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Abstract
Diagnosis of cancer very often depends on conclusions drawn after both clinical and

microscopic examinations of tissues to study the manifestation of the disease in order

to place tumors in known categories. One factor which determines the categorization

of cancer is the tissue from which the tumor originates. Information gathered from

clinical exams may be partial or not completely predictive of a specific category of

cancer. Further complicating the problem of categorizing various tumors is that

the histological classification of the cancer tissue and description of its course of

development may be atypical.

Gene expression data gleaned from micro-array analysis provides tremendous

promise for more accurate cancer diagnosis. One hurdle in the classification of tumors

based on gene expression data is that the data space is ultra-dimensional with rela-

tively few points; that is, there are a small number of examples with a large number

of genes. A second hurdle is expression bias caused by the correlation of genes.

Analysis of subsets of genes, known as gene set analysis, provides a mechanism by

which groups of differentially expressed genes can be identified. We propose an en-

semble of classifiers whose base classifiers are ℓ1-regularized logistic regression models

with restriction of the feature space to biologically relevant genes. Some researchers

have already explored the use of ensemble classifiers to classify cancer but the effect

of the underlying base classifiers in conjunction with biologically-derived gene sets on

cancer classification has not been explored.
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Chapter 1

Introduction

Cancer is a disease in which cells in specific tissues in the body undergo uncontrolled

division. This condition results in the malignant growth or tumor. Cancerous cells

very often invade and destroy surrounding healthy tissues and organs. The National

Cancer Institute reports that there are currently over 200 different forms of cancers.

The potential to prevent, diagnose and treat any of these forms of cancers require

insights into how changes in their genome occur.

Cancer diagnosis has been based largely on the morphologic characteristics of

biopsy specimens by clinicians. This is understandable since cancer presents a new

physical manifestation (phenotype) in a patient. However, the realization that it is

usually preceded by a change in a person’s genetic makeup (genotype) offers great

potential in giving researchers deeper insights into the biology of cancer.

With the Human Genome Project [10] which succeeded in identifying and mapping

nearly 25,000 genes of the human genome from both physical and functional perspec-

tives, the potential to revolutionize medicine, cancer research being no exception, has

never been more promising.

Today, microarray technology has provided further impetus for cancer research.

Microarray expression analysis is a widely used technique for profiling mRNA expres-

sion. The mRNA carries genetic information from DNA to the ribosome, where they

specify the amino acid sequence of the protein products of gene expression. DNA
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segments containing genes of interest undergo polymerase chain reaction (PCR) [16],

a method developed by Kary Mullis in the 1980s. Gene expression microarrays are

then constructed by transferring cDNA in salt solutions onto chemically modified

glass microscope slides using a contact-printing instrument. The target cDNA then

binds with just those probes that have complementary base sequences, in a process

known as hybridization. The hybridization process allows relative expression levels to

be determined based on the ratio with which each probe hybridizes to an individual

array element. A laser scanner is then used to measure fluorescence intensities, which

allows for the simultaneous determination of the relative expression levels of all the

genes represented in the array.

This technology allows scientists to conduct high-throughput experiments to mea-

sure the activity of genes; that is, it allows scientists to examine thousands of genes

simultaneously to determine which are on and which are off. A microarray permits

many hybridization experiments to be performed in parallel. All the data is collected

and a profile is generated for gene expression in the cell. Each cell has some combi-

nation of genes turned on, and others turned off depending on the cell’s function at

a given point in time. Gene expression profiling enables scientists to create a global

picture of cellular functions.

Cancer diagnosis is an emerging clinical application of gene expression microarray

analysis [53]. There is increasing evidence in the literature to support the notion

that the clinical behavior of various forms of cancers is linked to underlying gene

expression differences that are detectable at the time of diagnosis.

Machine learning research in which gene expression data is used to put cancers into
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categories and discover their genetic markers abounds in the literature. The research

includes the development of both supervised and unsupervised learning methods.

Some broad categories include simple traditional machine learning models, hybrid

methods and complex machine learning methods.

Artificial neural networks are an example of a traditional supervised learning

model. Artificial neural networks (ANN) have been used to classify cancer from gene

expression profiles. [32]. ANNs were used to develop models for the classification of

small, round blue-cell tumors (SRBCTs) into four distinct diagnostic classes.

The Nearest Neighbor classification rule is also a simple traditional machine learn-

ing algorithm. A hybrid genetic algorithm K-Nearest Neighbor method (GA/KNN)

has been used to classify colon and leukemia cancer data sets [36]. The GA/KNN

method was found to be effective in identifying subsets of genes with excellent pre-

dictive powers. A nearest neighbor-based algorithm uses a more localized method of

classification. It requires no initial processing of the training data, and the classifica-

tion of new samples is based on their nearest neighbors in the training set. There are

a wide variety of KNN classifiers since “nearest neighbor” depends on the proximity

metric that is used and the way the decision boundary is computed.

There have also been extensive inroads made into breast cancer classification and

detection using gene expression profiles. Rank Nearest Neighbor (RNN) classification

rules, another Nearest Neighbor-based approach, have been used in classifying breast

cancer [1]. Some cancer classification methods have involved the use of clustering [29],

a widely used machine learning algorithm. For example, there was a study that used
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clustering to classify breast carcinomas based on variations in gene expression patterns

that were derived from cDNA microarrays [52].

Bayesian networks, based on probability theory, are widely used to perform clas-

sification tasks. There has been an increased interest in Bayesian Networks for gene

expression data analysis [59, 64]. Some use of Bayesian Networks have included

scored-searching method that has proven to be effective for learning gene networks

from DNA microarray data. Bayesian classifiers based on decision trees [42] have also

been pursued by researchers.

There has also been the use of complex learning models such as ensemble classi-

fiers [35]. An ensemble classifier consists of a set of individually trained base classifiers

whose predictions are pooled to classify new instances [40]. These include bagging [7]

which involves sampling with replacement from the set of training data to create

new training sets, random subspace technique [3] which selects random subsets of

features to train the base classifiers, and random forest technique [6] which combines

both random subspaces and bagging and then uses decision trees as the base clas-

sifier. Support Vector Machine (SVM) has also being used in cancer classification.

Support Vector Machine [11] is a learning algorithm in which input vectors are non-

linearly mapped to a very high-dimension feature space. SVMs have been used as

base classifiers in ensembles in several application domains [66, 37, 13]. The k nearest

neighbor classifier (KNN) has been used as base classifiers in an ensemble [39]. The

OET-KNN [50] algorithm, used in protein fold pattern recognition, is an example of

a KNN-based ensemble.
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The various kinds of classifiers, whether a simple classifier or a composite of clas-

sifiers, have different characteristics. The two key issues which drive the design and

choice of classifiers used in the classification of cancer from microarray data are

cost and accuracy. The fewer genes that can be used in building a discriminative

model that distinguishes categories of cancers, the more cost effective cancer clas-

sification/diagnosis would be. It goes without saying that the more accurately the

model can predict different categories of cancers, the more useful it is. In addition to

other goals, with any classification model based on gene expression data, we want to

achieve the highest possible classification accuracy in future instances to be classified

with as few genes as possible.

The accuracy of an ensemble classifier depends on many factors. The nature of the

problem, the choice of base classifiers and their inherent characteristics and predictive

powers have an enormous bearing on how well the ensemble performs. My research

focused on four key questions:

1. How effective are logistic regression models [33] with ℓ1-regularization [5] in the
removal of redundant (ineffective) genes in micro-array gene expression data?

2. Does the flexibility (complexity) of the base classifier lead to an improvement
in the classification accuracy of the ensemble?

3. Does the use of a base classifier with regularization enhance the accuracy of the
ensemble?

4. Can the performance of an ensemble classifier for cancer that uses microarray
data be improved by using subspaces based on biologically-derived gene sets?

In the first phase of this work, we propose a two-stage approach for gene selection.

Two common gene selection algorithms are used in preprocessing the data: Kruskal-

Wallis nonparametric one-way ANOVA[23] and the ratio of between group variance to
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within group variance[14]. After this preliminary gene selection stage, ℓ1-regularized

logistic regression model is applied to the data set for further gene selection.

The second phase of our work consisted of determining the choice of base classifiers

to use in an ensemble classifier. We conducted experiments involving the use of both

“flexible” (non-linear) and “inflexible” (linear) classifiers to determine which category

of classifiers would yield better performance as a base classifier in an ensemble used

to classify cancer-related microarray data.

In the final phase of our work, we propose two kinds of ensembles for the classi-

fication of various kinds of cancers. One approach uses subspaces that are based on

gene sets derived from a priori biological information. In the second approach, the

ensembles use bootstrap aggregation with the feature space constituted after gene

selection.

Our work led to some key findings. One finding was that ℓ1-regularized logistic

regression models eliminate redundant/ineffective genes from the feature space; that

is, ℓ1-regularized logistic regression models implicitly perform gene selection. We also

found that if there is a prior information regarding biologically-derived gene sets, the

performance of an ensemble classifier used to classify various kinds of cancers can be

enhanced.
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Chapter 2

Background
In this chapter, we describe related cancer-classification works. Both their strengths

and limitations are discussed.

2.1 Survey of Related Works

Since the discovery of microarray technology, the cancer classification problem has

rapidly gained a foothold in data mining research. Many studies have focused on the

classification of various kinds of cancers or cancer subtypes. Many kinds of traditional

and hybrid learning approaches have been applied to cancer classification. These ap-

proaches have included traditional methods such as artificial neural networks (ANN),

nearest neighbor-based (NN) methods, Bayesian networks (BN), decision trees and

support vector machines (SVM). They have also included ensemble methods. For ex-

ample, support vector machines and nearest neighbor based ensemble methods have

been used.

2.2 ANN Cancer Classification

Khan et al developed a method for classifying childhood small, round blue cell tumors

(SRBCTs) into four diagnostic categories based on their gene expression signatures

using artificial neural networks (ANNs) [32]. The four SRBCT categories used in their

work were neuroblastoma (NB), rhabdomyosarcoma (RMS), nonHodgkin lymphoma

(NHL) and the Ewing family of tumors (EWS). There were 63 training examples used

in this work. The data consisted of gene-expression profiles from cDNA microarrays.
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Principal component analysis [31](PCA) was used to reduce the dimensionality of

original gene profiles. The 6567 genes in the gene profiles was narrowed to 88 numbers

obtained from PCA eigenvector projections. The 10 most dominant PCA components

were then used in subsequent training of the ANNmodel. To evaluate the model 3-fold

cross-validation [22] was used. The experiments were repeated 1250 times, randomly

shuffling the data set each time. In total there were 3750 linear ANN models. These

models were calibrated to differentiate between the four SRBCT categories. Some

additional 25 test samples were then classified by pooling the output of the 3750

ANN models using committee vote.

Although results obtained in this study were very good, like any ANN-based

classifier, this approach has some limitations. Any ANN learning process is a ‘black

box’. Once the general architecture of the network is defined and initial seeding of

the random number generator is done, the user exerts very little control over what

happens during a training epoch. ANN methods tend to be computation-intensive

because they very often require many training epochs. They are very susceptible to

over-fitting. They also generally do not provide a mathematical model in the form of

an equation other than their own internal weighting scheme.

2.3 GA/KNN Cancer Classification

A hybrid k-nearest neighbor(KNN)-genetic algorithm(GA) method has also been used

in the cancer classification problem. Lymphoma and colon data sets were used in a

study by Li et al [36]. In their experiments, each sample, represented by d genes, was

placed into one of k=3 categories depending on its Euclidean distance. Each sample

was placed into a class only if its three nearest neighbors belong to the same class.
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If its three nearest neighbors did not belong to the same class, the sample remained

unclassified.

