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Abstract

In this paper, we study a combinatorial problem originating in the following conjecture of Erdős and
Lemke: given any sequence of n divisors of n, repetitions being allowed, there exists a subsequence the
elements of which are summing to n. This conjecture was proved by Kleitman and Lemke, who then
extended the original question to a problem on a zero-sum invariant in the framework of finite Abelian
groups. Building among others on earlier works by Alon and Dubiner and by the author, our main theorem
gives a new upper bound for this invariant in the general case, and provides its right order of magnitude.
c⃝ 2012 Elsevier Inc. All rights reserved.

MSC: 05E15; 11B75; 11A25; 20D60; 20K01

Keywords: Extremal combinatorics; Zero-sum sequences; Cross number; Finite Abelian groups

1. Introduction

Let G be a finite Abelian group, written additively. If G is cyclic of order n, it will be
denoted by Cn . In the general case, we can decompose G as a direct product of cyclic groups
Cn1 ⊕ · · · ⊕ Cnr such that 1 < n1| · · · |nr ∈ N, where r and nr are respectively called the rank
and exponent of G. Usually, the exponent of G is simply denoted by exp(G). The order of an
element g of G will be written ord(g) and for every divisor d of exp(G), we denote by Gd the
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subgroup of G consisting of all elements of order dividing d:

Gd = {x ∈ G | dx = 0} .

In this paper, any finite sequence S = (g1, . . . , gℓ) of ℓ elements of G will be called a
sequence over G of length |S| = ℓ. We will also denote by σ(S) the sum of all elements contained
in S, which will be referred to as a zero-sum sequence whenever σ(S) = 0.

Given a sequence S over G, we denote by Sd the subsequence of S consisting of all elements
of order d contained in S, and by k(S) the cross number of S = (g1, . . . , gℓ), which is defined
as follows:

k(S) =

ℓ
i=1

1
ord(gi )

.

By t(G) we denote the smallest integer t ∈ N∗ such that every sequence S over G of length
|S| ≥ t contains a non-empty zero-sum subsequence S′

| S with k(S′) ≤ 1. Such a subsequence
will be called a tiny zero-sum subsequence.

The investigations on t(G) originate in the following conjecture, addressed by Erdős and
Lemke in the late eighties (see [15, Introduction]). Is it true that out of n divisors of n, repetitions
being allowed, one can always find a certain number of them that sum up to n? Motivated by this
conjecture, Kleitman and Lemke [15, Theorem 1] proved the following stronger result.

Theorem 1.1 (Kleitman and Lemke [15]). For any given integers a1, . . . , an there is a non-empty
subset I ⊆ [[1, n]] such that

n |


i∈I

ai and

i∈I

gcd(ai , n) ≤ n.

Meanwhile, Lagarias and Saks framed a graph-theoretic approach, called graph pebbling,
thanks to which the problem of Erdős and Lemke could be reduced to the study of a
combinatorial game, played with pebbles on the vertices of a simple graph. In this context,
Chung [2, Theorem 6] found a new elegant proof of Theorem 1.1, and, under one extra assump-
tion made on the prime factors of n, Denley [3, Theorem 1] could sharpen this theorem. Graph
pebbling led to a rapidly growing literature as well as many open problems. The interested reader
is referred to the surveys [13,14] which contain many references on the subject.

In addition, let us underline that, with our notation, Theorem 1.1 simply asserts that t(Cn) ≤ n,
and this upper bound is easily seen to be optimal. In the general case, Kleitman and Lemke
[15, Section 3] conjectured that t(G) ≤ |G| holds for every finite Abelian group G. This
conjecture was proved, using tools from zero-sum theory, by Geroldinger [8]. An alternative
proof was then found by Elledge and Hurlbert [5, Theorem 2] using graph pebbling.

In this paper, we prove that in the general case of finite Abelian groups, the currently
known upper bound on t(G) can be improved significantly. More precisely, our main theorem
shows that, for finite Abelian groups of fixed rank, t(G) grows linearly in the exponent of G,
which gives the correct order of magnitude. To do so, we prove that t(G) can be bounded
above using a result of Alon and Dubiner [1] on the following classical invariant in zero-sum
theory.

