this dissertation ends with the main conclusions of our study.

Chapter 2

Introduction to Monotonicity

2.1 The Monotonic Property in Datasets

Because monotonicity plays a central role in the developments described in our research, this
section presents a brief discussion of the notion of monotonicity and some key developments in this
area. This discussion on monotonicity is important even for datasets that are not purely monotonic.
This is true because as it is explained later, even when monotonicity is partially present in a dataset,
then one may still be able to reach certain important conclusions when the learnability of that
dataset is concerned.

For a simple and intuitive illustration of what is monotonicity in data, let us consider the follow-
ing hypothetical situation. Suppose an analyst is interested in studying how a personal computer
(PC) may crash under various software application loading scenarios. This analyst has observed
that when certain software applications are loaded simultaneously, then the PC may crash. As there
are n possible applications to be loaded, the state of the PC may be represented in terms of binary
vectors in n dimensions. The analyst has observed that under certain loading scenarios the PC may
crash (class value 1), while under some other loading scenarios the PC may not crash (class value
0).

For instance, if a word processor, a photo editor and a video editor are loaded simultaneously,
then the PC may crash (class value 1). Suppose that for n=10 (i.e., there are up to 10 applications to
be loaded), the previous scenario is represented by the following binary vector: Vi = (0100101000),
where the three 1s represent the loading of the previous three applications, respectively. Then one
may argue, that if the previous three applications have been loaded and then two more are loaded
in addition (such as the ones represented by the following vector: U; = (0110101010)), then the

PC may crash as well (class value 1).

This is reasonable to assume because the new state of the PC describes a situation that is even
more strenuous than the previous one, under which nevertheless the PC would crash. Please also
observe that for these two vectors the following is true: U; > Vj. In a similar manner, if the PC
does not crash under a given software loading scenario, say, the one represented by the vector V;
= (0100001110), then most likely it will not crash under the loading scenario U, = (0100001010),
which represents a lighter case. In other words, if a Boolean function f exhibits the following
property: f(U) > f(V), for any two vectors U and V such that U >V, then we say that the function
f is monotonically increasing.

More formally, let {0, 1}" denote the binary space defined on n Boolean attributes. A Boolean
function defined on this space is a mapping from {0,1}" into {0,1}. Suppose that two binary
vectors U and V from {0, 1}" are given where U = (uj,uz,us,...,u,) and V = (vi,v2,v3,...,vp),
and u;, v =0 or 1 for any i = 1,2,3,...,n. Then, there are three possible cases as described in the
following definitions.

Definition 2.1: A binary vector U € {0,1}" is said to be greater than or equal to another vector
V €{0,1}", denoted as U >V, if and only if (iff) u; > v;, for i = 1,2,3,...,n, where u;(v;) denotes
the i'" element of vector U(V).

Definition 2.2: A binary vector U € {0,1}" is said to be less than or equal to another vector
V €{0,1}", denoted as U <V, iffu; <v;, fori=1,2,3,...,n, where u;(v;) denotes the i'" element
of vector U (V).

Definition 2.3: Given two vectors U,V € {0, 1}", they are said to be unrelated to each other iff
neither one is greater than or equal to the other. Otherwise, they are called related.

If a vector U is greater than another vector V, then one can also say that vector U proceeds
vector V, or in other words, that vector V follows vector U. For some illustrative examples of the
above, consider the four vectors in {0, 1}4 defined as follows: V = (1011), W = (0011), P = (0001)

and Q = (1001). Then according to the previous definitions, it follows that V.> W and W > P,

and it is easy to get V > P as well. Moreover, the vectors W and Q are unrelated. The following
definition provides the notion of monotone Boolean functions formally.

Definition 2.4: A Boolean function f defined on {0,1}", is called monotonically increasing iff
fU) > f(V) forall U,V € {0,1}", and U > V. If f(U) < f(V) for all pairs of vectors U,V &
{0, 1}" such that U >V, then such Boolean function is called monotonically decreasing.

In this dissertation when we say monotone Boolean function we will mean an increasing one
unless it is otherwise specified. The first known study on monotonicity is due to Dedekind [14].
Other early studies are due to Church [11] and Ward [45] where they studied the number of all
Boolean monotone functions for dimensions n = 1,2,3,...,7. An interesting development is due
to Hansel [23] who introduced the notion of Hansel chains. Some early learning complexity issues
for inferring monotone Boolean functions were studied in [38, 22, 19, 28, 3, 32]. More recent

studies on learning monotone Boolean functions from training data can be found in [41, 43].

2.2 Key Definitions Related to Monotonicity

Given a monotone Boolean function f from {0,1}" into {0,1}, some vectors in {0,1}" play a
critical role in defining this function f. These are what is known as upper zero and lower unit
vectors [23, 41, 43]:

Definition 2.5: A vector V* is called a lower unit of a monotone Boolean function f iff f(V*)
=1 and f(V) < f(V*), for any vector V< V*.

Definition 2.6: A vector V* is called an upper zero of a monotone Boolean function f iff f(V*)
=0and f(V) > f(V*), for any vector V> V*.

Definition 2.7: Given a monotone Boolean function f the union of the set of the lower units with
the set of the upper zeros is the set of its border vectors.

For any monotone Boolean function f, the set of all lower units and the set of all upper zeros

are unique, and either one of these two sets uniquely identifies f [41].

2.2.1 Purely Monotonic Binary Datasets

Next, it is assumed that given is a binary dataset, say D, comprised of two mutually exclusive and
exhaustive subsets of binary vectors classified by some monotone Boolean function f. The analyst
may or may not know the definition of this function f. The first subset, denoted as D™, has all the
vectors classified as positive, while the second subset, denoted as D, has all the vectors classified
as negative. Obviously, D = D" UD™.

Definition 2.8: A binary dataset D is a purely monotonic binary dataset iff any positive vector
V € D" is either greater than any negative vector U € D~ or the vectors V and U are unrelated.

If the condition described in the previous definition is not satisfied, the dataset is called a non-
purely monotonic binary dataset. Next, the previous concepts of upper zeros, lower units, and
border points of monotone Boolean functions can be easily adapted in the context of a purely
monotonic binary dataset D. This is accomplished in terms of the following definitions:

Definition 2.9: Given a purely monotonic binary dataset D, a vector V* € D™ is called a lower
unit of the dataset D iff for any V € D", V* <V or the vectors V* and V are unrelated.

Definition 2.10: Given a purely monotonic binary dataset D, a vector V* € D™ is called an
upper zero of the dataset D iff for anyV € D=, V* >V or the vectors V* and V are unrelated.

Definition 2.11: Given a purely monotonic binary dataset D, the union of the set of its lower
units with the set of its upper zeros is the set of its border points.

The previous concepts can be easily extended to functions and datasets that are not binary.
This can happen if the attributes take on ordinal values and thus one can compare vectors as was
the case with only binary attributes. Algorithm 1 can be used to identify the border points of a
purely monotonic dataset (no necessarily only binary). As illustrative examples of these concepts,
consider the dataset in {0, 1}* depicted in Table 2.1. The lower units of D are the vectors: {(1100),
(1010)}, while the upper zeros of D are the vectors: {(0110), (1001), (0101)}. The set of its border

points is the union of the previous two sets.

TABLE 2.1: An example of a purely monotonic dataset D in {0, 1}*.

Positive vectors | (1111), (1110), (1101), (1011), (1100), (1010)
Negative vectors | (0110), (1001), (0101), (0100), (0001), (0000)

Algorithm 1: Find all the border points in a purely monotonic dataset D.

Input : E', E~; /*Two mutually exclusive sets of positive and negative vectors in D,
respectively.*/
Output: LU,UZ; /*Two sets of the lower units and the upper zeros, respectively.*/
1 for each ¢ € ET do
2 | for each ej € ET do
3 ife; > e then
4 Remove e}“ from ET;
5 end
6 end
7

end

8 for eache; € E~ do

for each e; € E~ do
10 ife; <e; then
11 Remove e; from £~ ;
12 end
13 end
14 end

15 LU+ ETandUZ + E—;
16 Return LU, UZ;

2.2.2 Non-purely Monotonic Binary Datasets

Some real-life datasets, however, may not be purely monotonic. That is, in such datasets one may
encounter positive vectors which may be less than some negative vectors. When this happens, then
the previous defined concepts should be modified to become the extended lower units, the extended
upper zeros, and the extended border points of the dataset.

To be more specific, if a binary dataset is not purely monotonic then it can be decomposed
into groups of vectors such that within each pair of groups the monotonic property holds locally.
In particular, such dataset can be divided into several unique class groups. Each group contains
the vectors with same class value, while the class values between adjacent groups are different.

Moreover, for any two groups of such vectors with different class values, all the vectors in one
8

group precede or are unrelated to the vectors in the other group. In this way, any two groups of
vectors of opposite class values can comprise a purely monotonic binary dataset.
Suppose that given is a binary dataset D which is not purely monotonic. Then, its sub-groups

can be derived as follows:

1. Find out all the positive vectors in D which precede or are unrelated to all negative vectors.

Next, they are removed from D to form a positive sub-group.

2. From the remaining vectors, find out all the negative vectors which precede or are unrelated

to the rest of the positive vectors. Next, they are removed from D to form a negative sub-

group.
3. Repeat steps (1) and (2) until the dataset D becomes empty.

Based on such unique class groups, the concept of extended border points can be defined as
follows:

Definition 2.12: Given a positive sub-group G, a vector V* € G is called an extended lower unit
of the sub-group G iff for any V € G, then V* <V or the vectors V* and V are unrelated.

Definition 2.13: Given a negative sub-group G, a vector V* € G is called an extended upper
zero of the sub-group G iff for any V € G, then V* >V or the vectors V* and V are unrelated.

Definition 2.14: Given a non-purely monotonic binary dataset D, the union of the set of its
extended lower units with the set of its extended upper zeros forms the set of its extended border
points.

Once the sub-groups are determined as above, the border points of each sub-group can be de-
termined by implementing Algorithm 1 within each sub-group. As was the case with the deter-
mination of the (regular) lower unit and upper zero vectors, an algorithm can be easily designed
to determine the extended lower unit and extended upper zero vectors. Algorithm 2 shows such
an approach with a time complexity of O(m?), where m is the number of vectors in the training

dataset.

Algorithm 2: General approach to find extended border points in a non-purely monotonic
dataset.
Input : E™, E~; /*Two mutually exclusive sets of positive and negative vectors,
respectively.*/
Output: ELU,EUZ; /*Two sets of the extended lower units and the extended upper zeros,
respectively.*/
1 ELU < 0,EUZ < 0;
while E* £ 0 or E- # ¢ do
Subset™ < ¢, Subset ™ < 0;

2
3
4 for each ¢} € E* do

5 if There is no e; € E~ such that e; > e;r then
6

7

8

9

Subset™ < Subset™ U e;r;
Remove ¢;" from E™;

end
end
10 for eache; € E~ do
11 if There is no e;r € E™ such that e}r > e; then

Subset™ < Subset™ Ue; ;
Remove e¢;” from E™;

14 end

15 end

16 ELU < ELU U findLowerUnits(Subset™); /* Apply Algorithm 1 */
17 EUZ < EUZU findU pperZeros(Subset); /* Apply Algorithm 1 */
18 end

19 Return ELU, EUZ;

As illustrative examples of the concepts of extended lower units, extended upper zeros, and
extended border points, one can consider the dataset in {0, 1}’ depicted in Table 2.2. The extended
lower units of D are the vectors:{(11001), (10111), (00001), (01100), (10110)}, while the extended
upper zeros of D are the vectors:{(11110), (01101), (10011), (10010), (00110)}. The set of its
border points is the union of the previous two sets.

TABLE 2.2: An example of a non-purely monotonic dataset D in {0,1}°.

Positive vectors | (11111), (11101), (10111), (11001), (11100),
(10110), (01001), (01100), (00001)

Negative vectors | (11110), (01101), (10011), (00110), (00101),
(10010), (10000), (00100)

10

1111

| 1110 || 1101 ‘ ‘ 1011 |

1110 1101 1011

UpperZeros
.
Cod Qo)== et

1100 1010 -

4 v

.
. .
e »
Lower Units 0100 @ @
0000

FIGURE 2.1: The poset for the dataset in Table 2.1 and its border points.

s 1 T
L Y
1001 0011

11111 11110 01101

[4
] p
\
11101 10111 10011 %
A
AN\
v

11001 < ---

Lower Units UpperZeros
A

:> Group 1 /.: \ Group 2 N
“

11001 11100 . 10110

01001 01100 ! . ; .
/ 1 « »
01001 || lllﬂﬂl‘ 10110 10010 00110
D[][][]l mmm i,' 1 ;
00001 01100 10000 UUlUU

Group 3 Group 4

Il
s

. .
0 N . \

FIGURE 2.2: The poset for the dataset in Table 2.2 and its border points.

2.3 Graphical Representation in Two Dimensions

The previous concepts of the various types of border vectors become easier to comprehend if one
considers them in the context of a 2-dimensional partially ordered set or poset (see, for instance,
[41, 43]). Such a poset is defined as follows:

Definition 2.15: Given a dataset D, its two dimensional poset representation is a graph whose
nodes correspond one-to-one to vectors of D. Furthermore, there is an arrow from a node U to a
nodeV, iffU > V.

When a poset representation is used, the data depicted in Table 2.1 correspond to Figure 2.1,
while the data in Table 2.2 correspond to Figure 2.2. For the sake of simplicity of the presentation,
arrows are shown only for adjacent nodes. One may observe that these graphs can be organized in
terms of layers as shown in these figures. The corresponding border vectors (upper zeros and lower

units) are also shown in these two figures.

11

2.4 Data with both Positive and Negative Attributes

In the previous considerations it was assumed that all the binary attributes are positive. That is, if
an attribute has the value 1, then somehow this contributes to the chances for a given vector to be
of the positive class value. For instance, in the earlier PC related example, if a particular software
item is loaded (i.e., the attribute that corresponds to the loaded/not-loaded state for that software
item has value 1), then this contributes to the chances for a vector to be of the positive class value
(i.e., the “PC crashes” class value).

Although this may not be as critical for the binary case (as a given binary attribute may be
assigned value 1 or 0 depending on how one defines them), it becomes critical when one considers
the case when attributes have continuous values. For instance, in a setting with continuous attribute
values one may wish to study, say, the performance of a car engine. Then, one may have two
mutually exclusive and exhaustive states as follows: The engine needs immediate maintenance
(this is the “positive” class or class value 1) or the engine does not need immediate maintenance
(this is the “negative” class or class value 0).

In this hypothetical example an attribute that expresses the noise level of the engine could be
a positive attribute. This is true because the higher the noise level is, the more likely is that the
engine needs immediate maintenance (i.e., it is of the positive class). On the other hand, the number
of miles per gallon of fuel could be a negative attribute as the higher the value of that attribute is,
the less likely is that the engine to need immediate maintenance.

It is important to state here that in some real-life applications, attributes may not be purely
positive or negative. That is, as the value of such attributes increases, it is possible to have certain
levels beyond which the chances to be in one class value versus another, may alternate.

For instance, consider a healthy life-style study where among other attributes one of the at-
tributes is the amount of daily exercise a person may pursue. For simplicity, assume that the class
values are “healthy life-style” (the positive class) and “not healthy life-style” (the negative class).
As the amount of exercise increases, say, from 20 minutes per day to 40 minutes, then to 60 min-

12

utes and so on, the chances that we will be in the positive class increase accordingly. However,
there is some value for this particular attribute where more increase to its value may not lead to
higher chances to be in the positive class. For instance, if one exercises at abusive levels, say 12 or
even 14 hours a day, then that may cause some health related problems. For the previous reasons,
in this study positive and negative attributes are defined in a non-rigorous manner as follows:

Definition 2.16: An attribute with binary values is called a positive attribute if when it has
value 1, then it is more likely for vectors to be in the positive class. Otherwise, it is called a
negative attribute.

Definition 2.17: An attribute with ordinal values is called a positive attribute, if when the values
increase, then it is more likely for vectors to be in the positive class. Otherwise, it is called a
negative attribute.

The following sections will distinguish between positive and negative attributes only. Cases like
the one described above, may lead to situations where datasets are not purely monotonic. As it was
explained earlier, for non-purely monotonic binary datasets one can decompose them into regions
where monotonicity holds locally. Obviously, a dataset with lots of such regions is less overall
non-purely monotonic than a dataset with just a few such regions. How this factor and other ones

related to monotonicity may impact the learnability of datasets is studied in the following sections.

2.4.1 Identifying the Positive and Negative Attributes

From the previous discussion it follows that there are alternative ways to define what is positive
and negative attributes. Thus, there are alternative ways to quantify the way how to determine such
attributes. In this study the following approach is used.

Each pair of positive-negative vectors is considered. For each attribute 7, let N, ; indicate the
number of times attribute i in the positive vectors is greater than the same attribute i in the negative
vectors when all pairs are considered. Similarly, let N, ; indicate the number of times attribute 7 in
the negative vectors is greater than the same attribute i in the positive vectors. Then, if Ny, ; > N, ;,

the attribute 7 is assumed to be a positive attribute. If N, ; < N, ;, it is assumed to be a negative

13

attribute. Finally, if Nj,; = N, ;, then attribute i is designated as either positive or negative with
probability 50%. One may observe here that as more training data are added to a given dataset, the

groups of positive and negative attributes may change.

2.4.2 Comparing Vectors with Both Positive and Negative Attributes

Once the positive and the negative attributes have been determined, two n-dimensional vectors V
and W (with binary and/or ordinal attributes) can be defined as follows: V = ((vy1,vp2,Vp3, ..., Vpr)s
(Va1 Vi2yVi3s - oy Viy))s and W =((Wp1, Wpo, Wp3, oo Wpx), (Wits Wi2, Wi3, - . ., Wpy)), Where n = x+y.
The elements v,,; and w),; indicate the positive attributes of the vectors V and W, respectively, while
vgj and wy; indicate the negative attributes of them. In light of this enhancement, the previous
definitions of vectors defined on only positive attributes can be expanded accordingly.

In the new setting a vector V is said to be greater than or equal to (i.e., it precedes) vector W
(denoted as V = W) iff v,; > wy;, for i = 1,2,3,...,x, and v,; < wy;, fori=1,2,3,...,y. In this
case one may also say that vector W is less than or equal to (i.e., it follows) vector V (denoted
as W X V). As before, when any of these two ordering relationships can be defined between two
vectors, we say that such vectors are related. Otherwise, they are called unrelated. Please note
that now the symbols >~ and =< are used instead of the previous > and < symbols, respectively.

For any pair of vectors V and W defined as above, if either their positive groups or negative
groups are unrelated, then the vectors V and W are unrelated too. Furthermore, the vectors V and
W are unrelated when they have different number of attributes in either their positive or negative
group. It should also be noted here that if both the positive and negative groups of vector V are at
the same time greater than or smaller than those of vector W, then the vectors V and W are still
unrelated.

For some illustrative examples of the above, consider the four binary vectors defined as follows:
V =((010), (111)), W =((110), (011)), P = ((100), (010)) and Q = ((011), (110)). Then according
to the previous definitions, it follows that W =V and Q > V. All other pairs are comprised of

unrelated vectors.

14

oo | Layer 4

FIGURE 2.3: The complete poset when n=4, x=2, and y=2.

2.5 Graphical Representation for Datasets With Positive and
Negative Attributes

As was the case with binary data that have only positive attributes, the enhanced type of binary
data which are defined on both positive and negative binary attributes can be represented graph-
ically in terms of posets as well. Figure 2.3 depicts the poset for the complete 4-attribute binary
dataset which has two positive attributes and two negative attributes. It is an illustrative example of
constructing a poset for such kind of 4-attribute binary dataset. Any 4-attribute binary dataset with
two positive and two negative attributes can be defined in this format, but with less than 16 mem-
bers is a subset of the one displayed in Figure 2.3. Then, such a binary dataset can be graphically
represented accordingly, and this idea can be expanded to display any dataset (i.e., not only binary)
with ordinal attributes in two dimensions, provided that the number of vectors is manageable.

The earlier definitions of lower units, upper zeros, border points of purely monotonic datasets
still hold as long one defines the ordering relations between pairs of vectors in terms of the two
groups of positive and negative attributes. Table 2.3 presents a simple 5-dimensional dataset with
purely monotonic data which is defined on three positive attributes and two negative attributes.
The same data are also depicted in Figure 2.4 in terms of a poset, and along with the corresponding
lower unit and upper zero vectors.

Finally, Table 2.4 presents a dataset which is not purely monotonic and it is defined on three pos-
itive attributes and two negative attributes. The corresponding poset representation and a graphical

depiction of its lower units and upper zeros are given in Figure 2.5.

15

TABLE 2.3: An example of a purely monotonic binary training dataset when positive/negative at-
tributes are taken into consideration.

