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Abstract

Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry,

such as the coupled cluster method. The Tensor Contraction Engine (TCE) is a high-level program synthesis

system that facilitates the generation of high-performance parallel programs from tensor contraction equa-

tions. We are developing a new software infrastructure for the TCE that is designed to allow experimentation

with optimization algorithms for modern computing platforms, including for heterogeneous architectures

employing general-purpose graphics processing units (GPGPUs). In this dissertation, we present improve-

ments and extensions to the loop fusion optimization algorithm, which can be used with cost models, e.g.,

for minimizing memory usage or for minimizing data movement costs under a memory constraint. We

show that our data structure and pruning improvements to the loop fusion algorithm result in significant

performance improvements that enable complex cost models being use for large input equations. We also

present an algorithm for optimizing the fused loop structure of handwritten code. It determines the regions in

handwritten code that are safe to be optimized and then runs the loop fusion algorithm on the dependency

graph of the code. Finally, we develop an optimization framework for generating GPGPU code consisting of

loop fusion optimization with a novel cost model, tiling optimization, and layout optimization. Depending on

the memory available on the GPGPU and the sizes of the tensors, our framework decides which processor

(CPU or GPGPU) should perform an operation and where the result should be moved. We present extensive

measurements for tuning the loop fusion algorithm, for validating our optimization framework, and for

measuring the performance characteristics of GPGPUs. Our measurements demonstrate that our optimization

framework outperforms existing general-purpose optimization approaches both on multi-core CPUs and on

GPGPUs.

x



Chapter 1
Introduction

The Tensor Contraction Engine (TCE) [BAB+05b] targets a class of electronic structure calculations, which

involve many computationally intensive components expressed as tensor contractions, essentially a collection

of multi-dimensional summations of the product of several higher-dimensional arrays. Manual development

of accurate quantum chemistry models in this domain is very tedious and takes an expert several months

to years to develop and debug without the proper tools. The TCE aims to reduce the development time to

hours/days, by having the chemist specify the computation in a high-level form, from which an efficient

parallel program is automatically synthesized. The computational structures that are addressed by the TCE are

present in some computational physics codes modeling electronic properties of semiconductors and metals,

and in computational chemistry codes such as ACES II [SGW+], GAMESS [SBB+93], Gaussian [FF96],

NWChem [VBG+10], PSI [CSV+07], and MOLPRO [WKM+10]. The synthesis of efficient parallel code

from a high-level specification as a set of tensor contractions requires many optimization issues to be

addressed. The approach has broader applicability and can be used in the automatic synthesis of out-of-core

algorithms from abstract specifications in the form of loop computations with abstract arrays.

The objective is to minimize the execution time of such computations on a parallel computer while staying

within the available memory. In addition to the performance optimization issues pertaining to inter-processor

communication and data locality enhancement, there is an opportunity to apply algebraic transformations

using the properties of commutativity, associativity and distributivity to reduce the total number of arithmetic

operations.

A performance model-driven search-based approach to program transformation [BAB+05b, BBC+02,

BKC+03, CBL+02b, KKB+03, KKB+04, KKB+06, GSL+05] has been pursued in the context of TCE.

The TCE takes a high-level specification expressed as a set of tensor contraction expressions as input and

optimizes it by using algebraic transformations and common subexpression elimination (CSE) to find an

equivalent operation-minimal form of the computation and by searching for an evaluation order that uses

the least amount of memory. If such an evaluation order is not found, a search for disk I/O placements

and loop fusion configurations is performed that minimizes disk-to-memory traffic while ensuring that the

1



storage requirements for intermediates do not exceed the memory limit. Recent work [MKA11] extended

this approach to orchestrate data across an additional level of memory hierarchy, namely GPGPU memory. In

certain cases it may be cheaper to recompute parts of a computation instead of paying the penalty for disk I/O.

If a computation is that large that after loop fusion some of the intermediates do not even fit on disk, as can

be the case in quantum chemistry, there is no choice but to use recomputation to further reduce the storage

requirements. For clusters, a communication optimizer has been developed that optimizes the inter-processor

communication by considering communication cost together with finding a loop fusion configuration for

minimizing storage without exceeding the available memory on each processor [Lam99, HSN+05, HLH+09].

The input arrays or intermediates that do not fit in memory are transposed if necessary using effective

out-of-core transpose algorithms. Finally, the layout of intermediates in memory is optimized and the final

code is generated. The TCE can generate either sequential out-of-core code or parallel code using the Global

Arrays and Disk-Resident Arrays libraries that interfaces with the NWChem quantum chemistry suite.

We have developed an optimization framework that appropriately models the relation between loop fusion

and memory usage. We present algorithms that find an optimal loop fusion configuration that minimizes

memory usage, under both static and dynamic memory allocation models.

Reduction of arithmetic operations has been traditionally done by compilers using the technique of

common subexpression elimination [FL91]. Much work has been done on improving locality and parallelism

by loop fusion [KM94, MA97, SM97]. However, the TCE considers a different use of loop fusion [LCBS99],

which is to reduce array sizes and memory usage of automatically synthesized code containing nested loop

structures. Traditional compiler research does not address this use of loop fusion because this problem does

not arise with manually-produced programs. We are unaware of any work on fusion of multi-dimensional

loop nests into imperfectly-nested loops as a means to reduce memory usage.

A prototype of the TCE [Hir03] has been successful in introducing many new models into the NWChem

suite by developing several useful domain-specific transformations. An optimizing TCE [BAB+05a] has

been developed primarily at the Ohio State University that has explored many novel optimization algorithms.

However, many key aspects in optimizing tensor contraction codes remain unexplored as both the Prototype

TCE and the Ohio TCE versions were primarily developed before the era of multi-cores, GPGPUs, and

heterogeneous computing; they do not provide sufficient support for tree transformations and for generating

multi-core parallelism or GPU code. Their monolithic structure is too inflexible to adapt for multi-target

2



code generation. They also do not take advantage of major recent advances in polyhedral compilation models

that provide exact dependency analysis and a more efficient way to perform program transformations, as can

be found in the tools Pluto [BHRS08a, BBK+08, BHRS08b, BRS10] and PrimeTile [HBB+09b, HBB+09a,

BHH+10]. The TCE does not have Fortran or C++ frontend support for handwritten code and does not support

dependency analysis. Also, since not all quantum chemistry codes can be expressed in the form of tensor

contraction expressions, it would be desirable if some of the optimization algorithms, in particular the loop

fusion and tiling optimizations, could be applied to handwritten code and if the TCE optimization algorithms

could support symmetric and block-sparse tensors. Additional research on data movement optimization

and parallelization and on developing the cost models for the compiler to perform these optimizations for

heterogeneous systems is needed. The final product should also interface with quantum chemistry suites and

other simulation tools.

This dissertation aims to improve upon the existing TCE compilation framework by addressing some of

the unexplored issues through effective performance models and search-based optimization algorithms and

by generating efficient, platform-adaptable implementations of tensor contractions. The contributions of this

thesis are the following:

• We have developed a new software infrastructure for the TCE on top of the ROSE compiler infrastruc-

ture [RSE]. We have added a frontend to ROSE for our improved TCE source language and provide

support for implementing TCE optimization algorithms both in the frontend and on ROSE abstract

syntax trees.

• We have made significant performance improvements to the loop fusion optimization algorithm that

allow large quantum chemistry equations to be optimized with complex (2-dimensional) loop fusion

cost models, and we have developed a loop fusion cost model for memory minimization with dynamic

memory allocation.
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• We have developed a loop fusion optimization algorithm that can be applied to simple handwritten

code as an alternative to the loop fusion algorithm for expression trees representing tensor contraction

equations.

• We have developed an optimization framework for generating GPGPU code for tensor contractions. The

optimization framework consists of a novel cost model for the loop fusion algorithm and refinements

of the tiling and layout optimization algorithms.

• We have performed extensive measurements to document the performance characteristics of the

loop fusion algorithm as well as to understand the performance characteristics of tensor contraction

computations on multi-core CPUs and on GPGPUs.

• We have demonstrated that the performance of code resulting from our optimization framework for

dense tensor contractions is superior to that of code generated by polyhedral compiler frameworks,

both on multi-core CPUs and on GPGPUs.
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Chapter 2
Background

2.1 Operation Minimization

In the class of computations considered, the final result to be computed can be expressed as multi-dimensional

integrals of the product of many input arrays. Due to commutativity, associativity and distributivity, there are

many different ways to obtain the same final result and they could differ widely in the number of floating

point operations required. The problem of finding an equivalent form that computes the result with the least

number of operations is not trivial and so a software tool for doing this is desirable.

Consider, for example, the multi-dimensional integral shown in Figure 2.1(a), where the input arrays are

assumed to be produced by generator functions. If implemented directly as expressed (i.e., as a single set

of perfectly-nested loops), the computation would require 2 × Ni × Nj × Nk × Nl arithmetic operations

to compute. However, assuming associative reordering of the operations and use of the distributive law of

multiplication over addition is satisfactory for the floating-point computations, the above computation can be

rewritten in various ways. One equivalent form that only requires 2×Nj×Nk×Nl+2×Nj×Nk+Ni×Nj

operations is given in Figure 2.1(b). It expresses the sequence of steps in computing the multi-dimensional

integral as a sequence of formulas. Each formula computes some intermediate result and the last formula gives

the final result. A formula is either a product of two input/intermediate arrays or a integral/summation over

one index, of an input/intermediate array. A sequence of formulas can also be represented as an expression

tree. For instance, Figure 2.1(c) shows the expression tree corresponding to the example formula sequence.

The problem of finding a formula sequence that minimizes the number of operations has been proved to be

NP-hard [LSW97].

2.2 Memory Minimization Problem

In implementing the computation represented by an operation-count-optimal formula sequence (or an

expression tree), it may be necessary to perform loop fusion to reduce the sizes of the intermediate arrays.

Without fusing the loops, intermediate arrays could be too large to fit into available memory. There are many

different ways to fuse the loops and they could result in different memory usage.
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W [k] =
∑

(i,j,l)A(i, j)×B(j, k, l)× C(k, l)

(a) A multi-dimensional integral

fA[i, j] = A(i, j)
f1[j] =

∑
i fA[i, j]

fB[j, k, l] = B(j, k, l)
fC [k, l] = C(k, l)
f2[j, k, l] = fB[j, k, l]× fC [k, l]
f3[j, k] =

∑
l f2[j, k, l]

f4[j, k] = f1[j]× f3[j, k]
W [k] = f5[k] =

∑
j f4[j, k]

(b) A formula sequence for computing (a)

B(j, k, l) C(k, l)

�
��

@
@@

A(i, j) ×f2

∑
i

∑
lf1 f3

�
��

@
@@

×f4

∑
jf5

(c) An expression tree representation of (b)

FIGURE 2.1. An example multi-dimensional integral and two representations of a computation.

Consider again the computation W [k] =
∑

j(
∑

i(A(i, j))×
∑

l(B(j, k, l)×C(k, l))), with the expression

tree shown in Figure 2.1(c). A naive approach to implement this expression is to use a set of perfectly nested

loops for each node in the tree, as shown in Figure 2.2(a). The brackets indicate the scopes of the loops.

Code for array allocation and initialization is omitted for clarity. Figure 2.2(b) shows how the sizes of the

arrays may be reduced by using loop fusion. It shows the resulting loop structure after fusing all the loops

between A and f1, all the loops among B, C, f2, and f3, and all the loops between f4 and f5. After fusing all

the loops between a node and its parent, each array element gets used immediately after it is produced. The

dimensions of the child array are, therefore, no longer needed and can be eliminated. Here, fA, fB, fC , f2,

and f4 are reduced to scalars. Note that some loop nests (such as those for B and C) were reordered and

some loops within loop nests (such as the j-, k-, and l-loops for B, f2, and f3) were permuted in order to

facilitate loop fusions.
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for i[
for j[
fA[i,j]=A(i,j)

for j for k[
for l[
fB[j,k,l]=B(j,k,l)

for k[
for l[
fC[k,l]=C(k,l)

initialize f1
for i[
for j[
f1[j]+=fA[i,j]

for j for k[
for l[
f2[j,k,l]=fB[j,k,l]×fC[k,l]

initialize f3
for j for k[

for l[
f3[j,k]+=f2[j,k,l]

for j[
for k[
f4[j,k]=f1[j]×f3[j,k]

initialize f5
for j[
for k[
f5[k]+=f4[j,k]

initialize f1
for i for j[

fA=A(i,j)
f1[j]+=fA

initialize f3
for k
for l
fC=C(k,l)
for j fB=B(j,k,l)
f2=fB×fC
f3[j,k]+=f2

initialize f5
for j for k[

f4=f1[j]×f3[j,k]
f5[k]+=f4

for k[
for l[
fC[k,l]=C(k,l)

initialize f5
for j

for i[
fA[i]=A(i,j)

initialize f1
for i[
f1+=fA[i]

for k

initialize f3
for l fB=B(j,k,l)
f2=fB×fC[k,l]
f3+=f2

f4=f1×f3
f5[k]+=f4

(a) (b) (c)

q qA q q qB q q C
q qf1 q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

pppppp pppppp p p p p p pp p p p p pp p p p p p pppppp pppppp
p p p p p p pppppp pppppp pppppppppppp pppppppppppp pppppp

q qA q q qB q q C
q qf1 q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

�
�
�
�
�
�
@
@
@
@

p p p p p p pppppp pppppp q qA q q qB q q C
q qf1 q q qf2

q q qf3

q qf4

q qf5

i

j k

l

i j

j k l k l

pppppp
�
�
�
�
�
� pppppp pppppp

�
�
@
@
@
@

(d) (e) (f)

FIGURE 2.2. Three loop fusion configurations for the expression tree in Figure 2.1.
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For this example, we assume the leaf node arrays (i.e., input arrays) can be generated one element at a time

by a generator function so that loop fusions with their parents are allowed. This assumption holds for arrays

in which the value of each element is a function of the array subscripts, as in many arrays in the physics

and chemistry computations that we work on. Our algorithm also handles the case where arrays are already

memory-resident, and, as will be shown in Section 2.4.6, the case where an input array has to be read in or

produced in a certain order, in slices, or in its entirety.

Figure 2.2(c) shows another possible loop fusion configuration obtained by fusing all the j-loops and then

all the k-loops and l-loops inside. The sizes of all arrays except fC and f5 are smaller. By fusing the j-, k-,

and l-loops between those nodes, the j-, k-, and l-dimensions of the corresponding arrays can be eliminated.

Hence, fB , f1, f2, f3, and f4 are reduced to scalars while fA becomes a one-dimensional array. Since j is the

outermost loop, the k- and l-loops cannot be fused between C and f2.

In general, fusing a t-loop between a node v and its parent eliminates the t-dimension of the array v and

reduces the array size by a factor of Nt. In other words, the size of an array after loop fusions equals the

product of the ranges of the loops that are not fused with its parent. We only consider fusions of loops among

nodes that are all transitively related by (i.e., form a transitive closure over) parent-child relations. Fusing

loops between unrelated nodes (such as fusing siblings without fusing their parent) has no effect on array

sizes. We also restrict our attention to loop fusion configurations that do not increase the operation count.

The tradeoff between memory usage and arithmetic operations is considered in Section 2.4.7.

For the class of loops considered here, the only dependence relations are those between children and

parents, and array subscripts are simply loop index variables. Loop permutations, loop nests reordering,

and loop fusions are, therefore, always legal as long as child nodes are evaluated before their parents. This

freedom allows the loops to be permuted, reordered, and fused in a large number of ways that differ in

memory usage. Finding a loop fusion configuration that uses the least memory is not trivial.

In the examples above, we have assumed that leaf node arrays are generated and that each array element

should be generated only once. This assumption is appropriate if generating array elements is expensive.

However, if leaf arrays are already in memory, this assumption is too restrictive. By allowing leaf arrays

to be accessed repeatedly at zero cost, we might enable additional loop fusions. For example, if the array

C in Figure 2.2(c) were already in memory, we could allow rereading it for every iteration of the j-loop,

which would allow full fusion of C with f2. Since the appropriate treatment of leaf arrays depends on the
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application, we allow both. We will use the function call notation A(i, j) for arrays that are generated by a

generator function call and the notation A[i, j] for arrays that are already memory resident.

Definition 2.2.1. More formally, we define an expression tree to be a tree structure consisting of the following

types of nodes:

• Array(a,i): An array reference a[i] of a memory-resident array a with index vector i.

• Fun(f, i): A function call f(i) of function f with index vector i as arguments.

• Const(x): The integer or floating point constant x.

• BinOp(o, l, r): A binary operator expression l o r with operator o, left subtree l, and right subtree r,

where o ∈ {+,−, ∗}.

• Sum(i, t): A summation operator
∑

i t with summation index set i and subtree t.

We define the memory minimization problem as follows:

Given an expression tree T and the ranges of all indices.

Find a loop structure for computing T that uses the least amount of temporary storage without

increasing the operation count. We assume that leaf array references and constants are memory-

resident and can be accessed repeatedly at zero cost.

2.3 Fusion Graphs

For facilitating the enumeration of all possible loop fusion configurations for a given expression tree, we

define a representation of the expression tree’s loop structure we call a fusion graph. The fusion graph makes

the indices of nodes in the expression tree explicit and indicates the scopes of fused loops.

Definition 2.3.1. Let T be an expression tree. For any given node v ∈ T , let subtree(v) be the set of nodes

in the subtree rooted at v, parent(v) be the parent node of v, and indices(v) be the set of loop indices for v

(including the summation indices sumindices(v) if v is a summation node). A fusion graph representation of

a fused loop structure for T is constructed as follows:

1. Corresponding to each node v in T a fusion graph contains a set of vertices, one for each index

i ∈ indices(v).
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2. For each Array or Const node v in T and for each index i ∈ indices(parent(v)) − indices(v) that is

fused between v and its parent (i.e., for each loop in which v is accessed redundantly), an i-index is

added to the set of nodes corresponding to v.

3. For each loop of index i that is fused between a node and its parent, the i-vertices for the two nodes are

connected with a fusion edge.

4. For each index i that is shared between a node and its parent, for which the corresponding loops are

not fused, the i-vertices for the two nodes are connected with a potential fusion edge.

Figure 2.2 shows the fusion graphs alongside the loop fusion configurations. Fusion edges are drawn as

solid lines. Potential fusion edges, i.e., fusion opportunities that were not exploited, are drawn as dotted lines.

As an example, consider the loop fusion configuration in Figure 2.2(b) and the corresponding fusion graph in

Figure 2.2(e). Since the j-, k-, and l-loops are fused between f2 and f3, there are three fusion edges between

f2 and f3 in the fusion graph, one for each of the three loops. Since no loops are fused between f3 and f4, the

edges between f3 and f4 in the fusion graph remain potential fusion edges.

Definition 2.3.2. In a fusion graph, we call each connected component of fusion edges (i.e., a maximal set

of connected fusion edges) a fusion chain, which corresponds to a fused loop in the loop structure. The scope

of a fusion chain c, denoted scope(c), is defined as the set of nodes it spans.

In Figure 2.2(f), there are three fusion chains, one for each of the j-, k-, and l-loops; the scope of the

shortest fusion chain is {B, f2, f3}. The scope of any two fusion chains in a fusion graph must either be

disjoint or a subset/superset of each other. Scopes of fusion chains do not partially overlap because loops

do not (i.e., loops must be either separate or nested). Therefore, any fusion graph with fusion chains whose

scopes are partially overlapping is illegal and does not correspond to any loop fusion configuration.

Fusion graphs help us visualize the structure of the fused loops and find further fusion opportunities. If

we can find a set of potential fusion edges that, when converted to fusion edges, does not lead to partially

overlapping scopes of fusion chains, then we can perform the corresponding loop fusions and reduce the

sizes of some arrays. For example, the i-loops between A and f1 in Figure 2.2(f) can be further fused and

array fA would be reduced to a scalar. If converting all potential fusion edges in a fusion graph to fusion

edges does not make the fusion graph illegal, then we can completely fuse all the loops and achieve optimal

memory usage. But for many fusion graphs in real-life loop configurations (including the ones in Figure 2.2),
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this does not hold. Instead, potential fusion edges may be mutually prohibitive; fusing one loop could prevent

the fusion of another. In Figure 2.2(e), fusing the j-loops between f1 and f4 would disallow the fusion of the

k-loops between f3 and f4.

Although a fusion graph specifies what loops are fused, it does not fully determine the permutations of the

loops and the ordering of the loop nests. As we will see in Section 4.4, under dynamic memory allocation,

reordering loop nests could alter memory usage without changing array sizes.

So far, we have been describing the fusion between a node and its parent by the set of fused loops (or the

loop indices such as {i, j}). But in order to compare loop fusion configurations for a subtree, it is desirable

to include information about the relative scopes of the fused loops in the subtree.

Definition 2.3.3. The loop scope of index i in a subtree rooted at v, denoted scope(i, v), is defined in the

usual sense as the set of nodes in the subtree that the fused loop spans. That is, if the i-loop is fused,

scope(i, v) = scope(c) ∩ subtree(v), where c is a fusion chain for the i-loop with v ∈ scope(c). If the

i-loop of v is not fused, then scope(i, v) = {v}. As an example, for the fusion graph in Figure 2.2(e),

scope(j, f3) = {B, f2, f3}.

For describing the relative scopes of a set of fused loops, we introduce the notion of an indexset sequence,

which is defined as an ordered list of disjoint, non-empty sets of loop indices. For example, f = 〈{i, k}, {j}〉

is an indexset sequence. For simplicity, we write each indexset in an indexset sequence as a string. Thus, f is

written as 〈ik, j〉.

Definition 2.3.4. Let g and g′ be indexset sequences. We denote by |g| the number of indexsets in g, g[r]

the r-th indexset in g, and set(g) the union of all indexsets in g, i.e., set(g) =
⋃

1≤r≤|g| g[r]. An index i has

rank r in indexset sequence g, i.e., rank(i, g) = r, if and only if i ∈ g[r].

For example, if f = 〈ik, j〉, then |f | = 2, f [1] = {i, k}, set(f) = set(〈j, i, k〉) = {i, j, k}, and

rank(i, f) = 1.

An indexset sequence f represents constraints on the loop structure. For two indices i and j, if rank(i, f) <

rank(j, f), then the j-loop is constrained to be within the i-loop. If two indices have the same rank in f ,

there is no constraint on the corresponding loops and the loops, therefore, can be permuted. For example, the

indexset sequence 〈ik, j〉 represents the constraint that the j-loop is within the i and k loops and that the

latter two can be permuted.
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We define a nesting of the loops at a node v as an indexset sequence. Intuitively, the loops at a node are

ranked by their scopes in the subtree. Two loops have the same rank (i.e., are in the same indexset) if they

have the same scope. For example, in Figure 2.2(e), the nesting at f3 is 〈kl, j〉, the nesting at f4 is 〈jk〉, and

the nesting at B is 〈jkl〉.

Definition 2.3.5. Formally, a nesting of the loops at a node v is an indexset sequence h such that

1. set(h) = indices(v) and

2. for all i, i′ ∈ set(h) where r = rank(i, h) and r′ = rank(i′, h),

(a) r = r′ if and only if scope(i, v) = scope(i′, v), and

(b) r < r′ if and only if scope(i, v) ⊃ scope(i′, v).

By definition, the loop nesting at a leaf node v must be 〈indices(v)〉 because all loops at v have the same

scope of {v}.

Similarly, we use the notion of an indexset sequence to define a fusion. Intuitively, the loops fused between

a node and its parent are ranked by their scopes in the subtree from largest to smallest. For example, in

Figure 2.2(f), the fusion between f2 and f3 is 〈jkl〉 and the fusion between f4 and f5 is 〈j, k〉 (because the

j-loop covers two more nodes, A and f1).

Definition 2.3.6. Formally, a fusion between a node v and parent(v) is an indexset sequence f such that

1. set(f) ⊆ indices(v) ∩ indices(parent(v)),

2. for all i ∈ set(f), the i-loop is fused between v and parent(v), and

3. for all i, i′ ∈ set(f) where r = rank(i, f) and r′ = rank(i′, f),

(a) r = r′ if and only if scope(i, v) = scope(i′, v), and

(b) r < r′ if and only if scope(i, v) ⊃ scope(i′, v).

A legal fusion graph (corresponding to a loop fusion configuration) for an expression tree T can be built

up in a bottom-up manner by merging legal fusion graphs for the subtrees of T . For characterizing legal

fusions and for motivating the algorithm for constructing a fusion graph, we need to define a prefix relation

between indexset sequences.
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Definition 2.3.7. Let g and g′ be indexset sequences. We say that g′ is a prefix of g if |g′| ≤ |g|, g′[r] = g[r]

for all 1 ≤ r < |g′|, and g′[|g′|] ⊆ g[|g′|]. We write this relation as prefix(g′, g). E.g., 〈〉, 〈i〉, 〈k〉, 〈ik〉, and

〈ik, j〉 are prefixes of 〈ik, j〉, but 〈i, j〉 is not.

For a given node v, the nesting h at v summarizes the fusion graph for the subtree rooted at v and

determines what fusions are allowed between v and its parent. A fusion f is legal for a nesting h at v, denoted

legal(f, h, v), if prefix(f, h) and set(f) ⊆ indices(parent(v)). This is because loops with larger scopes must

be fused before fusing those with smaller scopes, and because only loops common to both v and its parent

may be fused.

As an example, consider the fusion graph for the subtree rooted at f2 in Figure 2.2(e). Since the nesting at

f2 is 〈kl, j〉 and indices(f3) = {j, k, l}, the legal fusions between f2 and f3 are 〈〉, 〈k〉, 〈l〉, 〈kl〉, and 〈kl, j〉.

Definition 2.3.8. All legal fusions for a node v with nesting h are prefixes of a maximal legal fusion, denoted

maxFusion(h, v). We define f ′ = maxFusion(h, v) if and only if legal(f ′, h, v), and for all f , legal(f, h, v)

implies prefix(f, f ′). In Figure 2.2(e), the maximal legal fusion for C is 〈kl〉, and for f2 is 〈kl, j〉.

