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Predictors of Babesia microti infection in Ixodes scapularis ticks in New
England, USA

Introduction

Babesia microti is a tick-borne intraerythrocytic protozoan that is the primary etiological agent
of human babesiosis [1]. The first well-defined human case of babesiosis in the United States
was described in 1969 in a Massachusetts resident living on Nantucket Island [2]. Since the 1982
the number of human cases of babesiosis reported along with the geographic area in which cases
were reported has expanded significantly to include mainland Massachusetts [3, 4], Connecticut
[5], Maine [6], New Jersey [7], New York [8] and Rhode Island [9, 10]. The pathogen shares the
same vector, Ixodes scapularis ticks, and the same primary reservoir, Peromyscus leucopus mice,
as Borrelia burgdorferi, the etiological agent of Lyme disease. Both pathogens have followed a
similar pattern of expansion, starting near coastal southeastern Connecticut and expanding
northwards [5]. The geographic extent of B. microti, however, is limited to a subset of the
geographic range of B. burgdorferi [11, 12] and the ratio of Lyme disease cases to babesiosis
cases in the United States is around 25:1 [11]. Despite the slower spread of B. microti the
pathogen is equally prevalent in ticks in certain areas where both B. burgdorferi and B. microti
have been endemic for long periods, such as southeastern Connecticut [11]. The slower rate of
babesiosis expansion as compared to Lyme disease has been attributed to a lower efficiency of
transmission for B. microti [13]; however, this alone does not explain the similar prevalence of
both microbes in areas long endemic to both pathogens.

It is possible that B. microti responds to similar ecological conditions as B. burgdorferi, such as
the density of nymphal ticks (DON), host community composition, and climatic conditions, but
with a temporal lag. Both babesiosis and Lyme cases are positively associated with increased
forest fragmentation [14-17] and previous work has suggested that the DON is associated with
the odds of zoonotic B. microti [9]. On the other hand, recent research suggests that co-infection
of mice with B. burgdorferi improves the transmission efficiency of B. microti to ticks as
compared to mice infected solely with B. microti [18]. Little research has been done to compare
the risk factors for infection of 1. scapularis nymphs by B. burgdorferi with the risk factors for
infection by B. microti.

This study assesses the relative importance of ecological conditions and pathogen interactions in
B. microti and B. burgdorferi prevalence in I. scapularis nymphs from a sample of 1514 nymph-
stage ticks collected at 35 sites in eastern Connecticut, western Rhode Island, and southern
Massachusetts. Variables considered included: infection status of the individual tick with the
other pathogen, site level prevalence of B. microti and B. burgdorferi, the maximum density of
Ixodes scapularis nymphs (DON) of the site during the sampling timeframe, and latitude and
longitude. Our results show that the odds of a tick testing positive for B. microti is not associated
to the density of nymphal ticks or the prevalence of B. burgdorferi at the site level, but it is



associated with the presence of B. burgdorferi in the individual tick and the geographic location
of the tick. None of the covariates tested showed a strong association with the odds of a tick
testing positive for B. burgdorferi.

Materials and methods
Sample collection

A total of 64 sites were selected for sampling in eastern Connecticut, western Rhode Island, and
southern Massachusetts (Figure 1). One state park was randomly selected among all parks in
each of the towns. Babesiosis was first described in North Stonington, in the southeastern corner
of Connecticut in 1989 and most southern towns in the study area became endemic for babesiosis
in the early 1990s [5, 11]. Babesiosis progressively expanded northward and several towns
remained free of babesiosis endemicity in 2010 [11]. All sites were sampled between one and
five times from late May to September 2012, with at least one sample obtained during the
nymphal season (late May/June).

Host-seeking I. scapularis nymphs at each site were collected via the dragging method [19].
Researchers dragged a 1m? white corduroy cloth across the leaf litter of the forest floor in 200m?
transects. Every 20 meters any adults, nymphs, and larvae collected on the cloth were counted
and placed in vials of 70% ethanol and latitude and longitude location information were recorded
with reference to the WGS84 datum using handheld Garmin GPS devices. At each site at least 8
transects were completed on each date of sampling.

All ticks were identified by using a dissecting microscope and taxonomic keys [20]. DNA was
extracted from all I. scapularis nymphs with QIAGEN DNeasy blood and tissue kit (QIAGEN
Inc., Valencia, CA, USA) by using a modified protocol [21]. A real-time PCR was performed to
amplify the 16S-23S rRNA intergenic spacer region of B. burgdorferi by using the primers and
protocols developed by Liveris et al [22]. Amplicons were visualized on 1% agarose gel by using
ethidium bromide. All positive samples were sequenced bi-directionally. B. burgdorferi
amplicons were typed by comparing them with known genotypes by using BLAST [23]. Ticks
were tested for B. microti infection by using a reverse transcription PCR that targets a sequence
of the B. microti 18S rRNA gene (GenBank accession no. AY144696.1) [24].

