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ABSTRACT

The study of multi-agent systems (MASs) is focused on systems in which many au-

tonomous agents interact and operate within a limited communication environment. The

general goal of the MAS research is to design interconnection control laws such that all the

dynamic agents in the group are synchronized to a desired common trajectory by exchanging

information with adjacent agents over certain constrained communication networks.

Based on the review and modification of existing results concerning the consensus con-

trol of linear heterogeneous MASs in Moreau (2004) [21], Scardovi and Sepulchre (2009)

[25], Wieland et al (2011) [30], and Alvergue et al. (2013) [1], this thesis investigates the dis-

tributed stabilization of the heterogeneous MAS, consisting of N different continuous-time

nonlinear dynamic systems, under connected communication graphs. The conditions for a

nonlinear dynamic agent to be feedback equivalent to a strictly passive system are derived

along with the feedback law. A distributed stabilization control protocol using state feedback

is then proposed under the idea of feedback connection of two passive systems. It proves to

be sufficient for only one or a few agents to have access to the reference signal for the MAS

to achieve stability, which lowers the communication overhead from the reference to different

agents. The result can be interpreted as an extension of the stabilizing law for linear MASs

introduced in [1], and considered as a fundamental preliminary for the consensus research

for nonlinear MASs in the future.

v



CHAPTER 1
INTRODUCTION

This chapter introduces the consensus control problem and the existing research work.

The contribution of this thesis is discussed briefly, followed by an overview of the main

content in each chapter.

1.1 Motivation

Consensus control of multi-agent systems (MASs) has drawn great attention in recent

years due to its broad applications in various areas, such as sensor networks [22, 23], robot-

s networks [32, 33], unmanned air vehicles [3, 4, 31], and other practical biological and

social systems [7, 8, 26], etc. The general goal of MAS research is to find methods that

allow us to build a group of complex systems composed of autonomous agents which, while

communicating and operating on local information under limited processing abilities, are

nonetheless capable of enacting the desired global behaviors. Consensus control of MASs

differs from traditional output regulation of control systems because both individual dynam-

ics and communication constraints have to be taken into consideration. If no cooperative

control is involved, each agent will run separately, utilizing more resources and increasing

the implementation cost, without being able to achieve consensus.

Many of the existing consensus control studies impose restrictive assumptions on the com-

munication graph, such as bidirectional and time-invariant communication patterns, which

may inevitably increase the load and cost of the whole communication network. However,

unidirectional communication is typically more common and practical in real world appli-

cations and can be easily implemented, for example, via broadcasting. In addition, sensed

information flow, which plays an important role in flocking, is usually non-bidirectional.

Furthermore, many practical communication topologies tend to be time-varying since link

failure, link creation, network reconfiguration, and other conditions may accidentally occur

during the operating process. Therefore, there is a need to look for other possible connectiv-
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ity assumptions which are less restrictive, but still ensure the stabilization and the consensus

of the MASs.

Another challenge in consensus control research is that most of the existing work only

focuses on homogeneous MASs, where individual agents have the same dynamics, while

in real world, individual systems are hardly exactly identical. The consensus control of

heterogeneous MASs is in general more difficult than that of homogeneous MASs. State

synchronization among all agents is not applicable any more due to the fact that individual

systems may have different states and state dimensions. Hence the consensus objective should

be switched to output synchronization. It is also worth noting that system dynamics may

change due to aging and operating environments. As a result, it is important to study the

more complex consensus problem of heterogeneous MASs, such as heterogeneous MASs with

time-delays, heterogeneous MASs under time-varying topologies, discrete-time heterogeneous

MASs, etc.

Consensus control concerning heterogeneous nonlinear MASs is also a challenging issue

since the output regulation problem of nonlinear systems itself is rather difficult. Various

types of nonlinearities make it hard to find a general control law or condition to achieve

synchronization. Yet such research should be useful and promising since most of the practical

systems are nonlinear in our real life.

1.2 Research Work on Consensus Control

Early research work in the field of coordination and synchronization of MASs includes

[21] where each individual system in the network is assumed to have simple integrator, and

[13] where the agents’ dynamics are modeled as linear switched systems. The motions of a

group of vehicles are represented by double integrators in [26]. Results regarding integrator

chains more than two can be found in [24].

More recently some of the research [18, 19] turned to the investigation of homogeneous

MASs with state-space model as the system representation. Such more generalized MASs can
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be considered as an extension of the aforementioned integrator dynamics as a special case.

In [25] the authors deal with the synchronization problem in the homogeneous MASs case,

and the result can be interpreted as a generalization of the classical consensus algorithms

corresponding to the special case introduced in [21].

Inspired by the fact that individual systems in a communication network are hardly

exactly identical, the consensus problem has been extended to the study of synchronization of

heterogeneous MASs. A high-gain approach is proposed in [9] to dominate the heterogeneity

of MASs. In [16] a homogeneous reference model is included in each agent’s distributed

controller to overcome the difficulty caused by the non-identical dynamics of different agents.

The results in [21] and [25] are modified and developed in [30] to show the asymptotic

synchronization of MASs over time-varying directed graphs satisfying a uniform connectivity

condition. A consensus law that uses relative information only and requires rather low

communication overhead is discussed in [1], with its synthesis based on H∞ loop shaping

[20] and LQG/LTR [2] methods. The main results in [21, 25, 30, 1] will be introduced in a

detailed way in Chapter 2 and Chapter 3.

The sufficient and necessary connectivity conditions that communication graphs have to

satisfy to reach consensus has attracted much attention as well. Frequently, the communica-

tion graphs are assumed to be time-independent, undirected, or even balanced, for instance,

in [17]. However, it has been shown early in [27] and later in [21] that very mild assumptions

on graph connectivity are sufficient to uniformly exponentially achieve consensus. The case

of switching interconnection topology is discussed in [29]. The cases of frequently connected

and jointly connected communication graphs are considered in [28] and [15] respectively,

where a slow switching condition and a fast switching condition are introduced.

Finally, heterogeneous nonlinear MASs are also studied, for example, in [6, 10, 34], which

use the concepts and properties of passive and dissipative systems. Such nonlinear agents

exclude unstable dynamical systems, which is hardly the case in real applications. Yet the

results are instrumental to future work concerning nonlinear MASs. In Chapter 4, we will

3



study the distributed stabilization of heterogeneous nonlinear MASs, which will serve as a

fundamental preliminary to the corresponding consensus control problem.

1.3 Thesis Contribution

Based on the review of several solid results concerning the distributed stabilization and

synchronization of heterogeneous linear MASs in Alvergue et al. (2013) [1], this thesis shows

that the rank condition assumption for the graph Laplacian in [1] can be removed provided

that the connectedness of the communication graph holds. Thus improved versions of the

stabilization and consensus results in [1] are derived. Furthermore, nonlinear systems are

also studied. The thesis exploits the feedback equivalence and the properties of passive

systems, extends the results for linear MASs in [1], and develops a state feedback control

protocol for the distributed stabilization of heterogeneous nonlinear MASs, which will be

an instrumental preliminary to the corresponding future research on the consensus control

problem.

1.4 Thesis Organization

The thesis is organized as follows. Chapter 1 briefly discusses the background knowledge

and applications of consensus control, as well as the previous literatures and work that

motivate our research. Chapter 2 reviews the main results concerning the synchronization of

homogeneous and heterogeneous MASs in Moreau (2004) [21], Scardovi and Sepulchre (2009)

[25] and Wieland et al (2011) [30]. In Chapter 3, the fundamental lemma in Alvergue et

al. (2013) [1] is modified. The corresponding improved version of the solution to consensus

problem in [1] is derived as well. In Chapter 4, based on the concepts and stability properties

of strictly passive systems, a state feedback control law is proposed, as an extension of the

results in Chapter 3, for the distributed stabilization of heterogeneous nonlinear MASs.

Chapter 5 concludes the whole thesis and presents some points that can be considered as

possible future work.
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CHAPTER 2
CONSENSUS CONTROL OF HETEROGENEOUS LINEAR

MULTI-AGENT SYSTEMS I

This chapter summarizes the main results in Moreau (2004) [21], Scardovi and Sepulchre

(2009) [25] and Wieland et al (2011) [30].

2.1 Preliminaries

Given N vectors {xk}Nk=1, x is denoted as the stacking of the vectors, i.e.,

x = vec(x1, . . . , xN) = [xT1 , . . . , x
T
N ]T .

The n−dimensional identity matrix is denoted by In, and

1N , [1, . . . , 1]T ∈ RN , N = {1, . . . , N}.

In addition, A⊗B denotes the Kronecker product of two matrices A and B, and σ(A) stands

for the spectrum of the square matrix A. The closed left-half and right-half complex plane

are denoted as C− and C+ respectively, and the imaginary axis as jR.

2.1.1 Communication Graph

The interconnections between the individual dynamic systems are encoded through a

communication graph. Let G(t) = {V , E(t), AG(t)} be a time-varying weighted digraph

(directed graph) with the vertex set V = {v1, . . . , vN}, edge set E(t) ⊆ V ×V , and adjacency

matrix AG(t). The vertex vk in V represents the kth system and the directed edges in

E(t) show the information flows, i.e. {vj, vk} ∈ E(t) if and only if the kth system receives

information from the jth system at time t. The adjacency matrix AG(t) encodes the edge

weights with {vj, vk} ∈ E(t) if and only if akj(t) ≥ γ for some positive threshold γ, where
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akj(t) is the entry of AG(t) on the kth row and the jth column. In this chapter, we assume

AG(t) is piecewise continuous and bounded and akk(t) = 0,∀k ∈ N for all t. A path from

vi1 to vil at time t is a sequence of distinct vertices {vi1 , . . . , vil} such that {vik , vik+1
} ∈

E(t), k = 1, . . . , l− 1. If there is a path from vi to vj, then vj is said to be reachable from vi,

which is denoted as vi → vj.

