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Abstract

Let D = {d1, d2, ..., dD} be a collection of D string documents of n characters in total, which are drawn

from an alphabet set Σ = [σ] = {1, 2, 3, ...σ}. The top-k document retrieval problem is to maintain D as

a data structure, such that when ever a query Q = (P, k) comes, we can report (the identifiers of) those

k documents that are most relevant to the pattern P (of p characters). The relevance of a document dr

with respect to a pattern P is captured by score(P, dr), which can be any function of the set of locations

where P occurs in dr. Finding the most relevant documents to the user query is the central task of any

web-search engine. In the case of web-data, the documents can be demarcated along word boundaries. All the

search engines use inverted index as the back-bone data structure. For each word occurring in the document

collection, the inverted index stores the list of documents where it appears. It is often augmented with

relevance score and/or positional information. However, when data consists of strings (e.g., in bioinformatics

or Asian language texts), there are no word demarcation boundaries and the queries are arbitrary substrings

instead of being proper valid words. In this case, string data structures have to be used and central approach

is to use suffix tree (or string B-tree) with appropriate augmenting data structures. The work by Hon, Shah

and Vitter [34], and Navarro and Nekrich [48] resulted in a linear space data structure with optimal O(p+ k)

query time solution for this problem. This was based on geometric interpretation of the query.

We extend this central problem, in two important areas of massive data sets. First, we consider an external

memory disk based index, where we give near optimal results. Next, we consider compression aspects of

data structure, reducing the storage space. This is central goal of the active research field of succinct data

structures. We present several results, which improve upon several previous results, and are currently the best

known space-time trade-offs in this area.
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Chapter 1
Introduction

The basic task of search engines is to preprocess a text collection (referred as documents) and maintain

as a data structure, so that, whenever a pattern comes as a query, the documents that are most “relevant”

to the pattern (for some definition of relevance) can be identified efficiently. In Information Retrieval (IR),

the most fundamental and widely used data structure for this task is the inverted index. For each word

occurring in the document collection, the inverted index stores the list of documents where it appears. It is

often augmented with relevance score and/or positional information. However, it applies to text collections

that can be segmented into “words (terms)”, so that only terms can be queried. This excludes East Asian

languages such as Chinese and Korean, where automatic segmenting is an open problem, and is troublesome

even in languages such as German and Finnish. A simple solution for those cases is to treat the text as a plain

sequence of symbols and look for any substring in those sequences. This string model is also appealing in

applications like bioinformatics and software repositories. Building a search engine over those general string

collections has proved much more challenging.

The most basic string searching problem is to find all the occurrences of a pattern P [1..p] in a (longer)

text T[1..n]. Earlier work has focused on developing linear-time algorithms for this problem [37]. In a data

structural sense, the text is known in advance and the pattern queries arrive in an online fashion. The suffix

trees [43, 66] and suffix arrays [41] are the most popular data structures to handle such queries. Both of

these data structures occupy linear space (i.e., O(n)-word) and answer pattern matching queries in optimal

O(p+ occ) time and O(p+ log n+ occ) time respectively, where occ is the number of occurrences of P in

the text T.

Most string databases consist of a collection of strings (or documents) rather than just one single string.

We shall use D = {d1, d2, d3, .., dD} for denoting the string collection of D strings of n characters in total 1.

In this case, a natural problem is to preprocess D and maintain it as a data structure, so that, whenever a

pattern P [1..p] comes as a query, those documents where P occurs at least once can be reported efficiently,

instead of reporting all the occurrences. This is known as the document listing problem. Let occ be the

1We fix the last character of each document as $, a special symbol that does not appear elsewhere.
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number of occurrences of P over the entire collection D, and ndoc be the number of documents where P

occurs as a substring. One of the main issues is the fact that ndoc can be much smaller than occ. A simple

suffix-tree-based search might be inefficient since it might involve browsing through a lot more occurrences

than the actual number of qualifying documents. Therefore, it is important to design data structure which

does not have to go through all the occurrences or even all the documents. The query time should be related

only to ndoc. This was first addressed by Matias et al. [42], where they gave a linear-space data structure

with query time O(p logD + ndoc). Muthukrishnan [46] proposed another linear space data structure with

optimal O(p+ ndoc) query time.

In more realistic retrieval situations, end-users are only interested in small number (say k) of highly

relevant documents from the potentially large number of documents containing the query pattern. In literature,

this problem is known as top-k document retrieval, where k comes as query parameter along with the pattern

P . The relevance of a document dr with respect to a pattern P is captured using score(P, dr), which can

be any function of the set of occurrences (given by their locations) of P in document dr. For example,

score(P, dr) can simply be the term frequency TF(P, dr) (i.e., the number of occurrences of P in dr), or it

can be the term proximity TP(P, dr) (i.e., the distance between the pair of closest occurrences of P in dr),

or a pattern-independent importance score of dr such as PageRank [56]. Formally, we have the following

definition.

Problem 1. Top-k Document Retrieval: Let D = {d1, d2, ..., dD} be a collection of D string documents

of n characters in total, which are drawn from an alphabet set Σ = [σ] = {1, 2, 3, ...σ}. The top-k document

retrieval problem is to maintain D as a data structure, such that when ever a query Q = (P, k) comes, we

can report (the identifiers of) those k documents with the highest score(P, dr) values. Here, score(P, dr) is

any function which is dependent only on the set of occurrences of P in dr.

If we are required to report the answers in the decreasing order of score(P, ·), we call it as sorted

retrieval, otherwise it is called unsorted retrieval. Throughout the rest of this thesis, unless otherwise

specified, we assume sorted retrieval. Also, the problem is known as top-k frequent document retrieval, if

score(·, ·) =TF(·, ·). Hon, Shah and Vitter [34] gave the first framework to answer such a retrieval query

based on augmented suffix trees. Their work along with subsequent improvement by Navarro and Nekrich

[48] resulted in O(n)-word (linear) space data structure and optimal O(p + k) query time solution for

2



this problem. These results are based on a reduction of top-k document retrieval problem to a geometric

problem known as 4-sided range reporting in 3d (three dimensions). Although, the general case of this

geometric problem is hard, results in [34] are based on a crucial observation that the problem in hand can be

decomposed into O(p) subproblems, each of them are 3-sided range reporting queries in 2d (which can be

solved optimally). This inevitably adds an additive O(p) term in the query time, however it will not change

the query time as O(p) time is needed for initial pattern search using suffix tree.

Historically, both suffix tree and suffix array data structures are considered to consume “linear” space.

However, the notion of space measure here was in terms of memory words. When measured in terms of bits,

these data structures take O(n log n) bits, which is asymptotically higher than the n log σ bits required to

store the text in plain form; here, Σ = [σ] = {1, 2, ..., σ} denotes the alphabet set from which characters of

T and P are drawn. Practically for DNA texts (with Σ = {A,G,C, T}), the suffix tree (resp., suffix array)

structure is reported to take 15 to 50 (resp., 4 to 15) times more space than the original data. For example,

consider human genome data (which takes roughly 3-4 GB space) can be accommodated in main memory of

the typical modern computer systems. However, a suffix tree or suffix array data structure built over it may

not. Furthermore, the text can often be compressed by entropy-compression methods like gzip or bzip. Thus,

the actual gap between the indexing space and the storage space is even larger.

A longstanding open question was to develop data structures for string searching applications, which takes

space close to the compressed representation of string itself. This was answered positively by Grossi and

Vitter [27] using their Compressed Suffix Array (CSA) data structure, and Ferragina and Manzini [17] by their

data structure called FM-index; subsequently, an exciting field of compressed text indexing was established.

Many versions of CSA and FM-index were later proposed. A space optimal FM-index by Ferragina et al. [18]

occupy nHh + o(n log σ) bits, where Hh ≤ log σ denotes the empirical hth-order entropy of T 2 and can

answer queries in O((p+ occ log1+ε n)(1 + log σ/ log log n)) time (we defer more details to Section 2.3).

When it comes to the task of designing a compressed/succinct space data structure for the top-k document

retrieval problem, the corresponding suffix tree data structure can be replaced by its compressed version.

However, the challenging part is how to compress the augmented information. One of the technique is

sparsification, which is based on the principle of “store less, do more while querying”. The data structures

are build for the case where score(P, dr) is the number of occurrences of P in dr. The first data structure

2The space bound holds for all h < α logn/ log σ, where α is any fixed constant with 0 < α < 1.
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of this category is proposed by Hon et al. [34], and it takes 2nHh + o(n log σ) +O(D log n) bits space and

O((p+ k log4+ε n)(1 + log σ/ log log n)) query time, where ε is any positive constant. This thesis present a

result, which improves this query time to O((p+ k log k log1+ε n)(1 + log σ/ log log n)), which is currently

the fastest data structure within this space bound.

A data structure taking roughly nHk+n logD+o(n logD+n log σ) bits of space is referred as a compact

space data structure. For unsorted top-k document retrieval, we present a compact space solution of query

time O(p + k log∗ k) (detailed discussion on other known compact space data structures is deferred to

Chapter 5).

With the advent of enterprise search, deep desktop search, email search technologies, the data structures

which reside on disks are more and more important. Many biological databases are now being tuned for

external memory versions as the amount of sequence data grows. Importance of disk resident data structures

is highlighted by the fact that even the compressed data structures built over massive string data (for

example, 1000 genome project) may not fit in internal memory. Despite these motivations as I/O-efficient

data structure for string retrieval has been elusive. Here also the suffix tree data structure can be replaced by

its external memory counter part called string B-tree [16]. However, the challenging part is how to query

on the augmented information in optimal I/Os. The desired optimal I/O bound of O(p/B + logB n+ k/B)

cannot be achieved by Hon et al.’s approach, because it inevitably adds an O(p) additive term. Therefore,

instead of modeling as a general 4-sided orthogonal range query, we exploit several special properties of this

problem that allows us to be able to break this barrier.

1.1 The Models of Computation

The data structures presented in this thesis work are in either Word-RAM model, or in external memory

(also known as I/O model) [2]. In Word-RAM model, we assume that the memory is partitioned into

continuous blocks (or words). At any point of time, we can load data into a block or access data within a

block in constant time. We always assume the size of a block is Θ(log n) bits, where n denotes the size of

the problem in hand.

The external-memory model or I/O model was introduced by Aggarwal and Vitter [2] in 1988. In this

model, the CPU is connected directly to an internal memory of size M , which is then connected to a much

larger and slower disk. The disk is divided into blocks of B words (i.e., Θ(B log n) bits). The CPU can only

operate on data inside the internal memory. So, we need to transfer data between internal memory and disk

4



through I/O operations, where each I/O may transfer a block from the disk to the memory (or vice versa).

Since internal memory (RAM) is much faster, operations on data inside this memory are considered free.

Performance of an algorithm is measured by the number of I/O operations used.

1.2 Our Contributions

In this thesis, we present several data structures for answering top-k document retrieval queries in various

settings, and our main results are summarized below.

• We present an I/O-optimal external memory data structure ofO(n log∗ n)-word space for the (unsorted)

top-k document retrieval problem. Here log∗ n represents the iterative logarithm of n. Our data structure

can be easily adapted to internal memory and achieve Θ(n)-word space and O(p+ k) query time.

• The lower bound on the minimum space required for maintaing D is nHk + D log(n/D) + O(D)

bits. For the case where score(P, dr) is the number of occurrences of P in dr, we present a data

structure occupying 2nHk + D log(n/D) + O(D) bits of space, and can answer queries in O((p +

k log k log1+ε n)(1 + log σ/ log log n)) time, where ε is any positive constant. Notice that the earlier

data structure occupying the same space required O((p+ k log4+ε n)(1 + log σ/ log log n)) time.

• For the case where score(P, dr) is the number of occurrences of P in dr, we present a compact space

data structure of nHk + n logD + o(n logD + n log σ) bits space and O(p+ k log∗ k) query time for

(unsorted) top-k document retrieval queries. That is O(log∗ k) per document retrieval time. Notice that

the earlier best known data structure required O((log σ log log n)1+ε) time per reported document.

• We provide a framework to answer top-k queries for two or more patterns. For two patterns P1 and P2

of lengths p1 and p2 respectively, we derive linear-space (i.e., using O(n) words) indexes with query

time O(p1 + p2 +
√
nk log n log log n) for various score functions.

1.3 Roadmap

Chapter 2 gives the preliminaries. Next we describe our external memory result in Chapter 3. Chapter 4

and Chapter 5 are dedicated to the description of our results on succinct space and compact space data

structures. In Chapter 6, we introduce the several problems and the corresponding solutions for an extension

of top-k retrieval, where a query may consists of more than one pattern. Finally, we conclude in Chapter 7

with some open problems.
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Chapter 2
Preliminaries

In this section, we briefly describe various known data structures that are the building blocks of our newly

introduced data structures. Also, the notations and definitions introduced in this section will be followed

throughout the rest of this thesis.

2.1 Generalized Suffix Tree

Let T = d1d2d3 · · · dD be the text (of n characters from an alphabet set Σ = [σ]) obtained by concatenating

all the documents in D. The last character of each document is $, a special symbol that does not appear

anywhere else in T. Each substring T[i..n], with i ∈ [1, n], is called a suffix of T. The generalized suffix tree

(GST) of D is a lexicographic arrangement of all these n suffixes in a compact trie structure, where the ith

leftmost leaf represents the ith lexicographically smallest suffix. Each edge in GST is labeled by a string,

and path(x) of a node x is the concatenation of edge labels along the path from the root of GST to node x.