By η(G) we denote the smallest integer t ∈ N∗ such that every sequence S over G of
length |S| ≥ t contains a non-empty zero-sum subsequence S′

| S with |S′
| ≤ exp(G). Such

a subsequence is called a short zero-sum subsequence.
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Since k(T ) ≤ 1 implies |T | ≤ exp(G), one can notice that η(G) ≤ t(G) always holds. Let
us also mention that η(G) is one out of many invariants studied because of their arithmetical
applications. In this respect, the interested reader is referred to [10,6,9] for comprehensive
surveys on non-unique factorization theory. For instance, it is known [10, Theorem 5.8.3] that
for all integers m, n ∈ N∗ such that m | n, one has

η(Cm ⊕ Cn) = 2m + n − 2. (1)

In particular, the equality t(Cn) = η(Cn) = n holds. Moreover, and even if little is known on
the exact value of η(G) for finite Abelian groups of rank r ≥ 3, its behavior is better understood
than it is for t(G), and the following key result, due to Alon and Dubiner [1, Theorem 1.1], will
be extensively used throughout this article.

Theorem 1.2 (Alon and Dubiner [1]). For every r ∈ N∗ there exists a constant cr > 0 such that
for every n ∈ N∗, one has

η

Cr

n


≤ cr (n − 1) + 1.

From now on, we will identify cr with its smallest possible value in Theorem 1.2. On the one
hand, a natural construction shows that cr ≥ (2r

−1). Indeed, if (e1, . . . , er ) is a basis of Cr
n with

ord(ei ) = n for all i ∈ [[1, r ]], it is easily checked that the sequence S consisting of n − 1 copies
of


i∈I ei for each non-empty subset I ⊆ [[1, n]] contains no short zero-sum subsequence, so
that

(2r
− 1)(n − 1) + 1 ≤ η(Cr

n) ≤ t(Cr
n). (2)

In particular, one has t(Cr
2) = η(Cr

2) = 2r . For the time being, the exact value of t(G) is known
for cyclic groups and elementary 2-groups only.

On the other hand, the method used in [1] yields cr ≤ (cr ln r)r , where c > 0 is an absolute
constant. Also, it readily follows from (1) that it is possible to choose c1 = 1 and c2 = 3, with
equality in Theorem 1.2, and it is conjectured in [1] that there actually is an absolute constant
d > 0 such that cr ≤ dr for all r ≥ 1. For a complete account on η(G), see [4,7] and the
references contained therein.

2. New results and plan of the paper

Let P = {p1 = 2 < p2 = 3 < · · ·} be the set of prime numbers. Given a positive integer n, let
Dn be the set of its positive divisors. By P−(n) and P+(n), we denote the smallest and greatest
prime elements of Dn respectively, with the convention P−(1) = P+(1) = 1. Finally, the p-adic
valuation of n will be denoted by νp(n).

In this paper, we prove that in the general case of finite Abelian groups, the currently known
upper bound on t(G) can be improved significantly.

Our starting point will be to prove it first in the case of finite Abelian p-groups. For this
purpose, a classical variant of t(G), introduced by Geroldinger and Schneider in [11], will be
studied in Section 3. Even though a single by-product of this investigation (see Corollary 3.6)
will effectively be used in subsequent sections, we include this study in full, since it may be of
interest in view of arithmetical applications.

Then, in Section 4, we prove the main theorem of this paper. This theorem provides a new
upper bound for t(G), which depends on the rank and exponent of G only. It is proved thanks to
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an appropriate partition of the divisor lattice of exp(G). In addition, an interesting special case
is the one of finite Abelian groups of rank two, where this theorem can be applied specifying
c2 = 3.

Theorem 2.1. Let G be a finite Abelian group of rank r and exponent n. Then

t(G) ≤ cr


d|n


d

P+(d)
νP+(d)(d)

− 1


+ cr (n − 1) + 1.

In Section 5, we then obtain, as a corollary of Theorem 2.1, the following Alon and Dubiner
type upper bound for t(G). In particular, it is easily deduced from (2) that this upper bound has
the right order of magnitude.

Theorem 2.2. For every r ∈ N∗ there exists a constant dr > 0 such that, for every finite Abelian
group G of rank r and exponent n, one has

t(G) ≤ dr (n − 1) + 1.

The qualitative upper bound of Theorem 2.2 is voluntarily given in a form allowing to stress
the connection between dr and cr . In this regard, a key argument in our proof of Theorem 2.2
actually comes from a simple, albeit somewhat surprising, property of the following arithmetic
function

f (n) =


d|n

d

P+(d)
.