The Laplacian matrix L(t) associated to the digraph G(t) is defined as

lkj(t) =


N∑
i=1

aki(t), j = k

−akj(t), j 6= k

.

Also we recall the following definitions concerning the concept and features of connectivity

for time-varying digraphs.

Definition 1. The digraph G(t) is connected at time t if there exists a vertex vj such that

every other vertex in the graph is reachable from vj at time t.

Definition 2. A vertex vk in digraph G(t) is connected to vertex vj (j 6= k) in the time interval

I = [t1, t2] if there is a path from vj to vk which respects the direction of the edges of the

digraph (V , ∪t∈IE(t), 1
|I|

∫
I
AG(τ)dτ).

Definition 3. The digraph G(t) is uniformly connected if there exists a time horizon T > 0

and a vertex vj such that for all t all the vertices vk (k 6= j) are connected to vj across time

interval [t, t+ T ].

2.1.2 A Fundamental Consensus Protocol

Consider N systems exchanging information about their state vector {xk}Nk=1 over the

communication graph G(t). A widely-studied consensus algorithm for continuous-time MASs

is presented as

ẋk(t) =
N∑
j=1

akj(t)(xj(t)− xk(t)) (2.1)
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for all k ∈ N , where xk(t) ∈ Rn. In a compact form, (2.1) can be equivalently written as

ẋ(t) = −(L(t)⊗ In)x(t). (2.2)

The following theorem summarizes the main results in Moreau (2004) [21].

Theorem 1. Assume that the communication graph G(t) is uniformly connected and the cor-

responding Laplacian matrix L(t) is a bounded and piecewise continuous function of time.

Then the equilibrium set of consensus states of (2.2) is uniformly and exponentially stable.

In particular, the N solutions of (2.1) asymptotically converge to a common value α ∈ Rn

as t→∞.

The proof of Theorem 1 in [21] considers only the scalar case, i.e., n = 1, where V (x) =

max{x1, . . . , xN} −min{x1, . . . , xN} can be taken as a candidate Lyapunov function. That

is, V is positive definite with respect to the desired equilibrium set {x : x1 = · · · = xN}

and non-increasing along the solutions of (2.2). Generally V may not decrease at every time

instant. However, it can be shown that V decreases over time intervals of sufficient length.

Consensus law (2.1) deals with a very simple case where each individual system only has

trivial integrator dynamics. It is indicated in Theorem 1 that only very mild restrictions have

to be imposed on the communication topology to ensure the stability and the convergence

to a consensus state for such MASs. Uniform connectivity allows the interconnection to

be directional and time-varying. In the following sections, the work in Theorem 1 will be

extended to more general systems beyond the simple integrators.

2.2 Synchronization of Homogeneous MASs

Consider N identical linear time-invariant (LTI) dynamical systems

ẋk(t) = Axk(t) +Buk(t), (2.3a)

yk(t) = Cxk(t) (2.3b)
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for all k ∈ N , with state vector xk(t) ∈ Rn, control input uk(t) ∈ Rp, and output vector

yk(t) ∈ Rq. We assume that no additional common references have to be embraced as

leaders to synchronize the whole MAS. The objective of synchronization is to find a control

law to ensure that xi(t) − xj(t) → 0 as t → ∞ for all i, j ∈ N , leading to the following

problem statement.

Problem 1. Given N identical LTI systems defined by (2.3) and a uniformly connected com-

munication graph G(t), find a distributed control protocol over the topological graph G(t),

such that the states of the closed-loop systems asymptotically synchronize.

Solutions to the aforementioned synchronization problem for homogeneous MASs have

been extensively studied in literatures. This section will present the dynamic control laws

proposed by Scardovi and Sepulchre (2009) [25] and Wieland et al. (2011) [30] respectively.

Before we introduce the main results, it is necessary to mention the following lemma given

in [25] as a direct extension of Theorem 1, which is fundamental for the justification of the

two solutions.

Lemma 1. Consider N LTI systems given in (2.3) with B and C n×n nonsingular matrices

and σ(A) ⊂ C−. Assume that the communication graph G(t) is uniformly connected and

the corresponding Laplacian matrix L(t) piecewise continuous and bounded. Then the N

solutions of (2.3) with the static controller

uk = B−1C−1
N∑
j=1

akj(t)(yj − yk), ∀k ∈ N , (2.4)

uniformly and exponentially synchronize to a solution of ẋ0 = Ax0.

Proof. Applying control protocol (2.4) to (2.3) yields the closed-loop system

ẋk = Axk +
N∑
j=1

akj(t)(xj − xk), ∀k ∈ N . (2.5)
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The change of variable

zk = e−A(t−t0)xk, ∀k ∈ N ,

yields

żk = −Ae−A(t−t0)xk + e−A(t−t0)Axk + e−A(t−t0)
N∑
j=1

akj(t)(xj − xk)

=
N∑
j=1

akj(t)(zj − zk), ∀k ∈ N ,

which can be equivalently expressed in the compact form

ż = −(L(t)⊗ In)z. (2.6)

According to Theorem 1, the solutions {zk(t)}Nk=1 of (2.6) converge exponentially to a com-

mon value x0 ∈ Rn as t→∞, i.e., there exist constants ϕ1 > 0 and ϕ2 > 0 such that for all

t0,

‖ zk(t)− x0 ‖≤ ϕ1e
−ϕ2(t−t0) ‖ zk(t0)− x0 ‖, ∀t > t0.

Changing back to the original coordinates leads to

‖ xk(t)− eA(t−t0)x0 ‖≤ ϕ1e
−ϕ2(t−t0) ‖ eA(t−t0) ‖ × ‖ xk(t0)− x0 ‖, ∀t > t0.

Since all the eigenvalues of the matrix A lie on the closed left-half complex plane, there exists

a constant ϕ3 > 0 such that

‖ xk(t)− eA(t−t0)x0 ‖≤ ϕ1e
−ϕ3(t−t0) ‖ xk(t0)− x0 ‖, ∀t > t0,

which proves that all systems exponentially synchronize to a solution of ẋ0 = Ax0. 2

In Lemma 1, the system matrix A is required to have all eigenvalues on the closed left-half

complex plane. In the case where A has eigenvalues with positive real parts, synchronization
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can be addressed is a similar way. However the graph connectivity should be sufficiently

strong to dominate the divergence caused by the unstable modes of the system, which is

easy to see from the last part of the proof. It is also worth noting that in the special case

where A = 0 and B = C = In, the synchronization problem is simplified to the consensus

problem mentioned in Section 2.1.2.

Now consider the following dynamic control protocol

η̇k = (A+BK)ηk +
N∑
j=1

akj(t)(ηj − ηk + x̂k − x̂j), (2.7a)

˙̂xk = Ax̂k +Buk +H(ŷk − yk), (2.7b)

uk = Kηk (2.7c)

with ŷk = Cx̂k, ηk ∈ Rn and estimated states x̂k ∈ Rn for all k ∈ N . The following theorem

summarizes the solution given in [25].

Theorem 2. Consider N identical LTI systems given in (2.3) with (A,B) stabilizable, (A,C)

detectable, and σ(A) ⊂ C−. Assume that the communication graph G(t) is uniformly con-

nected and the corresponding Laplacian matrix L(t) piecewise continuous and bounded. Then

for any feedback gain matrix K and observer gain matrix H such that A+BK and A+HC

are Hurwitz, the N solutions of (2.3) with the dynamic controller (2.7) uniformly and expo-

nentially synchronize to a solution of ẋ0 = Ax0.

Proof. Let the estimation errors ek = xk − x̂k and the consensus dynamics sk = x̂k − ηk for

all k ∈ N . There hold

ėk = (A+HC)ek,

ṡk = Ask +
N∑
j=1

akj(t)(sj − sk)−HCek,

η̇k = (A+BK)ηk +
N∑
j=1

akj(t)(sk − sj)
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for all k ∈ N . Since H is chosen such that A + HC is Hurwitz, ek → 0, ∀k ∈ N as t→∞

uniformly exponentially. Furthermore, {sk}Nk=1 conform to the dynamics (2.5) discussed in

the proof of Lemma 1 with −HCek as an extra input that vanishes exponentially. Hence, ac-

cording to Lemma 1, si−sj → 0,∀i, j ∈ N as t→∞ uniformly exponentially. Since {sk}Nk=1

are uniformly exponentially synchronized to a solution of ṡ0 = As0, and K is stabilizing, i.e.,

A + BK is Hurwitz, there holds ηk → 0, ∀k ∈ N as t → ∞ uniformly exponentially. As a

result, it can be concluded that xk = sk + ek + ηk exponentially synchronize to a solution of

ẋ0 = Ax0 for all k ∈ N . 2

It is easy to see that no absolute reference frame is required in the dynamic control law

(2.7). A slight modification to protocol (2.7) is proposed in Wieland et al. (2011) [30] to

improve the existing results. Consider

η̇k = (A+BK)ηk +
N∑
j=1

akj(t)(ηj − ηk + x̂k − x̂j) +H(ŷk − yk), (2.8a)

˙̂xk = Ax̂k +Buk +H(ŷk − yk), (2.8b)

uk = Kηk, (2.8c)

which is the same to (2.7) except for the term H(ŷk− yk) being added to (2.8a). The reason

for this minor revision is made clear by the change of coordinates ζk = x̂k − ηk, which leads

to

ζ̇k = Aζk +
N∑
j=1

akj(t)(ζj − ζk), (2.9a)

˙̂xk = Ax̂k +Buk +H(ŷk − yk), (2.9b)

uk = K(x̂k − ζk) (2.9c)

with ŷk = Cx̂k, controller states ζk ∈ Rn and estimated states x̂k ∈ Rn for all k ∈ N . One

important feature of the protocol (2.9) is that it can be generally interpreted as three parts:
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(2.9a) as synchronized reference generator, (2.9b) as state observer and (2.9c) as static output

regulator. The next theorem given by [30] can be regarded as a modification of Theorem 2.

