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ABSTRACT

Termination proof synthesis for simple loops, i.e., loops with only conjoined constraints in

the loop guard and variable updates in the loop body, is the building block of termination

analysis, as well as liveness analysis, for large complex imperative systems. In particular,

we consider a subclass of simple loops which contain only linear constraints in the loop

guard and linear updates in the loop body. We call them Linear Simple Loops (LSLs).

LSLs are particularly interesting because most loops in practice are indeed linear; more

importantly, since we allow the update statements to handle nondeterminism, LSLs are

expressive enough to serve as a foundational model for non-linear loops as well. Existing

techniques can successfully synthesize a linear ranking function for an LSL if there exists

one. When a terminating LSL does not have a linear ranking function, these techniques fail.

In this dissertation we describe an automatic method that generates proofs of (universal)

termination for LSLs based on the synthesis of disjunctive ranking relations. The method

repeatedly finds linear ranking functions on parts of the state space and checks whether the

transitive closure of the transition relation is included in the union of the ranking relations.

We have implemented the method and have shown experimental evidence of the effectiveness

of our method.

viii



CHAPTER 1
INTRODUCTION

1.1 Background

In the 1900’s, David Hilbert, a preeminent German mathematician, published a list of prob-

lems aiming at solving the fundamental questions of mathematics. Hilbert states: “Once a

logical formalism is established one can expect that a systematic, so-to-say computational,

treatment of logic formulas is possible, which would somewhat correspond to the theory of

equations in algebra”. This computational mechanism gave rise to the so-called decision

problem, also known as “Entscheidungsproblem”, which asked whether there exists an algo-

rithm that takes an input of any first-order logic formula and checks the universal validity

of that formula. After Hilbert’s challenge, Alonzo Church [9] and Alan Turing [28] proved

separately that a general solution to the Entscheidungsproblem is impossible, i.e., there ex-

ists no such algorithm that checks the validity of any first-order logic formula. To prove this

theorem, Turing reduced the “Halting problem” - given a Turing machine and an input check

whether the Turing machine will eventually halt - to Entscheidungsproblem. Turing then

proved the undecidability of Halting problem.

Nowadays, the Church-Turing Theorem can be viewed as the root of theoretical computer

science. It is must-cover topic in any introductory course of theoretical computer science.

Because of the popularization of Church-Turing Theorem, many undergraduate and graduate

computer science students, or even some savvy computer science faculties, become to hold

this misconception that it is impossible to prove termination of any program. Consequently

the research topic of automatically proving program termination has rarely been explored

for the past century.
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Termination analysis has now found its new life in the past 10 years. Many pioneer

computer scientists have come to realize the true consequence of Church-Turing Theorem

– it is not that we are always unable to prove termination, rather we are unable to always

prove termination. In fact, our current techniques show we can potentially prove termination

in most practical cases. It is as Moshe Vardi puts it [30]: “most real-life programs, if they

terminate, do so for rather simple reasons, because programmers almost never conceive of

very deep and sophisticated reasons for termination”, therefore it should be possible to prove

termination for most programs in real cases. This is not a contradiction to Church-Turing

Theorem in that no matter how sophisticated a technique we develop, there will always be

at least one terminating program that this particular technique will fail to prove or disprove

termination.

As of the writing of this dissertation, many new tools of termination checker have emerged

and we can automatically prove or disprove termination for industrial-sized programs, for

example, Windows OS device drivers. We have also proved termination for some notoriously

difficult examples, such as Ackermann’s function, McCarthy’s 91 function, etc.

Termination is at the foundation of one type of important program properties called

liveness property. A liveness property typically takes the form of “something good will even-

tually happen”. To check this liveness property all we need to do is to prove the termination

of the code before the occurrence of “something good”.

In this dissertation, our research aims to solve the Universal Termination Problem, or

the Uniform Halting Problem, which can be stated as follows:

Given a program P , determine whether it will always finish running or could

potentially execute forever.

2



int x;
while (x>0) {

x := x - 1;
}

Figure 1.1: Simple Loop-program

1.2 Problem Statement

For the purpose of this dissertation, it is convenient to model the semantics of a computer

program in the form of three elements: “state space”, “transition relation”, and “initial states”.

A program execution can be thought of as a path starting from one of the initial states

followed by changes of states in the execution. We say a program is terminating if all of its

execution paths are finite. A program is called non-terminating if there exists at least one

infinite execution path. When trying to prove termination, formally we are trying to prove

that the program’s “transition relation” is “well-founded”. Before attempting to automate

the search for proofs of termination we first must ground ourselves with some basic concepts

and notations.

Consider the following simple loop program in Figure 1.1. We will use this example to

illustrate the concepts after we give a formal description.

Definition 1 (State, State space). Given a program P , a state s of P is an assignment of a

value to each variable of P , including program counter (the next statement to be executed).

State space S is the set of all such states.

Let X = (x1, . . . , xn) be a vector composed of all the variables of a program P . We will

denote a state of P as a valuation of X. That is, the valuation of X, (v1, . . . , vn), is the state

of P where x1 = v1, . . . , xn = vn.

Example 1.1. The simple loop program in Figure 1.1 has one variable, thus X = (x). We

can write the states as (0), (1), (−1), (2), (−2), . . . . Or simply as

. . . , (−2), (−1), (0), (1), (2), . . . . The state space S of the program is Z. Throughout this

dissertation we ignore program counter because we view the loop body as a single simulta-
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neous assignment and the the “next statement” always refers to the true evaluation of loop

condition and a simultaneous assignment, or the termination of loop and halting of program.

Definition 2 (Transition Relation). Given a program P with its state space S, the transition

relation of P is the binary relation R ⊆ S × S such that (s1, s2) ∈ R if and only if when P

is in state s1 it reaches state s2 in one step of execution.

Example 1.2. For the simple loop program in Figure 1.1, if the program is in state (2) it

will reach the state (1) in one step of execution. In general, for any state (v) where v > 0,

the program will reach the state (v − 1) in one step of execution. Therefore the transition

relation of the program is R = {((i), (j)) ∈ Z2 | i > 0 and j = i− 1}.

Definition 3 (Transition System). Given a program P , its transition system is a 3-tuple

〈S, I, R〉 where S is the state space of P , I ⊆ S is the set of initial states for P , and R ⊆ S×S

is its transition relation.

Example 1.3. The transition system of the simple loop program in Figure 1.1 is

〈Z,Z, {((i), (j)) ∈ Z2 | i > 0 and j = i− 1}〉

As depicted in Figure 1.2, nodes are the states, the links are the transitions. Note we assume

each state in S can be an initial state.

Now that we have defined a model, transition system, for programs. Let us discuss the

mathematical property, well-foundedness, corresponding to termination.

Definition 4 (Paths Permitted by a Relation). Given a set S, a (finite or infinite) sequence

p = 〈s1, s2, s3, . . . 〉 is called a path if si ∈ S for all i, where si’s need not be distinct. p is

finite if it is of finite length, otherwise p is infinite. Given a relation R ⊆ S × S, we say a

finite path p is permitted by R if (si, si+1) ∈ R for 1 ≤ i < last, where last denotes the last

index of p. We say an infinite path p is permitted by R if (si, si+1) ∈ R for all i ≥ 1.