Indeed, one can show that f (n) ≤ n always holds (see Proposition 5.2). Consequently, and even
if no particular effort has been made to optimize the constant in Theorem 2.2, it turns out that dr
can be chosen to satisfy 1 ≤ dr/cr ≤ 2, thus being at most twice as large as the best possible
constant we could hope for.

Finally, in Section 6, we propose and discuss two open problems on t(G).

3. On a variant of t(G)

Let G be a finite Abelian group, and d ′, d ∈ N∗ be two integers such that d ′
|d| exp(G). This

section is devoted to the following variant of t(G), which was first introduced by Geroldinger
and Schneider [11, Section 3] (see also [10, Section 5.7]):

ρ(G) = max{k(S) | S contains no tiny zero-sum subsequence}.

Using a compression argument, we will obtain a new upper bound for ρ(G), which has the
correct order of magnitude and applies to any finite Abelian group G. For this purpose, we
consider the following invariant, which was introduced in [12].

By η(d ′,d)(G) we denote the smallest integer t ∈ N∗ such that every sequence S over Gd of
length |S| ≥ t contains a non-empty subsequence S′

| S of length |S′
| ≤ d ′ and with sum in

Gd/d ′ .
The numbers η(d ′,d)(G) and η(G) are closely related to each other. First, note that the two

definitions coincide when d ′
= d = exp(G). In addition, and as shown in [12, Proposition 3.1],

there exists a subgroup Gυ(d ′,d) ⊆ G such that η(d ′,d)(G) = η(Gυ(d ′,d)). In order to define
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this particular subgroup Gυ(d ′,d) properly, we introduce the following notation. Given the
decomposition of G as a product of cyclic groups

G ≃ Cn1 ⊕ · · · ⊕ Cnr , with 1 < n1| · · · |nr ∈ N,

we set, for all i ∈ [[1, r ]],

Ai = gcd(d ′, ni ), Bi =
lcm(d, ni )

lcm(d ′, ni )
, υi (d

′, d) =
Ai

gcd(Ai , Bi )
.

Therefore, whenever d divides ni , we have υi (d ′, d) = gcd(d ′, ni ) = d ′, and in particular
υr (d ′, d) = d ′. We can now state our result on η(d ′,d)(G).

Proposition 3.1. Let G ≃ Cn1 ⊕ · · · ⊕ Cnr , with 1 < n1| · · · |nr ∈ N, be a finite Abelian group
and d ′, d ∈ N∗ be such that d ′

|d| exp(G). Then

η(d ′,d)(G) = η

Cυ1(d ′,d) ⊕ · · · ⊕ Cυr (d ′,d)


.

Using Theorem 1.2, our Proposition 3.1 yields the following useful estimate on the numbers
η(d ′,d)(G).

Proposition 3.2. For every r ∈ N∗ there exists a constant cr > 0 such that for every finite
Abelian group G of rank r, and every d ′

|d| exp(G), one has

η(d ′,d)(G) ≤ cr (d
′
− 1) + 1.

Proof. Let us consider the group

Gυ(d ′,d) = Cυ1(d ′,d) ⊕ · · · ⊕ Cυr (d ′,d).

On the one hand, Proposition 3.1 states that η(d ′,d)(G) = η(Gυ(d ′,d)). On the other hand, it is
easily seen that υi (d ′, d) | d ′ for all i ∈ [[1, r ]] and υr (d ′, d) = d ′, which implies that Gυ(d ′,d)

is a subgroup of Cr
d ′ of exponent d ′. Now, since η(H) ≤ η(G) holds for all groups H ⊆ G such

that exp(H) = exp(G), Theorem 1.2 gives

η(d ′,d)(G) = η(Gυ(d ′,d)) ≤ η(Cr
d ′) ≤ cr (d

′
− 1) + 1. �

Now, we can prove the main theorem of this section.

Theorem 3.3. Let G be a finite Abelian group of exponent n and Dn = {d1, . . . , dm}. Let
also S be a sequence over G containing no tiny zero-sum subsequence, reaching the maximum
k(S) = ρ(G), and being of minimal length regarding this property. Then, the m-tuple x =
xd1 , . . . , xdm


, where xd = |Sd | for all d, is an element of the polytope

PG = {x ∈ Nm
| fd(x) ≥ 0, d ∈ Dn},

where

fd(x) = min
d ′∈Dd\{1}


η(d ′,d)(G) − 1 − xd


.