Theorem 3. Consider N identical LTI systems given in (2.3) with (A,B) stabilizable, (A,C)

detectable, and σ(A) ⊂ C−. Assume that the communication graph G(t) is uniformly con-

nected and the corresponding Laplacian matrix L(t) piecewise continuous and bounded. Then

for any feedback gain matrix K and observer gain matrix H such that A+BK and A+HC

are Hurwitz, the N solutions of (2.3) with the dynamic controller (2.9) uniformly and expo-

nentially synchronize to a solution of ẋ0 = Ax0.

Proof. Let the estimation errors ek = xk − x̂k and the tracking errors δk = xk − ζk for all

k ∈ N . There hold

ėk = (A+HC)ek,

δ̇k = (A+BK)δk −BKek −
N∑
j=1

akj(t)(ζj − ζk)

for all k ∈ N . Since H is chosen such that A + HC is Hurwitz, ek → 0,∀k ∈ N as t → ∞

uniformly exponentially. Since {ζk}Nk=1 conform to the dynamics (2.5) discussed in the proof

of Lemma 1, according to Lemma 1, ζi−ζj → 0,∀i, j ∈ N as t→∞ uniformly exponentially.

Furthermore, K is stabilizing, i.e., A + BK is Hurwitz, hence there holds δk → 0,∀k ∈ N

as t → ∞ uniformly exponentially. As a result, it can be concluded that xk = ζk + δk

exponentially synchronize to a solution of ẋ0 = Ax0 for all k ∈ N . 2

The fundamental principle of the protocol (2.9) is to build a reference system model for

each individual system and meanwhile synchronize these reference models by Lemma 1. A

Similar idea can be developed for the case of heterogeneous MASs as in the next section.

However, each local controller has an order twice that of the corresponding local dynamic

agent.
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2.3 Synchronization of Heterogeneous MASs

Due to the fact that individual systems in a communication network are hardly exactly

identical, it is natural to study the synchronization in heterogeneous networks. Consider N

heterogeneous LTI dynamical systems

ẋk(t) = Akxk(t) +Bkuk(t), (2.10a)

yk(t) = Ckxk(t) (2.10b)

for all k ∈ N , with state vector xk(t) ∈ Rnk , control input uk(t) ∈ Rpk , and output vector

yk(t) ∈ Rq. Most of the assumptions and constraints discussed in problem 1 remain un-

changed for the heterogeneous synchronization problem. However, since individual systems

are no longer identical and may have different states and state dimensions, state synchroniza-

tion among all agents is not applicable any more. Thus the consensus is switched to output

synchronization, i.e. yi(t) − yj(t) → 0 as t → ∞ for all i, j ∈ N . In addition, the trivial

case is excluded where the closed-loop system has an asymptotically stable equilibrium set,

because no protocol is needed to obtain synchronization in that case. The following problem

statement will be the focus of this section.

Problem 2. Given N heterogeneous LTI systems defined by (2.10) and a uniformly connected

communication graph G(t), find a distributed control protocol over the topological graph G(t),

such that the outputs of the closed-loop systems asymptotically synchronize to some non-

trivial common trajectory.

Apparently when we set Ak = A, Bk = B and Ck = C for all k ∈ N , Problem 2 simply

reduces to Problem 1, to which solutions are given in both Theorem 2 and Theorem 3. Before

the solution to Problem 2 is presented, the following internal model principle proposed by

[30] is introduced first.
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Consider a general controller model described by

ξ̇k = Dkξk + Ekyk + Fkvk, (2.11a)

ζk = Pkξk +Qyk, (2.11b)

vk =
N∑
j=1

akj(t)(ζk − ζj), (2.11c)

uk = Gkξk +Mkyk +Okvk (2.11d)

for all k ∈ N , with controller states ξk ∈ Rµk , controller inputs yk ∈ Rq, and controller

outputs ζk ∈ Rµ. Protocol (2.11) can be regarded as a general LTI dynamic controller driven

by the system outputs yk and the relative controller output signals vk. Matrix Q can be the

same for all k ∈ N since {yk}Nk=1 have the same dimension and the same physical meaning.

The internal model principle is elaborated in the following lemma.

Lemma 2. Consider N heterogeneous linear systems defined by (2.10) and coupled with dy-

namic controllers (2.11). Assume that the closed-loop system has no asymptotically stable

equilibrium set where yk = 0,∀k ∈ N . If yi − yj → 0 and ζi − ζj → 0 for all i, j ∈ N uni-

formly and exponentially as t→∞, then there exist an integer m, matrices S ∈ Rm×m and

R ∈ Rq×m with σ(S) ⊂ C+ and (S,R) observable, and matrices Πk ∈ Rnk×m, Γk ∈ Rpk×m

such that

AkΠk +BkΓk = ΠkS, (2.12a)

CkΠk = R (2.12b)

for k = 1, . . . , N . Furthermore, there exists ζ0 ∈ Rm such that the system outputs yk(t)

uniformly and exponentially synchronize to Re−Stζ0 for all k ∈ N .
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Proof. The closed-loop system has the compact form

ẋ = A x−B(L(t)⊗ Iµ)ζ,

y = C x,

ζ = D x,

where x = vec(x1, ξ1, . . . , xN , ξN), and

A = diag

([
A1+B1M1C1 B1G1

E1C1 D1

]
, . . . ,

[
AN+BNMNCN BNGN

ENCN DN

])
,

B = diag

([
B1O1
F1

]
, . . . ,

[
BNON
FN

])
,

C = diag

([
C1 0

]
, . . . ,

[
CN 0

])
,

D = diag

([
QC1 P1

]
, . . . ,

[
QCN PN

])
.

From the given conditions, the state space of the closed-loop system has an asymptotically

attractive invariant subspace χ where yi = yj and ζi = ζj for all i, j ∈ N . This implies

(L(t) ⊗ Iµ)ζ = 0 on χ for all t, and thus the closed-loop system can be given by ẋ = A x.

Here χ is chosen to contain no stable modes, possess only modes that are observable at the

outputs, and be non-trivial with dimension m > 0. Denote Span(·) as a collection of all

linear combinations of its column vectors. Hence, there exist matrices Ψ ∈ Rdim(x)×m and

S ∈ Rm×m such that

χ = Span(Ψ), (2.13)

AΨ = ΨS, (2.14)

where S depicts the dynamics of the closed-loop system regarding the subspace χ. Write

Ψ as Ψ =
[
Π T

1 ,Σ
T
1 , . . . ,Π

T
N ,Σ

T
N

]T
with Πk ∈ Rnk×m and Σk ∈ Rµk×m for all k ∈ N . Then

(2.14) becomes equivalent to (2.12a) with Γk = MkCkΠk +GkΣk. Since we have yi = yj and

thus CiΠi = CjΠj for all i, j ∈ N , it follows that CkΠk = R for some R ∈ Rq×m and all
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k ∈ N . Moreover, the constraint that all modes in χ are required to be observable at the

output y implies the observability of (S,R). As χ is exponentially attractive, all trajectories

converge to a trajectory restricted to χ, i.e., yk(t) uniformly exponentially synchronize to

Re−Stζ0 for all k ∈ N . 2

It is worth noting that the conditions in (2.12) of Lemma 2 is quite similar to the well-

known regulator equations appearing in the output regulation of linear systems. Therefore,

generally speaking, the physical meaning of those conditions is that all models of individual

systems together with their local controllers contain an internal model of a virtual exosystem

defined by the dynamics matrix S and output matrix R, i.e.,

ẋ0(t) = Sx0(t),

y0(t) = Rx0(t),

and all individual systems are able to track this virtual exosystem to achieve output syn-

chronization.

Lemma 2 presents the necessary conditions for the synchronization of heterogeneous

MASs. As will be shown in the sequel, under some mild assumptions, those conditions are

also sufficient. Consider protocol

ζ̇k = Sζk +
N∑
j=1

akj(t)(ζj − ζk), (2.15a)

˙̂xk = Akx̂k +Bkuk +Hk(ŷk − yk), (2.15b)

uk = Kk(x̂k − Πkζk) + Γkζk (2.15c)

with ŷk = Ckx̂k, controller states ζk ∈ Rm and estimated states x̂k ∈ Rnk for all k ∈ N . Simi-

lar to (2.9), protocol (2.15) can also be decomposed into three parts: (2.15a) as synchronized

reference generator, (2.15b) as state observer and (2.15c) as static output regulator. The

next theorem and corollary given by [30] state the main results.
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Theorem 4. Consider N heterogeneous LTI systems given in (2.10) with (Ak, Bk) stabilizable

and (Ak, Ck) detectable for all k ∈ N . Assume that there exist an integer m, matrices S ∈

Rm×m and R ∈ Rq×m with σ(S) ⊂ jR and (S,R) observable, and matrices Πk ∈ Rnk×m,

Γk ∈ Rpk×m satisfying equations (2.12) for all k ∈ N . Assume that the communication

graph G(t) is uniformly connected and the corresponding Laplacian matrix L(t) piecewise

continuous and bounded. Then for any feedback gain matrix Kk and observer gain matrix

Hk such that Ak+BkKk and Ak+HkCk are Hurwitz for all k ∈ N , there exists ζ0 ∈ Rm such

that the outputs yk(t) of the system (2.10) with the dynamic controllers (2.15) uniformly and

exponentially synchronize to Re−Stζ0 for all k ∈ N .