4



0

1

2

...

-1-2. . .

Figure 1.2: Transition System for the Program in Figure 1.1

Example 1.4. For the simple loop program in Figure 1.1, an example path permitted by

R is p = 〈(5), (4), (3), (2), (1), (0)〉. Notice that however large value the initial x takes, the

path is always of finite length.

Definition 5 (Well-founded Relation). A binary relation R ⊆ S × S is well-founded iff it

does not permit infinite path.

As mentioned earlier the transitive relation R = {(i, j) ∈ Z × Z | i > 0 and j = i − 1},

with S = Z, is well-founded because it permits no infinite path. The next two theorems

state the relation between termination and well-foundedness. Proving termination amounts

to proving the corresponding transition relation well-founded. And since the structure of

the transition relation could be complicated, we normally prove the well-foundedness of an

“abstracted” relation instead.

Theorem 1.2.1. A program P represented by transition system 〈S, I, R〉, where I = S, is

terminating iff R is a well-founded relation.

Theorem 1.2.2. Let T be a well-founded binary relations. For any binary relation R, if

R ⊆ T then R is well-founded (i.e. any subset of a well-founded relation is also a well-founded

relation).

5



1.3 Disjunctive Ranking Relation

Before we can define disjunctive ranking relation we need to lay down some building blocks.

The basic mathematical concept at the base of ranking is the well-ordered set.

Definition 6 (Well-Ordered Set). A set D is well-ordered with respect to a linear order

relation ≤ if there is no infinite decreasing sequence d0 > d1 > d2 > . . . of elements in D.

Example 1.5. N = {0, 1, 2, . . . } and D = {−2.5,−1.5, 0.5, 1.5, 2.5, . . . } with the usual ≤

(“less than equal to”) ordering are well-ordered set. Note that D is isomorphic to N. The set

{0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . } is also well-ordered set but not isomorphic to N.

Definition 7 (Ranking Function). Given a transition relation R ⊆ S × S, a function r :

S → D is a ranking function for R, if D is a well-ordered set isomorphic to N and for every

(s1, s2) ∈ R we have r(s1) > r(s2).

Note that for a path p = 〈s1, . . . , si, . . . , sj, . . . 〉 permitted by R, we also have r(si) > r(sj)

for i < j.

Definition 8 (Ranking Relation). Given a ranking function r : S → D (w.r.t. a transition

relation R) we define the corresponding ranking relation on S by

τ(r) = {(s1, s2) ∈ S × S | r(s1) > r(s2)}

Let us note two important points. First, τ(r) is transitive, i.e., τ(r) = τ(r)+, where

τ(r)+ is the transitive closure of τ(r). Second, R ⊆ τ(r).

A fundamental observation is that for any program with ranking relation R and ranking

function r, the ranking relation τ(r) is a well-founded relation and R ⊆ τ(r). By theorems

1.2.2 and 1.2.1 we have that if a program has a ranking function it terminates.

Theorem 1.3.1. A program P represented by transition system 〈S, I, R〉, where I = S, is

terminating iff exists a ranking function r for R (i.e. R ⊆ τ(r)).

6
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rank 3

rank 2

rank 1

rank 0

Figure 1.3: Ranking Function Example for a Terminating Transition System

Definition 9 (Disjunctive Ranking Relation). A disjunctive ranking relation T is a finite

union of ranking relations, arising from functions ri : S → D and their related Ri.

T = T1 ∪ · · · ∪ Tn

where Ti = τ(ri)

The relation between disjunctive ranking relations and termination has been established

in [21] using Ramsey’s theorem [23]. Let P be a program, R be the corresponding transition

relation induced by P , R+ be the (non-reflexive) transitive closure of R, then P is terminating

if and only if R+ ⊆ T for some disjunctive ranking relation T .

Theorem 1.3.2. A program P represented by transition system 〈S, I, R〉, where I = S, is

terminating iff exists disjunctive ranking relation T such that R+ ⊆ T .

We say a ranking function is linear if the function r : S → D is linear. Here, we assume S

is one of Zn, Qn or Rn for some n > 1 and D is a well-ordered set isomorphic to N. Similarly,

we say a ranking relation is linear if the underlying ranking function is linear. Finally, we

say a disjunctive ranking relation is linear if all the individual ranking relations are linear.

7



Consider the transition system illustrated in Figure 1.4. The state space and initial states

are both {1, 2}, the transition relation is R = {(1, 2), (2, 1)}. We separate the transition

1 2

Figure 1.4: Transition System of a Non-terminating program

relation R into two smaller transition relations, R1 = {(1, 2)} and R2 = {(2, 1)}. For R1

we have a ranking function r1(x) = −x, and for R2 we have a ranking function r2(x) = x.

Neither of them is a ranking function for R. The corresponding ranking relations are T1 =

τ(r1) = {(1, 2)} and T2 = τ(r2) = {(2, 1)}. Observe that R ⊆ T1∪T2, but it is insufficient to

prove termination of the transition relation (Figure 1.4 is obviously non-terminating). The

ranking function r1 can only prove the well-foundedness of sub-relation R1. For the original

relation R, r1 does not has the property that for any path 〈. . . si . . . sj . . . 〉 permitted by

R r1(si) > r1(sj). Similarly for r2. To check whether the disjunctive ranking relation

T = T1 ∪ T2 suffices to prove termination of transition relation R in Figure 1.4, we have

to show R+ ⊆ T . But since it is not the case, this T is no good. This example shows the

need for the stronger condition R+ ⊆ T instead of R ⊆ T when T a union of more than one

ranking relation. Theorem 1.3.2 states the condition of R+ ⊆ T is necessary and sufficient

to prove termination. For example in Figure 1.4, we will see there does not exist a ranking

function r such that (1, 1) ∈ τ(r), because it’s impossible to make r(1) > r(1). Therefore by

extension, there does not exist a disjunction ranking relation T such that R+ ⊆ T .

8



CHAPTER 2
LITERATURE REVIEW

In this chapter, we go over the existing techniques that address termination problem. We

build our method upon some of them.

2.1 Ranking Function

Turing [29] proposed finding a mapping from a transition system to some known well-ordered

set, thus proving the map is homomorphism.

2.1.1 Linear Ranking Function

The state of art of linear ranking function generation is that Poldelski and Rybalchenko

provide us a complete method [20] to generate the linear ranking functions if there exists

one. The method is based on Farkas’s lemma [26], a mathematical mechanism to derive the

hidden constraints from a system of linear inequalities.

Given an LSL L(X, Y ), convert it in the form (AA′)
(
X
Y

)
≤ b. The method work by

solving the linear programming problem of finding two vectors λ1, λ2 over the rational such

that

• λ1, λ2 ≥ 0 and,

• λ1A′ = 0 and,

• (λ1 − λ2)A = 0 and,

• λ2 (A+ A′) = 0 and,

• λ2b < 0

9



If such vectors do not exist the method report the program does not have a linear ranking

function. If such vectors are found the method construct the following function which is a

suitable linear ranking function for the input program

ρ (X)
def
=


rX if exists Y such that (AA′)

(
X
Y

)
≤ b,

δ0 − δ otherwise

where r def
= λ2A

′, δ0
def
= −λ1b and δ

def
= −λ2b.