Proof. Let S be a sequence over G containing no tiny zero-sum subsequence, satisfying
k(S) = ρ(G) and being of minimal length regarding this property. Suppose also that the
m-tuple x = (xd1 , . . . , xdm ), where xd = |Sd | for all d, is not an element of the polytope PG .



1848 B. Girard / Advances in Mathematics 231 (2012) 1843–1857

Then, there exists d0 ∈ Dn such that fd0(x) < 0, which means there is a d ′

0 ∈ Dd0 \ {1}

satisfying xd0 ≥ η(d ′

0,d0)
(G). So, the sequence S contains X elements g1, . . . , gX of order d0,

with 1 < X ≤ d ′

0, the sum σ of which is an element of order d̃0 dividing d0/d ′

0.
Let T be the sequence obtained from S by replacing these X elements by their sum.

Reciprocally, for every subsequence T ′ of T containing σ , let us denote by ϕ(T ′) the
subsequence of S obtained from T ′ by replacing σ by g1, . . . , gX . In particular, note that

k(ϕ(T ′)) = k(T ′) −
1

ord(σ )
+

X
i=1

1
ord(gi )

= k(T ′) +
X

d0
−

1

d̃0

≤ k(T ′) +
X

d0
−

d ′

0

d0

≤ k(T ′).

First, T contains no tiny zero-sum subsequence. Indeed, if T ′ is a non-empty zero-sum
subsequence of T , then either T ′ contains σ so that ϕ(T ′) is a non-empty zero-sum subsequence
of S, which yields

k(T ′) ≥ k(ϕ(T ′)) > 1,

or T ′ does not contain σ , which implies that T ′ is a subsequence of S and k(T ′) > 1.
Second, it follows from the equality ϕ(T ) = S that k(T ) ≥ k(S) = ρ(G). Therefore, T

is a sequence over G containing no tiny zero-sum subsequence such that k(T ) = ρ(G) and
|T | = |S| − X + 1 < |S|, a contradiction. �

Keeping in mind the notation used in Theorem 3.3, we now obtain the following immediate
corollary, giving a general upper bound for ρ(G), expressed as the solution of an integer linear
program.

Corollary 3.4. For every finite Abelian group G of exponent n, one has

ρ(G) ≤ max
x∈PG


d|n

xd

d
.

It is now possible, using Proposition 3.2, to deduce the following quantitative result from
Theorem 3.3.

Theorem 3.5. Let G be a finite Abelian group of rank r and exponent n. Then

ρ(G) ≤ cr


d|n

P−(d) − 1
d

.

Proof. Using Theorem 3.3 and Proposition 3.2, we indeed obtain

ρ(G) ≤


d|n

η(P−(d),d)(G) − 1

d

≤ cr


d|n

P−(d) − 1
d

. �
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Theorem 3.5 actually improves on the best known upper bound ρ(G) ≤ |G|/P−(n) proved
by Geroldinger and Schneider [11, Lemma 2.1]. In addition, a simple study of the arithmetic
function involved in our result (see [12, Lemma 5.1]) shows there exists a constant δr > 0 such
that, for every finite Abelian group G of rank r and exponent n, one has ρ(G) ≤ δrω(n), where
ω(n) denotes the number of distinct prime divisors of n.

On the other hand, Theorem 3.5 provides us with the following useful result on t(G) in the
case of finite Abelian p-groups.

Corollary 3.6. Let p ∈ P . Then, for all α, r ∈ N∗, one has

t(Cr
pα ) ≤ cr


pα

− 1

+ 1.

Proof. Let G ≃ Cr
pα , where α, r ∈ N∗ and p ∈ P . Using Theorem 3.5, one has

ρ(G) ≤ cr

α
i=1


p − 1

pi


= cr


pα

− 1
pα


.

Then, for every sequence S over G containing no tiny zero-sum subsequence, one has

|S|

pα
≤ k(S) ≤ ρ(G) ≤ cr


pα

− 1
pα


,

which gives |S| ≤ cr (pα
− 1) and completes the proof. �

As already mentioned, an interesting special case is the one of finite Abelian groups of rank
two. In this case, specifying c2 = 3 in Corollary 3.6 implies that, for all primes p and α ∈ N∗,
the equality

t

C pα ⊕ C pα


= 3pα

− 2 = η

C pα ⊕ C pα


(3)

holds. Building on the case where G has prime power exponent, we can now turn to the general
case of finite Abelian groups.