Let `i for i ∈ [1, n] represent the ith leftmost leaf in GST. Then path(`i) represents the ith lexicographically

smallest suffix of T. Corresponding to each node, a perfect hash function [20] is maintained such that, given

any node u and any character c ∈ Σ, we can compute the child node v of u (if it exists) where the first

character on the edge connecting u and v is c. A node x is called the locus of a pattern P , if it is the highest

node path(x) prefixed by P . The total space consumption of GST is O(n) words and the time for computing

the locus node of P is O(p). When D contains only one document dr, the corresponding GST is commonly

known as the suffix tree of dr [66].

2.2 Suffix Array

The suffix array SA[1..n] is an array of length n, where SA[i] is the starting position (in T) of the ith

lexicographically smallest suffix of T [41]. In essence, the suffix array contains the leaf information of GST

but without the tree structure. An important property of SA is that the starting positions of all the suffixes

with the same prefix are always stored in a contiguous region of SA. Based on this property, we define the

suffix range of P in SA to be the maximal range [sp, ep] such that for all i ∈ [sp, ep], SA[i] is the starting

point of a suffix of T prefixed by P . Therefore, `sp and `ep represents the first and last leaves in the subtree of

the locus node of P in GST.
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2.3 Compressed Suffix Arrays

A compressed representation of suffix array is called a compressed suffix array (CSA) [27, 17, 26].

We denote the size (in bits) of a CSA by |CSA|, the time for computing SA[·] and SA−1[·] values by tsa,

and the time for finding the suffix range of a pattern of length p by ts(p). There are various versions

of CSA in the literature that provide different performance tradeoffs (see [47] for an excellent survey).

For example, the space-optimal CSA by Ferragina et al. [18] takes nHh + o(n log σ) bits space, where

Hh ≤ log σ denotes the empirical hth-order entropy of T.1 The timings tsa and ts(p) are O(log1+ε n log σ)

and O(p(1 + log σ/ log log n)), respectively. Recently, Belazzougui and Navarro [4] proposed another CSA

of space nHh +O(n) + o(n log σ) bits with ts(p) = O(p) and tsa = O(log n).

2.4 Bit Vectors with Rank/Select Support

Let B[1..n] be a bit vector with its m bits set to 1. Then, rankB(i) represents the number of 1’s in B[1..i]

and selectB(j) represents the position in B where the jth 1 occurs (if j > m, return NIL). The minimum space

needed for representing B is given by dlog
(
n
m

)
e ≤ m log(ne/m) = m log(n/m) + 1.44m [57]. There exists

representations of B in n+ o(n) bits and m log(n/m) +O(m) + o(n) bits, which can support both rankB(·)

and selectB(·) operations in constant time. These structures are known as fully indexible dictionaries. Another

representation, where the space occupancy is m log(n/m) +O(m) bit support only selectB(·) operation in

constant time is known as indexible dictionary [61].

2.5 Succinct Representation of Ordinal Trees

The lower bound on the space needed for representing any n-node ordered rooted tree, where each node

is labeled by its preorder rank in the tree, is 2n − O(log n) bits. Using succinct data structure occupying

o(n) bits extra space, the following operations can be supported in constant time [63]: (i) parent(u), which

returns the parent of node u, (ii) lca(u, v), which returns the lowest common ancestor of two nodes u and v,

and (iii) lmost leaf (u)/rmost leaf (u), which returns the leftmost/rightmost leaf of node u.

2.6 Document Array

The document array E [1..n] is defined as E [j] = r if the suffix T[SA[j]..n] belongs to document dr.

Moreover, the corresponding leaf node `j is said to be marked with document dr.

1The space bound holds for all h < α logn/ log σ, where α is any fixed constant with 0 < α < 1.
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By maintaining E using the structure described in [25], we have the following result.

Lemma 1. The document array E can be stored in n logD + o(n logD) bits and support rankE , selectE

and accessE operations in O(log logD) time, where

• rankE (r, i) returns the number of occurrences of r in E [1..i];

• selectE (r, j) returns the location of jth leftmost occurrence of r in E ; and

• accessE (i) returns E[i].

Define a bit-vector BE[1..n] such that BE[i] = 1 if and only if T[i] = $. Then, the suffix T[i..n] belongs to

document dr if r = 1 + rankBE
(i), where rankBE

(i) represents the number of 1s in BE[1..i]. The following is

another useful result.

Lemma 2. Using CSA and an additional structure of size |CSA∗|+D log n
D

+O(D)+o(n) bits, the document

array E can be simulated to support rankE operation in O(tsa log log n) time, and selectE and accessE

operations in O(tsa) time.

Proof. The document array E can be simulated using the following structures: (i) compressed suffix array

CSA of T (of size |CSA| bits), where SA[·] and SA−1[·] represent the suffix array and inverse suffix array

values in CSA; (ii) compressed suffix array CSAr of document dr (of size |CSAr| bits) corresponding to every

dr ∈ D, where SAr[·] and SA−1
r [·] represent the suffix array and inverse suffix array values in CSAr; and (iii)

the bit-vector BE maintained in D log n
D

+O(D) + o(n) bits with constant-time rank/select supported [61].

Hence the total space is bounded by |CSA∗|+D log n
D

+O(D) + o(n) bits in addition to the |CSA| bits of

CSA, where |CSA∗| = max{|CSA|,
∑D

r=1 |CSAr|} 2.

The function accessE (i) = 1+rankBE
(SA[i]) can be computed inO(tsa) time. For computing selectE (r, j),

we first compute the jth smallest suffix in CSAr and obtain the position pos of this suffix within document

dr, from which we can easily obtain the position pos ′ of this suffix within T as selectBE
(r − 1) + pos , where

selectBE
(x) is the position of the xth 1 in BE. After that, we compute SA−1[pos ′] in CSA as the desired answer

for selectE (r, j). This takes O(tsa) time. The function rankE (r, i) = j can be obtained in O(tsa log n) time

using a binary search on j such that selectE (r, j) ≤ i < selectE (r, j+1). Belazzougui et al. [6] showed that

the time for computing rankE (r, i) can be improved to O(tsa log log n) as follows: At every (log2 n)th leaf

2Notice that in the case of some specific versions of CSA, |CSA∗| can be bounded by |CSA|+O(D logn).
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of each CSAr, we explicitly maintain its corresponding position in CSA and a predecessor search structure

over it [67]; the size of this additional structure is o(n) bits. Now, when we answer the query, we can first

search this predecessor structure for an approximate answer, and the exact answer can be obtained by a

binary search on a smaller range of only log2 n leaves. ut

Lemma 3. Let E be the document array corresponding to a document collection D. Then, for any document

dr ∈ D, TF(P, dr) = rankE (r, ep)− rankE (r, sp− 1), where [sp, ep] represents the suffix range of P .

2.7 Differentially Encoding a Sorted Array

Let A[1..m] be an array of integers such that 1 ≤ A[i] ≤ A[i + 1] ≤ n. The array A can be encoded

using a bitmap B = 10c110c210c3 · · · 10cn , where ci denotes the number of entries A[·] = i. The length of B

is m+ n, and hence B can be maintained in (m+ n)(1 + o(1)) bits (along with constant-time rank/select

structures [44, 11]). Then, for any given j ∈ [1,m], we can compute A[j] in constant time by first finding the

location of the jth 0 in B, and then counting the number of 1s up to that position.

2.8 String B-tree

String B-tree (SBT) [16] is a data structure for a text T that supports efficient online pattern matching

queries in the external-memory setting. Basically, it is a B-tree over the suffix array SA of T but with extra

information stored in each B-tree node to facilitate the matching. The performance of SBT is summarized as

follows.

Lemma 4. Given a text T of length n characters, we can build a string B-tree data structure in Θ(n/B)

blocks or Θ(n log n) bits such that the suffix range of any input pattern P can be obtained inO(p/B+logB n)

I/Os, where p is the number of characters of P and B denotes the block size.
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Chapter 3
External Memory Data Structures

In this chapter 1, we present our new framework for top-k document retrieval. Based on this, we derive the

first non-trivial external memory data structure as described in the following theorem

Theorem 1. In the external memory model, there exists an O(nh)-word date structure that can answer the

(unsorted) top-k document retrieval queries in O(p/B + logB n+ log(h) n+ k/B) I/Os for any h ≤ log∗ n,

where log(h) n = log log(h−1) n, log(1) n = log n and B is the block size.

Corollary 1. There exists an O(n log∗ n)-word structure for answering the (unsorted) top-k document

retrieval queries in optimal O(p/B + logB n+ k/B) I/Os.

3.1 Preliminary: Top-k Framework

This section briefly explains the linear space framework for top-k document retrieval based on the work

of Hon et al. [34], and Navarro and Nekrich [48]. We first build a generalized suffix tree (GST) of a

document collection D= {d1, d2, d3, . . . , dD}. The definitions of path, depth and locus remains the same as

we described in Section 2.1. The locus node of P is denoted by uP . By numbering all the nodes in GST in the

pre-order traversal manner, the part of GST relevant to P (i.e., the subtree rooted at uP ) can be represented

as a range.

Nodes are marked with documents. A leaf node ` is marked with a document d ∈ D if the suffix represented

by ` belongs to d. An internal node u is marked with d if it is the lowest common ancestor of two leaves

marked with d. Notice that a node can be marked with multiple documents. For each node u and each of

its marked documents d, define a link to be a quadruple (origin, target, doc, score), where origin = u,

target is the lowest proper ancestor of u marked with d, doc = d and score = w
(
path(u), d

)
. Two crucial

properties of the links identified in [34] are listed below.

Lemma 5. For each document d that contains a pattern P , there is a unique link whose origin is in the

subtree of uP and whose target is a proper ancestor of uP . The score of the link is the score of d w.r.t. P .

1This section previously appeared as, Rahul Shah, Cheng Sheng and Sharma V. Thankachan and Jeffrey Scott Vitter, Top-k Document Retrieval in External
Memory, In Proceedings of European Symposium on Algorithms (ESA), 2013, pages 803-814. It is reprinted by permission of Springer.
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Lemma 6. The total number of links is O(n).

In fact the number of links is exactly equal to number of nodes in the suffix tree of di over all i’s in [1, D].

We refer to [34] for the detailed proof of this result. Based on Lemma 5, the top-k document retrieval problem

can be reduced to the problem of finding the top-k links (according to its score) stabbed by uP , where link

stabbing is defined as follows:

Definition 1 (Link Stabbing). We say that a link is stabbed by node u if it is originated in the subtree of u

and targets at a proper ancestor of u.

If we order the nodes in GST as per the pre-order traversal order, these constraints translate into finding all

the links (i) the numbers of whose origins fall in the number range of the subtree of uP , and (ii) the numbers

of whose targets are less than the number of uP . Regarding constraint (i) as a two-sided range constraint on

x-dimension, and regarding constraint (ii) as a one-sided range constraint on y-dimension, the problem asks

for the top-k weighted points that fall in a three-sided window in 2d space, where weight of a point is the

score of the corresponding link [48].

The framework of Hon et al. [34] takes linear space and answers the query in O(p+k log k) time. This was

then improved by Navarro and Nekrich [48] to achieve O(p+ k) query cost. Both [34] and [48] reduced this

problem to a 4-sided orthogonal range query in 3-dimension, which is defined as follows: the data consists

of a set S of 3-dimensional points and the query consists of four parameters x′, x′′, y′ and z′, and output is

the set of all those points (xi, yi, zi) ∈ S such that xi ∈ [x′, x′′], yi ≤ y′ and zi ≥ z′. While general 4-sided

orthogonal range searching is proved hard [9], the desired bounds can nevertheless be achieved by identifying

a special property that one dimension of the reduced subproblem can only have p distinct values. Even though

there has been series of work on top-k string, including in theory as well as practical IR communities, most

implementations (as well as theoretical results) have focused on RAM based compressed and/or efficient

data structures (See the recent surveys [50, 29]). In this Section, we present an alternative framework for

solving this problem and obtain the first non-trivial external memory [2].

3.2 External Memory Structures

This section is dedicated for proving Theorem 1. The initial phase of pattern search can be performed

in O(p/B + logB n) I/O’s using a string B-tree [16]. Once the suffix range of P is identified, we take the

lowest common ancestor of the left-most and right-most leaves in the suffix range of GST to identify the
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locus node uP . Hence, the first phase (i.e., finding the locus node uP of P ) takes optimal I/O’s and now we

focus only on the second phase (i.e., reporting the top-k links stabbed by uP ). Instead of solving the top-k

version, we first solve a threshold version in Sec 3.2.1 where the objective is to retrieve those links stabbed by

uP with score at least a given threshold τ . Then in Sec 3.2.2, we propose a separate structure that converts

the original top-k-form query into a threshold-form query so that the structure in Sec 3.2.1 can now be used

to answer the original problem. Finally, we obtain Theorem 1 via bootstrapping on a special structure for

handling top-k queries in lesser number of I/Os for small values of k. We shall assume all scores are distinct

and are within [1, O(n)]. Otherwise, the ties can be broken arbitrarily and reduce the values into rank-space.

