
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2013

Blind LDPC encoder identification
Tian Xia
Louisiana State University and Agricultural and Mechanical College, txia5@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Xia, Tian, "Blind LDPC encoder identification" (2013). LSU Master's Theses. 3323.
https://digitalcommons.lsu.edu/gradschool_theses/3323

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3323?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


BLIND LDPC ENCODER IDENTIFICATION

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

The School of Electrical Engineering and Computer Sciences

by
Tian Xia

B.S., University of Electronic Science and Technology of China, 2008
M.S., University of Electronic Science and Technology of China, 2011

December 2013



ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my thesis advisor Dr. Hsiao-Chun

Wu. This work cannot be fulfilled without his kind and precious guidance. His profound

knowledge and deep insight offer me the timely instructions and indicate the promising

directions. Every meeting with Dr. Wu is an enlightening inspiration to me, which elevates

me to a yet-higher altitude I would never dream of. His persistent research-interest-driving

spirit encourages me to overcome most difficult challenges, one after another. I am very

certain that the training and knowledge I gained here in this couple of years will definitely

impose a long, positive impact on my future career.

Also, I would like to thank my committee members Dr. Xuebin Liang and Dr. Morteza

Naraghi-Pour, who constantly dedicated their invaluable time and provided excellent com-

ments for this work. Beyond the thesis study, I also learned a lot from their outstanding

courses, which established indispensable foundations of this work.

Moreover, I am very grateful to my former/current labmates Dr. Yonas G. Debessu and

Ms. Hongting Zhang. They not only shared their experience and knowledge but also offered

friendship during my study here at Louisiana State University. They made my education

here a wonderful and memorable stage in my life.

At last but not least, I would like to express my high gratitude to my parents. No matter

what decision I have made or what situation I have to face, they always firmly stand by my

side and give me unwavering support. I cannot be any luckier to be raised in such a family

full of love and hope. This thesis work is dedicated to my parents.

ii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BINARY LDPC ENCODER IDENTIFICATION. . . . . . . . . . . . . . . . . . . 5

2.1 Basic Transceiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Binary LDPC Encoder Identification . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Log-likelihood Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Proposed Blind Encoder Identification Scheme . . . . . . . . . . . . . . 9

2.3 Blind Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 CRLBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 The M2/M4 Estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 The EM Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Normalized Mean-Square-Error . . . . . . . . . . . . . . . . . . . . . . 16

3 NONBINARY LDPC ENCODER IDENTIFICATION . . . . . . . . . . . . . . . . 18

3.1 Basic Transceiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Nonbinary LDPC Encoder Identification . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Log-likelihood Ratio Vectors . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Our Proposed Novel Blind Encoder Identification Scheme . . . . . . . . 22

4 SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Binary LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1 Comparative Study on Blind Parameter Estimators . . . . . . . . . . . 27
4.1.2 Average LLRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Probability of Detection Per Block . . . . . . . . . . . . . . . . . . . . 32
4.1.4 Probability of Detection for Multiple Blocks . . . . . . . . . . . . . . . 34

4.2 Nonbinary LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



LIST OF FIGURES

2.1 The system diagram of a basic transceiver model involving binary LDPC codes. 6

2.2 The block diagram of our proposed new blind LDPC encoder identification
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The system diagram of a basic AMC transceiver model involving nonbinary
LDPC codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 The NMSEs of M2/M4 and EM estimates of aν and the corresponding CRLBs
with respect to ην . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The NMSEs of M2/M4 and EM estimates of σ2
ν and the corresponding CRLBs

with respect to ην . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 The normalized biases for the EM estimates of aν and σ2
ν with respect to ην . 30

4.4 The average LLRs Γθ′
ν (ι) with respect to ι when ην = 8 dB and n = 648 for (a)

the true LDPC encoder θ: R = 1/2, (b) the true LDPC encoder θ: R = 2/3,
(c) the true LDPC encoder θ: R = 3/4, and (d) the true LDPC encoder θ:
R = 5/6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 The probabilities of detection PD with respect to ην for the codeword block
length n = 648 and different code-rates R. . . . . . . . . . . . . . . . . . . . 32

4.6 The probabilities of detection PD with respect to ην for the code-rate R = 5/6
and different codeword block lengths n. . . . . . . . . . . . . . . . . . . . . . 33

4.7 The probabilities of detection PD with respect to ηave for the codeword block
length n = 648 and different code-rates R when different numbers of blocks,
M=1, 5, and 20, are collected jointly for blind encoder identification. . . . . 35

4.8 The probabilities of detection PD with respect to ην for four different LDPC
codes over GF(16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



ABSTRACT

Nowadays, adaptive modulation and coding (AMC) techniques can facilitate flexible s-

trategies subject to dynamic channel quality. The AMC transceivers select the most suitable

coding and modulation mechanisms subject to the acquired channel information. Meanwhile,

a control channel or a preamble is usually required to synchronously coordinate such changes

between transmitters and receivers. On the other hand, low-density parity-check (LDPC)

codes become more and more popular in recent years due to their promising capacity-

approaching property. The broad range of variations in code rates and codeword lengths

for LDPC codes makes them ideal candidates for future AMC transceivers.

The blind encoder identification problem emerges when the underlying control channel

is absent or the preamble is not allowed in AMC systems. It would be quite intriguing for

one to build a blind encoder identification technique without spectrum-efficiency sacrifice.

Therefore, in this thesis, we investigate blind LDPC encoder identification for AMC systems.

Specifically, we would like to tackle the blind identification of binary LDPC codes (en-

coders) for binary phase-shift keying (BPSK) signals and nonbinary LDPC codes for quadrature-

amplitude modulation (QAM) signals. We propose a novel blind identification system which

consists of three major components, namely expectation-maximization (EM) estimator for

unknown parameters (signal amplitude, noise variance, and phase offset), log-likelihood ratio

(LLR) estimator for syndrome a posteriori probabilities, and maximum average-LLR detec-

tor. Monte Carlo simulation results demonstrate that our proposed blind LDPC encoder

identification scheme is very promising over different signal-to-noise ratio conditions.

v



1. INTRODUCTION

In this chapter, we will facilitate the motivation of adaptive modulation and coding (AMC)

technologies. Then some blind signal processing methods are stated for AMC transceivers.

Finally, the outline of this thesis work will be presented at the end.

1.1 Background and Motivation

Adaptive modulation and coding (AMC) techniques can adjust the quality-of-service

(QoS) for communication sessions transmitted through time-varying channels so as to seek

the tradeoff between data-rate (throughput) and bit-error-rate performances. Based on the

feedback channel state information (CSI), the AMC transmitter dynamically selects an ap-

propriate combination of modulator and channel encoder from the predefined candidate

pool [1–6]. In the conventional AMC techniques, a control channel is often necessary to

be facilitated to coordinate the changes in modulation/demodulation and coding/decoding

mechanisms at both transmitter and receiver. Although this “control channel” strategy

makes the receiver easy to synchronize with the transmitter’s changes, either additional

spectral resource or spectral efficiency reduction is definitely required thereupon.