4. Proof of the main theorem

Let G be a finite Abelian group of exponent n = qα1
1 · · · qαℓ

ℓ , with q1 < · · · < qℓ, and let S be
a sequence over G. We consider the following partition:

Dn \ {1} =

ℓ
i=1

Ai , where Ai = {d ∈ Dn \ {1} : P+(d) = qi }.

In particular, for all d ∈ Ai , one has d ≤ ∆i = qα1
1 · · · qαi

i . Now, for every d ∈ Ai , we denote
by kd the smallest integer such that

|Sd | < kd
d

q
νqi (d)

i

+ η
d

q
νqi (d)

i

,d

(G).

The number kd has the following combinatorial interpretation.
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Lemma 4.1. Let G be a finite Abelian group of exponent n, and d ∈ Ai . Let also S be a sequence
over G. Then Sd contains at least kd disjoint non-empty subsequences S′

1, . . . , S′

kd
such that, for

all j ∈ [[1, kd ]],

σ(S′

j ) ∈ G
q

νqi (d)

i

and k(S′

j ) ≤
1

q
νqi (d)

i

.

Proof. First, we shall prove by induction on k ∈ [[0, kd ]] that Sd contains at least k disjoint
non-empty subsequences S′

1, . . . , S′

k such that, for all j ∈ [[1, k]],

σ(S′

j ) ∈ G
q

νqi (d)

i

and |S′

j | ≤
d

q
νqi (d)

i

.

If k = 0 then this statement is clearly true. Now, assume that the statement holds for some
k ∈ [[0, kd − 1]], and let us prove that it holds for k + 1 as well. By the induction hypothesis, we
already know that Sd contains k disjoint non-empty subsequences S′

1, . . . , S′

k such that, for all
j ∈ [[1, k]],

σ(S′

j ) ∈ G
q

νqi (d)

i

and |S′

j | ≤
d

q
νqi (d)

i

.

Moreover, the sequence Td obtained from Sd by deleting all elements of S′

1, . . . , S′

k satisfies

|Td | = |Sd | −

k
j=1

|S′

j |

≥ (kd − 1)
d

q
νqi (d)

i

+ η
d

q
νqi (d)

i

,d

(G) − k
d

q
νqi (d)

i

≥ η
d

q
νqi (d)

i

,d

(G),

so that Sd contains a non-empty subsequence S′

k+1 disjoint from S′

1, . . . , S′

k such that

σ(S′

k+1) ∈ G
q

νqi (d)

i

and |S′

k+1| ≤
d

q
νqi (d)

i

,

which completes the induction. Therefore, Sd contains kd disjoint non-empty subsequences
S′

1, . . . , S′

kd
such that, for all j ∈ [[1, kd ]],

σ(S′

j ) ∈ G
q

νqi (d)

i

and |S′

j | ≤
d

q
νqi (d)

i

.

In addition, for all j ∈ [[1, kd ]], one clearly has

k(S′

j ) =
|S′

j |

d
≤

1

q
νqi (d)

i

,

and the lemma is proved. �
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Corollary 4.2. Let G be a finite Abelian group of exponent n, and d ∈ Ai . Let also S be a
sequence over G. Then Sd contains at least kd disjoint non-empty subsequences S′

1, . . . , S′

kd
such that, for all j ∈ [[1, kd ]],

σ(S′

j ) ∈ G
q

νqi (n)

i

and k(S′

j ) ≤
1

ord

σ


S′

j

 .

Proof. By Lemma 4.1, Sd contains at least kd disjoint non-empty subsequences S′

1, . . . , S′

kd
such

that, for all j ∈ [[1, kd ]],

σ(S′

j ) ∈ G
q

νqi (d)

i

and k(S′

j ) ≤
1

q
νqi (d)

i

.

Thus, the desired result directly follows from the fact that, for all j ∈ [[1, kd ]], one has

σ(S′

j ) ∈ G
q

νqi (d)

i

⊆ G
q

νqi (n)

i

. �

Lemma 4.3. Let G be a finite Abelian group of exponent n, and let S be a sequence over G
containing no tiny zero-sum subsequence. Then, for all i ∈ [[1, ℓ]],

d∈Ai

kd ≤ t


G
q

νqi (n)

i


− 1.

Proof. Let us set t = t


G
q

νqi (n)

i


, and assume that

d∈Ai

kd ≥ t.