Next a GA method was used to search for a subset of d genes, a so-called chro-

mosome, from all the genes in a given data set that could discriminate between the

various tumor types. A chromosome is initially randomly selected from the genes

in the data set. A set of 100 chromosomes were then selected to form a so-called

niche. Then 10 niches were made to evolve in parallel. The fitness function used

to classify each chromosome was the ability of the KNN procedure to classify the

chromosome - 1 for classifiable chromosomes and 0 for unclassifiable chromosomes. A

chromosome is chosen as the best based on the correlation coefficient (R2) obtained

after cross-validation. Between one and five genes from the best chromosome are

randomly selected and mutated and the chromosome is then used in the niche for

the next generation. The remaining 99 chromosomes of the niche are determined by

sampling the parent generation based on their weighted fitness values.

A solution is deemed to be found when nearly all the training examples are cor-

rectly classified in any one of the niches. When this occurs, the high R
2 chromosome

is set aside and the process is restarted. After 10000 high R
2 chromosomes have been

chosen, the genes are sorted according to the frequency by which they were chosen.

The frequently selected genes are then used to classify the test set.

This approach has a few limitations. The larger the choice of d is, the more

computation-intensive the algorithm. Further, the algorithm is very sensitive to the

number of genes selected. When too few genes are selected results may be unreliable

and when too many genes are selected a lot of noise (irrelevant genes) will be added

to the data set.
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2.4 Bayesian Cancer Classification

Techniques have been developed in the last three decades to learn Bayesian net-

works [30] from data. A Bayesian network is a graphical model that encodes prob-

abilistic relationships among variables. It consists of two components. It consists of

an acyclic graph (DAG) whose nodes represent random variables and a conditional

distribution for each variable given its parent node in the acyclic graph.

Friedman et al [21] proposed techniques for using Bayesian networks for the anal-

ysis of gene expression data. They recognized that expression level data involves

thousands of genes with only a few samples and inferring a network from such a

data set would inherently lead to a statistically insignificant network. They further

observed that because only a few genes affect the transcription of a gene, Bayesian

networks could be readily used in the gene expression domain.

Bayesian networks are computationally expensive. The quality of the networks

depends too heavily on the quality of prior knowledge. Bayesian networks do not

account for the probability of an unanticipated event which very often comes up in

modeling complex systems.

2.5 Cancer Classification and Decision Trees

Decision trees [42] are widely used in classifying samples by filtering them through a

tree-like graph or model. A simple attribute of the sample is tested at each node and

then a branching decision is made. Models that rely only on one decision tree are very

susceptible to over-fitting. Decision trees are easily built and understood because of

their hierarchical structure. They are also able to model complex functions.
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There are numerous variants to the decision tree algorithm which seek to amelio-

rate the over-fitting phenomenon. There are several heuristics for pruning [17] the

decision tree to make it less susceptible to over-fitting and improve its performance.

Pruning involves minimizing consecutive branches so that the tree is made to general-

ize more adequately. Pruning usually involves top-down or bottom-up traversal of the

decision tree while removing nodes to improve certain criteria. Popularly used prun-

ing strategy include cost-complexity pruning, reduced error pruning, minimum error

pruning, minimum descriptive length pruning, minimum message length pruning and

critical value pruning [48].

Increased performance and generalization of trees can be obtained by using an en-

semble of trees. The boosting [19] and bagging [7] algorithms are popular approaches

to constructing a random forest rather than a classifier based on one tree. Random

trees and bootstrap samples have been used to perform gene selection and classifica-

tion on 10 cancer-related data sets [12]. Random forests perform well in the analysis

of micro-array data because they are robust even under conditions in which predictor

variables contain noise. A major disadvantage in the use of random forests is that

when groups of features are correlated, random forests are bias toward the smaller

group [57].

2.6 Cancer Classification with SVM Ensembles

Bagged ensembles of SVM linear classiers were used to differentiate normal and malig-

nant tissues [61]. Experiments were conducted using these ensembles with and with-

out gene selection. The ensembles were tested on both colon cancer and leukemia

data sets. The colon cancer data sets consisted of expression levels of 2000 genes

across the samples. There were 62 samples, 22 of which were normal tissue samples

11



while 40 were colon cancer tissues. The leukemia data set contained 7129 genes across

the samples. It consisted of 72 samples. There were 47 acute lymphoblastic leukemia

tissue samples and 25 acute myeloid leukemia samples.

Based on empirical results from experiments, it was demonstrated that bagged

SVMs performed better than a single SVM on both data sets. On the colon cancer

data set, bagging improved the accuracy of SVMs.

SVMs are very robust since different kinds of kernel functions can be used. How-

ever, how to find an optimal kernel function for an SVM is still the subject of active

research. Another limitation of the SVM model is that when it is solved, it cannot

be easily expressed in parametric form.
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Chapter 3

Cancer Classification
In this chapter, we formally define the gene expression-based cancer classification

problem. Some of the challenges and issues associated with deriving a solution to the

problem are also discussed.

3.1 Definition

Microarray technology provides the mechanism to measure the activities of cells.

Using cDNA micro-array technology, scientists are able to compare gene expression

profiles in normal and cancerous genes. The beauty of cDNA micro-array technology

is that the entire genome can be measured simultaneously to make a comparison of

normal and diseased tissues. The focus of any research in the use of microarray data

in cancer classification is to answer one basic question: what kind of cancer is affecting

a given cell and which genes influence or are predictive of the cancer.

The classification of cancer using microarray data from samples with known labels

is a supervised learning problem; that is, it is a problem that requires inferring a

discriminative model from labeled samples that can be used to predict the labels of

unlabeled samples. A formal definition of cancer classification from micro-array data

is given below.

Definition 3.1.1 (The General Gene Expression Cancer Classification Problem).
Assume that there are k classes of cancers. Usually one class is normal.
Input: Consider a set of m samples {(xj , yj)}, j = 1, 2 . . .m a set of example gene-
expression profiles from cancer patients and cancer-free people. x is an n-dimensional
vector of gene expression measurements and y is the label (i.e., type of cancers or no
cancer)., where xj ∈ Rn and yj ∈ {1, 2, . . . , k}, is the class that xj belongs to and
n is the number of genes across each sample. The ith component of xj , xj

i , is the
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measurement of the expression level of the ith gene in the jth sample.
Output: a function f : Rn → {1, 2, . . . , k} that can classify a gene expression profile
whose label is unknown.

The matrix X =
[

xj
i

]

m,n represents the gene expression levels of all genes across

all m samples and n genes and the vector Y = . 〈y1, y2, · · · , ym〉 are classes of cancers.

X =















x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

...
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. . .
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As in any supervised learning classification problem, we seek to obtain the target

function, also known as the classification model, f , that maps each sample x to a

label y representing one of the predefined k classes (a cancer type or normal). The

goal is to minimize the classification error; that is, minimize the cases where f(xp)

differs from yp, the correct class of xp.

3.2 Challenges and Issues

There are several challenges associated with cancer classification using gene expression

data from microarray analysis. Some of the challenges are technological; that is, they

are due to the current state of the cDNA microarray technology. Other challenges

are due to the dimensionality of the data and algorithmic challenges inherent in any

supervised learning method.

One technological challenge is due to the microarray chip. Studies have shown

that there are chip-related artifacts in microarray experiments [2]. Yu et al found that

the closer the gene pairs on the micro-array chips, the higher the average correlation

coefficient between them [68]. They hypothesized that the observed correlation in

microarray experiments was due in part to chip artifacts that stemmed from the fact
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that the printing tips are not completely cleaned when printing a spot on the chip

and carry over some of the DNA samples from the previous spot. They theorized

that the signal of any spot has an artificial component related to the previous one,

thus producing an artifact. They conducted empirical studies that confirmed their

theory and demonstrated that this artifact carries over to several neighboring spots.

Genes that are close on the microtiter plates also tend to be much more highly

correlated [68]. While the chip artifacts affect genes in the same block, genes in

different blocks may also be neighbors because they are on the same microtiter plate.

When Yu et al examined the periodicity of the observed correlation, they found

that it corresponded to the size of one printing block in each experiment. They

concluded that the corresponding spots in different blocks are actually neighbors on

the microtiter plates due to the way printing procedure of the microarray works.

They empirically demonstrated that both chip and plate artifacts affect microarray

experiments to varying degrees depending on the nature of the experiment. The hope

is that with further technological advances in microarray technology, these artifacts

will be eliminated or become negligible.

There are also issues that arise because of the nature of the data. One issue which

often arises in cancer classification is that there are relatively few examples. When

the classification function is simple, an “inflexible” learning algorithm is usually able

to learn from the data. However, when the function is complex, as is usually the case

with polytomous microarray data, the function can be better learned from a relatively

large number of training examples using a “flexible” learning algorithm. Even with a

simple classification function, if there are relatively few examples, there is the ever-

present potential of over-fitting: the phenomenon in which the model performs well
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on the training sample but is unable to generalize to future data that it has not

encountered.

Finally, there is the issue of the “curse of dimensionality” [4], a phrase attributed

to Richard Bellman. Microarray analysis involves ultra high-dimensional spaces -

thousands of genes whose expression levels are examined. In an ultra high-dimension

space, convergence is very difficult with a small number of a priori examples. This

is often true when it comes to cancer classification using gene expression levels. Al-

gorithmic techniques are often employed to ameliorate this phenomenon.

In order to address the challenges/issues that have been discussed, our research

focused on addressing several problems. One key area of our research was gene selec-

tion; that is, selecting genes with high discriminative power that are uncorrelated. A

second problem we focused on is the issue of over-fitting both in the classification of

cancer and gene selection. Another problem raised was the use of ensemble classifiers

to mitigate the problem of over-fitting. Then there is the problem of determining a

good base classifiers for an ensemble. Finally, there is the problem of how to construct

ensemble classifiers.

In the next three chapters, we discuss three key techniques that can be used to

overcome some of the challenges involved in classifying cancer using microarray data:

1. The use of an ℓ1-regularized logistic regression model in removing irrelevant or
ineffective genes from the data is discussed.

2. An experiment conducted to demonstrate that an ensemble of inflexible (linear)
classifier can be used to derive the classification function for various kinds of
cancers from microarray data is also discussed.

3. Finally, the use of subspaces from biologically-derived gene sets in improving
the performance of ensembles used in cancer classification is discussed.
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3.3 Data and Experiment Settings

The five datasets used throughout this work are described in Table 3.2. The data sets

are polytomous cancer-related human gene expression datasets and they are available

in the public domain.

The expression data are stored in expression matrices. The columns represent all

the gene expression levels recorded during a single experiment, and the rows represent

the expression of a gene across all patients or subjects involved in the experiment.

In this work, two biologically-derived gene sets were used. We used the C5 gene

sets, genes associated with biological processes (BP), obtained from the Molecular

Signatures Database (MSigDB) [38]. We also used C6 gene set that represents signa-

tures of cellular pathways which are often dis-regulated in cancer.

Table 3.1: MSigDB Gene Sets Used In Our Work

Name Description
c5.bp.v3.1.entrez.gmt [38] It contains a set of genes that are active in one

or more biological processes, during which they
perform one or more molecular functions.

c6.all.v3.1.entrez.gmt [38] It contains genes representing oncogenic
signatures; that is, it contains a set of genes
that are often dis-regulated in cancer.

The five gene expression data sets for various kinds of cancers are shown in Table

3.2. The data sets were obtained from microarray experiments on humans with

various kinds of cancers and in some cases people without any kind of cancers.
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Table 3.2: Cancer-related Human Gene Expression Datasets

Name Description
BrainTumor1 [47] This data set contains 90 samples.

These samples represent five human brain
tumor types. There are 5,920 genes.

BrainTumor2 [44] This data set contains 50 samples.
These samples represent four malignant glioma
tumor types. There are 10,367 genes.

9Tumors [54] This data set contains 60 samples.
These samples represent nine various human
tumor types. There are 5,920 genes.

11Tumors [55] This data set contains 174 samples.
These samples represent eleven various human
tumor types. There are 12,533 genes.

ProstateTumor [51] This data set contains 102 samples.
The samples represent prostate tumor and normal tissues.
There are 10,509 genes.