An immediate question arises: do AMC techniques still work if none of the training

sequences, the aforementioned control channel, and the preamble is available, i.e., in a blind

way? This thesis is dedicated to exploiting the potential answer to this interesting and

important question. People have been studying this question for a while. In fact, blind signal

processing techniques would be very useful in this scenario, which have been widely adopted

1



in modern communication applications. One example is blind equalization for cognitive radio

receivers [7]. Besides, receivers can rely on blind classification techniques to determine the

modulation types of the transmitted signals directly from the received signal data [8, 9].

Moveover, blind identification of channel encoders was investigated recently by [10–16].

In [10], the frame synchronization was determined by using the log-likelihood ratio (LLR)

of the syndrome of error correcting codes. In [11], the blind identification of nonbinary

convolutional encoder parameters was investigated for noise-free channels. In [12], three

maximum-likelihood (ML)-based classifiers were proposed to distinguish space-time block

codes (STBCs). In [13], the mathematical structures inferred by the parity-check relations

over the Galois field GF(2) were explored for blindly identifying the channel encoder from

the predefined candidate set. In [14], a fast algorithm was proposed to detect an additional

lonely bit (ALB) by identifying two different linear codes. Lately, our group proposed a novel

sophisticated algorithm to blindly estimate the parameters for arbitrary turbo codes [15,16].

Since no a priori knowledge about the transmitted data is given at the receiver, the re-

ceiver has to utilize the redundancy introduced by the channel encoder of the transmitter

to identify which kind of encoder the transmitter actually employs. The statistical char-

acteristics, say the log-likelihood ratios (LLRs) of the received signals, are usually invoked

to extract the essential information in the existing blind channel-encoder identification ap-

proaches [12–14]. In addition, for space-time block codes (STBCs), which can be considered

as a special kind of channel codes, the space-time redundancy of the received signal samples

is exploited to distinguish coding schemes [12]. For most channel coding schemes involving

parity-check symbols, the mathematical structures inferred by the parity-check symbols over

the Galois fields are explored for identifying the original encoder at the receiver [13].
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Obviously, different encoders (codes) may need different blind identification mechanisms.

In this thesis, we would like to focus on blind identification of low-density parity-check (LD-

PC) codes. First introduced by pioneer Gallager (see [17]) and then revived after more than

thirty years of hibernation (see [18]), LDPC codes have become one of the most favorable

codes in both academia and industry [19]. It has been demonstrated that LDPC codes can

outperform prevalent turbo codes when codeword block lengths get sufficiently large [20].

On the other hand, unlike binary LDPC codes where the codewords need to be sufficiently

long so as to approach Shannon-capacity [21], nonbinary LDPC codes are also devised, which

can exhibit promising waterfall and error-floor performances even when the codewords are of

short or moderate lengths [22, 23]. The wide range of code rates and codeword lengths also

makes LDPC codes ideal choices for AMC systems. Due to these merits, LDPC codes are al-

ready adopted in many existing telecommunication standards and remain the top candidates

for the future generations of wireless systems. For example, the IEEE 802.11n standard has

specified the LDPC codes as a forward error-correction (FEC) option for high-performance,

high-throughput networks [24].

1.2 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, the basic transceiver sys-

tem diagram and the signal model involving binary LDPC encoders and binary phase-shift

keying (BPSK) modulation are presented and the blind encoder identification problem is

formulated. Then, the log-likelihood ratio (LLR) is defined to establish our proposed blind

encoder identification scheme. How to blindly estimate the received signal amplitude and

the noise variance is also manifested in detail. Specifically, two statistical signal processing
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methods, namely the second-order/fourth-order moment method (M2/M4) (see [25]) and

the expectation-maximization (EM) algorithm (see [26]) are utilized in our thesis work. The

corresponding Cramer-Rao lower bounds (CRLBs) are derived thereupon.

In Chapter 3, we extend our work in Chapter 2 to blindly identify nonbinary LDPC

codes over the Galois fields GF(q). There are several important modifications from the

binary LDPC codes. First, the signals contain q-ary quadrature-amplitude modulation (q-

QAM) symbols. Consequently, there exists an unknown phase offset in the signal model

thereby. Thus, the EM algorithm needs to be developed accordingly to estimate signal

amplitude, noise variance, and phase offset altogether. Due to the nonbinary coefficients in

the parity-check matrix, the LLRs of syndrome a posteriori probabilities (APPs) have to be

computed in a recursive manner, which is totally different from the binary counterparts.

In Chapter 4, Monte Carlo simulation results are demonstrated to evaluate the effective-

ness of our proposed blind encoder identification schemes for both binary and nonbinary

LDPC codes. For binary LDPC codes, the normalized mean-square-error (NMSE) perfor-

mances for M2/M4 and EM algorithms are compared with the corresponding CRLBs. The

identification performances are examined for both binary and nonbinary LDPC encoders

with various code rates and codeword lengths.

Finally, conclusion will be drawn in Chapter 5. The partial results of this thesis work

have been reported in [27–29].
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2. BINARY LDPC ENCODER IDENTIFICATION

In this chapter, we will discuss how to blindly identify binary LDPC encoders given a

predefined candidate set. The basic communication transceiver system diagram and the

signal model will also be introduced.

2.1 Basic Transceiver Model

In this section, we will introduce the basic system model for the transceivers involving bi-

nary low-density parity-check (LDPC) coders/decoders. The block diagram of the transceiver

involving our proposed new blind binary LDPC encoder identification mechanism is depict-

ed in Figure 2.1. Without loss of generality, let’s not consider source encoder/decoder here.

Denote the sets Z2
def
= {0, 1} and B def

= {−1, 1}. At the transmitter, original information bits

are grouped into blocks, each of which consists k consecutive bits, say bν ∈ Zk×1
2 , where

ν ∈ Z is the block index. This block of information bits are passed to the “LDPC encoder

θ” to generate a corresponding block of “codeword” or “coded bits”, say cθν ∈ Zn×1
2 , where

θ denotes a particular type of LDPC encoder. Obviously the corresponding code rate is

R = k/n. Then, the codeword cθν should be modulated by binary phase-shift keying (BPSK)

modulator and the corresponding block of modulated symbols are denoted by sθν ∈ Bn×1.

These modulated BPSK symbols will undergo a “frequency up-converter” to engender the

pass-band signals for actual transmission.

The transmitted pass-band signals travel through the channel and arrive at the receiver.

They will go through the ”frequency down-converter” first to come back to the baseband. In

5
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Figure 2.1: The system diagram of a basic transceiver model involving binary LDPC codes.

this thesis, we assume that both frequency and frame synchronizations are properly carried

out prior to encoder identification. It is possible that joint frequency synchronization, frame

synchronization, and encoder identification can be accomplished blindly using the techniques

in [10,30] as well as the proposed encoder identification scheme in this thesis. Nevertheless,

we focus on the new blind encoder identification scheme throughout this thesis.

According to Figure 2.1, the received baseband signal symbols are also collected in blocks,

say rν ∈ Rn×1, ν ∈ Z. Instead of passing rν to the “BPSK demodulator” as in the standard

receivers, we propose to feed rν to our new “blind identification scheme” to identify θ, the

unknown LDPC encoder adopted in the transmitter. Once the encoder type is identified by

our proposed scheme as θ̂ν where the subscript ν means that it is estimated from the ν th

block of received signal samples, then the appropriate LDPC decoder can be employed to

construct the information symbol estimates b̂ν .