Proof. Let the estimation errors ek = xk − x̂k and the tracking errors δk = xk −Πkζk for all

k ∈ N . There hold

ėk = (Ak +HkCk)ek,

δ̇k = (Ak +BkKk)δk −BkKkek − Πk

N∑
j=1

akj(t)(ζj − ζk)

for all k ∈ N . The remainder of the proof is the same as the proof of Theorem 3. 2

Corollary 1. Consider N heterogeneous LTI systems given in (2.10) with (Ak, Bk) stabiliz-

able and (Ak, Ck) detectable for all k ∈ N . Assume that the communication graph G(t) is

uniformly connected and the corresponding Laplacian matrix L(t) piecewise continuous and

bounded. A solution to Problem 2 with exponential convergence and bounded outputs exists

if and only if there exist an integer m, matrices S ∈ Rm×m and R ∈ Rq×m with σ(S) ⊂ jR

and (S,R) observable, and matrices Πk ∈ Rnk×m, Γk ∈ Rpk×m satisfying equations (2.12) for

all k ∈ N .

Proof. Necessity is implied by Lemma 2 and sufficiency is implied by Theorem 4. 2

Note that there are no restrictions on system matrices {Ak}Nk=1, which allows {Ak}Nk=1 to

have eigenvalues on the right-half complex plane. However, the spectrum of the matrix S,

which determines the dynamics of the virtual exosystem, is required to be purely imaginary.
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Each local controller has a local reference model. Synchronization of the heterogeneous

MAS is replaced by synchronization of the local reference models that are homogeneous.

Their outputs serve as reference signals for each heterogeneous agent in the MAS.
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CHAPTER 3
CONSENSUS CONTROL OF HETEROGENEOUS LINEAR

MULTI-AGENT SYSTEMS II

A modified version of the main results in Alvergue et al. (2013) [1] is presented in this

chapter.

3.1 Preliminaries

Most of the notations and concepts employed in this chapter can be referred to § 2.1.

In addition, some new concepts and facts are introduced as follows. Denote ei ∈ RN as

a column vector with 1 in its ith entry and 0 elsewhere. Let M = [ µij ] be a matrix

with µij the (i, j)th entry. The ith singular value of M is denoted by σi(M) arranged in

descending order with σ(M) = σ1(M). The ith eigenvalue of M is denoted by λi(M) if M is

square. A real square matrix M is called row dominant if |µii| ≥
∑
j 6=i
|µij|, column dominant

if |µjj| ≥
∑
i 6=j
|µij|, and doubly dominant if it is both row and column dominant. M is called

strictly row or column or doubly dominant if these inequalities are strict.

3.1.1 Graph Connectivity and Laplacian Matrix

Recall the definitions and notations introduced in § 2.1.1.

Definition 4. The digraph G is strongly connected if vi → vj and vj → vi for all i 6= j and

i, j ∈ N .

To prepare the results in later sections, it is necessary to include the following properties

concerning the Laplacian matrices associated to connected and strongly connected digraphs.

Lemma 3. Let L be the Laplacian matrix associated with the digraph G. If G is strongly

connected, then 0 is a simple eigenvalue of L.

Lemma 4. Let L be the Laplacian matrix associated with the digraph G. Then G is connected

if and only if 0 is a simple eigenvalue of L.
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3.1.2 Problem Formulation

Consider N heterogeneous LTI dynamical systems

ẋi(t) = Aixi(t) +Biui(t), (3.1a)

yi(t) = Cixi(t) (3.1b)

for all i ∈ N , with state vector xi(t) ∈ Rni , control input ui(t) ∈ Rm, and output vector

yi(t) ∈ Rp. Clearly the transfer matrix of the ith agent is given by Pi(s) = Ci(sIni
−Ai)−1Bi.

Individual systems may have different state dimensions. However, they admit the same

number of inputs and the same number of outputs. Hence the consensus problem is concerned

with output synchronization, i.e. yi(t)− yj(t)→ 0 as t→∞ for all i, j ∈ N . In particular,

the N outputs of the MAS are required to track the output of some exosystem or reference

model described by

ẋ0(t) = A0x0(t), (3.2a)

y0(t) = C0x0(t), (3.2b)

where σ(A0) ⊂ jR, with zero steady-state error. A real-time reference trajectory may not

be exactly from this exosystem, but consists of piece-wise step, ramp, sinusoidal signals,

etc., whose poles coincide with the eigenvalues of A0. Moreover, the reference information

is required to be transmitted to only one or a few of the N agents in order to reduce the

communication overhead. Thus the consensus problem can be summarized as follows.

Problem 3. Given N heterogeneous LTI systems defined by (3.1) over the communication

graph G, find the conditions that G has to satisfy, such that there exist distributed stabilizing

controllers and consensus control protocols ensuring that the N outputs of the MAS asymp-

totically synchronize to some common trajectory given in (3.2) under low communication

overhead, and at mean time, elaborate these control protocols.
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3.1.3 Useful Facts

Definition 5. A square matrix M is called an M-matrix (semi M-matrix), if all its off-

diagonal elements are either negative or zero, and all its principal minors are positive (non-

negative).

Obviously the Laplacian matrix is a semi M -matrix. The following facts are useful.

Fact 1. Suppose that all the off-diagonal elements of a square matrix M are either negative

or zero. Then the following are equivalent:

1. M is an M-matrix; 2. −M is Hurwitz;

3. The leading principal minors of M are all positive;

4. There exists D = diag {d1, · · · , dN} > 0 such that MD (DM) is strictly row (column)

dominant.

Fact 2. Let superscript ∗ denote conjugate transpose. If two square matrices M1 and M2

satisfy

M1 +M∗
1 ≥ 0, M2 +M∗

2 > 0,

then det(I +M1M2) 6= 0. Note that M1 = (I +R1)
−1(I −R1), M2 = (I +R2)

−1(I −R2) for

some (R1, R2) satisfying σ(R1) ≤ 1 and σ(R2) < 1.

Fact 3. Let Xa ≥ 0 be the stabilizing solution to the following algebraic Riccati equation

(ARE)

ATaXa +XaAa −XaBaR
−1
a BT

a Xa +Qa = 0, (3.3)

where Qa ≥ 0 and Ra > 0. Then with Fa = R−1a BT
a Xa, (Aa − BaFa) is Hurwitz, and the

transfer matrix

TFa(s) = RaFa(sI − Aa +BaFa)
−1Ba (3.4)

is positive real (PR). That is,

TFa(s) + TFa(s)
∗ ≥ 0 ∀ Re[s] ≥ 0. (3.5)
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Let AFa = Aa −BaFa and s = 1
2
σ + jω, σ ≥ 0. Then ARE (3.3) can be written as

(sI − AFa)
∗Xa +Xa(sI − AFa) = Qa + F T

a RaFa + σXa ≥ 0. (3.6)

Multiplying (3.6) by BT
a (sI −AFa)

∗−1 from left, by (sI −AFa)
−1Ba from right, and using the

relation RaFa = BT
a Xa leads to (3.5), which concludes the PR property.

3.2 A Modified Fundamental Lemma

The following lemma proposed in Alvergue et al. (2013) [1] is instrumental to the main

results in later sections.

Lemma 5. Let L be the Laplacian matrix associated with the communication digraph G. There

exist diagonal matrices D > 0 and G ≥ 0 with rank(G) = 1, such that

(DL+G) + (DL+G)T > 0, (3.7)

if and only if G is connected, and

rank


 L ei

−eTi 0


 = N + 1 (3.8)

for at least one index i ∈ N .

The complete proof for Lemma 5 can be found in [1]. It is worth noting that, given

condition (3.8), i = N can be taken without loss of generality and −(L + geNe
T
N) can be

proven Hurwitz for some g > 0. Since (L + geNe
T
N) possesses either negative or zero off

diagonal elements, Fact 1 can be employed to conclude that there exists a diagonal matrix

D > 0 such that

M = DL+G = D(L+ geNe
T
N) (3.9)

is strictly column dominant where G = gDeNe
T
N is diagonal with only one nonzero element.
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Since DL remains row dominant,

M+MT = (DL+G) + (DL+G)T (3.10)

is strictly doubly dominant, and thus (3.7) holds true.

It is implied in Lemma 5 that both graph connectedness and rank condition (3.8) have

to be satisfied to achieve condition (3.7). However, our further analysis indicates that graph

connectedness and condition (3.8) are actually equivalent to each other, which is elaborated

in the next lemma.

Lemma 6. Let L be the Laplacian matrix associated with the communication digraph G. Then

rank


 L ei

−eTi 0


 = N + 1 (3.11)

for at least one index i ∈ N , if and only if G is connected.

Proof. For convenience, let

H =

 L ei

−eTi 0

 .
For sufficiency: Denote V as the set containing all vertices and V ′ as the set containing all

connected vertices. Since G is connected, we assume V ′ contains r, 1 ≤ r ≤ N , vertices and

u→ v and v 9 u for all u ∈ V ′, v ∈ V\V ′. Without loss of generality, the vertices of G can

be renumbered such that V ′ = {1, 2, . . . , r}. Therefore L has the block partition form

L =

L11 0

L21 L22

 , (3.12)

where L11 ∈ Rr×r has 0 as a simple eigenvalue, and L22 is nonsingular by Lemma 3 and

Lemma 4. Since rank(L11) = r − 1, we can always choose an index i ∈ N ′ := {1, . . . , r},
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such that the ith row of L11 can be expressed as a linear combination of the other r−1 rows

of L11. Then rewrite H as

H =


L11 0 ei

L21 L22 0

−eTi 0 0

 .
Transformations of matrix lead to

H1 =


I 0 0

0 0 I

0 I 0



L11 0 ei

L21 L22 0

−eTi 0 0



I 0 0

0 0 I

0 I 0

 =


L11 ei 0

−eTi 0 0

L21 0 L22


and

H2 =

L11 ei

−eTi 0


 I 1r

1Tr 0

 =

L11 + ei1
T
r 0

−eTi −1

 .
Assume L11 + ei1

T
r is singular. Then there exists a nonzero column vector q of dimension r,

i.e. q = [q1, . . . , qi, . . . , qr]
T 6= 0, such that

qT (L11 + ei1
T
r ) = 0. (3.13)

Since L111r = 0, multiplying 1r to (3.13) from the right yields qT (L11 + ei1
T
r )1r = qT eir = 0,

which indicates qi = 0. Rewrite L11 as

L11 =

[
L(1)

11

T
, . . . ,L(i)

11

T
, . . . ,L(r)

11

T
]T
,

where L(k)
11 represents the kth row of L11 for all k ∈ N ′. Then (3.13) can be written as

q1L(1)
11 + · · ·+ qrL(r)

11 + qi1
T
r = q1L(1)

11 + · · ·+ qi−1L(i−1)
11 + qi+1L(i+1)

11 + · · ·+ qrL(r)
11 = 0.