In this work, we used a tree classifier from Scikit-learn [45], an integrated machine

learning Python implementation. We used Liblinear [18], a library for large linear

classification, for SVM, and regularized logistic regression. All experiments were run

on a Linux PC with Intel R©Core
TM

i5-450M Processor.

3.4 Cross Validation

Validation Training Training Training Training Training

1 2 3 4 5 K

Figure 3.1: A K-fold Partition of a Dataset
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We used 10-fold cross-validation to evaluate each of the approaches that were

proposed in this work. The general framework for k-fold validation is as follows:

1. Partition the data into approximately k equal parts as shown in Figure 3.1.

2. Let D = {(xi, yi)}, i = 1, . . . , n be a data set and LA be a learning algorithm

that we wish to evaluate. D =
k
⋃

i=1

Di, where Di is a partition as shown in Figure

3.1.

3. Fit (train) LA using the data set D − Di to obtain model Mi = LA (D −Di),

for i = 1, . . . , k.

4. Let ŷDi
= Mi (xDi

), for i = 1, . . . , k.

5. Evaluate LA using some evaluation function E:
k
∑

i=1

E (yDi
, ŷDi

).

In addition to using cross-validation to evaluate the algorithms that are proposed

in our work, we also used it for parameter optimization. Given some learning al-

gorithm, Lθ
A, and {θ1, θ2, . . . , θt}, a set of candidate values for the parameter θ, we

optimize θ by finding θ̂, the “best” θi. This process involves applying k-fold cross

validation using Lθi
A and data set D for i = 1, . . . , t. θ is then estimated using θ̂.
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Chapter 4

Gene Selection:
A Two-Stage Approach
Identifying predictor genes is of practical interest to scientists and researchers. Re-

search in medical genetics stands to benefit from further examination of the top-

ranked genes to confirm recent discoveries and theories in cancer research. They may

also suggest new hypotheses that are worth pursuing.

DNA micro-array technology provides a mechanism through which a huge amount

of gene expression data is simultaneously recorded. Microarray data sets present

several challenges, notable among which is the large number of gene expression values

in a given gene profile and relatively few examples; the ratio of the number of genes

to the number of examples is very large in a microarray analysis. As a consequence

of this, the removal of irrelevant/ineffective genes has become a very important task.

Microarray analysis for purposes of cancer classification lends itself to many chal-

lenges. One inescapable challenge is noise which could adversely affect classification

accuracy. Then there is also the high potential for spurious relationships: wrongly

identifying a set of genes as being predictors for a given cancer when the genes may

not in fact be predictors. The goal in any gene selection strategy becomes how best

to reduce the potential for these problems.

The traditional approach to gene selection has often involved the ranking of genes

on the basis of some test statistic. This usually involves the selection of top-ranked
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genes on the basis of the significance of ranks assigned to each gene. Genes not meet-

ing a given threshold are removed while those meeting the threshold are regarded as

top-ranked genes. This approach ranks genes independently based on their individual

discriminative power. For example, the correlation coefficient has been used to rank

genes [46, 25]. This gene-by-gene ranking approach is very susceptible to the possibil-

ity that highly-ranked gene may be chosen over a good predictor: Consider situation

in which we have two highly-ranked genes that are correlated and one lowly-ranked

gene that is uncorrelated with the highly ranked ones. If a model is built using only

the two highly-ranked genes, that model may not be the best since one of the gene

chosen would not add any additional information to the model. On the other hand, if

one highly ranked gene is chosen along with the lowly-ranked gene, a more informative

model will be built.

Our approach seeks to avoid the pitfall of choosing only highly-ranked correlated

genes. We propose a two-stage algorithm. In the first stage, we propose the use of

an analysis of variance (ANOVA) algorithm that ranks the genes by how relevant the

expression levels in the genes are to the target classes. In the second stage we propose

the use of ℓ1-regularized logistic regression to remove genes that are correlated.

4.1 Stage One

Gene expression level data from microarray usually contains noise and is often highly

correlated. In order to begin any analysis, as a filtering step, it is prudent to de-

noise and reduce the level of correlation in the data. Several approaches have been

suggested in the literature to preprocess data. These include signal-to-noise ranking,

Kruskal-Wallis non-parameteric analysis of variance (ANOVA) algorithm[23] and the

F − score (ratio of in between group variance to within group variance).
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The signal to noise ratio (SNR) identifies the expression patterns with a maximal

difference in mean expression between genes across all samples and minimal varia-

tion of expression for each gene across all samples. The use of SNR across all genes

for ranking does not generally lead to selecting the most relevant genes. There are

examples in the literature in which SNR is used in combination with clustering al-

gorithms such as K-means [41] and KNN [58](k nearest neighbor). After clustering,

SNR ranking is then applied to each cluster and the top-ranked gene from each clus-

ter is chosen. Applying SNR ranking to gene clusters rather than all genes leads to

better selection of relevant genes. SNR computes the difference in mean between two

genes across all samples. It is extended for multiple genes by using strategies such as

One-Versus-One or One-Versus-Rest[56]. SNR is not as robust as other gene selection

algorithm since an assumption is made regarding the distribution from which genes

are drawn: it is generally assumed that they are drawn from a Gaussian distribution

because of the Central Limit Theorem.

In our work, we used the Kruskal-Wallis (KW) nonparametric one-way ANOVA[23]

and the ratio of between group variance to within group (BW) variance[14]. Both of

these algorithms are used to rank the genes.

In microarray data analysis, we often want to know how correlated the genes are

to the target classes in a given experiment. If they are, then they are likely for serve

as excellent predictor genes; that is, these genes are able to discriminate the target

classes. One approach to identify genes that are correlated to the target classes in the

classification of cancers from gene expression data is using the F-test [43]. The F-test

uses variations among means to estimate variations among individual measurements.

It assumes that the gene expression measurements are normally distributed. More
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generally, the F-test is very sensitive to measurements that are not normal. When

the measurements are not normal, the Kruskal-Wallis one way analysis of variance,

a non-parametric approximation for the F-test, is used. The Kruskal-Wallis test

uses variations among among ranked means to estimate variations among individuals

measurements [9]. The preferred test to use with microarray data is the Kruskal-

Wallis test rather than the F-test since it is non-parametric. Also, the Kruskal-Wallis

test is easier to use and understand. It is very robust since it is less susceptible to noise:

actual measurements are not being used but rather the ranks of the measurements.

If the measurements are slightly off due to noise it is less likely to alter the mean

of the ranks of the measurements than the mean of the actual measurements as

would be the case with the F-test. However, when the conditions for the F-test are

applicable to microarray data used in cancer classification, the F-test will generally

yield better results than the Kruskal-Wallis one way of ANOVA test. The applicable

conditions for the F-test are that the gene expression levels are normally distributed

and the variance between these measurements with respect to the various genes are

homogeneous.

4.1.1 Ranking Genes Using the Kruskal-Wallis Test

The Kruskal-Wallis (KW) one way analysis of variance (ANOVA) non-parametric test

examines the significance of each gene through the expression level measurements of

gene across all classes. The gene is assigned a rank based on how closely its expression

levels across all examples are relevant to the target classes. When using the Kruskal-

Wallis test, there are two tables that can be used depending on a set of conditions.

These conditions are summarized in Table 4.1.
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Table 4.1: Condition for Making a Decision Rule on the Computed K Statistic

Condition Table to Use Decision Rule
i=3 or more groups Chi-square tabled If observed value
Number of observations in values for of the K statistic

each group exceeds 5 df=C-l is ≥ tabled
value reject Ho

i=3 or more groups Kruskal-Wallis If observed value
number of observations in critical values of the K statistic

each group is less than table is ≥ tabled
or equal to 5 value accept

Ho

We now discuss how the ranking and selection of genes are done during stage one

of the algorithm using the Kruskal-Wallis one way ANOVA non-parametric test.

1. Input: Let Gi = {gi,1, gi,2, . . . , gi,N} be a vector of gene expression measurements

for the ith gene across N samples. Each gi,j is the expression level of gene Gi in

sample j.

2. Output: R = {R1, R2, . . . , RP}, where Ri ∈ {1, . . . , P} and Ri 6= Rj for any

1 ≤ i, j ≤ P and i 6= j. R is the ranking of the genes based on the Kruskal-

Wallis test statistic and P is the total number of genes.

3. For each gene Gi, rank all gene expression levels across all classes. Assign tied

values, if any, the average of the ranks they would have received if they were

not tied.

24



4. Compute the Kruskal-Wallis test statistic Ki for gene Gi:

Ki =
12

N (N + 1)

C
∑

k=1

nk

(

r̄k −
(N + 1)

2

)2

• where N is the total number of expression level measurements across all

samples for the ith gene,

• nk is the number of expression level measurements for the ith gene that are

from class k, and

• r̄k is the mean of the ranks of all expression level measurements for the kth

class in the ith gene.

5. We correct for ties by dividing Ki by:

1−

T
∑

i=1

(t3i − ti)

N3 −N

where T is the number of tie groups and ti is the number of ties in the ith tie

group.

6. The null hypothesis in using the Kruskal-Wallis test statistic with the microar-

ray cancer data is that expression of gene Gi is independent of the class label. If

the test statistic Ki ≥ χ2
α:C−1 (χ

2
C−1 is obtained by looking it up in a χ2 table),

we conclude that the expression is dependent on the class label. If K < χ2
α:C−1,

we conclude that the expression level of gene Gi is not dependent on the class

label. We use α = 0.05 as the level of significance of the test. The median is

used as an approximation for difference in the variances of the expression levels

of the ith gene across samples.
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7. Calculate the p-value of the ith gene Gi, Pr(X ≥ Ki), where X is a random

variable with χ2 distribution and C − 1 degrees of freedom.

8. Rank each gene Gi according to its p-value. The lower the p-value of a gene,

the higher its ranking.

4.1.2 Ranking Genes Using the F-score

The F-score is a ratio of two variables F = F1

F2

, where F1 is the variance between

groups and F2 is the variance within each group. A high F-score (which leads to a

significant p-value depending on α value) means that at least one gene, with respect

to its expression, is significantly different from the rest. F-score ranks each gene by

grouping its expressions across all classes and then computing the ratio. We based

the ranking on the ratio - the higher the F-score, the higher the rank of the gene: a

large F-score indicates the gene is more discriminative.

We now discuss how the ranking and selection of genes are done during stage one

of the algorithm using the F-score.

1. Input: Let Gi = {gi,1, gi,2, . . . , gi,N} be a vector of gene expression measurements

for the ith gene across N samples.

2. Output: R = {R1, R2, . . . , RP}, where Ri ∈ {1, . . . , P} and Ri 6= Rj for any

1 ≤ i, j ≤ P and i 6= j. R is the ranking of the genes based on the F-scores and

P is the total number of genes.

3. For each gene Gi, group the expression levels across sample by the class.
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4. Compute the F-score test statistic Fi for gene Gi:

Fi,1 =

C
∑

k=1

(

Ȳi,k − Ȳi

)2

C − 1

Fi,2 =

C
∑

k=1

ni,k
∑

j=1

(

Yi,k,j − Ȳi,k

)

N − C

Fi =
Fi,1

Fi,2

• where Fi,1 is the variance of the expression levels between classes of gene

Gi,

• N , the total number of expression level measurements across all samples

for the ith gene,

• Ȳi,k is the mean expression level of class k in gene Gi,

• Ȳi is the mean expression level of gene Gi,

• C is the number of classes,

• Fi,2 is the variance of the expression levels within classes of gene Gi,

• Yi,k,j is the jth expression level in class k of gene Gi,

• Ȳi,k is the mean expression level of class k in gene Gi, and

• Fi is the ratio of between class variance to within class variance of gene

Gi.

5. Rank each gene gi according to its F-score. The higher the F-score of a gene,

the higher its ranking.
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4.1.3 Filtering Out Genes

After the genes are ranked, the lower ranked genes are then filtered out. In order to

filter out some genes, the following steps are applied:

1. Input: Gk and Gf , are the genes sorted by the rankings obtained by using the

Kruskal-Wallis test and the F-test, respectively.