Positive vectors | ((111),(00)), ((111),(01)), ((111),(10)), ((110),(10)), ((111),(11))
((011),(10)), ((O11),(11))

Negative vectors | ((101),(00)), ((101),(01)), ((100),(00)), ((010),(10)), ((100),(01))
((001),(01)), ((000),(10)), ((100),(11)), ((001),(11))

I
<

(111, (00)

—

[aw.a | | am.an | [[em.a0]
4

(1o1), (OID (IOE(UT]D gy
[—

= — —— Upper zeros

Co.an D Cam.on > Com.on H o~
" v gﬁﬁ @0,10 ¢ on.en D¢ 100,00

G&m),(lgD QGUJ, (113) (0011(11_;) ~— >\‘)

s = i_
Cn.an > @m}_ on > oo, oy D
L S

Cmvw> Coman>

FIGURE 2.4: The poset for the dataset listed in Table 2.3 and its border points.

---»_ (101), (00)

TABLE 2.4: An example of a non-purely monotonic binary training dataset when positive/negative
attributes are taken into consideration.

Positive vectors | ((111),(00)), ((111),(10)), ((110),(10)), ((101),(00)), ((010),(10))
((000),(10)), ((111),(A 1)), ((O11),(A 1)), ((101),(01))

Negative vectors | ((111),(01)), ((100),(00)), ((011),(10)), ((001),(10)), ((100),(01))
((100),(11)), (C001),(01)), (CO01),(1 1))

(111). (00) (111, @) (ou) a0
'b
100), (0
aiy, 10y (10‘1). (00) (100), 1 C‘?OU a9 >
<111J ov > [w.ao | } :
— (1109, (10) \
(110). (10) (111)1) oy (100), 00) Extended I its Fre a d upper
I > Gml.lpl ’,Xr oerm Group2 -7+
— ‘,'— "“
010), (10) @D.aD | ¢ qon. o1 001), (01 (001). (10)
[0. a0 | (o0)(ﬁ). (01) > m (m} m) (wl) on (100). (01) (001), (01)
+ 4
[©00). 0y] o) ¢ (11‘"\ (001), (1) —— ———
< < :) (000) (10) ol1), (11) QE?)(_UD <<931_3-21D
Group 3 Group 4

FIGURE 2.5: The poset for the dataset listed in Table 2.4 and its border points.

16

By following the approach described above, the dataset listed in Table 2.4 can be divided into
four sub-groups, as shown in Figure 2.5. Based on these sub-groups, the extended lower units are
{((110),(10)), ((101),(00)), ((000),(10)), ((011),(11)), ((101),(01))}, and the extended upper zeros

are {((111),(01)), ((100),(00), ((011),(10)), ((100),(01)), ((001),(01))}.

2.6 Types of Pairs of Vectors

The previous sections formally introduced some key relationships between any two vectors by
mostly ignoring their class values. That is, two vectors are either related to each other or are unre-
lated. This section discusses how two vectors can be related by also considering their class values.

Let us assume that each vector in a dataset is classified to be either positive or negative. By
considering such class values, there are five possible relationships between the two vectors in any
pair of such vectors. These relationships are: a positive vector V precedes another positive vector
W a positive vector V precedes a negative vector W; a negative vector V precedes a positive vector
W a negative vector V precedes a negative vector W; or the vectors V and W are unrelated.

For any pair of vectors V and W, if the vectors are related and they have the same class value,
they are said to comprise a pair which is in agreement with the monotonic property, or an AMP
pair. In the situation when a negative vector V precedes a positive vector W (i.e., V = W), the pair
comprised in this order is in conflict with the monotonic property (or it is a CMP pair).

For a pair of vectors V and W where a positive vector V precedes a negative vector W, their class
values do no conflict with the monotonic property. This indicates that if one has V > W and knows
that vector V has been classified as positive, then the vector W can be either positive or negative
without conflicting with the monotonic property. A similar observation follows if V = W and the
vector W has been classified as negative. Then the vector V can be either positive or negative.

Given the above discussion, from now on two monotonically related vectors V and W of the same
class value will be said to comprise a pair which is in agreement with the monotonic property of
type 1, or an AMP1 pair. For another pair of vectors V and W, where V = W and the class value

of V is positive while the class value of W is negative, it is called a pair in agreement with the
17

monotonic property of type 2, or an AMP2 pair. If the vectors V and W are unrelated, then the class
value of one vector has no effect on that of the other. In this case, they comprise a monotonically
neutral pair (or an MNP pair). As it is shown in the experimental section, these types of pairs of
vectors play a crucial role in determining how easily a dataset can be accurately analyzed by a
large spectrum of classifiers.

More formally, suppose that given are two distinct vectors V and W defined on n attributes
(binary or ordinal in general) and have the same positive and negative attributes. It is also assumed
that there are only two classes; the positive and the negative. Next, all the possibilities of the
relative relations between any two vectors V and W and their class values are formally introduced
as follows:

Definition 2.18: Two numeric vectors V. and W, where V. = W, constitute a pair which is in
agreement with the monotonic property of type 1, denoted as an AMPI pair, iff they have the same
class value.

Definition 2.19: Two numeric vectors V. and W, where V. = W, constitute a pair which is in
agreement with the monotonic property of type 2, denoted as an AMP2 pair, iff the class of vector
V' is positive while the class of vector W is negative.

Definition 2.20: Two numeric vectors V. and W, where V. = W, constitute a pair which is in
conflict with the monotonic property, denoted as a CMP pair, iff the class value of V is negative,
while the class value of vector W is positive.

Definition 2.21: Two numeric vectors V and W form a monotonically neutral pair, denoted as
an MNP pair, iff they are unrelated.

Figure 2.6 depicts a collection of positive and a collection of negative training examples when n
=4, x =2, and y = 2. This training dataset is comprised of four positive vectors (denoted with
squared shapes) and three negative ones (denoted with oval shapes), and it is a subset of the
dataset decipted in Figure 2.3. Then, according to the definitions given above, some examples

of AMP1 (ordered) pairs are as follows:{((11),(00)), ((11),(01))}, {((11),(00)), ((11),(10))} and

18

((00), (00)) (10), (10) | ((02), (10) (1), (11))
((00), (20)) (D), (02) ((02), (12))

((00), (12))

FIGURE 2.6: Some examples of different types of monotonically related pairs.

{((10),(00)), ((10,(01))}. Some examples of AMP2 (ordered) pairs are {((11),(01)), ((10),(01))}
and {((11),(00)), ((10),(00))}. The only example of a CMP (ordered) pair is {((10),(00)), ((10),(10))}.
Some examples of MNP pairs are {((11),(10)), ((10),(01))} and {((10),(00)), ((11),(01))}.

19

Chapter 3

The Experimental Design for Binary Datasets

This section explores the roles of some potentially important characteristics of numeric datasets,
which could be used to predict how difficult it is to analyze a given dataset accurately. As it was
stated earlier, the main research hypothesis is that such difficulty is primarily related to the mono-
tonic characteristics of a dataset, even if monotonicity occurs partially (i.e., when there are CMP

pairs in the datasets).

3.1 Design Issues of Experiments with Some Artificial Binary
Datasets

The binary datasets used in this set of experiments were created in different sizes with the value
of n (dimensions) ranging from 6 to 60. In each individual experiment, the training data and the
testing data are binary datasets with the same number of dimensions (attributes).

As it was stated earlier, this study defines the “difficulty” or learnability of a dataset as how dif-
ficult it is to be accurately classified. This is indicated by the average accuracy when it is analyzed
by multiple classifiers. The lower the value, the more difficult it is. Moreover, it is assumed that
the false positive and the false negative errors are of the same penalty cost. The purpose of the
experiments is to generate accurate regression models, which use the monotonic characteristics of
the training datasets as the independent variables to formulate their difficulties.

In order to do that, a group of artificial binary datasets were studied in this family of experiments.
This group was comprised of “easy” datasets, “difficult” datasets, and datasets with intermediate
degrees of difficulty. Four kinds of binary datasets were therefore generated with different mono-

tonic characteristics as follows:

1. Random datasets. Such datasets contain vectors with randomly assigned class values. In

general, they are expected to have intermediate degrees of difficulty.
20

2. Datasets without CMP pairs. They are expected to be easy to classify accurately.

3. Datasets which have lots of CMP pairs. This is the opposite case to the one described above.

Such datasets are expected to be difficult to classify accurately.

4. Pairs of datasets which have exactly the same border points but have very different numbers
of AMPI pairs. It is expected that the ones with more AMP1 pairs are easier to classify

accurately.

3.2 Generating the Binary Experimental Datasets
3.2.1 Generating Random Datasets

The random datasets were generated in a straightforward way. Given are the number of attributes
n and the number of selections K. Next, K vectors were selected with replacement with equal
probability (i.e., equal to 1/2""). Any duplicate vectors were deleted to make sure that each vector
appears only once in the generated dataset. The number of distinct vectors among the K ones is
denoted as N (i.e., K > N). After that, every vector was assigned to class values 1 or O (for positive
or negative, respectively) with probability equal to 0.50. The positive/negative attributes of these
datasets are unknown, but they can be later determined by the way described in Section 2.4.1. It
should be stated here that in this way datasets may not be generated completely randomly as some

bias may be present [42].

3.2.2 Generating Datasets Which do not Contain Any CMP Pairs

In order to generate such datasets, one should first decide on the numbers of positive attributes (x)
and negative attributes (y), such that x +y = n and x,y > 0. The vectors in these datasets have n
attributes while the first x attributes are considered as positive, and the next y attributes as negative.

After that, a complete (i.e, one of size 2") n-attribute binary dataset is represented as a 2-D
poset, and it is divided into three groups: the positive group, the negative group and the unlabeled
group. This is done by determining the values of K1, K> and K3, such that K; + K> + K3 =n+ 1 and

K1,K>,K3 > 0. The top K layers comprise the positive group; the vectors located in these layers

21

are labeled as positive. The bottom K3 layers comprise the negative group; all the vectors located
in these layers are labeled as negative. The vectors located in the middle layers are unlabeled.

The following describes how to generate an n-attribute binary dataset with N vectors for given
K1,K>,K3,x, and y values. It makes sense that by increasing the value of K| and decreasing the

value of K3, there should be more positive vectors in the generated dataset, and vice versa.

1. Create a complete n-attribute binary dataset D. This dataset should contain 2" different binary

vectors.

2. Randomly select a vector V from D without replacement. Determine the layer i in which it
is located by using i = x — P; +y — P>, where P; is the number of the positive attributes in
V that are set to value “1” and P, is the number of the negative attributes in V that are set to

value “0”, then do the following:

(a) If i <Kj, itis a positive vector.
(b) If i > K1 + K>, it is a negative vector.

(c) If K; < i < Kj+ K>, then it can be randomly assigned to either the positive or the neg-
ative class with probability equal to 0.50. However, one needs to check if this vector
violates monotonicity. For example, if at first a vector is randomly assigned to the neg-
ative class, and it precedes some positive vectors generated during previous iterations,

then it should be changed to positive to maintain monotonicity.

3. Repeat Step 2) N times to generate N distinct vectors.
3.2.3 Generating Datasets Which Contain Many CMP Pairs
This case is the opposite of the previous one. The challenge is, given the same parameters n,x,y,
and N as defined in the previous section, how to assign the class values to these N binary vectors
such that the generated dataset has the maximum (or at least a very high) number of CMP pairs?
Please recall that two monotonically related positive-negative vectors comprise either an AMP2

pair or a CMP pair. However, according to the way one constructs the 2-D poset, the number of
22

AMP?2 pairs should be always larger than that of the CMP pairs. Therefore, the number of CMP
pairs should be just less than the number of AMP pairs.

One solution to achieve this goal is to first consider the complete n-attribute binary dataset in
its 2-D poset, and label the vectors according to the layers they belong to. More specifically, the
vectors in the same layer have the same class value, and their class values are different than those
of vectors located at adjacent layers. That is, the top layer, which is comprised of the single vector
that has all positive attributes set to “1” and all negative attributes set to “0”, is assigned to the
positive class. The second layer is assigned to negative, the third layer to positive, the fourth layer
to negative, and so on.

Some experiments were performed to evaluate this method, and Table 3.1 shows some of the
experimental results. One can observe from this table that by applying this method, an n-attribute
complete binary dataset can have a very similar number of AMP2 and CMP pairs.

Therefore, by using given values for n, x and y, the aim is to have a random dataset with N
vectors (where N < 2") such that it has a very large (but not necessarily the maximum) number of
CMP pairs. A way to achieve this goal is to first consider the complete case (that is, the case with
all 2" vectors). Next, each vector is assigned to a class value in the way mentioned above. Finally,
randomly select N distinct vectors from this complete set. This is how the third group of datasets
were generated for this computational study.

It should be stated here that depending on different selections of vectors, an attribute may be
recognized as a positive one in some derived datasets, but be considered as a negative one in some

other derived datasets, according to the way described in Section 2.4.1.

3.2.4 Generating Datasets Which Have the Same Border Points but Very
Different Monotonic Characteristics

The fourth group of datasets studies the roles CMP and AMP1 pairs play in the learnability of
datasets. This group of datasets considered triplets of datasets as follows. First, a dataset was

generated randomly as described in Section 3.2.1. Such a dataset may or may not have CMP pairs.

23

TABLE 3.1: The number of AMP2 and CMP pairs in the complete n-attribute binary datasets that
are generated by the approach dessribed in Section 3.2.3.

Number of Attributes | Number of AMP2 pairs | Number of CMP pairs | Ratio
n=>5 61 60 1.017
n=6 182 182 =1
n=10 14,762 14,762 =1
n=15 3,587,227 3,587,226 ~1
n=20 871,696,100 871,696,100 =1
n=25 2.118 x 101! 2.118 x 10! =1
n=30 5.147 x 1053 5.147 x 1053 =1
n=40 3.039 x10'8 3.039 x10'8 =1
n=50 1.794 x10%° 1.794 x 1073 =1
n=60 1.060 x10°® 1.060 x10°8 =1

Based on this dataset, two extreme cases are introduced. The first extreme case is to build a dataset
which has the same (extended) border points, the same number of positive and negative vectors
but has the highest possible number of AMP1 pairs. This is denoted as Type I extreme case. The
second extreme case is similar to the first one but the interest now is to build a dataset with the
smallest possible number of AMP1 pairs. This is denoted as Type II extreme case.

Suppose a given dataset is defined on n binary attributes with x positive attributes and y negative
attributes, it has Ny positive vectors, NV, negative vectors, and the sizes of the LU and UZ sets are
equal to S1 and S, respectively. First, let us assume that it contains no CMP pairs, and its border
points (i.e., all the LU and UZ vectors) can therefore be determined by using Algorithm 1. Based
on this information, two datasets are generated in order to represent the previous two extreme cases
as far as the number of AMP1 pairs is concerned.

To begin with, one needs to first remove all the vectors from the dataset except the border points,
and the same number of vectors will be regenerated to be covered by these border points. For the
case of the LUs, a vector is said to be “covered” by a lower unit if and only if it precedes this lower
unit. For the case of the UZs, a vector is said to be “covered” by an upper zero if and only if it

follows this upper zero. For instance, if the vector ((010), (11)) is an LU, then it covers the vector

((110), (11)).

24

Algorithm 3: Generate an extreme case for a purely monotonic dataset D.
Input : A purely monotonic dataset D.
Output: D_Extreme. /* The extreme case of D */
Pos < ¢, Neg <— ¢, D_Extreme <— ¢, LU < Lower units of D, UZ<—Upper zeros of D;
N1 <= Number of positive vectors in D, N, <— Number of negative vectors in D;
S1 < Number of vectors in LU, S, < Number of vectors in UZ;
n<— Number of attributes in D; E" <— Complete n-attribute binary dataset;
for Every vector V € E" except the LU and UZ do

if V is covered by some members in LU then
‘ Pos <+ Pos UV,

end

if V is covered by some members in UZ then
‘ Neg <— NegUV;,

end

o X AN R W N =

[
=]

—
o

end

Sort the vectors in Pos in descending order by the number of LU members each vector is

covered;

14 D_Extreme <D _Extreme U {The first N| — S} vectors in Pos} U LU,

15 Sort the vectors in Neg in descending order by the number of UZ members each vector is
covered;

16 D_Extreme < D_Extreme U {The first N, — S, vectors in Neg} U UZ;

17 Return D_Extreme ; /* This is for Type I extreme case. */

o
[]

Every vector except the border points in E” (i.e., the binary space of dimension n) is examined
to see by how many LUs it is covered. Next,these vectors are ranked in descending order. Finally,
the top N1 — S vectors together with the LUs, are introduced as the new positive vectors.

The negative examples are obtained in an analogous manner. All the vectors except the border
points in E" are ranked in descending order by how many UZs they are covered by. The top
N> — 8> vectors and all the UZs are introduced as the new negative examples. This is how the Type
I extreme case is generated from a random dataset which has no CMP pairs. This new dataset has
many AMP1 pairs because of the way the new positive and negative points are determined.

The Type II extreme case of a given dataset with no CMP pairs can be derived in a similar
manner as the previous one. However, in this case the vectors are organized in ascending order by
how many border points they are covered by. Now this dataset has positive and negative vectors

which are covered by the least number of border points in the LU and UZ sets. This is how two new

25

Algorithm 4: Generate an extreme case for a dataset D which has some CMP pairs.
Input : A dataset D.
Output: D_Extreme. /* The extreme case of D, which now has some CMP pairs */
CMP Vectors <— 0,Monotonic Vectors < ¢,
for Every vector V; € D do
if V; is found in CMP pairs then
‘ CMP _Vectors < CMP _Vectors UV;;
end
end
Monotonic_Vectors < D — CMP Vectors,
Use Algorithm 3 (choose different sorting orders to get different extreme types) to derive a
dataset Dy from Monotonic_Vectors;
9o D_Extreme < CMP_Vectors U Dy;
10 Return D_Extreme ;

X TN R W N =

datasets are derived from a single random dataset without CMP pairs. The previous two approaches
are summarized as Algorithms 3. In this algorithm, if one sorts out the vectors in descending order
(as 1s currently shown in Algorithms 3), then the Type I extreme case dataset will be derived as
dataset D,y reme. If however, the vectors are sorted out instead in ascending order, then the dataset
Dxireme Will represent the Type II extreme case of the the original dataset D.

Next, let us assume that a given dataset D contains some CMP pairs. By removing all its vec-
tors that are observed in the CMP pairs, it becomes a dataset with less number of observations
and which has no CMP pairs. This is exactly the same type of dataset discussed in the previous
case. Thus, from this reduced dataset one can derive two new datasets by implementing Algo-
rithm 3 (with different sorting orders). The new generated datasets, together with the vectors that

were removed earlier, form the two extreme cases of the dataset D. This approach is described as

Algorithm 4.

3.3 C(lassifiers from WEKA

The classifiers used in these experiments are: a decision tree (J48) [6], a Bayes network [12], a
naive Bayes [29], a logistic regression [18], an RBF network [25], a Kstar [27], an LWL [10],

an LBK [10], an AdaBoost [21], a Multi-Boost [8], a VFI (Voting Feature Intervals) [15], an

26

ADTree (Alternating Decision Trees) [20], a BFTree (Best First Tree) [34], a random Forest [4],
and SMO [39].

In the experiments, WEKA [46] was implemented as the classification tool. It was used to imple-
ment the previous set of classifiers, the parameters of these classifiers are kept at default values as
set by WEKA. The experiments used a 10-fold cross validation approach in order to decrease vari-
ance. Moreover, each dataset was analyzed by all the classifiers, and the accuracies of the inferred
models were recorded. The average accuracy of these models was used as a measure to express

their difficulty in learning (i.e., their learnability value).

27

Chapter 4

The Experimental Study

4.1 Parameters Used to Describe the Monotone Structure of a
Dataset

In order to further explore the relationships between the monotonic characteristics of the datasets
and their difficulties, linear regression models were generated using these characteristics as the
independent variables, and the difficulties of the datasets as the dependent value.

As discussed above, the difficulty of a dataset can be derived as the average accuracy when it is
classified by the classifiers listed in Section 3.3. Moreover, the monotonic characteristics described
in Table 4.1 were considered to be strong indicators of the datasets difficulty. In this study, the
monotonic characteristics Py to Ps were used as the independent (explanatory) variables to build
the models. The reason why P; is excluded is because P; = 1 — P, — Ps.

The effectiveness of the chosen monotonic characteristics is in part indicated in Figure 4.1. This
figure shows some experimental results performed on binary datasets which have 8 attributes, and
each of them contains between 120 and 190 vectors. As can be observed in this figure, it seems
that with an increasing number of CMP pairs, the difficulty of accurately analyzing datasets also
increases. It also shows that when more unique vectors are observed in CMP pairs, the average
accuracy of the derived classification models is going down. Furthermore, given two datasets, the
one with more extended border points seems to be more difficult to accurately classify.