2.1.2 Lexicographical-ordered Ranking Function

There are also work on lexicographical-ordered ranking functions. Consider a program rep-

resented as n transition relations, ρ1, . . . , ρn, over some state space. A linear lexicographic

ranking function (LLRF) for the n relations is a sequence of n linear function, f1, . . . , fn,

such that for every 1 ≤ i ≤ n, fi is a ranking function over ρi (i.e., for every (s, t) ∈ ρi

we have fi(s) > fi(t) and fi(s) ≥ 0) and for every j < i, fj does not increase over ρi

(i.e., for every (s, t) ∈ ρi we have fj(s) ≥ fj(t)). There are quite many works devoted on

lexicographical-ordered ranking function generation, for example [1, 6, 16].

2.2 Disjunctive Ranking Relation

Recent years, the discovery of disjunctive ranking relation as termination proof [21] have

led to new termination check technologies. The validity of disjunctive ranking relation as

termination proof is based Ramsey’s Theorem [23]. Many tools [2, 14, 17, 22] have moved

away from single ranking functions and towards disjunctive ranking relations.

Berdine et al. [2] propose a termination analysis using a combination of fixpoint-based

abstract interpretation and an abstract domain of disjunctively ranking relations. Their

10



method performs an iterative computation of the set of abstract values and has a fixpoint

detection of the form T ⊆ R+.

Cook et al. [13] use relational predicates to extend the framework of Reps et al. [24] to

support termination properties during computation of inter-procedural program summaries.

Kroening et al. [17] use the Octagon and Polyhedra abstract domains to discover in-

variance constraints sufficient to ensure termination. Well-foundedness checks are left to

iterative verification by an external procedure as in the Terminator algorithm [22] and CTA

[18].

2.2.1 Binary Reachability Check

Another technique we are benefited from is the method of binary reachability check developed

by the Terminator team [14]. Given a disjunctive ranking relation T , binary reachability

check is to prove or disprove R+ ⊆ T . Note that the regular reachability check is over the

state space S other than S × S. The general idea of performing binary reachability check is

to syntactically transform the original program, hence reduce the binary reachability check

to the regular reachability check, which can be carried out on any temporal safety checker.

Moreover, if the validity of R+ ⊆ T is not satisfied, the construct of the transformed program

will enable the safety checker to generate a counterexample, an error path to be specific, that

violates the inclusion. This counterexample is particularly helpful to expand and refine the

disjunctive ranking relation T .

Given a transition relation R and a disjunctive ranking relation T , the goal of binary

reachability check is to verify whether R+(L) ⊆ T is true. If yes, the procedure returns “false”.

Otherwise, the procedure returns an execution path 〈s1, . . . , sn〉 such that (s1, sn) /∈ T . The

input and output of procedure BRC is described as follows (check [14] for details of the

algorithm):

input: a transition relation R, and a disjunctive ranking relation T
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output: if R+ ⊆ T return “true”, else a counter example (s1, sn) such that (s1, sn) ∈ R+

and (s1, sn) /∈ T

2.3 Polyranking Principle

Another related topic is the termination principle for polyranking functions raised by Bradley

et al. A polyranking function needs not always decrease but decreases eventually. It is a

generalization of the regular lexicographical-ordered ranking function. In [5], the authors

show a method for finding bounded expressions that are eventually negative over loops with

parallel transitions. In [6], the authors demonstrate a method for synthesize lexicographic

linear polyranking functions with supporting linear invariants over linear loops.

2.4 Size Change Termination

One of the directions of research that contributed to the efficacy of termination provers in

practice is the size change termination principle presented by Lee, Jones and Ben-Amram

[19]. Termination analysis based on the size change principle usually involves a two-stage

structure. In first stage, construction of an abstract model of the original program in the form

of size change graphs. Size change graph is an instance of a system which is much simpler

than a programming language. The graphs contain abstract program values as nodes and

use two types of edges, along which values of variables must decrease, or decrease or stay the

same. No edge between nodes means that none of the relations can be ensured.. In second

stage, analysis of the size change graphs for termination. The goal is to infer program

termination via the following reasoning: if in any infinite execution of the program, some

size must descend unboundedly, the program must always terminate, since infinite descent

of a natural number is impossible.
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CHAPTER 3
PRELIMINARIES

In this chapter, we introduce the technical terms specific to our research. We also give details

of the methods that we are using as subroutines.

3.1 Loop Model and Semantics

Throughout this dissertation, we will study a subclass of programs called Linear Simple

Loops (LSLs). Before we formally define LSL, we first show the origin, Linear Simple Loop-

program, of LSL. Then we show how we generalize Linear Simple Loop-programs to a broader

class LSL.

Definition 10 (Linear Simple Loop-program). A Linear Simple Loop-program is a single

loop-program such that

• the loop guard is a conjunction of linear constraints, and

• the loop body consists of only assignments for which the right-hand side is a linear

expression (in particular, there are no if-then-else statements or loops in the loop body).

Figure 3.1 gives an example of Linear Simple Loop-program. Since we want the tran-

sition relation model consecutive iterations of the loop, instead of execution of individual

assignment statements in the loop body, we will convert the sequential assignments into

int x, y, z;
while (x ≥ 0) {

x := x + y;
y := z;
z := -y - 1;

}

Figure 3.1: Linear Simple Loop-program with Sequential Assignments
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x := x + y;
y := z;
z := -y - 1;

xnew = xold + yold

ynew = zold

znew = −ynew − 1 = −zold − 1

Figure 3.2: Linear Simple Loop-program with with Simultaneous Assignments

simultaneous assignments. Thus in each iteration, all assignments can be viewed as being

executed simultaneously in one step. This kind of conversion is always possible, and we will

demonstrate the conversion process with the example in Figure 3.2. We first use variables

such as xold and xnew (and possibly xnewnew) to replaces the variables in each assignment.

Then we get a relation between the initial values of the variables and the values of the

variables after all three assignments.

Since the assignments has no order any more, from this point on we can express a loop-

program as a set of constraints. We will use two copies of the variables. The first copy, X0 =

(x0, y0, z0), stands for the initial values of the variables. The second copy, X1 = (x1, y1, z1),

stands for the values after all three assignments. X1 is expressed only in terms of X0.

Lsimul = {x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}

For each iteration, X0 and X1 must satisfy all the constraints in the set L. On the other

hand, all X0 and X1 that satisfies all the constraints must constitute a valid loop iteration.

This is true because we assume no initial condition before the loop, therefore the initial

states is the same as the state space. For this example, the initial states and the state space

is both Z3.

It is sometimes necessary to unroll a loop. Lunroll shows how we unroll Lsimul once.

Lunroll = {x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}

14



We make a copy of all the constraints and increase the variable superscripts by 1. Now

Lunroll involves three set of values of variables, X0, X1, and X2. Notice that we assume X2

will always have value, that is the same to say, when we unroll a loop once we assume the

second iteration will always be entered and executed.

Besides unrolling, we sometimes add extra constraints to the set as well. For instance,

Lextra adds an constraint x1 < x0 to Lsimul.