2.4 Loop Fusion Algorithm

Given a specification of the required computation as a multi-dimensional sum of the product of input arrays,

we first determine an equivalent sequence of multiplication and summation formulas that compute the result

using a minimum number of arithmetic operations. Each formula computes and stores some intermediate

results in an intermediate array. By computing the intermediate results once and reusing them multiple times,

the number of arithmetic operations can be reduced.

The simplest way to implement an optimal sequence of multiplication and summation formulas is to

compute the formulas one by one, each coded as a set of perfectly nested loops, and to store the intermediate

results produced by each formula in an intermediate array. However, in practice, the input and intermediate

arrays could be so large that they cannot fit into the available memory. Hence, there is a need to fuse the

loops as a means of reducing memory usage. By fusing loops between the producer loop and the consumer

loop of an intermediate array, intermediate results are formed and used in a pipelined fashion and they reuse

the same reduced array space. The problem of finding a loop fusion configuration that minimizes memory

usage without increasing the operation count is not trivial.
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2.4.1 Algorithm for Static Memory Allocation

We use a dynamic programming algorithm for computing the fusion graph that uses the least amount of

memory. The algorithm traverses the expression tree bottom-up and generates a set of possible loop structures

for each tree node. Each solution is represented as a pair containing a fusion and the memory cost.

Let v be the root node of an expression tree. The algorithm has the following recursive structure:

1. If v is a Fun node, a single solution is generated that indicates that v can be fully fused with its parent.

2. If v is an Array or Const node, a single solution is generated that indicates that v can be accessed

repeatedly at no cost and that v can be fused with any loop, not only those in indices(v).

3. If v is a Sum node, multiple solutions for v are created out of each solution for the subtree. For

each solution for the subtree, we generate all the possible fusions with v, i.e., we enumerate all the

possibilities for how the loop structure corresponding to the subtree solution can be embedded within

a loop structure of the parent. The summation indices as well as any indices whose loops are nested

within the summation loops are then removed from the solutions since they cannot be further fused

with v’s parent.

4. If v is a BinOp node, solutions for the left and right subtrees must be combined to form a solution

for v. For each solution for a subtree, we again generate all the possible fusions with v. Then, for all

compatible pairs of possible fusions for the two subtrees, a solution for v is generated by merging the

fusion constraints from the subtree solutions.

5. In each step, inferior solutions are pruned out.

Before presenting the details of the algorithm, we need to define the mechanisms by which solutions are

constructed out of solutions for subtrees.

Definition 2.4.1.1. The concatenation of an indexset sequence g and an indexset x, denoted g+ x, is defined

as the indexset sequence g′ such that if x 6= ∅, then |g′| = |g| + 1, g′[|g′|] = x, and for all 1 ≤ r < |g′|,

g′[r] = g[r]; otherwise, g′ = g.

When constructing a loop nesting for a node u out of solutions for the subtrees, we must ensure that the

nesting is compatible with the fusions between u and the subtrees. We compute the nesting of u by extending

the fusions to the indices of u.
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Definition 2.4.1.2. Let u be the parent of a node v and let f be a fusion between u and v. The extended nesting

of fusion f for node u, denoted extendNesting(f, u), is defined as extendNesting(f, u) = f + (indices(u)−

set(f)).

If v is the only child of u, then the loop nesting at u as a result of fusion f between u and v is

extendNesting(f, u). I.e., all the loops that are not fused between u and v must be nested within the fused

loops. For example, in Figure 2.2(e), if the fusion between f2 and f3 were 〈kl〉, then the nesting at f3 would

be 〈kl, j〉.

If u is a binary node, then the extended nestings of the subtrees must be compatible. The constraints on the

loop structure expressed by the extended nestings of the subtrees must be merged to produce the nesting of u.

Definition 2.4.1.3. Suppose u has the two children v and v′, whose fusions with u are f and f ′, respectively.

For the fusion graph for the subtree rooted at u (which will be merged from those of v and v′) to be legal,

h = extendNesting(f, u) and h′ = extendNesting(f ′, u) must be compatible according to the condition: for

all i ∈ h[r] and j ∈ h[s], if r < s and i ∈ h′[r′] and j ∈ h′[s′], then r′ ≤ s′.

This requirement ensures an i-loop that has a larger scope than a j-loop in one subtree will not have

a smaller scope than the j-loop in the other subtree. If the extended nestings h and h′ of the subtrees are

compatible, they can be merged to form a nesting of u.

Definition 2.4.1.4. Let h and h′ be compatible extended nestings for the subtrees of u. The nesting h′′ =

mergeNesting(h, h′) of u must satisfy the following conditions. For all i ∈ h′′[r′′] and j ∈ h′′[s′′], if i ∈ h[r],

i ∈ h′[r′], j ∈ h[s], and j ∈ h′[s′], then [r′′ = s′′ ⇒ r = s and r′ = s′] and [r′′ ≤ s′′ ⇒ r ≤ s and r′ ≤ s′].

This definition ensures that h′′ is compatible with both h and h′. Effectively, the loops at u are re-ranked by

their combined scopes in the two subtrees to form h′′. As an example, in Figure 2.2(e), if the fusion between

f1 and f4 is f = 〈j〉 and the fusion between f3 and f4 is f ′ = 〈k〉, then h = extendNesting(f, f4) = 〈j, k〉

and h′ = extendNesting(f ′, f4) = 〈k, j〉 would be incompatible. But if f were changed to 〈〉, then h =

extendNesting(f, f4) = 〈jk〉 would be compatible with h′, and the resulting nesting at f4 would be 〈k, j〉.

As outlined above, the algorithm generates a set of solutions for each node. In order to effectively prune

inferior solutions from such a set, we need a comparison relation on nestings and fusions. Informally, a

nesting h is more or equally constraining than another nesting h′ for the same node v if any loop fusion

configuration for the rest of the tree that is compatible with h is also compatible with h′.
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Definition 2.4.1.5. We define a nesting h for a node v to be more or equally constraining than a nesting h′,

denoted h v h′, if and only if h = mergeNesting(h, h′). Note that v is a partial order: if h and h′ are not

compatible, then h v h′ is undefined.

If h v h′, then for all i ∈ h[r] and j ∈ h[s], there exist r′, s′ such that i ∈ h′[r′] and j ∈ h′[s′] and

[r < s⇒ r′ ≤ s′] and [r = s⇒ r′ = s′]. I.e., for any pair of loops i and j, if h′ constrains one of them to be

nested within the other, so does h. If h does not constrain them, neither does h′. Any nesting for the parent of

v that can be constructed out of the nesting h for v can, therefore, also be constructed out of h′.

Comparing the nestings at f3 between Figure 2.2(e) and (f), the nesting 〈kl, j〉 in (e) is more constraining

than the nesting 〈jkl〉 in (f).

For defining the relation v for fusions, we need the additional requirement that the sets of indices in the

two fusions are the same:

Definition 2.4.1.6. We define a fusion f to be more or equally constraining than a fusion f ′, denoted f v f ′,

if and only if set(f) = set(f ′) and f = mergeNesting(f, f ′).

2.4.2 Algorithm Details

The algorithm traverses the expression tree bottom up and creates a set of solutions for each node in the

expression tree. Each solution S(f, c, t) for an expression tree t contains the maximal fusion f with the

parent and the memory cost c. Since under a static memory allocation model all the intermediate arrays

for evaluating an expression exist during the entire computation, the memory cost is simply the sum of the

sizes of all the arrays and scalars. For presentation purposes, fusions, or indexset sequences in general, are

represented as lists of lists of strings.

For each solution, we must record the subtree solution(s) from which this solution was constructed. To do

so, we use the following solution tree data structure:

• Leaf(s): A leaf in the solution tree with solution s.

• Unary(s, t): A unary node in the solution tree with solution s and subtree t.

• Binary(s, l, r): A binary node in the solution tree with solution s, left subtree l, and right subtree r.

• Extended(s, h, t): An extended solution node with solution s, extended nesting h, and subtree t.
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• Reduced(s, i, t): A reduced tree node with solution s, index set i, and subtree t.

The loop fusion algorithm will construct a set of such solution trees for each node in the expression tree.

The structure of a solution tree mirrors the structure of the expression tree. For an Array, Fun or Const node,

a single Leaf node is constructed. For Sum and BinOp nodes, the algorithm constructs Unary and Binary

nodes, respectively. In addition, an Extended node is constructed when extending a solution for a subtree to

the indices of the parent. Similarly, a Reduced node is constructed for removing the summation indices out

of the the solutions for a Sum node. Extended and Reduced nodes correspond to edges in the expression tree.

Making extended nodes explicit improves the efficiency of the algorithm, since extended nestings do not

have to be recomputed, while keeping the code structure simple. Reduced nodes mostly serve to make the

step of removing summation indices explicit and aid in debugging.

Before describing the algorithm in detail, we need to introduce some helper functions and operations

on indexset sequences. Figure 2.3 defines auxiliary functions for expression trees and solution trees. The

functions indices and fusible return the set of indices and the set of fusible indices of a node,

respectively. The call fusedSize(v,f) returns the memory needed for storing the result of node v under

the fusion f with its parent. The storage needed for an Array node is zero for the purpose of the fusion

algorithm, since Array nodes are assumed to be memory resident and do not change in size based on the

fusion. The functions getFusion and getSoln are simply accessor functions for the data structure;

getNesting constructs the extended nesting from an Extended node to allow pruning extended solutions

and for passing it to the cost model so it does not need to be recomputed.

indices(v): return { i | i is an index at node v }

fusible(v): return { i | i in indices(v) and i not a summation index of v }

fusedSize(v, f):
if v is an Array or a Const node then return 0
else return Product of range(i) for i in (fusible(v) - set(f))

getFusion(S(f, c, t)): return f

getSoln(s): return the solution out of solution tree node s

getNesting(s):
if s is of the form Extended(S(f, c, t), h, s’) then return h
else return getFusion(getSoln(s))

FIGURE 2.3. Auxiliary functions for accessing the data structures.

Figure 2.4 shows functions that operate on indexset sequences. Indexset sequences are represented as

lists of lists of strings. The constant any, represented as the special indexset sequence 〈∗〉, is used as the
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maximal fusion for Array and Const nodes. It indicates that any index of the parent can be fused between the

leaf node and the parent, not only indices of the leaf node. The function set returns the set of indices in

a fusion. The functions prefixes and extendNesting are used for constructing extended solutions.

prefixes takes a maximal fusion f as argument and returns the set of all prefixes of f or actual fusions.

extendNesting takes an actual fusion as argument and constructs an extended nesting.

any = [["*"]]

set(f): return { i | i occurs in indexset sequence f }

prefixes(f): return set of all prefixes of indexset sequence f

extendNesting(f, i):
if f = any then return [i]
else return f + (i - set(f))

maxPrefix(f, i):
return maximum prefix of indexset sequence f containing only indices in i

merge(h, h’):
if h = nil or h’ = nil then return nil
else
y = intersect(head(h), head(h’))
x = head(h) - y; x’ = head(h’) - y
if y = nil then return nil
else if x = nil and x’ = nil then return y :: merge(tail(h), tail(h’))
else if x = nil then return y :: merge(tail(h), x’::tail(h’))
else if x’ = nil then return y :: merge(x::tail(h), tail(h’))
else return y :: merge(x::tail(h), x’::tail(h’))

mergeNesting(h, h’):
if h = any or h’ = any or set(h) <> set(h’) then raise Incompatible
else
m = merge(h, h’)
if set(m) = set(h) then return m else raise Incompatible

leq(h, h’): return set(h) = set(h’) and h = merge(h, h’)

FIGURE 2.4. Functions operating on index set sequences.

The function maxPrefix is used for removing summation indices from a solution for a summation node

together with any indices whose loops are constrained to be within the summation loops. The helper function

merge, which is used by mergeNesting and leq, constructs the least constraining indexset sequence

that is more or equally constraining than its arguments; it returns nil if the arguments are not compatible.

The function mergeNesting is used for merging extended nestings from the two subtrees of a binary node.

The boolean function leq(h,h′) is true if h is more or equally constraining than h′, i.e., h v h′. If h and h′

do not have the same sets of indices or are incomparable, or if h is not more or equally constraining than h′,

leq(h,h′) is false. This makes leq a total function and allows both fusions and nestings to be compared.

The main part of the fusion algorithm is shown in Figure 2.5. The calculation of the cost of individual

solutions has been factored out into the cost model shown in Figure 2.6. To allow for generalizations of
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the cost model, each of the cost model functions returns a set containing a single solution. The heart of

the algorithm is the function minMemFusionSet, which traverses the expression tree bottom-up and

constructs a set of solution trees in every step.

minMemFusion(t): return head(reduceSolnSet(minMemFusionSet(t), nil))

minMemFusionSet(t):
if t is an Array, Fun, or Const node then
return { Leaf(s) | s in makeLeafSoln(t)) }

else if t is of the form Sum(i, l) then
return makeUnarySolnSet(extendSolnSet(minMemFusionSet(l), t, true), t)

else if t is of the form BinOp(o, l, r) then
return makeBinarySolnSet(extendSolnSet(minMemFusionSet(l), t, false),

extendSolnSet(minMemFusionSet(r), t, false), t)

makeUnarySolnSet(S1, t):
U = { Unary(s, s1) | s1 in S1 and

s in makeUnarySoln(getSoln(s1), getNesting(s1), t) }
return reduceSolnSet(U, fusible(t))

makeBinarySolnSet(S1, S2, t):
B = { Binary(s, s1, s2) | s1 in S1 and s2 in S2 and

s in makeBinarySoln(getSoln(s1), getNesting(s1),
getSoln(s2), getNesting(s2), t)

where exception Incompatible was not raised }
return pruneSolnSet(B)

extendSolnSet(S, t, u):
s = getSoln(head(S))
f = getFusion(s)
i = indices(t)
if f = any then return { Extended(s, extendNesting(f, i), head(S)) }
else

E = Union({ e | st in S and e = extendSoln’(st, i, u) })
return pruneSolnSet(E)

extendSoln’(st, i, u):
s = getSoln(st)
f = getFusion(s)
if (u or length(f) = 1) and (set(f) = i or subset(i, set(f))) then return { st }
else return { Extended(s’, f’’, st) | f’ in prefixes(f)

and s’ in extendSoln(s, f’)
and f’’ = extendNesting(f’, i) }

reduceSolnSet(S, i):
R = { Reduced(r, i, s) | s in S and r in reduceSoln(getSoln(s), i) }
return pruneSolnSet(R)

pruneSolnSet(S):
return { s | s in S and

not exists s’ in S - {s}: inferior(getSoln(s), getNesting(s),
getSoln(s’), getNesting(s’)) }

FIGURE 2.5. The loop fusion algorithm.

For a leaf node in the expression tree, minMemFusionSet calls makeLeafSoln to construct an

individual solution and returns a set with a single solution tree Leaf node containing this solution. For an

Array node or a Const node, makeLeafSoln constructs a single solution with maximal fusion 〈∗〉 and cost

zero indicating that the node can be fused with any index of the parent. For a Fun node, makeLeafSoln

constructs a solution with a maximal fusion that indicates that all indices of the node can be fused in any
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makeLeafSoln(t):
if t is an Array node or a Const node then
return { S(any, 0, t) }

else if t is a Fun node then
return { S([fusible(t)], 1, t) }

makeUnarySoln(S(f, c, l), h, t):
return { S(h, c + 1, t) }

makeBinarySoln(S(f, c, l), h, S(f’, c’, r), h’, t):
f’’ = mergeNesting(h, h’)
return { S(f’’, c + c’ + 1, t) }

extendSoln(S(f, c, t), f’):
return { S(f’, c - fusedSize(t, f) + fusedSize(t, f’), t) }

reduceSoln(S(f, c, t), i):
f’ = maxPrefix(f, i)
return { S(f’, c - fusedSize(t, f) + fusedSize(t, f’), t) }

inferior(S(f, c, t), h, S(f’, c’, t’), h’):
return c >= c’ and leq(h, h’)

FIGURE 2.6. The cost model for static memory allocation.

order. With all indices fused, only a scalar is needed to hold the result, which is represented as cost one. (For

simplicity, we count array elements instead of bytes.)

For a BinOp node and a Sum node, minMemFusionSet first recursively constructs the sets of solutions

for the subtrees, extends these solutions to the indices of the parent, and then constructs solutions for

the parent. In both cases, it is necessary to enumerate all possible ways in which the loop structures for

the subtrees can be embedded within a loop structure for the parent. This is achieved by the functions

extendSolnSet and extendSoln’. A boolean parameter is passed along as context to these functions

to indicate whether the parent is a unary or a binary node for use in reducing the search space.

While the maximal fusion in a subtree solution results in the largest memory reduction for the root of the

subtree under the fusion constraints from that subtree, it may put too many constraints on fusion choices

higher up the tree or for the second subtree of a binary node. Fusing only some of the loops included in

the maximal fusion would increase the memory requirements for the root of that subtree but may result

in a larger memory reduction in a sibling or in an ancestor node. The function extendSoln’ constructs

partial solutions for the parent out of a single solution for the subtree by enumerating all the prefixes of the

maximal fusion and then constructing extended nestings for the parent out of these prefixes. A prefix of the

maximal fusion becomes an actual fusion between the child and the parent. The cost for an extended solution

is calculated in extendSoln (in Figure 2.6); the fused size of the child node under the maximal fusion is

subtracted from the cost of the subtree and the cost under the actual fusion is added in. If the actual fusion is
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not identical to the maximal fusion, this will result in an increase of the cost. The extended solution and the

extended nesting for the parent are then recorded in an Extended solution tree node.

If the maximal fusion of a subtree does not limit the fusion choices elsewhere in the tree, it is not necessary

to enumerate all its prefixes. For a binary node, this is the case if the child has all the indices of the parent and

the maximal fusion fuses all indices without constraints on the loop order. The child can be fully fused with

the binary node without effecting other fusion choices. For a unary node, the enumeration of prefixes can

similarly be skipped if all indices are fused. However, this is the case even if there are constraints on the loop

order. In this case, fully fusing the child with the unary node will prune out some fusion choices between

the unary node and its parent, but those would have resulted in higher memory usage. If the generation of

extended solutions can be skipped, extendSoln’ simply returns the singleton set containing the subtree

solution.

If there is a single solution with fusion 〈∗〉 for the subtree, the function extendSoln constructs an ex-

tended nesting that allows all the indices of the parent to be permuted in any order. Otherwise, extendSoln

calls extendSoln’ for every solutions of the subtree and returns the union of the resulting sets of extended

solutions. Inferior solutions are then pruned out by calling pruneSolnSet.

For a BinOp node, minMemFusionSet calls makeBinarySolnSet on the two sets of extended

solutions for the subtrees, which then calls makeBinarySoln on all pairs of solutions in the cross product

of these two sets. In makeBinarySoln, the extended nestings from the two subtrees are merged to form a

nesting for the BinOp node. If this merge is successful, a solution is constructed with the merged nesting as

the maximal fusion. The memory requirement assuming full fusion with the parent is simply the sum of the

costs of the subtrees plus one. In makeBinarySolnSet, Binary solution tree nodes are constructed for

all pairs of subtree solutions for which the merge was successful, and inferior solutions are pruned from the

resulting set.

For a summation node, minMemFusionSet calls makeUnarySolnSet on the set of extended so-

lutions for the subtree, which then constructs unary solutions using the extended nesting as the maximal

fusion. The memory cost, computed in makeUnarySoln, is only one more than the cost of the subtree

assuming full fusion would be possible with the parent. Since the summation indices as well as any indices

that are constrained to be nested within the summation indices cannot be fused with the parent, they must be

removed from the maximal fusion for the summation node. This is done in reduceSolnSet. For each
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solution, reduceSolnSet calls reduceSoln, which removes unfusable indices and adjusts the cost

correspondingly. If any non-summation index is removed from the maximal fusion, the cost will increase.

Reduced solutions are encapsulated in Reduced solution tree nodes (mostly for debugging purposes), and

inferior solutions are pruned from the resulting set. In this pruning step, inferior, which is called from

pruneSolnSet, compares fusions instead of extended nestings. This pruning step is safe since leq is

false if two fusions do not have the same sets of indices.

Eventually, a set of solutions will be obtained for the root of the expression tree. These solutions will

contain different maximal fusions and different costs. Since the root of the expression tree cannot be further

fused, the top-level function minMemFusion calls reduceSolnSet to remove all indices from the

maximal fusions. Since all reduced solutions then have 〈〉 as the maximal fusion, only one solution will be

left after pruning. The solution tree containing this solution is then returned by minMemFusion as the

optimal solution for the expression tree.

The solution returned by minMemFusion assumes that the array for the root node must be produced in

its entirety. Correspondingly, the cost for this solution includes the size of the result array. Another possible

scenario is that the production of the root array is fused with a write operation as the consumer. In this case,

the only dimensions of the root array that need to be stored are those that are inside any summation loops.

The optimal solution for this scenario can be obtained by generalizing the algorithm to allow expression tree

nodes representing write operations or by simply omitting the final reduction step, selecting the solution with

the minimum cost returned by minMemFusionSet, and inserting the write operation inside the innermost

non-summation loop.

2.4.3 Code Generation

The solution tree data structure that is constructed by our algorithm is designed to efficiently represent the

information needed by the algorithm, but it is not convenient for generating code. In particular, the Extended

and Reduced nodes are not useful anymore once the optimal solution is found. Also, the fusion stored in a

solution summarizes only the loop nesting constraints of the subtree.

To simplify code generation, we first translate the solution tree into a fusion tree representation in which

for each node in the expression tree we store the nesting and the fusion with the parent. (Since the fusion is a

prefix of the nesting, only the suffix of unfused loops needs to be stored for the nesting.) This fusion tree
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representation is generated in a top-down traversal of the solution tree. In this traversal, any constraints on

loop nestings from higher up in the solution tree are propagated down to the leafs. The resulting fusion tree

does not have any Extended and Reduced nodes, and the fusions and nestings stored at each node contain

the full loop nesting information. This data structure transformation is straightforward and does not warrant

further discussion. We will present an example in the next section.

When generating the fusion tree, 〈∗〉 fusions for Array and Const nodes are also replaced by the actual

fusions. In doing so there is an opportunity for reducing the memory access cost. For the purpose of the

minMemFusionSet traversal, we have assumed that Array nodes can be accessed repeatedly at zero cost

in order to enable additional loop fusions for siblings or ancestors. In extendSolnSet, a 〈∗〉 fusion was

extended to the fusion containing all the indices of the parent with no constraints. Any indices of the parent

that were later constrained to be inside the indices of the Array node can now be unfused, which results in

lower memory access cost without any change in the memory requirements.

For generating code, the evaluation order must be determined. Conceptually, this can be done by topologi-

cally sorting the nodes in the fusion tree. Let v and v′ be nodes of the expression tree with fusions f and f ′,

respectively. v is evaluated before v′ if

• v′ is an ancestor of v, or

• neither is an ancestor of the other and prefix(f, f ′).

E.g., suppose v and v′ are siblings with parent u. If f = f ′, v and v′ can be evaluated in any order. If f is a

prefix of f ′ but f 6= f ′, more loops are fused between v′ and u than between v and u. The evaluation of v′

must, therefore, follow that of v.

Once the evaluation order is obtained, it is straightforward to generate explicit loops. For each node in the

expression tree, a temporary is created to hold the value of this node. Only dimensions that are not fused

must be stored in the temporary. The initialization of a temporary that will hold the result of a summation

node is placed just before the outermost summation loop.

The code can also be generated together with determining the evaluation order in a single bottom-up

traversal of the fusion tree. For each node, the code generation algorithm constructs an expression for

accessing the value of this node and a list of indexset-code pairs. The expression is used for constructing the
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code of the parent. Each indexset-code pair consists of a code fragment and a set of fused indices. The latter

represents the loops that still need to be generated to surround the code fragment.

Code fragments with equal fusions from different subtrees are merged. Loops that are not fused with the

parent are generated as part of the code fragment for the child. Any code fragments from subtrees that are

fused with the generated loops are inserted according to the topological sorting order above. The initialization

code for summations is also generated as a code fragment with the same set of fused indices as the summation

node itself. This way, the initialization code will get inserted into the code before the outermost summation

loop. At the root of the tree all the code fragments will have been combined into the complete code for the

expression tree.

2.4.4 A Simple Example

To illustrate how the algorithm works, consider again the empty fusion graph in Figure 2.2(d) for the

expression tree in Figure 2.1(c). Let Ni = 500, Nj = 100, Nk = 40, and Nl = 15. Table 2.1 shows the

solution sets for all nodes. The column “solution” enumerates the solutions; the column “children” contains

the solution numbers of the corresponding solutions for the subtrees. The column “max. fusion” shows the

maximal fusion and “ext./red.” indicates the extension or reduction operation that is performed. An extension

operation is shown with the extended nesting for the parent; a reduction operation is shown with the set of

indices to which solutions are reduced. The “pruning” column indicates solutions that do not need to be

extended or that are inferior to other solutions. A
√

mark indicates that the solution is part of an optimal

solution tree for the entire expression tree. The fusion graph for the optimal solution is shown in Figure 2.7(a).

A and B can be fully fused with their parents, since they contain all the indices of the parent without fusion

constraints. All other fusions for A and B with their parents would result in more constraining nestings or

use more memory. However, this is not the case for the fusion between C and f2, since the extended nesting

〈kl, j〉 resulting from the full fusion 〈kl〉 is not less constraining than those of the other three possible fusions.