At this point one may question what happens if a function is used to transform the data in
a different form and possibly dimensionality. This happens, for instance, when kernel functions
are used in classification [2, 33]. If the data transformations used can change the ordering (e.g.,
greater than or equal than) between pairs of vectors, then the values of the six key parameters

denoted as Pj, P»,...,Ps may change as well. Depending on the way these six parameters change,

28

TABLE 4.1: The seven monotonic characteristics of the numeric datasets.

p, = Numberof unique vectors found in CMP pairs The ratio of the unique vectors
= Number of all vectors in the training dataset that appear in the CMP pairs.
p = Number of CMP pairs The ratio of all possible pairs
2 = Number of all possible pairs that are CMP pairs.
P = Number of CMP pairs The ratio of the positive-negative
3= Number of all possible positive-negative pairs pairs that are CMP pairs.
P = Number of extended border points The ratio of the vectors that are
4 = Number of vectors in the training dataset extended border points.
P = Number of all AMP1 pairs The ratio of all possible pairs
5= Number of all possible pairs that are AMP1 pairs.
P = Number of monotonically related pairs of vectors The ratio of the pairs that are
6 Number of all possible pairs monotonically related.
P = Number of all AMP2 pairs The ratio of all possible pairs that
7= Number of all possible pairs are AMP2 pairs.
100.00% 100.00%
5 oo 2 man
!é 70.00% m g 70.00% j
S 6000% * g so00%
?.9 50.00% e ;",; 50.00% . .
g oo 8 Feo
< 2000% :i 20.00%
> 1000% > 10.00%
0.00%
a 01 0z 03 0.4 0.5 0.6 a7 08 09 1 0% a 005 01 015 02 0325
X:parameter P1 X:parameter P2
120.00% 100.00%
g 100.00% ‘ § :E'EE: I I* 2
& el B T
g’ﬂ 60.00% g’D 50.00%
ke 5 o "ol
; 20.00% i 20.00%

0.00%

X:parameter P3

10.00%
0.00%

a 01 0.z 0.3 o4 Qs 06 0.7 os a9

X:parameter P4

1

FIGURE 4.1: Relationships between average accuracy and some monotonic features for binary
datasets when n = 8. They may have different positive/negative attributes.

the transformed dataset may become easier or more difficult to be analyzed. However, if the data

transformation cannot affect the ordering of pairs of vectors (and assuming the class values are

not affected either), then the learnabilities of the original and transformed datasets will remain

identical.

The experiments were performed as follows. First a list of n-attribute numeric datasets were

collected as the experimental datasets. Their vectors had been classified as either “postive” or

29

“negative.” Furthermore, they should present various levels of difficulties, that is, some of the
datasets can be classified with high accuracies, while some others should be classified with low
accuracies.

Next, the collected experimental datasets were split into two groups as the training and the
testing data. Each dataset in the training group was analyzed in two aspects. First it was analyzed by
the classifiers mentioned in Section 3.3. The average of the classification accuracies was recorded
as its level of difficulty in learning (i.e., its learnability value). Next, its monotonic characteristics
were calculated by using the formulas listed in Table 4.1.

After that, a group of linear regression models were generated using the PROC REG function in
SAS [37]. The quality of the models was evaluated by their R-Square values and their performance.
The models with higher R-Square values are usually more accurate in predicting the difficulty of
the testing datasets. The performance of the models can be assessed as follows. First the monotonic
characteristics of the testing datasets and their difficulties were calculated in the same way as that
of the training datasets. Next, such monotonic characteristics were used in the generated regression
models to predict the difficulties of the corresponding testing datasets. The difference between the
predicted difficulties and the real difficulties are what is of interest. If the deviations were small, a
regression model was believed to be an accurate one. Therefore, the mean of the deviations is an
important evaluator as well.

Furthermore, the variance of the deviations is another issue. Two regression models A and B may
have similar means of deviations. However, the deviations produced by model A may have a large
variance while the ones produced by model B are more stable. That is, model A may make some
predictions very accurately but be very inacurate in some other predictions. Meanwhile, model B
does all the predictions with similar deviations. In such cases one would prefer model B since it
has less risk of generating meaningless predictions (i.e., predictions that are very different from the
actual values). Therefore, in this study, the deviations were analyzed by their mean and their 95%

confidence intervals.

30

The next two sections provide the details of the experiments performed on some binary and
continuous numeric datasets, respectively. The experimental results would be provided together

with the analysis.

4.2 Experiments with Binary Datasets
4.2.1 Experiments on Artificial Binary Datasets

The monotonic characteristics of the datasets are the monotonic relationships between its pairs of
vectors. If a dataset has too few pairs of vectors that are monotonically related, then the values of
its monotonic characteristics P; to Pg will all be close to 0, and therefore no useful information can
be provided when generating regression models.

Therefore, the immediate problem is, what is the precondition under which the proposed ap-
proach can generate accurate regression models? A set of experiments were designed to explore
this issue. The experimental datasets used in this set of experiments are some artificial binary
datasets with dimensions n = 10, 14, 18 and 22. Each dataset had from 400 to 1,500 vectors and
each vector was labeled as either “positive” or “negative.”

At the beginning, the experimental datasets were categorized by their dimensions, four groups of
datasets were therefore generated. Furthermore, the datasets in each group were further split into
several experimental groups by their monotonic characteristic Py (the ratios of the pairs that are
monotonically related), and each experimental group had around 300 datasets. A list of regression
models were generated from these experimental groups, and their R-Square values are what is of
interest. Figure 4.2 shows some of the experimental results.

As one can observe from this figure, the R-Square values of the models were consistently above
0.92 when the experimental datasets have more than 6% pairs of vectors that are monotonically
related. In other words, it seems that under this simple condition the quality of the models can be
somehow ensured. Therefore, this study only focuses on numeric datasets that have more than 6%

monotonically related pairs.

31

085

05

0.85 -

08

075 +

07

0.65 -

06 -

095

09

0.85

08

075 +

0.7

065

06 -

(b) n=14

095

085

0o - 08

0.85
085
08
075
075 +
07

0.65

06

I, e T I i
WA L LU & A LN L S
S L e;'ﬁ'\' i
)] n=18 () n=22
¥ Axis: The value of PB in the datasats, Y Axis: The R-Sguare values of the models generated in different subsets,

FIGURE 4.2: The R-Square values of the models generated from artificial binary datasets with
different dimensions.

The above four groups of datasets for n=10, 14, 18 and 22 served as pilot tests. Next, artificial
datasets were generated according to the procedures described in Section 3.2. Now the dimensions
ranged from 8 to 60. In these experiments, the datasets were grouped by their dimensions, and each
group contained about 450 datasets, where 350 of them were randomly selected for training and
the remaining 100 were used for testing. Furthermore, according to the way they were generated,
the difficulty of these datasets would also vary significantly. The quality of the regression models
would be evaluated by their R-Square values and also their performance in predicting the difficul-
ties of the testing datasets. Tables 4.2 and 4.3 list some experimental results on these datasets.

As one can observe from this table, when there are sufficient number of vectors that are mono-
tonically related in a dataset, the difficulty of this dataset can be accurately predicted by analyzing

its monotonic characteristics. The R-Square values for all the models listed in this table are greater

32

TABLE 4.2: The regression models generated for different dimensions of artificial binary datasets.

Dimensions

Regression models

N=38

Y =0.532 + 9.345xP1 - 22.55xP2 - 0.312xP3 - 0.236 xP4 + 1.734 xP5 + 0.209 xP6

N=10

Y =0.737 + 10.19xP1 - 44.48xP2 - 0.103xP3 - 0.260xP4 + 1.104xP5 - 0.013 xP6

N=13

Y =0.891 + 10.43 xP1 - 41.27xP2 - 0.387xP3 - 0.330xP4 + 0.307xP5 + 0.151 xP6

N=17

Y =0.746 + 14.42xP1 - 71.86 XP2 - 0.189xP3 - 0.253xP4 + 0.019xP5 + 0.628 xP6

N= 20

Y =0.686 + 26.76xP1 - 87.84xP2 - 0.126 xP3 - 0.118xP4 - 1.017xP5 + 0.879 xP6

N=25

Y =0.857 +26.78xP1 - 56.75xP2 - 0.092xP3 - 0.384xP4 + 1.147xP5 - 0.201 xP6

N=30

Y =0.789 + 18.16 xP1 - 46.25xP2 - 0.170xP3 - 0.216 xP4 + 0.084 xP5 + 0.133 xP6

N=35

Y =0.746 + 11.64 xP1 - 71.38xP2 - 0.189xP3 - 0.253 xP4 + 0.019xP5 + 0.628 xP6

N=40

Y =0.686 + 23.86xP1 - 78.85xP2 - 0.126 xP3 - 0.118xP4 - 1.017xP5 + 0.879 xP6

N=45

Y =0.857 + 22.35xP1 - 69.11 xP2 - 0.092xP3 - 0.384xP4 + 1.147xP5 - 0.201 xP6

N=50

Y =0.789 + 18.03xP1 - 76.25xP2 - 0.164xP3 - 0.216xP4 + 0.084 xP5 + 0.133xP6

N=60

Y =0.789 + 16.63xP1 - 59.64xP2 - 0.170xP3 - 0.143 xP4 - 0.043xP5 + 0.167 xP6

TABLE 4.3: Details of the regression models listed in Table 4.2.

Dimension

95% confidence
intervals of

Mean of
the

Difficulties
of the training

Number of vectors
in each experimental

R-Square
value of

dataset

datasets

the models

deviation|

the deviations

n=38

120 to 190

53.85% to0 96.73%

0.986

1.806%

1.565% to 2.047%

n=10

400 to 600

52.66% to 93.97%

0.928

2.513%

1.710% to 2.118%

n=13

800 to 1,200

55.87% to 91.57%

0.937

2.415%

1.732% to 2.937%

n=17

1,200 to 1,600

56.83% to 93.66%

0.927

2.208%

1.833% to 2.583%

n=20

1,200 to 1,600

53.12% to 96.78%

0.943

2.376%

1.973% to 2.779%

n=25

1,200 to 1,600

54.51% to 95.33%

0.928

2.632%

2.136% to 3.128%

n=30

1,200 to 1,600

56.78% to 96.46%

0.942

2.517%

1.968% to 3.055%

n=35

1,200 to 1,600

56.37% to 93.60%

0.925

2.226%

1.879% to 2.573%

n=40

1,200 to 1,600

57.47% to 93.27%

0.932

2.562%

2.086% to 3.308%

n=45

1,200 to 1,600

55.87% to0 95.96%

0.937

2.396%

1.832% to 2.960%

n=50

1,200 to 1,600

55.29% to 94.45%

0.939

2.452%

1.973% to 2.931%

n=60

1,200 to 1,600

53.58% to 93.32%

0.942

2.523%

2.074% to 3.031%

Average

0.939

2.387%

1.846% to 2.928%

33

than 0.925, and some can be as high as 0.986. Therefore, these models present very strong rela-
tionships between the monotonic characteristics of the training datasets and their difficulties.

The performance of the models are encouraging in predicting the difficulties of the testing
datasets. The mean of all the deviations is 2.387%, and in 95% of the cases, the difference between
the predicted difficulties and the real difficulties is less than 2.928%. This observation indicates
that the generated regression models are very accurate.

In Table 4.3 and consecutive tables some of the classifiers performed quite poorly. This is indi-
cated by the low values of the range of classification difficulties (which can be as low as in the 50s
percentage points). However, the inferred regression models could predict low or high accuracies
(e.g., learnability levels) of the classifiers used quite accurately as indicated by the high R-Square
values of these regression models. For stability reasons we dropped the top two best and bottom
two worse classification accuracy values in order to block out any outlier behaviors by some of the
classifiers used in this study.

A related question at this point is which classifiers to include and which not to include. This
question cannot be answered in a generally accepted manner. This study included a wide range of
well-known classifiers from Weka. One may always argue why a given classifier was included or
not included in this group. In the future new significantly accurate classifiers may be introduced.
In that case, one may include them in a similar study. This point reveals that there is a need to have
a “representative” group of classifiers that could be used to standardize the quantification of the
proposed learnability metric.

In traditional applications, in order to evaluate how difficult it is to accurately classify an n-
attribute binary dataset, such a dataset has to be analyzed by a set of classifiers. The times spent for
each classification are different depending on the classification algorithms. For some algorithms,
such as the Decision Tree (J48) and the Bayes Analyze, the classification can be done quickly.
However, if one uses SVM or KStart algorithms, they usually need long processing time. Further-

more, in order to reduce the variance, one may need to implement the 10 or 20 cross-validation

34

scheme, which makes the analysis time even longer. Therefore, it is quite time consuming to get
the actual average accuracy from a set of classifiers. However, by analyzing the monotonic charac-
teristics, one can easily predict the difficulty of such datasets accurately. It only takes O(N?) time
to get all the monotonic characteristics and not much time to use the appropriate regression model,

where N is the number of the observations in the dataset.

4.2.2 Experiments on Some Real-Life Binary Datasets

In order to further validate the effectiveness of the models, this section uses the same approach to
analyze the difficulties of some real-life binary datasets. These are: the Spect [44], the Adult, the
Mushrooms, the Wla, and the Covtype [31] datasets.

The experimental datasets in this section were generated as follows. The Spect dataset has 22
binary attributes and about 17% of its pairs of vectors are monotonically related. In this set of
experiments, 200 experimental datasets were generated by randomly selecting various subsets of
vectors from Spect. Moreover, there are 123 binary attributes in the Adult dataset and it has about
32,000 vectors. In this study, three groups of subsets were generated from this dataset as additional
experimental datasets. To be more specific, the datasets in the first group contain only 20-attribute
vectors, the datasets in the second and the third groups have 40 and 60 attributes, respectively. They
are denoted as experimental groups Adult 20, Adult 40, and Adult_60. Furthermore, in order to
ensure the precondition that all the experimental datasets should have more than 6% monotonically
related pairs, such experimental datasets were generated in the way described in Algorithm 5.

For instance, in generating the Adult 60 experimental datasets, 60 attributes were randomly
selected from the entire 123 ones, all duplicated 60-attribute vectors were removed, and 10 vectors
were randomly selected without replacement. Next, all the remaining 60-attribute vectors were
compared to these 10 vectors, the vectors that are monotonically related to at least one of them
were selected to form a sample space. A total of 6,000 vectors were therefore selected. After that,

500 groups of vectors were randomly selected from the sample space, and each group had about

35

1,200 to 1,600 vectors. The vectors in these groups were labeled in the way described in Section
3.2 to generate 500 experimental datasets with different levels of difficulties.

Furthermore, the Mushrooms dataset has 112 binary attributes and 8,124 vectors, the Wla dataset
has 300 binary attribute and 50,000 vectors, and the Covtype dataset has 38 binary datasets and
580,000 vectors. Algorithm 5 was again applied to each of these datasets, and eight experimen-
tal groups were generated and were named as Mushrooms_20, Mushrooms_40, Mushrooms_60,
Wla 20, Wla 40, Wla_60, Covtype_20 and Covtype _38. The details of such datasets are provided

in Table 4.4, their derived regression models are listed in Table 4.5.

Algorithm S: Generate experimental datasets which have adequate number of monotonically
related pairs
Input : A list of n-attribute vectors Vectors, K, N, and M
Output: M number of n-attribute binary datasets that have many pairs of vectors to be
monotonically related.
1 Sample_Space + 0;
2 Randomly select K vectors from Vectors without replacement, they form a subset called
Initial K.
3 while Sample_Space has less than N vectors and the Vectors is not empty do
4 Randomly select a vector V from Vectors;
5 if V is monotonically related to at least one vector Vi € Initial K then
6 ‘ Sample_Space <— Sample _Space UV
7
8
9

end
end
Generate M binary datasets from Sample_Space in the way described in Section 3.2.
10 Return the generated binary datasets;

Table 4.6 shows the experimental results on these real-life binary datasets. As one can observe
from this table, the monotonic characteristics of the datasets are strong indicators of their diffi-
culties. This is supported by the fact that the average R-Square value of the models is 0.954, and
when such models were used to predict the difficulties of the testing datasets, in about 95% of the
cases, the differences between the predicted difficulties and the real difficulties were no more than

2.345%.

36

TABLE 4.4: The information of the datasets listed in Table 4.5.

Datasets Number of vectors | Number of Difficulties R-Square
in experimental training of the training value of

datasets datasets datasets the models
Spect 140 to 200 150 67.56% to 94.47% 0.964
Adult 20 1,000 to 1,200 400 56.69% to 91.28% 0.958
Adult 40 1,400 to 1,600 400 61.28% t0 92.68% 0.954
Adult_60 1,400 to 1,600 400 60.25% t0 93.47% 0.945
Mushrooms_20 1,000 to 1,200 400 59.47% to 93.54% 0.948
Mushrooms_40 1,400 to 1,600 400 55.71% to 94.75% 0.953
Mushrooms_60 1,400 to 1,600 400 57.88% t0 93.56% 0.929
Wla_ 20 1,000 to 1,200 400 53.58% to 96.87% 0.945
Wla_40 1,400 to 1,600 400 60.59% t0 92.57% 0.977
Wla_60 1,400 to 1,600 400 54.58% to 94.15% 0.951
Covtype_20 1,000 to 1,200 400 57.97% to 95.66% 0.955
Covtype_38 1,400 to 1,600 400 56.12% to 93.86% 0.934
Average 0.954

TABLE 4.5: The regression models generated for some real-life binary datasets.

Datasets Regression models
Spect Y =0.637 + 6.35xP1 - 12.45xP2 - 11.35xP3 - 0.436xP4 + 1.104xP5 + 0.217xP6
Adult 20 Y =0.576 + 4.24xP1 - 15.34xP2 - 10.86xP3 - 0.265xP4 + 1.186 xP5 + 0.331 xP6
Adult 40 Y =0.587 + 8.43xP1 - 17.38xP2 - 11.19xP3 - 0.372xP4 + 1.123 xP5 + 0.356 xP6
Adult_60 Y =0.557 +5.39xP1 - 11.98xP2 - 12.32xP3 - 0.351 xP4 + 1.245xP5 + 0.415xP6
Mushrooms 20 | Y = 0.734 + 9.31xP1 - 25.32xP2 - 17.24xP3 - 0.783 xP4 + 0.897 xP5 + 0.478 xP6

Mushrooms_40

Y =0.786 + 7.32xP1 - 21.44xP2 - 16.98 xP3 - 0.673xP4 + 0.942xP5 + 0.375xP6

Mushrooms_60

Y =0.772 + 6.29xP1 - 27.43xP2 - 17.38 xP3 - 0.683xP4 + 1.106 xP5 + 0.416 xP6

Wla_20 Y =0.685+5.59xP1 - 19.32xP2 - 19.28xP3 - 0.356 xP4 + 1.033xP5 + 0.176 xP6
Wlia 40 Y =0.678 + 7.25xP1 - 18.24xP2 - 18.35xP3 - 0.376 xP4 + 1.105xP5 + 0.156 xP6
Wlia_60 Y =0.691 + 6.67xP1 - 19.11xP2 - 21.31xP3 - 0.386 xP4 + 1.042xP5 + 0.166 xP6
Covtype_20 Y =0.721 + 6.92xP1 - 7.472xP2 - 14.61 xP3 - 0.537xP4 + 1.053xP5 + 0.205xP6
Covtype_38 Y =0.732 + 8.35xP1 - 8.272xP2 - 13.88xP3 - 0.561 xP4 + 0.964 xP5 + 0.198 xP6

37

TABLE 4.6: Experimental results from the real-life binary datasets listed in Table 4.5.

Datasets Number of vectors | Number of | Mean of 95% confidence
in experimental testing the intervals of
datasets datasets deviation the deviations

Spect 140 to 200 50 1.105% | 0.859% to 1.351%
Adult 20 1,000 to 1,200 100 1.828% | 1.496% to 2.160%
Adult 40 1,400 to 1,600 100 2.017% | 1.658% to 2.376%
Adult_60 1,400 to 1,600 100 2.146% | 1.775% to 2.517%
Mushrooms_20 1,000 to 1,200 100 1.745% | 1.451% to 2.039%
Mushrooms_40 1,400 to 1,600 100 2.074% | 1.683% to 2.465%
Mushrooms_60 1,400 to 1,600 100 2.341% | 1.985% to 2.697%
Wla_20 1,000 to 1,200 100 1.659% | 1.357% to 1.961%
Wla_40 1,400 to 1,600 100 1.939% | 1.429% to 2.449%
Wla_60 1,400 to 1,600 100 2.142% | 1.432% to 2.652%
Covtype_20 1,000 to 1,200 100 1.868% | 1.697% to 2.159%
Covtype_38 1,400 to 1,600 100 2.147% | 1.828% to 2.366%
Average 1.906% | 1.467% to 2.345%

4.3 Experiments with Some Continuous Datasets

The above experimental results are very encouraging. However, can these results be generalized
more? After all, the above experiments only analyzed binary datasets. In these cases the population
space is small and the vectors are simple (they are comprised by Os and 1s). What about the case
when datasets are comprised by vectors with continuous attributes? Therefore, a new family of
experiments were designed and implemented to test the robustness of the proposed monotonicity

based approach by analyzing some continuous datasets.

4.3.1 Generating Experimental Datasets
In this family of experiments, the experimental data were generated from nine continuous datasets
selected from the UCI Machine Learning Repository. These datasets are the Abalone, the Yeast, the
Ecoli, the Diabetes, the Blood test, the Liver, the Iris, the Strength, and the Strike [44], and each
has from 600 to 4,800 vectors. They are considered as the target datasets in these experiments.