Lextra = {x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1, x1 < x0}

At this point, what we call “loop” is not necessarily associated with a concrete loop-

program any more. It simply denotes a transition relation, or a set of paired states that

satisfy all the constraints of the loop. For the loop of Lextra, the transition relation is

between the state described by X0 and the state described by X1.

But what is the transition relation for the loop Lunroll? Is it between the state described

by X0 and the state described by X1, or between the state described by X0 and the state

described by X2, or even between the state described by X1 and the state described by X2?

We define the transition relation to be between the initial state X0 and some reachable state

Xk where 1 ≤ k ≤ n and n denotes the largest superscript value.

As one can see, both the constraints and the index k are important for the description

of the transition relation. Thus we put both elements into the formal description of the
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transition relation of a loop. For example, we have

L = 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 1〉

L1 = 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}, 1〉

L2 = 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}, 2〉

L3 = 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1, x1 < x0}, 1〉

L and L3 denote the transition relations of Lsimul and Lextra. L1 and L2 are two possible

transition relations associated with Lunroll, where L1 denotes a set of pairs (X0, X1), and L2

denotes a set of pairs (X0, X2).

Before we go into the formal definition, we want to generalize LSL to be able to handle

nondeterminism. To be specific, we allow linear expressions on both sides of an “assignment”

statement, and inequalities instead of equal relation. This gives us more flexibility to model

nondeterministic inputs or non-linear operations. For example, if we have an assignment

x := x− y2; we can abstract it to be x1 < x0.

Now that we allow linear inequalities as our constraints, we will standardize all constraints

to be expressed using the ≤ relation. As one can see, an equal relation ψ = b can be replaced

by two inequalities ψ ≤ b and −ψ ≤ −b.

We are finally ready to give the formal definition of LSLs. Here all variables range over

one of the domain Z, Q, or R.

Definition 11 (Linear Simple Loops). A Linear Simple Loop L over m program variables,

denoted as a column vector X0 = (x01, x
0
2, . . . , x

0
m)

T , is a pair L = 〈ConsL, k〉 where

• ConsL is a set of linear constraints, each of the form A0X
0 + · · ·+ AnX

n ≤ b, where

A0, . . . , An are row vectors in Zm, b ∈ Z, X i = (xi1, x
i
2, . . . , x

i
m)

T , 1 ≤ i ≤ n, is a copy
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of variables X0, for at least for one of the constraints Ak 6= 0. We call ConsL loop

constraints.

• and k is an integers, 0 < k ≤ n.

Note that our model (i.e. LSL) does not include an initial condition. In other words, we

only model the transition relation and we assume any state is reachable.

For the purpose of a clearer presentation, instead of using ≤ for all constraints, we may

use other relations <,=,≥ or >, and we do not necessarily keep only integer on the right-

hand side. The conversions from = and ≥ to ≤ are rather obvious. It’s more tricky to handle

< and >. In particular, when the variables range over Z, and we have ψ < b (ψ is a linear

expression with integer coefficients, b is an integer), the standard form for the constraint

should be ψ ≤ b − 1. When the variables range over Q or R, and we have ψ < b, we will

use the abstracted standard form ψ ≤ b. This might change the program behavior, we will

discuss the limitation of this conversion at the end of this section.

The formal semantics of LSL is defined as follows. Let L = 〈ConsL, k〉 be an LSL over

variables X0 and its n(n ≥ k) copies X1, X2, . . . , Xn. We denote by R(L) the set of all

tuples (s0, s1, . . . , sn) such that all the constraints in ConsL are satisfied simultaneously

when assigning s0 to X0, s1 to X1, . . . , sn to Xn. The transition relation of L is:

R(L) = {(s0, sk) | (s0, s1, . . . , sn) ∈ R(L)}

It is sometimes convenient to put the LSL constraints in a matrix form. Given an

LSL L = 〈ConsL, k〉 over variables vector X0 and its n copies. Let φ1, φ2, . . . , φt be some

enumeration of ConsL. We put L in a matrix form AX ≤ b where X is a vector composed

from the concatenation of the vectors X0, . . . , Xn and the i’th row of the matrix A and the

i’th element in the vector b are the coefficients of φi (the matrix coefficients correspond to

the coefficients of X0, . . . , Xn).
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In the followings we will define two useful operations. We start by Shifti which is

the process of transforming variables in a constraint to a higher copy. The subscript i

denotes how much value to increase for each superscript of the variables. For example,

Shift1(x
0 − x1 < 1) = x1 − x2 < 1, and Shift2(x

0 − x1 < 1) = x2 − x3 < 1.

Definition 12 (Shifti). Given a linear expression ψ : A0X
0 + A1X

1 + · · ·+ AnX
n (where

A0, . . . , An are row vectors in Zm), we define Shiftk(ψ) inductively,

Shift1(ψ) , A0X
1 + A1X

2 + · · ·+ AnX
n+1

Shifti+1(ψ) , Shifti(Shift1(ψ))

We extend Shifti for a linear constraints ϕ : ψ ≤ b (where b ∈ Z), and for a set of linear

constraints C,

Shifti(ϕ) , Shifti(ψ) ≤ b

Shifti(C) , {Shifti(ϕ) | ϕ ∈ C}

Next we define operation Unrolli,j. This operation adds more constraints over higher

copies of X.

Definition 13 (Unrolli,j). Given a set of linear constraints C and integer j > 0 we define

Unrolli,j(C) inductively,

Unroll1,j(C) , C

Unrolli+1,j(C) , C ∪ Shiftj(Unrolli,j(C))

We extend Unroll for LSLs, L = 〈ConsL, k〉 by,

Unrolli(L) , 〈Unrolli,k(ConsL), k〉
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Before we move on to the next section, we want to state the significance of studying LSL

and the limitations of LSL model. We choose to work on the LSL subclass because when

we work on complex loops (loops with control statements such as if-then-else or inner loops

in the loop body), we found that a single path of execution of a complex loop is in fact

composed of a finite path followed by a simple loop [15]. And if the simple loop has non-

linear expressions or nondeterministic inputs, we can often times abstract them to be linear.

Hence Linear Simple Loops can serve as building blocks for the study of complex loops. Our

model suffers from some limitations. When variables range over the reals (or rationals), we

abstract update statements with strict inequality using a non-strict inequality. This is due

to the ranking function synthesis method (described in Section 3.2) is based on Farkas’s

Lemma which cannot handle strict inequalities. As this abstraction is over-approximation

our method becomes incomplete in this case, but it is still sound. Another limitation is that,

when variables range over the integers, we cannot model precisely the truncation in integer

division. For example, the assignment x := x/2 will be modeled as 2x1 = x0 and it will

permit transitions (x0, x1) like (2, 1) and (6, 3) but not (3, 1).

3.2 Extension of the Linear Ranking Function Synthesis

In this section, we give the algorithm for linear ranking function synthesis. It is an extension

of the Podelski algorithm [20] described in Section 2.1, and in our LSL notations. The

algorithm given by Podelski can only handle transitions over X0 and X1. Our algorithm

extends it by handling transitions over any number of copies of X0.