Since rank(L11) = r − 1 and L(i)
11 is selected as a linear combination of the other r − 1
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rows, L(k)
11 ,∀k ∈ {1, . . . , i − 1, i + 1, . . . , r} have to be linearly independent. As a result,

qk = 0,∀k ∈ {1, . . . , i− 1, i+ 1, . . . , r}, and thus vector q has to be 0 to satisfy (3.13), which

contradicts to the assumption. Therefore, L11 + ei1
T
r and

[ L11 ei
−eTi 0

]
are nonsingular. Because

L22 is also nonsingular, we obtain rank(H) =rank(H1) = N +1 for at least one i ∈ N , which

concludes the proof for sufficiency.

For necessity: We use the contrapositive argument to show that if G is not connected then H

does not have full rank. Since G is not connected, the vertices can be renumbered to obtain

the following block partition form for L,

L =


L11 0 0

0 L22 0

L31 L32 L33

 .

By Lemma 3, both L11 and L22 have 0 as a simple eigenvalue. Hence it is easy to see that

rank(L) ≤ N − 2, and consequently rank(H) ≤ N for all i ∈ N . 2

With the presence of Lemma 6, Lemma 5 can be revised as follows.

Lemma 7. Let L be the Laplacian matrix associated with the communication digraph G. There

exist diagonal matrices D > 0 and G ≥ 0 with rank(G) = 1, such that

(DL+G) + (DL+G)T > 0, (3.14)

if and only if G is connected.

Apparently condition (3.14) in Lemma 7 (condition (3.7) in Lemma 5) can be reformu-

lated as

M+MT = (DL+G) + (DL+G)T > 2κI (3.15)

for some κ > 0. In fact κ = 1 can be taken with no loss of generality. Those i satisfying (3.8)

can be selected to calculate G as G = gieie
T
i with some gi > 0. Moreover, algorithms for
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linear matrix inequality (LMI) can be used to search for D and G. Hence the computation

of the required D and G is not an issue.

For the case where MIMO agents have m inputs and p outputs, Lemma 5 holds true if

condition (3.8) is extended to

rank


 L̃ ei ⊗ Iq

−eTi ⊗ Iq 0


 = (N + 1)q, (3.16)

and condition (3.7) is extended to

(
DL̃+G

)
+
(
DL̃+G

)T
> 0, (3.17)

where

L̃ = L ⊗ Iq, (3.18a)

D = diag(d1Iq, . . . , dNIq), (3.18b)

G = diag(g1Iq, . . . , gNIq) (3.18c)

with only one nonzero gi > 0 and q = m or q = p. In addition, it is easy to verify that

Lemma 6 remains applicable when condition (3.11) is replaced by (3.16). Therefore, Lemma

7 holds true as well for MIMO cases when condition (3.14) is extended to (3.17).

Intuitively (3.11) should be true for any index i as long as the ith node in the connected

graph G is a connected node. In that case, when we try to find a possible index i to determine

the rank 1 diagonal matrix G, we can randomly choose one node which can reach all the

other nodes and simply set i as the index corresponding to that specific node. Efforts are

still made to verify this conjecture.
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3.3 Distributed Stabilization

In light of Lemma 7, this section studies the distributed stabilization control protocols

using state feedback and output feedback.

3.3.1 State Feedback

Consider the following control protocol

ui = gi(r − Fixi)− di
N∑
j=1

aij(Fixi − Fjxj) (3.19)

with di > 0, gi ≥ 0, and Fi the state feedback gain for all i ∈ N . Basically the control

input for the ith agent consists of two parts: the tracking error with respect to the reference

model and the error signals with respect to the adjacent agents. In order to minimize the

communication overhead, only one of {gi}Ni=1 is required to be nonzero. Substituting (3.19)

into (3.1) leads to the closed-loop dynamics

ẋi = Aixi −Bidi

N∑
j=1

aij(Fixi − Fjxj)−Bigi(Fixi − r). (3.20)

Let L̃, D and G be in (3.18) with q = m. Then (3.20) can be equivalently expressed in the

compact form

ẋ =
[
A−B(DL̃+G)F

]
x+BG [1N ⊗ r]

= [A−BMF ]x+BM [1N ⊗ r]
(3.21)

with A = diag(A1, . . . , AN), B = diag(B1, . . . , BN), F = diag(F1, . . . , FN), and M = DL̃ +

G. The following theorem can be regarded as a modified version of the main result presented

in [1] concerning the stabilization of the MAS via state feedback.

Theorem 5. Consider the heterogeneous MAS given in (3.1) with (Ai, Bi) stabilizable for all

i ∈ N . There exists a stabilizing state feedback control protocol (3.19) for the underlying

MAS over the communication digraph G, if G is connected.
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Proof. If G is connected, then Lemma 7 implies the existence of required D and G, such

that (3.15) holds for some κ > 0. Thus taking Z = (DL̃ + G)/κ − I yields Z + ZT > 0.

Stability of the closed-loop dynamics (3.21) indicates that

det
[
sI − A+B(DL̃+G)F

]
6= 0 ∀ Re{s} ≥ 0. (3.22)

Taking κ = 1 with no loss of generality and substituting (DL̃ + G) = (Z + I) into (3.22)

yield

det (sI − A+BF +BZF ) 6= 0 ∀ Re{s} ≥ 0,

which is equivalent to the following inequality by simple manipulations,

det [I + TF (s)Z] 6= 0 ∀ Re{s} ≥ 0, (3.23)

where TF (s) = F (sI − A + BF )−1B. Stabilizability of (Ai, Bi) assures the existence of a

stabilizing state feedback control gain Fi such that for each i ∈ N ,

TFi
(s) = Fi(sI − Ai +BiFi)

−1Bi (3.24)

is PR on the basis of Fact 3 with Ra = I > 0. As a result,

TF (s) + TF (s)∗ ≥ 0 ∀ Re{s} ≥ 0

with TF (s) = diag {TF1(s), . . . , TFN
(s)}. It follows that inequality (3.23) holds by Z+ZT > 0

and in light of Fact 2. 2

Theorem 5 provides a sufficient condition for the stabilization under state feedback con-

trol. This sufficient condition becomes necessary for the two special cases as stated below.

Corollary 2. Consider state feedback control for the MAS over the communication digraph G.

If feedback stability holds for the MAS consisting of either (i) homogeneous multi-input un-
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stable agents or (ii) heterogeneous single input unstable agents with {Ai}Ni=1 having a common

unstable eigenvalue, then G is connected.

Now recall the property of uniformly connected graphs in Definition 3. Apparently, if a

time-varying digraph G(t) with Laplacian matrix L(t) is uniformly connected with a time

interval f > 0, then

Lf (t) =
1

f

∫ t+f

t

L(τ) dτ

is a Laplacian matrix associated with some connected graph for all t, moreover,

rank


Lf (t) ei(t)

−eTi(t) 0


 = N + 1 (3.25)

for at least one index i(t) ∈ N for all t. The next result extends Theorem 5 to the case of

time-varying graphs.

Corollary 3. Consider the heterogeneous MAS given in (3.1) with (Ai, Bi) stabilizable for all

i ∈ N . There exists a stabilizing state feedback control protocol

ui(t) = gi(r − Fixi)− di
N∑
j=1

aij(t)(Fixi − Fjxj) (3.26)

for the underlying MAS over the communication digraph G(t), if G(t) is uniformly connected

with a sufficiently small time interval f > 0.

3.3.2 Output Feedback

Observers have to be employed to estimate the states of the MASs when they are not

available for feedback control. Two specific observers are introduced in Alvergue et al. (2013)

[1] for the design of distributed output feedback controllers for heterogeneous MASs. The

local observer is described by
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˙̂xi = Aix̂i +Biui − Li(ŷi − yi) = (Ai − LiCi)x̂i + LiCixi +Biui (3.27)

with ŷi = Cix̂i and estimated states x̂i ∈ Rni for all i ∈ N . It is worth noting that no

communication between individual agents is involved in the output estimation part. Let the

estimation errors exi = xi − x̂i. There holds

ėxi = (Ai − LiCi)exi (3.28)

for all i ∈ N . Replacing the states xi with the estimated states x̂i in (3.19) leads to the new

control input

ui = gi(r − Fix̂i)− di
N∑
j=1

aij(Fix̂i − Fjx̂j). (3.29)

Combining (3.1), (3.28) and (3.29) together in a compact form leads to the state space

equation for the overall MAS

 ẋ
ėx

 =

A−BMF BMF

0 A− LC


 x
ex

+

BM
0

 (1N ⊗ r) (3.30)

with ex as the stacking of {exi}Ni=1, L = diag(L1, . . . , LN), and A,B, F andM the same as in

(3.21). It follows that the feedback stability holds, if and only if (A−BMF ) and (A−LC)

are both Hurwitz.