It was observed that the vectors in some datasets are assigned to more than two categories,
the Abalone, the Yeast and the Iris are some of the examples. However, our research focuses on

two-class classifications, Therefore, for a dataset which contains more than two categories, a set

38

of two-class subsets were generated by randomly selecting any two classes of vectors from the
original dataset. For instance, there are three categories of vectors in the Iris dataset: the Setosa
vectors, the Versicolour vectors and the Virginica vectors. A dataset D with only two classes can
be comprised by vectors from the categories Setosa and Versicolour, the categories Versicolour and
Virginca, or the categories Setosa and Virginca.

Furthermore, in order to get enough experimental datasets, a new dataset can be created by
randomly selecting a portion of the vectors from D; without replacement. Different samplings
may generate experimental datasets with different monotonic characteristics, and one can use this
approach to create sufficient observations.

Similar to the binary case, the experimental data in this set of experiments should also be com-
prised of datasets with different levels of difficulty. The difficulties of the experimental datasets can
be somehow impacted during their generations by including different number of vectors from dif-
ferent categories. For example, in generating the Blood datasets, if 80% of the vectors are chosen
from class 1(people donated blood in March 2007), and the rest are chosen from class 0 (people
did not donate blood in March 2007), then for most of the classifiers, the accuracies of the derived
classification models should be higher than 80%. Since they are believed to be more sophisticated
than the most intuitive guess: “all of them are class 1 vectors.” By carefully selecting vectors from
different categories, one can generate training datasets that have different levels of difficulty.

Moreover, it is also noticed that the dimension of the target datasets are varied fromn=4ton="7.
Therefore, for each target dataset which has more than 4 attributes, several groups of experimental
datasets can be generated from them with different dimensions. For instance, the Abalone dataset
has 7 continuous attributes denoted as {A;, Az, A3z, A4, As, Ag, A7}. Therefore, based on which
group of 4-attribute datasets can be generated by randomly selecting four of its attributes, such
as {A1, Ay, A3, As}, or {As, A4, Ag, A7}, the selected attributes, combined with the class values,

formed some of the desired datasets. This 4-attribute experimental group is denoted as Abalone 4.

39

0o —4—Datasets with more than 6% pairs
of vectors that are monotoically
related.

=—l—Datasets with less than 6% pairs of
0.7 vectorsthat are monotoically
related.

¥: R-Square Values
= (=)
S0
o po wn

X: The experimental groups

FIGURE 4.3: The R-Square values of the models generated from continuous experimental groups
with different levels of monotonicity.

Furthermore, another group of 5-attribute datasets, called Abalone_5, can be generated in a similar
way by randomly selecting 5 attributes, and so did the groups of Abalone_6 and Abalone_7.

According to the previous experimental results, the quality of the generated regression models
was ensured when the experimental datasets have sufficient pairs of vectors that are monotoni-
cally related. Some experiments were performed to find out the appropriate value of this criterion.
In these experiments, 13 experimental groups were selected, and the datasets in an experimental
group were further split into two categories. These are, the ones that have more than 6% pairs of
vectors that are monotonically related, and the ones that have less than 6% pairs of vectors that are
monotonically related. Next, regression models were generated by analyzing datasets in each of
the categories and their R-Square values were recorded.

As one can observe from Figure 4.3, the quality of the models are unpredictable and inaccurate
when they were generated from datasets with less than 6% monotonically related pairs. However,
when the training datasets have more than 6% monotonically related pairs, the R-Square values
of the models are consistently above 0.93. This indicates that the generated models are reliable.
Therefore, this study only concentrated on datasets that have more than 6% of pairs that are mono-
tonically related. Some groups of datasets, such as Yeast_7, Ecoli_6, and Ecoli_7, because they have

too few pairs of monotonically related vectors, were not analyzed in this study.

40

TABLE 4.7: Regression models generate from some real-life continuous datasets.

| Datasets | Regression models |

Abalone 4 | Y =0.637 +7.65xP1 - 11.76 xP2 - 11.63xP3 - 0.526 xP4 + 0.905xP5 + 0.194 xP6
Abalone 5 | Y =0.628 + 7.22xP1 - 9.436xP2 - 16.14xP3 - 0.428 xP4 + 1.625xP5 + 0.252xP6
Abalone 6 | Y =0.665 +7.14xP1 - 14.25xP2 - 14.42xP3 - 0.129xP4 + 1.425xP5 + 0.284 xP6
Abalone_.7 | Y =0.632 + 6.67xP1 - 13.14xP2 - 17.53xP3 - 0.421 xP4 + 1.351 xP5 + 0.145xP6
Yeast 4 Y =0.715+5.67xP1 - 14.63xP2 - 12.62xP3 - 0.355xP4 + 1.254xP5 + 0.169 xP6
Yeast_5 Y =0.709 + 6.12xP1 - 13.47xP2 - 13.73xP3 - 0.625xP4 + 1.154xP5 + 0.205xP6
Yeast_6 Y =0.712+5.75%xP1 - 15.48xP2 - 11.74xP3 - 0.278xP4 + 1.186 xP5 + 0.311 xP6
Ecoli 4 Y =0.612 + 8.34xP1 - 12.74xP2 - 13.63xP3 - 0.259xP4 + 1.171 xP5 + 0.265xP6
Ecoli 5 Y =0.617 + 8.42xP1 - 15.75xP2 - 12.45xP3 - 0.341 xP4 + 1.059xP5 + 0.258 xP6
Diabetes 4 | Y =0.676 + 7.46xP1 - 13.54xP2 - 15.62xP3 - 0.453xP4 + 1.185xP5 + 0.165xP6
Diabetes 5 | Y =0.678 + 7.42xP1 - 12.55xP2 - 16.65xP3 - 0.486xP4 + 1.326 xP5 + 0.185xP6
Blood 4 | Y =0.682+832xPI -12.63xP2 - 16.35xP3 - 0.253xP4 + 1.205xP5 + 0.215xP6
Blood 5 | Y=0.674 +8.34xP1 - 11.78xP2 - 13.84xP3 - 0.354xP4 + 1.247xP5 + 0.236 xP6
Liver 4 Y =0.667 + 7.53xP1 - 16.74xP2 - 17.74xP3 - 0.452xP4 + 1.104xP5 + 0.298 xP6
Liver_5 Y =0.658 + 7.34xP1 - 14.54xP2 - 18.73xP3 - 0.354xP4 + 1.115xP5 + 0.258 xP6
Liver_6 Y =0.662 +9.23xP1 - 17.36 xP2 - 14.34xP3 - 0.159xP4 + 1.157xP5 + 0.275xP6
Iris Y =0.876 + 3.11 xP1 - 13.63xP2 - 17.35xP3 - 0.428 xP4 + 1.095xP5 + 0.265xP6
Strength 4 | Y =0.634 + 5.36xP1 - 17.76 xP2 - 22.37xP3 - 0.327xP4 + 0.985xP5 + 0.106xP6
Strength 5 | Y =0.631 + 3.46xP1 - 16.73xP2 - 19.56xP3 - 0.452xP4 + 0.968 xP5 + 0.257xP6
Strength 6 | Y =0.627 + 6.75xP1 - 13.47xP2 - 21.96xP3 - 0.356xP4 + 1.015xP5 + 0.162xP6
Strength_7 | Y =0.633 + 9.42xP1 - 12.57xP2 - 17.78 xP3 - 0.251 xP4 + 1.077xP5 + 0.168 xP6
Strike 4 Y =0.675 4+ 6.32xP1 - 18.36%xP2 - 15.15xP3 - 0.352xP4 + 1.256xP5 + 0.325xP6
Strike_5 Y =0.667 +7.11xP1 - 13.55xP2 - 13.36xP3 - 0.174 xP4 + 1.174xP5 + 0.286 xP6

By using the approaches described above, each experimental group (for instance, Abalone_5,
Iris, or Yeast_6) were generated and each contains from 300 to 550 2-class continuous experimental

datasets. Furthermore, such datasets present different levels of difficulty.

4.3.2 Experiments When the Training and Testing Datasets Were
Originated from the Same Target Dataset

This section explores the power of monotonicity by studying “relevant” datasets. That is, the train-
ing and testing datasets used in this set of experiments were originated from the same target dataset.
In studying these training datasets, one can use the same strategy as described in the binary case to

generate regression models, and next use them to evaluate the difficulty of the testing datasets.

41

TABLE 4.8: Experimental results from real-life continuous datasets listed in Table 4.7.

Datasets |[Number of [Number of Difficulties R-Square |Mean of | 95% confidence
training testing of the training value of the intervals of
datasets | datasets datasets the models |deviation | the deviations

Abalone_4 450 100 57.69% t0 93.58% | 0.952 1.105% [0.859% to 1.351%
Abalone_5 450 100 56.97% t0 96.25% | 0.948 1.228% 0.725% to 1.731%
Abalone_6 450 100 58.25% 10 95.48% | 0.938 1.267% [0.736% to 1.798%
Abalone_7 450 100 60.33% 10 92.47% | 0.941 1.209% (0.817% to 1.601%
Yeast 4 400 100 58.44% 10 91.23% | 0.925 1.458% |1.012% to 2.104%
Yeast 5 400 100 58.36% to 94.33% | 0.933 1.325% 0.917% to 1.733%
Yeast 6 400 100 57.37% 10 95.21% | 0.957 1.439% |1.005% to 1.873%
Ecoli 4 120 80 58.26% to 94.76% | 0.948 1.539% |1.115% to 1.963%
Ecoli 5 120 80 59.85% 10 93.87% | 0.925 1.542% |1.136% to 1.948%
Diabetes_4 120 80 64.57% t0 92.59% | 0.948 1.878% |1.451% to 2.305%
Diabetes_5 120 80 63.14% to 94.88% | 0.955 1.698% |1.208% to 2.188%
Blood 4 200 100 58.36% t0 93.26% | 0.954 1.528% |1.215% to 1.814%
Blood_5 200 100 61.56% to 94.37% | 0.956 1.564% |1.103% to 2.205%
Liver 4 120 80 57.24% 10 95.22% | 0.941 1.458% |1.015% to 1.901%
Liver_5 120 80 56.87% to 94.18% | 0.944 1.465% |1.069% to 1.871%
Liver_6 120 80 57.13% t0 96.24% | 0.927 1.598% |1.157% to 2.039%
Iris 120 80 90.68% to 100% 0.835 2.328% 10.885% to 3.771%
Strength 4 300 100 59.56% t0 93.69% | 0.966 1.287% 0.763% to 1.811%
Strength_5 300 100 61.27% to 94.85% | 0.958 1.316% [0.982% to 1.650%
Strength_6 300 100 60.34% t0 93.56% | 0.951 1.613% |1.298% to 1.928%
Strength_7 300 100 58.47% t0 94.78% | 0.953 1.625% |1.157% to 2.093%

Strike 4 200 100 61.58% t0 95.19% | 0.945 1.898% |1.426% to 2.370%

Strike_5 200 100 59.87% to0 94.32% | 0.940 1.877% |1.397% to 2.357%

Average 0.944 1.306% |1.024% to 1.588%

Some details of these regression models are provided in Tables 4.7 and 4.8. As one can observe
from these tables, the training datasets represent diverse levels of difficulty, and the average R-
Square values of the generated regression models is equal to 0.944.

Moreover, Table 4.8 lists the deviations when such models were used to predict the difficulties
of the testing datasets. According to this table, the mean of all the deviations is equal to 1.306%.
Furthermore, the same confidence interval scheme was implemented as in the binary case to test

their variance. As it is indicated from this table, for most of the predictions, their deviations are not

larger than 1.588%.

42

Let us use the Abalone_4 experimental datasets as an example here. In these experiments, a total
of 550 4-attribute subsets were generated from the target dataset Abalone with different levels of
difficulty.

Among these subsets, 450 of them were randomly chosen and were used to generate a regression
model. That model was next applied to analyze the remaining 100 testing datasets. In these 100
predictions, the mean of the deviations was equal to 1.105% with 95% confidence interval (0.859%,
1.351%). Statistically speaking, 95% of the predictions differ from the actual values by no more

than 1.351%. This provides strong evidence that the generated regression model is of high quality.

4.3.3 Evaluating the effect of monotonic characteristics over different
target datasets

The training and testing data in this family of tests were somehow “irrelevant.” In other words,
the training and the testing data used in this set of experiments were originated from different
target datasets. More specifically, these experiments were implemented in two scenarios. In the first
scenario, the training data were comprised of datasets of the same dimensions and were originated
from all target datasets.

For example, there are nine groups of 4-attribute datasets in this study, with a total number of
2,850 datasets. Among these datasets, 2,030 of them were randomly selected and aggregated to
form a composite training dataset. A regression model was trained from such training data, and
was later used to analyze the difficulties of the remaining datasets in each group. The derived
deviations were also recorded to assess its quality.

Table ?? provides the derived regression models and the experimental results. As one can ob-
serve from this table, the R-Square values of the regression models are all above 0.924, and these
models can predict the difficulties of the testing datasets with very little deviations.

For instance, when predicting the difficulties of the testing datasets generated from the Ecoli 4
datasets, the mean of the 80 deviations was 1.587% and in 95% of the cases the deviations were

less than 2.158%.

43

TABLE 4.9: Some characteristics of the regression models generated independently of the testing
data. The actual regression models are shown in Table 4.10.

Training R-Square Testing Testing | Means of the | 95% confidence
Datasets group size deviations intervals of
the deviations

0.927 Abalone_4 550 2.824% 2.320% to 3.320%
Comprised by all 0.910 Ecoli_4 200 1.732% 1.455% to 2.010%
4-attribute datasets 0.919 Diabetes_4 200 2.770% 2.355% to 3.184%
except the ones 0.923 Blood_4 300 3.772% 3.446% to 3.996%
being tested 0.920 Liver 4 200 3.384% 2.937% to 3.831%
0.914 Strike_4 300 2.458% 2.147% to 2.769%
Average 0911 2.733% 2.189% to 3.277%
0.931 Abalone_5 550 2.715% 2.426% to 3.004%
Comprised by all 0.914 Ecoli_5 200 1.862% 1.275% to 2.449%
S-attribute datasets 0.912 Diabetes_5 200 2.854% 2.463% to 3.245%
except the ones 0.930 Blood_5 300 3.428% 2.816% to 4.040%
being tested 0.916 Liver_5 200 3.294% 2.864% to 3.724%
0.934 Strike_5 300 2.366% 1.852% to 2.880%
Average 0.922 2.719% 2.241% to 3.197%
Comprised by all 0.889 Abalone_6 550 2.953% 2.498% to 3.408%
6-attribute datasets 0.893 Yeast_6 500 3.524% 2.886% to 4.126%
except the ones 0.907 Liver_6 200 3.462% 2.773% to 4.151%
being tested 0.912 Strength_6 200 3.354% 2.563% to 4.145%
Average 0.900 3.323% 2.625% to 4.021%

In general, the deviations produced by these regression models are somewhat greater than the
ones listed in Table 4.8, but most of them are still less than 2.4%. This observation indicates that
the generated regression models are reliable and effective.

In the second scenario, the training data were totally irrelevant (independent) of the testing
data. That is, the training datasets were selected from different experimental groups than the
testing datasets. For example, there are four groups of 6-attribute datasets, these are: Abalone 6,
Yeast_6, Liver_6, and the Strength_6. Suppose the current task is to evaluate the difficulties of the
Liver_6 datasets. Then the training data would be comprised by all the Abalone_6, Yeast_6, and the
Strength_6 datasets. While all the Liver_6 datasets were used for testing.

In these sets of experiments, the testing datasets were quite different from the training datasets.
For instance, the training data may use different measuring units from the testing data, such as
inches used in training datasets but kilograms used in the testing ones. It is also possible that in the

44

TABLE 4.10: Regression models for datasets listed in Table 4.9.

Testing Regression models
dataset
Abalone 4 | Y =0.672 + 11.25xP1 - 15.62xP2 - 11.63xP3 - 0.526 xP4 + 0.877xP5 + 0.184 xP6
Diabetes_ 4 | Y =0.592 + 8.596xP1 - 9.582xP2 - 12.24xP3 - 0.526 xP4 + 0.943 xP5 + 0.185xP6
Blood 4 | Y =0.635+12.52xP1 - 12.56xP2 - 12.68 xP3 - 0.549xP4 + 1.105xP5 + 0.179xP6
Liver4 | Y=0.663 +7.418xP1-9.581xP2 - 11.55xP3 - 0.675xP4 + 1.026xP5 + 0.194xP6
Iris Y =0.878 + 7.584xP1 - 12.25xP2 - 11.42xP3 - 0.425xP4 + 0.936xP5 + 0.187xP6
Strength 4 | Y =0.654 + 8.593xP1 - 11.86xP2 - 10.35xP3 - 0.488xP4 + 0.852xP5 + 0.193xP6
Strike 4 | Y =0.625 + 9.524xP1 - 12.73xP2 - 10.89xP3 - 0.782xP4 + 0.871 xP5 + 0.252xP6
Abalone 5 | Y =0.636 + 7.685xP1 - 9.526xP2 - 11.69xP3 - 0.457xP4 + 0.845xP5 + 0.204 xP6
Diabetes_5 | Y =0.587 + 9.563xP1 - 11.62xP2 - 10.34xP3 - 0.257xP4 + 1.025xP5 + 0.196 xP6
Blood5 | Y =0.686+9.475xP1 - 10.85xP2 - 9.546xP3 - 0.527xP4 + 1.089xP5 + 0.221 xP6
Liver_5 Y =0.637 + 10.52xP1 - 8.574xP2 - 12.65xP3 - 0.274xP4 + 0.890xP5 + 0.204 xP6
Strength 5 | Y =0.685 + 10.75xP1 - 7.563xP2 - 11.57xP3 - 0.341 xP4 + 0.857xP5 + 0.187xP6
Strike.5 | Y =0.638 + 11.53xP1 - 8.524xP2 - 12.54xP3 - 0.367 xP4 + 0.957xP5 + 0.186 xP6
Abalone 6 | Y =0.629 + 11.48xP1 - 12.01 xP2 - 10.76 xP3 - 0.428 xP4 + 0.942xP5 + 0.198 xP6
Yeast.6 | Y =0.653 + 12.56xP1 - 11.89xP2 - 12.45xP3 - 0.547xP4 + 1.024xP5 + 0.204 xP6
Liver 6 | Y=0.661+ 10.75xP1 - 10.35xP2 - 10.34xP3 - 0.251 xP4 + 1.063xP5 + 0.214xP6
Strength 6 | Y =0.639 + 9.586xP1 - 10.54xP2 - 11.77xP3 - 0.674xP4 + 1.124xP5 + 0.189xP6

training datasets all the numeric values are in float point format but in the testing datasets all the
values are integer. Furthermore, it is possible that the training and testing datasets were generated
from totally different application domains, such as the case between the Blood datasets for training
and the Iris datasets for testing. However, according to the experimental results listed in Table 4.9
(by using the regression models listed in Table 4.10), the difficulties of the testing datasets can still
be accurately predicted by regression models generated from learning some irrelevant datasets of
the same dimension. This is supported by the fact that in analyzing 4-attribute datasets, most of
the predictions can have deviations within 3.277%. In analyzing 5-attribute datasets, the predicted
deviations are in the range of (2.241% to 3.197%). In assessing the difficulties of the 6-attribute
datasets, even though the training size is small, that is, too few experimental groups were selected
for training, it is still ensured that 95% of the predictions are different than the real values by no
more than 4%.

Based on the above observations, it seems that even though datasets may differ in many ways,
they always exhibit similar learnability patterns when one considers their monotonic characteris-

45

tics. The relationships between the difficulty of the datasets and their monotonic characteristics
were similar for all the numeric datasets of the same dimension.

Under this conclusion, for any numeric datasets that have sufficient number of monotonically
related pairs, one may accurately predict their difficulties without implementing any classifiers, but
by only spending O(N?) time to compute their monotonic characteristics and a fixed time to apply
the appropriate regression model. Furthermore, although the regression models generated in these
experiments were sufficiently accurate, the training size is still relatively small, and the regression
models may not be the most accurate. It is believed that when more target datasets are collected

for training, the generated regression models may become even more accurate.

46

Chapter 5

A Meta-Learning Approach

5.1 The Motivation of the Meta-Learning Approach

As one can observe from previous sections, it is found that when datasets are comprised of highly
monotonic data, then they can be classified accurately by most methods while datasets that are
not comprised of highly monotonic data, tend to be more difficult to be accurately analyzed by
classifiers. In other words, datasets which have very few CMP pairs are “easy’” ones, while datasets
which have many CMP pairs are “difficult” ones.

The next question to ask is what happens if a given dataset does not exhibit strong monotonic-
ity. Could the previous developments still be somehow applicable, perhaps after some data ma-
nipulations? Our research suggests that the answer to this very important question is quite often
affirmative.

To see this consider the following metaphor. Figure 5.1, part (a), depicts a perfectly (increasing)
monotone linear function in two dimensions (2-D). Part (b) of the same figure depicts a function
which is not perfectly monotonic. However, the function in part (b) can be decomposed into a se-
quence of perfectly monotone functions. These are alternating increasing and decreasing monotone
functions as shown in part(c) of Figure 5.1.