Then, it follows from Corollary 4.2 that S contains t disjoint non-empty subsequences S′

1, . . . , S′
t

such that, for all j ∈ [[1, t]],

σ(S′

j ) ∈ G
q

νqi (n)

i

and k(S′

j ) ≤
1

ord

σ


S′

j

 .

Now, let us consider the sequence T over G
q

νqi (n)

i

defined by

T =

t
j=1

σ(S′

j ).

Since T is a sequence of length |T | = t , then it contains a tiny zero-sum subsequence T ′
| T . In

other words, there exists a non-empty subset J ⊆ [[1, t]] such that

T ′
=


j∈J

σ(S′

j ).

Now, let us set

S′
=


j∈J

S′

j .

Since σ(S′) = σ(T ′) = 0, then S′ is a non-empty zero-sum subsequence of S. In addition, we
have the following chain of inequalities:
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k(S′) =


j∈J

k(S′

j )

≤


j∈J

1

ord

σ


S′

j


= k(T ′)

≤ 1.

Therefore, S contains a tiny zero-sum subsequence, and the proof is complete. �

We can now prove the main theorem of this paper.

Proof of Theorem 2.1. Let S be a sequence over G containing no tiny zero-sum subsequence.
For every i ∈ [[1, ℓ]], Corollary 3.6 and Lemma 4.3 yield

d∈Ai

kd ≤ t


G
q

νqi (n)

i


− 1 ≤ cr


q

νqi (n)

i − 1


,

so that, setting ∆0 = 1, one obtains


d∈Ai

|Sd | −

η
d

q
νqi (d)

i

,d

(G) − 1


 ≤


d∈Ai

kd
d

q
νqi (d)

i

≤ ∆i−1


d∈Ai

kd

≤ cr∆i−1


q

νqi (n)

i − 1


= cr (∆i − ∆i−1) .

Now, using Proposition 3.2, we have

|S| =

ℓ
i=1


d∈Ai

|Sd |

=

ℓ
i=1


d∈Ai

η
d

q
νqi (d)

i

,d

(G) − 1

+

ℓ
i=1


d∈Ai

|Sd | −

η
d

q
νqi (d)

i

,d

(G) − 1




≤ cr

ℓ
i=1


d∈Ai

 d

q
νqi (d)

i

− 1

+ cr

ℓ
i=1

(∆i − ∆i−1)

= cr


d|n


d

P+(d)
νP+(d)(d)

− 1


+ cr (n − 1) ,

which completes the proof of the theorem. �

5. A special sum of divisors

In this section, we derive Theorem 2.2 from the study of a particular arithmetic function. We
recall P = {p1 = 2 < p2 = 3 < · · ·} denotes the set of prime numbers, and start by proving the
following easy lemma.
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Lemma 5.1. For every integer ℓ ≥ 1, one has

ℓ
i=1


1 +

1
pi − 1


≤ pℓ+1 − 1.

Proof. To start with, let us prove the following statement by induction on ℓ ≥ 1.

ℓ
i=2


1 +

1
2(i − 1)


≤ ℓ.

One can readily notice that this statement is true for ℓ = 1 and ℓ = 2. Assume now that the
statement holds for some ℓ ≥ 2. Then, let us show that it holds for ℓ + 1 also. Indeed,

ℓ+1
i=2


1 +

1
2(i − 1)


=

ℓ
i=2


1 +

1
2(i − 1)


1 +

1
2ℓ


≤ ℓ


1 +

1
2ℓ


≤ ℓ + 1,

and we are done. The desired result now follows from the following chain of inequalities, using
the trivial bound pℓ ≥ 2ℓ − 1, for all ℓ ≥ 2, in the following fashion.

ℓ
i=1


1 +

1
pi − 1


= 2

ℓ
i=2


1 +

1
pi − 1



≤ 2
ℓ

i=2


1 +

1
2(i − 1)


≤ 2ℓ

= (2(ℓ + 1) − 1) − 1

≤ pℓ+1 − 1. �

We can now prove the main result of this section.

Proposition 5.2. Let f (n) =


d|n
d

P+(d)
. For every integer n ≥ 1, one has f (n) ≤ n.

Proof. Writing n = qα1
1 · · · qαℓ

ℓ , where q1 < · · · < qℓ, we prove the desired result by induction
on ℓ = ω(n) ≥ 1.