For each site and visit, the density of nymphs (DON) was calculated by dividing the number of
nymphs collected during each site visit by the total length (in meters) dragged during that visit.
Information on the length dragged was calculated in ArcMap 10.1 (ESRI 2013. ArcGIS Desktop:
Release 10.1. Redlands, CA: Environmental Systems Research Institute) using the location
information collected by GPS receivers during each transect.

Data Analysis



Rather than selecting a single “best” fit model, multimodel inference (model averaging) was used
to generate inferences about the relationship between the covariates and the dependent variable
for each pathogen. Literature comparing the best-model selection strategy versus multimodel
inference suggests that model averaging provides superior performance [25-28].

Using the R statistical language [29] with the Ime4 package [30] and MuMIn package [31] two
sets of logistic random effects models were constructed. One assessed the probability of a tick
being infected with B. microti, and a second assessed the probability of a tick being infected with
B. burgdorferi. The sample site was introduced as a random effect in order to account for
autocorrelation of ticks collected within the same site. A series of nested models were
constructed by adding fixed effects and comparing the AlCc and BIC value of each model [27,
32].. An all-subsets approach to model selection was used where all possible combinations of
covariates were evaluated. The AlICc value for each parameter combination (model i) was
defined as AICc; = —2logL; + 2V;, where L;is the maximum likelihood for model i and V; are
the free parameters of model i [33]. The BIC value for each model i was defined as BIC; =
—2logL; + V;log(n) here n is the number of observations [34]. The suitability of using AlCc for
model selection with mixed-effects models has not been well tested [32] and AlCc methods have
been suggested to select more complex models than BIC [35]. We use both AlCc and BIC
methods for multi-model inference and report where the methods disagree

The AlICc and BIC weights for model i (w;) for each pathogen were calculated, where w; can be
interpreted as the probability that model i is the best model given the data and the set of model
candidates [26, 35]. A 95% confidence set of models was created by for each pathogen by
ordering the models by w; and summing the weights until the cumulative weight exceeded 0.95.
All models with a cumulative weight above 0.95 were rejected, with the remaining models
considered to be the 95% confidence set of models [32]. Model averaging using the ‘natural
averaging’ approach was employed to produce parameter and error estimates for each covariate

[25, 27]. The model averaged parameter estimates (ﬁ) were calculated as follows:

where B, is the parameter estimate for model i, and w; is the model weight [32]. The importance
of each covariate t (I;) was assessed by summing the weights over all the models in which each
covariate was found [26]. The value of I, can be interpreted as the probability that the covariate ¢
is a component of the best model [32].

Sites were excluded from analysis if the total number of ticks collected at the site fell below a
certain threshold. This threshold level was varied from 5, 10, 15, 20, and 30 and the model
selection was carried out on each resulting dataset.

Moran’s I was used to test for spatial autocorrelation between the mean deviance residuals of the
best model for each pathogen at each site using R and the “ape” package [36].



Results

The prevalence of both pathogens across all sites (n = 35) at which at least 20 ticks were
collected is shown in Figure 1. B. burgdorferi was present at all 35 sites, while B. microti was
present at 28 sites. Site level prevalence of B. burgdorferi ranged from 0.06 to 0.43 (median =
0.23, mean = 0.24 £+ 0.19). Site level prevalence of B. microti ranged from 0.00 to

0.30 (median = 0.09, mean = 0.09 + 0.14). Site level coinfection prevalence ranged from
0.00 to 0.20 (median = 0.04, mean = 0.05 + 0.10). Among all ticks, more were coinfected
than were infected with only B. microti (Table 1). The prevalence of B. burgdorferi was greater
than that of B. microti in all sites except one, James Goodwin State Forest in northern CT, where
the prevalence of B. microti was greater than that of B. burgdorferi (0.19 versus 0.15). For all
1514 ticks included in the analysis in the study region the ratio of B. burgdorferi infection to B.
microti was 2.5:1.