It turns out that any dataset, even ones that exhibit no monotonicity at all, can be decomposed
into a family of strongly monotone subsets. This is analogous to the situation depicted in parts
(b) and (c) in Figure 5.1. Therefore, the central ideas explored in this part of research are how
to decompose a non-monotonic dataset into a family of strongly monotonic subsets and how to
derive classification models from the smaller, but strongly monotonic, subsets. The second task is
how to determine a procedure for combining the individual classification models and build a single

model for the original dataset. The final task is to determine under what conditions the proposed

47

¥ =69
= 0

¥

Y
=fhd
I

v

Y
v

X . X X

(a) (b) . (c) . .

Part (a): A perfectly monotone function Part (b): A non-monotone function Part (c): The previous function decomposed into
mcreasing and decreasing monotone functions.

FIGURE 5.1: Different cases of scenarios of the monotonicity observed in functions.

decomposition approach is beneficial. For instance, does the number of derived monotone subsets,
their relative sizes, and so on, play a detrimental role in determining whether the proposed approach

might contribute to more accurate classifications?

5.2 Data Pre-processing

The ultimate goal of this approach is to always train the classification models on “easy” datasets.
Therefore, the following P, parameter becomes the most important criterion in doing the data
manipulation (it is also the same as parameter P3 in Table 4.1). As it is also indicated in Figure 4.2,
in order to make this monotonic property to be meaningful, at least 4% of all possible distinct pairs
of vectors should be monotonically related.

Po= Number of CMP pairs
key= Number of distinct positive-negative pairs of vectors

In order to further explore the role of the single parameter Py, six numeric datasets collected
from the UCI Machine Learning Repository are considered. These datasets were used in an exten-
sive pilot study, they have 600 to 4,800 vectors (data points) and come from a wide spectrum of
application domains. The chosen datasets are the Abalone, the Yeast, the Blood donation, the Car
evaluation, the Auto_MPG, and the Mammo. In the experiments, each derived experimental dataset
had more than 4% pairs of vectors that were monotonically related. Thus, the monotonic properties

in them would be meaningful and potentially significant.

48

The previous six datasets were used to build numerous two-class datasets for testing purposes in
this pilot study. If a dataset was defined on more than two classes, two-class datasets were created
as follows. First, two classes were selected randomly among the multiple classes to form two-class
experimental datasets. Arbitrarily, one class was considered as the positive observations while the
other was treated as the negative one. For instance, the Abalone dataset is originally defined on 29
classes. Thus the testing dataset with code name Aba_5_7 indicates that class 5 is considered as the
positive data while class 7 as the negative data.

A different way to form positive and negative data was employed by aggregating classes to-
gether. For instance, the dataset with code name Aba_511_712 indicates that the data collected
from classes 5 and 11 were aggregated to form the positive data while data collected from classes
7 and 12 were aggregated to form the negative data.

Some datasets were originally defined on two classes. Then, testing datasets were generated by
randomly selecting a predetermined portion of data from the original dataset. For instance, from the
two-class Blood donation dataset, random selections of 65% of the original data were used without
replacement to form such testing datasets. These datasets were denoted as Blood_1, Blood 2, ...,
Blood_50. Besides the Blood donation dataset, the datasets derived from the Car evaluation, the
Auto_MPG, the Mammo and the Yeast datasets were treated in a similar manner.

The Car evaluation dataset has some ordinal attributes. Thus, equivalent numerical values were
used for such attribute values to reflect the appropriate order. For instance, attribute values equal
to {very high, high, med, low} were replaced by the numbers {4, 3, 2, 1}, respectively.

An effort was also made to create datasets of various representative degrees of difficulty. To
see how this was done, one needs to consider two extreme cases: One with a balanced two-class
dataset (i.e., one with almost equal number of positive and negative data points) and one with
highly skewed data (for instance, by far more positive data points than negative ones). Then, the
question is: which of these two scenarios is more likely to have many CMP pairs? The answer

seems to be under the first scenario, and the computational studies described next seem to support

49

TABLE 5.1: Some Characteristics of the Experimental Datasets.

Original datasets | The number of | Range of the average accuracy
experimental when they were classified
datasets by multiple classifiers
Abalone 400 53.62% to 92.54%
Blood 600 57.23% t0 92.37%
Yeast 400 55.02% to 91.83%
Car 400 80.42% t0 92.53%
Auto_MPG 300 51.54% to 91.29%
Mammo 400 56.85% t0 92.47%

this argument. Eventually, testing datasets of various representative P, values (that reflect the
percentage of vectors involved in CMP pairs) were generated (see also Figure 5.2).

The testing classifiers and classification tools used in this part of the study were the same as the
ones described in Section 3.3. We used the previous experimental environment to analyze these

two-class datasets, too.

5.3 The Pilot Study

The computational experiments were run in two steps. First, the experimental datasets were ana-
lyzed by the classifiers listed in the previous section. The average classification accuracies derived
in this way were considered to be their classification difficulties (i.e., the learnability values). Next,
at the second step, the CMP pairs were identified and the value of the Py, parameter was computed.

It should be stated here that the above approach is a heuristic one. If a different set of training
data collected from the same orgininal dataset is analyzed this way, then it is possible that some
attributes may be classified differently as positive and negative. However, the more representative
a training dataset is to the original dataset, the more likely is that the attributes will be classified
more accurately.

Table 5.1 lists some details of the experimental datasets used in this pilot study. Next, the diffi-
culties of some of the experimental datasets, together with their key monotonic property denoted

by the parameter P, were plotted together in 2-D graphs as shown in Figure 5.2. Each graph

50

100% 100% 100%

90% 90% r 3 90%

B0% B80% 80%

60% 60% 60%
3

50% 50% 50%
40% 40% 40%
30% 30% 30%
20% 20% 20%
10% 10% 10%
0% 0% 0% : - :
0% 5% 10% 15 % 20% 25% 0% 5% 10% 15 % 20% 25% 0% 5% 10% 15% 20% 25%
(a) (b) tel
1003% 94% 1002

90% -
BO%
0% -
60% -
50%
40%
30%
20%

axe

90%

90%

B80%

70%
88% - 60% ry
0%
40%
30%

20%

86%

B

82%

10% B0% 10%
0% 78% . 0% - - -
0% 5% 10% @) 15 % 20% 5% 0% 1% 25 1% s 0% 5% low L 15% 20% 25%
Figure (a): Abalone, Figure (b): Blood, Figure (c): Yeast X: Percentage ofpositive—negatiive pairs thatare CMP pairs (i.e., Pry values)

Figuze (d): Auto, Figure (¢): Car, Figute (f):Mammo Y: Classificationaccuracy

FIGURE 5.2: The relationship between the difficulty of the datasets and P, values.
presents the experimental results observed by analyzing a group of datasets as described in the
previous section.

As one can observe from this figure, when the number of CMP pairs increases, the datasets
become more difficult to be accurately classified. This is quite clear by observing the plots of the
results by analyzing the Abalone, the Blood donation, the Yeast, the Auto_ MPG, and the Mammo
based datasets. In these plots one can also observe that there are results for a wide spectrum of
values on the horizontal axis. The classification accuracies for these datasets range from rather low
values to very high ones. On the other hand, when datasets based on the Car evaluation dataset are
considered, then almost always the classification accuracies are high (more than 80%). This means
that these subsets are always easy ones. As one can observe from this plot, the Car evaluation
based experimental datasets all have very few CMP pairs (less than 4%). This is another aspect

that supports the previously detected tendency that easy datasets tend to have very few CMP pairs.

5.4 The Proposed Approach to Improve Classifications
The previous pilot computational results suggest that datasets with few CMP pairs are easier to
analyze than those with more CMP pairs. Therefore, a reasonable idea is to try to partition a

dataset into two groups of positive and negative subsets such that pairs of positive-negative subsets

51

have no or very few CMP pairs. This approach is described formally as Algorithm 6. Before this
approach is used, one first needs to determine the positive and the negative attributes as described
in the Section 2.4.1. The proposed approach is comprised of two main steps that are iterated until

the original dataset is completely partitioned. For a given dataset D this is described as follows:

1. Find out all positive vectors in D which either precede or are unrelated to all negative vectors.
Next, they are removed from D to form a positive subset. If no such positive vectors exist,

then we create an empty positive subset.

2. From the remaining vectors, find out all negative vectors which either precede or are unre-
lated to the rest of the positive vectors. Next, they are removed from D to form a negative

subset. If no such positive vectors exist, then we create an empty negative subset.

3. Repeat steps 1 and 2 until the training dataset D becomes empty.

This approach is of O(N?) time complexity, where N is the number of vectors in the training
dataset D. Moreover, at the end of this approach the training dataset D has been partitioned into
two groups of 1-class subsets. The first group of such 1-class subsets is comprised of all the positive
subsets while the other group is comprised of all the negative ones. Depending on the dataset used,
some of the previous subsets may end up to be empty. The positive subsets will be denoted as
Gp1,Gpy,...Gpy, while the negative ones will be denoted as Gny,Gna, . ..Gny,.

Furthermore, according to the way such subsets are generated, for every pair of positive subsets
Gp; and Gpj, where j > i, the vectors in Gp; always either precede or are unrelated to all the
vectors in Gp;. A similar relationship exists for any pair of negative subsets Gn; and Gn, where
Jj > i. Also, for a pair of subsets Gp; and Gn; the vectors in Gp; always either precede or are

unrelated to all the vectors in Gn;.

5.5 A Monotonicity-Based Classification Approach
The previous section described how a dataset can be decomposed into two groups of one-class

subsets. These subsets are alternating, for instance, a positive subset is followed by a negative one,
52

Algorithm 6: A monotonic-based approach to partition a dataset
Input : Dataset D
Output: PositiveSets, NegativeSets /*PositiveSets and NegativeSets are the sets of the
positive and negative subsets, respectively*/

ot

PositiveSets < ¢, NegativeSets < 0;
ET « all positive vectors in dataset D;
E~ < all negative vectors in dataset D;

4 while ET £ ¢ or E- # ¢ do

5 Subset™ < ¢, Subset ™ < 0,
6 | foreache € ET do
7
8
9

w N

if There is no e; € E~ such that e; - el-+ then

Subset™ < Subset™ U e;L;
Remove ¢;” from E™;

10 end

11 end

12 for eache; € E~ do

13 if There is no e}r € ET such that e}r >~ e; then

Subset™ < Subset™ Ue; ;
Remove ¢;” from E™;

16 end

17 end

18 PositiveSets < PositiveSets U Subset™ ;
19 NegativeSets <— NegativeSets U Subset™;
20 end

21 Return PositiveSets, NegativeSets;

which is followed by a positive subset, and so on. Also, any pair of positive and negative subsets
can form a two-class experimental dataset which contains no CMP pairs (by switching the class
values of the vectors, if necessary). Therefore, according to the previous analyses, classification
models derived from such experimental datasets should be more accurate in classifying their data
points rather than the model derived from the original (and larger) dataset. However, a new crit-
ical question needs to be considered at this point. Given a new vector (data point) of unknown
class value, which model(s) should classify it? There are many models now derived from the new
generated subsets and the original dataset.

In order to answer this question, one first needs to examine the nature of the vector to be clas-

sified and somehow determine which model (or models) is (are) the most appropriate to classify

53

it. For this, one needs to determine which subset(s) of training data (derived after the previous de-
composition approach has been applied) is (are) the most closely related to this new vector. Such
notion of “the most closely related” will be treated under the scope of monotonicity. In the fol-
lowing considerations a new vector is assigned to one of three mutually exclusive and exhaustive
categories. These three categories are denoted as Type I, Type 1I and Type III category of testing
vectors. Algorithm 7 describes how this categorization can be done.

Type I vectors
A new vector V is placed in this category if and only if it can be covered by a single subset G
(which is either a positive or a negative one). In this study, the subset G is said to cover V if and
only if G contains two vectors P and Q such that P = V = Q. According to the way these subsets
are generated, at most one subset can be found to satisfy this criterion.

Type I vectors
Suppose that a new vector V is not of Type I as defined above. However, if two vectors P and Q
can be identified such that P € G; and Q € G, where G; and G; are two subsets with the same class
value where j > i, and P = V > Q, then the vector V is called to be of Type II.

Type Il vectors
If a new testing vector V is neither a Type I nor a Type II testing vector, then it is called to be a

Type III testing vector.

The previous three categories for grouping a new testing vector are used to design the classifi-

cation process for assigning a class value to it. This is explained in the following subsections.

5.5.1 How to Classify Type I Testing Vectors

If a testing vector V has been assigned to the Type I category, that means it is covered by a single
subset G, where G can be either a positive subset or a negative one.
First, suppose that G is a positive subset. Then, when one of the negative subsets is considered

along with this positive subset G, one can form a two-class experimental dataset which possesses

54

Algorithm 7: Identify the types of the testing vectors.
Input : Positive training subsets G, negative training subsets G,, and a testing vector V
Output: Type of V
for each subset G, G € G, or G € G, do
if There are two vectors P and Q in G, such that P =V = Q then
‘ Return V as a Type I vector;
end
end
if There exist two subsets G;, G, and either G;, G; € G, or G;, G; € Gy,. If one can find a
vector P € G; and a vector Q € Gj such that P =V = Q then
‘ Return V as a Type II vector;
8 else
9 \ Return V' as a Type III vector;
10 end

A U A W N -

3

two important properties: (a)lts positive subset has two positive vectors P and Q and P =V > Q,
and (b) it contains no CMP pairs. Thus, according to previous discussions, the classification model
derived from this experimental dataset would be more accurate in classifying the data point V.

Hence, the next step is to consider all such combinations (G, Gy;) fori=1,2,3,...,m, and apply
the original classification algorithm (i.e., Decision Tree, ANN, SVM, etc. classification approach)
and derive m classification models. The class value of the testing vector V can be determined by
taking the majority vote among these m models. The fact that the testing vector V can be placed
between two training vectors (i.e., P and Q) which both are positive does not necessarily mean that
the vector V should also be classified as positive by each one of the m models.

The second possibility is when the vector V is located between two negative training vectors.
Now the subset G is comprised of negative training data. Then it should be treated in an anal-
ogous manner. In this case there are m two-class experimental datasets denoted as (Gp;, G) for
i=1,2,3,...,m. The rest of the steps are the same as in the previous case. This process is formally

described as Algorithm 8.

5.5.2 How to Classify Type II Testing Vectors

The methodology for classifying Type II testing vectors is similar to that for classifying Type I

vectors. That is, a given base classifier is applied to analyze a group of training subsets and the

55

Algorithm 8: The approach to classify type I testing vectors.
Input : Two groups of one-class training subset G, and G,, testing vector V, classification
algorithm C
Output: Class value of V
1 Classifier_List <— ¢ ;

2 Find out one-class training subset G, such that there exist two vectors P and Q in G, and
P>V =0

3 if G € G, then

4 for each one-class subset G,; € G,, do

5 S=GUGy,;;

6 Classifier_List <— Apply C to analyze S;
7 end

8 else

9 for each one-class subset G,; € G, do

10 S=GUG;

1 Classifier_List <— Apply C to analyze S;
12 end

13 end

14 Use all the classifiers in the Classifier_List to classify V and perform majority voting on the
classification results;
15 Return the result of the majority voting;

derived classification models are used to classify the testing vector V. By performing the majority
vote on the classification results, the class value of V can be therefore determined.

The next question is, how to generate such classification models? A Type Il testing vector cannot
be covered by a single one-class subset. However, it can always be covered by the combination of
multiple same-class subsets. In other words, one can always find two subsets which have the same
class value (Gp; and G}, or G,; and G, for example), such that there exist a vector P € Gpi(Gni)
and a vector Q € Gj(G,;) where i < jand P >V > Q.

Therefore, based on the values of i and j, one can form a training subset S where § = G,; U
Gpi UGy UG,y U---UGpj UGy, and it is easy to find out that S covers V. In this study,
the desired training subset S should be comprised by the subsets where j — i is minimized. In other
words, the goal is to find out the fewest subsets whose combination can cover the vector V.

By applying the base classifier C to analyze S, a classification model can be therefore generated.

Furthermore, more sub classification models can be generated by using the same classifier C to
56

analyze the combination of S and the rest of the training data. For instance, a training subset
SY can be generated as §O=SuU Gpk U Gy, where k < i, another subset § I can be generated as
Sl=5U Gpk UGk UG (k11) U Guiy 1), Where k > j, and so on. There are 2™ number of such
combinations where num = 2 x (m — j+i). For reason of simplicity, the other training subsets
were generated by combining pairs of unused positive-negative training subsets with S, one at a
time. That is, the training subsets Sy = SU G U Gy, where 0 < k <ior j <k < m. A total of
m— j+i—0+1 (including the set S itself) number of training subsets were used to generate the
desired learners.

To summarize, a Type II testing vector V should be classified as follows:

1) Find out the training subset S, § = G,; U G,; U Gp(i+1) U Gn(i—H) U---UGp; UGy, where
0 <i < j<m. S should cover vector V and the value of j — i is minimized.

2) For all other pairs of positive-negative subsets Gp; and Gny, they are combined with S, one
at a time, to form a group of training subsets. That is, Sy = SUGp; U Gny for all 0 < k < i or
j<k<m.

3) Analyze such Sy and § subsets, compare their Py, parameter values to that of the entire train-
ing data, and select only the ones which have smaller Py, values. According to the key observation
described in Section 2, they are more likely to result in more accurate classifiers.

4) Use the base classifier on all selected training subsets. The derived classification models are
used to classify the testing vector V. The class value of V is determined by the result of the majority
vote.

It should be noted that the training datasets generated in this way may contain some CMP pairs.
That is why they should be compared to the original datasets in terms of their Py, values. The mo-
tivation for having step 3, is to have subsets that are more likely to lead to more accurate classifiers

than the original dataset as a whole. The entire process is formally illustrated in Algoirthm 9.

57

Algorithm 9: The approach to classify Type II testing vectors.

A Ui A W N

10

Input : Two groups of one-class training subsets G, and G, testing vector V, classification
algorithm C, the value of monotonic property Py, in the original training dataset,
denoted as Pyey—original-

Output: Class value of V

Determine i, j to form a subset S, S <= Gpi UGni UG (i11) U Gyiy1) - UGpjU Gy, such that §

covers V and j — i is minimized;

Classifier_List <— the classifier learned from applying C to analyze S ;

for each k,I<k <ior j<k<mdo

Sy = SUkaUGnk;

if The value of monotonic property Py, derived from Sy is smaller than Pyey—origina then
Classifier_List <— Classifier_List U the classifier learned from applying C to analyze
Sks

end

end

Use all the classifiers in Classifier_List to classify V, perform majority voting on the

classification results;

Return majority voting result;

5.5.3 Minimum Size of the Derived Training Subsets

The two families of subsets derived as described earlier, play a key role in the quest for improving

classification accuracy. However, it is possible occasionally such subsets to be of too small size. If

subsets of too small size are used, then the benefits of using purely monotonic subsets for inferring

highly accurate classification models from training data may be canceled. This is possible because

too small subsets may not be as representative as larger subsets. Such problems happen with most

methods that infer models from data. In this study a limit was used for the minimum size of such

subsets. This limit was determined empirically, and it was set at 30. That is, if a subset had less

than 30 members then it was ignored.

58

Chapter 6

Experiments For Meta-Learning Approach

6.1 Some Preliminaries on the Experiments

Some experiments were designed and performed to test the performance of the proposed approach.
The experimental datasets used in these experiments were as follows: a) All the experimental
datasets mentioned in Section 2.2.1; a total of 2,500 datasets were used. b) 1,800 massive datasets.
The latter ones were generated to simulate some difficult datasets. They were created by randomly
selecting datasets from part a). Next, the vectors in these selected datasets were randomly assigned
to class values “positive” or “negative” with probability equal to 0.50. They are grouped by their
dimensions into three groups denoted as Mass_5,Mass_6 and Mass_7 in this study.

Moreover, the proposed approach is a meta-learning approach. Thus, any classification algo-
rithm can be used as the base classifier C in Algorithms 8 and 9. Four widely used classification
algorithms were used as the base classifiers in this study. These are: a decision Tree, a support
vector machine (SVM), an ADTree, and an artificial neural network(ANN). Moreover, 10 rounds
of cross validations were implemented in the classifications to decrease the variance.

It is noticed that the ratio of the testing and training vectors is an important factor that impacts the
classification accuracy. Generally speaking, with more vectors selected for training, the generated
classification model is expected to be more complete and therefore more accurate. Currently, the
setting of this ratio is empirical. In order to find out a reasonable ratio, several experimental datasets
were randomly selected and analyzed to study the impact of this factor.

In this study, each selected dataset was partitioned into a group of training and testing subsets.
The ratios of training size over testing size for each dataset in each partition were varied from 1%
t0 99%. In each scenario, the datasets were first analyzed by simply implementing the dicision tree.