3.2.1 Breaking Down into Sub-Problems

Instead of solving the top-k version, we first solve a threshold version, where the objective is to retrieve

those links stabbed by uP with score at least a given threshold τ . We show that the problem can be

decomposed into simpler subproblems, which consists of a 3d dominance reporting and O(log(n/B)) 3-

sided range reporting in 2d, both can be solved efficiently using known structures. The main result is captured

in Lemma 7 defined below. From now onwards, the origin, target and score of a link Li are represented by

oi, ti and wi respectively.

Lemma 7. There exists an O(n) space data structure for answering the following query: given a query

node uP and a threshold τ , all links stabbed by uP with score ≥ τ can be reported in O(log2(n/B) + z/B)

I/Os, where z is the number of outputs.

For any node u in GST, we use u to denote its pre-order rank as well. Let size(u) denotes the number of

leaves in the subtree of u, then we define its rank as:

rank(u) = blogdsize(u)

B
ec

Note that rank(.) ∈ [0, blogd n
B
ec]. A contiguous subtree consisting of nodes with the same rank is defined

as a component, and the rank of a component is same as the rank of nodes within it. Therefore, a component

with rank = 0 is a bottom level subtree of size (number of leaves) at most B. From the definition, it can

be seen that a node and at most one of its children can have the same rank. Therefore, a component with

rank ≥ 1 consists of nodes in a path which goes top-down in the tree.
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The number of links originating within the subtree of any node u is at most 2size(u)− 1. Therefore, the

number of links originating within a component with rank = 0 is O(B). These O(B) links corresponding to

each component with rank = 0 can be maintained separately as a list, taking total O(n) words space. Now,

given a locus node uP , if rank(uP ) = 0, the number of links originating within the subtree of uP is also

O(B) and all of them can be processed in O(1) I/O’s by simply scanning the list of links corresponding to

the component to which uP belongs to. The query processing is more sophisticated when rank(uP ) ≥ 1. For

handling this case, we classify the links into the following 2 types based on the rank of its target with respect

to the rank of query node uP : equi-ranked links: links with rank(target) = rank(uP ) and high-ranked

links: links with rank(target) > rank(uP ).

Next we show that the problem of retrieving outputs among equi-ranked links can be reduced to a 3d

dominance query, and the problem of retrieving outputs among high-ranked links can be reduced to at most

blogd n
B
ec 3-sided range queries in 2d.

3.2.1.1 Processing Equi-ranked Links.

Let C be a component and SC be set of all links Li, such that its target ti is a node in C. Also, for any

link Li ∈ SC , let pseudo origin si be the (pre-order rank of) lowest ancestor of its origin oi within C (see

Figure 3.1). Then a link Li ∈ SC originates in the subtree of any node u within C if and only if si ≥ u.

Now if the locus uP is a node in C, then among all equi-ranked links, we need to consider only those links

Li ∈ SC , because the origin oj of any other equi-ranked link Lj /∈ SC , will not be in the subtree of uP . Based

on the above observations, all equi-ranked output links are those Li ∈ SC with ti < uP ≤ si and wi ≥ τ .

To solve this in external memory, we treat each link Li ∈ SC as a 3d point (ti, si, wi) and maintain a 3d

dominance query structure over it. Now the outputs with respect to uP and τ are those links corresponding to

the points within (−∞, uP )× [uP ,∞)× [τ,∞). Such a structure for SC can be maintained in linear O(|SC |)

words of space and can answer the query in O(logB |SC | + zeq/B) I/O’s using the result by Afshani [1],

where |SC | is the number of points (corresponding to links in SC) and zeq be the output size. Thus overall

these structures occupies O(n)-word space.

Lemma 8. Given a query node uP and a threshold τ , all the equi-ranked links stabbed by uP with score

≥ τ can be retrieved in O(logB n+ zeq/B) I/Os using an O(n) word space data structure, where zeq is the

output size. ut
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3.2.1.2 Processing High-ranked Links.

The following is an important observation.

Observation 1. Any link Li with its origin oi within the subtree of a node u is stabbed by u if rank(ti) >

rank(u), where ti is the target of Li.

This implies, while looking for the outputs among the high-ranked links, the condition of ti being a proper

ancestor of uP can be ignored as it is taken care of automatically if oi ∈
[
uP , u

′
P

]
, where u′P be the (pre-order

rank of) right-most leaf in the subtree rooted at uP . Let Gr be the set of all links with rank equals r for

1 ≤ r ≤ blogd n
B
ec. Since there are only O(log(n/B)) sets, we shall maintain separate structures for links in

each Gr by considering only origin and score values. We treat each link Li ∈ Gr as a 2d point (oi, wi), and

maintain a 3-sided range query structure over them for r = 1, 2, .., blogd n
B
ec. All high-ranked output links

can be obtained by retrieving those links in Li ∈ Gr with the corresponding point (oi, wi) ∈ [uP , u
′
P ]× [τ,∞]

for r = rank(uP ) + 1, .., blogd n
B
ec. By using the linear space data structure in [3], the space and I/O bounds

for a particular r is given by O(|Gr|) words and O(logB |Gr| + zr/B), where zr is the number of output

links in Gr. Since a link can be a part of at most one Gr, the total space consumption is O(n) words and the

total query I/Os is O(logB n log(n/B) + zhi/B) = O(log2(n/B) + zhi/B), where zhi represents the number

of high-ranked output links.

Lemma 9. Given a query node uP and a threshold τ , all the high-ranked links stabbed by uP with score

≥ τ can be retrieved in O(log2(n/B) + zhi/B) I/Os using an O(n) word space data structure, where zhi is

the output size. ut

By combining Lemma 8 and Lemma 9, we obtain Lemma 7.

3.2.2 Converting Top-k to Threshold via Logarithmic Sketch

Here we derive a linear space data structure, such that given a query node u and a parameter k, a threshold

τ can be computed in constant I/Os, such that the number of links z stabbed by u with score ≥ τ is bounded

by, k ≤ z ≤ 2k + O(log n). Hence query I/Os in Lemma 7 can be modified as O(log2(n/B) + z/B) =

O(log2(n/B) + k/B). From the retrieved z outputs, the actual top-k answers can be computed by selection

and filtering in another O(z/B) = O(k/B+ logB n) I/O’s. We summarize our result in the following lemma.
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FIGURE 3.1. Pseudo Origin

Lemma 10. There exist an O(n) word data structure for answering the following query in O(log2(n/B) +

k/B) I/O’s: given a query point u and an integer k, report the top-k links stabbed by u. ut

We now give the details of top-k to threshold conversion. First, identify certain nodes in the GST as

marked nodes and prime nodes with respect to a parameter g called the grouping factor. The procedure starts

by combining every g consecutive leaves (from left to right) together as a group, and marking the lowest

common ancestor (LCA) of first and last leaf in each group. Further, we mark the LCA of all pairs of marked

nodes recursively. Additionally, we ensure that the root is always marked. At the end of this procedure, the

number of marked nodes in GST will be O(n/g) [34]. Prime nodes are those which are the children of

marked nodes 2. Corresponding to any marked node u∗ (except root), there is a unique prime node u′, which

is its closest prime ancestor. In case u∗’s parent is marked then u′ = u∗. For every prime node u′ with at least

one marked node in its subtree, the corresponding closest marked descendant u∗ is unique. If u′ is marked

then the closest marked descendant u∗ is same as u′.

Hon et al. [34] showed that, given any node u with u∗ being its highest marked descendent (if it exists),

the number of leaves in the subtree of u, but not in the subtree of u∗ (which we call as fringe leaves) is at

most 2g. This means for a given threshold τ , if z is the number of outputs corresponding to u∗ as the locus

node, then the number of outputs corresponding to u as the locus is within z ± 2g. This is because of the

fact that the number of documents d with score
(
path(u), d

)
6= score

(
path(u∗), d

)
cannot be more than the

number of fringe leaves. Therefore, we maintain the following information at every marked node u∗: the

2Note that the number of prime nodes can be Θ(n) in the worst case.
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score of q−th highest scored link stabbed by u∗ for q = 1, 2, 4, 8, ... By choosing g = log n, the total space

can be bounded by O((n/g) log n) = O(n) words, and can retrieve any particular entry in O(1) time.

Using the above values, the threshold τ corresponding to any given u and k can be computed as follows:

first find the highest marked node u∗ in the subtree of u (u∗ = u if u is marked). Now identify i such that

2i−1 < k + 2g ≤ 2i and choose τ as the score of 2i-th highest scored link stabbed by u∗. This ensures that

k ≤ z < 2k +O(g) = 2k +O(log n).

3.2.3 Special Structures for Bounded k

In this section, we derive a faster data structures for the case when k is upper bounded by a parameter

g. The main idea is to identify smaller sets of O(g) links, such that top-g links stabbed by any node u are

contained in one of such sets. Thus by constructing the structure described in Lemma 10 over the links in

each such sets, the top-k queries for any k ≤ g can be answered faster as follows:

Lemma 11. There exists aO(n) word data structure for answering top-k queries for k ≤ g inO(log2(g/B)+

k/B) I/O’s.

Recall the definitions of marked nodes and prime nodes from Sec 3.2.2. Let u′ be a prime node and u∗ (if

it exists) be the unique highest marked descendent of u′ by choosing a grouping factor g (which will be fixed

later). All the links originated from the subtree of u′ are categorized into the following (see Figure 3.2).

• near-links: The links that are stabbed by u∗, but not by u′.

• far-link: The links that are stabbed by both u∗ and u′.

• small-link: The links that are originated from the subtree of u∗, but not stabbed by u∗.

• fringe-links: Remaining links. i.e., the links originated not from the subtree of u∗.

Lemma 12. The number of fringe-links and the number of near-links of any prime node u′ is O(g).

Proof. The number of leaves in subtree(u′)\subtree(u∗) is at most 2g [34]. Therefore, the number of

fringe-links can be bounded by O(g). For every document d whose link originates from subtree(u∗) going

out of it ends up as a near-link if and only if d exists at one of the leaves of subtree(u′)\subtree(u∗). Thus,

this can also be bounded by O(g). In the case where u∗ does not exist for u′, only fringe-links exist. More

over the subtree size of u′ is O(g) there can be no more than O(g) of these links. ut
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FIGURE 3.2. Categorization of links

Consider the following set, consisting of O(g) links with respect to u′: all fringe-links, near-links and g

highest scored far-links. We maintain these links at u′ (as a data structure to be explained later). For any node

u, whose closest prime ancestor (including itself) is u′, the above mentioned set is called candidate links of u.

From each u, we maintain the pointer to its closest prime ancestor where the set of candidate links is stored.

Lemma 13. The candidate links of any node u contains top-g highest scored links stabbed by u.

Proof. Let u′ be the closest prime ancestor of u. If no marked descendant of u′ exist, then all the links are

stored as candidate links. Otherwise, small-links can never be candidates as they never cross u. Now, if u lies

on the path from u′ to u∗ then all far-links will satisfy both origin and target conditions. Else, far-links do

not qualify. Hence, any link which is not among top-g (highest scored) of these far-links, can never be the

candidate. ut

Taking a clue from Lemma 12 and 13, for every prime node u′, we shall maintain a data structure as in

Lemma 10 by considering only the links stored at u′, and top-k queries can be answered faster when k ≤ g.

For this we shall define a candidate tree CT (u′) of node u′ (except the root) to be a modified version of

subtree of u′ in GST augmented with candidate links stored at u′. Firstly, for every candidate link which is

targeted above u′, we change the target to v, which will be a dummy parent of u′ in CT (u′). Now CT (u′)

consists of those nodes which are either origin or target (after modification) of some candidate link of u′.

Moreover, all the nodes in subtree(u′)\subtree(u∗) are included as well. Since only the subset of nodes is
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selected from subtree(u′), our tree is basically a Steiner tree connecting these nodes. Moreover, the tree

is edge-compacted so that no degree-1 node remains. Thus, the size of the tree as well as the number of

associated links is O(g). Next we do a rank-space reduction of pre-order rank (w.r.t to GST) of the nodes in

CT (u′) as well as the scores of candidate links.

The candidate tree (no degree-1 nodes) as well as the associated candidate links satisfies all the properties

which we have exploited while deriving the structure in Lemma 10. Hence such a structure for CT (u′) can be

maintained in O(min(g, size(u′)) words space and the top-k links in CT (u′) stabbed by any node u, with u′

being its lowest prime ancestor can be retrieved in O(log2(g/B) + k/B) I/O’s. The total space consumption

of structures corresponding all prime nodes can be bounded by O(n) words as follows: the number of prime

nodes with at least a marked node in its subtree is O(n/g), as each such prime node can be associated with a

unique marked node. Thus the associated structures takes O(n/g × g) = O(n) words space. The candidate

set of a prime node u′ with no marked nodes in its subtree consists of O(size(u′)) links, moreover a link

cannot be in the candidate set of two such prime nodes. Thus the total space is O(n) words in this case as

well. Note that for g = O(B), we need not store any structure on CT (u′), because such a candidate tree fits

entirely in constant number of blocks which can be processed in O(1) I/Os. This completes the proof of

Lemma 11.