The 95% confidence set of models to describe the presence or absence of B. microti at the tick
level using either AICc (Table 2) or BIC (Table3) criteria do not present a clear “best”” model.
The model-averaged odds ratio showed that if a tick is infected with B. burgdorferi the tick is at
4.96 (95% CI: 3.34 — 7.36) higher odds of being infected with B. microti as compared to an
uninfected tick using AICc model averaging (Table 4). Model averaging using BIC produced
similar results with an odds ratio of 5.03 (95% CI: 3.44 — 7.35) (Table 5). Location was a
significant predictor of tick infection status(OR = 0.89,95% CI: 0.82 — 0.96) for AlCc and
(OR = 0.89,95% CI:0.82 — 0.98)for BIC. Thus for every 10 km travel to the north, the odds
of a tick testing positive for B. microti were 0.89 that of a tick 10 km further south. Site level
prevalence of B. burgdorferi had a 0.57 and 0.06 probability of being in the best model
according to AlCc and BIC criteria respectively, while DON had a 0.35 and 0.00 probability.

The 95% confidence set of models to describe the presence or absence of B. burgdorferi indicate
that the model with no covariates significantly outperforms any models with any of the potential
covariates (Table 6, Table 7). The model-averaged odds ratios, 95% unconditional confidence
intervals and the importance values (I;) for the covariates confirm the low probability of any of
the candidate covariates of appearing in the best model (Table 8, Table 9).

Using different thresholds for minimum number of total ticks collected did not significantly
influenced the odds ratios for the covariates (Figure 2).Testing for spatial autocorrelation
between the deviance residuals using Moran’s I revealed no significant autocorrelation (p =
0.89).

Discussion

We investigated the extent to which the infection status of a tick with B. burgdorferi, DON, B.
burgdorferi prevalence at the site and geographic location influence the odds of a tick testing
positive for B. microti. We found that the B. burgdorferi infection status of the tick and its



geographic location are the most important predictors of B. microti status in a tick, while
nymphal infection prevalence and the DON at the site level had a reduced effect. In contrast and
consistent with the endemic status of B. burgdorferi, none of the covariates we examined proved
important in predicting the odds of a tick being infected with B. burgdorferi. Our results are
consistent with previous laboratory experiments showing that host coinfection with B.
burgdorferi and B. microti increases the odds of B. microti tick infection and may enhance the
probability of B. microti invasion into B. burgdorferi endemic areas [18].

The odds of a tick testing positive for B. microti was most strongly influenced by the B.
burgdorferi status of the individual tick and, to a much lesser extent, by the prevalence of B.
burgdorferi in the tick population at the site. Nymphal infection prevalence of both pathogens is
determined by dynamic interactions between the reservoir competence of the host community
and other ecological determinants of transmission from the previous year, when these nymphs
fed as larvae on all vertebrate tick hosts. While these ecological conditions may similarly
influence the prevalence of both B. burgdorferi and B. microti at the site level, nymph
coinfection can only result from larvae feeding on coinfected hosts. The increased odds of tick
infection with B. microti when the tick is infected with B. burgdorferi may reflect one of two
non-mutually exlusive effects: either a reduced host range of B. microti, such that only highly
competent hosts for B. burgdorferi (such as Peromyscus leucopus) also transmit B. microti, or
that there is enhanced transmission of B. microti transmission from coinfected hosts. Hersch et
al. (2012) found a wide range of competent hosts for B. microti, similar to that of B. burgdorferi,
rendering the first argument unlikely to explain the strong observed effect [37]. Observed
enhancement of B. microti transmission from experimental coinfections [18] supports the
premise that pathogen interactions may explain the observed increased odds. Conversely, the
same experiment showed no reciprocal enhancement of B. burgdorferi transmission due to
coinfection with B. microti. Consistent with the lack of enhancement due to B. microti infection
we find that the B. microti status of a tick was not a strong predictor of the odds of a tick being
infected with B. burgdorferi.

The site-level prevalence of B. burgdorferi is shown to have a marginal influence on the odds of
a tick being infected with B. microti, with a 0.57 and 0.06 probability of being in the best model
according to AlCc and BIC criteria, respectively. An enhancement effect at the tick level should
translate into higher odds of B. microti in areas with a greater prevalence of B. burgdorferi. The
weak association we found was unexpected and warrants further investigation.

The spatial trend in B. microti infection is consistent with a pattern of ongoing emergence from
southeastern portion of the state where the first case of babesiosis was reported in 1989 [5, 38].
The northerly and westerly expansion direction parallels the observed expansion in human cases
[11]. The lack of spatial patterns in B. burgdorferi infection is consistent with its longer invasion
history [11, 39].