Merging the solution for B with each of the solutions for C results in four solutions for f2, each of which can

be fully fused with f3. After reducing the solutions for f3 to remove the summation index l and extending

them to the indices of f4, we are left with seven solutions, solutions 20 and 24–29, of which only solutions

20 and 26 are left after pruning. These two solutions are then merged with the two solutions that resulted

from extending f1. Since 5 and 26 have incompatible extended nestings, only three solutions are produced
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TABLE 2.1. Trace of the algorithm for the example from Figure 2.1.
Node solution children max. fusion ext./red. pruning cost opt

A 1 〈ij〉 no extension 1
√

f1 2 1 〈ij〉 2
√

f1 3 2 〈j〉 R {j} 2
√

f1 4 3 〈〉 E 〈jk〉 101
√

5 3 〈j〉 E 〈j, k〉 2

B 6 〈jkl〉 no extension 1
√

C 7 〈kl〉 1
√

C 8 7 〈〉 E 〈jkl〉 600
9 7 〈k〉 E 〈k, jl〉 15

√

10 7 〈l〉 E 〈l, jk〉 40
11 7 〈kl〉 E 〈kl, j〉 1

f2 12 6, 8 〈jkl〉 no extension 602
13 6, 9 〈k, jl〉 no extension 17

√

14 6, 10 〈l, jk〉 no extension 42
15 6, 11 〈kl, j〉 no extension 3

f3 16 12 〈jkl〉 603
17 13 〈k, jl〉 18

√

18 14 〈l, jk〉 43
19 15 〈kl, j〉 4

f3 20 16 〈jk〉 R {jk} no extension 603
21 17 〈k, j〉 R {jk} 18

√

22 18 〈〉 R {jk} 4042
23 19 〈k〉 R {jk} 103

f3 24 21 〈〉 E 〈jk〉 inferior to 20 4017
25 21 〈k〉 E 〈k, j〉 inferior to 26 117
26 21 〈k, j〉 E 〈k, j〉 18

√

27 22 〈〉 E 〈jk〉 inferior to 20 4042
28 23 〈〉 E 〈jk〉 inferior to 20 4003
29 23 〈k〉 E 〈k, j〉 inferior to 26 103

f4 30 4, 20 〈jk〉 no extension 705
31 4, 26 〈k, j〉 no extension 120

√

32 5, 20 〈j, k〉 no extension 606

f5 33 30 〈jk〉 706
34 31 〈k, j〉 121

√

35 32 〈j, k〉 607
f5 36 33 〈k〉 R {k} inferior to 37 706

37 34 〈k〉 R {k} 121
√

38 35 〈〉 R {k} 646
f5 39 37 〈〉 R {} 160

√

40 38 〈〉 R {} inferior to 39 646
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initialize f1
for i for j[

fA = A(i,j)
f1[j] += fA

initialize f5
for k

for l[
fC[l] = C(k,l)

for j

initialize f3
for l fB = B(j,k,l)

f2 = fB × fC[l]
f3 += f2

f4 = f1[j] × f3
f5[k] += f4

(a) (b)

FIGURE 2.7. An optimal solution for the example from Figure 2.1.

for f4, which are fully fused with f5. After reducing f5, one solution can be pruned out, and after reducing

again to the empty set of indices for storing the result, we are left with the optimal solution 39.

The optimal solution for the entire tree uses suboptimal solutions for C and f1. Solution 11, which would

have fully fused C, resulted in Solution 19, with nesting 〈kl, j〉, for f3. Since the summation index was

not the innermost index, the j dimension needed to be stored in reducing f3, which resulted in both of the

extended solutions 28 and 29 to be pruned out. Solution 5, which would have fully fused f1, eventually

resulted in Solution 40, which was pruned out in the last pruning step after reducing the solutions for f5 to

the empty set of indices.

In the top-down traversal for generating the fusion tree from the solution tree, fusion constraints from

higher up in the tree are propagated down. This results in the fusions for f2 and B both to become 〈k, j, l〉,

instead of 〈k, jl〉 and 〈jkl〉, respectively.

The fusion graph representing the optimal solution and the code generated from it are shown in Figure 2.7(a)

and Figure 2.7(b), respectively. The code could be improved by combining consecutive assignments. E.g.,

the assignments to fB, f2, and f3 could be combined into the statement

f3 += B(j,k,l) + fC[l]

This would result in removing the scalars fA, fB, f2, and f4. Correspondingly, the cost model could be

refined such that scalars that are fully fused with their consumers are not counted in the computation of the

memory requirements.
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2.4.5 A Realistic Example

For illustrating the memory reduction that can be achieved, consider the following tensor contraction term,

which reflects the type of equations found in quantum chemistry:

X[a, b, i, j] =
∑
c,k

T (a, c, i, k) ∗
∑
d,f

S[d, j, f, k] ∗
∑
e,l

N(c, d, e, l) ∗D[b, e, f, l]

Suppose the ranges of indices a through d are 300, the ranges of e and f are 70, the ranges of i to l are 40,

and array elements are double precision floating point numbers. Given these dimensions, suppose we read

the input tensors T and N of sizes 1.073GiB and 1.878GiB, respectively, from disk, while we have allocated

the smaller tensors S and D of sizes 256.35MiB and 448.61MiB, respectively, in memory. Similarly, the

result tensor X of size 1.073GiB could be written to disk.

For the fusion algorithm to distinguish disk arrays from memory-resident arrays, we represent disk arrays

as function calls. The fusion graph and code for the optimal solution with the result in memory are shown

in Figure 2.8. In this solution, D is reread from memory for every iteration of the c and d loops, while S is

reread for every iteration of the b and c loops. This allows a substantial reduction of the memory usage for

the temporaries. The temporaries t0 and t2 become scalars, while t1 and t3 are of sizes 1.969KiB and

3.662MiB, respectively. The tensors S and D in memory, the temporaries, and the result tensor X add up

to a memory usage of 1.765GiB. Without loop fusion, the memory usage of t2, at 14.08GiB, would have

prevented an in-core computation.

With this loop structure, writing X to disk will not result in a reduction of memory usage. Since the

summation loop c is the outermost loop, the production of X could not be fused with a write operation.

However, by not fusing t3 with its parent and by not fusing the summation loops c and k between T and

its parent, the summation loops c and k become the innermost loops and the production of X can be fully

fused with a write operation as shown in Figure 2.9. In this solution, the sizes of t0 and t3 are increased to

93.75KiB and 1.073GiB, respectively, while X becomes a scalar. The total memory usage is only slightly

reduced to 1.761GiB.
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for a,b,i,j[
X[a,b,i,j] = 0

for c

for b,j,k[
t3[b,j,k] = 0

for d

for e,l[
t1[e,l] = N(c,d,e,l)

for b,f
t2 = 0
for e,l[
t2 += t1[e,l] × D[b,e,f,l]

for j,k[
t3[b,j,k] += S[d,j,f,k] × t2

for a,i,k t0 = T(a,c,i,k)
for b,j[
X[a,b,i,j] += t0 × t3[b,j,k]

(a) (b)

FIGURE 2.8. The optimal solution for producing X[a, b, i, j] in memory.
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for b,c,j,k[
t3[b,c,j,k] = 0

for c,d

for e,l[
t1[e,l] = N(c,d,e,l)

for b,f
t2 = 0
for e,l[
t2 += t1[e,l] × D[b,e,f,l]

for j,k[
t3[b,c,j,k] += S[d,j,f,k] × t2

for a,i

for c,k[
t0[c,k] = T(a,c,i,k)

for b,j
X = 0
for c,k[
X += t0[c,k] × t3[b,c,j,k]

write X

(a) (b)

FIGURE 2.9. The optimal solution for producing X[a, b, i, j] on disk.
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2.4.6 Alternative Cost Models

For presenting the algorithm, we have used a simple cost model for minimizing memory usage under the

assumption that all temporaries are allocated statically. The algorithm, however, is general enough to be used

with a variety of cost models. In this section, we demonstrate this flexibility of our algorithm.

In the problem definition, we allowed arrays in leaf nodes to be either memory resident or generated by a

generator function. It is straightforward to force array elements to be produced in a certain order by restricting

the maximal fusion for the leaf node. E.g., if array A in our example is stored on disk in row-major order,

we can ensure that it is read consecutively by modeling it as a generator function, but using the maximal

fusion 〈i, j〉 instead of 〈ij〉. Similarly, a read operation that reads an entire row into a buffer can be modeled

by using the maximal fusion 〈i〉.

Instead of simply minimizing memory usage, it may be more practical to minimize another quantity,

such as disk I/O or communication, under a given memory constraint. Another possibility is to use our

algorithm for producing a set of suitable candidate loop structures for different tradeoffs between two or

more cost components, out of which, after further optimization, the best solution is selected. We illustrate

this optimization approach using a space-time tradeoff cost model that considers trading recomputation

for an additional reduction in memory usage [CBL+02b]. We have also used the loop fusion algorithm

for minimizing disk I/O cost [BKC+03, KKB+03] and for minimizing communication cost [CBL+02a,

CGK+03] under given memory constraints.

We also outline a cost model for memory minimization that uses the more realistic assumption that

intermediates are allocated and deallocated dynamically as needed.

2.4.7 Space-Time Tradeoffs

So far, we have been restricting our attention to reducing memory usage without any increase in the number

of arithmetic operations. However, with this restriction, the optimal loop fusion configuration for some

equations may still require more than the available memory.

If not enough memory is available for a computation to fit in memory, an out-of-core solution can be

produced by tiling arrays and moving entire tiles between disk and memory. However, in certain cases it may

be cheaper to recompute parts of a computation instead of paying the penalty for disk I/O. If a computation
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is that large that after loop fusion some of the intermediates do not even fit on disk, as can be the case in

quantum chemistry, there is no choice but to use recomputation to further reduce the storage requirements.

Creating additional loops around some assignment statements may enable more loop fusions and thus

reduce array sizes. To do this, we add additional vertices to the fusion graph and connect each new vertex

of a node v and the corresponding vertex at the parent of v with an additional potential fusion edge. If the

additional potential fusion edge is converted into a fusion edge in a fusion graph, the operation count for

node v is multiplied by Ni, where i is the loop index for the fusion edge. For example, in Figure 2.7(b), if we

create a k-loop around the computation of A and f1 and fuse it with the k-loop around the other nodes, we

can eliminate the j dimension of f1 and make it a scalar. However, this increases the operation counts for A

and f1 by a factor of Nk because they are recomputed Nk − 1 times.

If a node ends up not fully fused with its parent in the memory-minimal solution, it is primarily because

it is lacking an index from its parent that is fused with another subtree. E.g., in the optimal solution in

Figure 2.7, f1 cannot be fused with f4, because the k-dimension of f4 is fused with f3. Similarly, C cannot

be fully fused with f2, because the j-dimension of f2 is fused with B. Our strategy for enumerating possible

space-time tradeoffs is, therefore, to consider as recomputation loop for a node v any loop that is needed for

an ancestor of v but not for v itself.

The cost model for space-time tradeoffs is shown in Figure 2.10. A solution S(f, c, r, t) for an expression

tree t contains the maximal fusion f with the parent, the memory cost c assuming static memory allocation of

intermediates, and the recomputation cost r. The computation of the memory cost is the same as in the static

memory allocation cost model in Figure 2.6. The recomputation cost of an interior node, which is computed

by function recompCost, is the size of the node times the product of the ranges of recomputation indices

minus one.

Instead of a single solution, makeLeafSoln creates a set of solutions for a leaf node, one solution

for each combination of recomputation indices. The recomputation cost of memory-resident arrays and

constants is zero. For a function call v, the recomputation cost is computed as recompCost(v) times

functionCost(v), where the latter is an estimate of the cost of a single function call.

A solution s is inferior to another solution s′ if, in addition to the existing criteria, the recomputation cost

for s is greater than or equal to that for s′. Furthermore, any solution with a cumulative memory usage higher

than a user-specified limit can also be pruned.
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recompIndices(v): return { i | i in indices(v’) for some ancestor v’ of v
and i not in indices(v) }

recompCost(v, f):
if v is an Array node or a Const node then return 0
else return Product of range(i) for i in indices(v) *

((Product of range(ri) for ri in set(f) - indices(v)) - 1)

functionCost(v): return computation cost for Fun call v

makeLeafSoln(t):
if t is an Array node or a Const node then
return { S(f, 0, 0, t) | ri in powerset(recompIndices(t)) and

i = union(fusible(t), ri) and
f = if i is empty then [] else [i] }

else if t is a Fun node then
return { S(f, c, rc, t) | ri in powerset(recompIndices(t)) and

i = union(fusible(t), ri) and
f = if i is empty then [] else [i] and
c = fusedSize(t, f) and
rc = recompCost(t, f) * functionCost(t) }

makeUnarySoln(S(f, c, rc, l), h, t):
return { S(h, c + 1, rc + recompCost(t, f), t) }

makeBinarySoln(S(f, c, rc, l), h, S(f’, c’, rc’, r), h’, t):
f’’ = mergeNesting(h, h’)
return { S(f’’, c + c’ + 1, rc + rc’ + recompCost(t, f’’), t) }

extendSoln(S(f, c, rc, t), f’):
return { S(f’, c - fusedSize(t, f) + fusedSize(t, f’), rc, t) }

reduceSoln(S(f, c, rc, t), i):
f’ = maxPrefix(f, union(i, recompIndices(t)))
return { S(f’, c - fusedSize(t, f) + fusedSize(t, f’), rc, t) }

inferior(S(f, c, rc, t), h, S(f’, c’, rc’, t’), h’):
return c > MemoryLimit or (c >= c’ and rc >= rc’ and leq(h, h’))

FIGURE 2.10. A space-time tradeoff cost model for static memory allocation.
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Since the fused indices of a child are used to form the nesting of the parent, simply selecting all the

possible recomputations for the leaf nodes has the effect of propagating those recomputation choices to the

root. At the end, the algorithm computes a set of space-time tradeoff solutions for the entire expression tree.

E.g., for our running example the loop fusion algorithm with a space-time tradeoff cost model finds three

solutions: the memory minimal solution without recomputation shown in Figure 2.7 at a memory cost of 160,

a solution of memory cost 61 in which A and f1 have k as a recomputation loop, and a solution of memory

cost 47 in which C is recomputed in the j loop. In the latter solution, all nodes except for the root have been

fused to scalars.

Instead of simply choosing the solution with the lowest recomputation cost that still fits in memory, we

can reduce the recomputation cost further using tiling. Recomputation loops are split into tiling loops and

intra-tile loops. While the tiling loops maintain the fused loop structure that was found by the loop fusion

algorithm, the intra-tile loops are moved inside all of the tiling loops such that only tiling loops remain as

recomputation loops. By expanding fused dimensions to a larger tile size, the memory requirements increase

while the recomputation cost decreases. Each of the candidate loop structures found by our algorithm is tiled

in this manner. After determining the optimal tile sizes that minimize the recomputation cost while remaining

below the memory limit, the best solution overall is chosen [CBL+02b].

As discussed above, a similar optimization approach can be used for minimizing disk I/O or communication

cost under a memory constraint. In the case of communication minimization [CBL+02a, CGK+03], after

the fusion algorithm found a set of candidate loop structures with different communication and memory

tradeoffs, the communication-minimal solution that fits in memory is chosen. In the case of data locality

optimization [BKC+03, KKB+03], the loop fusion algorithm uses only an approximate cost for modeling

the disk I/O in order to produce candidate loop structures. After tiling, a tile size search on the abstract syntax

trees for these loop structures selects the optimal solution using a more precise cost model.

The space-time tradeoff cost model described here does not enumerate all possible solutions. Suppose that

each element of array C in Figure 2.7 is orders of magnitude more expensive to compute than an element of

array A. In that case, recomputing C Nj − 1 times may be too expensive for reducing all nodes to scalars.

An alternative solution would be to make l and k the outermost loops by making k a recomputation loop for

A and f1 and l a recomputation loop for A, f1, f4, and f5. Since this solution requires using the summation
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loop l for node f3 as a recomputation loop in ancestors and the sibling of f3, this solution is not found using

the cost model in Figure 2.10.

It is possible to extend the space-time tradeoff cost model to consider summation loops as recompu-

tation loops for ancestors and siblings as shown in Figure 2.11. Instead of producing a single solution,

reduceSoln would then produce one solution for each combination of fused summation indices. However,

this would increase the search space dramatically for very little practical benefit.

recompIndices(v): return { i | (i in indices(v’) for some ancestor v’ of v
or i is a summation index anywhere in the tree)
and i not in indices(v) }

reduceSoln(S(f, c, rc, t), i):
if i = {} then
return { S(<>, c - fusedSize(t,f) + fusedSize(t, <>), rc, t) }

else
return { S(f’, c - fusedSize(t, f) + fusedSize(t, f’), rc, t) |

si in powerset(indices(t) - i) and
f’ = maxPrefix(f, union(union(i, si), recompIndices(t))) }

FIGURE 2.11. Modifications for the cost model to allow summation loops as recomputation loops.
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Chapter 3
Related Work

3.1 Loop Fusion Optimization

Aspects of some of the important problems addressed in the synthesis system such as operation minimization,

memory reduction, and locality optimization have also received some attention in research on compiler

optimizations. Reduction of arithmetic operations has been traditionally done by compilers using the

technique of common subexpression elimination. Much work has been done on improving locality and

parallelism by loop fusion [KM94], [MA97], [SM96]. The TCE considers a different use of loop fusion,

which is to reduce array sizes and memory usage of automatically synthesized code containing nested loop

structures. The contraction of arrays into scalars through loop fusion is studied in [GOST93] but is motivated

by data locality enhancement and not memory reduction. Loop fusion in the context of delayed evaluation of

array expressions in APL programs is discussed in [GW78], but their work is also not aimed at minimizing

array sizes; in addition, they consider loop fusion without considering any loop reordering. Some work has

explored the use of loop fusion for memory reduction for sequential execution. Strout et al. [SCFS98] present

a technique for determining the minimum amount of memory required for executing a perfectly nested loop

with a set of constant-distance dependence vectors. Fraboulet et al. [FHM99] use loop alignment to reduce

memory requirement between adjacent loops by formulating the one-dimensional version of the problem

as a network flow problem. Song [Son00] and Song et al. [SWL03, SXWL01] present a different network

flow formulation of the memory reduction problem and they include a simple model of cache misses as well.

However, they do not consider the issue of trading off memory for recomputation.

Darte [Dar99] showed that optimal fusion is NP-complete in general. A typed fusion heuristic which can

achieve maximal fusion for loops of a particular type was proposed by Kennedy and McKinley [KM93].

Zhao et al [ZYK+05] parametrize the output of loop fusion transformation algorithms so that an external

empirical search engine can take advantage of a compiler’s knowledge to find the optimal operating point

within the space of legal fusion configurations and generate optimized code. Hu et al. [HVP+06] explore

loop fusion and loop shifting for improving data locality to reduce the number of costly accesses to off-chip

memories, where the focus is on Scratch-Pad Memory (SPM) based memory hierarchy. For each loop nest,
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a data reuse analysis phase builds data reuse trees, which represent different ways to copy data across the

memory hierarchy. A Memory Hierarchy Layer Assignment (MHLA) estimation phase determines which

data needs to be stored into the SPM, such that the number of (energy consuming) off-chip memory accesses

is minimized. Energy impact of loop fusion is also studied in [ZMS+04, MCG04] where the general goal

is to get maximum energy savings for the same or improved performance benefits for DVS processors and

embedded systems. Ashby and Boyle[AO06] propose a technique called iterative collective loop fusion

which employs a heuristically guided search to find legal fusion partitions (which have lesser partition size

and more scope for array contraction) that improve temporal locality and ultimately performance irrespective

of the architecture. The runtimes of these legal fusion partitions are empirically tested and the best one

is chosen. Grelck et al. [GHS06] explore fusion in a functional array processing language designed for

numerical applications with a goal to reduce loop overhead and memory footprint size by changing the

order of references into existing arrays in a way that improves data locality. They do not use search or any

other mechanism to find the most profitable fusion structure. Blainey et al. [BBA05] focus on eliminating

conditions that prevent loop fusion. The algorithm scans the code to find pairs of normalized loops that can

be fused and greedily fuses them. If any code between the loops has no data dependencies with one of the

loops, it is moved either before the first loop or after the second loop to allow fusion between the loops.

Qasem and Kennedy study loop fusion using model-driven empirical search [QK05, QK06, QK08]. The

fusion algorithm tries to fuse loops in such a way that performance does not degrade as a result of increased

pressure on system resources due to fusion. Their model uses uses machine specific information (e.g. cache

line size, latency) in combination with reuse distances in determining if fusion is profitable for a pair of loops.

Empirical tuning is used to tune the set of fusion parameters which cannot be measured accurately through

static analysis. In a nut shell, fusion is only applied if it is profitable in terms of performance. The model

presented does not analyze the complex interaction of tiling and loop fusion. Pike and Hilfinger [PH02] apply

tiling and fusion to a set of consecutive perfectly nested loops (each containing one statement) of the same

nesting depth. Their work does not apply to the class of loops with complex nestings that are considered here.

There has been some work in the area of design automation to estimate storage needed for a single perfectly

nested loop or a sequence of such loops [CGS98, KCA03], [RHKN01, RHKN06] and references therein.

These techniques do not consider tiling and they incur additional runtime memory management overhead.
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Considerable research on loop transformations for locality in nested loops has been reported in the literature

[CM95], [Li93], [MCT96], [WL91], [VBJC03], [Xue05], [PMHC03].

Nevertheless, a performance-model-driven approach like that in the TCE to the integrated use of loop

fusion and loop tiling for enhancing locality in imperfectly nested loops has not been addressed in these

works. Wolf et al. [WMC96] consider the integrated treatment of fusion and tiling only from the point of

view of enhancing locality and do not consider the impact of the amount of required memory; the memory

requirement is a key issue for the problems considered in context of the TCE.

Loop tiling for enhancing data locality has been studied extensively [CM95], [KAP97, KPCM99], [RS92],

[RT99], [SL99], [WL91, WMC96], and analytic models of the impact of tiling on locality in perfectly

nested loops have been developed [GMM98], [LRW91], [MHCF98]. Frameworks for handling imperfectly

nested loops have been presented in [AMP01], [LLL01], [SL99]. Ahmed et al. [AMP01] have developed a

framework that embeds an arbitrary collection of loops into an equivalent perfectly nested loop that can be

tiled; this allows a cleaner treatment of imperfectly nested loops. Lim et al. [LLL01] develop a framework

based on affine partitioning and blocking to reduce synchronization and improve data locality. Specific issues

of locality enhancement, I/O placement and optimization, and automatic tile size selection have not been

addressed in the works that can handle imperfectly nested loops [AMP01], [LLL01], [SL99].

The approach undertaken in the TCE bears similarities to some research in other domains, such as the

SPIRAL project, which is aimed at the design of a system to generate efficient libraries for digital signal

processing algorithms [JJPX01, MJJ+00, PMJ+05, XJJP01]. SPIRAL generates efficient implementations

of algorithms expressed in a domain-specific language called SPL by a systematic search through the

space of possible implementations. Other efforts in automatically generating efficient implementations of

programs include FFTW [FJ98, FJ05], the telescoping languages project [KBC+01, KBC+05], ATLAS

[WD98], [DDE+05] for deriving efficient implementation of BLAS routines, and the PHIPAC [BACD97]

project. All these efforts use search-based approaches for performance tuning of codes. A comparison of

model-based and search-based approaches for matrix-matrix multiplication is reported in [YLR+03]. In

addition, motivated by the difficulty of detecting and optimizing matrix operations hidden in array subscript

expressions within loop nests, several projects have worked on efficient code generation from high-level

languages such as MATLAB and Maple [CE05], [DRP96], [BSC+00], [MP99b], [MP99a].

36



While the TCE effort shares some common goals with several of the projects mentioned above, there

are also significant differences. Some of the optimizations in the TCE, such as the algebraic optimizations,

memory minimization, and space-time tradeoffs, do not appear to have been previously explored, to the best of

our knowledge. The TCE also takes advantage of certain domain-specific properties of the computations; for

example, since all expressions considered in this framework are tensor contractions, the loops of the resulting

code are fully permutable, and there are no dependencies preventing fusion. This observation is crucial for

the optimization algorithms of several components (memory minimization, space-time transformation, data

locality). Also, some of the multidimensional arrays involved in the computation have certain domain-specific

symmetry properties that can be exploited in order to lower the number of arithmetic operations, and, thus,

total execution time. While optimization of performance is a significant goal, more important in the TCE’s

context is the potential for dramatically reducing the developmental effort required of a quantum chemist to

develop a new ab initio computational model.

3.2 Loop Fusion Optimization for Handwritten Code

In the previous TCE research, a performance-model driven search-based approach to program transformation

[BAB+05b, BBC+02, BKC+03, CBL+02b, KKB+03, KKB+04, KKB+06, GSL+05] has been pursued. We

have extended this approach to a class of handwritten array computations. The data locality optimization

problem arising in this synthesis context, focusing primarily on minimizing memory-to-cache data move-

ment [CWB+01, CWL+01] has also been addressed. In [CWL+01], an integrated approach to fusion and

tiling transformations for the class of loops arising in the context of our program synthesis system was

developed. However, that algorithm was only applicable when the sum-of-products expression satisfied

certain constraints on the relationship between the array indices in the expression. The algorithm developed

in [CWB+01] removed the restrictions assumed in [CWL+01]. However, it decoupled the fusion step from

the tiling step. The fusion step was first performed, attempting to minimize the total space required by

the intermediates. Tiling was then performed on the fused loop structure resulting from the fusion step.

While this approach provided very good improvement in practice when compared to unfused or untiled

loop structures, an examination of the code structures produced for some examples from the quantum

chemistry domain revealed that better solutions were possible. Initially, the approach of letting the fusion

algorithm produce a range of candidate code structures from a two-dimensional search space [LCBS99]
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was developed, from which the tiling algorithm selected the best overall code structure, in the context of

space-time tradeoffs [CBL+02b]. This optimization approach was then applied to generating out-of-core

code [BKC+03, KKB+03]. The approach presented in this dissertation generalizes the fusion algorithm from

expression trees representing formulas to an abstract syntax tree representing handwritten code satisfying

certain constraints. Coupled with an appropriate cost model and a tiling optimization algorithm, the current

approach can be used to translate such handwritten code into out-of-core code.