In many practical MASs, yi(t) may not be available to the ith agent for feedback except

the one with gi 6= 0. Instead, only relative information can be conveyed between adjacent

agents. Hence the following neighborhood observer is proposed as

˙̂xi = Aix̂i +Biui + gi[Li(ŷi − yi)− L0(ŷ0 − y0)] + diLi

N∑
j=1

aij[(ŷi − ŷj)− (yi − yj)] (3.31)

with ŷi = Cix̂i for all i ∈ {0, . . . , N}. Notice that this time communication between adjacent
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agents is involved in the output estimation part. In addition, the state of the reference model

x0(t) also requires estimation at the ith agent whenever gi 6= 0 due to possible noise corrupted

in the received reference signal r(t) = C0x0(t). As a result, the state space equation for the

overall MAS is given by

 ẋ
ėx

 =

A−BMF BMF

0 A− LMC


 x
ex

+

 BM (1N ⊗ C0x̂0)

(IN ⊗ L0)M (1N ⊗ C0ex0)

 (3.32)

with ex0 = x0 − x̂0. For both observers, the separation principle for stabilization holds true

as illustrated in (3.30) and (3.32). The main results for stabilization via output feedback are

presented in the following theorem.

Theorem 6. Consider the heterogeneous MAS given in (3.1) with (Ai, Bi) stabilizable and

(Ak, Ck) detectable for all i ∈ N . (i) There exists a stabilizing output feedback control protocol

(3.29) with observer (3.27) or (3.31) for the underlying MAS over the digraph G, if G is

connected. (ii) There exists a stabilizing output feedback control protocol for the underlying

MAS over the time-varying digraph G(t), if G(t) is uniformly connected with a sufficiently

small time interval f > 0.

The proof is omitted here. Many observer-based output feedback controllers satisfy the

required PR property, including the controllers designed using H∞ loop shaping [20] and

LQG/LTR [2] methods. More details can be found in [1].

3.4 Output Consensus

Prior to the study of output consensus, a known result from [11] is introduced first.

Lemma 8. Let the agent model be given by

ẋa(t) = Aax(t) +Baua(t), ya(t) = Caxa(t)
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with Aa ∈ Rna×na, Ba ∈ Rna×ma, Ca ∈ Rpa×na, and (Aa, Ba) stabilizable, and the reference

model be given by (3.2) with A0 ∈ Rn0×n0, C0 = Ip, and p = pa. Consider the control protocol

ua(t) = −Faxa(t) +F0ar(t). Then for each stabilizing state feedback gain Fa ∈ Rma×n0, there

exists a reference feed-forward gain F0a ∈ Rma×p such that lim
t→∞

[ya(t) − r(t)] = 0, i.e., the

output of the agent model tracks the reference with zero steady-state error, if and only if

rank


 λI − Aa Ba

Ca 0


 = na + pa (3.33)

at λ = λ`(A0) for all ` ∈ {1, . . . , n0}.

Given a stabilizing Fa, computation of F0a requires first computing the solution (Wa, Ua)

to the equation Ina 0

0 0


Wa

Ua

A0 −

Aa Ba

Ca 0


Wa

Ua

 =

 0

C0


and then letting F0a = Ua−FaWa. Although the agent model is not required to contain the

modes λ`(A0) due to the presence of F0a, the inclusion of these modes in Aa, in fact, can

improve the performance of both tracking and disturbance rejection, which motivates the

following assumption.

Assumption 1. Each eigenvalue of A0, i.e., λ(A0) ∈ {λ`(A0)}n0
`=1, is a pole of Pi(s) and

rank

{
lim

s→λ(A0)
[s− λ(A0)]Pi(s)

}
is full for all i ∈ N .

If Assumption 1 is not satisfied, then dynamic weighting functions {Wi(s)}Ni=1, which

have poles at the missing modes of {Ai}Ni=1 respectively, can be applied so that Assumption

1 holds for weighted model PWi
(s) = Pi(s)Wi(s), ∀ i ∈ N . The design of controller can then

proceed with PWi
(s), and Wi(s) should be taken as a part of the controller at last. The next

result explains the output consensusability conditions for heterogeneous MASs.

Theorem 7. Consider the heterogeneous MAS given in (3.1) with (Ai, Bi) stabilizable, (Ak, Ck)

detectable, and equal number of inputs and outputs, i.e., p = m, for all i ∈ N . Let the ref-
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erence model be described by (3.2) with C0 = Ip. Under Assumption 1, the underlying MAS

over the communication digraph G is output consensusable, if G is connected and (3.33) holds

true for all a = i ∈ N .

It is worth noting that, for output consensus, the control protocol (3.29) is revised to

ui = F0iûi, where

ûi = Ĝi(r − F̂ix̂i)− D̂i

N∑
j=1

aij(F̂ix̂i − F̂jx̂j) (3.34)

with Ĝi = R−10i gi, D̂i = R−10i di, R0i = F ′0iF0i and F̂i = F−10i Fi for all i ∈ N . Theorem 7 only

discusses the case of p = m. The methods to deal with the issue of p 6= m are elaborated in

[1], thus omitted here. In addition, for the case concerning time-varying graphs, the output

consensusability condition in Theorem 7 can be easily extended to the uniformly connected

graph with sufficiently small f > 0.
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CHAPTER 4
DISTRIBUTED STABILIZATION OF HETEROGENEOUS

NONLINEAR MULTI-AGENT SYSTEMS

In this chapter, we review the properties of strictly passive systems in [5], and combine

them with the fundamental Lemma 7 in Chapter 3 to extend the results for distributed

stabilization of heterogeneous linear MASs to the case of heterogeneous nonlinear MASs.

4.1 Preliminaries

Suppose λ is a real-valued function and f = vec(f1, . . . , fn) is a vector field, both defined

on an open set X ⊆ Rn. Function λ = λ(x) = λ(x1, . . . , xn) is said to be Ck, k ≥ 0 if

its partial derivatives of order i with respect to x1, . . . , xn exist and are continuous for all

i ∈ {0, . . . , k}. In addition, λ is said to be C∞ (or smooth) if its partial derivatives of order

i exist and are continuous for all i ≥ 0. Let 〈a, b〉 denote the inner product of a and b. The

following differential operations will be used throughout this chapter. The differential of λ

and f with respect to x are defined as

dλ(x) =
∂λ

∂x
=

[
∂λ

∂x1
. . .

∂λ

∂xn

]

and

df(x) =
∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...

∂fn
∂x1

. . . ∂fn
∂xn


respectively. The derivative of λ along f is defined as

Lfλ(x) = 〈dλ(x), f(x)〉 =
∂λ

∂x
f(x) =

n∑
i=1

∂λ

∂xi
fi(x).

The notation Lkfλ is used to denote λ being differentiated k times along f , which is given by
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Lkfλ(x) =
∂(Lk−1f λ)

∂x
f(x)

with L0
fλ(x) = λ(x). Suppose g is also a vector field defined on an open set X ⊆ Rn, then

LgLfλ(x) =
∂(Lfλ)

∂x
g(x).

4.1.1 Passivity

Consider a nonlinear system described in the form

ẋ = f(x) + g(x)u, (4.1a)

y = h(x) (4.1b)

with state vector x ∈ X = Rn, control input u ∈ U = Rm, and output vector y ∈ Y = Rm.

The dimensions of the input and output are the same. The functions f(x), g(x), and h(x)

are assumed to be smooth. In addition, g(x) and h(x) can be written as

g(x) = [ g1(x) . . . gm(x) ] and h(x) = vec(h1(x), . . . , hm(x))

respectively, where gi(x), i ∈ {1, . . . ,m} is the ith column of g(x) and hi(x), i ∈ {1, . . . ,m}

is the ith entry of h(x). Suppose that f has at least one equilibrium. Hence it can be

assumed without loss of generality that f(0) = 0 and h(0) = 0.

A number of concepts will be introduced as the section proceeds. The supply rate is

denoted as w, which is a real-valued function defined on U × Y . Assume that for any

u ∈ U and x(0) = x◦ ∈ X, the output of (4.1) is y(t) = h(Φ(t, x◦, u)), and the corresponding

w(s) = w(u(s), y(s)) satisfies

∫ t

0

|w(s)|ds <∞ ∀t ≥ 0.
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Definition 6. A nonlinear system Σ of the form (4.1) with supply rate w is dissipative if there

exists a C0 nonnegative function V : X → R, called the storage function, such that for all

u ∈ U, x◦ ∈ X, t ≥ 0,

V (x)− V (x◦) ≤
∫ t

0

w(s)ds

with x = Φ(t, x◦, u).

Definition 7. A nonlinear system Σ of the form (4.1) is passive if it is dissipative with supply

rate given by the inner product, i.e., w = 〈u, y〉, and storage function V satisfying V (0) = 0.

In other words, a system Σ is passive if there exists a C0 nonnegative function V : X → R

satisfying V (0) = 0, such that

V (x)− V (x◦) ≤
∫ t

0

yT (s)u(s)ds. (4.2)

If (4.2) becomes a strict inequality, then system Σ is strictly passive.

A fundamental property related to passive systems is the Kalman-Yacubovitch-Popov

(KYP) property.

Definition 8. A nonlinear system Σ has the KYP property if there exists a C1 nonnegative

function V : X → R satisfying V (0) = 0, such that for all x ∈ X,

LfV (x) ≤ 0, (4.3a)

LgV (x) = hT (x). (4.3b)

The relations between being passive and having KYP property are elaborated in the

following lemma.