Consider the additive white Gaussian noise (AWGN) channel here. Each element of the

ν th block of received baseband signal samples, rν
def
= [rν,0, rν,1, . . . , rν,j, . . . , rν,n−1]

T , can be
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expressed as

rν,j = aν s
θ
ν,j + wν,j, j = 0, 1, . . . , n− 1, (2.1)

where aν is the unknown signal amplitude accounting for the processing gain and the channel

gain, sθν,j ∈ B is the modulated BPSK signal generated from the encoder θ, and wν,j is the

zero-mean AWGN with the variance E{w2
ν,j}

def
= σ2

ν for the j th signal sample within the ν th

block. Consequently, the signal-to-noise ratio (SNR) per coded bit for the ν th block of

modulated signals is given by

ρν =
a2ν
σ2
ν

. (2.2)

On the other hand, to take the code rate R into account, the SNR per uncoded bit for the

ν th block of modulated signals is given by

ην =
ρν
R

=
a2ν
R σ2

ν

. (2.3)

According to Figure 2.1, the receiver has no idea about the exact encoder θ the trans-

mitter adopts. Therefore, it needs to identify the encoder before any received signal can be

decoded. Often, an LDPC encoder would have a very large parity-check matrix, and it is

impossible for any receiver to blindly reproduce the exact parity-check matrix without any a

priori knowledge. In practice, the AMC transceivers would not change their modulators and

encoders arbitrarily. Therefore, one may restrict the modulation/encoder options within a

given set. In this thesis, we assume that a pre-determined LDPC encoder candidate set, say

Θ, which contains multiple encoder candidates, is known to both transmitter and receiver,

and obviously θ ∈ Θ. We also assume that the encoders in Θ are different from each other

so that the parity-check matrices of any two encoders do not have identical row(s). It is the

7



usual constraint for AMC schemes. Thus, we can pick up its estimate θ̂ν from this given set

Θ as well. We will present a new method to blindly identify the LDPC encoder adopted in

the transmitter in the subsequent sections.

2.2 Binary LDPC Encoder Identification

Since each LDPC code has a unique parity-check matrix, the encoder θ can be unambigu-

ously identified if we can successfully establish the corresponding underlying parity-check

relations directly from the received signal data samples. The parity-check relations are man-

ifested by that the sums of certain coded bits in the codeword block over the Galois field

GF(2) are zero. To achieve this, we first formulate the log-likelihood ratio (LLR) of the

syndrome a posteriori probability (APP) in this section. The similar LLR metric was used

for the iterative convolutional decoder in [31]. Henceforth, we propose a novel blind LDPC

encoder identification scheme, which is based on this feature, the average LLR of the LDPC

syndrome APP. The details are established in the following subsections.

2.2.1 Log-likelihood Ratio

Since we need to rely on the LLR metric for the blind LDPC encoder identification in

this thesis, a preliminary introduction on the log-likelihood ratio formulation for a binary

random process is provided here. The log-likelihood ratio of a binary random variable X

can be facilitated as

LX(x)
def
= ln

Pr{x = 0}
Pr{x = 1}

, (2.4)

8



which is the natural logarithm of the ratio between the probabilities of X taking values 0

and 1, respectively. Given another random variable, say Y , then the LLR of X conditioned

on Y is given by

LX|Y (x|y)
def
= ln

Pr{x = 0|y}
Pr{x = 1|y}

. (2.5)

According to the Bayes’s Theorem, we get

LX|Y (x|y) = ln
Pr{y |x = 0}
Pr{y |x = 1}

+ ln
Pr{x = 0}
Pr{x = 1}

= LY |X(y |x) + LX(x). (2.6)

Without any ambiguity, we hereafter simplify the notations of LX(x), LX|Y (x|y), and LY |X(y|x)

as L(x), L(x|y), and L(y|x), respectively. Let ⊕ denote the addition over Galois field GF(2)

(or exclusive-OR operation). A box-plus operation, denoted by �, can be formulated accord-

ing to [31] as follows:

L(x1 ⊕ x2 ⊕ · · · ⊕ xn)
def
=

n

�
j=1

L(xj)

def
= L(x1)� L(x2)� · · ·� L(xn)

= 2 tanh−1

(
n∏

j=1

tanh
(
L(xj)/2

))
. (2.7)

2.2.2 Proposed Blind Encoder Identification Scheme

Given an encoder θ ′ ∈ Θ, one can determine its parity-check matrix Hθ′ ∈ Zm×n
2 (m ≥

n− k), and obtain

Hθ′ c
θ
ν = 0, if and only if θ ′ = θ, (2.8)

where cθν is the coded sequence from encoder θ with length n, and 0 is the m×1 zero vector.

The “only if” implication in Eq. (2.8) holds because the encoders in the candidate set Θ are

9



assumed to be different from each other as stated in the end of Section 2.1. That is, the

candidate LDPC encoder θ ′ is exactly the encoder θ adopted at the transmitter within the

ν th block. Eq. (2.8) describes the so-called parity-check relations.

Denote the locations of the non-zero elements at the ith row of the parity check matrixHθ′

by a vector lθ
′

i = [li1 , li2 , . . . , liNi
]T (0 ≤ li1 < li2 < · · · < liNi

≤ n− 1), where Ni is the total

number of the non-zero elements in the ith row of Hθ′ . Note that the location of the first

element in any row ofHθ′ is indexed as “0” instead of “1”. Denote cθν
def
= [cν,0, cν,1, . . . , cν,n−1]

T .

Thus, we can rewrite Eq. (2.8) as

cν,li1 ⊕ cν,li2 ⊕ · · · ⊕ cν,liNi
= 0, ∀ 1 ≤ i ≤ m, (2.9)

if and only if θ ′ = θ (the estimated encoder at the receiver is exactly the encoder adopted

at the transmitter).

According to Eq. (2.6), we can have

L(cν,j|rν,j) = L(rν,j|cν,j) + L(cν,j)

= L(rν,j|cν,j), 0 ≤ j ≤ n− 1,

(2.10)

where L(cν,j) = 0 because each bit in any LDPC codeword is assumed to have equal proba-

bilities of taking values 0 or 1. Consider L(cν,j|rν,j) to be the messages which are assumed

to be conditionally independent of each other [19]. If an encoder candidate θ ′ is picked at

the receiver, according to Eqs. (2.7)–(2.10), we obtain the LLR of the syndrome a posteriori

probability (APP) for the ith parity-check bit (i = 1, 2, . . . ,m) in the ν th block as follows:

γθ′

ν,i
def
= L

(
cν,li1 ⊕ cν,li2 ⊕ · · · ⊕ cν,liNi

|rν,li1rν,li2 . . . rν,liNi

)
def
=

Ni

�
j=1

L
(
cν,lij |rν,lij

)
= 2 tanh−1

(
Ni∏
j=1

tanh
(
L(rν,lij |cν,lij )/2

))
. (2.11)
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According to the LLR definition given by Eq. (2.4) and the parity-check relations given by

Eq. (2.9), the LLR of the syndrome APP, γθ′
ν,i, is expected to be a positive value when θ ′ = θ.

