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Abstract

Given a collection of strings and a query string, the goal of the approximate string

matching is to efficiently find the strings in the collection, which are similar to the

query string. In this paper, we focus on edit distance as a measure to quantify

the similarity between two strings. Existing q-gram based methods use inverted

lists to index the q-grams of the given string collection. These methods begin with

generating the q-grams of the query string, disjoint or overlapping, and then merge

the inverted lists of these q-grams. Several filtering techniques have been proposed

to segment inverted lists in order to obtain relatively shorter lists, thus reducing

the merging cost. The filtering technique we propose in this thesis, which is called

position restricted alignment, combines well known length filtering and position

filtering to provide more aggressive pruning. We then provide an indexing scheme

that integrates the inverted lists storage with the proposed filter. It enables us to

auto-filter the inverted lists. We evaluate the effectiveness of the proposed approach

by experiments.
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Chapter 1
Introduction

1.1 Motivation

String matching plays an important role in computer science and related area. It

is the key step in many applications. For example, Bioinformatics, search engine

and shopping website.

Bioinformatics is a cross field that retrieves information from biological data, for

example, DNA sequences. DNA sequences could be simply modelled as sequence

of specific alphabets A,C,G, T . These sequences encode the genetic information of

all known living organisms. Searching a particular segment among other sequences

is a fundamental operation in Bioinformatics. Because of mutation and evolution,

the same genetic sequence appears slightly different in two organisms of the same

species, even two individuals in the same species. Therefore, approximate string

matching is the operation used in Bioinformatics. Moreover, there are more than

100 gigabases of DNA and RNA sequences at the end of 2005 thanks to the new

generation sequencing technology. Thus, a fast approximate pattern matching is

critical in the research.

Another application of the approximate pattern matching is from business, such

as searching engine and shopping sites. The back end servers of searching engine

and shopping sites have numerous information stored. Users will query the site for

knowledge or products. In reality, users may misspell words or only have parts of

the words. In those cases, exact pattern matching will not give meaningful results.

For example, users searching for “Massachusetts” may just enter in a word like
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“Masachusets”. In order to improve user experience, the system need return the

result quickly. So a fast approximate string matching method is necessary.

1.2 Problem Definition

In this section, we give the formal definition of approximate string matching prob-

lem. Given a string r and a collection of strings S, an approximate string query

finds all strings in S similar to r. In this thesis, we use edit distance or Levenshtein

distance to quantify the similarity between two strings.

Definition 1.2.1. Given two strings A = a1 · · · am and B = b1 · · · bn, the edit

distance or Levenshtein distance is the minimal number of following operations

needed to transform string A to string B:

1. deleting a symbol from position i to get a1 · · · ai−1ai+1 · · · am;

2. inserting a symbol b at position i to get a1 · · · aibai+1 · · · am;

3. changing a symbol at position i to symbol b to get a1 · · · ai−1bai+1 · · · am.

We denote the edit distance between strings r, s by ed(r, s).

In this thesis, two strings are similar if their edit distance is not larger than a

specified edit distance threshold τ . We formalize the problem of approximate string

matching as follows.

Definition 1.2.2. Given a non-negative integer τ , a string r and a collection of

string S, an approximate string query finds all pairs (r, s) with s ∈ S such that

ed(r, s) ≤ τ .

For example, consider the strings in Table 1.1. Suppose threshold τ = 2. Then

strings s1 and s2 are similar to query string r = “AACTGTGC” as their edit

distance is not larger than 2.
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TABLE 1.1. A collection S of strings

Id Strings Length
s1 AAACTGTGC 9
s2 AACTGTC 7
s3 CTAATCT 7
s4 GCGTC 5
s5 GCGTCGT 7
s6 TCAACCGTACG 11
s7 TCCTATAAA 9

1.3 Common Approach

Existing methods to address this problem can be broadly classified into two cate-

gories based on the way of indexing string database. The methods in first category

use the suffix tree data structure to index string database. These methods rely

on the fact that edit distance between two strings is bounded below by the edit

distance between their prefixes. This allows us to filter out strings, which have a

prefix with edit distance larger than the required threshold with respect to prefixes

of the query string. However, these methods are usually inefficient for long strings

as they have a small number of shared prefixes. Moreover navigation cost of suffix

tree suffers from exponential dependence on the pattern length as well as the edit

distance threshold in worst case. The methods in second category are q-gram based

and make use of inverted lists to index the q-grams. A q-gram is a consecutive sub-

string of a string with size q that can be used as a signature of the string. The key

idea these methods exploit is that two strings are similar only if their q-gram sets

share enough common grams. A lower bound on the number of common grams

depends on the length of the grams i.e., q as well as the edit distance threshold.