3.2.4 I/O-Optimal Data Structure via Bootstrapping

The bounds in Theorem 1 can be achieved by maintaining multiple structures as in Lemma 11. Clearly

the structure in Lemma 10 is optimal for k ≥ B log2(n/B). However, for handling the case when k <

B log2(n/B), we shall choose the grouping factor gi = B(log(i)(n/B))2, for i = 1, 2, 3, .., h ≤ log∗ n and

maintain h separate structures as in Lemma 11, occupying O(nh) space. Thus top-k query for any k ≥ gh

can be answered by querying on the structure corresponding to the grouping factor gj , where gj ≥ k > gj+1

in O(log2(gj/B) + k/B) = O(gj+1/B + k/B) = O(k/B) I/Os. For k < gh, we shall query on the

structure corresponding to the grouping factor gh, and the I/Os are bounded by O(log2(gh/B) + k/B) =

O(log(h) n+ k/B). This completes the proof of Theorem 1.

3.3 Adapting to Internal Memory

Our framework can also be used for improving the existing internal memory results. Specifically, we

shall derive a linear space data structure for retrieving top-k documents in O(k) time, once the locus of the
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pattern match is given. This result improves the previous work [34, 48] by eliminating the additive term

p. In applications like cross-document pattern matching [39], the locus can be computed in much faster

O(log log p) time than O(p) [39]. In many pattern matching applications, for example in suffix-prefix overlap,

maximal substring matches, and autocompletion search (like in Google InstantTM ) multiple loci are searched

with amortized constant time for each locus. In such situations, having extra O(p) as in [34, 48] leads to

inefficient solutions, where as our data structure can support faster queries. The result is summarized as

follows:

Theorem 2. There exists an O(n) word space data structure in word RAM model for solving (sorted) top-k

document retrieval problem in O(k) time, once the locus of the pattern match is given.

Proof. Our external memory framework can be adapted to internal memory by choosing B = Θ(1), and by

replacing the external memory substructures by the corresponding internal memory counterparts. Retrieving

the outputs among high-ranked links is reduced to O(log n) 3-sided range reporting queries. By using an

interval tree like approach, the problem of retrieving outputs among equi-ranked links also can be reduced

to O(log n) 3-sided range reporting queries. By using the linear-space sorted range reporting structure by

Brodal et al. [8] for 3-sided range reporting, the outputs can be obtained in the sorted order of score. Further,

these sorted outputs from O(log n) different places can be merged using an atomic heap [21], which is

capable of performing all heap operations in O(1) time, provided the number of elements in the heap is

O(logO(1) n) as in our case. At the beginning of each of these O(log n) queries, we may need to perform

a binary search for finding the boundaries, thus resulting in a total query time of O(log2 n + k), which is

O(k) for k ≥ log2 n. The space can be bounded by O(n) words. For the case when k < log2 n, we obtain a

linear space and O(log2 log n+ k) query time structure by using the ideas from Sec 3.2.3 (here we choose

grouping factor g = log2 n). Again, this structure can answer queries in O(k) time for k ≥ log2 log n. We do

not continue this bootstrapping further. Instead, we make use of the following observation: the candidate set

of a node consists of only O(g) links, hence a pointer to any particular link within the candidate set of any

node can be maintained in O(log g) = O(log log n) bits. Thus, at every node u in GST, we shall maintain

the top-(log2 log n) links stabbed by u in the decreasing order of score as a pointer to its location within the

candidate set of u. This occupies O(n log3 log n) bits or o(n) words and top-k queries for any k ≤ log2 log n

can be answered in O(k) time by chasing the first k pointers and retrieving the documents associated with

the corresponding links. This completes the proof of Theorem 2. ut
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Chapter 4
Succinct Space Data Structures

Data structures occupying space close to the minimum space needed for maintaining the data is referred

as compressed/succinct data structures. Although, this compression comes with the cost of higher query

time (theoretically), in practice these data structures may fit in faster memory and small memory devices,

while uncompressed data may not. The generalized suffix tree (GST) data structure can be replaced by its

compressed counter part. However, the challenge is to maintain the augmented information in compressed

form. In this section, we present a compressed space data structure of space 2|CSA∗|+D log n
D

+O(D)+o(n)

bits and query timeO(ts(p)+k×tsa log k logε n) for the case where score(·, ·) =TF(·, ·). Here |CSA∗| denotes

the maximum space (in bits) to store either a compressed suffix array (CSA) of the concatenated text with all

the given documents in D, or all the CSAs of individual documents, tsa is the time decoding a suffix array

value, ts(p) is the time for computing the suffix range of P using CSA, and ε > is any constant.

4.1 Related Work

Let T = d1d2d3 · · · dD be the text (of n characters from an alphabet set Σ = [σ]) obtained by concatenating

all the documents in D. Recall that the last character of each document is $, a special symbol that does

not appear anywhere else in T. For succinct data structures (which take space close to the size of T in its

compressed form), existing work focussed on the case where the relevance metric is term frequency or static

importance score. Most of the succinct data structures used a key idea from an earlier paper by Sadakane [62],

where he showed how to compute the TF-IDF score of each document, by maintaining a compressed suffix

array CSA of T along with a compressed suffix array CSAr of each document dr (see Section 2.3 for the

definition of CSA).

The first succinct space data structure for answering top-k frequent document retrieval queries was

proposed by Hon et al. [34]. Their data structure occupies 2|CSA∗| + o(n) + D log n
D

+ O(D) bits of

space and answers a query in O(ts(p) + k × tsa log3+ε n) time. While retaining this space, the query time

is improved to O(ts(p) + k × tsa logD log(D/k) log1+ε n) by Gagie et al. [23]. Belazzougui et al. [6]

improved this further to O(ts(p) + k × tsa log k log(D/k) logε n). Our result of Theorem 4 in this pa-

per (initially appeared in [35]) achieves an even faster query time of O(ts(p) + k × tsa log k logε n). An
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open problem of designing a space-optimal data structure is positively answered by Tsur [64], where he

proposed an |CSA|+ o(n) +O(D) +D log(n/D)-bit data structure with O(ts(p) + k × tsa log k log1+ε n)

query time; very recently, Navarro and Thankachan [53] improved the time toO(ts(p) + k × tsa log2 k logε n).

Top-k important document retrieval (i.e., the score function is document importance) is also a well-

studied problem, and the best known succinct data structure appeared in [6]. This data structure takes

|CSA|+ o(n) +O(D) +D log(n/D) bits of space, and answers a query in O(ts(p) + k × tsa log k logε n)

time. See Table 4.1 for comparison purpose, where logD and log(D/k) simplified to the worst-case bound

of log n in the reporting time and σ ≤ D is assumed as o(n/ log n).

TABLE 4.1. Comparison Table

Source Space (in bits) Per-Document Reporting Time

Hon et al. [34] 2|CSA∗|+ o(n) O(tsa log
3+ε n)

Gagie et al. [23] 2|CSA∗|+ o(n) O(tsa log
3+ε n)

Belazzougui et al. [6] 2|CSA∗|+ o(n) O(tsa log k log
1+ε n)

Ours (Theorem 4) 2|CSA∗|+ o(n) O(tsa log k log
ε n)

Tsur [64] |CSA|+ o(n) O(tsa log k log
1+ε n)

Navarro and Thankachan [53] |CSA|+ o(n) O(tsa log
2 k logε n)

4.2 Our Data Structure

We start with the following notation:

• Leaf (x) denotes the set of leaves in the subtree of node x in GST.

• Leaf (x\y) = Leaf (x) \ Leaf (y), the leaves in the subtree of x, but not in that of y.

Let g be a parameter called the grouping factor. Using the following scheme, we identify a subset Sg of

nodes, called marked nodes, in GST: First, we traverse the leaves of GST from left to right to form groups

of g contiguous leaves. That is, the first group consists of leaves `1, `2, . . . , `g, the next group consists of

`g+1, . . . , `2g, and so on. In total, there will be dn/ge groups. Next, for each group, we mark the lowest

common ancestor (lca) in GST of its first and last leaves; the total number of marked nodes will be at most

dn/ge. After that, we do further marking, such that if nodes u and v are marked, then lca(u, v) will be

marked. Finally, we mark the leftmost and the rightmost leaves within the subtree rooted at each marked

node.

Lemma 14. The above marking scheme ensures the following properties:
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• The number of marked nodes, |Sg|, is bounded by O(n/g).

• If there is no marked node in the subtree of x, then |Leaf (x)| < 2g.

• The highest marked descendant node y of any unmarked node x, if it exists, is unique, and |Leaf (x\y)| <

2g.

Proof. The number of groups at the end of first step is dn/ge, and at most one internal node corresponding to

each group is marked. Thus, at the end of the first step, there are at most dn/ge marked nodes. Next, we mark

the lca of these marked nodes; the total number of marked nodes will at most be doubled (as the marked

nodes now form an induced subtree, with marked nodes at the end of first step as leaves), so that it is bounded

by O(n/g). Finally, we mark the leftmost and the rightmost leaf nodes of every marked node. Thus, the the

total number of marked nodes will at most be tripled, so that it is bounded by O(n/g). This gives the result

in (1).

Whenever |Leaf (x)| ≥ 2g, there will be at least one group completely contained in the subtree of x.

The lca of the first and the last leaves in such a group is within the subtree of x, and is marked. Thus, by

contraposition, the result in (2) follows.

The last statement in the lemma can be proved as follows: Let `L and `R be the leftmost and the rightmost

leaves in the subtree of x. Then, according to our marking scheme, y is the lca of leaves `L′ and `R′ , where

L′ = gdL/ge+ 1 and R′ = gdR/ge. Let `L∗ and `R∗ be the leftmost and the rightmost leaves respectively,

that are in the subtree of y. Then clearly L ≤ L∗ ≤ L′ < L + g and R ≥ R∗ ≥ R′ > R − g. Therefore,

|Leaf (x\y)| = (L∗ − L) + (R−R∗) < 2g. ut

Let top(x, k) represent the list (or set) of top-k documents corresponding to a pattern with node x as the

locus. Maintaining top(x, k) explicitly for all possible x values and k values is not possible in compressed

space. Instead, we maintain top(x, k) only for marked nodes x (with respect to various carefully chosen g

values) and for values of k that are powers of 2, such that top(x, k) for the general x and k can be efficiently

computed on the fly. We next prove the following lemma.

Lemma 15. By maintaining a data structure called GSTg of size O((n/g) log g) + O(n/ log2 n) bits, the

following query can be answered in O(1) time: Given a suffix range [sp, ep] of a pattern P as an input, find

the node v∗P and the range [sp∗, ep∗], where (i) v∗P denotes the highest-marked descendent of the locus node
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vP of P , and (ii) `sp∗ and `ep∗ denote, respectively, the leftmost leaf and the rightmost leaf in the subtree

of v∗P .

Proof. The data structure GSTg, requiring O((n/g) log g) +O(n/ log2 n) bits of space, consists of the

following components:

• A compact trie obtained by retaining only those nodes in GST that are marked. Then, corresponding to

every marked node in GST, there will be a unique node in this trie and vice versa. As the number of

marked nodes is O(n/g), the topology of this trie can be maintained in O(n/g) bits of space (refer to

Section 2.5).

• A bit-vector Bno[1..2n], where Bno[i] = 1 if the ith node in GST is marked, else 0. This can be

maintained in |Sg| log(n/|Sg|) +O(|Sg|) +O(n/ logO(1) n) = O((n/g) log g) +O(n/ log2 n) bits of

space [60], so that the operations selectBno(j) (the position of the jth 1 in Bno) and rankBno(i) (the

number of 1s in Bno[1..i]) can be supported in O(1) time.

• A bit-vector Ble[1..n], where Ble[i] = 1 if the ith leftmost leaf in GST is marked, else 0. As in the case

of Bno, Ble will be maintained in O((n/g) log g) +O(n/ log2 n) bits, so that it can support selectBle
(·)

and rankBle
(·) operations in O(1) time.

Given an input suffix range [sp, ep], the sp∗th leaf is the first marked leaf towards the right side of `sp

(inclusive), and the `∗epth leaf is the last marked leaf towards the left side of `ep (inclusive), in GST. These

two leaves will correspond to the sp′th and the ep′th leaves in the compact trie, where

sp′ = 1 + rankBle
(sp− 1) and ep′ = rankBle

(ep);

the desired values of sp∗ and ep∗ can thus be computed, in O(1) time, by sp∗ = selectBle
(sp′) and ep∗ =

selectBle
(ep′).

We now show how to find v∗P , which is the lca of `sp∗ and `ep∗ in GST. As GST is not stored explicitly,

we shall find v∗P in an indirect way. First, we identify the leaf nodes corresponding to `sp∗ and `ep∗ in the

compact trie, which is its sp′th and ep′th leaves. Next, we find their lca (say, with preorder rank x) in the

compact trie; such a node will correspond to v∗P in GST. It follows that v∗P is the xth marked node in GST, so

that we can finally find (the preorder rank of) v∗P in GST by selectBno(x). The procedure again takes O(1)

time in total, as it involves only a constant number of rank/select operations and an lca operation. ut
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4.2.1 The Compressed Data Structure

Our compressed data structure will make use of both CSA of the concatenated text T of all the documents,

and a compressed suffix array CSAr of each individual document dr. We prove the following in this section.

Theorem 3. A given collection D of D documents with n characters in total taken from an alphabet

set Σ = [σ], we can build a data structure of space 2|CSA∗| + D log n
D

+ O(D) + o(n) bits, such that

whenever a pattern P (of p characters) and an integer k come as a query, the data structure returns those

k documents with the highest TF(P, ·) values in decreasing order of TF(P, ·) in O(ts(p) + k × tsa log2+ε n)

time; here, |CSA∗| denotes the maximum space (in bits) to store either a compressed suffix array (CSA) of

the concatenated text with all the given documents in D, or all the CSAs of individual documents, tsa is the

time decoding a suffix array value, ts(p) is the time for computing the suffix range of P using CSA, and ε >

is any constant.