2. The number of genes selected from the ranked genes can be either fixed or

optimized by cross-validation on the training set. The following parameters are

considered during the optimization:

⊙ minimum # of genes

⊙ maximum # of genes

⊙ step size

For example, if max#genes = 300, min#genes = 100 and step size = 50, then

the following number of top-ranked genes are considered for optimization: #top-

genes = {100, 150, 200, 250, 300}.

3. Run the linear Support Vector Machine [8] (SVM) extended for multi-class

by the One-Versus-Rest strategy [67]. Set the cost of the SVM to some fixed

value C. Run SVM while restricting the genes to #top-genes genes from the

Kruskal-Wallis and F-score rankings.

4. Select the optimal #top-genes genes from either Gk or Gf based on the run of

SVM which gives the best accuracy.
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4.2 Stage Two

The first stage of our proposed two-stage gene selection algorithm consists of the

ranking of genes based on their correlations to the target cancer classes. The Kruskal-

Wallis test and the F-test do not consider the correlation of genes; that is, they do

not remove genes that are redundant and consequently do not add any additional in-

formation to the classification model. We found that ℓ1-regularized logistic regression

model can be used to remove redundant/ineffective genes from data sets. With only

a few restrictive parameters, it can significantly reduce the number of genes without

any signicant adverse impact on classication accuracy. The coefficients of genes that

are not good predictor genes for the cancers under consideration are set to zero in

the model. Genes which are redundant are removed from the data.

Logistic regression belongs to the category of statistical models called generalized

linear models. Logistic regression allows for the prediction of discrete outcomes from

a collection of variables that may be dichotomous, discrete, continuous, or a com-

bination of any of these characteristics. In Simple Logistic Regression (SLR), the

dependent variable is dichotomous; that is, the dependent variable can take on only

one of two possible values, say +1 and -1, with probability q and 1− q, respectively.

The natural extension of SLR is a logistic regression model in which the dependent

variable is polytomous. This is the Multinomial Logistic Regression (MLR).

Logistic regression, as a statistical formulation, can be defined in a probabilistic

framework. Suppose C is a number of classes such that y(i) ∈ {1, . . . , C}. Given a

vector of gene expression values x belonging to a person, the conditional probability

that the person belongs to class t, t 6= C, is defined as

Pr(y = t |x) =
ewtx+bt

z
(Eq.4.2.1)
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and for t = C is

Pr(y = C |x) =
1

z
(Eq.4.2.2)

where z = 1+
C−1
∑

t=1

ewtx+bt normalizes the probabilities of the classes for x so that they

sum up to 1; that is,
C
∑

t=1

Pr(y = t |x) = 1.

Given a gene expression vector x for a new person, we can calculate the probability

Pr(y = t |x) for all classes t = 1 . . . C. The data point x is then assigned the class t

which gives the largest probability.

The parameters wt and bt are obtained by maximizing the log-likelihood (mini-

mizing the negative of the log-likelihood) of the training dat: minimizing

min
w1,w2,...
b1,b2,...

{

−
∑

i

log Pr(y = y(i)
∣

∣x(i) )

}

(Eq.4.2.3)

where Pr(y = t |x) is given in Eq.4.2.1. The logistic regression with ℓ1-regularization

adds an ℓ1-norm penalty term to Eq.4.2.3 and we obtain

min
w1,w2,...
b1,b2,...

{

−
∑

i

log Pr(y = y(i)
∣

∣x(i) )

}

+
∑

t

‖wt‖1. (Eq.4.2.4)

The Regularization Theory with respect to a linear classifier may be formally stated

as follows: let w be the a vector of parameters for a classifier and L(X, Y,w) be a loss

function that measures how well the classifier using w can make prediction on the set

of training data (X, Y ). Regularization penalizes the complexity of a learning model;

it penalizes the model depending on the number of parameters that the model has.

Logistic regression yields a linear classifier. For a binary classifier, the decision

boundary is given by ewtx+bt = 1. This equation represents a hyperplane in the data

space. Logistic regression implicitly performs feature selection by making some of the

parameters wi’s zero in the regression equation: the redundant genes are effectively
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removed from the equation. The second stage of our model uses logistic regression

to eliminate the redundant genes. The second stage of the algorithm is summarized

below:

1. Input: Let G′ be the set of t top-ranked genes selected after stage one of the
algorithm and X be a set of gene expression data.

2. Restrict the gene expression data, X , to those genes in G′.

3. Apply cross validation to obtain an optimal value for the hyper-parameter λ
from the list λ ∈

{

1k
}

, k = −1, 0, 1, . . . , 4.

4. Using the logistic regression model that gives the optimal λ, remove all genes
from G′ such that the coefficient of the gene in the model is 0 to obtain a new
set of genes G”.

4.3 Results

An empirical study was conducted to evaluate the performance of our two-stage gene

selection algorithm. These studies were intended to show that performing gene se-

lection using our two-stage algorithm will not adversely affect classification accuracy

and that ℓ1-regularized logistic regression performs implicit gene selection.

First, we applied logistic regression to the data sets without any gene selection

as the baseline case, while recording the classification accuracies for each data set.

10-fold cross validation was used to evaluate the accuracy of the regression model

on each data set. The hyper-parameter λ used in this study was optimized from

λ = {10−3, 10−2, 0.1, 1, 10, 102, 103}.

Table 4.2 shows the baseline case: the accuracies obtained from 10-fold cross-

validation when applying the logistic regression model to the data sets. The third

column shows the total number of genes in the data set before ℓ1-regularized logistic

regression is applied and the fourth column shows the average number of genes in

the data set after the the regression was applied. The fourth column of the table
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contains the average number of genes because the number of genes varied over the 10

cross-validation runs.

Table 4.2: Gene Selection Using Only ℓ1-regularized Regression

(L1LRM)% # of Genes Average # of Genes
Dataset Accuracy in data set After L1LRM

BrainTumor1 88.9 5291 2891

BrainTumor2 40.0 10368 6098
9Tumors 60.0 5727 443

11Tumors 93.6 12534 1186
ProstateTumor 92.1 10510 100

Table 4.3 shows the number of genes in the data set before the second stage of the

algorithm and the average number of gene left in the data set after the second stage

of the algorithm. The comparison of accuracies and average number of genes across

all test cases during the 10-fold cross-validation for ℓ1-regularized logistic regression

model are shown in Table 4.3.

Table 4.3: Gene Selection Using 2-Stage ℓ1-RLRM

(L1LRM)% # of Genes Average # of Genes
Dataset Accuracy Before Stage 2 After Stage 2

BrainTumor1 91.1 5000 2667
BrainTumor2 44.0 9000 5956

9Tumors 65.0 5000 2160
11Tumors 94.8 11000 3406

ProstateTumor 96.1 9000 102

4.4 Observations

Across all datasets, the two-stage gene selection algorithm succeeded in significantly

reducing the number of effective genes in the data sets without hurting classification
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accuracies. For example, the two-stage gene selection algorithm results in a model

that has only 102 genes that achieves 96.1% accuracy on the ProstateTumor dataset.

While the application of only ℓ1-regularized logistic regression model to the same

data set removes slightly more genes, its accuracy was 92.1%. Similarly, with the

11Tumors dataset set, the two-stage gene selection algorithm results in a model that

has 3406 genes and achieves a classification accuracy of 94.8%. This suggests that

the two-stage gene selection approach does not have any adverse effect on accuracy.

In fact, it improves classification accuracy while at the same time selecting effective

genes. For example, in the case of the BrainTumor1 and BrainTumor2 datasets,

the two-stage gene selection algorithm results in fewer genes in the model after the

algorithm is applied while improving classification accuracies.

While it is true that applying only regression may sometimes remove more genes

than the two-stage gene selection algorithm that we have proposed, classification

accuracy may be hurt when that is done. From Table 4.2 and Table 4.3, we see that

two-stage gene selection algorithm selects more genes than the use of only regression

on the original data set on the 11Tumor and the 9Tumors data sets. In particular,

applying regression only, selects 443 genes from the 9Tumors data set while the two-

stage algorithm selects 2160 genes. Also, applying only regression selects 1186 genes

from the 11Tumors data while the two-stage algorithm selects 3406 genes. In these

cases, more sparse model does not lead to improved classification accuracy. While

these results may appear to be anomalous, when one considers the possibility that

the regularized regression may be over-compensating for noise in the data, we can

explain them.

In some instances, the use of only regularized regression may lead to over-fitting;
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it is creating a more sparse model that performs well on the training sample but does

not perform as well on the new instances that it has not seen. This suggests that while

a sparse model may be a good thing, one must guard against over-fitting. It would be

better to have a model that it not as sparse that generalizes: a model that performs

well in classifying instances that it has not seen. This observation reinforces the need

for the first stage of the algorithm in eliminating some genes that are low-ranked, so

that the regularized regression can create a model that generalizes well even if the

model is at times less sparse.

We also observed that in spite of the two-stage gene selection approach, classifi-

cation accuracy was poor when there were relatively few examples, as was the case

with the BrainTumor2 and 9Tumors data sets. This suggests the need for a comple-

mentary approach to handle the situation of over-fitting that is due largely to there

being only a few examples relative to the number of genes.
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Chapter 5

Ensemble Cancer Classification:
Choice of Base Classifiers
Even in an ideal world where the best predictor genes are chosen for use in a single-

classifier system designed for microarray cancer gene expression data, there is still

the challenge of having an ultra high-dimension space with relatively few examples.

A critical task of any learning system is to draw inferences about a general classi-

fication function from a training sample. In training a classifier, a learning algorithm

searches through a hypothesis space for a hypothesis that “best” fits the training

examples. A hypothesis space is a predefined space of candidate hypotheses, often

implicitly defined by how the hypothesis is represented. A difficulty that a single-

classifier model has to overcome when classifying microarray data is how to find or

approximate the true hypothesis. The classification model must search an enormous

space of hypotheses using only a few examples. While many of the hypotheses in

this space may appear to be good candidate hypotheses for the few examples, there

is always the potential that the candidate hypothesis that is selected may fail to gen-

eralize; it may adequately describe the few gene expression profiles that it has seen

but would be unable to correctly classify future profiles.

An approach that might be considered to address this problem of over-fitting is

to select a hypothesis that is not the “best” for the training examples. There might

be other hypotheses that would more accurately classify the training example than

the one chosen. This choice would be made in hopes that it might perform better on
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future instances that it has not seen. There is however the inescapable problem of

not knowing what future instances will look like. We have no way of knowing that

since we can only use the training examples to predict what new instances might look

like. After all, It may just be that the “best” candidate hypothesis in the training

examples is the best approximation of the true hypothesis. Therefore, either using

the “best” hypothesis from the training examples or a good hypothesis that is not

necessarily the best as an approximation for the true hypothesis may not lead to good

classification accuracy on new instances.

Also, there is still the possibility that given the relatively few training examples,

there is no one candidate hypothesis that can adequately describe future data. In-

stead, the true hypothesis may be more adequately described by combining several

hypotheses than using a single hypothesis. By combining several hypotheses, the

likelihood of better approximating the true hypothesis will improve. This approach

overcomes some of the pitfalls involved in a single-classifier system.

One approach that has been proposed in the literature to alleviate the problems

inherent in the use of a single classifier in an ultra high-dimensional space with rela-

tively few examples is an ensemble classifier [35]. An ensemble classifier consists of a

set of individually trained base classifiers whose predictions are pooled to classify new

instances. This is analogous to a real-world situation in which we solicit the views

and opinions of several individuals to formulate our own opinion. The individuals

whose opinion and views that we solicit play the role of base classifiers while we play

the role of an ensemble classifier. We now consider a formal definition of an ensemble:
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1. Let D = {(xj , yj)} , j = 1, 2, · · · be a set of instance-label pairs drawn from

some distribution. X is a set of instances and xj ∈ X . Each yj ∈ Y is a label

and Y = {1, 2, · · · , k} is a set of labels representing classes.