Thus, given a query string, these methods first generate its q-grams, retrieve the

corresponding inverted lists, and then merge the lists to find strings similar to the

query string. These methods also use various filtering techniques to prune strings

(length filtering and position filtering being the most common), effectively reduc-
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ing the size of lists to be merged, and thus reducing query time. However these

methods have following limitations:

• Most of the existing methods use “one-for-all” principle and fix q at the time

of index construction. As known from the literature, a larger value of q results

in a smaller size of inverted lists, which may reduce the cost of merging, thus

improving the query performance [13].

• Applying filters to filter out the candidate strings during query execution can

be expensive in terms of computational cost.

1.4 Related Work

There are many studies on approximate string matching. Several algorithms [3, 13,

12] have been proposed for answering approximate string queries efficiently. Their

main strategy is to use various filtering techniques to improve the performance.

Traditionally, fixed length q-grams are widely used for answering edit similarity

queries to utilize the effectiveness of count filtering in pruning candidates. In [13]

authors have proposed to preprocess the string collection to obtain a dictionary of

high-quality grams of variable lengths based on gram frequencies. Query partition-

ing using such a dictionary can help to achieve better performance than using a

fixed length q-grams partitioning. However most of the existing algorithms assume

a static q determined at the index construction, whereas we make an attempt to

adaptively select the appropriate gram length based on the required edit distance

threshold on the fly during query execution. Moreover, applying various filters is

an independent step in the existing algorithms. We alleviate the overhead of apply-

ing filters during query execution by integrating the filter conditions with inverted

lists storage during index construction itself. As these algorithms need to merge

the inverted lists of grams generated from the strings, efficient merging techniques
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have also been developed [20, 12]. We use a simple “ScanCount” method [12] for

merging the lists, which is known to achieve a good performance when combined

with various filtering techniques.

Due to the difficulties in selecting appropriate edit distance threshold while

querying, lots of research has been devoted to the problem of top-k string similar-

ity search recently. Given a collection of strings and a query string, top-k string

similarity search returns the top-k most similar strings to the query string. Kahveci

et al. [10] proposed the solution which first converts a set of contiguous substrings

into a Minimum Bounding Rectangle (MBR) and then use it to estimate the edit

distance threshold of top-k answers. Yang et al. [23] proposed a gram-based method

that increments the edit threshold in steps and adaptively selects the gram length

to be used. Though the intuition behind using different gram lengths is similar to

our approach, we maintain a unified index as opposed to multiple inverted indexes

maintained in [23]. Recent studies on this problem also includes B+-tree based

approach by Zhang et al. [24] and trie based approach by Deng at al. [6]. The

former traverses the B+-tree nodes iteratively and computes a lower bound of edit

distances between the query and strings under the node. This bound is then used

to update the edit distance threshold. Whereas the later traverses the trie and

progressively computes the edit distance between query string and strings grouped

by a common prefix.

A closely related and extensively studied problem is “string similarity joins” [19,

8, 4, 2, 11, 22, 14, 7]. Given two sets of strings, a similarity join finds all similar

string pairs. The approximate string searching problem could be treated as a spe-

cial case of similarity join. It is known that behavior of an algorithm could be

very different while answering approximate string matching queries from that of

answering join queries. Therefore, though the algorithms developed for similarity
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joins can be adapted for edit similarity queries, they might not be efficient. Ap-

proximate string matching is an important problem and needs to be investigated

separately, which is the focus of this paper.

In the literature, “approximate string matching” also refers to the problem of

finding a pattern string approximately in a text [16, 5] i.e., given a query string

and a text string, goal is to find all substrings of the text that are similar to the

query. The problem studied in this paper is different, as we want to report the

strings similar to a query string from a given collection of strings. As most of the

techniques introduced for the former problem rely on suffix tree navigation they

lead to poor performance when adapted to our problem.