A set Scand ⊆ D is called a candidate set of a query if it is a multiset that contains all those documents in

the answers to the query. Therefore, once the candidate set is given, the top-k query can be answered by first

finding the TF(P, dr) score of each document dr ∈ Scand, and then reporting the k highest-scoring ones.

Lemma 16. Once the candidate set Scand is identified, a top-k query can be answered using CSA and the

structure described in Lemma 2 in time O(|Scand| × tsa log log n+ k log k).

Proof. First, we remove duplicates in Scand if there are any. This can be easily done in O(|Scand|) time by

maintaining an extra bit vector Bcand[1..D], where all its bits are initialized to 0. Note that this additional

structure will not change the space bound in Theorem 3. Then, we scan all documents in Scand one by one

and do the following: If a document dr ∈ Scand, then we check if Bcand[r] is 0. If so, we set Bcand[r] = 1;

otherwise, we delete such an occurrence of dr (which is a duplicate) from Scand. After scanning all the

documents in Scand, we can reset all bits in Bcand back to 0 by rescanning Scand once.

Next, we compute the TF(P, dr) score for all those documents dr ∈ Scand in O(tsa log log n) time per

document (refer to Lemma 3). To retrieve the top-k answers from this, we first find the score X of the kth

highest-scoring document using the linear time selection algorithm [7]. Then, we get those documents whose

scores are at least X; note that there may be more than k of them, because of ties. To get the desired answer,

we shall remove the excess (whose scores are equal to X). Finally, we spend another O(k log k) time to

obtain the answers in sorted order of their scores. ut
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The query time in the above lemma is dependent on the size |Scand| of the candidate list. To speed up the

whole process (so as to achieve the claimed result in Theorem 3), our objective is to find a candidate set

whose size is as small as possible.

Data Structure for Top-k Queries for a Fixed k. First, we define a data structure for answering top-k

frequent queries, where k is fixed in advance. The data structure consists of (i) a compressed suffix array CSA

of T; (ii) the document array E (represented in |CSA∗|+D log n
D

+O(D) + o(n) bits, refer to Lemma 2);

(iii) an auxiliary structure that includes (a) GSTg (refer to Lemma 14) with a grouping factor g = k log2+ε n,

and (b) for each marked node x ∈ Sg in GST, we store top(x, k) explicitly in k logD bits. The total space

of the auxiliary structures is O((n/g)k logD) +O(n/ log2 n) = o(n/ log n) bits.

To answer the query, we first find the suffix range [sp, ep] of P in ts(p) time using CSA. Let vP be the

locus node of P . Then, we find v∗P and [sp∗, ep∗] in O(1) time, where vP∗ is the highest marked descendent

of vP (if it exists), and [sp∗, ep∗] is the suffix range corresponding to v∗P in GST (refer to Lemma 15). Then,

top(v∗P , k) ∪
{
dE [j] | j ∈ [sp, sp∗ − 1] ∪ [ep∗ + 1, ep]

}
will be a candidate set.1 The number of documents in top(v∗P , k) is at most k, and the number of remaining

documents in the candidate set is at most 2g (refer to Lemma 14). To construct the candidate set, we

first retrieve all documents in top(v∗P , k) in O(k) time, as these documents are precomputed and explicitly

stored at v∗P ; then, since each E [·] value can be decoded in O(tsa) time (refer to Lemma 2), we retrieve

all the remaining documents in O(g × tsa) time. In summary, we obtain a candidate set of O(g + k)

documents in O(g × tsa + k) time. Combining with Lemma 16, the top-k documents can be answered

in another O((g + k) × tsa log log n) time. By substituting g = k log2+ε n the resulting query time will

be O(ts(p) + k × tsa log2+ε n log log n) = O(ts(p) + k × tsa log2+ε n) (the log log n term is absorbed in the

logε n term).

Data Structure for Top-k Queries for General k. To support top-k queries for general k, we main-

tain CSA, E , and (at most) logD auxiliary structures for any fixed k that is a power of 2 (i.e., k =

1, 2, 4, 8, . . . , D). Since an auxiliary structure for a specific k requires o(n/ log n) bits, the overall increase

1In the boundary case where v∗P does not exist, the candidate set is simply {dE [j] | j ∈ [sp, ep]}, whose size is at most 2g (refer to Lemma 14).
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in total space is bounded by o(n) bits. Now, a top-k query for a general k can be answered by choosing

z = 2dlog2 ke and retrieving the top-z documents by querying on the auxiliary structure specific to z. Then,

we select the k highest-scoring documents (using [7]) and report them in decreasing order of score. Since

k = Θ(z), the resulting query time will beO(ts(p)+k×tsa log2+ε n). This completes the proof of Theorem 3.

As a corollary, we can obtain a simple compact data structure by re deriving Theorem 3 with g = z log1+εD,

and maintaining E explicitly as in Lemma 1.

Lemma 17. There exists a data structure of size |CSA| + n logD(1 + o(1)) bits for the top-k frequent

document retrieval problem with O(ts(p) + k log1+εD) query time, where ε > is any constant.

4.2.2 Faster Compressed Data Structure

This section describes how to improve the data structure to speed up the query. The idea is to choose a

smaller grouping factor, thereby reducing the size of the candidate set. However, this will result in more

marked nodes, so that explicit storage of precomputed answers (with logD bits per entry) at these marked

nodes will lead to a non-succinct solution. Our key contribution is to show how these precomputed lists can

be encoded in O(log log n) bits per entry. Our main result is summarized as follows.

Theorem 4. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ], we can build a data structure of 2|CSA∗| + D log n
D

+ O(D) + o(n) bits of space, such that

whenever a pattern P (of p characters) and an integer k come as a query, the data structure returns those k

documents with the highest TF(P, ·) values in decreasing order of TF(P, ·) in O(ts(p) + k × tsa log k logε n)

time; here, |CSA∗| denotes the maximum space (in bits) to store either a compressed suffix array (CSA) of

the concatenated text with all the given documents in D, or all the CSAs of individual documents, tsa is the

time decoding a suffix array value, ts(p) is the time for computing the suffix range of P using CSA, and ε >

is any constant.

Data Structure for Top-k Queries for a Fixed k. Similar to the data structure in previous section, we

define a data structure for answering top-k frequent queries, where k is fixed in advance. The data structure

consists of (i) a compressed suffix array CSA; (ii) the document array E (represented in |CSA∗|+D log n
D

+

O(D) + o(n) bits, refer to Lemma 2) (iii) an auxiliary structure with respect to two grouping factors g and h,

which is defined as follows. First, we mark the nodes in GST based on two grouping factors g and h, where
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g = k log2+ε n and h = k log k logε n. Then, we maintain the corresponding GSTg and GSTh in a total of

O((n/g) log g + (n/h) log h) = o(n/k) bits (refer to Lemma 15).

In order to distinguish the marked nodes based of these two different grouping factors, we shall use the

following terminology: If a node is marked as per the grouping factor g, we shall simply call it a marked

node. Otherwise, if a node is marked as per the grouping factor h only, we shall call it as a prime node (see

Figure 4.1).

We now describe the query answering algorithm. Let vP be the locus node of the input pattern P in GST

with v′P and v∗P , respectively, being its highest prime descendant and highest marked descendant (if they

exist). Let [sp, ep], [sp′, ep′], and [ep∗, ep∗], respectively, be the ranges of leaves within the subtree of vP , v∗P

and v′P . Note that the following inequalities hold (refer to Lemma 14):

• sp ≤ sp′ ≤ sp∗ ≤ ep∗ ≤ ep′ ≤ ep;

• sp′ − sp < h and ep− ep′ < h;

• sp∗ − sp′ < g and ep′ − ep∗ < g.

Then,

top(v′P , k) ∪
{
dE [j] | j ∈ [sp, sp′ − 1] ∪ [ep′ + 1, ep]

}
will be a candidate set, where we shall denote it by Shcand. The number of documents in top(v′P , k) is at most

k, and the number of the remaining documents in the candidate set is at most 2h.

Once Shcand is given, it takes only an extra O((h + k) × tsa log log n) = O(k × tsa log k logε n) time for

answering a top-k query (using Lemma 16). Note that the documents dE [j] for j ∈ [sp, sp′−1]∪ [ep′+ 1, ep]

can be computed on the fly in O(h× tsa) time, which will not affect the overall time complexity. It remains

to show how to obtain the list top(v′P , k) efficiently. By the following lemma, the total query time can be

bounded by O(ts(p) + k × tsa log k logε n).

Lemma 18. In O(n/(log k logε n)) + o(n/ log n) bits of space, we can encode top(·, k) corresponding to

every prime nodes, such that top(w′, k) of any prime node w′ can be decoded in O(k × tsa log log n) time.

Proof. We shall give an encoding of top(w′, k) for each prime node w′ that allows us to obtain a candidate

set corresponding to w′ as the locus. Then, by using Lemma 16, we can compute the desired top(w′, k) based

on the candidate set.
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FIGURE 4.1. Query answering with prime nodes and marked nodes

Let w∗ be the highest marked descendent of w′ (if it exists). Let [L′, R′] and [L∗, R∗], respectively, denote

the range of leaves in the subtree of w′ and w∗. A candidate set corresponding to w′ as the locus (i.e., a

superset of top(w′, k)) is given by

top(w∗, k) ∪
{
dE [j] | j ∈ [L′, L∗ − 1] ∪ [R∗ + 1, R′]

}
.

The set top(w∗, k) can be obtained in O(k) time by maintaining top(·, k) for each marked node explicitly,

which requires a total of O((n/g)k logD) = o(n/ log n) bits. For the set {dE [j] | j ∈ [L′, L∗ − 1] ∪ [R∗ +

1, R′] } of the remaining documents, we select only the subset of its top k documents; then we see that this

subset, when combined with top(w∗, k), still forms a candidate set corresponding to w′ as the locus. In other

words, even though we haveO(g) documents in this category, only at most k of them can be among top(w′, k).

Now, suppose that these k documents can be encoded in O(k log log n) bits, while supporting decoding in

O(k × tsa) time. Thus, the total space for all the encodings in all the prime nodes is O(n/(log k logε n)) bits,

and we can obtain the desired candidate set in a total of O(k × tsa) time. Consequently, top(w′, k) can be

computed in O(k × tsa log log n) time using Lemma 16.

It remains to show how to encode the selected top k documents with the claimed performance. For each

such document dj , it can be associated with an integer i ∈ [L′, L∗ − 1] ∪ [R∗ + 1, R′] such that E [i] = j. If

we replace each such i by its relative position in [L′, L∗ − 1]∪ [R∗ + 1, R′], this problem can be rephrased as

the encoding of k distinct integers drawn from [1, 2g]. An encoding with O(k log log n) bits of space and

O(k) decoding time can be achieved, by maintaining a bit vector Bw′,k with constant-time select operations
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supported [61]; here, Bw′,k[1..2g] is defined such that Bw′,k[i] = 1 if and only if i is an integer to be stored.

Therefore Bw′,k can be maintained in k log(2g/k) + O(k) = O(k log log n) bits of space, and the stored

integers can be decoded by selectBw′,k(j) queries for j = 1, 2, 3, . . . , k. Finally, given these integers (relative

positions), the corresponding document can be retrieved in O(tsa) time. This completes the proof. ut

Putting everything altogether, we have the following lemma.

Lemma 19. The auxiliary structure for a specific k takes O(n/(log k logε n)) + o(n/ log n) + o(n/k) bits

of space. Given the suffix range [sp, ep] of a pattern P , a top-k frequent document retrieval query can be

answered in O(k × tsa log k logε n) time.

Data Structure for Top-k Queries for General k. To support top-k queries for general k, we maintain

CSA, E , and (at most) logD auxiliary structures for k = 1, 2, 4, 8, . . . , D, analogous to how we handle the

general k case as in previous section. This requires a total of

∑
z=1,2,4,...,D

(
O(n/(logε n log z)) + o(n/ log n) + o(n/z)

)
= o(n) bits.

A top-k query can be answered by choosing z = 2dlog2 ke and retrieving the top-z documents by querying

on the auxiliary structure specific to z. Then, we select the k highest-scoring documents (using [7]) and

report them in decreasing order of score. Combining with the fact that k = Θ(z), we obtain Theorem 4.

4.3 Extensions

Although we described our result in terms of term frequency as the scoring function, we can in fact extend

it to some other scoring functions that are succinctly calculable. Unfortunately, we do not know if TP(·, ·) is

succinctly calculable. In contrast, docrank(·, ·) is not only succinctly calculable, but is trivial to compute. In

fact, to support top-k queries with the docrank metric, we do not even need the document array E using

Lemma 2, but only the bit vector BE and an array R of size D logD bits such that R[r] gives the relative

docrank of document dr among the others; after the change, we can still compute docrank of any document

dE [i] within the same time bound. This gives the following theorem.