2. Use a training set construction method to construct T1, T2, T3, . . . from D.

3. ς : X → Y , a function that maps instances to classes, is called a classifier or

classification function.

4. E = {ς1, ς2, ς3, . . .} is an ensemble and ςTi
(x) → y for some y ∈ Y .

5. Let g be a function that combines all ςi’s, then yt = g (ςT1
(x), ςT2

(x), . . .),

where yt ∈ Y . For example, g could be the function
n
∑

i=1

ωiςi → Y where

Ω = {ω1, · · · , ωn} is a set of weights such that the vote of ςi, the ith classi-

fier, is weighted by ωi.

There is continuing interest in constructing multiple classifiers and then combining

them in some way to obtain a classifier that yields better performance in machine

learning applications. It is therefore natural to use an ensemble classifier in cancer

classification from microarray data. Popular approaches to constructing an ensem-

ble classifier have included bootstrap aggregation (“bagging”) [7] and a generalized

additive model construction technique known as boosting [19]. There is also an ap-

proach to constructing ensembles that involves manipulating the class labels of the

samples [65].

We earlier discussed some of the challenges inherent in the use of a single classifier

in classifying cancers from microarray gene expression data. The use of an ensemble

classifier addresses several issues relating to learning algorithms in the context of an
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ultra high-dimensional feature space such as it is the case with microarray data. An

ensemble combines a collection of optimal solutions, each based on a variation of the

examples and is therefore able to better approximate the true hypothesis.

Some of the key concerns that are explored when designing an ensemble are

(i). what characteristics make a classifier suitable as a base classifier,

(ii). how should base classifiers then be combined, and

(iii). how does the accuracy of the ensemble compares to the accuracies of the un-

derlying base classifiers.

We considered both linear and non-linear base classifiers. we sought to determine

whether a flexible or inflexible base classifier will improve the performance of an en-

semble. we conducted several empirical experiments to provide some insights into

these questions. We studied the impact of three kinds of base classifiers: deci-

sion trees, support vector machine (an ℓ2-regularized linear classifier), and an ℓ1-

regularized linear classifier.

5.1 Decision Tree Classifier

Decision tree learning is widely used in machine learning to approximate discrete-

value functions [42]. The goal is to create a model that predicts the value of a target

variable based on several input variables. The tree is constructed by recursively

growing nodes that partition the training examples into groups with increasingly

better impurity measure.
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Figure 5.1: A Decision Tree That Classifies Four Diseases Based
on Normalized [0,1] Gene Expression Data
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Decision trees classifies instances in a hierarchical manner from the root to the

terminal nodes of the tree as illustrated in Figure 5.1. Each internal node of the

decision tree specifies a test on a given attribute while the branches emanating from

a node represent one of the possible values of the attribute.

Four properties associated with decision trees [42] make them suitable for the

cancer classification problem:

• The examples can be represented as value-attribute pairs. In the context of can-
cer classification using gene expression data, each example can be represented
as a pair consisting of a gene and its expression. For each instance, there are a
series of gene and gene expression pairs in the gene profile in a given microar-
ray experiment. The underlying assumption is that the nature of those pairs
determines the classification of the gene profile.

• The target of the classification function is discrete. This applies to the cancer
classification problem since the classification function places each gene profile
in some class {1, . . . , k}, where each label represents some cancer type or no
cancer at all.

• Decisions trees are generally considered an excellent way of modeling a disjunc-
tion of conjunctions. Each unique path from the root to the terminal node
represents a conjunction. The path in the decision tree are ORed together so
that they form a disjunction.

• They have been shown to be robust to noise or error in the data. They are less
susceptible to errors in the values of the attributes and errors in the classification
of the examples. Microarray data may contain one or both of these errors.

One issue which arises when constructing a decision tree is which attribute to test

at a given node. In the case of the cancer classification in the gene expression domain,

the question would be which gene to test at a given node. The general approach is

to use some statistical measure to determine which gene acting alone would correctly

classify the most examples. The same approach is followed at every subtree until all

the attributes are eventually placed in the tree. In our investigation, we used the
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Gini index [24], a measure of statistical dispersion, as the impurity measure while

constructing the tree.

Like any supervised learning model, the decision tree model searches a space of

hypotheses for a hypothesis the fits the training examples. This space of hypotheses

consists of several decision trees. The goal of the search is to find the decision tree

that best fits the training examples.

Unlike a linear classifier that partitions the sample space using a hyperplane, it

partitions the sample space into non-linear regions. A decision tree is a non-linear

classifier. Tree classifiers partition the sample space into non-linear regions: it creates

decision boundaries that are non-linear. A Decision Boundary is a partition in n-

dimensional space that divides the space into two or more response regions. Multiple

planes serve as delimiters between regions. Tree classifiers are more flexible and

they are preferable in dealing with data that cannot be effectively separated using

a hyperplane. In addition to their ability to handle non-linear data, tree classifiers

perform implicit feature selection, they require very little preprocessing of the data

by the user, and they are conceptually easy to understand because of the hierarchical

nature of a tree.

In spite of this inherent flexibility, tree classifiers may not always generalize. The

advantages of tree classifiers are further tempered by the fact that they may grow

very rapidly without an effective pruning strategy. This concern may be alleviated in

ensembles that use tree classifiers because the trees are often shallow. In our work,

we experimented with tree classifiers of varying depths as base classifiers and used

the best performing tree classifier in giving a comparative analysis of an ensemble of

trees with other ensembles.
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5.2 Support Vector Machine

A Support Vector Machine (SVM) [8, 62] is a binary classifier that decides class

membership by comparing a linear combination of the features to a threshold. It

partitions the data space using a hyper-plane. A linear SVM trains on data that are

separable unlike a non-linear SVM which trains on non-superable data. It is a very

dynamic learning model because it lends itself to a simple geometrical interpretation.

However, its critical limitation stems from the choice of kernel that is used during the

learning process.

SVMs are a relatively new model for learning linear decision surfaces. Although

neural networks and decision trees are efficient at learning non-linear surfaces, they

generally have many more parameters that have to be simultaneously fine-tuned.

Both of these models are more susceptible to getting stuck in local optima than other

learning models. Over the last two decades, there has been a rash of new developments

in computational learning theory. New algorithms with better computational and

theoretical properties have been developed over this period. The development of the

SVM model is one such innovation. The development of this model stems from new

advances in techniques to separate non-linear decision surfaces through the use of

kernel functions [49]. The functions can be used to manipulate data in its original

space as if it were projected into a higher dimensional space. Kernalization often

leads to more efficient learning models. It leads to algorithms based on optimization

rather than greedy search. These algorithms, therefore, have very nice theoretical

properties.

A support vector machine model finds an optimal hyperplane on the decision

surface subject to the condition of linear separability of the data space. When the
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decision surface is not linearly separable, kernalization may be used to transform the

data into a modified space to ensure linear separability. There are many properties

which make SVM a very robust and dynamic learning model:

• The SVM model can be modularize.

• It is not susceptible to the curse of dimensionality.

• The issue of getting stuck in local optima does not arise.

• It can be expressed in parametric form.

• A theoretical upper bound on its performance can be derived.

The support vectors are constituted by using data points that lie closest to the decision

surface and are very difficult to classify. They contribute to determining where the

decision surface can be located to optimize the performance of the SVM.

Figure 5.2: Hyperplanes Between Linearly Separable Data
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Generally, there may be many hyperplanes that linearly separate the data. The

SVM model finds an optimal one. It maximizes the margin around the separating

hyperplane. Unlike models such as linear regression and Naı̈ve Bayes which use all

the points in the data space, it uses only those that are very difficult to classify.

These points form the support vectors. These vectors are those that will alter the

direction of the hyperplane when removed. Analytically determining the hyperplane

is an optimization problem that may be solved using Lagrangian multipliers [63], a

strategy for finding the local maxima and minima of a function subject to equality

constraints.

We used SVM as an example of an ℓ2-regularized linear classifier, an example of

an inflexible classifier. SVM makes classification using a linear function:

f(x) = wx+ b

The function f has two parameters w and b. These parameters are determined from

the training data. The function f partitions the sample space into two regions. The

parameter w is a normal vector to the hyperplane. The offset of the hyperplane from

the origin along the normal vector w is determined by the expression b
‖w‖

. For any

new data point x, f(x) ≥ 0 or f(x) < 0. For a binary classifier, let -1 denote one

class and +1 denote the other. yi ∈ {−1,+1} and yi = f(xi). Given a training set of

N data points,
{(

x(i), y(i)
)}N

i=1
, where x(i) ∈ R

n is the ith input pattern and yi ∈ R is

the ith output pattern. The support vector method approach aims at constructing a

classifier. Training the SVM consists of solving the optimization problem:

min
w,b

λ

{

∑

i

[

y(i)(wx(i) + b)− 1
]

+

}

+ ‖w‖22 (Eq.5.2.1)
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where [ ]+ is the hinge loss function given by the expression

[x]+ = max(−x, 0).

Although linear SVMs are inherently binary classifiers, they can still be used in

scenarios in which a data point may belong to one of many categories as is the

case with polytomous microarray cancer data. The multi-classification problem can

be trivially formulated as a chain of unlinked binary problems which can then be

naturally solved using binary classifiers. The one-vs-all (OVA) and all-vs-all (AVA)

formulations are two popular strategies used in extending binary classifiers to solve

multi-classification problems. The performance of the linear SVM as base classifiers

was studied in our work. Cross-validation was used on the training set to estimate

the hyper parameter λ.

5.3 ℓ1-regularized Logistic Regression Model

Logistic regression can be used when our data is dichotomous, polytomous, or ordinal.

It works if the data is discrete or continuous. Unlike linear regression, it works

with non-normal data since it makes no assumption about normality. In chapter

4, we discussed the mathematical framework for the ℓ1-logistic regression model.

(See Eq.4.2.1, Eq.4.2.3, Eq.4.2.4 and Eq.4.2.2 for the probability and optimization

equations.)

Logistic regression is a regression analysis used for predicting categorical depen-

dent variable. A categorical dependent variable is one that takes on a finite number

of ordinal values whose magnitudes are not important. In some instances, the way

in which the magnitudes are ordered may be meaningful. In the context of the use

of the logistic regression model in cancer classification, each ordinal value associated
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with a cancer type only represents a label and the actual magnitude does not matter.

Logistic regression is very widely used in many application domains. Some prop-

erties that make it a useful model are:

1. The independent variable in a logistic regression model does not have to be

normally distributed or have the same variance in each group. It is very robust.

2. It makes no assumption regarding linearity and is capable of handling non-linear

effects. The classification boundary of a logistic regression classifier is a line;

that is, logistic regression is a linear classier. However, the dependent variable

is not a linear function of the independent variables (y =
n
∑

i=1

ωixi in not true for

logistic regression.).

3. It does not require that the independent variables be unbounded as is the case

in other regression models.

4. The model can be explicitly given as a mathematical equation:

log it(p) = ln
(

p

1−p

)

log it(y) =
n
∑

i=1

ωixi

Although logistic regression models are robust, they have some limitations. They

generally require a lot of data to be stable and provide useful results. A large number

of examples are needed to ensure the stability of the logistic regression regression

model. The more the dependent variables, the more the number of examples required

to train the model. A sample size of at least 400 is recommended for a logistic

regression model [28].
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The multi-class extension of the logistic regression model with ℓ1-regularization

is used as base classifiers in our work. The ℓ1-regularized regression model is both a

linear (inflexible) model and a model that uses regularization. It was used to study

the effect of regularization on the choice of the base classifier in an ensemble.