Let ~A denote the row vector (A0 . . . An), ~Ai denote the i-th element Ai, ~A−i denote the

row vector with all but the i-th element (A0 . . . Ai−1Ai+1 . . . An). Similarly we define column

vectors ~X, ~Xi, and ~X−i.

Given LSL L = 〈ConsL, k〉 in matrix form ~A ~X ≤ b ( ~Xi is the X i copy of X0) we

are interested if exist non-negative vectors λ1 and λ2 over rationals such that the following
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constraints are satisfied

λ1 ~A−0 = 0 (3.1)

λ2 ~A−0,−k = 0 (3.2)

(λ1 − λ2) ~A0 = 0 (3.3)

λ2( ~A0 + ~Ak) = 0 (3.4)

λ2b < 0 (3.5)

Then following theorem states that if such λ1, λ2 exist then L has a linear ranking function

(soundness). The theorem following right after states that is L has a linear ranking function

then such λ1, λ2 exist (completeness).

Theorem 3.2.1. An LSL L = 〈ConsL, k〉 in matrix form ~A ~X ≤ b is terminating if there

exist non-negative vectors λ1, λ2 over rationals such that (3.1)-(3.5) are satisfied. More over,

a linear ranking function is given by

ρ(X0) =


rX0 if exists Xk such that (X0, Xk) ∈ R(L)

δ0 − δ otherwise

where r , λ2 ~Ak, δ0 , −λ1b, and δ , −λ2b.

Proof. Let the pair of nonnegative vectors λ1 and λ2 be a solution of the system (3.1)-(3.5).

For every ~X satisfying ~A ~X ≤ b, by assumption λ1 ≥ 0, we have λ1 ~A ~X ≤ λ1b. We carry out

the following sequence of transformations.
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λ1 ~A−0 ~X−0 + λ1 ~A0
~X0 ≤ λ1b

λ1 ~A0
~X0 ≤ λ1b by (3.1)

λ2 ~A0
~X0 ≤ λ1b by (3.3)

−λ2 ~Ak
~X0 ≤ λ1b by (3.4)

From the assumption λ2 ≥ 0, we have λ2 ~A ~X ≤ λ2b. We carry out the following sequence

of transformations.

λ2 ~A−0,−k ~X−0,−k + λ2 ~A0
~X0 + λ2 ~Ak

~Xk ≤ λ2b

λ2 ~A0
~X0 + λ2 ~Ak

~Xk ≤ λ2b by (3.2)

−λ2 ~Ak
~X0 + λ2 ~Ak

~Xk ≤ λ2b by (3.4)

We define r , λ2 ~Ak, δ0 , −λ1b, δ , −λ2b and then we have,

r ~X0 ≥ δ0 (a)

r ~X0 − r ~Xk ≥ δ (b)

Lastly by (3.5), we have

δ > 0 (c)

We define a function ρ(X0) as stated in the theorem. By (a), (b), and (c) we conclude that

ρ(X0) must be a linear ranking function for L.
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Theorem 3.2.2. Let L = 〈ConsL, k〉 be an LSL in matrix form ~A ~X ≤ b ( ~Xi is the X i copy

of X0) over rationals variables. If L has a linear ranking function then exist non-negative

vectors λ1, λ2 over rationals such that (3.1)-(3.5) are satisfied.

Proof. Let the vector r together with the scalars δ0 and δ define a linear ranking function

for L. Then, for all ~X such that ~A ~X ≤ b we have rX0 ≥ δ0 and rXk ≤ rX0 − δ and δ > 0.

By the non-emptiness of the transition relation, the system ~A ~X ≤ b has at least one

solution. Hence, we can apply the ‘affine’ form of Farkas’ lemma, from which follows that

there exists δ′0 and δ′ such that δ′0 ≥ δ0, δ′ ≥ δ, and each of the inequalities −rX0 ≤ −δ′0

and−rX0 + rXk ≤ −δ′ is a nonnegative linear combination of the inequalities of the system

~A ~X ≤ b. This means that there exist nonnegative rational-valued vectors λ1 and λ2 such

that

λ1 ~A ~X = −rX0

λ1b = −δ′0

and

λ2 ~A ~X = −rX0 + rXk

λ2b = −δ′

After multiplication and simplification we obtain

λ1 ~A0 = −r λ1 ~A−0 = 0

λ2 ~A0 = −r λ2 ~Ak = r

λ2 ~A−0,−k = 0
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from which equations (3.1)-(3.4) follow directly. Since δ′ ≥ δ > 0, we have λ2b < 0, i.e., the

equation (3.5) holds.

3.3 Binary Reachability Check

As stated above, our termination argument (DRR) is composed from a set of ranking func-

tions, not a single ranking function. With a single ranking function one must show that the

rank decreases from the pre- to post-state after each single transition step (i.e. R ⊆ τ(r)). In

our settings it is not sufficient to look at a single transition step. Instead, we must consider

all finite sequences of transitions. We must show that, for every sequence, one of the ranking

functions decreases between the pre- and post-state. In other words: we must first find all

pairs of states s1 and s2 such that s2 is reachable from s1; and we must then show that

the value of one of the ranking functions decreases from s1 to s2. We call this task binary

reachability check.

Given an LSL L and a disjunctive ranking relation T , the goal of binary reachability check

is to verify whether R+(L) ⊆ T is true. If yes, the procedure returns “false”. Otherwise, the

the procedure returns a new LSL L′ such that L′ is an unrolling of L and L′+ * T . Notice

the unrolling of L is still an LSL, and it serves as a counterexample to the current disjunctive

ranking relation T . The input and output of procedure BRC is described as follows, it is

tailored specifically to LSL inputs:

input: an LSL L, and a disjunctive ranking relation T

output: if R+(L) ⊆ T return “false”, else return LSL L′ such that L′ is an unrolling of L

and L′+ * T

23



CHAPTER 4
FORMAL ALGORITHM

4.1 Overview

In the following section we will illustrate the basic idea at the core of this dissertation. Here

we will give an informal description of the principal inner workings of our method, a concrete

example is given in section 4.2 and a formal description is given in section 4.3.

Consider a program over integer variables, represented by its transition relation which

is given as a set of linear constraints over primed and unprimed variables, where primed

variables stand for the state before the transition and the primed variables stand for the

state after the transition.

Let C ≥ 0 be one of the program constraints and assume C involves only unprimed

variables. We write C ′ to mean the same expression as C with every variable replaced with

its primed copy. We can separate the transition relation into two cases. In the first case

we have C ′ < C and in the second case we have C ′ ≥ C. A key point is the observation

that C ′ < C and C ≥ 0 are sufficient to conclude that the linear expression C is a ranking

function for the first case. C ′ < C means C will decrease in every transition, and C ≥ 0

means C is bounded from bellow.

To handling the second case we will first rewrite C ′ ≥ C as C ′ − C ≥ 0. Note the

similarity to the constraint we started with C ≥ 0. We will apply the same trick to this

constraint. We separate the transition relation into two more cases, C ′′ − C ′ < C ′ − C

and C ′′ − C ′ ≥ C ′ − C. Observant readers will notice we introduced a new variant of C.