Our findings that the DON does not influence the odds of tick infection with B. microti or B.
burgdorferi in a tick is consistent with a sensitivity analysis for a global model of I. scapularis
pathogen establishment that showed establishment was possible over a broad range of the
number of ticks on hosts [40]. However, our results are counter to previous research indicating
that the DON was associated with the odds of B. microti infection in Peromyscus leucopus hosts
in Rhode Island in 1996 [9]. The lack of importance of DON may be due to the later stage of the
invasion process of B. microti in this study compared to [9]. All but four sites of 32 we studied
had B. microti infections, while Mather et al. (1996) found B. microti infected mice in only 8 out
of 34 sites in 1996. Furthermore, Mather found that the positive sites were clustered in the
coastal or near coastal regions of south-central Rhode Island [9]. This indicates that B. microti
invasion may be more sensitive to tick density earlier in the emergence process. Since we
excluded from the analysis sites with fewer than 20 ticks in order to improve the statistical power
of our estimates of prevalence for each pathogens, it is possible that we biased our analysis by
dropping sites with low DON. To test this, we performed the analysis while varying the
minimum tick threshold between 5, 10, 15, 20, and 30 ticks. The lack of importance of DON
remains for all thresholds tested (Figure 2).

The synergistic relationship that B. microti has with B. burgdorferi has been shown to vary by
genotype of B. burgdorferi [13, 18]. Future work to genotype the B. burgdorferi samples derived
from the infected ticks in this study would be productive in further investigating how the effect
of coinfection varies across genotypes.

Although larval counts were collected during each dragging visit, the data was considered of too
poor quality to include in the analysis. The overlap of host-seeking spring larvae and nymphs has
been shown to be an important modifying factor in the effect that coinfection has on the
transmission of B. microti [18]. Controlling for variations in the overlap of spring larvae is an
important future direction for research.

Other ecological covariates, such as climate and land-use data were not included in the study
since the focus was on the interaction between the two pathogens. Further, the study area was
relatively small and has generally homogenous climatic conditions, with a possible exception of
areas immediately proximate to the coastline.

Given that B. microti currently occupies only a subset of the geographic range of B. burgdorferi
[11, 39], there is significant potential for B. microti expansion and more frequent interaction
between the two pathogens. Our study area includes regions in an advanced state of B. microti
emergence; it is expected that the relationship between B. microti and B. burgdorferi will be
more pronounced in areas with newly emerging B. microti, where the zoonotic presence of B.
burgdorferi could play a larger role in reducing the barriers for B. microti establishment [18].
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Figure Legends

FIGURE 1. Field data collection sites. Ticks were sampled from 64 sites from May to September
2012. Site at which at least 20 nymphal ticks were collected were included in the analysis and
have pathogen prevalence information presented. All other sites are represented by a circle only.

TABLE 1. 2x2 contingency table showing the proportion of ticks infected with B. microti, B.
burgdorferi, both pathogens, and neither pathogen.

TABLE 2. The 95% confidence set of models predicted B. microti infection in a tick using AlCc
selection criteria. Each row indicates the point estimates of every covariate included in that
model. Black cells indicate covariates not included in that model.

TABLE 3. The 95% confidence set of models predicted B. microti infection in a tick using BIC
selection criteria. Each row indicates the point estimates of every covariate included in that
model. Black cells indicate covariates not included in that model.

TABLE 4. The model-averaged odds ratios, standard errors, 95% confidence intervals, and
parameter weights for the 95% confidence set of B. microti models selected using AlCc.

TABLE 5. The model-averaged odds ratios, standard errors, 95% confidence intervals, and
parameter weights for the 95% confidence set of B. microti models selected using BIC.

TABLE 6. The 95% confidence set of models predicted B. burgdorferi infection in a tick using
AICc selection criteria. Each row indicates the point estimates of every covariate included in that
model. Black cells indicate covariates not included in that model.

TABLE 7. The 95% confidence set of models predicted B. burgdorferi infection in a tick using
BIC selection criteria. Each row indicates the point estimates of every covariate included in that
model. Black cells indicate covariates not included in that model.

TABLE 8. The model-averaged odds ratios, standard errors, 95% confidence intervals, and
parameter weights for the 95% confidence set of B. burgdorferi models selected using AlCc
criteria.

TABLE 9. The model-averaged odds ratios, standard errors, 95% confidence intervals, and
parameter weights for the 95% confidence set of B. burgdorferi models selected using BIC
criteria.