If ℓ = 1, then one has

f (qα1
1 ) =


d|q

α1
1

d

P+(d)

= 1 +

α1
i=1

q i−1
1

= 1 +


qα1

1 − 1

q1 − 1


,
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so that we now have

f (qα1
1 )

qα1
1

=
1

qα1
1

+
1

q1 − 1


qα1

1 − 1

qα1
1


≤

1

qα1
1

+


qα1

1 − 1

qα1
1


= 1,

and we are done.
Assume now that the statement holds true for some ℓ ≥ 1. Then, setting σ(n) =


d|n d , we

obtain the following equalities.

f (qα1
1 · · · qαℓ+1

ℓ+1 ) =


d|q

α1
1 ···q

αℓ+1
ℓ+1

d

P+(d)

=


d|q

α1
1 ···q

αℓ
ℓ

d

P+(d)
+

αℓ+1
i=1


d|q

α1
1 ···q

αℓ
ℓ

dq i
ℓ+1

qℓ+1

= f (qα1
1 · · · qαℓ

ℓ ) + σ(qα1
1 · · · qαℓ

ℓ )

αℓ+1
i=1

q i−1
ℓ+1

= f (qα1
1 · · · qαℓ

ℓ ) + σ(qα1
1 · · · qαℓ

ℓ )


qαℓ+1
ℓ+1 − 1

qℓ+1 − 1


so that

f (qα1
1 · · · qαℓ+1

ℓ+1 )

qα1
1 · · · qαℓ+1

ℓ+1

=
f (qα1

1 · · · qαℓ

ℓ )

qα1
1 · · · qαℓ

ℓ

1

qαℓ+1
ℓ+1

+
σ(qα1

1 · · · qαℓ

ℓ )

qα1
1 · · · qαℓ

ℓ

1

(qℓ+1 − 1)

qαℓ+1
ℓ+1 − 1

qαℓ+1
ℓ+1

.

First, by the induction hypothesis, we have

f (qα1
1 · · · qαℓ

ℓ )

qα1
1 · · · qαℓ

ℓ

≤ 1.

Second, since σ(n) is multiplicative, Lemma 5.1 yields

σ(qα1
1 · · · qαℓ

ℓ )

qα1
1 · · · qαℓ

ℓ

=
σ(qα1

1 )

qα1
1

· · ·
σ(qαℓ

ℓ )

qαℓ

ℓ

≤

ℓ
i=1


1 +

1
qi − 1



≤

ℓ
i=1


1 +

1
pi − 1


≤ pℓ+1 − 1
≤ qℓ+1 − 1.

Thus, we obtain

f (qα1
1 · · · qαℓ+1

ℓ+1 )

qα1
1 · · · qαℓ+1

ℓ+1

≤
1

qαℓ+1
ℓ+1

+
qαℓ+1
ℓ+1 − 1

qαℓ+1
ℓ+1

= 1,

which completes the proof. �
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As an immediate corollary of Proposition 5.2, we now prove Theorem 2.2.

Proof of Theorem 2.2. Let G be a finite Abelian group of rank r and exponent n. Then, by
Theorem 2.1 and Proposition 5.2, one has

t(G) ≤ cr


d|n


d

P+(d)
νP+(d)(d)

− 1


+ cr (n − 1) + 1

≤ cr


d|n


d

P+(d)
− 1


+ cr (n − 1) + 1

≤ 2cr (n − 1) + 1. �

6. A few concluding remarks

As previously stated, the exact value of t(G) is currently known for cyclic groups and
elementary 2-groups only. In this context, the special case of finite Abelian groups of rank two
is of particular interest, and the following conjecture appears to be inviting.

Conjecture 1. For all integers m, n ∈ N∗ such that m | n, one has

t(Cm ⊕ Cn) = 2m + n − 2.

If true, the statement of Conjecture 1 would nicely extend the theorem of Kleitman and Lemke.
In view of equality (3), this conjecture readily holds true for all groups G ≃ C pα ⊕ C pα , where
p ∈ P and α ∈ N∗. Moreover, note that t(Cm ⊕ Cn) ≥ 2m + n − 2 easily follows from (1).

Even though far less is known on the exact value of η(G) for finite Abelian groups of higher
rank, it would be worth knowing how close it actually is to t(G) in the general case. A first step in
this direction is the following lemma, which gives a simple property shared by all finite Abelian
groups for which t(G) = η(G) holds.