After that, they were analyzed by the proposed approach using the decision tree as the base clas-

59

B0% Q0%

75% 855 N ?.?I |
802% f

70%
8 AT :
£53% ¢
70%
60% QN
£53%
<
553% 603%
50% 55%
0% 20% 40% 60 % 80% 100% 0% 20% 40. % slo % 80 I% lOO‘%
Dataset: Aba_8_11 Dataset: Blood 2
84% 1% _A
o0% ﬂ ‘ n

82% \.‘_./ \./ \ sos \
- /&‘" o !

B6%

76% . /.\ M 85% J
W\/ B4

74% 74 a5 ‘/

T2% T T T T . B2k

T T T T 1
0% 20% 40 % 60 % 80 % 100% 0% 20 % 40 % 60 % B0% 100%
Dataset: Yeast_11 Dataset: Car_29

X: Percentage of vectors that are used for testing. ¥: Classification accuracy
FIGURE 6.1: Experimental results with different ratios of training and testing vectors.
sifier. In these classifications, a 10-cross validation approach is applied to reduce the classification
variance. The experimental results are plotted in Figure 6.1.

The graphs listed in Figure 6.1 are organized as follows. In each graph the X-coordinate indi-
cates the percentage of vectors that were selected for training, and the Y-coordinate indicates the
classification accuracies when analyzing testing vectors under various cases. The datasets used in
this figure are: Aba 5_11, Yea_1_4, Blood 2, and Car_17. As one can observe from Figure 6.1, the
classification improvements become stable when the ratios of the training data reside in the range
of (20%, 85%). Therefore, in these experiments, 60% of the vectors were randomly selected for

training and the rest were used for testing.

6.2 The Experimental Results
In order to better evaluate the effectiveness of the proposed approach, its performance was com-
pared to some other meta-learning approaches, such as the Bagging [S],Boosting [16], and HBA [35].

In this study, each experimental dataset was analyzed under the following scenarios:

60

. It was analyzed by using a base classification algorithm C. The corresponding classification

accuracy is denoted as ACC.—,ame-

. It was analyzed by the proposed approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCpyyposed-

. It was analyzed by the Bagging approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCpugging-

. It was analyzed by the Boosting approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCpoosting-

. It was analyzed by the HBA approach using C as the base classifier. The corresponding

classification accuracy is denoted as ACCypy.

. It was analyzed by using C as the base classifier, its Type I and Type II vectors were analyzed
by the proposed approach, and its Type III vectors were classified by the HBA approach. The

corresponding classification accuracy is denoted as ACCcompined-

. Its relative maximum possible improvement rate (denoted as Improvementgyp;) was cal-
culated. This parameter indicates the relative maximum improvement that the proposed ap-
proach achieves over the maximum possible improvement. For example, as shown in Ta-
ble 6.2, when one analyzes the Blood 42 dataset using SVM as the base classifier, the pro-
posed approach can obtain an improvement of 79.2% - 63.5% = 15.7% with respect to the
classification accuracy compared with the base classifier. However, it is noticed that the
maximum possible improvement that one may obtain by simply applying SVM to classify
Blood 42 is 100%-63.5% = 36.5%. Therefore, the relative maximum possible improvement
rate by using the proposed approach should be 15.7% / 36.5% = 43.0%. This is a more

descriptive way to assess the impact of the proposed approach.

61

8. In a similar manner the relative maximum possible improvement was calculated when the
ACC,_ame 18 compared to the ACCcpmpinea Value. This relative improvement value is denoted

as Improvementgyps in Tables 6.1 to 6.8.

Some experimental results are provided in Tables 6.1 to 6.8, while the datasets Abalone, Blood,Yeast,
Car, Auto MPG, Mammo, together with the 5, 6, and 7-attribute artificial datasets were used as the
training data, respectively. Each of these tables is organized in the following format. The first row
of the table lists the names of the experimental datasets. From the second row to the bottom of
the table, every eight rows comprise a block that displays the experimental results of analyzing the
corresponding experimental dataset under different classification scenarios. There are four such
blocks in each table which are separated by a narrow blank gap, and each of them uses a different
classification algorithm as the base classifier.

According to the experimental results, when one compares the results obtained by using the
base classifier alone with the results obtained by using the proposed approach, the proposed ap-
proach always outperforms the stand-alone classifiers. When one examines the results for the
Abalone, Blood donation, Yeast, Auto_MPG and Mammo datasets, the proposed method can fre-
quently achieve more than 10% improvement in classification accuracy. Such improvements can
be as high as 21%. An example is the case of analyzing the Blood 2 dataset by using SVM as
the base classifier (Table 6.2). In terms of the relative maximum possible improvement measures,
the values of their Improvementgyp; are mostly distributed in the range of (10%, 55%), while
their Improvementgypy values are mostly ranged in (20%, 75%). In the case of analyzing the Car
datasets, the obtained classification improvements were less significant. However, the improve-
ments are always present and frequently are more than 2%, in terms of the relative maximum
possible improvement measures, their Improvementgyp; values are consistently more than 10%
and their Improvementgypr values are consistenly more than 20%, as are the cases of classify-
ing other datastes. Why sometimes the improvements are significant and some times are not, is

discussed in the next paragraph.
62

TABLE 6.1: Some experimental results when analyzed the Abalone datasets.

Datasets | Aba_7_11 | Aba_58 9 | Aba 67_1114 | Aba 6128 | Aba 51129 |
ACCpecisionTree 77.6% 64.6% 90.8% 70.8% 67.4%
ACCproposed 83.3% 77.0% 92.8% 79.1% 75.3%
ACChagging 76.2% 66.2% 90.8% 73.2% 68.7%
ACCBoosting 77.1% 63.7% 91.2% 71.4% 68.7%
ACCypa 84.3% 80.7% 93.2% 82.7% 78.1%
ACCcombined 87.1% 83.4% 94.1% 86.8% 84.7%
Improvementgypi 29.4% 35.0% 21.7% 28.4% 24.2%
Improvementgypy 42.4% 53.1% 35.8% 54.7% 53.0%
ACCsyym 77.3% 65.7% 87.7% 71.4% 70.2%
ACCproposed 80.6% 80.7% 90.3% 77.4% 76.3%
ACCagging 76.2% 66.4% 87.7% 72.1% 69.7%
ACCBoosting 78.3% 65.7% 87.7% 72.9% 70.9%
ACCppa 82.7% 82.1% 92.3% 80.2% 79.4%
ACCcombined 85.6% 86.4% 94.8% 85.5% 83.4%
Improvementgypi 14.5% 43.7% 21.1% 20.9% 20.4%
Improvementgyps 36.6% 61.8% 45.8% 56.8% 49.7%
ACCApTree 76.1% 64.4% 90.4% 66.4% 67.0%
ACCproposed 79.9% 75.4% 92.6% 74.8% 74.5%
ACCugging 77.4% 65.7% 90.4% 67.2% 69.5%
ACCpoosting 75.8% 66.2% 90.4% 69.1% 67.9%
ACCppa 82.5% 79.7% 93.2% 78.7% 78.4%
ACCcompined 86.4% 85.3% 94.9% 84.8% 85.8%
Improvementgyp 15.9% 30.9% 22.9% 25.0% 22.7%
Improvementgypr 43.1% 58.7% 46.9% 54.8% 57.0%
ACCynn 74.8% 64.4% 89.0% 73.2% 68.9%
ACCproposed 79.8% 76.4% 91.6% 78.5% 76.4%
ACCagging 73.9% 64.7% 89.0% 75.8% 70.1%
ACCoosting 74.8% 65.7% 89.0% 74.9% 72.7%
ACCypa 82.9% 79.3% 93.8% 80.0% 79.4%
ACCcombined 87.6% 84.4% 95.9% 84.8% 86.2%
Improvementgyp 19.8% 33.7% 23.6% 19.8% 24.1%
Improvementgyp 50.8% 56.2% 62.7% 43.3% 55.6%

63

TABLE 6.2: Some experimental results when analyzed the Blood donation datasets.

| Datasets | Blood_2 | Blood_13 | Blood_35 | Blood_42 | Blood 47 |
ACCpecisiontree | 64.6% | 725% | 657% | 682% | 80.9%
ACCpyoposed 83.1% | 792% | 741% | 813% | 81.7%
ACCBagging 672% | 735% | 612% | 695% | 80.9%
ACCpoosting 653% | 728% | 612% | 689% | 80.9%
ACCrpa 87.6% | 822% | 787% | 827% | 84.6%
ACClombined 91.3% | 858% | 834% | 853% | 85.9%

Improvementgypr | 52.2% 24.4% 24.5% 41.2% 4.19%
Improvementgypy | 75.4% 48.4% 51.6% 53.8% 26.2%

ACCsym 61.4% | 657% | 639% | 635% | 71.1%
ACChroposed 827% | 777% | 700% | 792% | 82.3%
ACCagging 60.8% | 68.1% | 639% | 657% | 75.9%
ACCBoosting 61.7% | 674% | 639% | 642% | 76.8%

ACCrpa 81.6% | 829% | 737% | 819% | 83.4%
ACCCombined 833% | 873% | 795% | 862% | 871.3%

Improvementgypi 55.1% 35.0% 16.9% 43.0% 20.6%
Improvementgypy | 49.4% 50.2% 35.9% 56.5% 35.9%

ACCaDTrec 67.0% | 745% | 680% | 683% | 802%
ACChrroposed 85.1% | 81.0% | 764% | 824% | 841%
ACChagging 681% | 745% | 697% | 695% | 802%
ACChoosting 67.71% | 745% | 668% | 683% | 80.7%

ACCripa 86.9% | 824% | 792% | 81.7% | 85.6%
ACCCombined 27% | 865% | 858% | 844% | 87.4%

Improvementgyp1 | 54.8% 25.5% 26.3% 44.5% 19.7%
Improvementgypy | 77.9% 47.1% 55.6% 50.8% 36.4%

ACCynN 63.3% 71.7% 67.9% 67.0% 80.2%
ACCproposed 82.1% 78.6% 74.8% 78.1% 83.2%
ACChagging 62.8% 72.6% 67.9% 66.4% 80.7%
ACCBoosting 64.7% 71.7% 66.8% 68.7% 80.9%

ACChpa 84.3% 80.5% 77.7% 82.5% 85.2%
ACCcompined 90.7% 85.7% 84.6% 86.2% 86.6%

Improvementgypr | 51.2% 24.4% 21.5% 33.6% 15.2%
Improvementgypy | 74.7% 49.5% 52.0% 58.2% 32.3%

64

TABLE 6.3: Some experimental results when analyzed the Yeast datasets.

| Datasets | Yea_ 3 | Yea_17 | Yea 21 | Yea 28 | Yea_49 |

ACCpecisionTree 64.1% | 68.0% | 73.6% | 78.7% | 83.6%
ACCproposed 69.4% | 76.1% | 79.6% | 85.4% | 85.3%
ACCpugging 65.7% | 67.6% | 73.5% | 79.8% | 83.6%
ACCBoosting 64.1% | 68.7% | 74.4% | 78.8% | 83.6%
ACCypa 723% | 799% | 82.6% | 87.5% | 87.4%
ACCcombined 78.5% | 83.3% | 85.5% | 88.6% | 89.5%
Improvementgypr | 14.7% | 25.3% | 22.7% | 31.5% | 10.3%
Improvementgypy | 40.1% | 47.8% | 45.1% | 46.5% | 36.0%

ACCsyy 639% | 67.1% | 71.8% | 78.5% | 82.9%
ACCproposed 69.8% | 75.7% | 78.6% | 84.4% | 85.6%
ACCugging 64.1% | 682% | 70.6% | 79.6% | 83.3%
ACCoosting 63.9% | 67.6% | 73.3% | 76.8% | 81.7%

ACCypa 72.8% | 783% | 81.8% | 87.0% | 87.2%
ACCcombined 77.4% | 80.4% | 84.9% | 87.8% | 89.8%

Improvementgyp; | 16.3% | 26.1% | 24.1% | 27.4% | 15.8%
Improvementgypy | 37.3% | 40.4% | 46.4% | 43.3% | 40.3%

ACCApTree 61.4% | 692% | 72.6% | 79.5% | 83.4%
ACCproposed 68.8% | 754% | 79.7% | 82.9% | 86.1%
ACCugging 60.7% | 69.2% | 73.6% | 79.8% | 83.3%
ACCpoosting 59.8% | 68.6% | 71.4% | 79.5% | 83.4%
ACCpa 71.9% | 79.9% | 82.1% | 86.5% | 89.4%
ACCcombined 76.6% | 84.9% | 859% | 87.6% | 91.2%
Improvementgyp1 | 19.2% | 20.1% | 259% | 16.6% | 16.2%
Improvementgypy | 39.3% | 50.9% | 48.5% | 39.5% | 47.0%

ACCynn 62.0% | 66.7% | 73.4% | 76.4% | 82.5%
ACCproposed 68.6% | 75.7% | 79.5% | 83.3% | 84.8%
ACCagging 634% | 66.2% | 71.2% | 76.7% | 81.2%
ACCoosting 62.0% | 67.6% | 74.8% | 78.5% | 80.7%
ACCypa 72.4% | 78.3% | 83.8% | 87.0% | 86.4%
ACCeombined 76.6% | 80.4% | 86.9% | 89.8% | 88.5%
Improvementgypr | 17.4% | 27.1% | 22.9% | 29.2% | 13.1%
Improvementgypy | 38.4% | 41.1% | 50.7% | 56.8% | 34.3%

65

TABLE 6.4: Some experimental results when analyzed the Car evaluation datasets.

| Datasets | Car 4 | Car_ 21 | Car_36 | Car_39 | Car_48 |

ACCpecisionTree 89.2% | 88.9% | 86.4% | 85.0% | 84.3%
ACCproposed 91.0% | 89.6% | 88.2% | 86.5% | 87.3%
ACCagging 89.2% | 89.1% | 86.4% | 85.7% | 83.9%
ACCpoosting 89.2% | 88.9% | 86.4% | 85.0% | 84.3%
ACCypa 933% | 91.5% | 92.7% | 88.5% | 89.2%
ACCcombined 94.6% | 92.7% | 93.6% | 91.2% | 92.5%
Improvementgyp; | 16.6% | 6.30% | 13.2% | 10.0% | 19.1%
Improvementgypy | 50.0% | 34.2% | 52.9% | 41.3% | 52.2%

ACCsyy 89.9% | 88.5% | 85.5% | 85.0% | 86.0%
ACCproposed 91.2% | 89.3% | 88.0% | 87.7% | 89.5%
ACCugging 90.1% | 87.8% | 86.4% | 85.7% | 85.4%
ACCoosting 89.4% | 88.5% | 85.9% | 85.0% | 85.7%
ACCypa 933% | 92.2% | 91.7% | 89.5% | 90.0%
ACCcombined 94.7% | 93.5% | 93.4% | 90.8% | 92.7%
Improvementgypy | 12.9% | 6.96% | 17.2% | 18.0% | 25.1%
Improvementgypy | 47.5% | 43.5% | 54.5% | 38.7% | 47.9%

ACCApTree 88.1% | 87.7% | 85.3% | 79.3% | 81.0%
ACCproposed 88.9% | 89.0% | 88.0% | 81.1% | 83.9%
ACCugging 88.1% | 88.2% | 85.3% | 80.7% | 81.4%
ACCpoosting 88.1% | 87.7% | 84.9% | 80.7% | 80.7%
ACCppa 92.3% | 90.5% | 89.7% | 84.5% | 85.2%
ACCcombined 943% | 94.7% | 93.6% | 87.5% | 87.9%
Improvementgyp1 | 6.72% | 10.6% | 18.4% | 8.70% | 15.3%
Improvementgypy | 52.1% | 56.9% | 56.5% | 39.6% | 36.3%

ACCynpy 88.9% | 86.9% | 85.0% | 84.3% | 82.7%
ACCpyoposed 89.7% | 89.2% | 87.0% | 85.7% | 85.7%
ACChgging 88.6% | 87.5% | 86.4% | 84.3% | 82.7%
ACCBoosting 89.4% | 87.5% | 86.4% | 85.0% | 82.7%

ACChpa 90.3% | 90.5% | 89.7% | 87.4% | 87.5%

ACCcombined 91.7% | 92.7% | 91.6% | 89.7% | 88.3%
Improvementgypr | 7.20% | 17.6% | 13.3% | 891% | 17.3%
Improvementgypy | 25.2% | 44.3% | 44.0% | 34.4% | 32.3%

66

TABLE 6.5: Some experimental results when analyzed the Auto_MPG datasets.

| Datasets | Auto_16 | Auto_34 [Auto_57 | Auto_135 | Auto_364 |
ACCpecisiontree | 61.5% | 13.5% | 75.6% | 68.5% 82.5%
ACCpyoposed 784% | 719% | 7198% | 71.3% 86.6%
ACCpugging 68.7% | 754% | 767% | 68.7% 83.3%
ACCoosting 694% | 748% | 743% | 61.7% 83.6%
ACCripa 793% | 716% | 80.5% | 71.5% 87.8%
ACClombined 822% | 787% | 81.7% | 79.4% 89.8%

Improvementgypr | 33.5% 16.6% 17.2% 27.9% 23.4%
Improvementgypy | 45.2% 19.6% 25.0% 34.6% 41.7%

ACCsyy 68.1% 74.8% 75.3% 68.2% 83.2%
ACCproposed 78.7% 78.5% 79.8% 78.8% 87.9%
ACCpagging 69.8% 75.4% 77.5% 69.3% 84.3%
ACCoosting 71.5% 75.9% 76.7% 68.4% 84.7%

ACChpa 79.8% | 779.5% | 79.5% 79.5% 88.9%
ACCcombined 81.5% 80.1% 79.9% 79.9% 90.5%

Improvementgypi 33.2% 14.7% 18.2% 33.3% 28.0%
Improvementgypy | 42.0% 21.0% 18.6% 36.8% 43.5%

ACCanTree 66.7% | 73.7% | 748% | 61.5% | 83.1%
ACCrroposed 746% | 715% | 185% | 769% | 86.9%
ACCpagging 685% | 73.5% | 756% | 615% | 843%
ACCoosting 678% | 748% | 744% | 689% | 83.9%

ACCrpa 763% | 78.7% | 80.6% | 75.7% | 88.9%
ACCCompined 772% | 194% | 81.1% | 71.8% | 89.7%

Improvementgpp 23.7% 14.4% 14.7% 28.9% 22.5%
Improvementgypy | 31.5% 21.7% 25.0% 31.7% 39.1%

ACCany 67.4% | 742% | 162% | 613% | 82.1%
ACCproposed 785% | 78.6% | 81.5% | 756% | 86.2%
ACCBagging 68.7% | 75.1% | 71.6% | 68.7% | 83.3%
ACCoosiing 69.5% | 749% | 757% | 66.9% | 82.8%

ACCipa 798% | 789% | 824% | 759% | 88.9%
ACCCombined 81.5% | 79.5% | 833% | 798% | 90.1%

Improvementgyp; 34.0% 17.1% 22.3% 25.4% 20.2%
Improvementgypy | 43.3% 20.5% 29.8% 38.2% 42.8%

67

TABLE 6.6: Some experimental results when analyzed the Mammo datasets.

Datasets | Mammo_4 | Mammo_28 | Mammo_69 | Mammo_81 | Mammo_97 |
ACCpecisionTree 74.5% 65.3% 72.6% 86.3% 78.6%
ACCproposed 81.2% 70.8% 79.6% 88.7% 84.5%
ACCugging 76.5% 66.5% 73.3% 86.5% 82.4%
ACCoosting 75.3% 65.9% 72.8% 84.6% 83.1%
ACChpa 81.9% 71.2% 80.7% 87.8% 86.4%
ACCcombined 82.3% 71.6% 81.4% 89.1% 87.7%
Improvementgypi 26.3% 15.9% 25.5% 17.5% 27.6%
Improvementgyp) 30.6% 18.2% 32.1% 20.4% 42.5%
ACCsyym 75.3% 68.5% 73.5% 87.1% 78.8%
ACCproposed 83.3% 73.4% 82.9% 87.6% 83.6%
ACCagging 76.5% 70.1% 74.5% 87.1% 81.2%
ACCoosting 75.9% 69.8% 73.2% 87.1% 82.5%
ACChpa 84.6% 74.6% 83.5% 87.3% 85.4%
ACCcombined 87.4% 74.9% 85.1% 87.9% 86.6%
Improvementgypi 32.4% 15.6% 35.4% 3.88% 22.6%
Improvementgyps 49.0% 20.3% 43.8% 6.2% 36.8%
ACCaDTree 74.2% 67.7% 71.8% 86.9% 78.6%
ACCproposed 79.6% 73.5% 79.6% 88.1% 83.7%
ACCugging 75.4% 69.8% 73.7% 86.9% 79.8%
ACCBoosiing 74.8% 68.5% 74.3% 87.1% 78.4%
ACCpxpa 80.8% 74.4% 80.9% 89.2% 83.9%
ACCcombined 82.2% 74.7% 82.7% 89.5% 85.4%
Improvementgyp 20.9% 18.0% 27.7% 9.16% 23.8%
Improvementgypy 31.0% 21.7% 38.7% 19.8% 31.8%
ACCann 73.6% 66.4% 72.2% 86.6% 77.9%
ACCproposed 77.6% 73.5% 78.7% 87.9% 83.6%
ACCagging 74.7% 67.6% 73.6% 86.8% 78.7%
ACCpoosting 73.6% 68.1% 74.3% 87.5% 77.9%
ACChpa 78.5% 73.2% 80.5% 88.9% 85.1%
ACCcombined 79.8% 75.8% 81.8% 89.3% 85.8%
Improvementgyp 15.2% 21.1% 23.3% 9.70% 25.8%
Improvementgypr 23.5% 28.0% 34.5% 20.1% 35.7%

68

TABLE 6.7: Some experimental results when the 5-attribute artificial datasets were analyzed.