Data set G
with  d genes

freqGroup G2

Group G1

Group GM

Base
Classifier2

Base
ClassifierM

Grouping Genes into Subsets

Base
Classifier1

Ensemble of Classifiers

Figure 5.3: A Framework for Ensemble Classification Using Grouping Technique

5.4 Method

Construct base classifiers from randomly generated gene subsets, as shown in Figure

5.3. The randomly-generated gene subsets are constructed as follows: Let X =

{x(1), x(2), · · · , x(N)} be the gene expression data for N training examples. Each x(i)

is a d-dimensional vector of gene expression level data, where d is the number of

genes in each sample. x
(i)
j and x

(k)
j represent the expression level for genej in the ith

and the kth samples. Let Y = {y(1), y(2), · · · , y(N)} denote corresponding labels for

each training sample. An ensemble classifier was constructed as follows:
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1. Generate M subsets of genes from the set of d genes involved in the gene expres-
sion data that constitute the feature space. Each subset consists of k randomly
selected genes.

2. M base classifiers are trained. The ith base classifier is trained using the train-
ing samples and genes in the ith subset; that is, each classifier is trained using
{x̂(1), x̂(2), · · · , x̂(N)} and labels {y(1), y(2), · · · , y(N)} where x̂(i) is the vector de-
rived by taking the elements of x(i) that correspond to the genes in the ith gene
subset.

3. To classify a new sample, the predictions from each base classifier are pooled
together and a final decision is determined by committee vote. So, when there
are multiple classes (for example, disease conditions 1, 2, etc), the predicted
classification of the new sample is based on the majority vote of the base clas-
sifiers.

5.5 Results

The three classifiers - decision tree, support vector machine, and ℓ1-regularized lo-

gistic regression model - were used as base classifiers in the ensemble classifier. The

decision tree is representative of a flexible (non-linear) classifier. The support vec-

tor machine and the logistic regression model are representative of linear classifiers

that are regularized. The empirical data from these experiments were recorded and

analyzed.

We used ensembles consisting of 200 base classifiers. Each gene subset was ran-

domly selected with the number of genes in each subset being equal to the square

root of the number of genes in the data set. Preliminary gene selection was done

prior to each subset being used in the ensemble. Two kinds of ensembles with linear

base classifiers were constructed. One ensemble used ℓ1-regularized logistic regression

models as base classifiers while the other used support vector machines. SVMs were
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used as ℓ2-regularized linear classifiers. Finally, we created ensembles of decision trees

as an example of the use of non-linear base classifiers in an ensemble.

The comparison of the accuracies of ensembles with the three kinds of base classi-

fiers are reported in Table 5.1. For each data set, 10-fold cross-validation was used to

evaluate the effect of the various base classifiers in the ensembles. The second column

in the table shows the mean classification accuracy±standard deviation after 10 rep-

etitions of 10-fold cross-validation on the data sets when the ℓ1-regularized logistic

regression models are used as base classifiers. The third column in the table shows the

mean classification accuracy±standard deviation after 10 repetitions of 10-fold cross-

validation on the data sets when support vector machines are used as base classifiers.

The fourth column in the table shows the mean classification accuracy±standard de-

viation after 10 repetitions of 10-fold cross-validation when decision trees are used as

base classifiers. The comparison is done using the data sets in Table 3.2. A visual

depiction of the comparison of the mean accuracies is shown in Figure 5.4

Table 5.1: Comparison of Classification Accuracy of Various Base Classifiers

Datasets ℓ1 LogReg SVM ℓ2 Tree

BrainTumor1 90.4±0.3 91.6±0.6 91.6±1.0

BrainTumor2 84.2±1.4 47.0±3.0 77.2±1.4

9Tumor 79.3±2.5 73.7±1.8 60.7±2.7

11Tumor 94.7±0.5 94.3±0.5 87.2±1.6

Prostate 94.3±0.6 94.2±0.6 92.7±0.8
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Figure 5.4: Classification Accuracy Using Various Base Classifiers
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Tables 5.2-5.9 are the confusion matrices when ℓ1-LRM and Tree are applied to
the first four data sets in Table 5.1. The entries in the tables represent the total num-
ber of classification and misclassification after 10-fold cross-validation is repeated 10
times. Therefore, the sum of the entries in each table is 10 times the number of
examples in the data set.

The BrainTumor1 data set consists of five classes: Medulloblastoma(MB) = 0 (60
examples), Malignant glioma (MG) = 1 (10 examples), AT/RT(AR) = 2 (10 exam-
ples), Normal Cerebellum(NC) = 3 (4 examples), and PNET(PN) = 4 (6 examples).

Table 5.2: ℓ1-LogReg on BrainTumor1

Predicted Labels

MB MG AR NC PN

T
ru
e

L
a
b
el
s

MB 600 0 0 0 0

MG 0 90 10 0 0

AR 7 0 93 0 0

NC 10 0 0 30 0

PN 39 12 1 0 8

Table 5.3: Tree on BrainTumor1

Predicted Labels

MB MG AR NC PN

T
ru
e

L
a
b
el
s

MB 600 0 0 0 0

MG 1 89 10 0 0

AR 14 0 86 0 0

NC 15 0 0 25 0

PN 52 8 0 0 0
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The BrainTumor2 data set consists of four classes: Classic Glioblastomas(CG) =
0 (14 examples), Classic Anaplastic Oligodendrogliomas (CAO) = 1 (7 examples),
Non-classic Glioblastomas(NCG) = 2 (14 examples), Non-classic Anaplastic Oligo-
dendrogliomas(NAG) = 3 (15 examples).

Table 5.4: ℓ1-LogReg on BrainTumor2

Predicted Labels

CG CAO NCG NAG

T
ru
e

L
a
b
el
s CG 129 0 11 0

CAO 30 40 0 0

NCG 0 0 112 28

NAG 0 0 13 137

Table 5.5: Tree on BrainTumor2

Predicted Labels

CG CAO NCG NAG

T
ru
e

L
a
b
el
s CG 128 2 10 0

CAO 30 40 0 0

NCG 0 0 94 46

NAG 0 0 34 116
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9Tumors data set consists of nine classes: NSCLC(NS) = 0 (9 examples), Colon(CO)
= 1 (7 examples), Breast(BR) = 2 (8 examples), Ovary(OV) = 3 (6 examples),
Leukemia(LK) = 4 (6 examples), Renal(RN) = 5 (8 examples), Melanoma(ML) = 6
(8 examples), Prostate(PR) = 7 (2 examples) and CNS(CN) = 8 (6 examples).

Table 5.6: ℓ1-LogReg on 9Tumors

Predicted Labels
NS CO BR OV LK RN ML PR CN

T
ru
e
L
ab

el
s

NS 80 0 0 0 0 7 0 0 3
CO 0 60 0 10 0 0 0 0 0
BR 8 13 44 1 0 0 4 0 10
OV 3 9 10 37 0 1 0 0 0
LK 0 0 0 0 60 0 0 0 0
RN 10 0 0 0 0 70 0 0 0
ML 7 1 0 0 0 2 70 0 0
PR 10 10 0 0 0 0 0 0 0
CN 0 0 1 0 0 0 0 0 59

Table 5.7: Tree on 9Tumors

Predicted Labels
NS CO BR OV LK RN ML PR CN

T
ru
e
L
ab

el
s

NS 64 16 1 1 0 1 0 0 7
CO 26 43 0 1 0 0 0 0 0
BR 31 11 11 1 1 0 11 0 14
OV 36 7 6 8 0 3 0 0 0
LK 0 0 0 0 60 0 0 0 0
RN 10 0 0 0 0 70 0 0 0
ML 10 0 0 0 0 0 70 0 0
PR 19 1 0 0 0 0 0 0 0
CN 16 0 5 0 0 0 0 0 39

11Tumors data set consists of eleven classes: Ovary(OV) = 0 (27 examples), Blad-
der/ureter(BU) = 1 (8 examples), Breast(BR) =2 (26 examples), Colorectal(CR) = 3
(23 examples), Gastroesophagus(GS) = 4 (12 examples), Kidney(KN) = 5 (11 exam-
ples), Liver(LV) = 6 (7 examples), Prostate(PR) = 7 (26 examples), Pancreas(PC)
= 8 (6 examples), Lung Adeno(LA) = 9 (14 examples) and Lung Squamous(LS) =
10 (14 examples).
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Table 5.8: ℓ1-LogReg on 11Tumors

Predicted Labels

OV BU BR CR GS KN LV PR PC LA LS
T
ru
e
L
ab

el
s

OV 270 0 0 0 0 0 0 0 0 0 0

BU 0 55 2 0 0 0 0 0 10 0 13
BR 0 0 260 0 0 0 0 0 0 0 0

CR 0 0 0 230 0 0 0 0 0 0 0
GS 0 2 2 15 95 0 0 0 0 6 0

KN 0 0 0 0 0 101 0 0 0 9 0
LV 1 0 2 1 0 0 59 0 7 0 0
PR 0 0 0 0 0 0 0 260 0 0 0

PC 0 0 0 0 0 0 0 0 53 7 0
LA 0 0 0 0 0 0 0 0 10 130 0

LS 0 0 10 0 0 0 0 0 0 0 130

Table 5.9: Tree on 11Tumors

Predicted Labels

OV BU BR CR GS KN LV PR PC LA LS

T
ru
e
L
ab

el
s

OV 270 0 0 0 0 0 0 0 0 0 0
BU 0 36 5 0 0 0 0 0 0 24 15

BR 0 0 260 0 0 0 0 0 0 0 0
CR 0 0 0 229 0 0 0 0 0 1 0

GS 0 0 21 33 54 0 0 0 0 10 2
KN 0 0 3 0 0 104 0 0 0 3 0

LV 0 0 27 0 0 0 42 0 0 1 0
PR 0 0 0 0 0 0 0 260 0 0 0
PC 0 0 0 0 0 0 0 0 6 54 0

LA 1 0 0 0 0 0 0 0 0 132 7
LS 0 0 10 0 0 0 0 0 0 6 124
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5.6 Observations

Across all the data sets except BrainTumor2, ensembles using regularized linear base

classifiers outperformed those using trees. Also, the ensemble with ℓ1-regularized

logistic regression model (linear classifier) consistently outperformed the others. In

particular, with the 11Tumor data set, both ensembles with regularized base classi-

fiers achieved classification accuracy around 94% while the ensemble that uses tree

classifier only achieved around 87% accuracy. Across all the data sets, ensemble using

ℓ1-regularized logistic regression model is consistently the leading performer. With

9Tumor data set, it reaches around 80% accuracy, with the ensemble using SVM

coming second at 74% and the ensemble using classification tree last at only 61%.

With the BrainTumor2 data set, it achieved an accuracy of 84% while the ensemble

using classification tree achieves 77%. The ensemble using SVM performed poorly

and achieved only around 47%. The results suggest that using a flexible classifier as

a base classifier may not lead to a better ensemble in many cases. The performance

of the ensemble using tree classifier is systematically lower than that of the linear

classifiers with regularization. The simple decision boundary employed by the linear

classifier does not prevent it from achieving better classification accuracy. Hence the

complexity (flexibility) of the base classifier may not be a main concern in designing

an ensemble.

Both ℓ1- and ℓ2-regularization produce classifiers whose coefficients have small

magnitude. We further investigated which type of regularization gives a superior per-

formance. From the results presented in Figure 5.4, we see that ensembles based on

ℓ1-regularized logistic regression outperform those based on SVM. However, we notice

55



that ℓ1-regularized logistic regression and SVM differ not only on the type of regu-

larization but also on the loss function. In order to rule out the possibility that the

difference in performance is attributable to the different loss functions, we constructed

another ensemble that uses ℓ2-regularized logistic regression models as base classifiers.

It was the same as the ensemble consisting of ℓ1-regularized logistic regression models

except that the ℓ2-norm was used as the penalty function. The ℓ2-regularized logis-

tic regression ensemble performed similar to the SVM-based ensemble. It performed

very poorly on the BrainTumor2 dataset. This suggests that it is ℓ1-regularization

that contributes to a better performance in the ensemble. ℓ2-regularization helps

to enhance the performance of an ensemble but it does not improve performance as

much as ℓ1-regularization does. In a few cases, ℓ2-regularization may harm classifica-

tion accuracy. This observation provides insights into the effect of regularization in

ensemble classifiers.