Theorem 5. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ], we can build a data structure of |CSA| + o(n) + D log n
D

+ O(D) + D logD bits of space, such
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that whenever a pattern P (of p characters) and an integer k come as a query, the data structure returns

those k documents with the highest docrank(·) values in decreasing order of docrank(·) in O(ts(p) + k ×

tsa log k logε n) time; here, docrank(dr) of a document dr is a static importance score associated with dr,

ts(p) is the time to search for a pattern of length p with CSA, tsa is the time to compute a suffix array entry

with CSA, and ε > is any constant.

See [4] for a similar result, which appeared earlier but used different techniques.
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Chapter 5
Compact Space Data Structures

In this section 1, we show that it is possible to get very close to optimal time within compact space. We

prove the following result (appeared in [54]), where we remark that the top-k results are not returned in

sorted order of relevance.

Theorem 6. There exists a compact index of |CSA| + n logD + o(n logD) bits and near-optimal O(p +

k log∗ n) query time time, for the (unsorted) top-k frequent document retrieval problem, where log∗ n is the

iterated logarithm of n.

In Section 5.5 we achieve O(p+ k lg∗ k) time, using o(n lg σ) further bits.

5.1 Related Work

The document array (refer to Section 2.6 for the definition) is a powerful data structure for solving string

retrieval problems, and its space occupancy is ndlogDe bits. This was first introduced in [65] for solving

the document listing problem. Later, Culpepper et al. [14] showed how to efficiently handle top-k frequent

document retrieval queries using a simple data structure, which is essentially a wavelet tree maintained over

the document array. Although their query algorithm is only a heuristic (no worst-case bound), it works well

in practice, with space occupancy roughly 1 – 3 times the text size. From now onwards, a data structure that

allows a space term of roughly n logD bits, corresponding to the document array, will be called a compact

data structure. Gagie et al. [23] proposed two compact data structure of sizes |CSA|+n logD(1+o(1)) bits and

|CSA|+O(n logD/ log logD) bits, with query time bounds of O(ts(p) + k × logD log(D/k) logε n) and

O(ts(p) + k × tsa logD log(D/k) logε n), respectively. Belazzougui et al. [6] showed that the logD factor in

the query time of both results by Gagie et al. can be converted to log k without increasing the space; they also

showed a data structure of size |CSA|+O(n log log logD) bits with O(ts(p) + k × tsa log k log1+ε n) query

time. Hon et al. [33, 30] proposed another compact space data structure of space |CSA|+ 2n logD(1 + o(1))

bits with query time O(p + log4 log n + k(log log n + log k)). In the same paper, they proposed an even

1This section previously appeared as, Gonzalo Navarro and Sharma V. Thankachan, Top-k Document Retrieval in Compact Space and Near-Optimal Time,
Proceedings of International Symposium on Algorithms and Computation (ISAAC), 2013, pages 394–404. It is reprinted by permission of Springer. also see [55]
for its journal version.
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more space efficient of space |CSA| + n logD(1 + o(1)) bits, however the query time is increased to

O(p+ log6 log n+ k((log log n log σ)1+ε + log k)). Navarro and Nekrich [48] gave a data structure of size

O(n(log σ + logD)) bits data structure with optimal O(p+ k) time; however, the hidden constants within

the big-O notations are not small in practice [38]. It has been shown that, compact space data structures

provide the best practical performance [38, 14] compared to linear space data structures [58] (which are less

efficient in terms of space occupancy) and the succinct space data structures [15, 49] (which are less efficient

in terms of query processing time).

5.2 The Data Structure

Three main components of our structure are a generalized suffix tree (GST), the document array, and some

precomputed answer lists. These are described next. We redefine them for the completeness of this section.

Document Array (E ). Define a bit-vector B[1..n], such that B[i] = 1 iff T [i] = $. Then suffix T [i, n]

belongs to document dr if r = 1 + rankB(i), where rankB(i) is the number of 1s in B[1, i]. The document

array E [1..n] is defined as E [j] = r if the suffix SA[j] belongs to document dr. Moreover, we say that the

corresponding leaf node `j is marked with document dr. Now,

• rankE (r, i) returns the number of occurrences of r in E [1, i];

• selectE (r, j) returns i where E [i] = r and rankE (r, i) = j; and

• accessE (i) returns E [i];

Then we have use the following representation for E [5].

Lemma 20. The document array E can be stored in n logD + o(n logD) bits and support queries rankE ,

selectE and accessE in times O(log log n), O(f(n,D)) and O(1) respectively, where f(n,D) = ω(1) is

any non-constant function.

The so-called partial rank query can be added to this repertoire [5].

Lemma 21. Operation rankE (E [i], i) can be supported in constant time by storing O(n lg lgD) =

o(n logD) additional bits on top of the E .

Thus the total space of this component is n logD + o(n logD) bits.
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Precomputed Answer Lists. We start with the following definitions:

• Leaf (x) is the set of leaves in the subtree of node x in GST.

• Leaf (x\y) = Leaf (x) \ Leaf (y), the leaves in the subtree of x, but not in that of y.

• score(r, x) is the number of leaves in Leaf (x) marked with document dr (i.e., |{`i ∈ L(x), E [i] = r}|).

Now using the marking scheme described in Section 4.2, we identify the set Sg of marked nodes in GST

based on the grouping parameter g. Notice that the following properties are ensured (refer to Lemma 14).

• The number of marked nodes, |Sg|, is bounded by O(n/g).

• If there is no marked node in the subtree of x, then |Leaf (x)| < 2g.

• The highest marked descendant node y of any unmarked node x, if it exists, is unique, and |Leaf (x\y)| <

2g.

Let top(x, k) represent the list (or set) of top-k documents dr, along with score(r, x), corresponding to a

pattern with locus node x in GST. Clearly we cannot afford to maintain top(x, k) for all possible x’s and k’s.

Rather, we will maintain the lists top(x, z) only for marked nodes x’s (for various g values) and for k’s that

are powers of 2. Then top(x, k) for any x and k will be efficiently computed using that sampled data. The

next section describes how we store and retrieve the sampled lists.

5.3 Storing and Retrieving the Lists top(x, z)

The following is a key result in our scheme.

Lemma 22. Let gh = z(log(h) n)2 for any 1 ≤ h < log∗ n, where log(1) n = log n, log(h) n = log(log(h−1) n),

and log(log∗ n) n ≤ 1. Then top(x, z) for all x ∈ Sgh can be encoded in sh = sh−1 +O(n/ log(h) n) bits, and

top(x, z) for any given x ∈ Sgh can be decoded in time th = th−1 + O(z), where s1 = O(n/ log n) and

t1 = O(z).

Proof. We use induction. Consider the base case h = 1. For every x ∈ Sg1 , we maintain the list top(x, z)

explicitly (using O(log n) bits per element), along with a pointer to the location where it is stored, in

s1 = O(|Sg1|z log n) = O(n/ log n) bits. Thus the list top(x, z), for any x ∈ Sg1 , can be decoded in time

t1 = O(z).

33



Now consider the grouping factor is gh for h ≥ 2. As we cannot afford to use Θ(log n) bits per element,

we introduce encoding schemes that reduce it to O(log(h) n) bits. Thus the overall space for maintaining

top(x, z) (in encoded form) for all x ∈ Sgh can be bounded by O(|Sgh|z log(h) n) = O(n/ log(h) n) bits.

Instead of using pointers as in the base case, we mark in a bitmap Bh[1..2n] the node preorders of GST

that belong to Sgh . Therefore the list top(x, z) of a node x ∈ Sgh is stored in an array at offset rankBh [x].

Since we will only compute rank on positions x where Bh[x] = 1, an “indexed dictionary” is sufficient [61],

which requires O((n/gh) log gh + lg lg n) = o(n/ log(h) n) bits and computes rank in time O(1). We now

show how to encode the list top(x, z), for x ∈ Sgh , in O(log(h) n) bits per element, and how to decode it in

th−1 +O(z) time.

We will maintain a structure STRh, using sh bits, for each grouping factor gh, and will decode top(x, z) for

x ∈ Sgh recursively, using O(z) time in addition to the time needed to decode top(y, z) for some y ∈ Sgh−1
,

as suggested in Lemma 22. As we cannot afford to sort the documents within the targeted query time, it is

important to assume a fixed arrangement of documents within any particular decoded list top(·, ·). That is,

each time we decode a specific list, the decoding algorithm must return the elements in the same order.

Let x be a node in Sgh and y (if it exists) be its highest descendant node in Sgh−1
. We show how to encode

and decode top(x, z). To decode top(x, z), we first decode the list top(y, z) using STRh−1 in time th−1.

From now onwards we have constant-time access to any element the list top(y, z). The the list top(x, z) will

be partitioned into the following two disjoint lists:

(i) Dold, the documents that are common to top(x, z) and top(y, z).

(ii) Dnew, the documents that are present in top(x, z), but not in top(y, z).

Encoding and Decoding Document Identifiers inDold. We maintain a bit vectorB′[1..z], whereB′[i] = 1

iff the ith document in top(y, z) is present in top(x, z). Therefore Dold can be decoded by listing those

elements in top(y, z) (in the same order as they appear) at positions i where B′[i] = 1. Thus space for

maintaining the encoded information is z bits and the time for decoding is O(z).

Encoding and Decoding Document Identifiers in Dnew. For each document dr ∈ Dnew, there exists

at least one leaf in Leaf (x\y) that is marked with dr (otherwise score(r, x) = score(r, y) and dr could

not be in top(x, z) and not in top(y, z)). Therefore, instead of explicitly storing r, it is sufficient to refer

to such a leaf. For this we shall store a bit vector B′′[1..|L(x\y)|] with all its bits in 0, except for |Dnew|

1’s: for every document dr ∈ Dnew, we set one bit, say B′′[i] = 1, where the ith leaf in Leaf (x\y) is
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marked with dr. Since |B′′| = |L(x\y)| < 2gh−1 and the number of 1’s is at most z, B′′ can be encoded in

O(z log(gh−1/z)) = O(z log(h) n) bits with constant time select support [61] (selectB′′(j) is the position of

the j-th 1 in B′′). Now, given B′′, the documents in Dnew can be identified in O(z) time as follows: Find all

those (at most z) increasing positions i where B′′[i] = 1 using select queries. Then, for each such i, find the

ith leaf `i′ ∈ L(x\y) in constant time using the tree operations. Finally, report dE [i′] as a document in Dnew

for each such i′ using a constant-time access operation on the document array.

As mentioned before, it is important for our (recursive) encoding/decoding algorithm to assume a fixed

permutation of elements within any list top(·, ·). We use the convention that, in top(x, z), the documents in

Dold come before the documents in Dnew. Moreover the documents within Dold and Dnew are in the same

order as the decoding algorithm identified them. In conclusion, the list of identifiers of documents in top(x, z)

can be encoded in O(z log(h) n) bits and decoded in O(z) time, assuming constant-time access to any element

in top(y, z). If node y does not exist, we proceed as if top(y, z) = ∅ and top(x, z) = Dnew. We now consider

how to encode the score’s associated with the elements in top(x, z) (i.e., score(r, x) for all dr ∈ F (x, z)).

Encoding and Decoding of Scores. Let dri , for i ∈ [1..z], be the ith document in top(x, z), and fi =

score(ri, x). Then, define δi = fi − f ′i ≥ 0, where

f ′i =

 score(ri, y) if i ≤ |Dold| (i.e., if ri ∈ Dold),

τ = min{score(r, y), r ∈ F (y, z)} if i > |Dold| (i.e., if ri ∈ Dnew).

The following is an important observation: The number of leaves in Leaf (x\y) marked with document dri is

score(ri, x)−score(ri, y), which is same as δi for i ≤ |Dold|. For i > |Dold|, score(ri, x)−score(ri, y) ≥ δi,

otherwise score(ri, y) > τ and dri would have qualified as a top-z document in top(y, z) (which is a

contradiction as dri ∈ Dnew). By combining with the fact that each leaf node is marked with a unique

document, we have the inequality
∑z

i=1 δi ≤ |L(x\y)| < 2gh−1. Therefore, δi for all i ∈ [1..z] can

be encoded using a bit vector B′′′ = 10δ110δ210δ3 . . . 10δz of length at most 2gh−1 + z with z 1’s, in

O(z log(gh−1/z)) = O(z log(h) n) bits with constant-time select support (refer to Section 2.7).

The decoding algorithm is described as follows: compute the f ′i ’s for i = 1 . . . z in the ascending order of

i. For i ≤ |Dold|, f ′i is given by score associated with the (selectB′ [i])th document (which is same as dri) in

top(y, z). This takes only O(z) time as the number of constant-time select operations is O(z), and we have
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constant-time access to any element and score in top(y, z). Next, τ = min{score(r, y), r ∈ F (y, z)} can be

obtained by scanning the list top(y, z) once. Thus all the f ′i’s are computed in O(z) time. Next we decode

each δi and add it to f ′i to obtain fi, for i = 1 . . . z inO(z) time, where δi = selectB′′′(i)−selectB′′′(i−1)−1

is computed in O(1) time. Thus the space for maintaining the scores is O(z log(h) n) bits and the time for

decoding them is O(z).