The C ′′ expression is the same expression as C ′ with the exception that every variable is

replaced with its doubly primed copy. The doubly primed variables stand for the state after

two transitions from the unprimed state and one transition from the primed state. For the
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int x, y, z;
while (x ≥ 0) {

x := x + y;
y := z;
z := -y - 1;

}

Figure 4.1: Example

first case, the expression C ′ − C can be used as ranking function since it decreases in every

transition (C ′′ − C ′ < C ′ − C) and it is bounded from bellow (C ′ − C ≥ 0). The second

case is rewritten again as C ′′− 2C ′+C ≥ 0 and the process continues. The rewriting of the

next second case will be C ′′′ − 3C ′′ + 3C ′′ − C ≥ 0, and so on. Termination of this process

is achieved by inspecting the second case of each step before going further down. We try to

synthesize a linear ranking function for the transition relation as it is and if the synthesis

succeeds the process terminates.

Finally we check if the collection of the ranking functions generated by the above process

is a valid termination condition. We either find a counter example for its validity which

is given as a new transition relation which does not adhere to the termination condition,

and then we run the process again on this counter example to strengthen the termination

condition. Or we determine the termination condition is valid.

4.2 Example

We first demonstrate our technique with a simple deterministic LSL over the integers. Then

we will extend our technique for nondeterministic updates and rational / real variables.

4.2.1 Deterministic Updates over Integer Domain

Consider the while loop in Figure 4.1. It has only 3 simple assignments, but it is not

obvious whether it is terminating. It is easy to see that the traces of z are composed of two

alternating numbers, one negative the other non-negative, and that the negative number has
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Table 4.1: Sample Trace
0 1 2 3 4 5 6 7 8 9

z: 10 -11 10 -11 10 -11 10 -11 10 -11
y: 3 10 -11 10 -11 10 -11 10 -11 10
x: 5 8 18 7 17 6 16 5 15 4

a higher value. The variable y always gets assigned to value of z from the previous state.

Hence it behaves like z, except being one step behind. The variable x increments itself with

y. Therefore x will alternatively increase (or stay unchanged) and decrease. Moreover the

decrease is larger than the increase, hence x will eventually become negative and the loop

will terminate. Table 4.1 illustrates the beginning of a trace of the program. Observe the

value of X on the odd cycles, clearly it is decreasing and will eventually reach -1.

Let us first convert the while loop above to an LSL. The sequential update x := x+y; y :=

z; z := −y − 1; is first translated to a simultaneous update constraints over (x0, y0, z0) and

(x1, y1, z1). To do so we need to replace the concurrence of y in the update of z with the

update of y, z := −z− 1. Then we replace all the variables in the right hand side of := with

their 0 copy and all variables in the left hand side of := to their 1 copy, x1 = x0 + y0, y1 =

z0, z1 = −z0 − 1. We get the following LSL,

L = 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 1〉

If we apply the method of Section 2.4 to L, it will return failure since L does not have a

linear ranking function. As mentioned earlier, we want to construct multiple linear ranking

functions, each of them over a restrained input space. We do this by adding constraints to

L such that the new LSL is guaranteed to have a linear ranking function. From ConsL we

see that we already have the linear expression x0 that is bounded, i.e., x0 ≥ 0. If we add to

L a constraint x0 > x1, then we know x0 can serve as a ranking function for the restrained

LSL because x0 has a lower bound and is strictly decreasing, which is a sufficient condition

for x0 to become a ranking function over the integer domain.
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We break L into two LSLs L1.1 and L1.2 such that L1.1 is obtained by combining L with

constraint x0 > x1, and L1.2 is obtained by combining L with the negation of the constraint,

namely x0 ≤ x1.

L1.1 = 〈ConsL ∪ {x0 > x1}, 1〉 (trivial case)

L1.2 = 〈ConsL ∪ {x0 ≤ x1}, 1〉 (synthesis case)

We call L1.1 the trivial case since we immediately obtain a linear ranking function from it.

ρ1(X
0) =


x0 if ∃X1 such that X0, X1 satisfies L1.1

−1 otherwise

We call L1.2 the synthesis case since it needs further examination. We call x0 ≥ 0 the Seed

for partitioning L.

From this point onwards, we only need to take care of L1.2. First we check whether L1.2

has a linear ranking function already. In this particular case we find out that this is not

true. Next, we would like to repeat the earlier process on L1.2, i.e., adding constraints to L1.2

such that a linear ranking function must exist. Since L1.2 already includes x0 ≤ x1, using

x0 ≥ 0 ∧ x0 > x1 again will no longer make sense. However observe that the new constraint

in L1.2 gives a new linear expression that is bounded below, i.e., x1 ≥ x0. This constraint

will become our new Seed, and we can use it to partition L1.2. This time we partition with

the constraint (x1 − x0) > (x2 − x1) and its negation.

At this point a new issue arises, x2 is introduced to denote the value of x after one

transition from x1. However from L1.2 alone, there is no such information about x2. To

remedy this situation, we first need to unroll L so that the unrolled transition involves x2.

We do this by making a copy of all the loop constraints in L, then changing X1 to X2, X0
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to X1 (the process is formally described by Unroll(L) in Section 4). We get L2 as follows.

L′ = Unroll2(L)

= 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}, 1〉

L2 = 〈ConsL′ ∪ Seed, 1〉

= 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1} ∪ {x1 ≥ x0}, 1〉

Now we can partition L2 using the constraint mentioned above.

L2.1 = 〈ConsL2 ∪ {(x1 − x0) > (x2 − x1)}, 1〉 (trivial case)

L2.2 = 〈ConsL2 ∪ {(x1 − x0) ≤ (x2 − x1)}, 1〉 (synthesis case)

L2.1 is again the trivial case, where a linear ranking function is guaranteed

ρ2(X
0) =


x1 − x0 = y0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.1

0 otherwise

Now we check whether the synthesis case has a linear ranking function. Notice that this

time we can not use the method described in Section 2.4 any more, since now the synthesis

case LSL involves X2. In Section 4, we describe a general ranking function synthesis method

which can handle this general form of LSLs. If we feed L2.2 to the method in Section 4, we

get the following linear ranking function.

ρ3(X
0) =


2x0 + z0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.2

−1 otherwise
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L, Seed = CondL

(no lrf found)

L1.1

(find lrf ρ1)
L1.2

(no lrf found)
L2, Seed = {x1 − x0 ≥ 0}

L2.1

(find lrf ρ2)
L2.2

(find lrf ρ3)

trivial synthesis

trivial synthesis

R(L) ⊆ T = τ(ρ1) ∪ τ(ρ2) ∪ τ(ρ3)

Figure 4.2: Execution of L , 〈{x0 ≥ 0, x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 1〉

As shown in Figure 2, up to this point we have divided L to three LSLs, L1.1, L2.1, and

L2.2. Each of these three has a linear ranking function. Let T = τ(ρ1) ∪ τ(ρ2) ∪ τ(ρ3).

Theorem 4.4.2 in Section 4 shows us that R(L) ⊆ T . That is, any two consecutive states

form a pair that belongs to T .

Recall that our goal is to find a T such that R+(L) ⊆ T . We first check whether the

T we found already satisfies R+(L) ⊆ T . As it turns out for this particular case, it is not.