The Pluto [BHRS08a, BBK+08, BHRS08b, BRS10] and PrimeTile [HBB+09b, HBB+09a, BHH+10]

projects at LSU and Ohio State University were follow-on efforts at the end of the TCE project, enabling the

much broader application of key transformations like loop tiling and fusion that were key to performance

optimization for tensor expressions in the TCE project. These efforts have produced publicly-available

tools, namely Pluto [BHRS08a] and PrimeTile [HBB+09b]. Tiling is a key transformation in optimizing

for parallelism and data locality. For locality, tiling groups points in an iteration space into smaller blocks

(tiles), enabling reuse in multiple directions. For coarse-grained parallelism, tiling partitions the iteration

space into groups of points that may be concurrently executed and reduces frequency and volume of

inter-processor communication. A tile is atomically executed; no communication happens within the tile

execution. A significant advantage of the polyhedral compiler model used by these tools is the integrated

treatment of arbitrary compositions of transformations on (affine) imperfectly nested loops with multiple

statements (which is precisely the structure of tensor contractions handled by TCE), and reasoning about their

cumulative effects through algebraic cost functions. Pluto uses a novel model-driven approach to determine

tiling hyperplanes to optimize for both data reuse and parallelism. Although automatic parallelization has

been the subject of study for several decades, to our knowledge Pluto is the first robust and effective automatic

tiling and parallelization system for affine imperfectly nested loops; the technology has been integrated into

the ROSE [RSE] compiler infrastructure (developed at Ohio State University and used by the PACE project),

Reservoir Labs’ R-Stream compiler [RSM] and IBM’s XL [IBM] compilers. While Pluto is a powerful

transformer, it has the following limitations (i) for tensor contraction expressions, it does not have adequate

models to guide the exploration and generation of loop fusion structures; (ii) Pluto is a “black box” tool and

is quite inflexible by not allowing users to drive transformations through a script-based interface; and (iii)

Pluto lacks support for model-driven and memory-access-oriented transformations that are key for achieving

high levels of performance.
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3.3 Loop Fusion Optimization for GPGPUs

For the tensor contraction expressions arising in quantum chemistry, we found that automatic parallelization

frameworks [VJC+13, BRS10] for general purpose computation on GPUs that generate CUDA code from

input sequential C code do not achieve the same levels of performance compared to our approach, primarily

because they do not leverage optimized libraries like BLAS. The code generated by these frameworks is too

complex for further manual/automated transformation to insert optimized library calls. They also do not

employ loop fusion optimization as a means for reducing memory usage.

Ma et al. [MKV+13] demonstrate an approach to automatically generate GPU code for the most expensive

tensor contractions in CCSD(T). These contractions are independent and are analogous to a special case

discussed in Chapter 6 of this dissertation. The authors map a chain of such binary tensor additions effectively

to GPUs. However, they do not consider using fusion as a means of reducing storage requirements on the GPU

and also do not consider the cases where the contractions have a producer-consumer relationship. DePrince

and Hammond [DH11] have demonstrated GPU optimizations for the iterative solution of CCSD(T). For

a total of 34 contractions, they classify the contractions scaling as N4 or less as work to be performed on

the CPU and N5 or more on the GPU (with the sixth-power contractions executed first), where N refers

to the system size. The tensors that are too large to fit on the GPU are then tiled and the tiles are executed

sequentially, which is the case for only four contractions in their experiments. While this is a manual

optimization for a specific equation, a generalization of this approach may be useful as a future extension of

our optimization framework.
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Chapter 4
Improvements to the Loop Fusion Algorithm

This chapter discusses the performance improvements we made to the loop fusion algorithm and also

present a dynamic memory allocation cost model for the fusion algorithm. For optimizing the performance

of the fusion algorithm, there are two main implementation choices: the choice of set data structures and the

pruning strategy. As we discuss subsequently, they can depend on the cost model that is used as well as on

the structure of the input equations. With these improvements, we outperform the existing implementation of

the algorithm by a factor of 3.5 for the static memory allocation cost model and upto a factor of 55 for the

space-time tradeoffs cost model. The complete measurements are presented in Section 8.1.

4.1 Data Structures

Operations on index sets are very frequent, especially when extending solutions, constructing binary solutions,

and in pruning. Since the number of indices in an equation is bounded and rarely larger than 32, the best

choice of data structure is a bit set in which each index is mapped to a unique bit position. Also, instead

of implementing leq for index set sequences as presented, it is more efficient to implement a four-valued

comparison function, compare(h,h′), that indicates whether h and h′ are equal, incomparable, or whether

one is more constraining than the other. With similar four-valued functions corresponding to inferior

and leqFrags, this would allow reducing the number of comparisons when pruning a solution set with n

solutions from n2 to n(n− 1)/2.

While a linked list is an efficient data structure for implementing sets of solution trees for memory

minimization, this is not the case for a two-dimensional cost model, such as space-time tradeoffs. With two

or more orthogonal cost components, such as memory and recomputation cost, a solution set will contain

multiple solutions with the same fusion. When computing the solutions for a binary node, this will result in

repeated calls to mergeNesting with the same pair of nestings from the left and right subtrees. A more

efficient data structure for this scenario is a hashed set data structure that uses the fusion as a hash index to

select the subset of solutions that contain the same fusion [Bib04]. By moving the call to mergeNesting

from the cost model into makeBinarySolnSet the number of calls to mergeNesting can be drastically
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reduced. Another advantage of a hashed solution set data structure is that solutions with equal fusion can be

pruned when inserting solutions into the set.

For a one-dimensional cost model, a hashed solution set data structure would also allow pruning solutions

with equal fusion when inserting them into the set. While this results in smaller sets, it comes at the expense

of computing the hash codes and of more memory accesses for maintaining the data structure.

4.2 Pruning

We first perform an optimization in extendSoln’ where we omit the extension step in certain cases. If

the maximal fusion of a subtree does not limit the fusion choices elsewhere in the tree, it is not necessary

to enumerate all its prefixes. For a binary node, this is the case if the child has all the indices of the parent

and the maximal fusion fuses all indices without constraints on the loop order. The child can be fully fused

with the binary node without effecting other fusion choices. For a unary node, the enumeration of prefixes

can similarly be skipped if all indices are fused. However, this is the case even if there are constraints on

the loop order. In this case, fully fusing the child with the unary node will prune out some fusion choices

between the unary node and its parent, but those would have resulted in higher memory usage. We present

a correctness proof for this optimization in Section 4.3. For clarity of the presentation, the code changes

corresponding to this optimization in function extendSoln’ have already been made in the algorithm

presented in Chapter 2 (see Figure. 2.5).

The function pruneSolnSet is called after extending solutions, after forming binary solutions, and

after reducing solutions. Since pruning is an expensive operation — it is quadratic in the size of the solution

set — it may be beneficial to prune less frequently. However, which of these three pruning operations are the

most effective and are worth their cost can depend on the cost model as well as on the structure of the input

expression. For determining the optimal pruning strategy for a given cost model and application domain, it is,

therefore, necessary to profile different combinations of pruning operations.

With a two-dimensional cost model, such as space-time tradeoffs, the size of solution sets can become

especially large along a long chain of binary addition nodes. For a given fusion, there can be many solutions

with different memory and recomputation cost combinations. The size of the solution sets can be reduced

further using heuristic pruning [Bib04]. The solutions for a given fusion are sorted in increasing memory

cost and decreasing recomputation cost. A heuristic pruning rule that has proved successful is to divide the
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range of solutions into a fixed number of equal-size intervals (e.g., along the memory dimension) and to pick

at most one solution per interval.

4.3 Correctness and Complexity of the Loop Fusion Algorithm

The minMemFusion algorithm exhaustively enumerates loop structures for an expression tree and finds a

solution with minimal memory requirements under the assumption that all temporaries are allocated statically.

By enumerating all possible prefixes of each maximal fusion for a subtree and by forming the full cross

product of solutions from the two subtrees of a binary node, we ensure that the search is exhaustive.

We employ two pruning techniques for pruning out solutions that could not lead to a memory-minimal

solution for the entire expression tree. In pruneSolnSet we eliminate suboptimal solutions from the set

of solutions for a node, and in extendSoln’ we omit the extension step in certain cases.

The function pruneSolnSet is called after extending solutions, after forming binary solutions, and

after reducing solutions. The pruning in pruneSolnSet, by using the function inferior for comparing

solutions, removes solutions that have a more or equally constraining fusion and a greater or equal cost than

another solution in the set. By only eliminating solutions with a more or equally constraining fusion, we

ensure that no fusion possibilities are prevented in a sibling or in an ancestor. By comparing the cost only for

solutions with compatible fusions, we ensure that the optimal solution for the subtree is not removed from

the set.

In extendSoln’, the extension step is skipped

• if the parent is a binary node, the child has the same indices as the parent, and the maximal fusion for

the subtree fuses all indices without constraints on the loop order, or

• if the parent is a unary node and the maximal fusion for the subtree fuses all indices regardless of the

constraints on the loop order.

In both cases, if there are no constraints on the loop order, it is always optimal to fuse all indices. Since the

child and the parent have the same sets of indices, fusing only some of the loops only increases the memory

requirements for the child node without any change in the fusion possibilities in a sibling or an ancestor.

Suppose u is a Sum node with child v and the maximal fusion f of v contains all indices of v. Without

loss of generality, assume that f has the form 〈i, . . . , j, . . . , k〉, where j is the left-most summation index of

u and i and k are non-summation indices. If all indices are fused, after the reduction operation for u removes
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the summation loops and all loops nested within the summation loop, the maximal fusion of u still fuses i

but not k. If an actual fusion for v still fuses j but not k, the memory requirement for v increases without

any change in the fusion possibilities in an ancestor. If an actual fusion for v still fuses i, but neither j nor k,

there are additional fusion possibilities between u and its parent, in particular, k can now be fused. But any

dimension of u that can now be fused must be stored for v, and in addition the j dimension of v must be

stored. There are no additional fusion possibilities for a sibling or ancestor of u. Eliminating the extension

step between v and u, therefore, only prunes out sub-optimal solutions.

Since the maximal fusions of BinOp nodes and of all leaf nodes always fuse all indices, the only time the

extension step for the child of a summation node is necessary is if that child is a summation node as well and

some indices are not fused because they were constrained to be nested within a summation index of the child.

The dynamic programming algorithm in minMemFusionSet visits each node in the expression tree

exactly once. The number of solutions for a node, however, can grow exponentially with the number of

indices, since the set of prefixes of a fusion with n indices that is generated in extendSolnSet can contain

2n elements. Since every Array or Fun leaf node can introduce a unique index, the number of indices can be

linear in the size of the tree. The worst-case complexity is, therefore, exponential in the size of the tree. In

practice, however, the number of indices is usually small and pruning proves very effective, which results in

fairly small sets of solutions and very good overall performance.

4.4 Dynamic Memory Allocation

For simplicity, we had been assuming that all intermediates are allocated statically, but this can unnecessarily

increase the memory usage. In this section, we present a cost model that assumes that memory for intermediate

arrays and the result array can be allocated and deallocated dynamically as needed. We allow an array to be

allocated/deallocated multiple times by putting the allocate/deallocate statements inside loops, but each array

must be allocated/deallocated in its entirety. We do not consider sharing of space between arrays.

Given a loop fusion configuration, the positions of the allocate/deallocate statements are determined as

follows. Let v be an array, sp be the statement that produces v, sc be the statement that consumes v, and the

i-loop be the innermost fused loop that contains both sp and sc. The latest point an “allocate v” statement can

be placed is inside the i-loop and before sp and any loops that surround sp and are inside the i-loop. The
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earliest point a “deallocate v” statement can be placed is inside the i-loop and after sc and any loops that

surround sc and are inside the i-loop.

The memory usage of a loop fusion configuration is no longer the sum of the array sizes, but instead the

maximum total size of the arrays that are allocated at any time.

Another difference between dynamic allocation and static allocation is that, with dynamic allocation, the

evaluation order of the nodes having equal fusion with their parents can affect memory usage even though

the sizes of individual arrays remain unchanged.

Let u and v be two nodes that have the same fusion with their respective parents, and let tu and tv be the

intermediate arrays that hold the results of the computations of the subtrees rooted at u and v, respectively.

Since the fusion with their parents is the same, the code for u and v can be generated consecutively within

the same outer loops. Suppose that the maximum memory usage during the computation of u is 1000, the

size of tu is 700, the maximum memory usage for v is 500, and the size of tv is 100. If u is evaluated first,

the maximum memory usage is 700 + 500 = 1200 since tu must remain in memory while v is evaluated. On

the other hand, if v is evaluated first, the maximum memory usage is only 100 + 1000 = 1100. Therefore, in

addition to finding the fusions between children and parents, we also need to find an evaluation order of the

nodes for minimizing memory usage.

The simpler problem of finding the memory-optimal evaluation order of the nodes in an expression tree in

the absence of loop fusion is the register allocation problem for expression trees. If the expression tree is

a binary tree in which all nodes require the same amount of memory, the Sethi-Ullman algorithm [SU70]

can be used, which finds an evaluation order in which the subtree that uses the most memory is evaluated

first. Appel and Supowit generalized the register allocation problem to higher degree expression trees of

arbitrarily-sized nodes [AS87]. However, they restricted their attention to solutions that evaluate subtrees

contiguously, which could result in non-optimal memory usage. Lam et al. present an algorithm that finds the

optimal evaluation order without requiring subtrees to be evaluated contiguously [LRB+11].

The Appel-Supowit algorithm simply traverses the expression tree bottom up and computes two quantities

for each node. The hi of a node is the largest amount of memory needed during the evaluation of the subtree

rooted at this node. The lo of a node is the amount of memory needed for the temporary array that holds

the result. If a node has multiple subtrees, the subtrees are evaluated in non-increasing hi− lo order. The
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algorithm by Lam et al. uses the same hi − lo ordering, but for fragments of tree traversals that do not

necessarily evaluate entire subtrees. For a proof of the optimality of this ordering, see Lemma 2 in [LRB+11].

While the Appel-Supowit algorithm is not guaranteed to find the optimal evaluation order, for typical

tensor contraction expressions in quantum chemistry, however, it finds the same solution as Lam et al.’s

algorithm. Either algorithm could be used as the basis of a dynamic memory allocation cost model for the

loop fusion algorithm. Because of the constraints placed on the evaluation order by loop fusion, it is unlikely

that in practice a non-contiguous evaluation order of subtrees is needed. Therefore, we use the simpler

Appel-Supowit algorithm as the basis of our cost model. A dynamic memory allocation cost model based on

Lam et al.’s algorithm can be found in [LCBS99, Lam99].

Suppose v and v′ are siblings with parent u but do not have the same fusion with u, and suppose loop i

is fused between v and u but not between v′ and u. The set of fused indices between v′ and u is, therefore,

a subset of the fused indices between v and u. Since children must be evaluated before their parent, and

since v′ must be evaluated outside the fused i loop, it must be evaluated first. Reducing the memory usage by

evaluating nodes in non-increasing hi − lo order, therefore, is only possible for nodes that have the same

fusion with their parents. Furthermore, if the entire subtree rooted at v is fused with v, v′ must remain

allocated during the evaluation of the entire subtree rooted at v.

The costs of subtrees are not simply added up as with the static memory allocation cost model. Instead, the

lo of the subtree that is evaluated first is added to both the lo and the hi of the next subtree. Then the maximum

of the two hi values is taken as the cost of the two subtrees combined. This cost calculation depends on the

order of evaluation of subtrees, which in turn depends on the fused loop structure. The dynamic memory

allocation cost model, therefore, must maintain a list of tree fragments for computing the evaluation order

and then compute the overall cost from the cost of the fragments. The fragments in the cost model correspond

to the code fragments in the code generation algorithm in Section 2.4.3, except that the cost model only

needs to compute the memory usage for each fragment instead of the code.

We use the following data structure for representing a solution in our dynamic memory allocation cost

model for an expression tree t:

S(f, (hi, lo, hiC, loC), frags, t)
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where f is the maximal fusion between the root node of t and its parent, hi is the maximum memory

usage during the evaluation of the root fragment of t under fusion f , and lo = fusedSize(t,f) is the

memory needed for storing t under fusion f . To allow recomputing hi and lo when the fusion changes in

extendSoln or reduceSoln, we also store hiC and loC, where hiC is the maximum memory usage

during the evaluation of the subtrees of t for those parts of the subtrees that are fused into the root fragment

and loC is the memory needed for storing the results of those subtrees. Finally, frags is a list of (fset, fhi, flo, t′)

quadruples representing those fragments that have not yet been fused with the root fragment.

For each fragment, fset is the set of fused indices and fhi and flo are the maximum memory usage for

computing the fragment and the memory needed for storing the result, respectively. The tree node t′ is the

parent node of a fragment. The cost model also generates fragments for representing the initialization of a

temporary variable; for those fragments t′ is null. The fragments in frags are sorted in the order in which they

will be fused with the root fragment, which is in non-increasing number of fused indices and for fragments

with equal fused indices in non-decreasing hi − lo order. The set of fused indices of any fragment in the

list is equal to or a superset of all following fragments. The set of fused indices of any fragment is a proper

subset of set(f). The fragments are in the reverse of the order in which the corresponding code fragments

will appear in the final code.

Figure 4.1 shows functions operating on lists of fragments. The function mergeFrags merges two sorted

lists of fragments in non-increasing number of fused indices and for equal fused indices in non-decreasing

hi− lo order. The function combineFrags merges any neighboring fragments with the same fused indices

into a single fragment. It is called in extendSoln after the actual fusion for the root node of a subtree has

been chosen and ensures that any parts of the subtree with equal fusion are evaluated contiguously.

The functions leqFrags and Low are used for comparing lists of fragments when pruning solution sets.

The function Low adds up the lo fields of all fragments. The call leqFrags(frags,frags′) returns

true if and only if for any set of fused indices (i.e., at any point in the lists of fragments), both the hi and the

Low at this point in frags are larger than or equal to those in frags′. Suppose frags and frags′ are the lists

of fragments of two otherwise identical solutions for a subtree. If leqFrags(frags,frags′) returns

true, then inserting any fragment from another subtree in frags can never result in a better final solution than

inserting the same fragment at the corresponding point in frags′.

46



mergeFrags(frags, frags’):
if frags = nil then return frags’
else if frags’ = nil then return frags
else
(fi,hi,lo,t) = head(frags)
(fi’,hi’,lo’,t’) = head(frags’)
if subset(fi’, fi) or (fi = fi’ and hi’ - lo’ >= hi - lo) then

return (fi,hi,lo,t) :: mergeFrags(tail(frags), frags’)
else

return (fi’,hi’,lo’,t’) :: mergeFrags(frags, tail(frags’))

combineFrags(frags):
if frags = nil or tail(frags) = nil then return frags
(fi,hi,lo,t) = head(frags)
(fi’,hi’,lo’,t’) = head(tail(frags))
if fi = fi’ then
return combineFrags((fi, max(hi’,lo’+hi), lo+lo’, t) :: tail(tail(frags)))

else
return (fi,hi,lo,t) :: combineFrags(tail(frags))

leqFrags(frags, frags’):
if frags’ = nil then return true
else if frags = nil then return false
else
(fi,hi,lo,t) = head(frags)
(fi’,hi’,lo’,t’) = head(frags’)
if fi = fi’ and (hi < hi’ or Low(tail(frags)) < Low(tail(frags’))) then

return false
else if fi = fi’ then

return leqFrags(tail(frags), tail(frags’))
else if subset(fi’, fi) then

return leqFrags(tail(frags), frags’)
else

return leqFrags(frags, tail(frags’))

Low(frags):
if frags = nil then return 0
else
(fi,hi,lo,t) = head(frags)
return lo + Low(tail(frags))

FIGURE 4.1. Operations on fragments for the dynamic memory allocation cost model.
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Figure 4.2 shows the dynamic memory allocation cost model. Similar as in the static memory allocation

cost model, makeLeafSoln creates a solution with hi = lo = 0 for Array and Const nodes and a

solution with hi = lo = 1 for Fun nodes. In either case, the list of fragments is empty.

If the subtree of a summation node is fully fused with its parent, makeUnarySoln creates a solution

in which lo = 1 (assuming full fusion of the summation node with its parent) and in which the hi is the

maximum of the hi of the subtree and the lo of the subtree plus the lo of the summation node. If the subtree

is not fully fused with the summation node, the root fragment of the subtree is added to the list of fragments

and a new root fragment consisting only of the summation node is created with cost hi = lo = 1.

Similar as for unary nodes, makeBinarySoln tests whether the subtrees are fused with the parent. If

both subtrees are fused, the cost is computed for an evaluation in non-increasing hi− lo order. If a subtree is

not fused, the root fragment of that subtree is added to the list of fragments. Only the cost of fused subtrees is

incorporated in the cost of the root fragment. Finally, the fragments from the two subtrees are merged.

The functions extendSoln and reduceSoln result in a new fusion f ′ for the root fragment in the

same way as in the static memory allocation cost model. The lo of the root fragment is recomputed using f ′.

Since f ′ may fuse only a subset of the indices fused by the original maximal fusion f , all fragments whose

set of fused indices is equal to or a superset of set(f) now need to be fused or concatenated with the root

fragment. Furthermore, the initialization of the root node t must be moved before any loops that will be

fused with fragments but not with the parent. To calculate the cost for initializations correctly, we insert an

initialization fragment into the list of fragments. The function useFrags then recursively traverses the list

of fragments and updates the cost of the root fragment to reflect the fusion of fragments with more fused

indices than f ′ and the concatenation of fragments with the same set of fused indices. The cost computation

in useFrags depends on whether the fragment is the initialization fragment, the fragment for a subtree of t,

or the fragment for a descendent of t. Finally, if useFrags was called by extendSoln, any remaining

fragments with equal sets of fused indices can now be combined since they will not be fused with t anymore.

Finally, the function inferior compares two solutions for the purpose of pruning. A solution s is

inferior to s′ if s has equal or larger hi and lo than s′, if the Low of its fragment list is larger or equal than

that of s′, if the nesting of s is more or equally constraining that that of s′, and if leqFrags for the two

fragment lists returns true.
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makeLeafSoln(t):
if t is an Array node or a Const node then
return { S(any, (0,0,0,0), [], t) }

else if t is a Fun node then
return { S([fusible(t)], (1,1,0,0), [], t) }

makeUnarySoln(S(f, (hi,lo,hiC,loC), frags, l), h, t):
if set(f) = indices(t) then
hi’ = max(hi, lo + 1)
return { S(h, (hi’,1,hi,lo), frags, t) }

else // subtree is not fused with parent
return { S(h, (1,1,0,0), (set(f),hi,lo,t) :: frags, t) }

makeBinarySoln(S(f, (hi,lo,hiC,loC), frags, l), h,
S(f’, (hi’,lo’,hiC’,loC’), frags’, r), h’, t):

f’’ = mergeNesting(h, h’)
if set(f) = indices(t) and set(f’) = indices(t) then

if hi - lo >= hi’ - lo’ then // both subtrees are fused with parent
hiC’’ = max(hi, lo + hi’) // evaluate left then right subtree

else
hiC’’ = max(hi’, lo’ + hi) // evaluate right then left subtree

hi’’ = max(hiC’’, loC + loC’ + 1)
return { S(f’’, (hi’’,1,hiC’’,loC+loC’), mergeFrags(frags, frags’), t) }

else if set(f) = indices(t) then // only left subtree is fused
hi’’ = max(hi, lo + 1)
return { S(f’’, (hi’’,1,hi,lo),

mergeFrags(frags, (set(f’),hi’,lo’,t)::frags’), t) }
else if set(f’) = indices(t) then // only right subtree is fused

hi’’ = max(hi’, lo’ + 1)
return { S(f’’, (hi’’,1,hi’,lo’),

mergeFrags((set(f),hi,lo,t)::frags, frags’), t) }
else // neither subtree is fused with parent

return { S(f’’, (1,1,0,0),
mergeFrags((set(f),hi,lo,t)::frags, (set(f’),hi’,lo’,t)::frags’), t) }

useFrags(S(f, (hi,lo,hiC,loC), frags, t), e):
if frags = nil then return S(f, (hi,lo,hiC,loC), [], t)
(fi,hi’,lo’,t’) = head(frags)
if t’ = null then // head(frags) is initialization of t
return useFrags(S(f, (lo’+hi,lo’,hiC,loC), tail(frags), t), e)

else if fi = set(f) or subset(set(f), fi) then // use head(frags)
loC’ = loC + lo’
hiC’ = max(hi’, lo’ + hiC)
if t’ = t and not(fi = set(f)) then // head(frags) is a child of t

hi’’ = max(hiC’, loC’ + lo)
return useFrags(S(f, (hi’’,lo,hiC’,loC’), tail(frags), t), e)

else // head(frags) is a decendent of t
hi’’ = max(hi’, lo’ + hi)
return useFrags(S(f, (hi’’,lo,hiC’,loC’), tail(frags), t), e)

else return S(f, (hi,lo,hiC,loC), if e then combineFrags(frags) else frags, t)

extendSoln(S(f, (hi,lo,hiC,loC), frags, t), f’):
lo’ = fusedSize(t, f’)
if set(f’) = indices(t) then return S(f’, (hi,lo,hiC,loC), frags, t)
else return { useFrags(S(f’, (hiC,0,hiC,loC),

mergeFrags([(set(f’),lo’,lo’,null)], frags), t), true) }

reduceSoln(S(f, (hi,lo,hiC,loC), frags, t), i):
f’ = maxPrefix(f, i)
lo’ = fusedSize(t, f’)
return { useFrags(S(f’, (hiC,0,hiC,loC),

mergeFrags([(set(f’),lo’,lo’,null)], frags), t), false) }

inferior(S(f, (hi,lo,hiC,loC), frags, t), h,
S(f’, (hi’,lo’,hiC’,loC’), frags’, t’), h’):

return hi >= hi’ and lo >= lo’ and Low(frags) >= Low(frags’) and
leq(h, h’) and leqFrags(frags, frags’)

FIGURE 4.2. The cost model for dynamic memory allocation.
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Code generation is similar as for the static memory allocation cost model. When constructing the fusion

tree representation from the solution tree, both the hi and the lo for each node are recorded. The code

generation algorithm then recomputes the hi− lo ordering of any fragments with equal fusion and generates

the code accordingly. In addition to generating the initialization fragments for summation nodes, the code

generation algorithm now also must generate memory allocation statements for all non-scalar temporaries.