Adding over the h levels, the total space is sh = sh−1 +O(n/ log(h) n) = O(n/ log(h) n) bits and the total

decoding time is th = th−1 + O(z) = O(zh) (note that s1 = O(n/ log n) and t1 = O(z)). This completes

the proof. ut

5.4 Completing the Picture

Let π ∈ [1.. log∗ n) be an integer such that log(π−1) n ≥
√

log∗ n > log(π) n, then log(π) n = ω(1) (note

that π = log∗ n− log∗
√

log∗ n = Θ(log∗ n)). Then, by choosing gπ as the grouping factor, the space sπ is

O(n/ log(π) n) = o(n) bits. We maintain logD such structures corresponding to z = 1, 2, 4, 8, ..., 2blogDc, in

o(n logD) bits total space. By combining the space bounds of all the components, we obtain the following

lemma.

Lemma 23. The total space requirement of our data structure is |CSA|+ n logD + o(n logD) bits.

The next lemma gives the total time to extract the sampled results and hints how we will use them.

Lemma 24. Given any node q in GST and an integer k, our data structure can report the list top(q′, k) in

O(k log∗ n) time, where q′ is a node in the subtree of q with |L(q\q′)| = O(k
√

log∗ n).

Proof. As the first step, round k to z = 2dlog ke, which is the next highest power of 2. Then identify the

highest node q′, in the subtree of q, that is marked with respect to the grouping factor gπ: Let `i and `j be the

leftmost and rightmost leaves of q in GST, then q′ = lca(`i′ , `j′) where i′ = gπ · di/gπe and j′ = gπ · bj/gπc

(there is no q′ if i′ ≥ j′). This takes constant time on our representation of the GST topology.

Since gπ = z log(π) n < z
√

log∗ n, from Lemma 14 it holds |L(q\q′)| = O(gπ) = O(z log(π) n) =

O(k
√

log∗ n). As q′ ∈ Sgπ , the list top(q′, z) can be decoded in time tπ = O(zπ) = O(z log∗ n) from the

precomputed lists (from Lemma 22). The final top(q′, k) can be obtained by filtering those documents in

top(q′, z) with score at least θ by a single scan of the list, where θ is the kth highest score in top(q′, z) (which

can be computed in O(z) = O(k) time using the linear-time selection algorithm [7]). In case q′ does not
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exist, we report top(q′, k) = ∅, and even in such a case the inequality condition |L(q)| < 2gπ is guaranteed

(from Lemma 14). ut

5.4.1 Query Answering

The query answering algorithm consists of the following steps:

• Find the locus node q of the input pattern P in GST by first obtaining the suffix range [sp, ep] of P

using CSA in O(p) time, and then computing the lowest common ancestor of `sp and `ep in O(1) time.

• Using Lemma 24, find the node q′ in the subtree of q, where |L(q\q′)| = O(k
√

log∗ n) and retrieve

the list top(q′, k) in O(k log∗ n) time.

• Every document dr in the final output top(q, k) must either belong to top(q′, k), or it must be that

r = E [i] for some leaf `i ∈ L(q\q′). Let us call Scand the union of both sets of candidate documents.

Then we compute score(r, q) of each document dr ∈ Scand.

• Report k documents in Scand with the highest score(r, q) value. In this step, we first compute the kth

highest score θ using the selection algorithm, and then use θ as a threshold for a document to be an

output (more precisely, we report the k′ < k documents dr ∈ Scand with score(r, q) < θ in a first pass,

and then report the first k − k′ documents dr ∈ Scand we find with score(r, q) = θ in a second pass).

The time is O(|Scand|) = O(k
√

log∗ n).

The overall time for Steps 1, 2, and 4 is O(p+ k log∗ n). In the remaining part of this section we show how

to handle Step 3 efficiently as well, for the documents r = E [i] we find in Leaf (q\q′). Note that score(r, q)

can be computed as rankE (r, ep)− rankE (r, sp− 1) using two rank queries on the document array, but

those rank queries are expensive. Instead, we use a more sophisticated scheme where only the faster select ,

access , and partial rank queries are used. This is described next.

5.4.2 Computing Scores Online

Firstly, we construct a supporting structure, SUP , in O(k log∗ n) time and occupying o(n logD) +

O(z log n) bits, capable of answering the following query in O(log log∗ n) time: for any given r, re-

turn score(r, q′) if r ∈ F (q′, k), otherwise return −1. Let ∆ = Θ(log∗ n), then structure SUP is a for-

est of D/∆ balanced binary search trees T1, T2, . . . , TD/∆. Initially each Ti is empty, hence the initial
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space is O(log n) bits per tree (for maintaining a pointer to the location where it is stored), adding up to

O((D/∆) log n) = o(n logD) bits, which we consider a part of index. Next we shall insert each document

dr ∈ F (q′, k), along with its associated score, into tree Tdr/∆e of SUP . The size of each search tree can grow

up to ∆, hence the total insertion time is O(k log ∆). These insertions will increase the space of SUP by

O(k log n) bits, which can be justified as it is the size of the output. Now we can search for any dr in Tr/∆

and, if dr ∈ F (q′, k), we will retrieve score(r, q′) in O(log ∆) time. Once we finish Step 3, these binary

search trees can be set back to their initial empty state by visiting each document dr ∈ F (q′, k) and deleting

it from the corresponding tree in total O(k log ∆) time. This does not impact the total asymptotic query

processing time.

An outline of Step 3 follows: We scan each leaf `i ∈ L(q\q′), and compute score(·, q) of the corresponding

document dE [i]. Note that there can be many leaves in Leaf (q\q′) marked with the same document, but we

compute score(·, q) of a document only once (i.e., when we encounter it for the first time). After this, we

also scan the documents dr ∈ F (q′, k) and compute score(r, q) if we have not considered this document in

the previous step. However, the scanning of leaves is performed in a carefully chosen order. Let `sp′ and `ep′

be the leftmost and rightmost leaves in the subtree of q′, and B[1..D] be a bit vector initialized to all 0’s (its

size is D bits and can be considered a part of index). A detailed description of Step 3 follows:

• Start scanning the leaves `i for i = sp, sp + 1, . . . , sp′ − 1, in the ascending order of i, then for

i = ep, ep− 1, . . . , ep′ + 1, in the descending order of i, and do the following: if B[E [i]] = 0, then

set it to 1, compute score(E [i], q), and store the result (E [i], score(E [i], q)) for Step 4. Note that

each time we compute score(E [i], q), i is either the first or the last occurrence of E [i] in E [sp, ep].

Assume it is the first (the other case is symmetric). We use a constant-time partial rank query, x =

rankE (E [i], i). Then, by performing successive selectE (E [i], j) queries for j = x+ 1, x+ 2, . . . , y,

where selectE (E [i], y) > ep ≥ selectE (E [i], y − 1), we compute score(E [i], q) = y − x. The

number of select queries required is precisely y − x = score(E [i], q), which can be further reduced

as follows:

– If dE [i] ∈ F (q′, k), retrieve score(E [i], q′) from SUP in time O(log log∗ n). As we know that

score(E [i], q′) ≤ score(E [i], q), we start select queries from j = x + score(E [i], q′), so
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the number of select queries used to find y is reduced to score(E [i], q) − score(E [i], q′) =

score(E [i], L(q\q′)), that is, the number of leaves in Leaf (q\q′) marked with dE [i].

– If dE [i] 6∈ F (q′, k), compute x′ = selectE (E [i], x + τ − 1), where we remind that τ =

min{score(r, q′), r ∈ F (q′, k)}. If x′ > ep, we conclude that score(E [i], q) < τ , and hence

dE [i] can be discarded from being a candidate for the final output. On the other hand, if x′ ≤ ep,

the select queries can be started from j = x+ τ , which reduces the number of select queries to

score(E [i], q)−τ ≤ score(E [i], L(q\q′)) (since dE [i] /∈ F (q′, k), it holds score(E [i], q′) ≤ τ ).

The query time for executing this step can be analyzed as follows: for each i, we perform a query on

SUP . The computation of score(E [i], q) requires at most score(E [i], L(q\q′)) select queries. As we

do this computation only once per distinct document, the total number of select queries is at most∑
r score(r, L(q\q′)) = |L(q\q′)|. By choosing the cost f(n,D) =

√
log∗ n for select queries, the

total time is O(|L(q\q′)|(f(n,D) + log log∗ n)) = O(k log∗ n).

• Now scan the documents dr ∈ F (q′, k). If B[r] = 0, then there exists no leaf in Leaf (q\q′) marked

with dr. Thus score(r, q) = score(r, q′) and the pair (r, score(r, q′)) is stored for Step 4. If B[r] = 1

then dr has already been dealt with in the previous pass. The time for accessing score(r, q′) using

SUP is O(log log∗ n), hence this step takes O(k log log∗ n) time.

• Reset B to its initial state (all bits set to 0) for supporting queries in future. By revisiting the leaves in

Leaf (q\q′) and the list top(q′, k), we can exactly find out those locations in B where the corresponding

bit is 1. The time for this step can be bounded by O(|L(q\q′)|+ k) = O(k
√

log∗ n).

Thus the time for Step 3 is O(k log∗ n), and the result follows.

5.5 Reducing the Time to O(p+ k log∗ k)

Note that, when p or k is at least log log n, it already holds O(p+ k log∗ n) = O(p+ k log∗ k). Therefore,

we now concentrate on the case when max(p, k) < log log n. We use the following result [28].

Lemma 25. Given a fixed κ, an array A[1..n] of n indices can be indexed in O(n log2 κ) bits for answering

the following query in O(k) time, without accessing A and for any 1 ≤ k ≤ κ: given i, j, and k, output the

positions of the k highest elements in A[i, j].
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Let Sδ be the set of nodes in GST with node depth equal to δ. We start with the description of an

O(n log2 κ)-bit structure for a fixed κ = lg lg n and a fixed δ < lg lg n, for answering top-k queries for any

1 ≤ k ≤ κ and those patterns with their locus node belonging to Sδ. First, we construct an array A[1..n]

(with all its elements initialized to zero) as follows: For i = 1 . . . n, if the first occurrence of document E [i]

in E [a, b] is at position i, where [a, b] is the suffix range corresponding to a unique node u ∈ Sδ, then set

A[i] = score(E [i], u). We do not store this array explicitly, instead we maintain the structure of Lemma 25

over it, requiring O(n log2 κ) bits space. Now the list of documents top(u, k) for any locus node u ∈ Sδ can

be reported in O(k) time as follows: First perform a top-k query on the structure of Lemma 25 with the suffix

range [sp, ep]. The output will be a set of k locations j1, j2, . . . , jk ∈ [sp, ep], and then the identifiers of the

top-k documents are E [j1], E [j2], . . . , E [jk]. By maintaining similar structures for all the δ ∈ [1, log log n),

any such top-k query with p < lg lg n can be answered in O(p + k) time. The additional space required

is o(n(log log n)3) bits, which can be bounded by o(n log σ) bits if, say, log σ ≥
√

log n. Otherwise, we

shall explicitly maintain the top-κ documents corresponding to all patterns of length at most log log n, in

decreasing frequency order, using a table of O(σlog logn log log n logD) = o(n) bits. The query time in this

case is just O(k).

Thus, by combining the cases, we achieve O(p+ k log∗ k) query time.

Theorem 7. There exists a compact index of |CSA|+ n logD + o(n(lg σ + logD)) bits and near-optimal

O(p+ k log∗ k) query time time, for the (unsorted) top-k frequent document retrieval problem.

Concluding Remarks. We have shown that it is possible to obtain almost optimal time for top-k document

retrieval,O(p+k log∗ k), using compact space, |CSA|+n lgD+o(n lgD+n log σ) bits. This is an important

step towards answering the question of which is the minimum space that is necessary to obtain the optimal

time, O(p+ k).
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Chapter 6
Multipattern Retrieval

In this section, we consider a generalization of the top-k document retrieval problem. Instead of a single

pattern P , a query now consists of a setP = {P1, P2, . . . , Pm} ofm patterns, and the relevance of a document

dr with respect to P depends only on the set of occurrences of all Pj in dr. For simplicity, we first give an

index for the simplest case, where P contains only two patterns P1 and P2 (of lengths p1 and p2, respectively).

We choose TF(P1, dr)+TF(P2, dr) as the score function score(P1, P2, dr) with an additional restriction

that in order for a document dr to be qualified as an answer, both P1 and P2 must occur in dr. Therefore,

score(P1, P2, dr) is given by TF(P1, dr)+TF(P2, dr) if both TF(P1, dr),TF(P2, dr) > 0, and is zero otherwise.

We later show how our index can be modified to handle other score functions.

Our index is built from the succinct framework in Section 4. It consists of a suffix array SA (of size O(n)

words) in addition to GST (uncompressed, whose size is O(n) words), a document array E , and auxiliary

structures for answering for top-z queries for fixed z = 1, 2, 4, . . . , D. The auxiliary structure for a specific z

can be constructed with g =
√
nz logD as the grouping factor, where we identify the marked nodes in GST.

Note that the marked node information can be maintained inO(n/g) bits (refer to Lemma 15). Let top(u, v, k)

denote the list of top-z documents with respect to the score function score(path(u), path(v), ·). Then,

corresponding to all pairs of marked nodes u∗ and v∗ in GST, we maintain the list top(u∗, v∗, z) explicitly. The

space for each specific auxiliary structure is thus bounded by O(n/g) +O((n/g)× (n/g)× z logD) = O(n)

bits, so that the total space for all the O(logD) auxiliary structures is bounded by O(n logD) = O(n log n)

bits, which is O(n) words.

Query Answering. The algorithm to answer a query is analogous to that of our succinct index in Section 4.