One may take the average over the individual LLRs γθ′
ν,i, ∀ i, for the entire block ν, and the

“positiveness” of the average LLR will be more substantial when θ ′ = θ. On the other hand,

if θ ′ ̸= θ, individual LLRs γθ′
ν,i within the same block ν may be sometimes positive and

sometimes negative and they often cancel each other when we calculate the corresponding

average LLR. The average LLR for the ν th block of received signal data subject to the

encoder candidate θ ′ is thus given by

Γθ′

ν
def
=

1

m

m∑
i=1

γθ′

ν,i. (2.12)

Note that different encoders θ ′ have different values of n and k so that the values of m

(the number of parity-check bits) appear different. Consequently, according to Eqs. (2.11)

and (2.12), the underlying LDPC encoder for the ν th block of received signals can be identified

as

θ̂ν = argmax
θ′∈Θ

Γθ′

ν , (2.13)

where Θ is the collection of all possible candidates for the LDPC encoders adopted in the

transmitter. Note that one needs to carry out Γθ′
ν for every possible candidate θ ′ in Θ

according to Eq. (2.12). Alternatively, in order to facilitate the relationship between the

average LLR and the number of parity-check bits, the average LLR for the first ι parity-

check bits of the νth block of received signal samples subject to the encoder candidate θ ′ is

given by

Γθ′

ν (ι)
def
=

1

ι

ι∑
i=1

γθ′

ν,i, ι = 1, 2, . . . ,m. (2.14)

11
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Figure 2.2: The block diagram of our proposed new blind LDPC encoder identification
system.

It can be easily seen that Eq. (2.12) is a special case of Eq. (2.14) when ι = m.

According to the system model given by Eq. (2.1), we can write

L
(
rν,lij |cν,lij

)
=

2aν rν,lij
σ2
ν

. (2.15)

To carry out Eq. (2.13), one needs to calculate Eq. (2.15) first. However, the receiver has

no a priori knowledge of the signal amplitude aν and the noise variance σ2
ν . Therefore, they

need to be blindly estimated prior to the calculation of the LLRs of syndrome APP γθ′
ν,i.

We propose the blind estimators for aν and σ2
ν in the following section, which can serve as

the frontend mechanism to complete our new blind LDPC encoder identification system, as

depicted in Figure 2.2.

2.3 Blind Parameter Estimation

As discussed in Section 2.2.2, signal amplitude and noise variance are two parameters one

needs to estimate first for blind LDPC-encoder identification. Since we focus on the blind

scheme, the corresponding estimators have to be blind as well. There exist several non-data

aided methods to estimate signal amplitude and noise variance, such as the M2/M4 esti-

mator [25] and the EM (expectation maximization) estimator [26, 32]. The M2/M4 method

works well for constant modulus modulations such as phase-shift keying (PSK). The received

signals formulated by Eq. (2.1) constitute a Gaussian mixture where the EM algorithm can

12



be used to estimate the associated essential parameters. Therefore, we propose to use these

two methods to estimate the signal amplitude aν and the noise variance σ2
ν , and then com-

pare their performances with the corresponding CRLBs. In the next subsection, we will

present the formulae for the CRLBs of aν and σ2
ν , respectively.

2.3.1 CRLBs

It is well known that for any underlying statistical parameter to be estimated, among

all unbiased estimators, the CRLB facilitates the minimum variance. Hence we can use the

CRLB as the benchmark to evaluate any estimator. As mentioned in Section 2.2.2, LDPC

coded bits can take either 0 or 1 with equal probability and they are assumed statistically

independent of each other. According to Eq. (2.1), the probability density function (PDF)

of a received signal block rν can thus be represented by

p(rν) =
n−1∏
j=0

1

2

1√
2πσ2

ν

[
exp

(
− (rν,j − aν)

2

2σ2
ν

)
+ exp

(
− (rν,j + aν)

2

2σ2
ν

)]
. (2.16)

The associated log-likelihood function is thus given by

ln p(rν) = −n

2
ln(2πσ2

ν)−
1

2σ2
ν

n−1∑
j=0

(
r2ν,j + a2ν

)
+

n−1∑
j=0

ln

(
cosh

(aνrν,j
σ2
ν

))
. (2.17)

Denote λ
def
= [aν , σ

2
ν ]

T the vector of the unknown parameters. According to [33], the inverse

of the Fisher information matrix can thus be expressed as

I−1(λ) =
2σ2

ν

n g(ρν)

 1
2
− ρνf(ρν) −aνf(ρν)

−aνf(ρν) σ2
ν − σ2

νf(ρν)

 , (2.18)

where ρν is defined by Eq. (2.2),

g(ρν)
def
= 1− f(ρν)− 2ρνf(ρν), (2.19)
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and

f(ρν)
def
=

exp
(
−ρν

2

)
√
2π

∫ ∞

−∞

u2 exp
(
−u2

2

)
cosh(u

√
ρν)

du. (2.20)

The CRLBs for the signal amplitude aν and the noise variance σ2
ν are found as the diagonal

elements of I−1(λ) such that

CRLBaν =
σ2
ν

(
1− 2ρνf(ρν)

)
n g(ρν)

, (2.21)

CRLBσ2
ν
=

2σ4
ν

(
1− f(ρν)

)
n g(ρν)

. (2.22)

The corresponding normalized CRLBs are defined as

NCRLBaν
def
=

CRLBaν

a2ν
(2.23)

and

NCRLBσ2
ν

def
=

CRLBσ2
ν

σ4
ν

, (2.24)

respectively.

2.3.2 The M2/M4 Estimator

From Eq. (2.1), the second-order moment of the received signal sample rν,j is given by

M2
def
= E{r2ν,j} = a2ν + σ2

ν , (2.25)

while the fourth-order moment of rν,j is given by

M4
def
= E{r4ν,j} = a4ν + 6a2νσ

2
ν + 3σ4

ν . (2.26)
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Solving both Eqs. (2.25) and (2.26) together with respect to the two variables aν and σ2
ν ,

one can get

aν =
4
√

6M2
2 − 2M4√
2

(2.27)

and

σ2
ν = M2 −

√
6M2

2 − 2M4

2
, (2.28)

where aν is assumed to be non-negative. In practice, M2 and M4 have to be estimated by

the sample averages over the νth block such that

M̂2 =
1

n

n−1∑
j=0

r2ν,j (2.29)

and

M̂4 =
1

n

n−1∑
j=0

r4ν,j. (2.30)

Substituting Eqs. (2.29) and (2.30) into Eqs. (2.27) and (2.28), we can obtain the M2/M4

estimators for aν and σ2
ν .

2.3.3 The EM Estimator

EM estimators have recently been applied for the parameter estimation in wireless com-

munication systems [16,34,35]. Here we will establish an EM estimator for determining the

signal amplitude aν and the noise variance σ2
ν . According to the system model given by E-

q. (2.1), it is obvious that the received signal symbols rν,j constitute a dual-modal Gaussian

mixture. Upon receiving rν,j, j = 0, 1, . . . , n − 1, our proposed EM algorithm is presented

below.