For generating deallocation statements, a list of deallocation fragments is maintained. When generating a

loop, any allocation, initialization, and computation fragments with the same set of fused indices are added

before the loop, any deallocation fragments with the same set of fused indices are added after the loop.

If we would base our cost model on the memory allocation algorithm by Lam et al. [LRB+11] and allow

non-contiguous evaluation of subtrees, code generation would become more complex. Instead of simply

ordering fragments in non-increasing hi− lo order, the code generation algorithm would need to recompute

fragment boundaries. Alternatively, the cost model could record the evaluation order as a list of tree nodes

for each fragment, which then would be used to guide code generation.

Table 4.1 shows the steps of the fusion algorithm with the dynamic memory allocation cost model for

computing the optimal solution for the example from Figure 2.1. Solutions that do not lead to the optimal

solution are omitted. The resulting loop structure is the same as with the static memory allocation cost model,

as shown in Figure 2.7. Because of the constraints placed on the evaluation order by loop fusion, dynamic

memory allocation did not result in a noticeable reduction in memory usage. The maximum memory usage of

158 that is computed is only slightly less than the memory usage of 160 for the static memory allocation cost

model. The maximum memory usage occurs during the evaluation of f2. At this point, fA has already been

deallocated and f4 has not yet been allocated. Since in code generation no allocation statements would be

generated for scalars and since consecutive assignments to scalars could be combined into a single statement,

the actual memory usage for this example is identical for static and dynamic allocation.
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TABLE 4.1. Algorithm trace for the example from Fig. 2.1 with a dynamic memory allocation cost model.
Node max. fusion ext./red. cost of root fragments

A 〈ij〉 (1,1,0,0) []

f1 〈ij〉 (2,1,1,1) []
〈j〉 R {j} (2,1,1,1) []
〈〉 E 〈jk〉 (101,100,1,1) []

B 〈jkl〉 (1,1,0,0) []

C 〈kl〉 (1,1,0,0) []
〈k〉 E 〈k, jl〉 (15,15,0,0) []

f2 〈k, jl〉 (2,1,1,1) [(k,15,15,f2)]

f3 〈k, jl〉 (2,1,2,1) [(k,15,15,f2)]
〈k, j〉 R {jk} (3,1,2,1) [(k,15,15,f2)]
〈k, j〉 E 〈k, j〉 (3,1,2,1) [(k,15,15,f2)]

f4 〈k, j〉 (3,1,3,1) [(k,15,15,f2),(,101,100,f4)]

f5 〈k, j〉 (3,1,3,1) [(k,15,15,f2),(,101,100,f4)]
〈k〉 R {k} (19,1,18,16) [(,101,100,f4)]
〈〉 R {} (158,40,118,116) []

A disadvantage of the dynamic memory allocation cost model is that it is more expensive. Maintaining

its solution data structure is more time-consuming than maintaining a single memory count, and the more

complex cost model results in fewer pruning opportunities. While with the static memory allocation cost

model a total of 40 solutions are generated for our example, as shown in Table 2.1, with this cost model there

are a total of 51 solutions.
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Chapter 5
Loop Fusion Optimization for Handwritten Code

The search-based loop fusion optimization has been successful in the Tensor Contraction Engine for

minimizing storage or, together with a search-based tiling optimization, for automatically generating efficient

out-of-core code from tensor contraction expressions. This chapter presents a generalization of the loop

fusion algorithm to handwritten code as a first step towards generating out-of-core code from handwritten

in-core code. Handwritten tensor contraction code in a general purpose language could be interspersed

with non-tensor contraction code (e.g., fast Fourier transform code). Expressing such a code mixture in

a domain-specific language (DSL) could be very complex, but is easier to handle as handwritten code.

Polyhedral compilation currently is state-of-the-art for analyzing handwritten general purpose loop code

with complex dependencies and producing optimized CPU and accelerator code. We present a discussion

comparing our approach with polyhedral compilation in Section 5.3. We demonstrate in our measurements in

Section 8.2 that the current polyhedral compilers are unable to deliver competitive performance for tensor

contractions.

The loop fusion algorithm presented in Chapter 2 optimizes dense array computations by fusing producer

and consumer loops to minimize the storage requirements for intermediate arrays. It undoes any fusion

provided by the programmer and, using a cost model for memory minimization, searches all loop structures

for the memory-minimal code. Then the fused loops are expanded to tile size and these tiles are used as units

of data transfers between different levels in the memory hierarchy. We demonstrate the algorithm using an

example. We have implemented it as a source-to-source translation using the ROSE compiler framework. We

also demonstrate the effectiveness of this approach for multi-core CPUs and GPGPUs in Section 8.2.

The combination of fusion and tiling optimizations has proven successful in the TCE for minimizing disk

to memory traffic for dense tensor computations. While other optimizations are specific to tensor contraction

expressions, these two optimizations can be useful for optimizing handwritten dense array computations. The

fusion and tiling optimizations can be used for different purposes. For example, the fusion optimization by

itself can be used for minimizing memory requirements for intermediate results [LCBS99, Lam99]. Together

with the tiling optimization and with different cost models, these optimizations can be used for minimizing
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disk to memory traffic [BKC+03, KKB+03] or for space-time tradeoffs [CBL+02b]. Since the problem of

making the fusion algorithm work on an abstract syntax tree is independent of the cost model, we limit the

discussion to the use of the fusion algorithm as a stand-alone optimization for memory minimization.

We now focus on the non-trivial problem of finding a loop fusion configuration for well behaved handwrit-

ten code that minimizes memory usage without increasing the operation count. The loop fusion algorithm

is a bottom-up dynamic programming algorithm that operates on expression trees. An expression tree has

the advantage that the consumer of an intermediate array is the parent node of the producer of that array.

Furthermore, all loops are implicit, since the interior nodes in an expression tree represent array operations.

In order to handle handwritten code, we generalize the loop fusion algorithm to abstract syntax trees with

explicit loops. For this, it is necessary to reconstruct the producer-consumer relationship and recognize any

language constructs or code structures that cannot be optimized with the fusion algorithm. The goal is to use

search with memory cost and disk I/O cost for handwritten tensor contraction code. The programmer can use

arrays of arbitrary size and need not worry about disk I/O.

For generalizing the fusion algorithm to an abstract syntax tree, we face the following challenges:

• The producer and consumer of an intermediate array may be in different loop nests. It is, therefore,

necessary to reconstruct the producer-consumer relationship using reaching definitions analysis.

• A producer of an intermediate might have multiple consumers. Conversely, a consumer might have

multiple reaching definitions.

• Handwritten code can be unfused, partially fused, or suboptimally fused. When the producer and

consumer of an intermediate are fused, the intermediate has fewer dimensions than would be necessary

if the producer and consumer were not fused. In case this is not an optimal fusion, we need to

reconstruct the indices that would be necessary if there were no fusion.

• When working with handwritten code, any language constructs that cannot be optimized, such as while

loops, if statements, scalar code, or function calls need to be ignored, while for loops involving array

computation must be optimized.

• Any function calls within an expression might have side effects. The loops around these function calls,

therefore, cannot be reordered, which constrains the fusion possibilities.
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• Complex array subscript expressions or loop bounds create dependencies among array elements that

can prevent certain loop interchanges or loop fusions.

• Finally, sparse arrays, variable loop ranges, etc., can make the computation of the memory requirements

needed for the cost model impossible at compile time.

Additionally, for arbitrary code in the presence of function calls with side effects in array subscript

expressions, it can be impossible to calculate the memory requirements or to determine the validity of

fusions at compile time. However, it is possible to identify the parts of the code that can benefit from fusion

optimization, optimize those, and leave the rest untouched.

As a first step towards the goal of turning in-core code into out-of-core code for a wide range of handwritten

codes, we make the following simplifying assumptions:

• Array subscript expressions are simple loop variables.

• Arrays are dense and loop bounds are constant.

While these are drastic simplifications, the resulting code is still general enough to cover tensor contractions

and some other linear algebra codes.

5.1 Algorithm

Our fusion algorithm searches through possible loop fusion configurations between the producers and the

consumers of intermediates. When operating on an expression tree, the producer and the consumer of an

intermediate are conveniently in a parent-child relationship. In handwritten code, they may be in different

loop nests. Furthermore, for handwritten code it is necessary to identify the code regions on which a loop

fusion optimization can safely be performed.

Our memory minimization algorithm for handwritten code runs the loop fusion algorithm on the depen-

dency graph after a series of traversals of the abstract syntax tree that prepare the abstract syntax tree for the

fusion algorithm and identify where loop fusion optimizations can safely be performed. After completion of

the loop fusion algorithm, we generate a new abstract syntax tree that represents the memory-minimal fused

code.

Our algorithm consists of the following steps:
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Canonicalization moves code containing side effects out of expressions.

Region identification identifies code regions in which loop fusion optimizations are safe.

Subscript inference computes the indices needed for intermediates in unfused code.

Reaching definitions analysis identifies producers and consumers of intermediate arrays.

Loop fusion optimization identifies the memory-minimal loop fusion configuration.

Code generation constructs an abstract syntax tree for the optimal loop fusion configuration.

5.1.1 Canonicalization

Since the loop fusion algorithm can reorder loops, any code that may depend on the loop order must be

flagged as such or moved out of larger expressions. For individual subexpressions, it is sufficient to store the

required fusion in the corresponding parse tree node. Suppose we have the source code

for i

for j

x[i,j] = ... + f(i,j) + ...;

and that the function f has side effects. If the function call does not have a side effect on other subexpressions

of this expression, the function call node could simply be marked with the fusion 〈i, j〉, which indicates that

for the loops surrounding the function call itself i must be the outer loop and j must be the inner loop. The

loop fusion algorithm would still be able to reorder the loops surrounding the rest of the expression. E.g., it

might decide to fuse the assignment to x with its consumer by moving f into a temporary:

for i

for j

t[i,j] = f(i,j);

for j

for i

x = ... + t[i,j] + ...;

y[i,j] = ... * x;

If two or more subexpressions might have side effects on one another, they are moved out of the expression

and assigned to temporaries. The entire sequence of assignments to temporaries is then marked with the

appropriate fusion.
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5.1.2 Region Identification

This traversal identifies constraints on fusing loops by marking code regions on which to run the loop fusion

algorithm. If fusion across two code fragments is valid, both are assigned the same region mark. If one

of the code fragments is inside a loop or an if-then-else statement but not the other, they cannot be in the

same region. Similarly, two code fragments cannot be in the same region if they are separated by a language

construct such as a while loop, a function call, or an if-then-else statement. Fusion across any two code

regions containing these language constructs would reorder the computation and, therefore, change the

semantics of the code.

5.1.3 Subscript Inference

The indices at a node are used by the fusion algorithm to determine the constraints for fusing loops. For any

node v inside a loop, dimensions refers to the loop indices around it. If v is an array reference, dimensions

refers to loop indices that are used to index the array dimensions. The procedure for computing indices is

shown in Figure 5.1.

computeIndices(T):
for each node v in some top down traversal of T do
if v is an Assignment node then

indices(v) = union(dimensions(child1(v)), dimensions(child2(v)))

if dimensionCount(child1(v)) < dimensionCount(child2(v)) then
summationIndices(v) = difference(dimensions(child2(v)), dimensions(child1(v)))

if v is a Binary operator node then
indices(v) = union(dimensions(child1(v)), dimensions(child2(v)))

if v is a Leaf node then
if v is a Constant then

indices(v) = < * >
if v is any variable other than a loop variable then

if parent(v) is a Summation operator node and
v is the left child of parent(v) then

indices(v) = < * >

else if !exists(reachingDefinition(v)) then
indices(v) = dimensions(v)

else indices(v) = union(indices(reachingDefinition(v)),
loopIndicesFusedBetween(v, reachingDefinition(v)))

FIGURE 5.1. Procedure to compute indices for fusion.

5.1.4 Reaching Definitions Analysis

In order to generalize the loop fusion algorithm to handwritten code, it is necessary to reconstruct the

producer-consumer relationship and recognize any language constructs or code structures that cannot be

optimized with the fusion algorithm. We perform the reaching definition analysis to reconstruct the expression
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tree as a dependency graph containing the producer-consumer relationships. This analysis is performed at the

level of abstract syntax trees as opposed to the traditional analysis on intermediate code. We know that for

any variable used in the code, its reaching definition would be the most recent definition of that variable. We

only record a reaching definition if both the variable used and its reaching definition have the same mark

assigned during the region identification traversal. For example, if the definition of the variable is inside

a while loop and its use is outside the loop, then we do not create a reaching definition edge. In case of

such loops, we may have a reaching definition to a statement in which a variable is both used and defined.

We do not record the reaching definition for a statement inside a loop in which a variable is both used and

defined. This is because during fusion, we identify the root of the dependency (reaching definitions) graph

as a starting point for running the fusion algorithm. A node is identified as the root if it has no incoming

reaching definitions. Since array reference indexes are simple loop indices and not affine, there exist no

dependencies from one loop iteration to the next. Multiple root nodes can exist in the dependency graph we

construct for a given tensor contraction code. A usage node can have multiple reaching definitions and a

definition node can have multiple incoming reaching definitions. In this case, we leave the code regions as is

and do not attempt to consider more complex fusion possibilities.

5.1.5 Loop Fusion for Handwritten Code

The fusion algorithm is run on the dependency graph with sufficient information at each node collected as

the result of all the previous traversals, that is an expression tree consisting of reaching definitions edges and

the expressions and assignments from the abstract syntax tree. We use a dynamic programming algorithm for

computing the memory optimal loop fusion configuration. The algorithm traverses the dependency graph

bottom-up and generates a set of possible loop structures for each tree node. Each solution is represented as a

pair containing a fusion and memory cost. We restrict ourselves to a static memory allocation model and

hence compute the memory usage by simply summing up the sizes of all arrays in the memory-optimal tree

achieved as the result of fusion.

• FunctionCall Node:

For the fusion algorithm to distinguish disk arrays from memory-resident arrays, we represent disk

arrays as function calls. In such a case, a single solution is generated which indicates that this node can
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be fully fused with its parent in any order, provided they are both present in code regions having the

same mark.

• A leaf node:

A single solution is generated to indicate that the node can be accessed repeatedly at zero cost, and

also if the leaf node has the special index set with the single any entry. This means that not only the

indices of the leaf node but also any index of the parent can be fused between the leaf node and the

parent. For leaf nodes which do not have the special index set representing their indices, this node can

only be fused with an index at the parent found in the indices set of the leaf node.

• Binary Operator Node:

Let v be a binary operator node. The solutions for the left and right subtrees of v must be combined to

form a solution for v. This is achieved using makeBinarySolnSet shown in Figure 2.5. Also for

binary operations, the parent may have more dimensions than the child and hence, it is necessary to

enumerate all possible ways in which the loop structures for the subtrees can be fused with the parent,

such that only the compatible solutions for the two subtrees can be combined to form a solution for v.

It is possible that a binary operator is being used for the purpose of summation or product of a variable.

To serve this purpose, there exists a loop index (indices) which is already in the solution set of v. This

loop index is not required by the parent of v. Hence, we need to perform the Reduction step, which is

the process of removing the extraneous index from the solution set of v.

• Assignment Node:

For an assignment node v, we combine the solutions for the two subtrees using makeBinarySolnSet.

However, if v has more indices from the right subtree compared to the left subtree, it means that there is

a binary operator node in the subtree of v used for the purpose of summation or repetitive multiplication.

In such a case, we also perform the Reduction step that was delayed at the binary operator node, at v.

This removes the extraneous indices from the solution set of v and adjusts the memory cost accordingly.

Finally, we obtain a set of solutions for the root of the dependency graph for a tensor contraction expression.

Multiple root nodes can exist in a dependency graph. The solutions obtained have different maximal fusions

and different costs. At the root node, we remove all indices from the maximal fusions for all solutions thereby

increasing the memory costs for the various solutions. These sets of solutions are further pruned to find the
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1 initialize f1
2 for i
3 for j
4 f1[j] = f1[j] + A(i,j)
5 initialize f3
6 for k
7 for l
8 fC = C(k,l)
9 for j

10 f3[j][k] = f3[j][k] + B[j][k][l] * fC
11 initialize f5
12 for j
13 for k
14 f5[k] = f5[k] + f1[j] * f3[j][k]

FIGURE 5.2. Partially fused input code

optimal solution. To generate code from the optimal solution, we use the same mechanism described in

Section 2.4.3.

5.2 Example

To illustrate how the algorithm works, consider the partially fused input code in Fig. 5.2. Let Ni = 500,

Nj = 100, Nk = 40, and Nl = 15 be the loop index ranges. The code after canonicalization is shown in

Fig. 5.3. The function call A(i,j) is moved outside the expression and evaluated for side-effects. If the

array f1 is not in the scope of A(i,j), it cannot be modified. In such a case, f1 and A(i,j) are said

to commute and hence f1 is not moved outside the expression. Otherwise, f1 needs to be moved out and

assigned to a temporary.

In this example, the region identification traversal results in all code regions having the same mark because

we do not have code where either the definition or the usage is inside a conflicting language construct.

The outcome of reaching definitions analysis for lines 7 through 11 is shown in Fig. 5.4. The use of f3

in the left hand side of assignment 2 does not have a reaching definition edge to assignment 2, where f3

is also defined. This is because we identify the root of the dependency (reaching definitions) graph as the

assignment node that has no incoming reaching definition. There exist no dependencies between the array

reference f3 of one loop iteration to the next.

To demonstrate the computation of indices, consider the function call fC in line 11. The indices at fC are

the indices at its reaching definition in line 9 and the indices of the loops already fused between the definition

and use of fC, which are {k,l}. This computation allows to unfuse the existing fusion, and finds out that
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1 initialize f1
2 for i
3 for j
4 fA = A(i,j)
5 f1[j] = f1[j] + fA
6 initialize f3
7 for k
8 for l
9 fC = C(k,l)

10 for j
11 f3[j][k] = f3[j][k] + B[j][k][l] * fC
12 initialize f5
13 for j
14 for k
15 f5[k] = f5[k] + f1[j] * f3[j][k]

FIGURE 5.3. Canonicalized code.

fC refers to a two dimensional array which was accessed repeatedly in the {l} loop. This information is

used by the fusion algorithm to explore all possible fusions between fC and its parent node.

for k

for l

SL
= SL

for j

SL
=

f3[j][k] +

f3[j][k] *

B[j][k][l] fC

C(k,l)fC

1

2

FIGURE 5.4. Absyn Tree

To illustrate the fusion algorithm on our example, consider the subtree rooted at the parent of f3. The

fusion at B is the full fusion 〈jkl〉 because other fusion configurations are more constraining and result in a

higher memory cost. At fC, the full fusion 〈kl〉 leads to other fusion possibilities at the parent due to the

{l} loop. The fusion 〈kl, j〉 is optimal for the subtree rooted at the parent of B and fC, but later turns out

to be non-optimal for the entire tree. If B was referred using a function call like C, the loop order 〈k, l, j〉
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should be preserved at fB, otherwise rearranging loops around a function call might result in side effects.

The fusion possibilities would be very limited as a result of preserving the loop order. The optimally fused

code in Fig. 5.6 is constructed from the optimal fusion graph in Fig. 5.5.
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1 initialize f1
2 for i
3 for j
4 fA = A(i,j)
5 f1[j] = f1[j] + fA
6 initialize f5
7 for k
8 for l
9 fC[l] = C(k,l)

10 for j
11 initialize f3
12 for l
13 f2 = B[j][k][l] * fC[l]
14 f3 = f3 + f2
15 f4 = f1[j] * f3
16 f5[k] = f5[k] + f4

FIGURE 5.6. Optimally Fused code.

5.3 Comparison with the Polyhedral Model

Polyhedral compilation currently is state-of-the-art for analyzing handwritten general purpose loop code with

complex dependencies and producing optimized CPU and accelerator code. Pluto [BHRS08a] is an automatic

parallelizer and locality optimizer based on the polyhedral model, which is a powerful mathematical frame-

work that provides precise dependency analysis and the mechanism to implement complex transformations of
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codes with nested loops and also the ability to reason about execution instances of statements. Pluto automat-

ically generates OpenMP [DM98] C code for multi-cores and optimizes for coarse-grained parallelism and

data locality. However, for tensor contraction computations, Pluto does not give an acceptable performance. It

does not have support for performing array contraction, which is the key for reducing memory requirements

for very large tensor contraction sequences requiring significant memory.

Our measurements with Pluto by providing the TCE equations as input and using the various fusion

optimizations and tiling in Pluto show that the performance of fused code produced by the TCE is identical

to the unfused code when both the unfused and fused codes are provided as input to Pluto. However, when

Pluto performs tiling, it does not try to increase the fused dimensions to tile sizes because it does not have

the fusion information from the TCE fused code that is provided as input to Pluto. With larger equations,

just applying loop fusion and tiling to improve locality does not necessarily result in the best performance,

because the arrays are still not contracted (which leads to no reduction in memory sizes) and we need to

resort to disk I/O, which is expensive. Also, Pluto does not automatically generate out-of-core code when

the computation does not fit in memory. Using optimized BLAS routines directly for these code structures

would not necessarily give the best possible performance, mainly due to the disk access penalty and bad

layout of the multidimensional intermediate arrays as a result of loop fusion. Performing these optimizations

(loop fusion and tiling) first and then using BLAS routines when generating code results in much better

performance. We present the detailed measurements in Section 8.2.
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Chapter 6
Loop Fusion Optimization for GPGPUs

The loop fusion algorithm presented in Chapter 2 is a bottom-up dynamic programming algorithm that

operates on expression trees. An expression tree has the advantage that the consumer of an intermediate array

is the parent node of the producer of that array. Furthermore, all loops are implicit, since the interior nodes in

an expression tree represent array operations.

The disadvantage (later discussed in detail in Section 8.2) of the loop fusion algorithm, however, is that it

can result in poor temporal and spatial locality. By contrast, if the tensors are small enough, each individual

contraction could be implemented as a combination of index permutation and matrix multiplication library

calls, where the index permutations transform the layout of the multi-dimensional tensors such that their

storage can be interpreted as two-dimensional matrices. The use of such library calls results in significantly

improved temporal and spatial locality. In order to improve locality, tensor dimensions that were eliminated

through fusion, must be expanded again to some tile size, such that the index permutation and matrix

multiplication calls can be performed on individual tiles.

Fusion plays an important role when trying to orchestrate the data between disk, CPU memory and GPU

memory. Due to the reduction in size of intermediates, the volume of data that needs to be orchestrated across

various memory levels is reduced. A cost model that searches for loop fusion configurations that minimize

data movement cost across disk, CPU memory, and GPU memory is needed. Data layout optimizations could

be performed using the CPU cores, and the remaining computation can be performed on the GPU using

CUDA BLAS calls.

Similar as the data transfer between memory and disk in out-of-core computations, the transfer between

GPU memory and CPU memory is very time-consuming and needs to be avoided where possible. For larger

tensors, a contraction on the GPU is so much faster than on the CPU, that even for individual contractions it

is beneficial to move the data back and forth. When adding two tensors, however, it is cheaper to add them on

the CPU than to transfer them to the GPU, perform the addition there and transfer the result back to the CPU.

The advantage of loop fusion plus tiling for tensor contractions compared to tiling alone is that the amount

of transfer between GPU and CPU memory can be reduced because of the size reduction of intermediates.
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However, because of the competitive cost of addition on the CPU, there is no benefit to using fusion to allow

addition to be performed on the GPU.

Based on these constraints, we need to generate the following general code structures for increasing sizes

of the tensors:

1. For very small tensors, perform the entire computation on the CPU.

2. Once the tensors are large enough to benefit from the parallelism on the GPU, perform the entire

computation on the GPU.

3. If the computation does not fit on the GPU anymore, perform contractions on the GPU without fusion

and perform additions on the CPU.

4. If individual terms of contractions are too large for the GPU, use fusion plus tiling to reduce the storage

requirements on the GPU. This may result in additions to fit on the GPU again, too.

5. As the tensor sizes increase, use fusion plus tiling to keep contractions on the GPU and perform

additions on the CPU.

6. For very large tensors, intermediate results of contractions may have to be transferred to CPU memory

temporarily.

6.1 Algorithms

Similar to loop fusion for handwritten code, we use a compilation framework consists of three optimizations

for generating GPU code: loop fusion, tiling, and layout optimizations. The loop fusion algorithm is a

dynamic programming algorithm operating on expression trees. If it is used with a memory-minimization

cost model, it produces a fusion tree representation of a single, memory-minimal fused loop structure. With

a cost model containing more than one cost component, such as memory usage and data transfer cost,

it produces a set of solutions with different trade-offs. For each of these solutions, the tiling algorithm,

using a fine-grained cost model, selects the tile sizes that minimize the data transfer cost while staying

below the memory limit. The best solution overall is then selected and further optimized using the layout

optimization algorithm. We have previously demonstrated the combination of fusion and tiling optimizations

for space-time trade-offs [CBL+02b] and for producing out-of-core code for individual contraction terms
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[BKC+03, KKB+03]. Our layout optimization algorithm [LGK+12] has been developed for untiled code,

but it could also be generalized for tiled code.