BRC gives an error path that executes L twice. Therefore we get a new LSL L′′ that unrolls

L twice and L′′ describes a relation from X0 to X2.

L′′ = Unroll2(L) with iL′′ = 0, jL′′ = 2

Note L′′ has the same set of constraints as L′, but has different backedge. We feed L′′ to the

method described in Section 4.1. It shows that L′′ has a linear ranking function already.

ρ4(X
0) =


x0 + y0 if ∃X1, X2 such that X0, X1, X2 satisfies L′

−1 otherwise
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Again we update T by T = T ∪ τ(ρ4) and this time the test R+(L) ⊆ T succeeds, i.e.,

we have successfully found a disjunctive ranking relation T for the original LSL L.

4.2.2 Variables over Q or R and Nondeterministic Updates

Notice that when variables range over Q or R, the two constraints ϕ ≥ b and ϕ > Shift(ϕ)

can no longer guarantee ϕ to be a linear ranking function. One way to remedy that is to pick

a small positive value c and partition the state space by ϕ− Shift(ϕ) > c and its negation

ϕ − Shift(ϕ) ≤ c. Similar to the integer example, the former constraint will generate the

trivial case, and the latter constraint will generate the synthesis case.

Another way is to still partition with ϕ > Shift(ϕ) and its negation ϕ ≤ Shift(ϕ).

However since the former can no longer generate a trivial case, we need to continue the

partition process on the trivial case as well.

Nondeterministic updates are also an issue. If we look at ranking function ρ2 above, the

expression y0 originates from the expression x1−x0. We cannot use x1−x0 directly because

the ranking functions need to be expressed in terms of X0. With deterministic updates, we

can get rid of x1 by substituting it with x0 + y0. With nondeterministic updates, we may

not be able to simplify the expression in this manner. Therefore we need to apply Theorem

1 in Section 4.1 to generate ranking functions on X0 only, and when we fail to find one, we

need to partition the trivial case further. In our algorithm shown in Figure 4.4, this is the

approach we take in all situations.

4.3 Algorithm for Synthesizing Disjunctive Ranking Re-
lations

4.3.1 Formal Description

Lastly we define function Diff. This function creates new constraints that we use to partition

the original LSL. It does so by taking constraint, shifting it and then binding the constraint
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and its shift with > or ≤. For instance, for constraint ϕ : x0 ≤ 0 we have Diff1,>(ϕ) = x1 >

x0 and Diff1,≤(ϕ) = x1 ≤ x0.

Definition 14 (Diffi). Given a linear integer constraint ϕ : ψ ≤ b and set of linear integer

constraints Seed, we define

Diffi,∼(ϕ) , Shifti(ψ) ∼ ψ

Diffi,∼(Seed) , {Diffi,∼(ϕ) | ϕ ∈ Seed}

where ∼ is one of {>,≤}.

Now we give two procedures LinearTermCheck and DRR (for “Disjunctive Ranking Re-

lation”). DRR, described in Figure 4.4, is a recursive procedure, that given an LSL L returns

a disjunctive ranking relation T such that R(L) ⊆ T . The procedure DRRDetInt, described

in Figure 4.5, is an optimization of the DRR procedure for the case where the constraints

constitute deterministic updates and the variables are over Z. Procedure LinearTermCheck,

described in Figure 4.3, repeatedly calls DRR while R+(L) * T , each time feeding DRR

with an unrolling of the original L.
Suppose that DRR is called recursively i times with inputs (L1, Seed1), (L2, Seed2), . . . ,

(Li, Seedi). If the linear ranking function synthesis for Li succeeds and return the parameters

r, δ0, δ the following is the ranking function we use,

ρi(X) =



r(X) if exists X1 such that (X,X1) ∈ R(Li) [case-0]

δ0 − δ else if exists X1 such that (X,X1) ∈ R(Li−1) [case-1]

δ0 − 2δ else if exists X1 such that (X,X1) ∈ R(Li−2) [case-2]

...
...

δ0 − (i− 1)δ else if exists X1 such that (X,X1) ∈ R(L1) [case-(i-1)]

δ0 − iδ otherwise [case-i]

(])
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procedure LinearTermCheck // may not terminate
input: LSL Loriginal = 〈ConsL, 1〉
output: disjunction linear ranking relation T or “fail”
begin

L← Loriginal;
T ← ∅;
do

let Seed be the constraints associated with the loop guard of L
if (DRR(L,Seed) terminates and returns the disjunctive linear ranking relation T ′) {

T ← T ∪ T ′;
if BRC(Loriginal, T ) terminates, L← BRC(Loriginal, T );
// L is the counter example BRC found or L = null (no counter example)

}
else // DRR(L, Seed) does not terminate and LinearTermCheck does not terminate

while (L 6= null) // Another way LinearTermCheck may not terminate
return T ;

end.

Figure 4.3: Procedure LinearTermCheck

4.4 Correctness Proof

Theorem 4.4.2 insures the disjunctive ranking relation returned by DRR is large enough to

contain the transition relation of the input LSL. This, in turn, insures that BRC will give

a new counterexample for each iteration (until R+(L) ⊆ T ) and the termination condition

converges towards a solution. The proof of theorem 4.4.2 relies on lemma 4.4.1. Lastly

theorem 4.4.3 asserts the correctness of the algorithm.

Lemma 4.4.1. Let (s0, . . . , sk, . . . , sm·k) be an (m ·k+1)-trace of some L = 〈ConsL, k〉 and

let Seed be over X0, . . . , Xm·(k−1). If DRR is called with L and Seed as input and it succeeds

then (s0, sk) is contained in the return set of DRR.

Proof. We prove the claim by induction on the recursion depth.

Base: No recursion, i.e. the synthesizer synthesized a ranking function for L. By the

correctness of the ranking function synthesizer it follows that (s0, sk) ∈ T

Step: We separate the proof into two cases:
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procedure DRR // may not terminate
input: LSL L = 〈ConsL, k〉, and Seed a subset of ConsL.
output: disjunction linear ranking relation T ′

begin
if linear ranking function synthesis on L succeeds with function ρ

return τ(ρ);
else {

T ′ ← ∅
Lunroll ← Unroll2(L)
for each ϕ ∈ Seed

Seedtriv ← {Diffk,>(ϕ)}
Ltriv ← 〈ConsLunroll

∪ Seedtriv, k〉
T ′ ← T ′∪ DRR(Ltriv, Seedtriv)

Seed← Diffk,≤(Seed)
L← 〈ConsLunroll

∪ Seed, k〉
return T ′∪ DRR(L, Seed)
}

end.

Figure 4.4: Procedure DRR

procedure DRRDetInt // may not terminate
input: LSL L = 〈ConsL, k〉, and Seed a subset of ConsL.
output: disjunction linear ranking relation T ′

begin
if linear ranking function synthesis on L succeeds with function ρ

return τ(ρ);
else {

T ′ ← ∅
Lunroll ← Unroll2(L)
for each ϕ ∈ Seed

Seedtriv ← {Diffk,>(ϕ)}
Ltriv ← 〈ConsLunroll

∪ Seedtriv, k〉
let ϕ′ be the simplification of ϕ over X0 // this simplification is possible since the

// program is deterministic
let ρ be the ranking function for Ltriv with r = ϕ′, δ = 1, δ0 = −1
T ′ ← T ′ ∪ τ(ρ)

Seed← Diffk,≤(Seed)
L← 〈ConsLunroll

∪ Seed, k〉
return T ′∪ DRR(L, Seed)
}

end.