1.5 Thesis Organization

In Chapter 2, we present the fundamental data structures we will use in our al-

gorithm, i.e. suffix tree and wavelet tree. In Chapter 3, we summarize a general

framework to address approximate string matching problem and introduce the new

technique we invented to eliminate non-candidate strings in a fast way. In Chapter

4, we talk about a few technique in the implementation to filter out more strings

and speed up matching process. In Chapter 5, we run some experiments on Sea

Star genomes and compare our method to existing methods.
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Chapter 2
Suffix Tree And Wavelet Tree

2.1 Suffix Trees

The suffix tree is one of the most important data structures in string processing

applications. It is a tree of all suffixes of a string. So first we introduce the definition

of the suffix.

Definition 2.1.1. Given a string s = s1 · · · sn, the ith suffix of s is the substring

si · · · sn.

In order to construct the suffix tree of a string, we require each string terminated

with a special character. Let Σ be the alphabet of strings. Let $ /∈ Σ be a unique

character, which terminates each string. We define the suffix tree following the

definition in [1].

Definition 2.1.2. Given a string s = s1 · · · sn+1 with sn+1 = $, the suffix tree of

s, denoted by ST (s), is a compacted trie of all suffixes of string s satisfying:

1. ST (s) has n leaves labeled 1, · · · , n.

2. Each internal node has at least 2 children.

3. Each edge in the tree is labeled with a substring of s.

4. The concatenation of edge labels from the root to the leaf labeled i is the

suffix starting from si.

5. The labels of the edges connecting a node with its children start with different

characters.
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6. The tree is lexicographically arranged such that the ith leftmost leaf corre-

sponding to the ith suffix in lexicographic order.

To illustrate the definition, we show an example of the suffix tree.

Example 2.1.3. Let s = BANANA$. Then s has suffixes:

0. BANANA$

1. ANANA$

2. NANA$

3. ANA$

4. NA$

5. A$

They form the suffix tree of s in Figure 2.1.

It is easy to see that except the edge labels, the size of the suffix tree is O(n). In

order to obtain linear space implementation of suffix tree, we represent the edge

label by two integers. The first integer denotes the starting position of the substring

for that edge and the second integer denotes the ending position of the substring

for that edge.

We also can construct suffix tree for a collection of strings. We call it the gener-

alized suffix tree.

Definition 2.1.4. Given a collection of strings S = d1, · · · , dm, the generalized

suffix tree of S, denoted by GST (S), is the suffix tree of string d1 · · · dm, where

d1 · · · dm is the concatenation of di’s.

8



FIGURE 2.1. Suffix tree for the string BANANA. Each substring is terminated with
special character $. The six paths from the root to a leaf (shown as boxes) correspond to
the six suffixes BANANA$, ANANA$, NANA$, ANA$, NA$ and A$. The numbers in
the leaves give the start position of the corresponding suffix. Suffix links, drawn dashed,
are used during construction.

2.2 Wavelet Trees

In our algorithm, rank query is required to find the position of match in suffix

array. The wavelet tree is a standard choice of rank query problem.

Definition 2.2.1. Given a string s drawn from alphabet Σ, the wavelet tree of s,

denoted by WT (s), is an ordered balance binary tree on Σ satisfying

1. Each leaf is labeled with a symbol in Σ, and the leaves are sorted alphabeti-

cally from left to right.

2. Each internal node u represents an alphabet set Σu, and is associated with

a bit-vector Bu. In particular, the alphabet set of the root is Σ, and the

alphabet set of a leaf is the singleton set containing its corresponding symbol.

3. Each node partitions its alphabet set among the two children (almost) equally,

such that all symbols represented by the left child are lexicographically

smaller than those represented by the right child.
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4. For the node u, let Au be a subsequence of A by retaining only those symbols

that are in Σu. Then Bu is a bit-vector of length |Au|, such that Bu[i] = 0 if

and only if Au[i] is a symbol represented by the left child of u. Indeed, the

subtree from u itself forms a wavelet tree of Au.

Here is an example of wavelet tree.

Example 2.2.2. Let s = AGTAGACTAGTGGATTACCATCACT and Σ =

{A,C,G, T}. The wavelet tree of s is drawn in Figure 2.2.