First, initialize the parameters aν and σ2
ν using K-means clustering method for a few

15



iterations. The weight of each Gaussian mode is fixed to 1/2 as we assume that each bit in

any LDPC codeword has equal probability for taking value of either 0 or 1.

At the E-step, compute

β̂j,κ =
pκ(rν,j | âν , σ̂2

ν)
2∑

κ=1

pκ(rν,j | âν , σ̂2
ν)

, (2.31)

where

pκ(rν,j | âν , σ̂2
ν)

def
=

1√
2πσ̂2

ν

exp
(
− (rν,j − âν xκ)

2

2σ̂2
ν

)
,

and

xκ
def
=


1, κ = 1

−1, κ = 2

At the M-step, compute the new estimates

âν =
1

n

n−1∑
j=0

2∑
m=1

β̂j,m xm rν,j (2.32)

and

σ̂2
ν =

1

n

n−1∑
j=0

2∑
m=1

β̂j,m (rν,j − âνxm)
2. (2.33)

Take several iterations of E-step and M-step recursively until the pre-determined conver-

gence criterion is satisfied.

2.3.4 Normalized Mean-Square-Error

To evaluate the performances of the above-mentioned estimators in Sections 2.3.2 and 2.3.3,

one may use the normalized mean-square-error (NMSE) as the measure. The NMSEs for aν
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and σ2
ν are given by

NMSEaν
def
= E

{(
âν − aν

aν

)2
}

≈ 1

N

N∑
t=1

(
â
(t)
ν − aν
aν

)2

(2.34)

and

NMSEσ2
ν

def
= E

{(
σ̂2
ν − σ2

ν

σ2
ν

)2
}

≈ 1

N

N∑
t=1

(
σ̂2 (t)

ν − σ2
ν

σ2
ν

)2

, (2.35)

where the superscript (t) indicates the trial index; N is the total number of Monte Carlo

trials; aν and σ2
ν are true values while âν and σ̂2

ν are the corresponding estimates, respectively.
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3. NONBINARY LDPC ENCODER IDENTIFICATION

It can be observed from Chapter 2 that the calculation of the log-likelihood ratio of

syndrome a posteriori probability in our blind encoder identification scheme is very similar

to the check-node updates in the iterative message-passing decoding process of [19]. It is

also known that the iterative message-passing decoding process becomes more complicated

from binary LDPC codes to nonbinary ones [22, 23]. As a result, how to blindly identify

nonbinary LDPC codes is not trivial at all. In this chapter, we would like to extend our

proposed blind LDPC encoder identification scheme from binary codes to nonbinary ones.

3.1 Basic Transceiver Model

The block diagram of the transceiver involving our proposed novel blind nonbinary LDPC

encoder identification mechanism is depicted in Figure 3.1. At the transmitter, original

information symbols are in the Galois filed GF(q) and grouped into blocks, say bν with

length k, where ν is the block index. In this thesis, we assume that the order of the Galois

field is represented by q = 2µ, where µ is an integer greater than 1. This block of information

symbols bν is passed to the “LDPC encoder θ over GF(q)” to generate a corresponding block

of “codeword” with length n, say cθν , where θ specifies a certain nonbinary LDPC encoder.

Then, the codeword cθν goes through “q-QAM Modulator” where q is assumed known at

the receiver1. The corresponding block of modulated symbols are denoted by sθν . These

modulated q-QAM symbols will undergo a “frequency up-converter” to engender the pass-

1The modulation type q can be classified blindly according to [8, 36, 37], but it is not the focus of this
thesis.
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Figure 3.1: The system diagram of a basic AMC transceiver model involving nonbinary
LDPC codes.

band signals for actual transmission.

The transmitted pass-band signals travel through the channel to arrive at the receiver.

They will go through the ”frequency down-converter” first to be converted back to the base-

band. In this thesis, we assume that the received baseband signaling experiences perfect

time- and frequency-synchronization. The received baseband signal symbols are also col-

lected in codeword blocks of length n, say rν . Instead of simply passing rν to the “q-QAM

demodulator” as in the standard receivers, we propose to feed rν to our novel “blind identifi-

cation scheme” to identify θ, the unknown nonbinary LDPC encoder, from a given candidate

set. Once the encoder is identified by our proposed scheme as θ̂ν from the received signal

codeword block rν , the appropriate nonbinary LDPC decoder can be employed to construct

the information symbol estimates b̂ν .

Consider the additive white Gaussian noise (AWGN) channel. Each element of the νth

codeword block of received baseband signal symbols, rν
def
= [rν,0, rν,1, . . . , rν,j, . . . , rν,n−1]

T ,

19



can be expressed as

rν,j = aν e
ıϕν sθν,j + wν,j, j = 0, 1, . . . , n− 1, (3.1)

where ı
def
=

√
−1, aν is the unknown signal amplitude accounting for the processing gain

and the channel gain, ϕν is the unknown phase offset, sθν,j is the modulated q-QAM signal

generated from the encoder θ with the normalized energy E{|sν,j|2} = 1, and wν,j is the

zero-mean complex AWGN with the variances of its real and imaginary parts both equalling

σ2
ν for the jth signal sample within the νth block. Consequently, the signal-to-noise ratio

(SNR) per coded symbol for the νth block of modulated signals is given by

ρν =
a2ν
2σ2

ν

. (3.2)

In order to evaluate the effect of different code rates R = k/n, the SNR per uncoded symbol

for the νth block of modulated signals is given by

ην
def
=

ρν
R

=
a2ν

2R σ2
ν

. (3.3)

3.2 Nonbinary LDPC Encoder Identification

According to Figure 3.1, the receiver needs to identify the encoder θ before taking any

action to decode the received signal symbols. In practice, an AMC transmitter would not

change the encoder and modulator arbitrarily and it would establish a specific candidate set

beforehand. Assume that the encoder candidate set, say Θ, is known to both transmitter

and receiver, and θ can be any encoder in Θ. Hence, θ̂ν ∈ Θ. In this section, we will present

a novel method to blindly identify the nonbinary LDPC encoder from a given candidate set.

As each LDPC code has a unique parity-check matrix, the encoder θ can be unambiguously
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identified if we can successfully establish the corresponding underlying parity-check relations

directly from the received signal samples. The parity-check relations are manifested by

that the sums of certain coded symbols in the codeword block over GF(q) are zeros. In

this section, we need to formulate the log-likelihood ratio (LLR) of syndrome a posteriori

probability (APP), which exploits the parity-check relations and indicates if the correct

nonbinary LDPC encoder is discovered, for each possible encoder θ in Θ.

3.2.1 Log-likelihood Ratio Vectors

Since our blind LDPC encoder identification scheme relies on the LLR metric, the log-

likelihood ratio for random variables over GF(q) needs to be formulated first. Denote

GF(q) = {α0, α1, . . . , αq−1}, where α0 = 0. The q × 1 log-likelihood ratio vector (LLRV)

of a random variable X = x over GF(q) is denoted by

L(x)
def
= [L(x = α0),L(x = α1), . . . ,L(x = αq−1)]

T , (3.4)

where

L (x = αβ)
def
= ln

Pr{x = α0}
Pr{x = αβ}

, β = 0, 1, . . . , q − 1, (3.5)

which is the natural logarithm of the ratio between the probabilities of x taking values α0

and αβ, respectively. Apparently, L(x = α0) = 0. From now on, we simplify the notation

L(x = αβ) to L(x)β without introducing any ambiguity. Note that we place Pr{x = α0} in

the numerator (see Eq. (3.5)) rather than the denominator in contrast to the conventional

definition given by [22,23]. It is more convenient for us to develop the syndrome a posteriori

probability this way later on.