Lemma 6.1. Let G be a finite Abelian group such that t(G) = η(G). Then for every subgroup
H of G, one has η(H) ≤ η(G).

Proof. Let G be as in the statement of the lemma, and let H be a subgroup of G. By definition,
the inequality t(H) ≤ t(G) holds. Therefore,

η(H) ≤ t(H) ≤ t(G) = η(G),

and the required result is proved. �

However, it turns out that the above property is restrictive enough to guarantee that for every
r ≥ 4, there exists a finite Abelian group G of rank r for which t(G) > η(G). The proof of
this fact actually relies on the following key invariant in zero-sum combinatorics. Given a finite
Abelian group G, let D(G) denote the smallest integer t ∈ N∗ such that every sequence S over G
of length |S| ≥ t contains a non-empty zero-sum subsequence. The number D(G) is called the
Davenport constant of G, and we refer to [10,9] for background and connections with algebraic
number theory.

In what follows, we will need a classical theorem, independently proved in the late sixties by
Kruyswijk [18] and Olson [16], stating that

D(C pα1 ⊕ · · · ⊕ C pαr ) =

r
i=1


pαi − 1


+ 1 (4)

for all primes p and positive integers α1, . . . , αr . Our result now is the following.
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Proposition 6.2. For every integer r ≥ 4, there exists a finite Abelian group G of rank r for
which t(G) > η(G).

Proof. Let r ≥ 4 be an integer. It is an easy exercise to prove there is an integer α ≥ 2 such that

ln(2r − 1)

ln 3
≤ α ≤

ln(2r
− r)

ln 3
.

Now, let us consider

G = Cr−1
3 ⊕ C3α and H = Cr

3 .

Since G is a finite Abelian 3-group, it follows from (4) that

D(G) = 2(r − 1) + 3α
≤ 2 exp(G) − 1,

so that [17, Theorem 1.2] yields

η(G) ≤ D(G) + exp(G) − 1 = 2r + 2.3α
− 3.

On the other hand, we deduce from (2) that

η(H) ≥ (2r
− 1)(3 − 1) + 1 = 2r+1

− 1.

Therefore, H is a subgroup of G such that η(H) > η(G), and the desired result follows from
Lemma 6.1. �

It would certainly be interesting to know whether the equality t(G) = η(G) holds for all finite
Abelian groups of rank three. In another direction, we would also like to address the following
conjecture.

Conjecture 2. For all integers r, n ∈ N∗, one has t(Cr
n) = η(Cr

n).

It can readily be seen that Conjecture 2 holds whenever G is an elementary p-group, since all
non-zero elements of G have same order in this case. In addition, our Corollary 3.6 already gives
a “nearly optimal” answer when G is of the form Cr

n , with n a prime power.

Acknowledgments

This work was started at IPAM in Los Angeles. Thus, I would like to warmly thank its staff, as
well as the organizers of the program Combinatorics: Methods and Applications in Mathematics
and Computer Science, held in Fall 2009, for all their hospitality and for providing an excellent
atmosphere for research. I would also like to thank W. Schmid and the referees for helpful
comments on an earlier version of this paper.

References

[1] N. Alon, M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15 (1995) 301–309.
[2] F. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2 (1989) 467–472.
[3] T. Denley, On a result of Lemke and Kleitman, Combin. Probab. Comput. 6 (1997) 39–43.
[4] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, L. Rackham, Zero-sum problems in finite Abelian groups and

affine caps, Q. J. Math. 58 (2007) 159–186.
[5] S. Elledge, G.H. Hurlbert, An application of graph pebbling to zero-sum sequences in Abelian groups, Integers 5

(2005) #A17.
[6] W. Gao, A. Geroldinger, Zero-sum problems in finite Abelian groups: a survey, Expo. Math. 24 (2006) 337–369.



B. Girard / Advances in Mathematics 231 (2012) 1843–1857 1857

[7] W. Gao, Q.H. Hou, W.A. Schmid, R. Thangadurai, On short zero-sum subsequences II, Integers 7 (2007) #A21.
[8] A. Geroldinger, On a conjecture of Kleitman and Lemke, J. Number Theory 44 (1993) 60–65.
[9] A. Geroldinger, Additive group theory and non-unique factorizations, in: A. Geroldinger, I. Ruzsa (Eds.),

Combinatorial Number Theory and Additive Group Theory, in: Advanced Courses in Mathematics, CRM
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