A  G  T  A  G  A  C  T  A  G  T  G  G  A  T  T  A  C  C  A  T  C  A  C  T
∑={A,C,G,T}

0   1   1   0   1   0   0  1   0   1   1  1   1   0   1  1   0   0  0   0  1   0   0   0  1

A  A  A  C  A  A  A  C  C  A  C  A  C G  T  G  T  G  T  G  G  T  T  T  T
∑={A,C} ∑={G,T}

0   0   0   1   0   0   0   1  1   0   1  0   1 0   1   0   1  0   1  0   0   1  1   1   1

∑={A} ∑={C} ∑={G} ∑={T}
0   0   0   0   0   0   0   0 1   1   1   1   1 0  0  0  0  0 1   1  1  1  1   1   1

FIGURE 2.2. The wavelet tree of s on alphabets Σ = {A,C,G, T}.

The following is a useful lemma on wavelet trees.

Lemma 2.2.3. The wavelet tree of A can be maintained in n log |Σ|(1+o(1)) bits,

such that given a range [l, r] and a symbol π ∈ Σ as the input, all those i ∈ [l, r]

with A[i] = π can be reported in O((1 + output) log |Σ|) time.

By using multiple wavelet trees and the above lemma, we shall answer more

sophisticated orthogonal range searching queries as follows:
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Lemma 2.2.4. A given set of n 3-dimensional points in an [0, n−1]× [0, α−1]×

[0, β−1] grid can be maintained in n(logα+log β)(1+o(1)) bits such that all those

points with its x-coordinate within [l, r], and π ∈ [0, α− 1] and π′ ∈ [0, β− 1] as its

y and z coordinates respectively can be reported in O((1 + output)(logα + log β))

time, where l, r, π and π′ are input parameters.
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Chapter 3
A General Framework And A New
Technique

3.1 A General Framework

This section gives an overview of the proposed framework and describes the naive

way of applying the known length and position filters. We begin by partitioning

the given query string r into τ + 1 disjoint segments, where τ is the threshold

edit distance. Here for simplicity we assume |r| ≥ τ + 1. The idea behind such a

partitioning is: if a string s has no substring that matches any segment of r, then

s cannot be similar to r. Lemma 3.1.1 formally summarizes this idea.

Lemma 3.1.1. Given a string r with τ + 1 segments and a string s, if s is similar

to r within threshold τ , s must contain a substring which matches a segment of r.

This partitioning technique divides the query string into τ + 1 segments each

with length b|r|/(τ+1)c except the last |r| mod (τ+1) segments, which have length

d|r|/(τ +1)e. For example, consider a string r = AACTGTGC and suppose τ = 2.

We partition it into 3 segments with first segment of length b8/3c = 2 and last

2 segments having length d8/3e = 3. Thus r has three segments {“AA′′, “CTG′′,

“TGC ′′}. Since strings s4, s5 have no substrings matching segments of r, they are

not similar to r. We introduce the notation r(i) to represent the ith segment of r

after partitioning. We refine this partitioning technique later in Section 4.1.

To be able to efficiently search the segments of the query string, we build a GST

on the string collection S. Let n be the total length of the strings in the collection

S. In addition to GST, we maintain two arrays s ids and s pos with each of length

n as follows.

12



Definition 3.1.2. Suppose the ith leftmost leaf of GST belongs to string x ∈ S.

Then we set s ids[i] to be x and set s ids[i] to be the starting position of this suffix

in x.

These two arrays essentially stores the information about the leaves of GST.

They help to eliminate the need to compute the same information during query

answering. A straight forward approach to find candidate strings those are poten-

tially similar to r is to enumerate all the strings, which have at least one of the

segments of r as its substring. This can be achieved by simply scanning the array

s ids[li...ri], where [li...ri] represents the suffix range of ith segment of r, i.e. r(i)

for 1 ≤ i ≤ τ + 1.

We can reduce the number of potential candidates by applying well known length

filtering and position filtering:

• Length filtering: The length of a string s that is within edit distance τ from

query string r is bounded by the equation: ||r| − |s|| ≤ τ

• Position filtering: Let s be the string which has edit distance less than or

equal to τ with respect to string r. Without loss of generality let s contains

a substring s(i) that matches segment r(i). By Lemma 3.1.1, there is at-

least one such segment since ed(r, s) ≤ τ . Also let segment r(i) has starting

position r(i)sp in r and substring s(i) has starting position s(i)sp in s. As

noted in [14], if alignment of two strings produced by matching s(i) and r(i)

gives edit distance less than or equal to threshold τ , then |r(i)sp−s(i)sp| ≤ τ .