Datasets Mass_5_7 | Mass_5_15 | Mass_5_38 | Mass_5.54 | Mass_5_66
ACCpecisionTree 47.2% 51.6% 49.7% 46.8% 51.3%
ACCproposed 59.7% 63.1% 57.4% 57.8% 62.2%
ACCgging 46.8% 53.7% 51.3% 50.1% 54.5%
ACCBoosting 48.6% 52.1% 50.7% 49.8% 53.6%
ACCypa 51.4% 55.3% 53.8% 49.8% 56.6%
ACCcombined 60.6% 64.4% 58.1% 58.5% 63.9%
Improvementgypi 23.7% 23.8% 15.3% 20.7% 22.4%
Improvementgyps 25.4% 26.4% 16.7% 22.0% 25.9%
ACCsym 47.8% 52.3% 48.2% 47.6% 50.9%
ACCproposed 58.6% 58.7% 59.1% 59.4% 61.8%
ACCpugging 46.1% 52.9% 49.3% 49.5% 53.7%
ACCoosting 47.8% 51.6% 51.4% 48.9% 53.5%
ACCypa 51.4% 57.3% 54.2% 52.1% 55.4%
ACCcombined 59.8% 59.9% 60.3% 59.0% 62.9%
Improvementgypy 20.7% 13.4% 21.0% 22.5% 22.1%
Improvementgypy 23.0% 15.9% 23.4% 21.8% 24.4%
ACCADTree 48.1% 51.3% 49.2% 49.8% 51.6%
ACCproposed 58.7% 57.5% 57.2% 59.3% 61.8%
ACCgging 46.8% 52.1% 48.6% 51.3% 54.3%
ACCoosting 47.2% 51.8% 50.9% 52.2% 55.1%
ACChpa 54.4% 55.3% 52.5% 57.6% 57.8%
ACCcombined 59.6% 59.4% 59.6% 62.2% 62.1%
Improvementgypi 20.4% 12.7% 15.7% 18.9% 21.1%
Improvementgyps 22.2% 16.6% 20.5% 24.7% 21.7%
ACCuNN 46.9% 50.7% 48.4% 48.5% 51.1%
ACCproposed 57.3% 58.8% 57.3% 60.2% 62.8%
ACCpugging 46.9% 50.7% 49.1% 53.4% 55.4%
ACCoosting 47.4% 52.2% 50.4% 54.9% 54.6%
ACCygpa 51.4% 54.8% 53.8% 58.7% 57.8%
ACCcombined 58.5% 59.1% 58.2% 62.1% 63.3%
Improvementgypy 19.6% 16.4% 17.2% 22.7% 23.9%
Improvementgypy 21.8% 17.0% 19.0% 26.4% 24.9%

69

TABLE 6.8: Some experimental results when the 6-attribute and 7-attribute artificial datasets were
analyzed.

Datasets Mass_6_14 | Mass_6_.36 | Mass_6_.41 | Mass_728 | Mass_7_33 | Mass_7_53
ACCpecisionTree 47.2% 52.4% 53.5% 48.6% 54.3% 55.2%
ACCpyroposed 56.5% 60.8% 59.8% 57.6% 63.3% 64.3%
ACCagging 48.4% 54.7% 53.5% 52.2% 55.4% 54.9%
ACCpoosting 47.0% 52.5% 54.3% 51.6% 54.9% 56.7%
ACCypa 50.4% 54.6% 57.6% 55.3% 59.8% 58.9%
ACCcompined 56.1% 61.9% 60.1% 59.8% 65.2% 65.2%
Improvementgypi 19.7% 21.5% 13.5% 17.5% 19.7% 20.3%
Improvementgyps 21.8% 23.7% 14.2% 21.8% 23.9% 22.3%
ACCsyy 47.8% 50.9% 52.8% 49.4% 53.8% 56.6%
ACCpyroposed 57.3% 61.8% 58.8% 60.4% 62.7% 64.3%
ACChugging 48.4% 54.1% 51.5% 53.2% 55.4% 56.7%
ACCBoosting 49.2% 52.6% 52.2% 54.4% 56.3% 58.1%
ACCypa 51.9% 54.7% 56.4% 58.7% 59.8% 62.2%
ACCcompined 58.4% 62.1% 59.8% 62.2% 63.8% 65.0%
Improvementgyp 19.9% 21.6% 12.7% 21.7% 19.3% 17.7%
Improvementgypy 20.8% 22.7% 14.8% 25.3% 21.6% 19.4%
ACCADTree 48.8% 51.5% 54.1% 48.7% 54.9% 54.8%
ACCpyroposed 57.6% 60.3% 62.2% 58.5% 62.2% 63.7%
ACChagging 50.6% 53.5% 54.3% 52.3% 56.5% 55.6%
ACCpoosting 51.4% 54.3% 53.7% 53.1% 54.7% 57.5%
ACCypa 52.5% 55.8% 59.8% 57.8% 60.1% 59.8%
ACCcombined 58.9% 61.1% 64.2% 60.5% 63.5% 65.2%
Improvementgppi 17.4% 19.1% 17.6% 19.1% 16.2% 19.7%
Improvementgypy | 22.5.7% 20.5% 22.0% 23.0% 19.1% 23.0%
ACCyann 48.6% 51.1% 53.5% 49.4% 54.5% 53.9%
ACCproposed 58.2% 60.7% 60.3% 58.7% 64.1% 62.8%
ACCagging 52.5% 54.4% 54.5% 52.1% 56.5% 54.5%
ACCpoosting 53.7% 52.6% 55.6% 51.9% 54.6% 53.7%
ACCypa 51.4% 52.8% 59.8% 58.3% 58.9% 60.7%
ACCcompined 61.7% 63.3% 62.3% 62.7% 64.2% 62.2%
Improvementgyp 21.5% 19.9% 14.6% 18.4% 21.0% 19.3%
Improvementgypy 24.4% 20.9% 18.9% 26.3% 21.3% 18.0%

70

In most of the scenarios, it is more difficult to improve an effective classification model (the one
that can classify the target dataset with high accuracy) than one of poor quality models (the one that
classifies the target dataset with low accuracy). The two relative maximum possible improvement
rates (Improvementgypy and Improvementgypo) provide better measures for expressing improve-
ments. As one can observe from these tables, this is the reason why the proposed approach provides
only little improvements when it analyzed the Car datasets. However, since the classification mod-
els used to classify the Car datasets are already accurate enough, little improvements in such cases
can be very important. This is why it is very critical to observe that the values of Improvementgyp;
in most of the cases are higher than 10%. When Improvementgyp; is considered, then these values
are often times greater than 30%. This is another way, and perhaps more representative, to express
the improvements achieved by the proposed approach. As it can be seen from the computational
results, the proposed approach can be beneficial to a wide range of datasets of various degrees of
classification difficulty.

Furthermore, the performance of the proposed approach dominates that of the Bagging and
Boosting approaches. It is noticed that in these tests the performances of the Bagging and Boosting
approaches were often unpredictable. That is, sometimes, these methods produced better results
when compared to the stand-alone classifiers, while other times they produced inferior results. On
the other hand, the proposed approach always outperformed the stand-alone classifiers as well as
the Bagging and Boosting approaches.

When comparing the proposed approach to HBA, one may observe that the proposed approach
is more effective than the HBA when analyzing difficult datasets (see also Tables 6.7 and 6.8).
Even though in some cases the HBA is more effective than the proposed approach, the HBA ap-
proach takes longer processing time than the proposed one. Moreover, as it can be observed from
Tables 6.1 to 6.8, the proposed approach can classify Type 1 and Type Il testing vectors more
accurately than the HBA. This is the motivation for combining the proposed approach with the

HBA one. The combined approach classifies all Type I and Type II vectors by using the pro-

71

posed monotonicity-based approach, while only the rest of the vectors (i.e., those of Type III) are
classified by using the HBA approach. The corresponding classification results are given by the
ACCcombinea Values. As one can observe from these tables, the values of ACCcpmpinea 1S always
higher than the values of ACCyps and any of the other methods tested and compared.

More importantly, when analyzed the artificial datasets (i.e., the datasets generated with class
values randomly assigned to their vectors), the proposed approach outperformed any other tested
approach in a profound way (see also Tables 6.7 and 6.8). When the stand-alone classifiers were
used in these datasets, in many cases the classification accuracies were below 50%. Therefore, such
classifications are of limited practical benefit. Even when the Bagging and Boosting approaches
were used on these datasets, the classification accuracies were still too low as they cannot be
more than 50% consistently. However, as one can see from the previous tables, by implementing
the proposed approach, the classification accuracies were always greater than 50%, which makes
the classifications meaningful. Furthermore, even when analyzing these very difficult datasets,
the proposed approach can still obtain around 10% improvement in classification accuracy fre-
quently. In terms of the previous relative measure for expressing classification improvements, the
achieved improvements were often times higher than 15% for Improvementgyp; and 20% for

Improvementpyps.

6.3 Analysis of the experimental results
Based on the above discussions, the proposed monotonicity-based approach is very effective in ob-
taining classification improvements. However, it is observed that the performance of this approach
may vary. That is, for some experimental datasets, the implementation of this approach can lead to
significant improvements, while for some other experimental datasets, only small improvements
can be obtained.

This section will explore this phenomenon by performing an analysis on the previous experi-
mental results. It explores the factors that may impact the performance of the proposed approach,

and more importantly, how such factors impact the performance.
72

Tables 6.9 to 6.12 present the analysis of some of the datasets listed in Tables 6.1 to 6.8, while
the classifiers Decision Tree, Artificial Neural Network, ADTree and Support Vector Machine

are used as the base learner, respectively. Moreover,the following factors are what is of interest:

1. The average classification accuracy when the Original Classifier is used to classify the

entire testing dataset in 10-cross validations. This is denoted as Fj.

2. The average classification accuracy when the Derived_Classifiers are also used to facilitate

the classifications on the testing dataset in 10-cross validations. This is denoted as F>.

3. The average percentage of the testing vectors which are Type I vectors in the 10-cross vali-

dation. This is denoted as F3.

4. The average classification accuracy when Type I vectors are classified by the Original_Classifier

in 10-cross validations. This is denoted as Fy.

5. The average classification accuracy when Type I vectors are classified by the Derived_Classifiers

in 10-cross validations. This is denoted as F5.

6. The average percentage of the testing vectors which are Type II vectors in the 10-cross

validation. This is denoted as Fg.

7. The average classification accuracy when Type Il vectors are classified by the Original_Classifier

in 10-cross validations. This is denoted as F7.

8. The average classification accuracy when Type II vectors are classified by the Derived_Classifiers

in 10-cross validations. This is denoted as Fg.

As one can observe from Table 6.9, for all these experimental datasets, their derived F5 and
Fg values are much higher than that of F4 and F7. This observation supports the argument that

the Derived_Classifiers can classify a portion of the testing vectors much more accurately than

73

TABLE 6.9: Some details of experiments when using Decision Tree (J48) as the base classifier.

Datasets F 3 2 Fy F5 Fg F Fg
Aba_7_11 77.6% | 83.3% | 28.6% | 75.4% | 98.8% | 14.7% | 72.4% | 84.6%
Aba 589 | 64.6% | 77.0% | 36.7% | 63.8% | 97.4% | 11.4% | 69.4% | 92.3%
Blood_2 64.6% | 83.1% | 47.4% | 65.3% | 98.2% | 28.1% | 67.3% | 88.9%
Blood 42 | 68.2% | 81.3% | 27.6% | 71.7% | 99.3% | 19.1% | 66.9% | 91.4%
Yea 21 73.6% | 79.6% | 22.8% | 77.4% | 97.7% | 12.6% | 75.7% | 85.3%
Yea_49 83.6% | 85.3% | 11.6% | 85.4% | 98.5% | 12.7% | 86.6% | 90.6%
Car 21 89.2% | 91.0% | 29.3% | 89.5% | 100% | 17.6% | 92.7% | 98.2%
Car 48 84.3% | 87.3% | 27.4% | 86.1% | 94.7% | 14.9% | 84.4% | 92.5%
Auto_34 73.5% | 77.9% | 36.2% | 74.8% | 88.6% | 13.4% | 72.9% | 78.7%
Auto_135 | 68.5% | 77.3% | 38.7% | 69.3% | 90.7% | 21.4% | 67.6% | 81.4%
Mammo 4 | 74.5% | 81.2% | 25.9% | 74.8% | 92.3% | 16.7% | 76.7% | 89.7%
Mammo_69 | 72.6% | 79.6% | 22.5% | 71.5% | 94.4% | 20.3% | 73.5% | 87.4%
Mess 515 | 51.6% | 63.1% | 23.5% | 50.8% | 71.1% | 14.5% | 51.7% | 68.4%
Mess 538 | 49.7% | 57.4% | 31.2% | 53.7% | 76.7% | 31.3% | 49.3% | 70.1%
Mess 6_14 | 46.8% | 57.8% | 289% | 49.8% | 75.4% | 19.8% | 44.1% | 68.7%
Mess_ 636 | 51.3% | 62.2% | 25.3% | 51.7% | 83.4% | 15.4% | 50.8% | 74.3%
Mess_ 728 | 48.6% | 57.6% | 20.1% | 48.7% | 78.5% | 17.8% | 47.9% | 72.3%
Mess_ 733 | 54.3% | 63.3% | 19.8% | 53.4% | 79.5% | 19.6% | 52.6% | 69.8%

TABLE 6.10: Some details of experiments when using Artificial Neural Network as the base classi-
fier.

Datasets F P F Fy Fs Fs F Fg
Aba 711 | 77.6% | 83.8% | 28.6% | 75.5% | 98.6% | 14.7% | 72.3% | 84.7%
Aba 589 |64.6% | T77.7% | 36.8% | 63.1% | 97.5% | 11.4% | 68.5% | 92.5%
Blood_2 64.6% | 83.6% | 46.5% | 65.5% | 98.2% | 28.1% | 67.1% | 88.1%
Blood 42 | 682% | 81.6% | 27.4% | 70.6% | 99.6% | 19.1% | 66.2% | 91.8%
Yea 21 73.8% | 79.1% | 22.4% | 75.2% | 97.4% | 12.6% | 75.7% | 86.2%
Yea 49 83.1% | 85.8% | 11.7% | 84.9% | 98.7% | 12.7% | 86.1% | 91.4%
Car 21 89.2% | 90.5% | 29.3% | 88.2% | 100% | 17.6% | 91.9% | 97.9%
Car_48 84.3% | 87.5.3% | 27.4% | 85.9% | 94.7% | 14.9% | 83.4% | 91.9%
Auto_34 73.5% | 76.9% | 36.2% | 73.8% | 88.6% | 13.4% | 72.1% | 78.1%
Auto_135 | 68.5% | 77.4% | 38.7% | 69.6% | 90.2% | 21.4% | 67.0% | 81.8%
Mammo 4 | 74.5% | 81.8% | 259% | 74.5% | 92.6% | 16.7% | 76.8% | 89.4%
Mammo 69 | 72.6% | 79.4% | 22.5% | 71.7% | 93.9% | 20.3% | 73.1% | 87.5%
Mess 515 | 51.6% | 62.8% | 23.5% | 52.1% | 71.2% | 14.5% | 51.2% | 69.2%
Mess 538 | 49.7% | 57.9% | 31.2% | 52.8% | 76.7% | 31.3% | 50.5% | 71.4%
Mess 614 | 46.8% | 57.1% | 28.9% | 50.6% | 75.4% | 19.8% | 45.1% | 68.9%
Mess 636 | 51.3% | 62.8% | 25.3% | 51.9% | 83.8% | 15.4% | 50.4% | 74.5%
Mess 728 | 48.6% | 58.1% | 20.1% | 49.1% | 77.9% | 17.8% | 47.4% | 72.4%
Mess 733 | 54.3% | 63.8% | 19.8% | 53.8% | 80.5% | 19.6% | 52.2% | 69.1%

74

TABLE 6.11: Some details of experiments when using ADTree as the base classifier.

Datasets F F F Fy Fs Fg F; Fg
Aba 711 | 77.6% | 82.3% | 28.6% | 75.4% | 98.1% | 14.7% | 72.4% | 84.7%
Aba 589 | 64.6% | 77.5% | 36.7% | 63.8% | 97.3% | 11.4% | 69.4% | 92.8%
Blood_2 64.6% | 83.7% | 47.4% | 65.3% | 98.8% | 28.1% | 67.3% | 88.2%
Blood 42 | 68.2% | 81.7% | 27.6% | 71.7% | 98.9% | 19.1% | 66.9% | 90.4%
Yea 21 73.6% | 79.1% | 22.8% | 77.4% | 97.2% | 12.6% | 75.7% | 85.8%
Yea_49 83.6% | 859% | 11.6% | 85.4% | 98.8% | 12.7% | 86.6% | 90.8%
Car_21 89.2% | 90.2% | 29.3% | 89.5% | 100% | 17.6% | 92.7% | 98.2%
Car_ 48 84.3% | 86.9% | 27.4% | 86.1% | 94.8% | 14.9% | 84.4% | 92.8%
Auto_34 73.5% | 77.2% | 36.2% | 74.8% | 88.6% | 13.4% | 72.9% | 79.2%
Auto_135 | 68.5% | 77.8% | 38.7% | 69.3% | 90.7% | 21.4% | 67.6% | 81.8%
Mammo 4 | 74.5% | 81.8% | 25.9% | 74.8% | 92.8% | 16.7% | 76.7% | 89.4%
Mammo_69 | 72.6% | 78.5% | 22.5% | 71.5% | 93.9% | 20.3% | 73.5% | 88.4%
Mess 515 | 51.6% | 63.5% | 23.5% | 50.8% | 71.5% | 14.5% | 51.7% | 68.5%
Mess 538 | 49.7% | 57.7% | 31.2% | 53.7% | 76.2% | 31.3% | 49.3% | 71.2%
Mess_6_14 | 46.8% | 56.6% | 28.9% | 49.8% | 75.7% | 19.8% | 44.1% | 69.5%
Mess_ 636 | 51.3% | 62.5% | 25.3% | 51.7% | 83.4% | 15.4% | 50.8% | 74.8%
Mess 728 | 48.6% | 57.7% | 20.1% | 48.7% | 77.9% | 17.8% | 47.9% | 72.8%
Mess_733 | 54.3% | 63.9% | 19.8% | 53.4% | 79.8% | 19.6% | 52.6% | 69.2%

TABLE 6.12: Some details of experiments when using Support Vector Machine as the base classifier.

Datasets F P 23 Fy F5 Fg F Fg
Aba 7 11 | 77.6% | 82.9% | 28.6% | 75.4% | 98.3% | 14.7% | 72.4% | 85.1%
Aba 58 9 | 64.6% | 75.8% | 36.7% | 63.8% | 96.5% | 11.4% | 69.4% | 92.6%
Blood_2 64.6% | 81.8% | 47.4% | 65.3% | 97.6% | 28.1% | 67.3% | 88.1%
Blood 42 | 68.2% | 81.4% | 27.6% | 71.7% | 98.5% | 19.1% | 66.9% | 90.6%
Yea 21 73.6% | 80.4% | 22.8% | 77.4% | 97.6% | 12.6% | 75.7% | 85.9%
Yea 49 83.6% | 84.6% | 11.6% | 85.4% | 98.5% | 12.7% | 86.6% | 90.1%
Car 21 89.2% | 90.8% | 29.3% | 89.5% | 100% | 17.6% | 92.7% | 98.9%
Car 48 84.3% | 87.6% | 27.4% | 86.1% | 94.7% | 14.9% | 84.4% | 91.5%
Auto_34 73.5% | 78.5% | 36.2% | 74.8% | 89.2% | 13.4% | 72.9% | 77.1%
Auto_135 | 68.5% | 78.1% | 38.7% | 69.3% | 90.0% | 21.4% | 67.6% | 82.5%
Mammo 4 | 74.5% | 81.7% | 25.9% | 74.8% | 91.5% | 16.7% | 76.7% | 88.6%
Mammo_69 | 72.6% | 79.2% | 22.5% | 71.5% | 94.9% | 20.3% | 73.5% | 87.9%
Mess 515 | 51.6% | 63.6% | 23.5% | 50.8% | 72.2% | 14.5% | 51.7% | 68.9%
Mess 538 | 49.7% | 56.9% | 31.2% | 53.7% | 76.1% | 31.3% | 49.3% | 71.3%
Mess 6_14 | 46.8% | 57.3% | 289% | 49.8% | 75.5% | 19.8% | 44.1% | 69.2%
Mess 636 | 51.3% | 61.8% | 25.3% | 51.7% | 83.9% | 15.4% | 50.8% | 75.4%
Mess_ 728 | 48.6% | 57.4% | 20.1% | 48.7% | 77.8% | 17.8% | 47.9% | 72.9%
Mess 733 | 54.3% | 63.6% | 19.8% | 53.4% | 78.6% | 19.6% | 52.6% | 68.9%

75

TABLE 6.13: The details of the linear regression models for the experimental results listed in Ta-
ble 6.9.