6.1.1 Fusion Algorithm for GPGPUs

The fusion algorithm visits each node in an expression tree in a bottom-up traversal. For each node, it

computes a set of solutions, each of which consists of compatible solutions for any subtrees, the maximal

fusion with the parent and one or more additional cost components. A solution that is inferior to another

solution in all cost components is pruned out. For GPU code generation, we propose the following cost vector

for each tree node:

(fusion, mem-cost, transfer-cost, proc, target)

where

• fusion is the maximal fusion between the node and its parent,

• mem-cost is the memory usage for computing the subtree assuming static allocation of all tensors

without tiling,

• transfer-cost is the volume of data to be transferred without tiling,

• proc is the processor performing the operation (CPU or GPU), and

• target is final location of the generated intermediate (CPU memory or GPU memory)

The mem-cost is the same as in the original loop fusion algorithm in Chapter 2. Here, it represents the

memory usage for computing the subtree on the GPU (instead of the CPU). Similar to the disk-memory data

transfer cost used in data locality optimization [BKC+03, KKB+03] for minimizing disk I/O, transfer-cost is

used to measure the volume of data to be transferred between CPU and GPU memories without tiling. Both

the mem-cost and transfer-cost are only cost approximations since they are based on the assumptions that all

tensors are allocated statically and that loops are not tiled. However, these approximations are good enough

for deciding which solutions to prune out. The resulting set of solutions will consist of a variety of different

fused loop structures, that can be further optimized using the tiling algorithm with a more precise cost model.

The proc component indicates whether a binary tensor addition is performed by the CPU or the GPU. If a

child of the node is a binary addition as well, then both the child and the parent operations are performed
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by the same processor. For the purpose of the loop fusion algorithm, contractions are always performed on

the GPU. The optimization of performing very small computations on the CPU can be done by the tiling

algorithm.

The target component indicates whether the result of a contraction should be transferred to CPU memory.

In that case, we always transfer the entire tensor to CPU memory. We do not consider partial transfers using

fusion, since that would result in an increase of the transfer cost. The result of a binary addition is always

assumed to stay where the operation was performed. The optimization of performing the last binary addition

in a chain where the result is needed can be done by the tiling algorithm.

To ensure that all possible code structures can be generated, the loop fusion algorithm needs to create

different solutions for performing an operation on the GPU and the CPU and similarly for where the result

should be transferred. The tiling algorithm will then select the optimal code using a more precise cost model.

For other cost models, the fusion algorithm enumerates all possible fusion choices. For the purpose of GPU

code generation, however, we do not fuse a node with its parent if the parent is a binary addition operation,

since this would result in a larger number of transfer operations and since it is usually preferable to perform

the binary addition on the CPU. Similarly, for chains of binary addition, we do not consider all combinations

of where the operations are performed.

6.1.2 Tiling Algorithm

The solutions generated by the fusion algorithm are first translated into an abstract syntax tree representation

that makes loops explicit. Similar to the approach taken to reduce recomputation cost when using the space-

time tradeoffs cost model (in Section 2.4.7), each fused loop is then split into two loops, a tiling loop and an

intra-tile loop, and all intra-tile loops are moved inside any tiling loops.

The tiling algorithm then searches for the tile sizes that minimize the data transfer cost while keeping

the computation below the memory limit. Because of the size of the search space, we employ a heuristic

hill-climbing search [KKB+03] for enumerating candidate tile sizes. For each set of candidate tile sizes, the

memory and transfer costs are calculated using a fine-grained cost model based on detailed measurements of

the constituent operations.

As the tile size increases, the memory usage increases while the transfer cost decreases. If a computation

fits within GPU memory, the tiling algorithm will determine that the tile sizes for all tensor dimensions can
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equal the dimension size, thus undoing any fusion (i.e., the fused tiling loops will have a single iteration). For

this case, the tiling algorithm can then re-evaluate the computation with the cost model for CPU computation

to determine whether the entire computation should remain on the CPU.

6.1.3 Layout Optimization

Our layout optimization algorithm [LGK+12] is a bottom-up dynamic programming algorithm that enumer-

ates the possible layouts for intermediates and selects the most efficient index permutation and DGEMM

library calls for implementing a contraction. Where possible, it selects a layout that allows to eliminate the

index permutation of the intermediate. Like the tiling algorithm, it is based on detailed measurements of

the constituent operations. Since for each contraction there are only four possible DGEMM invocations to

consider, and since in most cases the number of index permutations to consider is sufficiently constrained,

the layout optimization algorithm runs in linear time.

While our layout optimization algorithm was designed for unfused and untiled code, it would be straight-

forward to generalize it to fused tiled code. It would also be possible to run the layout optimization algorithm

for every tile size choice considered in the tiling algorithm. This would make the tiling algorithm much more

precise, since it could take layout into consideration, but we expect it to increase the running time of the

tiling algorithm by approximately an order of magnitude.
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Chapter 7
The New TCE Infrastructure

A prototype of the TCE [Hir03] has been successful in introducing many new models into the NWChem

suite by developing several useful domain-specific transformations. An optimizing TCE has been developed

primarily at the Ohio State University that has explored many novel optimization algorithms. However, the

code bases for both the Prototype TCE and Ohio TCE are too inflexible to perform this research. We have

identified the following key aspects required for a flexible yet rich research infrastructure going forward:

• Both the Prototype TCE and the Ohio TCE versions were developed as a “black box” transformer–they

took in tens to hundreds of lines of input specification of tensor expressions and output tens to hundreds

of thousands of lines of parallel C/Fortran code. While very beneficial, chemists desired the ability to

manipulate more readable intermediate representations.

• Both the TCE versions were primarily developed before the era of multi-cores, GPGPUs, and hetero-

geneous computing; they do not provide sufficient support for tree transformations and for generating

multi-core parallelism or GPU code. Their monolithic structure is too inflexible to adapt for multi-target

code generation.

• The Ohio TCE included several domain-specific transformations that were extremely useful. Neverthe-

less, it does not take advantage of major recent advances in polyhedral compilation models, such as

Pluto [BHRS08a] and PrimeTile [HBB+09b].

• Both the TCE versions do not have front ends for Fortran or C++ for handwritten code.

The long-term goal of this research is for a future version of the TCE to transform both high-level

tensor contraction expressions and handwritten tensor contraction code into optimized parallel programs

for any hardware platform and for the generated code to interface with quantum chemistry suites and other

simulation tools. This will require additional research on data movement optimization and parallelization and

on developing the cost models for the compiler to perform these optimizations for a variety of platforms.

This chapter describes the current progress of building a new software infrastructure for the TCE as a

foundation for continuing this research.
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7.1 Overview

The Ohio TCE was written in Java and uses a simple abstract syntax tree (absyn) data structure for the

domain-specific tensor expression language. We are building the new TCE on top of the ROSE compiler

framework, which uses SAGE trees for representing absyns. SAGE is the intermediate representation (AST)

used by the ROSE compiler. We built a new TCE front end for processing input as a high level specification

of a tensor expression and implement optimizations on the absyn as SAGE tree transformations. We chose

ROSE as the foundation of the TCE because of its well-designed architecture, the active development and

support, and the added recent support for polyhedral optimizations in case we need them.

7.2 The TCE Front End

The TCE front end consists of a parser and simple semantic analysis for a domain-specific tensor expression

language. We extended the TCE language to accommodate more features such as specifying domain

information (e.g., symmetry information), architectural features, etc. To enable research on cost models for

symmetric and block-sparse tensors, we would need support for representing these symmetries and for for

generating appropriate code. We have added language support in our tensor expression language for declaring

symmetry properties and corresponding declarations.

The parsed expressions are optimized using algebraic transformations and common subexpression elimi-

nation to minimize the operation count. The resulting expression trees can then be translated into abstract

syntax trees with explicit loop nodes. These parts of the Ohio TCE are stable and were straightforward to port.

The abstract syntax trees and any additional information that is passed to later optimizers must be designed

to be uniform for tensor expressions and appropriate C++ and Fortran subsets.

In addition to generating error information and other information for use in later optimizations, semantic

analysis fixes parts of the TCE internal AST based on a set of criteria that will lead to greater options in

the optimizers. These enhancements will ensure correctness of the given code and proved information that

can be used for selecting which optimizations can run on which equations or for calculating information

that’s needed for some of the optimizers. The optimizers could also compute this information later, but it is

efficient to calculate it ahead of time and only once. A type system for computing the symmetry properties of

intermediates from their subtrees has also been built.

The traversals implemented by semantic analysis are as follows:
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Index checking Recognize and validate the indices of a tensor.

Type node creation Generate type information.

Populating the symbol table Generate symbol table information.

Basic type checking and validating legal tensor contractions

7.3 Porting existing optimizers

We have successfully ported the loop fusion algorithm from the Ohio TCE. The loop fusion optimization

operates on expression trees. We are currently working on a loop fusion implementation on dependency

graphs for handwritten code as discussed in Chapter 5. Our implementation for handling handwritten code

(C/C++ only) is built on top of the ROSE compiler framework. Once this implementation is refined, it would

be straightforward to merge it into the new infrastructure as a new interface since the input would then be

handwritten code as opposed to equations representing tensor contraction expressions. For efficiency and

flexibility, it is preferable the fusion algorithm is available for both data structures. Of particular interest for

our optimization approach are the TCE cost models for data locality optimization (for generating out-of-core

code) and for communication minimization (for generating distributed code).

We have also interfaced with a standalone implementation of operation minimization [HSN+05, HLG+06,

LZR+12] written in Python from Ohio State University. This is the latest implementation of operation

minimization with support for handling symmetries.

7.4 Translating to ROSE Sage Trees

We developed a new translator that allows converting a TCE abstract syntax tree (AST) to an equivalent

ROSE sage tree. We use the Minitermite [BP10] library that is built on top of the ROSE compiler framework.

Minitermite generates a term-based serialization of an AST constructed by ROSE. The serialization can be

imagined as a plain-text term version of the AST. Minitermite parses the term representation and re-creates a

ROSE AST and subsequently invokes the ROSE unparser to generate source code. Our translator tries to

directly create an equivalent term representation of a ROSE AST from the corresponding TCE expression tree.

For each node in the top-down traversal of the TCE expression tree, the translator generates term sequences

that would correspondingly map to nodes in the equivalent ROSE AST. Minitermite then takes the term

representation generated by the TCE and unparses it to produce the equivalent source (C/C++) code.

70



Chapter 8
Experimental Evaluation

8.1 Evaluation of the Loop Fusion Algorithm

We have implemented two versions of the loop fusion algorithm: a prototype with simple but inefficient

data structures in ML and an optimized implementation in Java as part of the Tensor Contraction Engine

(TCE) [BAB+05a]. The ML implementation parses an input file consisting of tensor expressions and

index range declarations and generates either pseudo code or a C function for each tensor expression.

It provides memory minimization cost models for both static and dynamic memory allocation as well

as a space-time tradeoff cost model for static memory allocation. Our ML implementation is available

from http://www.csc.lsu.edu/˜gb/TCE/. The implementation in the TCE only has memory

minimization and space-time tradeoff cost models for static memory allocation.

In this section, we present measurements of the memory reduction that can be achieved with loop fusion

and performance measurements of the algorithm for different data structure choices and pruning strategies.

8.1.1 Memory Usage

We tested the loop fusion algorithm on a variety of representative equations as shown in Table 8.1. The

coupled cluster singles and doubles (CCSD) equations represent an important quantum chemistry model. We

used the shorter spin-orbital variant of these equations. Each term in these equations is the contraction of up

to five two- and four-dimensional tensors. To illustrate the complexity of these equations, Figure 8.1 shows

the factored (parenthesized) CCSD doubles equation in Einstein notation, where indices that occur twice in a

term (once as upper and once as lower index) are implicitly summed over. The h indices represent occupied

orbitals of range O; the p indices represent virtual orbitals of range V . For our measurements, we used the

dimension sizes O = 50 and V = 100 for modeling a medium-sized molecule.

The coupled cluster singles, doubles, and triples (CCSDT) lambda 1 equation consists of 139 terms of up

to six two-, four-, and six-dimensional tensors. The coupled cluster singles, doubles, triples, and quadruples

(CCSDTQ) lambda 1 equation is the largest equation in the TCE testsuite with 264 terms of up to six two-,

four-, six-, and eight-dimensional tensors. Again, we used O = 50 and V = 100 for simplicity. In practice,

these large models would be used for smaller molecules (with smaller values for O and V ) or run on large
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TABLE 8.1. Comparison of memory usage.
fusion fusion

Equation terms no fusion static alloc. dynamic alloc.

Example from Section 2.4.4 1 504.68KiB 1.25KiB 1.23KiB
Example from Section 2.4.5 1 16.4GiB 1.08GiB 1.08GiB
CCSD energy 3 381.47MiB 96B 40B
CCSD singles 14 572.24MiB 137.80KiB 98.07KiB
CCSD doubles 31 1.3GiB 193.88MiB 193.77MiB
CCSDT lambda 1 139 1.82TiB 57.52MiB N/A
CCSDTQ lambda 1 264 8.88PiB 266.73MiB N/A
CCSDT lambda 1 no op 139 21.68EiB 4.13MiB N/A
CCSDTQ lambda 1 no op 264 105.88ZiB 8.56MiB N/A

Rp1p2
h1h2 = v vvoop1p2h1h2− t vop1h7 ∗ (v ovooh7p2h1h2− 0.5 ∗ t vop2h8 ∗ (v ooooh7h8h1h2+(v ooovh7h8h1p3|− 0.5 ∗ v oovvh7h8p3p4 ∗ t vop4h1) ∗

t vop3|h2 + 0.5 ∗ t vvoop5p6h1h2 ∗ v oovvh7h8p5p6 ) + t vop3|h2 ∗ (v ovovh7p2h1p3| − 0.5 ∗ t vop4h1 ∗ v ovvvh7p2p3p4) − (f ovh7p3| − t vop4h4 ∗

v oovvh4h7p3p4 )∗ t vvoop2p3|h1h2 − t vvoop2p7h2h4 ∗ (v ooovh4h7h1p7 + t vop3|h1 ∗v oovvh4h7p3p7 )+0.5∗ t vvoop3p4h1h2 ∗v ovvvh7p2p3p4)+ t vop3|h2 ∗
(v vvovp1p2h1p3|−0.5∗ t vop4h1 ∗v vvvvp1p2p3p4)+(f ooh6h1+(f ovh6p6+ t vop4h4 ∗v oovvh4h6p4p6 )∗ t vop6h1− t vop4h4 ∗v ooovh4h6h1p4−0.5∗

t vvoop4p5h1h5 ∗ v oovvh5h6p4p5 ) ∗ t vvoop1p2h2h6 +(f vvp2p3|− t vop4h4 ∗ v ovvvh4p2p3p4 − 0.5 ∗ t vvoop2p4h4h5 ∗ v oovvh4h5p3p4 ) ∗ t vvoop1p3|h1h2 +

0.5 ∗ t vvoop1p2h6h8 ∗ (v ooooh6h8h1h2 + t vop6h2 ∗ (v ooovh6h8h1p6 +0.5 ∗ t vop4h1 ∗ v oovvh6h8p4p6 )− 0.5 ∗ t vvoop3p4h1h2 ∗ v oovvh6h8p3p4 ) +

t vvoop1p3|h2h3| ∗ (v ovovh3p2h1p3| − t vop5h1 ∗ v ovvvh3p2p3p5 − 0.5 ∗ t vvoop2p5h1h5 ∗ v oovvh3h5p3p5 ) + 0.5 ∗ t vvoop3p4h1h2 ∗ v vvvvp1p2p3p4

FIGURE 8.1. The spin-orbital CCSD doubles equation.

parallel machines. The last two equations are unfactored (i.e., non-operation-minimal) versions of the CCSDT

lambda 1 and CCSDTQ lambda 1 equations, in which each term has only a single summation node with

multiple summation indices.

Array elements for all examples are assumed to be double precision floating point numbers. For the first

two examples, we used the same array dimensions that were used in Section 2.4.4. All result arrays are

produced in memory and, except for the first two examples, all inputs are assumed to be in memory. We

compared the memory usage calculated by the loop fusion algorithm, both with static and dynamic memory

allocation cost models, to the memory usage of a memory-optimal evaluation order without fusion, as

computed by Lam et al.’s algorithm [LRB+11]. The numbers presented are those produced by the algorithms,

i.e., they do not include the memory usage for input tensors in memory.

For the CCSDT and CCSDTQ equations, the loop fusion algorithm with a dynamic memory allocation

cost model is impractical because of the large solution data structures that are produced. For the factorized

CCSDT lambda 1 equation, we killed our ML implementation after two weeks. It likely ran into a garbage

collection loop. We did not attempt the other CCSDT and CCCSDTQ equations. For the CCSD doubles
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equation, the running time of the loop fusion algorithm with a dynamic memory allocation cost model was

about four orders of magnitude longer than with the static memory allocation cost model.

For the memory-optimal evaluation order without loop fusion, the unfactored equations require several

orders of magnitude more storage than the corresponding factored equations, since outer tensor products are

formed that result in intermediate tensors with additional dimensions. As shown in Table 8.1, loop fusion

results in dramatic reductions in memory usage for all equations. For the unfactored equations, however, the

redundant summation indices result in additional fusion opportunities that allows the memory usage to be

reduced even further.

Perhaps surprisingly, the fusion algorithm with the more accurate dynamic memory allocation cost model

did not lead to much improvement over the cost computed with the static memory allocation cost model.

The reason for this lies in the structure of tensor contraction equations. Since non-summation indices occur

only once in each term, each subtree of a contraction will typically have at least one unique index, which in

turn results in different fusions for different subtrees. The order of evaluation, and, therefore, the points in

the code where intermediates can be allocated and deallocated, will be determined primarily by the fused

loop structure. If both subtrees have the same set of fusible indices, such as in the case of binary addition,

the order of evaluation as determined by the dynamic memory allocation cost model can result in a more

significant reduction in memory usage.

For tensor contraction equations, we feel that the slight improvement in accuracy of the memory usage

calculation does not justify the high cost of the dynamic memory allocation cost model. For computational

domains, in which large parts of an expression tree can have the same set of fusible indices, the cost of the

dynamic memory allocation cost model may be justified.

8.1.2 Experimental Setup

For measuring the performance of the loop fusion algorithm, we used a quad-core Xeon workstation with the

architecture shown in Table 8.2. Since all code is sequential and to make the measurements more predictable,

we disabled multi-core support, hyper-threading, Intel Turbo Boost (overclocking), and Intel Speed Step (CPU

throttling). We also turned off all network interfaces, the X window system, and unnecessary background

processes to minimize interrupts.
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TABLE 8.2. Configuration of the Intel Xeon workstation.
Processor Memory L1 Cache L2 Cache L3 Cache OS

per core per core
Intel Xeon E5530 4GiB 64KiB 256KiB 8MiB Linux 2.6.31
2.4GHz quad-core

For measuring the performance of the loop fusion algorithm, we used our implementation in the TCE,

which is written in Java. We compiled the code using javac 1.6.0-15 and ran it on the Java server VM with the

command line options−XX : CICompilerCount = 1 and−Xbatch to prevent the compiler from running

in parallel with itself and to serialize the compiler with the application. This ensures that the measurements

are not distorted by background compilation.

The measurements of the loop fusion algorithm were run 100 times for cases that had a wall-clock time of

less than 35 seconds, 35 times for cases that had a wall-clock time ranging from 40 seconds to three minutes,

five times for cases that had a wall time ranging from three to 90 minutes, and only once for cases that

had a wall time greater than 90 minutes. We then calculated average and standard deviation and discarded

outliers more than four standard deviations from the average. This process of discarding outliers was repeated

twice to eliminate any influence of operating system interrupts. Only for one of the equations (CCSD energy

with a static cost model) did this process result in three out of 100 measurements being discarded. We then

calculated the error bars for a confidence of 95%. For measurements that were run 100 times, the error

bars were no more than 0.35% of the measured value. For all measurements that were run more than once,

the error bars were no more than 0.77% of the measured value. In cases where the error bars of similar

measurements overlap or where a speedup is not statistically significant, we explicitly discuss this in the text.

8.1.3 Effects of Data Structure Choice and Pruning Strategy on Algorithm Performance

There are large differences in the performance of the loop fusion algorithm depending on the choice of

data structure for solution sets and on the pruning strategy. Which data structure and pruning strategy are

superior depends on the cost model and in part on the input equations. For the following benchmarks, we

use the same input equations as for the memory usage measurements, with the exception of the unfactored

CCSDTQ Lambda 1 equation, which is prohibitively expensive for many of the data structure and pruning

choices. The main aspect of the cost model effecting data structure and pruning choices is whether it is a

one-dimensional or a two-dimensional cost model. We chose memory minimization with static memory

allocation and space-time tradeoffs as representative cost models.
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One pruning choice that is always beneficial is to eliminate the extension step for the subtree of a

unary node if the maximal fusion for that subtree fuses all indices, as we have proved in Section 4.3.

Figure 8.2 shows the speedup achieved by this optimization for both memory minimization and space-time

tradeoffs. The measurements were performed with linked list solution set data structures and without further

pruning optimizations. Except for the small CCSD energy equation, this optimization results in significant

improvements, with the benefit being greater for larger equations and for the one-dimensional cost model.
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FIGURE 8.2. Speedup achieved by eliminating the extension step below unary nodes where possible.

As discussed in Section 4.1, we can implement sets of solution trees either as linked lists or as hashed

sets that use the maximal fusion as the hash key. For a one-dimensional cost model, the only advantage of a

hashed set is that it allows pruning of solutions with equal fusions when constructing the set. Because of the

overhead of hashing, however, a linked list implementation slightly outperforms a hashed set implementation

for most input equations, as shown in Figure 8.3. These measurements were performed without unnecessary

extensions below a unary node but without further pruning optimizations. The detailed running times are

shown in Table 8.3.

For a two-dimensional cost model such as space-time tradeoffs, a hashed set data structure has the

additional advantage that the number of calls to mergeNesting can be reduced. We demonstrate the

relative impact of pruning solutions with equal fusions and reducing the calls to mergeNesting by

showing the performance of two solution set data structures with hashing: 1D SolnSet (linked list with

hashing) and 2D SolnSet. Like the hashed set data structure for memory minimization, 1D SolnSet only

allows pruning solutions with equal fusions when constructing the set. In addition, 2D SolnSet also allows the
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FIGURE 8.3. Speedup of linked lists relative to hashed sets for memory minimization.

TABLE 8.3. Memory minimization running times without the extension optimization.
Equation no extend opt. linked list hashed set

Figure 2.1 6.23ms 4.91ms 5.17ms
Figure 2.8 109.27ms 36.72ms 37.41ms

CCSD energy 3ms 2.99ms 3.19ms
CCSD singles 40.84ms 21.07ms 22.21ms
CCSD doubles 191.77ms 162.12ms 158.11ms

CCSDT L1 4.96sec 2.27sec 2.32sec
CCSDTQ L1 33.7min 2.48min 2.55min

CCSDT L1 no op 98.22min 11.62min 11.74min

reduction of calls to mergeNesting when computing solutions for binary nodes. As shown in Figure 8.4,

the performance of the algorithm with 1D SolnSet set data structures is slightly worse then with linked

lists. For the smaller equations (upto CCSD singles), the overhead of hashing and maintaining the data

structure makes 2D SolnSet the most expensive data structure. For equations about the size of CCSD doubles

and greater (except for the non-operation-minimal CCSDTQ), using the 2D SolnSet data structure results

in substantial performance improvements. Since the differences for small equations are on the order of

milliseconds, while for large equations they are on the order of minutes to hours, as shown in Table 8.4,

2D SolnSet is the preferred data structure overall for a two-dimensional cost model. However, it is also

straightforward to use linked lists for small equations and 2D SolnSet for equations larger than the CCSD

singles equation. Again, these measurements were performed without further pruning optimizations.

Since the size of solution sets can grow exponentially in the number of indices, it is important to prune

suboptimal solutions. As we discussed in Section 4.2, however, pruning is quadratic in the size of solution

sets and is, therefore, only beneficial if it results in a significant reduction of the size of the solution set.
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FIGURE 8.4. Speedup of hashed sets relative to linked lists for space-time tradeoffs.

TABLE 8.4. Space-time tradeoff running times without the extension optimization.
Equation no extend opt. linked list 1DSolnSet 2DSolnSet

Figure 2.1 8.51ms 6.08ms 6.6ms 24.9ms
Figure 2.8 6.73sec 3.13sec 2.78sec 1.88sec

CCSD energy 4.71ms 4.71ms 5.04ms 24.11ms
CCSD singles 165.06ms 142.71ms 155.25ms 180.73ms
CCSD doubles 15.67sec 15.39sec 15.29sec 2.09sec

CCSDT L1 30.83sec 27.07sec 26.8sec 3.89sec
CCSDTQ L1 186.92min 91min 89.37min 10.94min

CCSDT L1 no op 420.44min 141.33min 152.4min 155.25min

We described the loop fusion algorithm with three calls to pruneSolnSet, after extending solutions

(extendSolnSet), after constructing binary solutions (makeBinarySolnSet), and after reducing

solutions (reduceSolnSet). Extending solutions can result in an exponential increase of the size of the

solution set, while constructing binary solutions can result in a quadratic increase. Reducing solutions does

not increase the size of the solution set, but since it removes indices from the maximal fusions, many solutions

may become inferior to other solutions. Which calls to pruneSolnSet have the largest impact depends

both on the structure of the input equation and on the cost model.

The pruning choices are denoted by P XY, which specifies pruning in X and Y. For example, the default

case where pruning is performed in all three calls to pruneSolnSet is denoted by P EBR, where B

represents the pruning operation performed in makeBinarySolnSet, E represents the pruning operation

performed in extendSolnSet, and R represents the pruning operation performed in reduceSolnSet.