The above filters can be easily applied by scanning the s ids and s pos arrays

simultaneously. While scanning for the suffix range [li...ri] for segment r(i), we

ignore the string s ids[j] if its length is not in the range [max(0, |r| − τ ])...|r|+ τ ]

to apply length filtering. Similarly we ignore the string s ids[j] if its corresponding

13



starting position, i.e. s pos[j], is not in the range [max(0, r(i)sp− τ)...r(i)sp + τ ] to

apply position filtering. Here we note that a particular string s may appear multiple

times in the suffix range [li...ri], that is, there can be more than one possible

alignments of r and s based on matching of segment r(i). A string s becomes a

possible candidate due to segment r(i) if at least one of its alignment satisfies

the position filtering. Out of the strings listed in Table 1.1 that have substring

matching with at least one of the segments of query string r = ”AACTGTGC”,

string s6 can be pruned using length filtering whereas string s7 can be pruned

using position filtering. Thus, we are now left with only s1, s2 and s3 as candidate

strings.

Finally, each candidate string that satisfies both filters described above is sub-

jected to verification that involves computing its actual edit distance with the query

string. Though number of interesting optimizations to the verification process have

been proposed so far [14], we use verification algorithm by Ukkonen along with sim-

ple early termination criteria. We defer more details about optimizing verification

step to Section 4.3.

3.2 A New Technique

In this section, we describe the new technique, the ”position restricted alignment”,

which provides more aggressive filtering than applying both position and length

filtering independently. Recall the terminologies from the previous section. Let us

assume that we have two strings r and s with r(i) and s(j) as their substrings

respectively such that r(i) = s(j). Further r(i)sp and s(j)sp represents the start-

ing positions of r(i) and s(j) within r and s respectively. Now we partition the

string s into ←−s (j), s(j),−→s (j) , where ←−s (j) and −→s (j) are the parts of s respec-

tively on the left and right side of the segment s(j). Similarly r is partitioned into

14



←−r (i), r(i),−→r (i), where ←−r (i) and −→r (i) are the parts of r respectively on the left

and right side of the segment r(i). Then position restricted alignment filtering is

based on the following observations:

Lemma 3.2.1.

ed(r, s) ≤ τ

if and only if

ed(←−r (i),←−s (j)) + ed(−→r (i),−→s (j)) ≤ τ

We note that ed(←−r (i),←−s (j)) captures the essence of position filtering whereas

ed(−→r (i),−→s (j)) captures the essence of length filtering. Continuing the example

from previous section, we are left with candidate strings {s1, s2, s3} after applying

length and position filtering. If we apply position restricted alignment we can

decide to prune string s3, which satisfies length as well position filter. We note

that position restricted alignment is a tighter filtering condition and will filter out

any string that can be filtered by either length filtering or position filtering.

By expanding the above equation using simple length filtering we derive the

following results.

Theorem 3.2.2. If

ed(r, s) ≤ τ,

then we have

||←−r (i)| − |←−s (j)||+ ||−→r (i)| − |−→s (j)|| ≤ τ,

|r(i)sp − s(j)sp|+ |(|r| − r(i)sp)− (|s| − s(j)sp)| ≤ τ.

By solving the above inequality, we can obtain O(τ 2) solutions in the form of

(s(j)sp, |s|) pair. Let C be the set of all such possible pairs. Therefore, our task

is now reduced to find the strings such that pair (s pos[j], |s ids[j]|) ∈ C and
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j ∈ [li...ri], where [li...ri] is the suffix range of partition segment r(i). To answer

such a query efficiently we use the data structure described in Lemma 2.2.4. For

us to be able to use the data structure, we simply map the jthe leftmost leaf of

GST to a 3 dimensional point (j, s pos[j], |s ids[j]|).

Though the idea behind position restricted alignment is similar to the one pro-

posed in [14], there are primarily two distinctions with respect to our work: (1)

In [14], authors goal is to answer similarity join queries assuming fixed edit dis-

tance threshold (τ), whereas our indexing technique is independent of τ . (2) The

algorithm in [14] needs to access multiple inverted lists and then apply the filtering

condition, whereas we do not need to apply the filter at the time query execution.
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Chapter 4
Implementation

This section describes how the framework proposed in earlier sections can be ex-

tended to incorporate more filtering techniques to improve query performance. We

also briefly discuss the verification process that our framework uses towards the

end of the section.