From Tables 5.2-5.9, we see that ℓ1-regularized logistic regression classifiers are

less susceptible to small number of examples per class than a decision trees. For

example, on the BrainTumor1 data set, the regularized regression model correctly

classified 30 out of 40 Classic Glioblastomas samples while SVM classified 25 out of

40. Although the regression classifier performed poorly in correctly classifying only

8 out of 60 PNET samples, the SVM classifier did not classify any of the samples

correctly.

Similarly, on the BrainTumor2 data set, the regression model correctly classified

112 out of 140 non-classic Glioblastomas correctly, while the SVM classifier classified

94 out of 140. On the same data set, it classified 137 out of 150 Non-classic Anaplastic

oligodendrogliomas correctly while the SVM classifier classified only 116 out of 150.
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On the 11Tumors data set, the ℓ1-regularized regression ensemble correctly clas-

sified 59 out of 70 and 53 out of 60 liver and pancreas samples, respectively. On the

other hand, the ensemble of SVMs correctly classified 42 out of 70 and 6 out of 60 of

the same samples.

These results tell us that SVM base classifiers are more sensitive to relatively

low class density than the ℓ1-regularized logistic regression base classifiers. By class

density, we are referring to the ratio of the number of samples in that class to the

total number of samples.
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Chapter 6

Ensemble Cancer Classification:
Construction of Ensemble
In the previous chapter, we showed by means of empirical results that an ensemble of

ℓ1-regularized logistic regression models can yield excellent performance. Finding a

good base classifier, although a significant step, is only a part of the puzzle. There is

still the issue of how to construct ensembles that use the base classifier. An ensemble

classifier works by running its base classifiers and then pooling their decisions to make

its decision. Ensemble learning is a special case of supervised learning. Supervised

learning involves inferring a classification function f from a set of labeled data. This

set of labeled data is referred to as the training set. An ensemble is a multi-classifier

system.

The goal in designing any ensemble is to reduce its error relative to the errors

of the individual base classifiers. After all, why would an ensemble be an effective

learner if it can perform no better than some base classifier. It has been shown that

one way to improve the performance of an ensemble is to ensure that the underlying

base classifiers are diverse [60]. By diversity, we are referring to some measure of how

often each base classifier, ςi(x), differs from the prediction of the ensemble, C(x). It

has been shown that E, the error of an ensemble, is given by the equation

E = Ē − Ā, (Eq.6.0.1)

58



where Ē is the mean error of the base classifiers and Ā is the mean of the diversity

of the classifiers [34]. From Eq.6.0.1, we see that by increasing the diversity of the

base classifiers while maintaining their mean error, the accuracy of the ensemble can

be improved. We now discuss two approaches to ensemble construction suggested in

the literature to improve the diversity of ensemble classifiers: Bootstrap Aggregation,

commonly known as bagging [7], and Boosting [20, 19].

The Bootstrap Aggregation for classification tree is summarized as follows [7]:

1. A classifier is constructed from the learning set using k-fold cross-validation.

2. A bootstrap sample ℓB is selected from ℓ, and a tree is grown using ℓB. This is
repeated p times, obtaining tree classiers φ1(x), . . . , φp(x).

3. If (yn; xn) ∈ τ , then the predicted class of xn is the class with the majority in
φ1(x), . . . , φp(x). If there is a tie, the estimated class is the one with the fewest
class label.

4. The random partition of the data into ℓ and τ is repeated q times.

We used a variation of this algorithm in our work.

Boosting is an algorithm for constructing a “strong” classier as linear combination

of “simple” or “weak” classifiers. Boosting calls a weak base classifier repeatedly in a

series of rounds (r1, . . . , rn). The algorithm maintains a set of weights for the training

set. The weights are initially set to some fixed value. After each round, the weights of

incorrectly classied examples are increased so that the base classifier can focus on the

hard examples in the training set. The Boosting algorithm is an adaptive algorithm.

It reduces the training error and it is sensitive to noise and over-fitting. We did not

use boosting in our work.

We have emphasized the importance of diversity in the effectiveness of an ensem-

ble. In our work, each base classifier is constructed using a set of variations of the
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examples. The more diversity in the variations of the examples, the more likely it is

to have a better approximation of the true hypothesis. In order to further our goal

of diversity, we employed two approaches:

1. Ensembles were constructed from subspaces from biologically-derived gene sets.
We theorize that this furthers the goal of diverse variations because the different
gene sets are responsible for different biological processes.

2. Ensembles were also constructed using bootstrap aggregation (Bagging). Di-
versity in the variations is obtained by random sampling of the examples.

6.1 Ensembles Using Biologically-derived Subspaces

Ensemble classifiers used in the classification of cancers are often analyzed on the basis

of how sound they are from a statistical formulation standpoint. Very little, if any,

attention is paid to the actual biology that undergird them. The use of biologically-

derived gene sets is an important area of exploration because of the potential for

this research to discover vital functional information about genes and genes interact

and work together. While high classification accuracy is a very important goal in

cancer classification, scientists involved in genetic research are equally, if not more,

interested in any important biological information that the classification model may

reveal. The information gleaned from the model can further their understanding of

the causation and association of genes with various kinds of cancers.

One issue investigated in this work was whether further efficiencies could be gained

by restricting the genes on which a classification model was trained to only those genes

that contribute to some biological process. By biological process, we are referring to

any clearly defined series of events or molecular functions that has a beginning and
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an end. Cancer invariably leads to a set of observable characteristics of an individual

resulting from the interaction of an individual’s genotype with the environment. We

theorize that because biological process modifications occur in cancer tissues, by min-

ing gene expression correlations of genes in those tissues, a more powerful predictive

model for cancers affecting those tissues can be built.

In restricting the feature space to biologically-derived gene sets, two kinds of gene

sets were used. Details of the gene sets used in our work are give in Table 6.1 and

Table 6.2. The second column in the tables represents the total number of genes in

all the gene sets for the specified data set. The third column represents the average

number of genes per gene set for the data sets. The fourth column represents the

number of genes in the smallest gene set for the data sets, while the fifth column

represents the size of the largest gene set. The sixth column represents the total

number of genes in the gene sets for the specified data set. The gene sets are:

1. BP gene sets: These are gene sets grouped by biological processes from the

Gene Ontology (GO) Project database.

Table 6.1: Summary Statistics on BP Gene Sets

# of Avg # of Min # of Max # of Total # of
data set gene sets genes/set genes in set genes in set unique genes
BrainTumor2 824 70.396 2 1309 4704
9Tumors 824 53.319 1 1007 3503
ProstateTumor 824 70.396 2 1309 4704
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2. OS gene sets: These are oncogenic signatures from the Gene Expression Om-

nibus (GEO) data sets.

Table 6.2: Summary Statistics on OS Gene Sets

# of Avg # of Min # of Max # of Total # of
data set gene sets genes/set genes in set genes in set unique genes
BrainTumor2 189 115.110 10 292 6771
9Tumors 189 80.487 7 224 4392
ProstateTumor 189 115.110 10 292 6771

Gene sets based on molecular functions and cellular components were also considered

but they performed worse than those grouped by biological processes and oncogenic

signatures.

Ensembles were constructed using subspaces derived from BP gene sets. The Gene

Ontology Project (GO) [26] has a publicly available database which is a rich source

for structured, controlled vocabularies and classifications that cover several areas of

molecular and cellular biology. The BP gene sets used in our work were obtained

from the GO database.

Ensembles were also constructed using subspaces derived from OS gene sets. The

gene sets are organized on the basis of their oncogenic signatures. The gene sets

represent signatures of cellular pathways that are usually dis-regulated in cancer.

They are mostly derived from from microarray gene expression data. These gene sets

were obtained from the Gene Expression Omnibus (GEO) [15]. GEO contains gene

expression profiles derived from previous experiments involving genes known to be

cancer-causing.
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Training Set 1 Training Set 2 Training Set k

base classifier 1
(c1)

base classifier 1
(c2)

base classifier k
(ck)

Test Set

Decision 1

Test Set

Decision 2

Test Set

Decision k

c1(Test Set) (+)  c2(Test Set)  (+)  ...  ck(Test Set)

Training Samples
(Gene sets G1,...,Gk)

restrict feature
space to G1

restrict feature
space to G2

restrict feature
space to Gk

Figure 6.1: Ensemble Using Subspaces Based on Gene Sets
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In order to build an ensemble using a subspace derived from biologically-relevant

gene sets, the following steps (as depicted in Figure 6.1) are performed:

1. Consider gene sets Gi, i = 1, . . . , k that are known to be biologically-derived;
that is, each Gi is associated with some biologically-relevant attribute. Prepro-
cess the data by removing each gene g not in any of the gene sets from the data:

remove any g /∈
k
⋃

i=1

{Gi}.

2. Train k base classifiers. The jth base classifier is trained using the training
samples and genes in the jth gene set, Gj : each classifier is trained using a
subspace constituted by using the genes in Gj , one of the partitions formed
after the removal of genes not in any of the gene sets.

3. To classify a new sample, the predictions from each base classifier are pooled
together and a final decision is determined by committee vote. When there
are multiple classes (for example, disease conditions 1, 2, etc), the predicted
classification of the new sample is classification with the highest frequency from
the base classifiers.

6.2 Ensembles Using Bootstrap Aggregation

To create an ensemble using bootstrap aggregation, follow these steps as depicted in

Figure 6.2:

1. Preprocess the data using the Kruskal-Wallis or ratio of between group vari-
ance to within group variance and select top-ranked genes that give the best
classification result from either algorithm.

2. Randomly permute the samples.

3. Randomly partition the data set into a test set τ and a learning set ℓ.

4. The training set ℓ is repeatedly sampled to select p%× N samples (with repe-

tition allowed), where N is the size of the training set to construct bootstrap

samples ℓB.
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Training Set 1 Training Set 2 Training Set M

base classifier 1
(c1)

base classifier 2
(c2)

base classifier M
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Decision 1
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Training Samples
(only relevant genes)

randomly sample randomly sample randomly sample

Figure 6.2: Bagged (Boostrapped) Classifiers
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5. An ℓ1-regularized logistic regression model is constructed from the bootstrap
sample ℓB while searching for the “best”-performing parameter (λ ∈ {1t}, t =
−1, 0, 1, . . . , 4) on ℓB.

6. Steps 7-8 are repeated until M base classifiers are built.

7. The M base classifiers are then applied to the test set, τ and committee vote is
used to determine the classification made by the ensemble. In order to classify a
new sample, the predictions from each base classifier are pooled together and a
final decision is determined by committee vote.When there are multiple classes
(for example, disease conditions 1, 2, etc), the predicted classification of the
new sample is classification with the highest frequency from the base classifiers.

6.3 Results

To evaluate each of these approaches, 10-fold cross-validation was used. The results

are presented in the charts below. The feature space was initially partitioned using

the gene sets in Table 3.1. We then constructed ensembles of ℓ1-regularized logistic

regression models using subspaces from biologically-derived gene sets. The BrainTu-

mor2, 9Tumors and ProstateTumor data sets were used to construct ensembles in

order to observe the effect of using gene sets,

For comparison purposes, we also report results from the ensembles constructed

using gene set-based subspaces along with results obtained by using a single ℓ1-

regularized logistic regression model and the same feature space.

The results obtained from partitioning the feature space using genes associated

with biological processes (BP) and oncogenic signatures (OS) are reported in Table

6.3 and Table 6.4, respectively.

The second columns in the tables show the accuracy of the ensemble. The third

columns show the number of genes in the ensemble classifier / the number of genes

in the data set. The fourth columns are the baseline cases; that is, the accuracies
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obtained by using a single ℓ1-regularized logistic regression model on the same feature

space (restricting the genes to those in each gene set). The fifth columns show number

of genes in the model / the number of genes in the data set when using a single ℓ1-

regularized logistic regression model.