Given another random variable, say Y = y, we may write the βth element of the LLRV
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of x conditioned on y as

L(x|y)β = L (x = αβ|y) = ln
Pr{x = α0 |y}
Pr{x = αβ |y}

. (3.6)

According to Bayes’s theorem, we obtain

L(x|y)β = ln
Pr{y |x = α0}
Pr{y |x = αβ}

+ ln
Pr{x = α0}
Pr{x = αβ}

= L(y |x = αβ) + L(x = αβ)

= L(y |x)β + L(x)β. (3.7)

Suppose that we have the LLRV of two random variables x1, x2 and two elements a1, a2,

all in GF(q). Denote ⊕ as the addition operation over GF(q). The LLRV of y = a1x1⊕a2x2,

defined as the boxplus operation, is formulated as (see [38])

L(y)β
def
= �

(
L(x1),L(x2); a1, a2

)
β

= ln
Pr{a1x1 ⊕ a2x2 = α0}
Pr{a1x1 ⊕ a2x2 = αβ}

= ln

∑
z∈GF(q)

exp
{
−L(x1=z)−L(x2=a−1

2 a1z)
}

∑
z∈GF(q)

exp
{
−L(x1=z)−L(x2=a−1

2 (αβ⊕a1z))
} . (3.8)

3.2.2 Our Proposed Novel Blind Encoder Identification Scheme

Given a nonbinary LDPC encoder θ ′ ∈ Θ over GF(q), one can determine its parity-check

matrix Hθ′ , and obtain

Hθ′ c
θ
ν = 0, if and only if θ ′ = θ, (3.9)

where 0 is the m× 1 zero vector and m ≥ n− k is the total number of rows in Hθ′ . That is,

the candidate LDPC encoder θ ′ is exactly the encoder θ adopted at the transmitter for the

νth codeword block. Eq. (3.9) describes the so-called parity-check relations.
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Denote the locations of the non-zero elements of the ith row of the parity-check matrix

Hθ′ by a vector lθ
′

i = [li1 , li2 , . . . , liNi
]T (0 ≤ li1 < li2 < · · · < liNi

≤ n − 1), where Ni is

the total number of the non-zero elements in the ith row of Hθ′ . Note that the location

of the first element in any row of Hθ′ is indexed as “0” instead of “1”. Thus, the non-

zero elements of the ith row of the parity-check matrix Hθ′ can be denoted by a vector

Hθ′
i = [hi,li1

, hi,li2
, . . . , hi,liNi

]T . Denote cθν
def
= [cν,0, cν,1, . . . , cν,n−1]

T , for i = 1, 2, . . . ,m. We

can rewrite Eq. (3.9) as

hi,li1
cν,li1 ⊕ hi,li2

cν,li2 ⊕ · · · ⊕ hi,liNi
cν,liNi

= 0, ∀i, (3.10)

if and only if θ ′ = θ.

Given the received symbols rν,j, j = 0, 1, . . . , n − 1, according to Eq. (3.7), for β =

0, 1, . . . , q − 1, the βth element of the LLRV of APP can be expressed as

L(cν,j|rν,j)β = L(rν,j|cν,j)β + L(cν,j)β

= L(rν,j|cν,j)β, (3.11)

where L(cν,j)β = 0 because each symbol in any LDPC codeword is assumed to have equal

probabilities of taking values αβ, ∀β = 0, 1, . . . , q− 1. If an encoder candidate θ ′ is picked at

the receiver, according to Eqs. (3.8) and (3.10), the βth element of the LLRV of syndrome

APP for the ith parity-check symbol in the νth codeword block can be formulated in a

recursive way [38], that is,

Lj = �
(
Lj−1,L(rν,lij |cν,lij ); 1, hi,lij

)
, j = 3, 4, . . . , Ni, (3.12)
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where L2 is initialized as

L2 = �
(
L(rν,li1 |cν,li1 ),L(rν,li2 |cν,li2 );hi,li1

, hi,li2

)
. (3.13)

As j reaches Ni, we obtain the LLRV of syndrome APP and we denote the βth element Lj

as γθ′

ν,i,β.

Here we can clearly see that the above procedures to obtain the LLRV of syndrome APP

for the nonbinary LDPC codes over GF(q) are quite different from the procedures to obtain

the LLR of syndrome APP for the binary LDPC codes (see [27]). The LLR for binary codes

is a scalar; however, it becomes a q × 1 vector for nonbinary codes. The syndrome APP

can be calculated in one step for the binary codes, but it needs Ni − 1 recursions for the

nonbinary codes. As a result, the number of the LLRs of syndrome APP is enlarged by q−1

times (the first element of the LLRV is always 0 and thus does not count) and the complexity

is greatly increased from the binary to nonbinary cases thereby. These distinctions make the

extension of our blind encoder identification scheme from the binary to nonbinary scenarios

not straightforward at all.

Based on the LLR definition given by Eq. (3.5) and the parity-check relations given by

Eq. (3.10), each nonzero element (β ̸= 0) of the LLRV of syndrome APPs, γθ′

ν,i,β, is expected

to be a positive value when θ ′ = θ. By taking the average of the individual LLRs γθ′

ν,i,β over

all i and all nonzero β for the νth codeword block, the “positiveness” will be more substantial

if the correct encoder candidate is selected. On the other hand, if θ ′ ̸= θ, the LLRs γθ′

ν,i,β

within the same codeword block ν may be sometimes positive and sometimes negative, and

they often cancel each other so that the average tends to approach 0. This key feature of

the LLRs of syndrome APPs reveals which encoder candidate should be the true one. The
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average LLR for the νth codeword block of received symbols subject to the encoder candidate

θ ′ is thus given by

Γθ′

ν
def
=

1

m(q − 1)

m∑
i=1

q−1∑
β=1

γθ′

ν,i,β. (3.14)

From the above analysis, once computing Γθ′
ν for all θ′ ∈ Θ, one can identify the underlying

LDPC encoder from the νth codeword block of received signals as

θ̂ν = argmax
θ′∈Θ

Γθ′

ν , (3.15)

where Θ is the predefined set of all possible nonbinary LDPC encoder candidates adopted

by the transmitter.

When one calculates L
(
rν,lij |cν,lij

)
β
in Eq. (3.11), the unknown parameters, signal am-

plitude aν , phase offset ϕν , and noise variance σ2
ν , are involved. According to Eq. (3.1),

L
(
rν,lij |cν,lij

)
β
can be expressed as

L
(
rν,lij |cν,lij

)
β
= ln

exp

{
−
∣∣rν,lij −aνeıϕν sν,lij ,0

∣∣2
2σ2

ν

}
exp

{
−
∣∣rν,lij −aνeıϕν sν,lij ,β

∣∣2
2σ2

ν

} , (3.16)

where sν,lij ,β is the modulated symbol corresponding to the coded symbol cν,lij = αβ. Thus,

prior to the calculation of the LLRs given by Eq. (3.16), aν , ϕν , and σ2
ν need to be estimated

first. We propose to use the expectation-maximization (EM) algorithm to blindly estimate

them [39].