4.1 Incorporating count filtering

Instead of partitioning the string r into τ+1 segments, we can partition it into τ+k

segments for k ≥ 1. As a consequence, a string s qualifies as a candidate only if

it has substrings matching at least k segments of the query string r. Requirement

to share k ≥ 1 segments of the query string can help us achieve more effective

pruning than simply restricting k to be 1. Lemma 3.1.1 can now be rewritten to

reflect the generalized count filtering as follows.

Lemma 4.1.1. Given a string r with τ +k segments and a string s, if s is similar

to r within threshold τ , s must contain substrings that match at-least k segments

of r for k ≥ 1.

Before we describe the partitioning that incorporates the count filtering as sum-

marized in the lemma above we highlight the necessary changes required to obtain

candidate strings based on count filtering. We use a simple “ScanCount” algorithm

proposed in [12], so as to select only those strings for verification that satisfy the

count filtering. We maintain an array of counts for all the string ids in S. For each

segment r(i) we first obtain the candidate strings resulting due to alignment of

r(i) and increment the count corresponding to each of the candidate string by 1.
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Then the string ids that appear as a candidate due to at least k segments can be

reported.

Here restriction that each segment r(i) can contribute only once towards a string

s in count array poses overhead since string id can appear in the suffix range [li...ri]

multiple times and more than one alignment can satisfy the position restricted

alignment condition as well. Though such a restriction can be easily handled theo-

retically by using chaining idea in [15], it has the potential to offset any advantage

obtained by splitting the query strings into k > 1 partitions. Therefore, we decide

to enforce the uniqueness restriction in reporting candidate strings per segment r(i)

selectively. Otherwise, we let the candidate string to be reported multiple times

per segment r(i), thus resulting in inflated count value and possibly qualifying a

string as a candidate incorrectly. We note that a string that incorrectly qualifies

as a candidate will be pruned during final verification and will not be incorrectly

reported as an answer.

Dilemma of choosing k: On one hand, by increasing the length of segments, we

can hope to make the segment distinct enough so that it does not appear multiple

times in the same string. This reduces the number of strings incorrectly reported

as a candidate thus saving the expensive verification operation. On the other hand

by decreasing k, we will have a lower threshold on the number of segments shared

by similar strings, causing a less selective count filter to eliminate dissimilar string

pairs. We use a heuristic technique that initializes k = 1. We then increment k

till following condition is satisfied: b|r|/(τ + k)c = b|r|/(τ + k + 1)c. This simple

technique tries to maximize the selected value of k while ensuring minimum length

of the segments of r remain unchanged and thus offers a useful middle ground for

selection of k.
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Dynamic partitioning: Encouraged by the research efforts in variable length par-

titioning so far [13], we form a dictionary of strings based on which an informed

decision can be made for query string partitioning. We construct this dictionary by

navigating GST in depth first search manner. Inline with the existing approaches,

we assume the availability of two length bounds qmin and qmax to limit the dic-

tionary size as well its construction time. We assign a weight to each node u in

GST given by dist(u)/(r − l + 1), where [l...r] represents the suffix range of node

u and dist(u) represents the number of distinct strings that have path(u) as one

of its suffix. In another words, dist(u) is the number of distinct string ids in the

subarray s ids[l...r]. Intuitively, the weight of the node tries to estimate the over-

head involved in reporting only the unique candidate strings if u is the locus node

of a segment of string r. Along with two length bounds we assume a user defined

threshold 0 ≤ UQmin ≤ 1 is given. Then string represented by path(u) is added to

the dictionary while navigating the GST if following conditions are satisfied:

• dist(u)/(r − l + 1) < UQmin.

• qmin ≤ |path(u)| ≤ qmax.

• string corresponding to node v i.e. path(v) does not exists in the dictionary

such that v is a proper ancestor of node u.

Based on such a dictionary we now follow the procedure described below to

obtain the proposed dynamic partitioning of the query string r. It is a greedy

algorithm that initializes the segment with the minimum length of b|r|/(τ+k)c and

keeps incrementing it by one character at a time till it does not belong to dictionary

or it is not possible to extend this segment any further without reducing the length

of yet to produce segments below desired minimum length i.e. b|r|/(τ + k)c.