The pruning choices P BR, P ER, P EB, P E and P R are measured.
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At a BinOp node, the algorithm first recursively constructs solution sets for the subtrees. These solutions

are then extended (by calling extendSolnSet) to the indices of the parent, and then the extended solutions

are merged (by calling makeBinarySolnSet) to form the solutions for the BinOp node. The resulting

set is then pruned for inferior solutions. The extended solutions at the subtrees are already pruned in

extendSolnSet before the merge operation at the BinOp node is performed. Hence, there are very few

solutions left after the merge that could possibly be pruned. Therefore, we skip the expensive pruning

operation in makeBinarySolnSet since it would only eliminate a few solutions. Also, the resulting

solution set only grows quadratically during the merge and thereby skipping pruning would not result in a

memory bottleneck as the equations get larger. In the reduceSolnSet step, by removing some indices in

a fusion, other fusions are now comparable and can be removed. Not pruning such solutions leads to the later

extendSolnSet step extend these additional inferior solutions and then prune them accordingly. Hence,

the time saved by skipping pruning in reduceSolnSet is spent in the extendSolnSet step that follows

later, thereby leading to insignificant or no performance improvements as shown in Table 8.5. The number of

solutions at a node can grow exponentially with the number of indices when extending solutions. Skipping

pruning in extendSolnSet would leave a significant number of inferior solutions to be processed in

makeBinarySolnSet. These inferior solutions are pruned after the merge in makeBinarySolnSet,

but they are compared with every other solution in the sibling node’s solution set during the merge which

incurs a greater overall operational cost when the algorithm is run on large equations. This behavior is also

indicated in our measurements. Skipping pruning in both extendSolnSet and makeBinarySolnSet

can lead to insufficient system memory very quickly due to the exponential increase in the number of

solutions that need to be processed at each level higher up in the tree. In this case, pruning is performed only

in reduceSolnSet. Our measurements show that in this case, the algorithm runs out of memory for large

equations.

The measurements for the one-dimensional static memory allocation cost model are shown in Table 8.5.

The pruning choice P ER (pruning skipped in makeBinarySolnSet) results in significant improve-

ments (up to 3.4X) for very large equations like CCSDTQ as shown in Fig 8.5. The actual numbers are

shown in Table 8.5. It also shows an insignificant speedup for all other equations. P E shows performance

comparable to P ER. For the pruning choice P R, due to the lack of pruning in extendSolnSet and

makeBinarySolnSet, the loop fusion algorithm runs out of memory for equations with more than 20
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FIGURE 8.5. MemMin — different pruning calls without hashing (relative to linked list).

terms, which is indicated by the gap shown in between the bars in Figure 8.5. Pruning choice P B has a

similar behavior as P R and is hence not presented. The pruning choice P EB does not result in any significant

performance improvement. The pruning choice P BR decreases the performance of the loop fusion algorithm,

except for the non-operational minimal version of CCSDT lambda 1 as seen in Figure 8.5. This is because

more constraints on fusion choices result in more solutions after the extension step. The non-operational

minimal equation has very few constraints on fusion choices. Hence, skipping pruning in extendSolnSet

improves the performance since the resulting solution set is not significantly large enough to benefit from

pruning.

The pruning choices measured use the linked list data structure for implementing sets of solution trees.

As discussed earlier in this section, the performance of a 1D SolnSet data structure for a one-dimensional

cost model is worse than with linked lists due to the overhead of hashing every single solution inserted into

the solution tree. The combination of 1D SolnSet and the pruning choices mentioned also has a similar

performance trend, i.e., it is worse than the pruning choices implemented using linked lists. Hence, we choose

the pruning strategy P ER which uses the linked list data structure as the default implementation choice for a

one-dimensional cost model. We selectively choose P BR only for large non-operational minimal equations.

The reasoning behind the performance of the different implementation versions for the space-time tradeoffs

cost model is the same as explained for the MemMin cost model. The graphs in Figure 8.6 show that for

the smaller equations up until CCSD singles, the implementation P-ER or P-E would be a good choice. The

actual numbers are shown in Table 8.6.
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TABLE 8.5. MemMin — the different pruning numbers.
Equation P-BR P-ER P-EB P-R P-E

Figure 2.1 5.38ms 4.81ms 4.89ms 5.6ms 4.8ms
Figure 2.8 82.72ms 32.21ms 39.1ms 82.5ms 34.71ms

CCSD energy 2.94ms 2.97ms 2.97ms 2.91ms 2.95ms
CCSD singles 21.67ms 17.87ms 21.76ms 1.39sec 20.92ms
CCSD doubles 0.77sec 168.31ms 162.84ms OOM 171.68ms

CCSDT L1 2.4sec 1.89sec 2.33sec OOM 1.93sec
CCSDTQ L1 2.79min 43.92sec 2.49min OOM 43.96sec

CCSDT L1 no op 6.74min 7.96min 11.64min OOM 7.93min
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FIGURE 8.6. Space-time tradeoffs — different pruning calls without hashing (relative to linked list).

TABLE 8.6. Space-time tradeoffs — the different pruning numbers without any hashing.
Equation P-BR P-ER P-EB P-R P-E

Figure 2.1 6.86ms 5.84ms 5.88ms 7.14ms 5.65ms
Figure 2.8 28.25min 2.63sec 3.13sec OOM 2.98sec

CCSD energy 6.22ms 4.69ms 4.69ms 32.58ms 4.68ms
CCSD singles 1.72sec 143.33ms 142.47ms OOM 143.57ms
CCSD doubles 3.94min 18.06sec 15.58sec OOM 18.25sec

CCSDT L1 4.9min 19.27sec 27.12sec OOM 19.66sec
CCSDTQ L1 OOM 70min 91min OOM 68.5min

CCSDT L1 no op OOM 97.32min 141.26min OOM 97.83min
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For the space-time cost model, the 2D solution set implementation is needed in order to achieve far more

significant performance improvements for larger equations. We observe from Figure 8.7 that the best choice

for large equations (CCSD doubles onwards) is the implementation strategy 2DSolnSet-P-E. The actual

numbers that prove this fact can be found in Table 8.7.

The behavior of the loop fusion algorithm depends on the structure of the equation. For the non-operational

minimal equations, we choose the 1D SolnSet implementation with either P-ER or P-E as the pruning

strategy. Non-operational minimal code results in less constraints amongst the fused loop structures. There are

redundant edges between a child and its parent, which results in more fusion possibilities. The measurements

for non-operational minimal equations are just a result of one run. We did not measure the performance of

non-operational minimal versions of all equations considered in the measurements since the operational

minimal form of the equations would mostly be used in practice.
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FIGURE 8.7. Space-time tradeoffs — pruning calls with hashing, 2D solution sets (relative to linked list).

TABLE 8.7. Space-time tradeoffs — the different pruning numbers with hashing.
Equation 1DSolnSet-P-ER 1DSolnSet-P-E 2DSolnSet-P-ER 2DSolnSet-P-E

Figure 2.1 6.34ms 6.14ms 24.8ms 24.77ms
Figure 2.8 2.36sec 2.33sec 2.35sec 1.62sec

CCSD energy 5.03ms 5.02ms 26.45ms 24.05ms
CCSD singles 157.84ms 157.82ms 207.01ms 180.05ms
CCSD doubles 16.43sec 16.58sec 3.99sec 2.12sec

CCSDT L1 19.57sec 19.51sec 3.95sec 3.29sec
CCSDTQ L1 66.2min 65.7min 1.96min 1.65min

CCSDT L1 no op 89.72min 89.25min 752.52min 102.19min
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To summarize, we choose the implementation P-ER for both memmin and space-time tradeoffs cost models.

For larger equations with space-time tradeoffs cost model, we choose 2DSolnSet-P-E. For non-operational

minimal equations, we choose 1DSolnSet-P-ER for space-time tradeoffs cost model.

8.2 Evaluation of the Performance of the Generated Code

A quad-core Xeon workstation whose configuration is shown in Figure 8.8 was used for all measurements.

The machine was running Linux 3.5.0 x86-64 in single user mode. To make the measurements more

predictable, we disabled hyper-threading, Intel Turbo Boost (overclocking), and Intel Speed Step (CPU

throttling). All network interfaces, the X window system, and unnecessary background processes are turned

off to minimize interrupts. The wall clock times are reported. For the CPU measurements, the sequential

version of the Intel Math Kernel library (MKL) [MKL] was used with the Intel C/C++ compiler [ICC]. MKL

provides high performance dense linear algebra libraries and includes the full BLAS [DCHD90, LHKK79]

API. It uses empirical timings to tune the BLAS library to arbitrary machines thereby providing highly

optimized and parallelized thread-safe BLAS routines that are tuned for maximum performance on Intel

processors. For multi-core measurements, the threaded version of Intel MKL library is used. For array index

permutation operations, the state-of-art index permutation library routines (CPU only) [LKS06] is used. For

GPU measurements, the NVIDIA CUBLAS library [CBL] is used with NVIDIA CUDA compiler [NVC].

The Accelereyes ArrayFire library [ACC] was used for performing index permutation on the GPU. The

polyhedral source-to-source compilers used are Pluto [BHRS08a] (for generating optimized sequential and

multi-core code) and PPCG [VJC+13] (for generating optimized GPU code).

8.2.1 TCE-Generated Sequential Fortran Code

For measuring the performance of the code generated by the loop fusion algorithm, we compiled the

TCE-generated Fortran code with both the Intel Fortran and GNU Fortran compilers. We demonstrate the

benefits of tiling the fused code where the inner-most loop nests are replaced with calls to the Intel MKL

Library. For demonstrating the effect of transforming the generated code with Pluto, we used our stand-alone

implementation of the loop fusion algorithm in ML to generate C code, which was then transformed by

Pluto. We manually verified that the code structure and the layout of intermediates are identical between

the generated Fortran and C codes, i.e., that the order of loops for perfectly nested loop nests are the same,
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• Processor: Quad-core Intel Xeon CPU E5530 @ 2.4GHz

• TLB: 512 entry

• Cache Configuration:

– L1 - Instruction Cache = 32 KB, per core

– L1 - Data Cache = 32 KB, per core

– L2 - 256 KB Mid-Level Cache per core

– L3 - 8 MB shared among 4 cores

• CPU Memory: 12GB, Virtual Memory: 10GB

• GPU: Tesla C2075. Advertised Memory: 6GB, Usable Memory: 5.2GB

• Compilers: icc 13.0 (-O2), nvcc 5.0 (-O2)

• BLAS Libraries: Intel MKL 11.0 (CPU), CUBLAS 5 (GPU)

• Polyhedral tools: Pluto, PPCG-CUDA

• GPU Libraries: ArrayFire, SciGPUGEMM

• Pluto Options: –smartfuse –tile –isldep –lastwriter (Sequential)
–smartfuse –tile –isldep –lastwriter –parallel (OpenMP)

FIGURE 8.8. T5500 Configuration
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and that the order of array subscripts in C code is the reverse of the order of the corresponding subscripts in

Fortran code.

The measurements of the generated code were averaged over 100 times after warming up the cache for

cases that had a wall-clock time of less than two minutes, 5 times for cases that had a wall-clock time ranging

from two to sixty minutes, and only once for cases that had a wall-clock time greater than an hour. Since the

differences between competing measurements were fairly large, there was no need for computing error bars.

We now demonstrate the performance of the code generated by the loop fusion algorithm. The dimension

sizes O=48, V=96 were used for the measurements. The measurements were averaged over 100 times for

cases that had a wall-clock time of less than two minutes, 5 times for cases that had a wall-clock time ranging

from two to sixty minutes, and only once for cases that had a wall-clock time greater than an hour. For

discussion purposes, the Fortran code generated by the loop fusion algorithm is referred to as fused code and

the code generated by disabling the loop fusion algorithm as unfused code. We also demonstrate the benefits

of tiling the fused code by tiling the fused loops and replacing the inner-most loop nests with BLAS calls.

This is achieved by using the tiling algorithm implemented in the TCE where the fused array dimensions are

expanded back to tile size such that the computation still fits in memory. The performance of the following

TCE-generated Fortran codes is measured for the equations CCSD Singles and CCSD Doubles.

• Unfused code generated by disabling the loop fusion algorithm marked with UF in the tables in this

section.

• Unfused code where loop nests performing a tensor contraction are replaced with BLAS (dgemm)

calls marked with UF-dgemm.

• Fused code generated by the loop fusion algorithm marked with F.

• Fused code where fused loops are tiled and the inner-most loop nests are replaced with BLAS (dgemm)

calls.

The tiled and dgemm code versions are not available for CCSD energy and the equations shown in

Figure 2.1 and Figure 2.8. The measured numbers for the remaining code versions (unfused and fused) for

these equations are shown in Table 8.8. The data cache (level 1, 2) and TLB misses explain the difference

between fused and unfused code performance. The numbers for the CCSD singles and CCSD doubles codes
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TABLE 8.8. Performance of the generated code for O=48, V=96.
Equation Runtime DL1 misses DL2 misses DTLB misses

Figure 2.1 (UF) 534µs 23,075 7,986 5,584
Figure 2.1 (F) 159.8µs 6,379 3,703 1,649

Figure 2.8 (UF) 10.8min 8,437,301,746 4,807,759,206 31,786,447,050
Figure 2.8 (F) 78min 256,901,811,413 75,923,237,384 292,979,081,477

CCSD energy (UF) 41.1ms 10,210 5,010 208,395
CCSD energy (F) 35ns 5,956 3,179 329

TABLE 8.9. Performance of the generated code for CCSD singles, doubles using O=48, V=96.
Equation Runtime DL1 misses DL2 misses DTLB misses

CCSD singles (UF-dgemm) 4.7sec (ifort) 293,198,347 127,965,122 99,907,776
CCSD singles (UF-ifort) 5.94sec 41,299,817 10,093,396 74,386,673
CCSD singles (F-ifort) 21.8sec 619,024,721 482,381,831 1,144,772,703

CCSD doubles (UF-dgemm) 2.74min (ifort) 14,404,377,306 767,589,367 151,488,884
CCSD doubles (UF-ifort) 20.2min 10,782,143,759 1,843,304,123 61,543,123,898
CCSD doubles (F-ifort) 2.74min 21,619,692,309 2,065,750,526 3,826,376,040

without tiling are shown in Table 8.9 and the codes with both tiling and dgemm calls are shown in Table 8.10.

The numbers for the fused-dgemm version (without any tiling) are not available since the code generator fails

to produce that code.

We observe that fusion results in bad data layout when we have reasonably large arrays, thereby resulting

in poor cache behavior. By tiling however, we begin to get back the performance due to enhancing data

locality as shown in Tables 8.9, 8.10 for both the dgemm and non-dgemm code versions. The non-dgemm

fused-tiled code performs better when compiled with gcc. Also, interestingly, for the non-dgemm versions,

we see the performance drop beyond tile size 8. We have not figured out the reason for this behavior yet.

The TCE-generated Fortran code is also compared with the optimized C code generated by Pluto

[BHRS08a], an automatic parallelizer based on the polyhedral model that optimizes sequences of im-

TABLE 8.10. Performance of the generated Fused-tiled Fortran code for O=48, V=96.
Equation TileSize nodgemm (gcc) dgemm (ifort)

CCSD singles 4 11.5sec 12.6sec
8 8.94sec 6.5sec
12 9.53sec 5.05sec
16 13.8sec 4.76sec
24 23.4sec 4.12sec

CCSD doubles 4 23.4min 5.75min
8 26.5min 3.65min
12 31.1min 3.2min
16 67.6min 3.03min
24 116.26min 2.97min
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perfectly nested loops, simultaneously for parallelism and locality through tiling transformations. Given an

input sequential (C) code, it can automatically generate tiled parallel OpenMP code for multi-core processors.

We use Pluto to generate tiled (sequential) code optimized for locality using the (C) code generated from the

fusion algorithm as input. The input is generated using our standalone implementation of the loop fusion

algorithm in ML implementation. The tiled code generated by Pluto is compared against the fused code

generated by the TCE and also against the TCE-generated fused code which is then tiled. We manually

verified that the code structure and the layout of intermediate tensors are identical between the generated

Fortran and C codes.

The running times for the TCE generated CCSD singles and doubles code versions are shown in Ta-

bles 8.9, 8.10 and those generated using Pluto in Table 8.11. Even when only considering the non-dgemm

code, for CCSD singles, both the Pluto and TCE generated versions have identical performance; and for

larger equations like CCSD doubles, for fused as well as unfused code, Pluto is considerably slower than the

TCE. For the dgemm code versions, the TCE significantly outperforms Pluto since the later does not have

any mechanism for leveraging the use of optimized dgemm routines.

TABLE 8.11. Running times of generated code optimized with Pluto v0.9.(O=48, 0+V=96).
Equation Version Memory (F) Memory (UF) RunTime (UF) RunTime (F)

CCSD singles POT 91.32MiB 1.03GiB 17.02sec 13.04sec
PDT 891.32MiB 1.03GiB 17.06sec 22.84sec
PD 891.32MiB 1.03GiB 6.4sec 22.6sec

CCSD doubles POT 2.26GiB 8.82GiB 111min 74min
PDT 2.26GiB 8.82GiB 115min 75min
PD 2.26GiB 8.82GiB 27min 75min

The fused and unfused C codes generated by the standalone ML implementation of the loop fusion

algorithm are passed as inputs to Pluto. We using different combinations of optimization options provided by

Pluto. The performance of the transformed codes (given as follows) generated by Pluto are then measured

• PD: Use Pluto smartfuse option. A heuristic fusion algorithm is applied.

• PDT: PD together with tiling for locality and tile a second time (for L2 cache).

• POT: Tiled for locality and tile a second time for L2 cache (PDT) together with each of the following:

– Disable Pluto’s fusion when fused code is provided as input to Pluto.

– Use PDT when unfused code is provided as input to Pluto.
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8.2.2 Multi-core and GPGPU code

To further demonstrate the effectiveness of our fusion algorithm and compilation framework, we used

handwritten code for the 4-index transformation equation shown as follows and optimized it for single-core,

multi-core, and GPGPU execution:

B[a, b, c, d] =
∑
s

(C1[s, d]×
∑
r

(C2[r, c]×
∑
q

(C3[q, b]×
∑
p

(C4[p, a]× A[p, q, r, s]))))

In the handwritten code, all loop bounds are compile-time constants and loops may or may not have been

fused. This code is then optimized by our loop fusion algorithm that can handle handwritten code, such that

the storage requirements for intermediate tensors are minimized. This results in increased temporal locality

between producer and consumer, but causes poor temporal locality within a contraction because of the

elimination of entire tensor dimensions. Dimensions that were eliminated were then manually expanded to

tiles to improve temporal locality within a contraction while staying within the memory limit. The inner-most

loop nests, which now represent the tensor contraction on a tile, were then manually replaced by efficient

index permutation and matrix multiplication (dgemm) library calls. We generated versions of the code for

single-core, multi-core, and NVIDIA GPGPU architectures.

We compared the performance of the code resulting from our optimization approach with code produced

by state-of-art compilers employing polyhedral model optimizations. For single-core and multi-core code, we

compared against code generated by Pluto, Version 0.9.0-36-g5fb218a [BHRS08a]. For GPUs, we compared

against PPCG, Version c7179a0 [VJC+13]. As input to these tools we used both unfused and fused code. In

all cases, the code generated by our optimization approach outperformed the code generated by the polyhedral

model optimizers by at least a factor of two.

A naive way to implement the computation is to perform each contraction inside a set of perfectly-nested

loops and reuse the resulting array from one contraction to the other. We refer to this implementation of

the 4-index transform as the unfused version. In order to enhance the performance further, each contraction

inside a set of perfectly-nested loops is replaced with a dgemm call as shown in Figure 8.9. After each

contraction, an index permutation on the resulting intermediate array is performed in order to get it into the

right layout for the dgemm call that performs the next contraction. By applying the loop fusion algorithm,

the producer and consumer loops of a memory resident intermediate array are fused thereby reducing the
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memory requirements by eliminating the array dimensions indexed by the fused loops. The intermediate

arrays resulting from each contraction are thus produced and consumed in a pipelined fashion, and they reuse

the same reduced array space. We then tile the fused loops in order to enhance data locality. We refer to this

implementation as the fused-tiled version and is shown in Figure 8.10.

Loop fusion results in bad data layout when we have reasonably large arrays, thereby resulting in poor

cache behavior. We would need additional data layout optimizations after fusion and before tiling to improve

the performance. Our measurements show that performing data layout optimization after fusion and then

followed by tiling brings the performance of fused code close to that of the unfused code. These data

layout optimizations were done manually. They involve permuting array indices of temporary arrays that are

generated during the computation to bring them into a proper layout for subsequent BLAS (dgemm) routines

in the remaining computation. With tiling, since the array accesses are on a per-tile basis, copying each tile

into a buffer and then operating on the buffer provides better cache behavior.

A tile of the 4 dimensional input array A and the smaller array C1 need to be copied into a contiguous

buffer. The additional overhead of a copy operation and that of maintaining an additional buffer is required

since array elements belonging to tiles of these arrays are not contiguous in the corresponding memory

locations which is a requirement for a dgemm call. For each version, we have a CPU implementation that

runs on a single, four core(s) and a GPU implementation evaluated using the NVIDIA Tesla C2075 [NVD]

GPU.

dgemm(‘T’, ‘N’, V, O3, O, 1.0, C4, V, A, O3, 0.0, T1, O3);
index_permute(T1, T1_T, V, O, O, O, 2, 1, 3, 4, 1.0);
dgemm(‘T’, ‘N’, V, VO2, O, 1.0, C3, V, T1_T, VO2, 0.0, T2, VO2);
index_permute(T2, T2_T, V, V, O, O, 3, 1, 2, 4, 1.0);
dgemm(‘T’, ‘N’, V, V2O, O, 1.0, C2, V, T2_T, V2O, 0.0, T3, V2O);
index_permute(T3, T3_T, V, V, V, O, 4, 2, 1, 3, 1.0);
dgemm(‘T’, ‘N’, V, V3, O, 1.0, C1, V, T3_T, V3, 0.0, B, V3);
index_permute(B, B_T, V, V, V, V, 4, 2, 3, 1, 1.0);

FIGURE 8.9. Unfused Code

In this section, we present measurements of the memory reduction that can be achieved with loop fusion

and the performance measurements of both these versions. For the unfused GPU version, all the input arrays

are copied to the GPU and the result array B is copied back to host memory after the last contraction is

finished. Index permutation for each of intermediate arrays is performed on the GPU using index permutation

routines available in Accelereyes ArrayFire library. Similarly for the GPU version of fused-tiled code, the
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buffers holding tiles of input arrays are also copied to the GPU. The result array is copied back to the host

(CPU) memory whenever each tile of it is being produced. We use page-locked (pinned) host memory when

allocating arrays on CPU initially for achieving better bandwidth during data copy between CPU and GPU

memories.

for (s = 0; s < O; s = (s + T)) {
copy_tile_A(A, ABuffer);
copy_tile_C1(C1, C1Buffer);

for (a = 0; a < V; a = a+T) {
dgemm(‘N’, ‘N’, T, O2T, O, 1.0, C4 + (a * O),

O, ABuffer, O2T, 1.0, t1, O2T);
index_permute(t1, t1_t, dim1, dim2, dim3, dim4, 2, 3, 4, 1, 1.0);

for (b = 0; b < V; b = b+T) {
dgemm(‘N’, ‘N’, T, OT2, O, 1.0, (C3 + (b * O)),

O, (t1_t + 0), OT2, 1.0, t2, OT2);
index_permute(t2, t2_t, dim1, dim2, dim3, dim4, 2, 3, 4, 1, 1.0);

for (c = 0; c < V; c = c+T) {
dgemm(‘N’, ‘N’, T, T3, O, 1.0, (C2 + (c * O)),

O, t2_t , T3, 1.0, t3, T3);
index_permute(t3, t3_t , dim1, dim2, dim3,

dim4, 2, 3, 4, 1, 1.0);

dgemm(‘N’, ‘N’, V, T3, T, 1.0, C1Buffer, T,
t3_t, T3, 1.0, (B+index), T3);

}
}

}
}
index_permute(B, B_T, V, V, V, V, 4, 2, 3, 1, 1.0);

FIGURE 8.10. Fused-tiled Code

8.2.3 Code Versions

We tested the following code versions.

• Baseline

– Sequential code: This version contains simple loop nests with a contraction inside the innermost

loop. This code is also provided as input to Pluto, PPCG.

– Multi-core (OpenMP) code: This version contains omp parallel for pragmas around outermost

loop nests.
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• TCE optimized code: Our implementation built using the ROSE compiler framework can generate

either unfused or fused code but does not yet replace innermost loop nests with library calls. We,

therefore, inserted index permutation and BLAS calls manually.

• Pluto, PPCG optimized code: Since the Pluto and PPCG polyhedral compilers use C code as input,

we used our ML implementation to generate the sequential (baseline) code, which is then provided as

input to Pluto and PPCG. x Pluto is used to generate optimized sequential and multi-core (tiled) code.

PPCG is used to generate optimized GPU (tiled) code.

• Cases discussed in measurements:

– For CPU measurements: Unfused code, Fused code without tiling, and Fused and Tiled code.

– For GPU measurements: Fused code, Fused and Tiled code, Unfused code, and Unfused and

Tiled code that was automatically tiled for out-of-gpu-core execution using the SCIGPUGEMM

library.

Each of the tests (except the case where V=120, O+V=180) was run for 5 times and averaged. The results

for the CPU versions are shown in Tables 8.12 and 8.13.In all the tables shown from here onwards, if the

tile size is not available, it means that the highlighted row corresponds to the unfused case. When fusing

away dimensions of large intermediate arrays, we found fusion to have a negative impact on the data layout

of the arrays thereby resulting in poor cache behavior even though it reduces memory requirements. By

tiling however, we begin to get back the performance due to enhancing data locality. This is demonstrated

from the results in Table 8.12. As the tile size gets bigger the performance of the fused-tiled case is almost

equal to that of the unfused version. Also with bigger tile sizes, the advantage of memory reduction due to

fusion is lost. For larger tile sizes, the fused-tiled version uses more memory than unfused version due to the

allocation of separate contiguous buffers that hold tiles of the large input matrix A. However, for all practical

simulations, when the molecule sizes get large enough as shown in Table 8.13, the unfused version does not

fit in physical memory anymore.