Lemma 9. A nonlinear system Σ having the KYP property is passive; A nonlinear passive

system Σ with a C1 storage function has the KYP property.
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Proof. If Σ has the KYP property, then it holds that

dV (x(t))

dt
=
∂V (x(t))

∂x(t)

dx(t)

dt
=
∂V (x(t))

∂x(t)
[f(x(t)) + g(x(t))u(t)]

= LfV (x(t)) + LgV (x(t))u(t) ≤ yT (t)u(t).

(4.4)

The integration of (4.4) from 0 to t yields (4.2) with V as the storage function, which implies

the passivity of Σ. On the other hand, if Σ is passive with V as the C1 storage function,

taking the derivative of (4.2) with respect to t leads to (4.4), which implies that (4.3) holds

true. 2

Note that for a strictly passive system, (4.3a) becomes a strict inequality, i.e., LfV (x) is

negative.

4.1.2 Properties of Nonlinear System

Before we proceed to study the issue of feedback equivalence to a passive system, it

is necessary to understand the concepts of relative degree, normal form, zero dynamics,

minimum phase, etc.

Definition 9. A nonlinear system Σ of the form (4.1) has a relative degree {r1, . . . , rm} at

x = x◦ if (i)

LgjL
k
fhi(x) = 0 (4.5)

for all j ∈ {1, . . . ,m}, for all 0 ≤ k < ri − 1, for all i ∈ {1, . . . ,m}, and for all x in a

neighborhood of x◦, (ii) the m×m matrix


Lg1L

r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

...
. . .

...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

 (4.6)

is nonsingular at x = x◦.
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In fact, a linear system given by

ẋ = Ax+Bu,

y = Cx

with x ∈ Rn, u ∈ Rm, and y ∈ Rm, can be regarded as a special case of the nonlinear system

(4.1) with f(x) = Ax, g(x) = B, and h(x) = Cx. Hence, for linear systems, equation (4.5)

becomes ciA
kbj = 0 and matrix (4.6) becomes


c1A

r1−1b1 . . . c1A
r1−1bm

...
. . .

...

cmA
rm−1b1 . . . cmA

rm−1bm

 ,

where bj, j ∈ {1, . . . ,m} is the jth column of B and ci, i ∈ {1, . . . ,m} is the ith row of C.

Obviously, a linear system has relative degree {1, . . . , 1} if matrix


c1b1 . . . c1bm

...
. . .

...

cmb1 . . . cmbm

 =


c1
...

cm


[
b1 . . . bm

]
= CB

is nonsingular, which is equivalent to the condition det(CB) 6= 0 mentioned in many existing

literatures.

By definition 9, it is easy to see that a system Σ of the form (4.1) has relative degree

{1, . . . , 1} at x = 0 if matrix

Lgh(0) =


Lg1h1(0) . . . Lgmh1(0)

...
. . .

...

Lg1hm(0) . . . Lgmhm(0)


is nonsingular. If this is the case and if the distribution spanned by the m columns of g(x)
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is involutive [12], n − m real-valued functions {zi(x)}n−mi=1 , locally defined near x = 0 and

vanishing at x = 0, can be found to qualify as a new set of coordinates, along with the m

components of y = h(x). Under this new coordinates (z, y), the system Σ has the following

structure, which is called the normal form:

ż = q(z, y), (4.7a)

ẏ = b(z, y) + a(z, y)u. (4.7b)

Note that based on form (4.1),

ẏ =
∂h(x)

∂x
ẋ = Lfh(x) + Lgh(x)u.

Hence b(z, y) = Lfh(x), a(z, y) = Lgh(x), and matrix a(z, y) is nonsingular for all (z, y) near

(0, 0) due to the assumption that Σ has relative degree {1, . . . , 1} at x = 0.

Definition 10. The zero dynamics of a nonlinear system Σ correspond to the dynamics de-

scribing the internal behavior of the system when inputs and initial conditions are chosen

such that the outputs remain identically zero, i.e., y = 0, ∀t ≥ 0.

If system Σ has relative degree {1, . . . , 1} at x = 0, its zero dynamics locally exist in a

neighborhood U of x = 0, evolve on the smooth zero dynamics manifold

Z∗ = {x ∈ U : h(x) = 0},

and are characterized by

ẋ = f ∗(x) x ∈ Z∗,

where f ∗(x) denotes the restriction to Z∗ of the vector field
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f ∗(x) = f(x) + g(x)u∗(x) (4.8)

with u∗(x) = −[Lgh(x)]−1Lfh(x).

If the system is given in the normal form (4.7), then the zero dynamics are governed by

ż = q(z, 0).

Thus q(z, y) can be written as

q(z, y) = f ∗(z) + p(z, y)y,

where f ∗(z) = q(z, 0) and p(z, y) is a smooth function.

Conditions for the existence of a globally defined normal form of the type (4.7) have also

been investigated. Readers can refer to [5] for more details. Hence, concepts concerning the

minimum phase system can be presented as follows.

Definition 11. Suppose Lgh(x) is nonsingular at x = 0, and the normal form (4.7) exists for

system Σ. Then Σ is

(i) minimum phase if z = 0 is an asymptotically stable equilibrium of f ∗(z);

(ii) weakly minimum phase if there exists a Cr, r ≥ 2, positive definite function W ∗(z), locally

defined near z = 0 with W ∗(0) = 0, such that Lf∗W
∗(z) ≤ 0 for all z near z = 0.

Suppose Lgh(x) is nonsingular at x = 0, and the globally defined normal form (4.7) exists

for system Σ. Then Σ is

(iii) globally minimum phase if z = 0 is a globally asymptotically stable equilibrium of f ∗(z);

(iv) globally weakly minimum phase if there exists a Cr, r ≥ 2, positive definite and proper

function W ∗(z), defined for all z with W ∗(0) = 0, such that Lf∗W
∗(z) ≤ 0 for all z.
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If the output y in the form (4.7) is replaced by

yF = y + F (z), (4.9)

where F (z) is a C1 function, then the normal form becomes

ż = q(z, y), (4.10a)

ẏ = b(z, y) + a(z, y)u, (4.10b)

yF = y + F (z). (4.10c)

If a nonlinear system Σ of the form (4.7) is not (globally) minimum phase, we can always try

to find a C1 function F (z), such that the system Σ of the modified form (4.10) with output

yF is (globally) minimum phase, i.e., z = 0 is an (globally) asymptotically stable equilibrium

of

ż = q(z,−F (z)).

4.2 Feedback Equivalence to Passivity

In this section, conditions are derived, under which a given nonlinear system is feedback

equivalent to a strictly passive system.

Lemma 10. There exist a feedback law α(x) and an output map hF (x) such that

ẋ = f(x) + g(x)α(x) + g(x)u, (4.11a)

yF = hF (x) (4.11b)

is strictly passive with a positive definite and proper C1 storage function, if the nonlinear

system (4.1) is globally asymptotically stabilizable by state feedback, with a positive definite

and proper C1 Lyapunov function V satisfying lim
x→∞

|LfV (x)|
‖LgV (x)‖2 ≤M ∈ R+.
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Proof. Suppose (4.1) is globally asymptotically stabilizable via u = α(x) and V is a positive

definite and proper C1 Lyapunov function for the resulting feedback system

ẋ = fF (x)

with fF (x) = f(x) + g(x)α(x). The continuity of LfV (x) and LgV (x) is assured since V (x)

is C1 and f(x) and g(x) are both smooth. Setting α(x) = −K(LgV (x))T yields

V̇ (x) =
∂V (x)

∂x
ẋ =

∂V (x)

∂x
fF (x) = LfV (x)−KLgV (x)(LgV (x))T = LfV (x)−K‖LgV (x)‖2.

Obviously there exists a scalar K > 0 such that V̇ (x) < 0 for ∀x in a compact set of Rn.

For ∀x → ∞, V̇ (x) < 0 still holds if lim
x→∞

|LfV (x)|
‖LgV (x)‖2 ≤ M and K is sufficiently large. Thus

the feedback system is made globally asymptotically stable. Then set hF (x) = (LgV (x))T .

Calculation shows that

LgV (x) = hTF (x) and LfFV (x) =
∂V (x)

∂x
fF (x) = V̇ (x) < 0,

which, in view of Lemma 9, imply the strict passivity of the feedback system (4.11). 2

Corollary 4. There exists a feedback law α(z, y) such that

ż
ẏ

 = fF (z, y) + g(z, y)u, (4.12a)

yF = y + F (z) (4.12b)

with fF (z, y) =

 q(z, y)

b(z, y) + a(z, y)α(z, y)

 and g(z, y) =

0

I

, is strictly passive with a posi-

tive definite and proper C1 storage function, if the nonlinear system (4.10) has relative degree

{1, . . . , 1} at x = 0, is globally minimum phase, and is globally asymptotically stabilizable
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by state feedback, with a positive definite and proper C1 Lyapunov function V satisfying

lim
z,y→∞

| ∂V (z,y)
∂z

q(z,y)+yTF b(z,y)|
‖yF ‖2

≤M ∈ R+.

Proof. Let W (z) be a C1 Lyapunov function for ż = q(z,−F (z)). Suppose (4.10) is globally

asymptotically stabilizable via u = α(z, y) and let V = W (z) + 1
2
yTFyF be a positive definite

and proper C1 Lyapunov function for the resulting feedback system

ż
ẏ

 = fF (z, y).

Setting α(z, y) = −Ka(z, y)−1yF yields

V̇ (z, y) =
∂V (z, y)

∂ [zT yT ]T

ż
ẏ

 =

[
∂V (z, y)

∂z
yTF

]
fF (z, y) =

∂V (z, y)

∂z
q(z, y) + yTF b(z, y)−KyTFyF

=
∂V (z, y)

∂z
q(z, y) + yTF b(z, y)−K‖yF‖2.