19



Input: Dictionary D, string r, segment count (τ + k)
Output: Set R of partitioned segments of r
R = empty set
i = 1, pos = 1
len = b|r|/(τ + k)c, rem = |r| mod (τ + k)
while ( dopos ≤ |r| − len+ 1)

r(i) = r[pos...pos+ len]
j = 0
while ( dorem > 0 AND r(i) ∈ D)

j = j + 1
rem = rem− 1
r(i) = r[pos...pos+ len+ j]

end while
i = i+ 1
pos = pos+ len+ j

end while

FIGURE 4.1. Psudocode.

Other than directing the query string partitioning, the dictionary also allows us

to selectively enforce the uniqueness restriction in reporting candidate strings for

segment r(i). Each segment r(i) in the final partitioned set R that also belongs to

the dictionary, implies that the suffix range of r(i) contain multiple occurrences of

same string ids and hence overhead of applying the uniqueness restriction can pay

off by reducing the number of incorrectly reported candidate strings and thereby

avoiding their verification cost.

We note that the choice of user defined parameter UQmin greatly affects the

quality of partitioning as well as play an important role in balancing the overhead

of applying uniqueness restriction with the verification cost of incorrectly reported

candidate strings. We leave the strategy of selecting good value for UQmin as a

future work and decide its value empirically for the work in this paper.

4.2 Filtering based on frequency distance

The frequency distance based filtering was first introduced by Kahveci and Singh [10].

The intuition behind this filtering is that if two strings are similar, then the fre-
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quency of the alphabet symbols in two strings should also be similar. For the formal

application, we first define the frequency vector. Given a string s from the alphabet

Σ, frequency vector f(s) is defined as f(s) = [c1, ..., c|Σ|], where ci is the count of

ith alphabet of Σ. Below, we first define the edit distance and then Theorem 4.2.2

captures the relation between frequency distance and edit distance as established

in [10].

Definition 4.2.1. Let r and s be two strings from the same alphabet Σ. Let f(r)

and f(s) be the frequency vectors of r and s respectively. The frequency distance

of r and s to be

fd(r, s) = max{posDistance, negDistance},

where

posDistance =
∑

f(r)i>f(s)i

f(r)i − f(s)i

and

posDistance =
∑

f(r)i<f(s)i

f(r)i − f(s)i

Theorem 4.2.2. Let r and s be 2 strings from the same alphabet Σ. Then we have

fd(r, s) ≤ ed(r, s).

Frequency distance based filter can be particularly useful for long strings with

small alphabets e.g. DNA strings. In addition to the various index components

described earlier we also maintain the frequency vector for each string in the col-

lection S. Such a storage does not result in too much of space overhead with

restricted alphabet size and relatively long strings. Also applying this filter can be

much faster than the verification process even with the optimizations.
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4.3 Improving the verification

The classic dynamic programing algorithm of edit distance of strings r, s takes

O(|r| × |s|) times and space. This algorithm computes a matrix M , whose [i, j]th

entry records the edit distance between substrings r[0...i] and s[0...j]. As we only

need to determine whether ed(r, s) ≤ τ , computing the entire matrix M is not

necessary. We use verification algorithm by Ukkonen with time complexity of

O((τ + 1)×min(|r|, |s|)). It relies on the following theorem.

Theorem 4.3.1. In order to check inequality ed(r, s) ≤ τ , it is enough to computer

the entries on diagonal of the matrix satisfying −∆ ≤ j−i ≤ |r|−|s|+∆ if |r| ≤ |s|

or |r| − |s| −∆ ≤ j − i ≤ ∆ if |s| > |r|, where ∆ = (τ − ||r| − |s||)/2.

A straightforward early-termination method is to check if all elements in one row

are larger than τ . Then by dynamic programming algorithm all the values in the

rows yet to computed must be larger τ . This simple technique do not add much

computational overhead and was found to be effective during experimentation.
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Chapter 5
Experimental Analyses

5.1 Experimental Setup

We have implemented our method and conducted an extensive set of experimental

studies on the sea star transcriptomic sequences provided by David Foltz Labora-

tory at http://www.foltzlab.biology.lsu.edu.

• We use a set of 100,000 DNA sequences with length 100 − 200, a set of

5,000,000 DNA sequences with length 100− 200.