Table 6.3: Ensembles Constructed Using BP Gene Sets vs Single Classifier

L1LRM Ensemble # of Effective Single L1LRM # of Effective
Dataset BP Genes Subspaces Genes All BP Genes Genes
BrainTumor2 76.0 216/4705 76.0 206/4705
9Tumors 78.3 564/3504 76.7 216/3504
ProstateTumor 100.0 26/4705 100.0 10/4705

Table 6.4: Ensembles Constructed Using OS Gene Sets vs Single Classifier

L1LRM Ensemble Effective L1LRM Effective
Dataset OS Genes Subspaces # of Genes All OS Genes # of Genes
BrainTumor2 78.0 256/6772 76.0 234/6772
9Tumors 80.0 838/7130 76.7 542/7130
ProstateTumor 100.0 81/6772 100.0 9/6772

Bagged ℓ1-regularized logistic regression models on the data sets in Table 3.2

were constructed. For comparison purposes, we report the results along with those

obtained by using one ℓ1-regularized logistic regression model on the feature space

(after preprocessing) as the baseline. The results are shown in Table 6.5.

The second column in the table shows the average accuracy±standard deviation

of the bagged ℓ1-regularized logistic regression models after 20 repetitions of 10-

fold cross-validation. The third column is the baseline case; that is, the average

accuracy±standard deviation obtained after 20 repetitions of 10-fold cross-validation

when using a single ℓ1-regularized logistic regression model on the same data set.
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Table 6.5: Ensemble Constructed Using Bagging vs Single Classifier

Dataset Bagged L1LR Models Single L1LR Model
BrainTumor2 42.7±3.5 36.2±4.81
9Tumors 68.3±4.1 63.0±5.09
ProstateTumor 93.9±0.9 92±1.5

6.4 Observations

Across all the data sets, on average, bagged ℓ1-regularized regression models outper-

formed single ℓ1-regularized logistic models. In particular, with the 9Tumors data set,

the average classification accuracy of the bagged ℓ1-regularized models was 68.3±4.1%

while the classification accuracy achieved without bagging was 63.0%, an average gain

of 10±4.1%. There is also difference in the average accuracy between the ensemble

and the single classifier of around 6% and 1% on the BrainTumor2 and ProstateTumor

data sets, respectively. This suggests that bagging increases classification accuracies

on data sets containing both small and large number of examples. This is attributable

to the diversity in the variations of the base classifiers since the same data sets are be-

ing used. The only thing that is different is that an ensemble of diverse base classifiers

are being used rather than a single classifier.

We also observed that ensembles constructed from subspaces constituted by par-

titioning the feature space using gene sets performed as well as or better than those

based on the same features using only one ℓ1-regularized logistic regression model.

This is true for both gene sets based on biological processes and oncogenic signatures.

The ensembles constructed from subspaces derived from gene sets outperformed a sin-

gle ℓ1-regularized logistic regression model on both BrainTumor2 and 9Tumors data
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sets. The ensembles matched the performance of a single ℓ1-regularized logistic re-

gression models on the ProstateTumor data set for both biological processes and

oncogenic signatures gene sets. From Table 6.3 and Table 6.4, we see that the there

is a slight increase in the number of effective genes in the ensemble as compared to the

single classifier but this increase also leads to an increase in classification accuracy.

So there is a trade-off: there is an increase in accuracy with a marginal increase in the

number of genes in the feature space. Again, this increase in accuracy is attributable

to the use of diverse base classifiers since the same data sets are being used and the

only difference is that an ensemble is used in one case while a single classifier is used

in another.

The classification accuracy increases with bagged ℓ1-regularized logistic regression

models over the use of a single ℓ1-regularized logistic regression model as shown

in Table 6.5. Also, constructing ensembles from subspaces derived from gene sets

lead to better performance than not partitioning the feature space as the results

in Table 6.3 and Table 6.4 show. These results suggest that it is worth exploring a

hybrid approach in which ensembles are constructed by bagging ℓ1-regularized logistic

regression models constructed from subspaces derived from gene sets.
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Chapter 7

Conclusion
In the introduction, we expressed the hope that this work would lead to greater

insights into how the predictive power of ensemble classifiers for cancers can be im-

proved. By employing novel gene selection techniques and choosing underlying base

classifiers with requisite properties, the performance of an ensemble can be enhanced.

We explored ways in which the base classifiers can be built and trained to improve

the performance of an ensemble classifier. We now provide a summary of the insights

gained and describe the progress made towards answering the questions that were

explored. We also suggest some potentially promising future research directions that

could provide additional ways of enhancing the performance of ensemble classifiers.

The aim of this work has been to explore ways in which the predictive power of

an ensemble can be enhanced for cancer classification. Throughout the literature,

there has been considerable interest in the ways in which multiple classifiers can be

combined to improve their predictive power. We set out to answer four key questions:

1. How effective are logistic regression models [33] with ℓ1-regularization [5] in the
removal of redundant (ineffective) genes in micro-array gene expression data?

2. Does the flexibility (complexity) of the base classifier lead to an improvement
in the classification accuracy of the ensemble?

3. Does the use of a regularized base classifier enhance the accuracy of the ensem-
ble?

4. Can the performance of an ensemble classifier for cancer that uses microarray
data be improved by using subspaces based on biologically-derived gene sets?
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7.1 Contributions

To gain insights into these questions, we focused on how to engineer the ensemble

classifier by mitigating some of the inherent challenges in classifying cancers using

microarray data. These are the contributions of our work.

• L1-regularized logistic regression model can be used to perform implicit gene

selection in microarray cancer data.

• An ensemble used for cancer classification does not need to have a flexible

classifier to achieve good classification accuracy.

• Regularized classifiers serve better as base classifier for a ensemble.

• Biologically-derived gene sets have inherent variations thus making them suit-

able for ensuring diversity when they are used in ensembles.

7.2 Summary

In Chapter 1, the importance of the use of an ensemble in classifying cancers using

microarray data was discussed. We discussed how advances in biomedical technol-

ogy have made gene expression data easily available for use by ensemble classifiers.

We also gave the motivation for this work. The motivations include, early diagnosis

of cancers, improved prediction of responses to treatment, the development of cus-

tomized treatment and the potential for better prognosis. We indicated that while

phenotypical information is very useful, and even very reliable, in detecting and diag-

nosing certain kinds of cancers, the availability of genotypical information provides a

tremendous amount of promise for detecting cancers. A summary of the key questions
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that this work examines and what should be done to address those questions was also

highlighted.

In Chapter 2, related works in cancer classification using gene expression data

were surveyed. We discussed some approaches that have included traditional methods

such as artificial neural networks, nearest-neighbor-based methods, decision trees and

support vector machines (SVM). Research involving the use of random forest and an

ensemble of decision trees in classification were also discussed. Additionally, we gave

two popular strategies of ensemble constructions, bootstrap aggregation and adaptive

boosting.

In Chapter 3, the problem of cancer classification using microarray gene expression

data was formally defined. We described the nature of the data used in our research:

a matrix whose rows represent gene expression profiles and whose columns represent

gene expressions of each gene across the samples. We also outlined some of the tech-

nological and algorithmic issues that make this a challenging problem. One challenge

discussed was that microarray expression data are ultra high-dimensional and poten-

tially contains noise. Another challenge discussed was that some of the genes in the

data sets are not good predictors for cancers. The issue of some genes being correlates

and the need for the elimination of redundancies was also raised as a challenge. We

also enumerated the problems we sought to solve. The solutions to these problems ad-

dress the challenges and issues discussed in the chapter. The problems identified are

gene selection, over-fitting, the use of ensemble classifiers, determining a good base

classifier and constructing ensembles. Finally, we discussed the experiment setting,

source of data used in this work and the use of k-fold cross-validation to evaluate the

approaches that are proposed.

72



In Chapter 4, we presented our proposed two-stage gene selection algorithm. The

first stage of the algorithm involves ranking genes using two ranking schemes. One

approach uses the Kruskal-Wallis non-parametric one way analysis of variance test to

rank genes. The second approach uses the ratio of between group variance to within

group variance (F-score) to rank the genes. The advantages and limitations of each

of the ranking schemes were discussed. When the first stage is complete, top-ranked

genes are chosen after using the performance of an SVM classifier on the data as

an evaluation metric. The ranking scheme yielding better accuracy is used in the

selection of the top-ranked genes. In the second stage, the data set is restricted to

the top-ranked gene and the ℓ1-logistic regression model is applied to the modified

data to remove ineffective/redundant genes. Empirical results from the use of the

two-stage gene selection approach were reported. These results are compared with

those obtained by using no gene selection at all and those involving only the use of

the first stage of the algorithm.

In Chapter 5, the importance of the choice of a base classifier on the performance

of an ensemble was emphasized. The choice of a base classifier is important because

an ensemble classifier pools the decisions of individually trained base classifiers in

order to make its own decision. Very often, optimization with respect to a small set

of examples does not lead to the true hypothesis. However, combining a collection of

optimal solutions, each based on a variation of the examples, can better approximate

the true hypothesis. The two problems explored in the chapter are the impact of

classifier flexibility and regularization on the performance of an ensemble of classifiers.

These based classifiers were used in an empirical study: SVM, decision tree, and ℓ1-

regularized linear regression. SVM was used to study the impact of linearity and

73



ℓ2-regularization. Decision tree was used as a base classifier to study the effect of

a flexible base classifier on the performance of an ensemble. ℓ1-regularized logistic

regression model was used to study the impact of linearity and ℓ1-regularization.

Results from empirical studies are presented along with observations and conclusions

drawn.

In Chapter 6, two general approaches for the construction of ensembles, boot-

strap aggregation and adaptive boosting were discussed. Both their advantages and

limitations are described. In this chapter, we also discussed two approaches that

were used to construct ensembles for the classification of cancer. The use of bagged

ℓ1-regularized logistic regression models to classify cancer was discussed. A second

approach that uses subspaces from biologically-derived gene sets was also discussed.

Empirical results from the use of the bagged ensembles and ensembles constructed

from subspaces using gene sets related to biological processes and oncogenic signatures

were reported. These results were analyzed and observations were made.

7.3 Future Work

All the approaches to enhancing the performance of ensembles considered in this work

have involved either sampling in the feature (gene) space or the sample space during

the training of base classifiers. We did not consider any approach involving a hybrid

of both of these approaches. A direction that could be explored is a hybrid approach

that concurrently samples both spaces during the training of the base classifiers. It

goes without saying that this would require increased computing resources during the

training phase. Since the building of base classifiers from sampling both the sample

space and the feature space concurrently is independent, significant speedup can be

achieved through parallelization. This approach would potentially select the relevant
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features while at the same time deal with the over-fitting concerns. If this approach

proves successful, it would contribute tremendously to the classification of certain

rare kinds of cancers and other genetic diseases for which there are very few samples.

In combining the base classifiers to determine the overall decision of the ensembles

used in this work, we used committee vote by the base classifiers with a majority

voting rule for the ensemble to arrive at a decision. A future research direction would

be constructing ensembles that make decisions based on a weighted combination of

the classification functions of the base classifiers. These functions could be weighted

based on the classification accuracy of the base classifiers on the training samples or

some complimentary learning algorithm could be used to learn how the votes should

be weighted.

Finally, another direction to explore in the construction of an ensemble classifier

for microarray data is some variant of the generalized additive model [27]. This

approach would be iterative and the classification function would be dynamic. Given

the statistical formulation of an additive model, in theory, there would be the potential

to minimize classification error with every iteration.

Further research in these directions is likely going to reveal additional attributes

of a base classifier that would contribute to the enhancement of the performance of

an ensemble. Additionally, the use of various techniques to weight the base classifiers

could improve the performance of ensembles. A generalized additive model is worth

exploring since it would lead to an adaptive model.
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