FIGURE 2. Sensitivity to minimum tick threshold. Plots of the odds ratios and 95% confidence
intervals of selected covariates when the analysis was performed using differing thresholds for
the minimum number of nymphs needed at a site for inclusion in the analysis. Thresholds tested
included 5, 10, 15, 20, and 30 nymphs.
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Table 1

B. microti - B. microti + | Totals

B. burgdorferi - 1098 63| 1161
B. burgdorferi + 275 78 353

Totals 1373 141] 1514




Table 2

(Intercept)

Bb site prevalence Bb tick status X cordinate Y cordinate DON

-5.51 0.18
-5.98 0.18
707
-0.66 0.26
-0.55 0.27
-0.16

-9.34

-8.64 0.17

.05 [

AlCc AAICc weight Cu
1.58 0.14 -0.12 855.40 0.00 024
1.65 0.18 -0.12 855.62 0.22 0.22
1.57 0.16 012 -0.05 856.22 0.81 0.16
1.66 0.20 012  -0.05 856.57 1.16 0.13
1.54 o 35747 2.07 0.09
1.54 012  -0.02  859.30 3.90 0.03
1.63 -0.11 859.73 4.32 0.03
1.63 860.04 4.63 0.02
1.57 860.51 5.10 0.02
1.64 861.44 6.03 0.01



Table 3

(Intercept)
-2.99
-0.16
-9.34
-6.47
-3.58
-0.66

Bb site
prevalence Bb tick status X coordinate Y coordinate DON

Cum.
BIC ABIC weight Weight
889.30 0.00 0.49 0.4
891.60 2.30 0.16 0.6
891.92 2.62 0.13 0.7
892.80 3.50 0.09 0.8
893.52 4.22 0.06 0.¢
894.65 5.35 0.03 0.¢




Table 4

Covariate OR Estimate Lower Cl Upper CI Importance
(Intercept) 0.00 0.00 2.73 NA
B. burgd. tick status 4.96 3.34 7.36 1.00
Latitude 0.89 0.82 0.96 0.95
Longitude 1.18 1.03 1.36 0.84
B. burgd. site prevalence 1.22 0.96 1.54 0.57
DON 0.95 0.86 1.05 0.35




Table 5

Covariate Estimate SE Lower CI  Upper Cl Importance

(Intercept) 0.02 22.47 0.00 10.10 NA
Bb tick status 5.03 1.21 3.44 7.35 1.00
Latitude 0.89 1.05 0.82 0.98 0.26
Longitude 1.19 1.08 1.03 1.38 0.24
Bb site prevalence 1.29 1.15 0.98 1.69 0.06




Table 6

Bm tick Bm site

(Intercept) status prevalence X coordinate Y coordinate AlCc AAICc weight Cu
-0.66 88.72 0.00 0.21
-0.75 90.59 1.86 0.08
-0.83 90.70 1.98 0.08
-0.74 90.73 2.01 0.08
-1.41 90.73 2.01 0.08
-0.87 90.73 2.01 0.08
-0.83 92.59 3.87 0.03
-0.83 92.60 3.87 0.03
-1.14 92.60 3.88 0.03
-0.90 92.60 3.88 0.03
-1.47 92.71 3.99 0.03
-0.89 92.71 3.99 0.03
-0.31 92.71 3.99 0.03
-0.97 92.74 4.02 0.03
-1.22 92.74 4.02 0.03
-1.61 92.75 4.03 0.03
-1.46 94.60 5.88 0.01
-0.91 94.61 5.88 0.01
-0.34 94.61 5.89 0.01
-1.25 94.61 5.89 0.01
-0.64 94.61 5.89 0.01
-1.27 94.62 5.90 0.01
-1.56 94.72 6.00 0.01
-0.79 94.72 6.00 0.01



Table 7

(Intercept)
-0.66
-0.75
-0.83
-0.74
-1.41

Bm tick
statu

Bm site X Y
prevalence coordinate coordinate

DON

BIC ABIC Weight  Cum. Weight
109.98 0.00 0.88 0.88 4
117.16 7.17 0.02 0.90 5.
117.27 7.29 0.02 0.93 5.
117.30 7.32 0.02 0.95 5.
117.30 7.32 0.02 0.97 5.



Table 8

Covariates Estimate SE Lower Cl Upper Cl Importance
(Intercept) 0.38 1574965365.74 0.00 403132443973728000.00 NA
Bm tick status 2.28 132.07 0.00 32727.95 0.28
Bm site prevalence 1.19 9.85 0.01 105.15 0.25
DON 1.03 2.25 0.21 5.03 0.24
Y coordinate 1.01 1.85 0.30 3.40 0.24
X coordinate 1.01 2.70 0.14 7.07 0.23




Table 9

Covariates Estimate SE Lower CI UpperCl Importance

(Intercept) 0.46 14.96 0.00 92.78 NA
Bm tick status 231 126.34 0.00 30328.51 0.03
Bm site preval 1.21 9.14 0.02 92.53 0.02

DON 1.03 2.24 0.21 4.98 0.02



Figure 2
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