First, we find the locus nodes uP1 and uP2 of P1 and P2, respectively, in O(p1 + p2) time using GST. Next,

we set z = 2dlog ke (the minimum power of 2 greater than or equal to the input integer k). Then, using the

auxiliary structure specific to this z (with grouping factor g =
√
nz logD), we find the highest marked

descendent of nodes, u∗P1
and u∗P2

, of the locus nodes uP1 and uP2 , respectively. Afterwards, the set

top(u∗P1
, u∗P2

, z) ∪ {dE[i] | `i ∈ Leaf (uP1\u∗P1
) ∪ Leaf (uP2\u∗P2

) }
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will be a candidate set Scand that contains the desired top k answers.

Hence, by computing score(P1, P2, dr) of each document dr ∈ Scand, and by choosing those k highest-

scoring documents, we obtain the final output. Given the suffix ranges of P1 and P2, the score of any particular

document can be computed in O(log log n) time using E (refer to Lemma 2 and Lemma 3, as TF(P, dr)

can be evaluated by rankE , given the suffix range of P , and tsa = O(1) when SA is stored explicitly). As

|Scand| = O(g + z), the overall query time can be bounded by O(p1 + p2 +
√
nk logD log log n).

Theorem 8. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ] can be indexed in O(n) words of space, such that whenever two patterns P1 and P2 (of p1 and p2

characters, respectively) and an integer k come as a query, the index returns those k documents with the

highest score(P1, P2, ·) values in decreasing order of score(P1, P2, ·) in O(p1 + p2 +
√
nk logD log log n)

time; here, score(P1, P2, dr) = TF(P1, dr) + TF(P2, dr) if both TF(P1, dr) and TF(P2, dr) are greater than 0,

and is zero otherwise.

The space of the index described in the above theorem can be easily made succinct by the following

modifications: (i) replace GST by its compressed version (space required is |CSA|+O(n) bits), (ii) replaceE

by its compressed version as described in Lemma 2, and (iii) build the auxiliary structure by choosing a higher

grouping factor of g =
√
nz logD. The overall space occupancy can thus be bounded by 2|CSA∗|+O(n) bits,

however the query time will be increased to O(ts(p1) + ts(p2) +
√
nk logD × tsa log log n). We summarize

the result in the following theorem.

Theorem 9. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ] can be indexed in 2|CSA∗|+O(n) bits of space, such that whenever two patterns P1 and P2 (of p1

and p2 characters, respectively) and an integer k come as a query, the index returns those k documents with

the highest score(P1, P2, ·) values in decreasing order of score(P1, P2, ·) inO(ts(p1)+ts(p2)+
√
nk logD×

tsa log log n) time; here, score(P1, P2, dr) = TF(P1, dr) + TF(P2, dr) if both TF(P1, dr) and TF(P2, dr) are

greater than 0, and is zero otherwise, |CSA∗| denotes the maximum space (in bits) to store either a compressed

suffix array (CSA) of the concatenated text with all the given documents in D, or all the CSAs of individual

documents, tsa is the time decoding a suffix array value, ts(p) is the time for computing the suffix range of P

using CSA.
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The above indexes can readily be adapted to handle the case with other score functions, with tradeoffs

between the space for storing a data structure that can compute score(·, ·, ·) on the fly, and the per-document

reporting time. In particular, the space remains O(n) words for linearly-calculable score functions, where

score(·, ·, dr) can be computed on the fly by maintaining an O(|dr|)-word index. For instance, when docrank

is the score function 1, the following result can be obtained.

Theorem 10. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ] can be indexed in O(n) words of space or in 2|CSA∗| + O(n) bits of space, such that whenever

two patterns P1 and P2 (of p1 and p2 characters, respectively) and an integer k come as a query, then

among all those documents containing both P1 and P2, the index returns k documents with the highest

docrank(·) values in decreasing order of docrank(·) in O(p1 + p2 +
√
nk logD log logD) time or in

O(ts(p1) + ts(p2) +
√
nk logD × tsa log log n) time respectively; here, docrank(dr) of a document dr is a

static importance score associated with dr, |CSA∗| denotes the maximum space (in bits) to store either a

compressed suffix array (CSA) of the concatenated text with all the given documents in D, or all the CSAs of

individual documents, tsa is the time decoding a suffix array value, ts(p) is the time for computing the suffix

range of P using CSA.

Remark. The index of Theorem 10 can be used to solve the document listing problem for two patterns,

where the task is to report all those documents containing both the input patterns P1 and P2. To do so,

we simply set k = D and then obtain the output of each query in O(p1 + p2 +
√
nD logD log logD)

time (assuming our linear space structure). To reduce the last term in the query bound, we can issue

the top-1 query, then top-2, then top-4, and so on until a top-q query returns the ndoc answers, where

ndoc < q denotes the number of documents in the desired output. Note that the patterns are searched

only once here. Hence, the query time will be O(p1 + p2 +
√
n logD log logD +

√
2n logD log logD +

√
4n logD log logD+ · · ·+

√
n× ndoc logD log logD) = O(p1 +p2 +

√
(ndoc + 1)× n logD log logD).

Using similar analysis the time for query on the succinct space structure can be bounded by O(ts(p1) +

ts(p2) +
√
n(ndoc + 1) logD× tsa log log n). Notice that our result clearly improves the earlier solution for

this problem by Cohen and Porat [12], where space occupancy and query time were O(n log n) words and

= O(p1 + p2 +
√

(ndoc + 1)× n log2.5D) respectively.

1For a document to be qualified as an output, both P1 and P2 must be present in it.
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Theorem 11. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ] can be indexed in O(n) words of space or in 2|CSA∗| + O(n) bits of space, such that whenever

two patterns P1 and P2 (of p1 and p2 characters respectively) come as a query, the index returns all those

ndoc documents containing both P1 and P2 in O(p1 + p2 +
√

(ndoc + 1)× n logD log logD) time or in

O(ts(p1) + ts(p2) +
√
n(ndoc + 1) logD× tsa log log n) time, here, |CSA∗| denotes the maximum space (in

bits) to store either a compressed suffix array (CSA) of the concatenated text with all the given documents in

D, or all the CSAs of individual documents, tsa is the time decoding a suffix array value, ts(p) is the time for

computing the suffix range of P using CSA. ut

In another problem introduced by Muthukrishnan [46], the query asks for reporting all those documents

with term proximity score at most an integer K, where P1, P2 and K and input parameters to the query,

and term proximity score TPtwo(P1, P2, dr) is defined as the distance between the closest occurrences of

P1 and P2 within document dr. If either P1 or P2, or both is absent in dr, TPtwo(P1, P2, dr) is infinity. An

O(n3/2 log n)-word index with O(p1 + p2 +
√
n log n + output) query time was also proposed in [46],

where output is the number of reported documents. Our framework can be used to derive the following

linear space solution for the top-k version of this problem.

Theorem 12. A given collection D of D documents with n characters in total taken from an alphabet set

Σ = [σ] can be indexed in O(n) words, such that whenever two patterns P1 and P2 (of p1 and p2 characters,

respectively) and an integer k come as a query, then among all those documents containing both P1 and P2,

the index returns k documents with the lowest TPtwo(P1, P2, ·) values in increasing order of TPtwo(P1, P2, ·)

in O(p1 + p2 +
√
nk logD logε n) time, where TPtwo(P1, P2, dr) of a document dr is the distance between

the closest occurrences of P1 and P2 in dr.

Proof. The index construction is exactly same as that of the result in Theorem 8 except that we use a different

score function here. Additionally we maintain an orthogonal range successor/predecessor search structure

over the suffix array SA. For this, we use the O(n)-word space structure by Navarro and Nekrich [51].

Therefore, given any suffix range [L,R] and a position pos as input, the smallest (resp., the largest) SA[i]

value, where i ∈ [L,R], succeeding (resp., preceding) pos can be computed in O(logε n) time, where ε > 0

is any small constant. Using similar analysis as that of Theorem 8, the total space occupancy can be bounded

by O(n) words.
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We use the same terminologies as that of the proof of Theorem 8. The only difference in query algorithm,

compared to that of Theorem 8 is the way we compute score of documents corresponding to {dE[i] | `i ∈

Leaf (uP1\u∗P1
) ∪ Leaf (uP2\u∗P2

) }. Let [sp∗1, ep
∗
1] and [sp∗2, ep

∗
2] represents the range of leaves in the subtree

of u∗P1
and u∗P2

respectively. Assume that a document dE[i] is a top-k candidate, and that its candidacy is due to

an occurrence of P1 (resp., P2) at position SA[i], then the corresponding TPtwo(·, ·, ·) value can be computed

in O(logε n) time by retrieving the successor and predecessor of SA[i] with [ep∗2, ep
∗
2] (resp., [sp∗1, ep

∗
1]) as the

input range, so that we can find the distance from the closest occurrence of P2 (resp., P1) from it. Therefore,

using similar analysis the time can be bounded by O(p1 + p2 +
√
nk logD logε n). ut

6.1 Handling m > 2 Patterns

All the above results can be extended to handle the case where the query consists of a set of m > 2 patterns

P = {P1, P2, . . . , Pm}, with pi denoting the length of Pi. Precisely, for a specific 2-power z, we choose a

grouping factor g = n1−1/m(z logD)1/m, identify the marked nodes in GST, and maintain top-z documents

corresponding to each combination of (u∗1, u
∗
2, . . . , u

∗
m), where u∗i for any i denotes a marked node in GST.

Over all logD choices of z, the total space can be bounded by O((n/g)mz logD) × logD = O(n log n)

bits, or equivalently by O(n) words. Note that m is fixed at index construction time. Then, whenever a

query comes, we can quickly find a candidate set Scand of O(n1−1/m(k logD)1/m) documents, compute

the score of a document (if needed) in Scand in O(m log logD) time, and finally output the k highest-

scoring ones among them. Putting everything together, we can obtain an O(n)-word index with query time

O(
∑m

i=1 pi +mn1−1/m(k logD)1/m log logD).
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Chapter 7
Conclusions

We presented space-efficient frameworks for designing data structures for top-k string retrieval problems.

Our frameworks are based on annotating suffix tree (or compressed suffix tree) with additional information. In

particular, we maintain a suffix tree of the concatenated documents, superimpose the local suffix trees of the

individual documents in terms of “links”, and solve geometric range problems on these links. Our compressed

framework samples these links as they pass through some specially chosen nodes. These frameworks are

fairly general and have also been shown to be practical [58, 15, 49, 6]. Even though efficient solutions are

already available for the central problem, there are still many interesting variations and open questions one

could ask about. We conclude with some of them as listed below:

• Our I/O-optimal data structure requires O(n log∗ n)-word. It is interesting to see if we can bring

down this space to linear (i.e., using O(n) words) without sacrificing the optimality in the I/O bound.

(See [59] for some recent results in this line of research) Designing data structure in the cache-oblivious

model [22] is another future research direction.

• The current space-optimal data structure for top-k frequent document retrieval is proposed by Navarro

and Thankachan [53]), whose per-document reporting time is O(tsa log2 k logε n). In contrast, the

per-document reporting time of our compressed data structure (Theorem 4) is faster by a factor of log k,

but our data structure takes twice the size of text. An interesting problem is to design a space-optimal

data structure, while keeping the query time the same as (or better than) that of ours (which is currently

the fastest in compressed space).

• The document selection problem — where we want to obtain the kth highest-scoring document

corresponding to the query — may have useful IR applications in practice (See [45] for some recent

results on this problem).

• Another space-time tradeoff for parametrized top-k query [52]. For example, design an optimal query

time data structure using O(n logε n) words of space.
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• A generalization of the multi-pattern problem may consist of forbidden patterns in the query. For

instance, for the two-pattern case, one may want a query with patterns P1 and P2, and an integer k,

where the task is to report the top k documents based on score(P1, ·) among all those documents d

which do not contain the forbidden pattern P2. Some progress has been made for the two-pattern case,

but designing an efficient data structure to handle a set of forbidden patterns remains a challenge.

• Currently the gap between the upper and lower bound for two-pattern query problem is huge. It is

interesting to see if this gap can be reduced. Can we obtain similar (or better) lower bounds for the

forbidden pattern query problem. We strongly believe that the lower bounds for these problems are

different from the currently known upper bounds [19, 31, 32] by (log n)O(1) factor only (See [36] for

some recent developments).

• Even though many succinct data structures have been proposed for top-k queries for frequency or

PageRank-based score functions, it is still unknown if a succinct data structure withO((p+k) logO(1) n)

query time can be designed if the score function is term proximity (as it is not known to be succinctly

calculable). Designing such a data structure even for special cases (say, with long query patterns only,

or when we allow approximate score, etc.) or deriving lower bounds are interesting research directions.

We remark that it is possible to design such a data structure for the special case where the input pattern

is of length at least log2 n, by combining our succinct framework with known techniques [32, 10].

• Approximate pattern matching (i.e., allowing bounded errors and don’t cares) is another active research

area [13, 40]. Adding this aspect to document retrieval leads to many new problems. The following is

one such problem: Report all those documents in which the edit (or Hamming) distance between one

of its substrings and P is at most τ , where τ ≥ 1 is an input parameter.

• Building a data structure for a highly repetitive or a highly similar document collection is an active

line of research. In recent work, Gagie et al. [24] propose an efficient document retrieval data structure

suitable for a repetitive collection. An open problem is to extend the result for handling top-k queries.
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