Figure 4.5: Procedure DRRDetInt
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1. Exists sm·k + 1, . . . , sm·(k+1) such that s0, . . . , sm·(k+1) is an (m · (k + 1) + 1)-trace

of Unrollk(L). This case is further refined into two sub-cases:

(a) Exists ϕ ∈ Seed such that s0, . . . , sm·(k+1) satisfy Diffk,>(ϕ). In this case, by

the induction hypothesis, (s0, sk) will be in the return value of the recursive

call to DRR for ϕ and therefore (s0, sk) ∈ T .

(b) s0, . . . , sm·(k+1) satisfy Diffk,≤(ϕ) for all ϕ ∈ Seed. In this case, by the

induction hypothesis, (s0, sk) will be in the return value of the last recursive

call to DRR and therefore (s0, sk) ∈ T .

2. There does not exist sm·k+1, . . . , sm·(k+1) such that s0, . . . , sm·(k+1) is an (m · (k+

1) + 1)-trace of Unrollk(L). In this case s0 is assigned a value by the ranking

function labeled (]) from a case that supersede the case the function assign to sk

and therefore s0 gets a higher ranking. It follows that (s0, sk) ∈ T .

Theorem 4.4.2. Suppose that DRR is called with input L = 〈ConsL, k〉 and Seed where L

is over X0, . . . , Xk. If DRR terminates successfully with return value T ′, then R(L) ⊆ T ′.

Proof. Assume that DRR terminates successfully. Let (s0, sk) ∈ R(L). By the definition

of R(L), there exists s1, . . . , sk−1 such that s0, . . . , sk be a (k + 1)-trace of L. It follows

immediately from Lemma 4.4.1 that (s0, sk) is contained in the return set of DRR.

Theorem 4.4.3. If procedure LinearTermCheck terminates successfully on a program P ,

then P terminates and has a disjunctive linear ranking relation T .

Proof. If procedure LinearTermCheck terminates successfully on program P then we have

found a disjunctive ranking relation T such that R+(P ) ⊆ T . As shown in [21], this is a

sufficient condition for the termination of P and therefore P terminates.

4.4.1 Termination and Complexity of the Algorithm

The procedures LinearTermCheck and DRR as given in this section may not always termi-

nate, in particular when the input LSL is not terminating. When implemented we need to
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bound the recursion depth of DRR and the number of iterations of the main loop. When

the input LSL is deterministic and the variables range over Z, the recursive calls to DRR for

each ϕ ∈ Seed will succeed with no further calls and therefore the number of calls to DRR

will be linear in the depth bound. When the LSL is non-deterministic or the variables range

over Q or R, the number of calls to DRR in the worst case is exponential in the depth bound.

Finally we note that the LSL Unrolli(L) has i times as many constraints and variables as

in L.
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CHAPTER 5
EXPERIMENTS

We created a test suite of LSL loops. To our knowledge it is the first LSL test suite. The loops

are collected from other research work [3–5, 7, 10–12, 20, 21, 27] and real code. The test suite

is still growing. At the time of our submission, it contains 38 LSL loops. Among them 11 are

non-terminating loops, 7 are terminating with linear ranking functions, 20 are terminating

with non-linear ranking functions. Moreover, 6 are non-deterministic, 32 are deterministic,

5 have 1 variable, 22 have 2 variables, 10 have 3 variables, and one has 4 variables. All loops

are executed over domain Z. The test suite as well as the implementation are available at

[8].

We compared our method to linear ranking function synthesis method [20] using the

implementation found in [25], and the polyranking method [6] using the implementation

found in [3]. Detailed experimental results are provided in Table 5.1. The “Terminating”

columns indicate whether the LSL terminates. The columns of “Linear”, “Polyrank”, and

“Ours” indicate whether the methods of Podelski et al.’s linear ranking function synthesis

method [20], Bradley et al.’s polyranking method [6], and ours, respectively, have successfully

found a termination proof or run overtime. The “BRC” column states the number of times

procedure BRC was called and the “DRR” column states the accumulative depth of DRR

recursion. The “Failed Proc” column indicates which procedure, TermChech or DRR, failed

terminating if the whole process failed to terminate. Since the runtime for all three methods

was in the magnitude of a few milliseconds we omitted it from the table.

As shown in the table, our method considerably outperformed the other two methods.

We succeed for all 7 loops with a linear ranking function. Out of the 20 terminating loops

that have no linear ranking function we are successful for 17. For all non-terminating loops,

the execution needs to be manually terminated. Except for one loop, all the proof searches
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Table 5.1: Experiment results

# Terminating Linear Polyrank Ours BRC DRR Failed Proc
1 yes no no no - - DRR
2 yes yes yes yes 0 1 -
3 yes yes yes yes 0 1 -
4 yes yes yes yes 0 1 -
5 yes yes no yes 0 1 -
6 yes no no yes 0 2 -
7 no - - - - - DRR
8 no - - - - - DRR
9 no - - - - - DRR
10 no - - - - - DRR
11 yes no no no - - DRR
12 yes no no yes 0 2 -
13 yes no no yes 0 2 -
14 yes no no yes 0 2 -
15 yes yes no yes 0 1 -
16 no - - - - - DRR
17 no - - - - - DRR
18 yes no no yes 0 2 -
19 no - - - - - DRR
20 no - - - - - DRR
21 yes no no yes 0 2 -
22 no - - - - - DRR
23 yes no no yes 0 2 -
24 yes no no yes 0 2 -
25 yes yes yes yes 0 1 -
26 yes no no yes 0 2 -
27 yes no no yes 0 2 -
28 yes no no yes 0 2 -
29 no - - - - - DRR
30 yes no no no ∞ 3 BRC
31 yes no no yes 0 2 -
32 yes no no yes 0 2 -
33 no - - - - - DRR
34 yes no no yes 1 3 -
35 yes no no yes 0 2 -
36 yes no no yes 0 2 -
37 yes yes yes yes 0 1 -
38 yes no no yes 0 2 -
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fail in procedure DRR. In comparison, the linear ranking function synthesis method [20]

succeeds for all the 7 loops with a linear ranking function; it fails to find a termination proof

for all the 20 examples among the rest that were terminating. The polyranking method [6]

succeeds in proving termination for 5 out of the 7 examples with a linear ranking function; it

fails to find a termination proof for all the 20 examples among the rest that were terminating.

We set the tree depth to be 100 for the polyranking method.
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CHAPTER 6
CONCLUSIONS

This paper describes an automatic method for generating disjunctive ranking relations for

Linear Simple Loops. The method repeatedly finds linear ranking functions on restricted

state space until it reaches an over-approximation of the transitive closure of the transition

relation. As demonstrated experimentally we largely expanded the scope of LSLs that can

be solved. We also extended an existing technique for linear ranking function synthesis. The

extended method can handle more general form of LSLs. Another contribution is that we

created the first LSL test suite.
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