• We choose edit distance threshold values in {0, 4, 8, 12, 16}.

5.2 Platform

All the algorithms were implemented in C++ and compiled using GCC 4.7 with

-O3 flag. All the experiments were run on a Ubuntu machine with an Intel core i5

quad core 1.6GHz processor with 256K L2 cache and 6144K L3 cache and 8GB

RAM.

5.3 Source Code

The components in index, i.e. suffix tree is available in public. We obtain these

libraries from

• Compressed Suffix Tree: http://www.uni-ulm.de/in/theo/research/sdsl.

html, version 0.9.8.

5.4 Experimentation

We consider four variants of the the proposed indexing scheme as follows:
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• I-GST : This is the index as described in Chapter 3, Section 3.1 and makes

use length and position filtering independently.

• I-PRA: This is the index as described in Chapter 3, Section 3.2. It uses

aggressive position restricted alignment for filtering out candidate strings and

also make use the wavelet tree based index storage so that cost of applying

filters at the query time can be avoided.

• I-CFA: This is the index as described in Chapter 3, Section 3.2 and utilizes

the count filtering introduced in Section 4.1. While we use count filtering

technique, we need a data structure to record how many grams of data string

appears in the query string. We use an array of size of number of data strings

for I-PRA. It also employes the dictionary to dynamically partition the query

string.

• I-CFH: This is the index as described in Chapter 3, Section 3.2 and utilizes

the count filtering introduced in Section 4.1. However, we use a hash table to

record the counting. It also employes the dictionary to dynamically partition

the query string.

• I-FDF : This is the index that further improves I-CFH index by incorpo-

rating the frequency distance filtering.

5.5 Effect of position restricted alignment

In this experiment, we evaluate the effectiveness of position restricted alignment

against the length and position filter applied independently. We compare index I-

GST with variant I-PRA and use the number of GST leafs remained after applying

the filtering conditions by each of them as measure of performance. As shown in

the Figure 5.1, position restricted alignment is able to filter out up to 44% of the
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FIGURE 5.1. Effect of position restricted alignment. The black columns are the number
of leafs left after applying position filter and length filter separately. The grey columns
are the number of leafs left after applying position restricted filter.

leafs that could not be filtered out using either length or position filtering. We also

highlight that I-PRA do not have to apply the the filter during execution and

hence also improves the query time.

5.6 Effect of count filtering

In this experiment, we evaluate the effectiveness of applying count filtering by

partitioning the query string into τ + k segments for k > 1. We compare the

number of strings left after applying the count filtering with the number of strings

left without applying the count filtering. As shown in Figure 5.2, count filtering

along with the dynamic partitioning technique can reduce the string number up to

74%. However, the average query time after applying the count filtering could not

be reduced up to the same scale as shown in Figure 5.3. This is because the time

is increased by the overhead of applying the counting filtering.
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FIGURE 5.2. Effect of count filter in number of strings left. The blue columns are the
numbers of strings left without count filtering. The red columns are the numbers of
strings left with count filtering.

5.7 Effect of using hash table

In this experiment, we evaluate the effectiveness of using hash table to apply the

counter filtering instead of using an array with size of number of data strings. We

compare the average query time by using hash table with the average query time

by using an array. As shown in Figure 5.4, when τ is small, we need count a few

strings. In this case, using a hash table could save a lot of time. When τ is large,

we need count a lot strings, which is approximately the same as using an array.

However the overhead of calling function of hash table is large, which reduces the

benefit of using hash table is reduced.

5.8 Effect of frequency distance filtering

This experiment is intended to evaluate the effectiveness of applying frequency

distance filtering. We compare index variant I-CFH with I-FDF as they differ

only in one aspect. The former does not employ the frequency distance filtering
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FIGURE 5.3. Effect of count filter in query time. The blue columns are the average
query time without count filtering. The red columns are the average query time with
count filtering.

whereas the later does. Figure 5.5 reveals that such filtering can effectively reduce

the number of candidate strings.
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FIGURE 5.4. Effect of using hash table to count. The blue columns are the average query
time of using an array. The red columns are the average query time of using hash table.
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FIGURE 5.5. Effect of frequency distance filtering. The blue columns are the numbers
of strings left before applying frequency filtering. The red columns are the numbers of
strings left after applying frequency filtering.
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