Experimental | Coefficient | Coefficient | Coefficient | Coefficient | R-Square
Datasets of F3 of Fy of Fg of F7 Value
Abalone 0.398 -1.754 2.214 -0.856 0.826

Blood 0.289 -0.854 1.135 -0.391 0.904
Yeast 2.313 -1.342 1.432 -2.682 0.823
Car 1.482 -1.439 0.894 -1.432 0.844
Auto_MPG 0.867 -2.134 1.295 -0.851 0.839
Mess_5 2.185 -0.943 2.439 -0.493 0.865
Mess_6 4.328 -3.593 2.118 -3.688 0.792
Mess_7 0.587 -1.175 0.556 -2.214 0.819

the Original Classifier. This is exactly the reason why the proposed approach can consistently
generate more accurate classifications.

For example, the dataset Aba_58_9 has 36.7% of its testing vectors as Type I vectors, and 11.4%
as Type II vectors. Furthermore, when classifying its Type I vectors by using the Original Classifier,
only 63.8% of them can be correctly classified. However, the Derived _Classi fiers can accurately
classify 97.4% of them. Meanwhile, by using the proposed approach, about 92.3% — 69.4% =
22.9% of the Type Il testing vectors can be more accurately classified by the Derived_Classifiers.
Therefore, one can observe about 77.0%-64.6% = 12.4% overall classification improvement by im-
plementing the proposed approach when analyzing the dataset Aba_58_9. In terms of the measure
that expresses the relative improvement, the value is equal to 35%.

In order to better understand how such factors impact the effectiveness of the proposed approach,
several linear regression models were created using the classification improvements (the difference
between the factors F| and F3) as the dependent variable, while the factors F3, Fy, Fg,and F7 were
used as the independent variables. The R-Square values of the models and the coefficients of the
independent variables is what is important. Furthermore, a statistical package by SAS was used to
generate such linear regression models. Tables 6.13 to 6.16 list the regression models derived from

analyzing the experimental results shown in Tables 6.9 to 6.12, respectively.

76

TABLE 6.14: The details of the linear regression models for the experimental results listed in Ta-
ble 6.10.

Experimental | Coefficient | Coefficient | Coefficient | Coefficient | R-Square
Datasets of F3 of Fy of Fg of F7 Value
Abalone 0.385 -1.635 1.562 -0.256 0.808

Blood 0.549 -1.024 1.822 -0.892 0.859
Yeast 2951 -1.852 2.300 -2.100 0.910
Car 2.252 -1.153 1.210 -1.325 0.855
Auto_MPG 1.027 -2.634 1.821 -0.632 0.845
Mess_5 2.525 -0.258 2.025 -1.025 0.896
Mess_6 4.188 -3.521 2.952 -2.845 0.801
Mess_7 0.627 -4.263 1.310 -2.962 0.789

TABLE 6.15: The details of the linear regression models for the experimental results listed in Ta-
ble 6.11.

Experimental | Coefficient | Coefficient | Coefficient | Coefficient | R-Square
Datasets of F3 of Fy of Fg of F, Value
Abalone 0.562 -1.582 2.695 -0.520 0.833

Blood 0.629 -0.364 1.522 -0.361 0.895
Yeast 1.553 -1.698 1.251 -1.252 0.862
Car 1.852 -1.469 1.105 -1.424 0.852
Auto_MPG 0.967 -2.524 1.365 -0.885 0.841
Mess_5 1.265 -0.625 2.025 -0.639 0.806
Mess_6 3.652 -2.365 2.362 -2.526 0.841
Mess_7 1.125 -1.962 1.258 -2.852 0.823

TABLE 6.16: The details of the linear regression models for the experimental results listed in Ta-
ble 6.12.

Experimental | Coefficient | Coefficient | Coefficient | Coefficient | R-Square
Datasets of F3 of Fy of Fy of I, Value
Abalone 0.125 -1.785 2.365 -0.251 0.842

Blood 0.203 -0.254 1.125 -0.896 0.896
Yeast 2.962 -1.361 1.185 -2.155 0.864
Car 1.222 -1.98 0.362 -1.985 0.825
Auto_ MPG 0.256 -2.234 1.510 -0.120 0.817
Mess_5 2.362 -0.693 2.124 -1.012 0.836
Mess_6 4.126 -3.123 2.352 -3.228 0.825
Mess_7 0.587 -1.645 0.450 -2.863 0.842

77

As one can observe from these tables, the R-Square values in most of the models are more
than 0.80, which indicates a satisfactory goodness of fit. Furthermore, the coefficients of the inde-
pendent factors are consistent across the tables, that is, the factors which have positive(negative)
coefficients in one table also have positive(negative) coefficients in all other tables. This obser-
vation indicates that some factors have positive impact to the classification improvements, while
some other factors impact the improvements in a negative way.

To be more specific, the factors which have positive coefficient are directly proportional to the
classification improvements. The increase of their values can help to obtain more accurate classifi-
cations. These are the factors F3 and Fg. In the opposite case, if the factors have negative coefficients
in the models, then they are inversely proportional to the improvements. An increase of their values
will result in less significant improvements when implementing the proposed approach. These are
the factors F4 and F7.

In other words, when implementing the proposed approach to analyze a dataset, the more of
its testing vectors happen to be Type I or Type II vectors, the higher improvements can be ex-
pected. This is supported by the fact that the Type I and Type 1I vectors can be much more accu-
rately classified by the Derived Classifiers. Meanwhile, when analyzing easy datasets, that is,
datasets which can be accurately classified by the Original Classifier, such as the ones with
high F4 and F; values, little improvements can be obtained. This happens because when the
Original Classifiers are effective enough, then there is no significant difference between the per-
formance of the Original Classifier and the Derived _Classifiers. Similar conclusions are reached

when the two relative measures for expressing accuracy are used.

78

Chapter 7

Conclusions

7.1 An Overview of this Research
Our research focused on the problems of how to evaluate the classification difficulty, or learnabil-
ity, of numeric datasets by exploring some monotonicity-based characteristics of the data. More
importantly, how to use such characteristics to improve the classification accuracy. In the experi-
ments described in this dissertation, the difficulty of a dataset is indicated by the average accuracy
when it is classified by a wide set of classifiers. It proposes that such difficulty can be accurately
predicted by analyzing some monotonic characteristics of the dataset, and different types of nu-
meric datasets may show similar relationships between their monotonic characteristics and their
difficulty in learning. Furthermore, by further exploring the monotonic properties of the datasets,
it shows a meta-learning approach to improve the classification accuracies on all numeric datasets.

The definition of monotonicity is first discussed in Section 2 and then further explored by con-
sidering the attributes with positive/negative effects. Two vectors are said to be monotonically
related if and only if they are defined on the same positive/negative attributes and one precedes
another. Furthermore, by considering their class values, a pair of related vectors may comprise an
AMP1 pair, an AMP2 pair, or a CMP pair. After one considers all possible pairs of vectors, some
special vectors, called border points or extended border points, can be determined accordingly. By
analyzing such monotonically related vectors and the border points, the key monotonic features of
datasets can be determined.

Several groups of experiments were designed and performed to explore the relationships be-
tween the difficulty of numeric datasets and their monotonic characteristics. The details are pro-

vided in Section 4. According to the experimental results, regression models generated by deter-

79

mining the monotonic characteristics of the numeric datasets can be used to evaluate their difficul-
ties very accurately.

One of the main contributions of our study is to propose and demonstrate that the monotonic
features of numeric datasets play an important role in determining their difficulty. Furthermore, by
analyzing these monotonic features, one can generate regression models that can accurately predict
such difficulty for numeric datasets provided that the datasets have enough number (i.e., more than
4%) of monotonically related vectors. In the experiments of analyzing continuous datasets, even
though continuous datasets may differ in many ways, they still present similar key relationships
between their monotonic features and their classification difficulties.

Based on the above observation, we proposed an approach for dividing a difficult to classify
training dataset into a group of easily to classify subsets. As result, classifiers derived from the
smaller datasets tend to be much more accurate than the classifier derived when the original dataset
is used as a whole. When the classifiers from the smaller datasets are combined together, the
combined classification system performs consistently better than the original classifier derived
from the entire dataset.

The proposed approach has been compared against the stand-alone approach for a number of
well-known classifiers. It has also been compared to Boosting and Bagging approaches as well
as the HBA approach [35]. In all occasions, the new approach outperformed all the previous ap-
proaches on a wide range of tests. For the HBA case, a combined approach is proposed as well
which is profoundly more powerful than any other approach. This is a meta-heuristic approach, as
it can be used in conjunction with any known classifier, and offers an exciting potential to signifi-

cantly improve classification results in many cases.

7.2 Significance of the Findings of this Research
Before this research if one wanted to determine how difficult or easy a dataset is to classification
analysis (i.e., what is called here its learnability value), he/she would had to extensively analyze

the dataset in terms of many classifiers and collect statistical information. Such an approach is
80

time consuming and also might be biased as one does not know which classifiers to use for this
examination. But even more important, one would have no clue why a given dataset is difficult or
easy for classification analysis. Thus, one would have to repeat this tedious approach with any new
dataset.

The main conclusion of this research, however, provides a satisfactory answer to this challenge.
It demonstrates that the monotonicity properties of numeric datasets are the main factors which im-
pact their classification difficulty. Moreover, a method is introduced which uses some key mono-
tonic properties to build regression models, and data from the experimental results. The derived
regression models are quite powerful in predicting the classification difficulty quite accurately for
many datasets.

Comparing to the traditional approach, the proposed method takes much shorter time without
significantly compromising on accuracy. Furthermore, it only uses the monotonic relationships
between pairs of vectors in the target dataset, and it is not concerned on what classifier will be
used. That is, the only required data are dataset specific.

The above discovery is great contribution. However, there is another major contribution as well.
It uses these results to improve classification accuracy when a classifier is used. This was demon-
strated in Section 6. Which provides a general method for improving classification accuracy in
various application domains.

First of all, the proposed approach is a meta-learning approach, and thus any classification al-
gorithm can be used as the base classifier. Next, it works with any numeric dataset regardless the
application domain, measurement units and so on. Last but not least, this approach can improve the
classifications on any dataset provided that all attributes can somehow be converted into ordinal
ones.

The classification improvement gained by implementing the proposed approach is significant
and stable, according to the experimental results. The relative maximum possible improvement

was frequently above 25%, regardless the difficulty of the experimental dataset used for the test.

81

Moreover, there exist some very difficult datasets that most of the classifiers cannot classify them
with more than 50% accuracy. In this particular scenario traditional methods are doing meaningless
classifications since they perform no better than the most naive random guessing. However, by
analyzing the monotonic properties of difficult datasets, the proposed approach can always classify
them with more than 50% accuracy, which makes classification more meaningful.

In summary, this research addressed successfully the following important challenges that had de-
fied explanation until now: a) What factors make a dataset easy or difficult? b) How these factors
impact the data difficulty? ¢c) How to evaluate the data difficulty by analyzing these factors? and d)
How to use such factors to improve classification? The answers to these challenges not only solve
an existing mystery in data analysis, but also forge a solid foundation for future studies on mono-
tonicity, such as monotonicity in transfer learning and in cases under different misclassification
costs for the various types of error that may occur during the classification process. Considering
the bright prospects of using monotonicity in data analysis, the end of this research is just a new

beginning.

82

References

[1] J. Abonyi, J. Roubos, and F. Szeifert. Data-driven generation of compact, accurate, and
linguistically sound fuzzy classifiers based on a decision-tree initialization. [International

Journal of Approximate Reasoning, 32(1):1-21, 2003.

[2] G.Baudat and F. Anouar. Kernel-based methods and function approximation. Proceedings of

2001 International Joint Conference on Neural Networks (IJCNN °01), 2:1244-1249, 2001.

[3] E. Boros, P. Hammer, and T. Ibaraki. Polynomial-time recognition of 2-monotonic positive

boolean functions given by an oracle. SIAM Journal of Computing, 1997.
[4] L. Breiman. Random forests. Machine Learning, 45(4):5-32, 2001.
[5] Leo Breiman. Bagging predictors. Machine Learning, 24(2), 1996.

[6] H. Buhrman and R. D. Wolf. Complexity measures and decision tree complexity: a survey.

Theoretical Computer Science, 288(9):2002-2034, 1999.

[7] J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and

Knowledge Discovery, 2(2):121-167, 1998.

[8] M. Camara, F. Gustin, and H. Gualous. Supercapacitors and battery power management for
hybrid vehicle applications using multi boost and full bridge converters. Power Electronics

and Applications, 2007 European Conference, 2(5):71-98, 2007.

[9] O. Chapelle. Training a support vector machine in the primal. Neural Computation.,

19(5):1115-1178, 2007.

[10] Y. Chung and S. Moon. Memory allocation with lazy fits. ISMM ’00 Proceedings of the 2nd

international symposium on Memory management, 36(1):189-227, 2000.

83

[11] R. Church. Numerical analysis of certain free distributive strctures. Duke Math, 6:732-734,

1940.

[12] G.F. Cooper. The computational complexity of probabilistic inference using bayesian belief

networks. Artificial Intelligence, 42(3):393-405, 1990.

[13] S. Dash and R. Rengaswamy. Fuzzy-logicbased trend classification for fault diagnosis of

chemical processes. Computers and Chemical Engineering, 27(3):347-362, 2003.

[14] R. Dedekind. Ueber zerlegungen von zahlen durch ihre grossten gemeinsamen teiler.

Festchrift Hoch. Braunschweigu.ges. Werke, 2:103—-148, 1897.

[15] G. Demirz and T. Altay. Classification by voting feature intervals. Machine Learning:

ECML-97, 1224(1997):85-92, 1997.

[16] H. Drucker and R. Schapire. Boosting performance in neural networks. International Jour-

nal of Pattern Recognition and Artificial Intelligence, 07(04), 1993.

[17] W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for rule-based data

understanding. Proceedings of the IEEE, 92(5):771-805, 2004.

[18] B. Efron. The efficiency of logistic regression compared to normal discriminant analysis.

Journal of the American Statistical Association, 70(6):98—124, 1975.

[19] M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunctive

normal forms. Journal of Algorithms, 21(3):618-628, 1996.

[20] Y. Freund. The alternating decision tree learning algorithm. In ICML ’99: Proceedings of

the 16th International Conference on Machine Learning, 13(2):124-133, 1999.

[21] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. In Proceedings of EuroCOLT; 94: European Conference on Com-

putational Learning Theory. LNCS, 6(9):171-185, 1994.
84

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. Gainanov. On one criterion of the optimality of an algorithm for evaluating mono-
tonic boolean functions. USSR Computational Mathematics and Mathematical Physics,

24(4):176-181, 1985.

G. Hansel. Sur le nombre des fonctions boolenes monotones den variables. C. R. Acad. Sci.

Pair., 262(20):1088-1090, 1966.

T. Horvjdath, G. Pass, F. Reichartz, and S. Wrobel. A logic-based approach to relation extrac-
tion from texts. /9th International Conference on Inductive Logic Programming, 18(6):34—

48, 2009.

G. Huang, P. Saratchandran, and N. Sundararajan. A generalized growing and pruning rbf
(ggap-rbf) neural network for function approximation. IEEE Trans. on Neural Networks,

16(1):57-67, 2005.

A. Jarre and B. Paterson. Knowledge-based systems as decision support tools in an ecosys-
tem approach to fisheries: Comparing a fuzzy-logic and a rule-based approach. Progress In

Oceanography, 79(2):390-400, 2008.

B. Kernighan and X. Lin. An efficient heuristic procedure for partitioning graphs. Bell

Systems Technical Journal, 49(2):291-308, 1970.

B. Kovalerchuk, E. Triantaphyllou, A. S. Deshpande, and E. Vityaev. Monotone boolean
function learning techniques integrated with user interaction. Information Sciences, 151,

1996.

C. Lewis. Naive (bayes) at forty: The independence assumption in information retrieval.

Machine Learning, 4(15):1398-1414, 1998.

X. Liao, C. Li, and K. Wong. Criteria for exponential stability of cohen-grossberg neural
networks. Neural Networks, 17(10):1401-1414, 2004.
85

[31] C.J. Lin. http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html. 2003.

[32] T. Makino and L. Ibaraki. The maximum latency and identification of positive boolean func-

tions. SIAM Journal on Computing., 26:1363—1383, 1997.

[33] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris, and D.M. Hummels. On the training of

radial basis function classifiers. Neural Networks, 5(4):595-603, 1992.

[34] R. A. Olshen. Classification and regression trees. Wadsworth and Brooks Cole Advanced

Books and Software, Pacific California, 11(6):97-106, 1984.

[35] H.N.A Pham and E. Triantaphyllou. An application of a new meta-heuristic for optimiz-
ing the classification accuracy when analyzing some medical datasets. Expert Systems with

Applications, 36(5), 2009.

[36] M. Saks and A. Wigderson. Probabilisitic boolean decision trees and the complexity of

evluting game trees. Proceedings of the 27th FOCS, 7(3):29-38, 1986.

[37] Documentation of regression models, 2008. http://support.sas.com/documentation/.

[38] N. Sokolov. On the optimal evaluation of monotonic boolean functions. Ussr Computational

Mathematics and Mathematical Physics., 22(2):207-220, 1982.

[39] J. A. K. Suykens. Least squares support vector machine classifiers. Neural Processing Let-

ters., 9(3):293-300, 1999.

[40] T. Tersvirta, C. Lin, and J. Granger. Power of the neural network linearity test. Journal of

Time Series Analysis, 14(2):209-220, 1996.

[41] V. Torvik and E. Triantaphyllou. Minimizing the average query complexity of learning mono-

tone boolean functions. INFORMS Journal of Computing, 14(2):144—174, 2002.

86

[42] V. Torvik and E. Triantaphyllou. Guided inference of nested monotone boolean functions.

Information Sciences, (151):171-200, 2003.

[43] E. Triantaphyllou. Data Mining and Knowledge Discovery via Logic-Based Methods: The-

ory, Algorithms and Applications. Springer, New York, NY, USA, 2010.

[44] 2012. http://archive.ics.uci.edu/ml/datasets.html.

[45] M. Ward. Note on the order of free distributive lattices. Bull America Mathematics Society,

52:423, 1946.

[46] Data mining with open source machine learning software, 2004.

http://www.cs.waikato.ac.nz/ml/weka/.

[47] S. Xu and J. Lam. A new approach to exponential stability analysis of neural networks with

time-varying delays. Neural Networks, 19(1):76-83, 2006.

87

Vita

Di Lin, a native of Fuzhou, Fujian, China, received his bachelor degree at Fuzhou University in
2003. Thereafter, he worked for APEX software company for four years in Fuzhou, Fujian, China.
As his interest in computer science grew, he made the decision to enter graduate school in the
school of electrical engineering and computer science, computer science and engineering division
at Louisiana State University. After four and half years, he got his master degree in System Science
in December 2011. Then he decided to start his career in industry while part time continue his PHD.
He will receive his PH.D degree in Computer Science in August 2013.

During his part-time study period, Di Lin worked for Risk Management Solution as a software
engineer for 13 months. Then he joined Acxiom as a senior software engineer, his work is closely

related to his research, that is, deal with big data and focus on data analysis.

88

	Louisiana State University
	LSU Digital Commons
	2013

	Exploring the Learnability of Numeric Datasets
	Di Lin
	Recommended Citation

	Acknowledgements
	Abstract
	Chapter Introduction
	Chapter Introduction to Monotonicity
	The Monotonic Property in Datasets
	Key Definitions Related to Monotonicity
	Graphical Representation in Two Dimensions
	Data with both Positive and Negative Attributes
	Graphical Representation for Datasets With Positive and Negative Attributes
	Types of Pairs of Vectors

	Chapter The Experimental Design for Binary Datasets
	Design Issues of Experiments with Some Artificial Binary Datasets
	Generating the Binary Experimental Datasets
	Classifiers from WEKA

	Chapter The Experimental Study
	Parameters Used to Describe the Monotone Structure of a Dataset
	Experiments with Binary Datasets
	Experiments with Some Continuous Datasets

	Chapter A Meta-Learning Approach
	The Motivation of the Meta-Learning Approach
	Data Pre-processing
	The Pilot Study
	The Proposed Approach to Improve Classifications
	A Monotonicity-Based Classification Approach

	Chapter Experiments For Meta-Learning Approach
	Some Preliminaries on the Experiments
	The Experimental Results
	Analysis of the experimental results

	Chapter Conclusions
	An Overview of this Research
	Significance of the Findings of this Research

	References
	Vita