Obviously there exists a scalar K > 0 such that V̇ (z, y) < 0 for ∀vec(z, y) in a compact

set of Rn. For ∀z, y → ∞, V̇ (z, y) < 0 still holds if lim
z,y→∞

| ∂V (z,y)
∂z

q(z,y)+yTF b(z,y)|
‖yF ‖2

≤ M and

K is sufficiently large. Thus the feedback system is made globally asymptotically stable.

Calculation shows that

LgV (z, y) =

[
∂V (z, y)

∂z
yTF

]0

I

 = yTF and LfFV (z, y) = V̇ (z, y) < 0,

which, in view of Lemma 9, imply the strict passivity of the feedback system (4.12). 2

4.3 Distributed Stabilization via State Feedback

This section studies the distributed stabilization control protocol for heterogeneous non-

linear MASs using state feedback over the communication graph G, represented by its Lapla-

cian matrix L. All the notations, concepts and results concerning the communication graphs
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can be referred to previous chapters. Consider N heterogeneous nonlinear systems

ẋi = fi(xi) + gi(xi)ui, (4.13a)

yi = hi(xi) (4.13b)

with state vector xi ∈ Rni , control input ui ∈ R, and output yi ∈ R.

Consider the following control protocol

ui = g̃i(r − Fi(xi))− di
N∑
j=1

aij(Fi(xi)− Fj(xj)) (4.14)

with di > 0 and g̃i ≥ 0 for all i ∈ N . Basically the control input for the ith agent consists of

two parts: the tracking error with respect to the reference model and the error signals with

respect to the adjacent agents. In order to minimize the communication overhead, only one

of {g̃i}Ni=1 is required to be nonzero. Substituting (4.14) into (4.13a) leads to the closed-loop

dynamics

ẋi = fi(xi)− gi(xi)di
N∑
j=1

aij(Fi(xi)− Fj(xj))− gi(xi)g̃i(Fi(xi)− r), (4.15)

which can be equivalently expressed in the compact form

ẋ = f(x)− g(x) [DL+G]F (x) + g(x)G [1N ⊗ r]

= f(x)− g(x)MF (x) + g(x)M [1N ⊗ r]
(4.16)

with x = vec(x1, . . . , xN), F (x) = vec(F1(x1), . . . , FN(xN)), f(x) = vec(f1(x1), . . . , fN(xN)),

g(x) = diag(g1(x1), . . . , gN(xN)), D = diag(d1, . . . , dN), G = diag(g̃1, . . . , g̃N), and M =

DL+G.

Theorem 8. Consider the heterogeneous nonlinear MAS given in (4.13) and assume the N

individual systems are all globally asymptotically stabilizable by state feedback, with C1 Lya-
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punov function Vi satisfying lim
xi→∞

|Lfi
Vi(xi)|

‖LgiVi(xi)‖2
≤Mi ∈ R+ for all i ∈ N . There exists a stabi-

lizing state feedback control protocol (4.14) for the underlying MAS over the communication

digraph G, if G is connected.

Proof. Since the N individual systems are all globally asymptotically stabilizable, by Lemma

10 and its proof, there exist a feedback law Fi(xi), an output map hFi(xi), and a scalar K > 0,

satisfying Fi(xi) = KhFi(xi), such that for all i ∈ N ,

ẋi = fFi(xi) + gi(xi)ui,

yFi = hFi(xi)

with fFi(xi) = fi(xi)− gi(xi)Fi(xi) is strictly passive with a positive definite and proper C1

storage function Vi(xi), i.e.,

LfFi(xi)Vi(xi) < 0 and Lgi(xi)Vi(xi) = hTFi(xi).

As a result, the compact system

ẋ = fF (x) + g(x)u, (4.17a)

yF = hF (x) (4.17b)

with yF = vec(yF1, . . . , yFN), u = vec(u1, . . . , uN), fF (x) = vec(fF1(x1), . . . , fFN(xN)) and

hF (x) = vec(hF1(x1), . . . , hFN(xN)), is strictly passive as well. In addition, by Lemma 7, the

connectivity of G implies the existence of required D and G, such that (3.15) holds for some

κ > 0. Thus taking Z = (DL+G)/κ− I yields

Z + ZT > 0. (4.18)

Then taking κ = 1 with no loss of generality and substituting (DL + G) = (Z + I) into

45



(4.16) lead to

ẋ = fF (x)− g(x)ZF (x) + g(x)r̃, (4.19a)

yF = hF (x) (4.19b)

with input r̃ =M [1N ⊗ r]. Thus setting V (x) =
N∑
i=1

Vi(xi) yields

Lg(x)V (x) =

[
∂V1(x1)

∂x1
, . . . ,

∂VN(xN)

∂xN

]
g(x)

=
[
Lg1(x1)V1(x1), . . . , LgN (xN )VN(xN)

]
=
[
hTF1(x1), . . . , h

T
FN(xN)

]
= hTF (x),

LfF (x)−g(x)ZF (x)V (x) = LfF (x)V (x)−
[
Lg(x)V (x)

]
ZF (x)

=

[
∂V1(x1)

∂x1
, . . . ,

∂VN(xN)

∂xN

]
fF (x)−KhTF (x)ZhF (x)

=
N∑
i=1

LfFi(xi)Vi(xi)−
1

2
KhTF (x)(Z + ZT )hF (x) < 0,

which, in view of Lemma 9, imply the strict passivity of system (4.19). Hence, by Lemma 6.7

in [14], the unforced closed-loop system ẋ = fF (x) − g(x)ZF (x) is globally asymptotically

stable. In fact, system (4.19) can be regarded as a feedback connection of the strictly passive

system (4.17) and a memoryless function KZ satisfying (4.18). Hence, by Lemma 6.8 in [14],

system (4.19) is also finite-gain L2 stable, which completes the proof. 2

It is worth noting that if the N individual systems (4.13) are already strictly passive,

then feedback law Fi(xi) in (4.14) can be simply chosen as Fi(xi) = hi(xi) = yi to achieve

stability. In other words, output feedback stabilizes the closed-loop system (4.16).
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CHAPTER 5
CONCLUSION AND FUTURE WORK

5.1 Conclusion

Chapter 2 summarizes the main results for consensus control of MASs presented in More-

au (2004) [21], Scardovi and Sepulchre (2009) [25] and Wieland et al (2011) [30]. In [25],

the authors develop a dynamic output feedback control law that ensures the exponential

synchronization of the homogeneous linear MASs, which can be regarded as a generaliza-

tion of the classical consensus protocol studied in [21]. Building on the results in [21] and

[25], [30] turns to the case of heterogeneous MASs and proposes the necessary and sufficient

conditions for exponential synchronizability of the MASs over uniformly connected commu-

nication graphs. However, since synchronized reference generator, state observer and output

regulator are all embedded in the dynamic control protocol, each distributed controller has

very high order, which increases the implementation complexity and difficulty.

The modified work presented in Chapter 3 has several advantages over many existing

results. One of the major distinctions is that it proves to be sufficient for only one agent to

have access to the reference trajectory for the whole MAS to achieve consensus, which signifi-

cantly lowers the communication overhead between different agents. In addition, the absence

of a local reference model at each agent eliminates the need for additional synchronization

of the local reference models, thus remarkably reducing the dimensions and complexity of

the distributed controllers. Moreover, many existing well-developed design methods such as

H∞ loop shaping [20] and LQG/LTR [2] can be efficiently used to implement the consensus

control law with required performance and robustness. However, the results are applicable

only to the cases of connected graph and uniformly connected graph with sufficiently small

time interval. Once the time interval becomes larger, the MAS may fail to reach output

consensus under proposed control protocol.
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Chapter 4 studies the problem of distributed stabilization for heterogeneous nonlinear

MASs over connected graphs. The N individual agents are assumed to be single-input

single-output (SISO) and admit different dynamical models. The conditions for a nonlinear

system being feedback equivalent to a passive system are derived along with the feedback

law. A distributed stabilization control protocol is then proposed using state feedback. The

properties of connected communication graphs and the idea of feedback connection of two

passive systems prove to be extremely crucial for the design process. The result can be

interpreted as an extension of the stabilizing control protocol for linear MASs introduced

in Chapter 3, and will serve as an instrumental preliminary to the corresponding consensus

control problem.

5.2 Future Work

For future research, the distributed stabilization problem needs to be studied for multi-

input multi-output (MIMO) nonlinear MASs. However, this problem should be easy to solve

since the result for MIMO linear MASs indicates that distributed stability holds as long as

condition (3.14) is replaced by (3.17).

In many practical MASs, the state information is usually not available for feedback. In

that case, output feedback can be applied and distributed observers have to be employed to

estimate the states of individual agents. It is mentioned at the end of Chapter 4 that direct

output feedback stabilizes the closed-loop MAS if the N individual agents in the network

are all strictly passive. However, how to stabilize the MAS using output feedback control

laws remains to be a difficult problem when the N agents are not necessarily strictly passive,

especially since the design of observers for nonlinear systems are much more complex than

the case of linear systems.

Just as we claimed before, the distributed stabilization is just a fundamental part in

the consensus problem. Our final goal is to find a distributed control law such that the

outputs of the heterogeneous nonlinear MAS asymptotically synchronize to some desired

48



common trajectory. In [6], coupling control laws are derived for the output synchronization

of homogeneous nonlinear MAS with relative degree one and weakly minimum phase, while

the results are limited to the case when the interconnection graph is balanced. In [11], the

author considers the output regulation problem for regular nonlinear systems and proposes

to embed an internal model to the controller, which happens to be quite similar to the

internal model principle introduced in Chapter 2.

Future work can also be focused on some more complex consensus problems of hetero-

geneous nonlinear MASs, such as heterogeneous nonlinear MASs with time-delays, hetero-

geneous nonlinear MASs under time-varying topologies or random networks, discrete-time

heterogeneous nonlinear MASs, etc.
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