In the end of this chapter, we would like to clarify the similarities and the differences of our

proposed blind encoder identification schemes between binary LDPC codes and nonbinary

ones.

• Similarities: The underlying ideas and procedures are basically the same. We use the
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average LLR as the metric to distinguish different LDPC encoders. The EM algorithms

are adopted to estimate unknown parameters.

• Differences: The signal is BPSK for binary LDPC codes but QAM for nonbinary ones.

For nonbinary LDPC codes, the LLR becomes a vector and the LLR of syndrome APP

has to be calculated in a recursive way while the scalar LLR for binary LDPC codes

can be calculated at one step. For nonbinary LDPC codes, the EM algorithm has to

be changed for QAM signals and one more parameter has to be estimated as well in

comparison with binary LDPC codes. The computational complexity of the LLRV

calculation for nonbinary LDPC codes is increased by O(q2) compared to that of the

LLR calculation for binary LDPC codes.
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4. SIMULATION RESULTS

The performances of our proposed new blind LDPC-encoder identification schemes are

evaluated by computer simulations in this chapter. The performance metric we choose is

the probability of detection. It is the probability that the receiver can correctly identify the

types of the LDPC encoders the transmitter adopts, i.e., PD = Pr

{
θ̂ν = θν

}
.

4.1 Binary LDPC Codes

The binary LDPC parity-check matrices defined in the IEEE 802.11n standard are used

in our simulations [24]. Accordingly, three codeword block lengths n = 648, 1296, and

1944 are defined therein. For each block length n, four different parity-check matrices are

specified corresponding to four different code-rates R = 1/2, 2/3, 3/4, and 5/6. Hence, there

are totally twelve types of LDPC encoders defined in [24]. The corresponding encoding

techniques can refer to [40] for details. The simulation results will be presented in the

following subsections.

4.1.1 Comparative Study on Blind Parameter Estimators

In this subsection, at first, we need to evaluate different estimators for signal amplitude

and noise variance stated in Section 2.3. Ten thousand Monte Carlo trials (N = 10, 000) are

taken for statistical average. In each trial, we consider only a single signal block. We fix the

LDPC encoder θ: n = 648 and R = 1/2 across all different trials. The modulated BPSK

symbols sθν,j have constant amplitudes, while aν varies subject to a uni-variance AWGN wν,j
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Figure 4.1: The NMSEs of M2/M4 and EM estimates of aν and the corresponding CRLBs
with respect to ην .

so as to change the SNR ην . For each trial t, we obtain the estimates â
(t)
ν and σ̂2 (t)

ν using

either M2/M4 or EM method (executed for five iterations) as described in Section 2.3. Then

we carry out the NMSE measures for these estimates over 10,000 trials. Besides, we calculate

the normalized CRLBs as given by Section 2.3.1.

The NMSEs for the signal amplitude aν and the noise variance σ2
ν together with the

corresponding normalized CRLBs are depicted in Figures 4.1 and 4.2, respectively. It is

obvious that the M2/M4 estimators can achieve reasonably good performances only when

ην > 4 dB. If ην < 4 dB, the term 6M̂2
2 − 2M̂4 substituted in Eq. (2.27) is not necessarily

always positive so that the resultant estimates would appear to be complex values, which

cannot be used as legitimate parameters. Besides, the EM estimates provide us with the

lower NMSEs than the M2/M4 estimators when ην > 4 dB.

Note that the NMSEs of the EM estimates sometimes fall below the NCRLBs when ην < 6

dB. Similar phenomenon was also observed in [26, 32]. As a matter of fact, the estimates
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Figure 4.2: The NMSEs of M2/M4 and EM estimates of σ2
ν and the corresponding CRLBs

with respect to ην .

produced by the EM algorithm may not always be unbiased. To study the average biases

of the EM estimates, we have carried out 10,000 Monte Carlo simulations to measure their

normalized biases, which are

NBaν
def
= E

{
âν − aν

aν

}
≈ 1

N

N∑
t=1

â
(t)
ν − aν
aν

, (4.1)

NBσ2
ν

def
= E

{
σ̂2
ν − σ2

ν

σ2
ν

}
≈ 1

N

N∑
t=1

σ̂2 (t)

ν − σ2
ν

σ2
ν

. (4.2)

Figure 4.3 demonstrates that the normalized biases NBaν and NBσ2
ν
are not negligible when

ην < 6 dB. This explains why the NMSEs of the EM estimates can be lower than the

NCRLBs in poor signal quality. Similar trends can be found when different (n, k) encoders

are applied for Monte Carlo simulations.
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Figure 4.3: The normalized biases for the EM estimates of aν and σ2
ν with respect to ην .

4.1.2 Average LLRs

According to the discussion in Section 4.1.1, we choose the EM estimators in our blind

LDPC encoder identification scheme. Based on the estimates âν and σ̂2
ν resulting from the

EM method, the LLRs of syndrome APP are calculated and the corresponding average

LLRs Γθ′
ν can be investigated. The signals and noises are generated in a similar manner to

Section 4.1.1 subject to a fixed SNR ην = 8 dB. For illustration, we just fix the codeword

block length to n = 648 and examine the average LLRs Γθ′
ν for four different code-rates

R = 1/2, R = 2/3, R = 3/4, and R = 5/6. Thus, we have four encoder candidates, i.e.,

|Θ| = 4. For each received signal block ν, the receiver calculates the average LLR Γθ′
ν for

each candidate θ ′ ∈ Θ.

To investigate the variations of the average LLRs Γθ′
ν (ι), each of which is constructed from

the first ι parity-check bits of the νth block of received signal samples subject to the encoder

candidate θ′, as given by Eq. (2.14), we delineate Figure 4.4. Each sub-figure consists of the
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Figure 4.4: The average LLRs Γθ′
ν (ι) with respect to ι when ην = 8 dB and n = 648 for (a)

the true LDPC encoder θ: R = 1/2, (b) the true LDPC encoder θ: R = 2/3, (c) the true
LDPC encoder θ: R = 3/4, and (d) the true LDPC encoder θ: R = 5/6.

average LLRs for four different candidates, namely θ′ : R = 1/2, θ′ : R = 2/3, θ′ : R = 3/4,

and θ′ : R = 5/6. For different code-rates R, the numbers of parity-check bits, n − k, are

surely different (the ranges of ι thus vary in these subfigures).

According to Figure 4.4, the average LLRs for θ′ = θ reach the maximum and always

stay positive among all candidates θ′ ∈ Θ, that is, a correct encoder identification can be

undertaken. On the contrary, for θ′ ̸= θ, the average LLRs fluctuate around zero and tend

to be close to 0 as ι increases. In addition, one may desire to use as many parity-check bits

(large ι) as possible to reach a satisfactory encoder identification performance. If we may

collect the entire received signal block to build the LLRs, the average LLR formula Γθ′
ν given

by Eq. (2.12) is used for blind encoder identification instead. The average LLRs for the block

lengths n = 1296 and n = 1944 have also been investigated and similar phenomena can be

observed.
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Figure 4.5: The probabilities of detection PD with respect to ην for the codeword block
length n = 648 and different code-rates R.