It is safe to say that as the computation scales up further, disk I/O would be required and a larger negative

impact on performance can be expected. As shown in Table 8.13, the computation relies on virtual memory

and the performance drops significantly as indicated by the difference between wall-clock and CPU times.
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Here applying fusion reduces the storage requirements for the intermediate arrays produced after each

contraction allowing the computation to fit within the available memory. We then perform tiling and choose a

tile size which allows the computation to fit within available memory. As observed in Table 8.13, tile size 28

gives the best performance while allowing the computation to fit within available memory limit. Larger tile

sizes again force the computation to tap into the virtual memory space or rely on disk I/O. The performance

of these code versions on the GPU is similar and are discussed shortly.

TABLE 8.12. Sequential Runs on a CPU.
V O+V TileSize WallTime IndexPermute CopyTime gflops Memory

70 80 — 3.96secs 0.70secs — 3.70 0.58 GB
70 80 8 4.46secs 0.35secs 0.35secs 3.28 0.53 GB
70 80 16 4.18secs 0.46secs 0.28secs 3.50 0.57 GB
70 80 20 4secs 0.47secs 0.27secs 3.66 0.60 GB
70 80 28 4secs 0.58secs 0.24secs 3.66 0.67 GB
70 80 40 3.91secs 0.65secs 0.19secs 3.75 0.79 GB
70 80 48 3.98secs 0.68secs 0.19secs 3.67 0.89 GB

100 120 — 22.15secs 3.10secs — 4.52 2.84 GB
100 120 8 30.58secs 1.94secs 2.17secs 3.28 2.41 GB
100 120 16 25.72secs 2.03secs 1.48secs 3.90 2.56 GB
100 120 20 25.35secs 2.56secs 1.36secs 3.95 2.64 GB
100 120 28 24.17secs 2.76secs 1.28secs 4.14 2.82 GB
100 120 40 23.22secs 2.83secs 1.04secs 4.31 3.15 GB
100 120 60 23.07secs 3.08secs 0.90secs 4.34 3.84 GB
120 160 — 67.60secs 7.41secs — 5.06 8.55 GB
120 160 8 98.39secs 4.82secs 6.95secs 3.48 6.70 GB
120 160 16 86.34secs 5.81secs 4.70secs 3.96 7.02 GB
120 160 20 80.48secs 6.65secs 4.53secs 4.25 7.20 GB
120 160 28 76.50secs 7.06secs 4.09secs 4.47 7.59 GB
120 160 40 73.33secs 7.96secs 3.32secs 4.66 8.26 GB
120 160 60 70.75secs 7.85secs 3.04secs 4.83 9.64 GB

The running times for the Pluto optimized sequential and multi-core codes are shown in Table 8.14 and

Table 8.15. The running times for the TCE optimized sequential codes are shown in Table 8.16 and Table 8.18

and those for the TCE optimized multi-core codes are shown in Table 8.17 and Table 8.19. As we observe

from these tables, in all cases, the TCE optimized codes outperform Pluto by a factor of upto 5.6X for

sequential code and upto 13.3X for multi-core code. For completeness, the running times for the unoptimized

sequential codes are shown in Table 8.20 and Table 8.23 and those for the unoptimized multi-core codes are

shown in Table 8.21 and Table 8.22. The performance of fused-tiled code on the GPU is shown in Table 8.24.
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TABLE 8.13. Sequential Code Performance on CPU for V=120, O+V=180
TileSize WallTime CPUTime IndexPermute CopyTime gflops Memory

— 27.85min 1.83min 2.05min — 0.30 13.04 GB
8 2.29min 2.27min 5.59secs 12.65secs 3.60 9.75 GB
16 1.93min 1.91min 6.01secs 8.38secs 4.28 10.19 GB
20 1.87min 1.85min 8.25secs 7.26secs 4.42 10.43 GB
28 1.77min 1.75min 8.34secs 6.72secs 4.66 10.97 GB
32 2.38min 1.8min 9.17secs 41.59secs 3.48 11.26 GB
40 8.11min 1.91min 1.34min 3.7min 1.02 11.88 GB
48 12.13min 2.02min 48.13secs 6.1min 0.69 12.57 GB
60 20min 2.15min 1.94min 8.15min 0.42 13.72 GB

TABLE 8.14. Pluto Optimized Sequential Code
O+V V Unfused Fused

80 70 8.48secs 10.61secs
120 100 49.80secs 90.21secs
160 120 379.04secs 402.16secs

TABLE 8.15. Pluto Optimized Multi-core Code
O+V V Unfused Fused

80 70 4.88secs 36.63secs
120 100 29.70secs 169.86secs
160 120 216.02secs 442.56secs

TABLE 8.16. TCE Optimized Sequential Un-
tiled Code

O+V V Unfused Fused

80 70 4.02secs 8.86secs
120 100 21.94secs 55.78secs
160 120 66.70secs 181.05secs

TABLE 8.17. TCE Optimized Multi-core Un-
tiled Code

O+V V Unfused Fused

80 70 2.21secs 8.72secs
120 100 10.12secs 46.21secs
160 120 27.99secs 146.79secs

TABLE 8.18. TCE Optimized Sequential Tiled
Code

O+V V T Fused-tiled

80 70 16 4.42secs
80 70 20 4.13secs
80 70 28 4.10secs

120 100 16 25.72secs
120 100 20 25.45secs
120 100 28 24.22secs
120 100 32 25.35secs
120 100 40 23.24secs
120 100 60 22.87secs
160 120 16 88.66secs
160 120 20 81.67secs
160 120 28 77.05secs
160 120 32 79.28secs
160 120 40 74.39secs
160 120 60 71.34secs

TABLE 8.19. TCE Optimized Multi-core
Fused-tiled Code

O+V V T Fused-tiled

80 70 16 2.48secs
80 70 20 2.37secs
80 70 28 2.36secs

120 100 16 13.65secs
120 100 20 13.75secs
120 100 28 12.51secs
120 100 32 13secs
120 100 40 11.61secs
120 100 60 11.50secs
160 120 16 45.88secs
160 120 20 41.09secs
160 120 28 37.08secs
160 120 32 38.43secs
160 120 40 35.88secs
160 120 60 33.18secs

92



TABLE 8.20. Unoptimized Sequential Untiled
Code

O+V V Unfused Fused

80 70 8.54secs 10.58secs
120 100 50.08secs 90.71secs
160 120 380.54secs 401.31secs

TABLE 8.21. Unoptimized Multi-core Untiled
Code

O+V V Unfused Fused

80 70 11.59secs 35.94secs
120 100 55.97secs 166.95secs
160 120 724.33secs 439.40secs

TABLE 8.22. Unoptimized Multi-core
Fused-tiled Code

O+V V T Fused-tiled

80 70 16 19secs
80 70 20 13.52secs
80 70 28 15.77secs

120 100 16 119.55secs
120 100 20 94.83secs
120 100 28 134.71secs
120 100 32 175.48secs
120 100 40 201.30secs
120 100 60 320.14secs
160 120 16 375.42secs
160 120 20 302.84secs
160 120 28 353.24secs
160 120 32 705.20secs
160 120 40 606.82secs
160 120 60 859.03secs

TABLE 8.23. Unoptimized Sequential
Fused-tiled Code

O+V V T Fused-tiled

80 70 16 26.49secs
80 70 20 25.20secs
80 70 28 36.36secs
120 100 16 178.25secs
120 100 20 167.15secs
120 100 28 247.80secs
120 100 32 342.12secs
120 100 40 296.51secs
120 100 60 483.46secs
160 120 16 580.48secs
160 120 20 549.09secs
160 120 28 781.01secs
160 120 32 1163.23secs
160 120 40 901.50secs
160 120 60 1430.56secs

TABLE 8.24. Performance of Fused-tiled Code on GPU
O+V V T Fused-tiled

80 70 16 1.51secs
80 70 20 1.40secs
80 70 28 1.29secs
80 70 32 1.28secs
80 70 40 1.22secs
80 70 48 1.23secs
120 100 16 7.69secs
120 100 20 6.79secs
120 100 28 6.41secs
120 100 32 6.14secs
120 100 40 6.02secs
120 100 48 6.02secs
120 100 60 5.80secs
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We now compare the different code versions. For sequential and multi-core (OpenMP) versions, baseline

code is compared with Pluto generated code. Unfused code uses 8.5GB of memory and fused code uses

4.88GB. As seen in Fig. 8.11, the performance of the code generated by Pluto is only as good as the

performance of the input code provided to it. The exception is in the case of OpenMP unfused code where

Pluto does better optimization, a factor of 2X.
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FIGURE 8.11. Baseline vs Pluto Run Times for V=120, O+V=160

TCE optimized code is compared with Pluto generated code. Here unfused and fused code refers to

baseline, fused codes where loop nests are replaced with a combination of index permutation and BLAS

(dgemm, dgemv) calls. Multi-core code refers to TCE optimized sequential code which is compiled with

multi-threaded version of the Intel MKL library (which uses OpenMP for parallel execution). Pluto generates

optimized sequential and OpenMP tiled code using baseline unfused, fused code as inputs. The generated

code is compared with the TCE optimized code. As shown in Table. 8.25 and Fig. 8.12, the TCE optimized

code outperforms Pluto generated code by a factor of 5.7-7.7X in case of unfused code and a 2.2-3X in case

of fused code.

TABLE 8.25. TCE Optimal vs Pluto (secs) for V=100, O+V=120
SeqUnfused SeqFused OpenMPUnfused OpenMPFused

66.7 181.01 27.99 146.79
379.04 402.16 216.02 442.56

TCE optimized untiled code (in-core) is compared across all versions: sequential MKL, multi-threaded

MKL and GPU code. Baseline (unoptimized) version is also used. Maximum memory used by the unfused
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FIGURE 8.12. TCE Optimal vs Pluto (FLOPS) for V=100, O+V=120

code is 2.83GB and fused code is 1.54GB. The running times are shown in Table 8.26. As shown in Fig. 8.13,

the GPU version outperforms the remaining versions in the case of unfused code. For fused code, the GPU

version under performs, but tiling the fused code gets back the lost performance as shown in Table 8.24.

TABLE 8.26. TCE Untiled-In-Core (secs) for V=100, O+V=120
Type Sequential OpenMP SeqMKL MT-MKL GPU

Unfused 50.08 55.97 21.94 10.12 4.09
Fused 90.71 166.95 55.78 46.21 92.5
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FIGURE 8.13. TCE Untiled-In-Core (FLOPS) for V=100, O+V=120

CPU out-of-core measurements are discussed now. Maximum memory used by:

• Unfused code: 13.04GB (Exceeds memory limit)

• Fused code: 10.43GB (Stays within memory limit)
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• Fused Tiled code: 10.96GB (Stays within memory limit)

Fused-tiled code refers to fused code where fused loops are tiled. The innermost tiling loops are replaced

with index permutation and BLAS calls.

As shown in Table. 8.27 and Fig. 8.14, fused code shows an improvement over unfused code by a factor of

3X. Fused-tiled code (for tile size 28) has a speedup of 15X (Sequential) and 27X (OpenMP) over unfused

code and a speedup of 4.8X (Sequential) and 9.7X (OpenMP) over fused code. Since the unfused code taps

into virtual memory, the overall performance decreases.

TABLE 8.27. CPU Out-Of-Core (min) for V=120, O+V=180
Type Unfused Fused Fused (T=28)

SeqMKL 27.85 8.74 1.8
MT-MKL 24.98 8.78 0.9
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FIGURE 8.14. CPU Out-Of-Core (FLOPS) for V=120, O+V=180

We now discuss the measurements of the GPU code using the sizes O=100,O+V=120. The maximum

memory used by unfused code is 2.83GB, fused code is 1.54GB, and fused-tiled code is 2.6GB. TCE

optimized GPU code uses CUDA BLAS and GPU index permutation routines from the Accelereyes ArrayFire

library. This code is compared with PPCG generated CUDA code. The input to PPCG is baseline unfused,

fused code containing classic loop nests with a contraction inside. PPCG generates tiled CUDA code as

output. The tile size used here is 32. Fig. 8.28 shows the difference in performance between TCE optimized

GPU code and PPCG generated CUDA code. The code generated by PPCG appears to be too complex to

insert any index permutation and BLAS calls. The reason the PPCG unfused case runs out of memory is
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TABLE 8.28. Comparison with PPCG on GPU
O+V V Unfused-TCE Fused-TCE Unfused-PPCG Fused-PPCG

80 70 0.82sec 18.88sec 3.6min 2.36hours
120 100 4.1sec 92.55sec Out-of-memory >2hours

because PPCG does not handle allocate, deallocate statements (if you try to manage memory). Pluto also has

the same issue.

We now discuss the GPU out-of-core measurements. The GPU memory on the C2075 GPU is advertised

as 6GB, but the usable memory is 5.2GB. The tile size used for fused code is 28. Memory usage for unfused

code is 5.34GB, fused code is 3.3GB and fused-tiled code is 4.66GB. Since the unfused code does not fit in

GPU memory, it is tiled using the SciGPUGEMM [SCI] library. The library provides wrapper APIs for level

3 BLAS operations which automatically ship blocks of tensors between CPU, GPU memory when the input

or output tensors in a contraction do not fit in GPU memory. The table in Fig. 8.29 below shows that the

speed up of fused tiled code over unfused is 3X.

TABLE 8.29. Performance of GPU Out-Of-Core Code
O+V V Unfused-TCE Tiled Fused-TCE Tiled

145 90 30.32sec 11.78sec

8.3 Evaluation of the Loop Fusion Optimization for GPGPUs

Using the same experimental setup shown in Figure. 8.8, we performed micro-benchmarks of the contraction

of a two-dimensional tensor with a 4-dimensional tensor for all dimension sizes ranging from 5 to 120 in

steps of 5 with four different layouts of the four-dimensional tensor. We also performed measurements of

binary addition, index permutation, and transfer between GPU and CPU memory for the four-dimensional

tensors of these sizes and layouts.

Our micro-benchmarks showed:

• On the GPU, addition is 3–5 times faster than DGEMM.

• Addition on the GPU is 2–4 times faster than addition on the CPU.

• On the GPU, index permutation is 3–7 times faster than DGEMM for tensor sizes up to approximately

1.3GB. Similarly, for these sizes, index permutation on the GPU is 4–7 times faster than index

permutation on the CPU. For these sizes, addition and index permutation performance on the GPU are

almost identical.
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• Index permutation on the GPU for tensor sizes of more than 1.3GB is 1.5–2 times slower than that on

the CPU and also 1.5–2 times slower than DGEMM on the GPU.

• For tensor sizes of less than approximately 400kB, sequential DGEMM on the CPU is faster than

multi-core DGEMM on the CPU and than DGEMM on the GPU.

• For larger tensors, DGEMM on the GPU is 2–3 times faster than multi-core DGEMM and 6–8 times

faster than sequential DGEMM on the CPU.

For very small contractions, with dimension sizes of less than 15, the performance of sequential DGEMM

on the CPU is faster than DGEMM on the GPU. Therefore, we perform such contractions on the CPU and

avoid the data movement costs between CPU and GPU. For larger tensors, we perform the entire computation

on the GPU provided all the data fits into GPU memory.

For the tensor expression (AB + CD + EF ), we implemented both the unfused and fused plus tiled

(where the tile size used is 20) variants, each of which were further measured under the following scenarios:

1. The entire computation is performed on the GPU.

2. Only one contraction fits in GPU memory at a time and the addition is performed on the GPU.

3. Only one contraction fits in GPU memory at a time and the addition is performed on the CPU.

Our measurements in Table 8.30 show that with fusion the computation time increases under any scenario

and that fusion is not beneficial compared to performing the addition on the CPU. We have also demonstrated

the effectiveness of our fusion algorithm for the case where the unfused version is too large to fit in GPU

memory using the 4-index transformation equation. Table 8.29 shows a factor of three speed up of the

fused-tiled code over unfused tiled code.

TABLE 8.30. Performance of the tensor expression AB + CD + EF
Scenario Unfused Fused-tiled

1 5.99sec 15.09sec
2 11.64sec 34.27sec
3 10.2sec 31.53sec
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Our measurements show:

• It is not beneficial to use fusion to allow additions to be performed on the GPU, since the reduction in

locality in the contractions is more expensive than the cost of transferring the results of a contraction

to the CPU and performing addition there.

• When already using fusion and tiling, it is not beneficial to reduce the tile size further in order to fit

addition on the GPU for the same reasons.

• If the result of an addition is needed on the GPU for another contraction, e.g., for (AB + CD)E, it is

better to perform the addition on the GPU.

• If all the computation fits on the GPU, it is not beneficial to transfer intermediates to the CPU in order

to overlap addition on the CPU with contractions on the GPU, since the transfer cannot be sufficiently

overlapped with the contraction on the GPU.

• Similar to addition, index permutation is usually faster on the GPU. Except for very large tensors, index

permutation should be performed where the result is needed. For very large tensors, index permutation

is faster on the CPU.

99



Chapter 9
Conclusions and Future Directions

This dissertation addresses certain performance optimization issues for complex tensor contraction ex-

pressions that arise in quantum chemistry. We have made significant performance improvements to the loop

fusion optimization algorithm that allow large tensor contraction equations to be optimized with complex

(2-dimensional) loop fusion cost models without relying on optimization heuristics. We have developed a loop

fusion cost model for memory minimization with dynamic memory allocation that calculates memory usage

precisely. However, we found that for the tensor contraction equations encountered in quantum chemistry,

the additional precision in the memory usage calculation does not warrant the higher computational cost.

We also have developed a loop fusion optimization algorithm that can be applied to simple handwritten

tensor contraction code as an alternative to the loop fusion algorithm for expression trees representing tensor

contraction equations. This would allow translating, for example, handwritten in-core tensor contraction code

into out-of-core code.

Finally, we have described an optimization framework for generating GPGPU code from tensor contraction

equations. Our overall framework employs model-driven search-based algorithms for enumerating fused

loop structures, tile sizes, and choices of index permutation and matrix multiplication library (BLAS) calls.

Depending on the size of the tensors, the optimization framework decides whether the entire computation

should be performed on the CPU or the GPU, whether tensor contractions should be performed on the GPU

while additions are performed by the CPU, and whether loops should be fused. While we do not have these

algorithms implemented yet, our measurements demonstrate that the choices for our loop fusion cost model

would result in the enumeration of all important loop structures. The tiling and layout optimization algorithms

can then select the optimal loop structure out of the candidates generated by the fusion algorithm.
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9.1 Future Directions

The goals for the TCE are to be both a platform for experimenting with novel optimization algorithms and to

be used by quantum chemists for generating efficient simulation models. To achieve these goals, however,

there are several remaining software development and research tasks:

• Implementation of GPU Cost Model for Loop Fusion Our GPU cost model for the loop fusion

algorithm needs to be refined, implemented, and tested. This also requires support in the fusion tree

data structure and in SAGE tree generation to allow CUDA code to be generated.

• Layout Optimization and Library Call Selection Since the layout of intermediates is typically not

constrained, layout optimization finds the layouts that minimizes the cost of DGEMM and index

permutation calls as well as communication calls. This algorithm needs to be reimplemented to operate

on ROSE abstract syntax trees. It also depends on new extensive measurements of the performance of

any library calls and the communication cost for different types of parallelism and distributed matrix

multiplication. Finally, the abstract syntax tree must be transformed to replace inner loop nests with

the appropriate DGEMM and index permutation calls.

• Detailed GPU Cost Models We need detailed GPU cost models for the tiling and layout optimization

algorithms. As an alternative, it is worth exploring a combination of tiling and layout optimization

into a single traversal of the code. One possible enhancement to our framework is suggested by the

approach of DePrince and Hammond [DH11]. For a single equation our approach should subsume

or improve on their solution. For example, the iterative part of CCSD(T) consists of three equations.

By mapping contractions of size N4 from the smaller equations (in addition to the N4 cost additions)

onto the CPU, they improve the utilization of the CPU. A more general approach could select a small

number of terms of a larger equation to perform on the CPU while the GPU computes the rest of the

equation. This assignment of contractions to the CPU instead of the GPU could be performed as part

of tiling optimization.

• Symmetries and Block-Sparse Tensors In coupled cluster chemistry models, tensors are frequently

block sparse with large irregular block sizes because of the spatial symmetry of molecules and may

also exhibit permutational symmetry, in which some slices of a higher-dimensional tensor are anti-

symmetric (e.g., T ab
ij = −T ab

ji ). In Atomic Orbital (AO) representations, tensors are block-sparse
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with a small uniform block size. To enable research on cost models for symmetric and block-sparse

tensors, we would need support for representing these symmetries and for generating appropriate

code. We already have syntactic support in our tensor expression language for declaring symmetry

and storage properties, but we would also need a type system for computing the symmetry properties

of intermediates from their subtrees, support for symmetries in the cost models for our optimization

algorithms, and tree transformations for generating the appropriate code.

• Polyhedral Model Optimization Support Pluto transforms C programs for generating OpenMP

parallel code for multi-cores. The current implementation performs these transformation directly

without generating abstract syntax trees as intermediate data structures. The Pluto port to ROSE is

redesigned to work on abstract syntax trees. While our measurements demonstrated that for dense

tensors our optimization framework out-performs Pluto, for tensors with symmetries polyhedral

model optimization will likely be more competitive or preferable. Domain-specific optimizations in

conjunction with Pluto may result in the best performance. Pluto can be incorporated with our search-

based optimizations by providing search algorithms that iterate over tile sizes or other parameters and

by letting Pluto find the optimal transformations for the given parameters. We might also need analyses

for extracting the loop nests from a larger fused loop structure that will then be optimized by Pluto.

• Code Generation for Parallelism Similarly as for generating distributed code, we need an internal

representation for describing how an individual contraction is to be parallelized. A tree transformation

algorithm interprets this data structure and generates the appropriate parallel code for the desired form

of parallelism (multiple processors, cores, and/or GPU). Later, the optimization algorithms can then

either generate this representation or make the appropriate calls to the code transformations directly.

Ideally, this internal representation and the code transformation would be general enough to allow for

non-SPMD execution as well. E.g., for spatial symmetry it would be beneficial if different (groups

of) processors perform the contractions for different spatial symmetry blocks. However, a non-SPMD

execution model requires dynamic load balancing (so that processors and key system resources are not

wasted due to idleness) and leads to complex synchronization issues.

• Code Generation for Multi-Level Parallel Systems with Distributed Memory We plan to handle

code generation for a cluster of multi-core/SMP nodes that communicate via message-passing using
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MPI or through the use of Global Arrays. The processors in each SMP node use the shared memory in

the SMP node. Our approach to generating code for multi-level parallel systems is to view it as multi-

level tiling, where the inner-level tiles of an outer-level tile (executing on different cores in a physical

shared-memory domain) can share data directly, but direct sharing of data is not feasible between

outer-level tiles (mapped to different SMP nodes on a cluster). We will use the Pluto framework to find

a communication minimizing set of affine transformations (or, equivalently, tiling hyperplanes) for

each statement to minimize the volume of communication between tiles and also to improve data reuse

in each tile. The Pluto framework finds bands of (one or more) permutable loops that can be tiled and

also identifies points in execution where synchronization is required. Determining the best choice of

combinations of fusion and tiling structures and sets of tile sizes at different levels of tiling is a key

problem. We plan to use a combination of model-driven and empirical search for this, which has been

developed in [GKS+07]. For this, we will develop an infrastructure to create a characterization, using

empirical evaluation, of the performance variation within each multicore/SMP node as a function of

tile sizes. Using this characterization and an outer-level tiling of the computation’s iteration space, the

completion time on the multi-level parallel system can be modeled using the techniques in [GKS+07].

This can be used to guide the search. A critical transformation to optimize loop codes is loop fusion

in conjunction with tiling. Loop fusion improves reuse across the different statements, while tiling

improves reuse between iterations of the same statement. We plan to implement an enumeration-based

approach to differentiate between the different fusion structures. In addition, we plan to develop, using

the compiler framework, methods to determine the local data needed for data accessed in the tile (as a

function of tile sizes) and to generate code to move data between SMP nodes (e.g., as in [CG06]).

103



Bibliography

[ACC] Accelereyes Arrayfire Library. http://www.accelereyes.com/arrayfire/c.

[AMP01] Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Synthesizing transformations for locality
enhancement of imperfectly-nested loop nests. Int. J. Parallel Program., 29:493–544, October
2001.

[AO06] T.J. Ashby and M.F.P. O’Boyle. Iterative collective loop fusion. In Alan Mycroft and Andreas
Zeller, editors, Compiler Construction, volume 3923 of Lecture Notes in Computer Science,
pages 202–216. Springer Berlin / Heidelberg, 2006. 10.1007/11688839 17.

[AS87] Andrew W. Appel and Kenneth J. Supowit. Generalizations of the Sethi-Ullman algorithm for
register allocation. Software – Practice and Experience, 17(6):417–421, June 1987.

[BAB+05a] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X. Gao,
R. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer,
J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance parallel
programs for a class of ab initio quantum chemistry models. Proceedings of the IEEE, 93(2):276–
292, February 2005.

[BAB+05b] G. Baumgartner, A. Auer, D.E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, X Gao,
R.J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, C. Lam, Q Lu, M. Nooijen, R.M.
Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov. Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models. Proceedings of the IEEE,
93(2):276 –292, February 2005.

[BACD97] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multiply
using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings of
the 11th international conference on Supercomputing, ICS ’97, pages 340–347, New York, NY,
USA, 1997. ACM.

[BBA05] Bob Blainey, Christopher Barton, and José Amaral. Removing impediments to loop fusion
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