4.1.3 Probability of Detection Per Block

The evaluation of the probability of detection PD per block is carried out in the same sim-

ulation set-up as Section 4.1.2. Once the average LLRs are computed, the blind identification

can be performed using Eq. (2.13).

Figure 4.5 demonstrates PD per block versus ην for four different code-rates when the

codeword length is fixed as n = 648. We also investigate the effect of the EM estimators

for signal amplitude and noise variance on PD by comparing the identification results from

the estimates (denoted by “EM” in the figure) and the true values of parameters (denoted

by “True” in the figure). According to Figure 4.5, the EM estimators perform very well and

hence they lead to very similar identification performances to those from the true values of

parameters. Moreover, the lower the code-rate, the higher the probability of detection. For

example, when ην = 5 dB, PD can reach close to 100% for the code-rate R = 1/2, while PD
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Figure 4.6: The probabilities of detection PD with respect to ην for the code-rate R = 5/6
and different codeword block lengths n.

can only attain about 50% for the code-rate R = 5/6.

On the other hand, we fix the code-rate R = 5/6 and change the codeword block length n

to depict Figure 4.6. According to the results shown in Figure 4.5, we use the EM estimators

here to facilitate a completely blind encoder identification scheme since they can lead to

outstanding performances. Figure 4.6 exhibits PD per block versus ην for three different

codeword block lengths n (|Θ| = 3) for the code-rate R = 5/6. The larger the codeword

block length, the higher the probability of detection PD. Note that PD for the codeword

block length n = 648 depicted in Figure 4.6 is different from PD for the same code rate

R = 5/6 shown in Figure 4.5. The reason is simply because these two figures are based on

different candidate sets Θ and the encoder identification performance highly depends on the

particular candidate set Θ.
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4.1.4 Probability of Detection for Multiple Blocks

Both Figures 4.5 and 4.6 demonstrate the fact that the more parity-check bits one uses

to construct the average LLRs, the better PD performance one can expect. Therefore, it is

expected that PD would be yet higher if we collect multiple blocks jointly for blind encoder

identification. In practice, the transmitter is likely to retain the same encoder for a while

spanning over several consecutive codeword blocks. Assume that each encoder θ lasts for M

consecutive blocks (M ∈ Z+). It yields

θν = θ⌊ν/M⌋×M , ∀ ν ∈ Z, (4.3)

where ⌊ ⌋ denotes the “integer rounding-down” operation. For instance, when M = 5, one

gets θ0 = θ1 = θ2 = θ3 = θ4. According to Eq. (4.3), one can compute a single average LLR

Γ̄θ′
M over Γθ′

ν s for M consecutive blocks, which is given by

Γ̄θ′

M
def
=

1

M

τ+M−1∑
ν=τ

Γθ′

ν , (4.4)

where τ specifies the very first block of these M consecutive blocks. Consequently, the

encoder can be blindly identified as

θ̂ν = argmax
θ′∈Θ

Γ̄θ′

M , for ν = τ, τ + 1, . . . , τ +M − 1. (4.5)

Since the signal amplitude aν and the noise variance σ2
ν change with the block index ν, the

average SNR per uncoded bit over M received signal blocks, ηave, is defined as

ηave
def
= E{ην} ≈ 1

M

τ+M−1∑
ν=τ

ην . (4.6)

We retain the same simulation set-up as Figure 4.5 except that we use the new identifi-

cation method given by Eq. (4.5) to depict the results in Figure 4.7. Figure 4.7 shows PD
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Figure 4.7: The probabilities of detection PD with respect to ηave for the codeword block
length n = 648 and different code-rates R when different numbers of blocks, M=1, 5, and
20, are collected jointly for blind encoder identification.

versus ηave for M=1, 5, and 20. The more the number of blocks M , the higher PD one can

expect from the blind identification results.

4.2 Nonbinary LDPC Codes

The nonbinary LDPC parity-check matrices are constructed according to [41]. Specifically,

four encoders over GF(16) are constructed to generate four different (n, k) LDPC codes,

namely a (20, 11) code, a (60, 33) code, a (25, 16) code, and a (75, 48) code. The first two

codes have the code rate R = 0.55, and the last two codes have R = 0.64. These four LDPC

codes form the candidate set Θ. The phase offset ϕν is randomly chosen from (−π/4, π/4) for

each simulation trial since for square QAM constellations, ϕν can only be blindly estimated

within (−π/4, π/4) due to the quadrature symmetry [39]. The phase ambiguity can be greatly

eliminated by use of differential coding. However, it is out of the focus of this thesis.
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codes over GF(16).

Figure 4.8 illustrates the probability of detection PD versus ην for the above four different

LDPC codes over GF(16). The results show that PD can reach 100% for each code as ην ≥ 15

dB. To have a better insight into the performance of our proposed blind encoder identification

scheme, the frame error rates (FERs) of these four LDPC coders are investigated using the q-

ary sum-product algorithm [22]. The simulation results demonstrate that when ην = 15 dB,

the FERs of (20, 11), (60, 33), (25, 16), and (75, 48) LDPC codes are 4.3× 10−3, 5.8× 10−3,

4.8 × 10−3, and 3.1 × 10−3, respectively. The results manifest that as long as the FER

requirement is lower than 10−3, our scheme can work perfectly. Similar trends can also be

found by Monte Carlo simulations using LDPC codes over other GF(q).
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5. CONCLUSION

In this thesis, we investigate a crucial problem emerging in adaptive modulation and

coding transceivers, namely blind encoder identification. Maneuvering advanced statistical

signal processing, we propose novel blind identification methods for both binary and non-

binary low-density parity-check (LDPC) encoders. Our proposed schemes are based on the

log-likelihood ratios (LLRs) of the syndrome a posteriori probability. The average LLRs

over the entire block of parity-check bits or symbols are used as the essential features to

dynamically identify the LDPC encoder adopted at the transmitter.

For binary LDPC codes, signal amplitude and noise variance involved in the construction

of the LLRs need to be blindly estimated first. Therefore, we design M2/M4 and EM

algorithms to estimate them. Furthermore, we establish the Cramer-Rao lower bounds for

these two parameters and compare two corresponding blind estimators, namely M2/M4 and

EM techniques.

For nonbinary LDPC codes, phase offset exists and also needs to be blindly estimated

subject to QAM modulations. The log-likelihood ratios of the syndrome a posteriori proba-

bility have to be carried out in a recursive way instead. The EM estimators for phase offset,

signal amplitude, and noise variance turn out to be the most robust techniques for our blind

encoder identification schemes according to numerous simulations.

Monte Carlo simulation results by using the binary LDPC codes from the IEEE 802.11n

standard and the nonbinary LDPC codes constructed by the finite field method are presented

in this thesis to evaluate the effectiveness of our proposed new schemes.
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Although our proposed blind encoder identification schemes are developed specifically for

LDPC codes, they can be extended and tailored to other types of channel codes according

to their various parity-check structures as well.
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