Yale University

EliScholar - A Digital Platform for Scholarly Publishing at Yale

Public Health Theses School of Public Health

January 2014

Predictors Of Patterns In Pediatric Pneumococcal
Vaccine Uptake In Connecticut, 2000-2009

Aimee Marie Mead

Yale University, mead.aimee@gmail.com

Follow this and additional works at: http://elischolar.libraryyale.edu/ysphtdl

Recommended Citation

Mead, Aimee Marie, "Predictors Of Patterns In Pediatric Pneumococcal Vaccine Uptake In Connecticut, 2000-2009" (2014). Public
Health Theses. 1193.
http://elischolar.libraryyale.edu/ysphtdl/1193

This Open Access Thesis is brought to you for free and open access by the School of Public Health at EliScholar — A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Public Health Theses by an authorized administrator of EliScholar — A Digital Platform for

Scholarly Publishing at Yale. For more information, please contact elischolar@yale.edu.


http://elischolar.library.yale.edu?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ysphtdl?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ysph?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ysphtdl?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://elischolar.library.yale.edu/ysphtdl/1193?utm_source=elischolar.library.yale.edu%2Fysphtdl%2F1193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Predictors of Patterns in Pediatric Pneumococcal Vaccine Uptake in Connecticut, 2000-
2009

Aimee M. Mead
Yale School of Public Health
Epidemiology of Microbial Diseases
M.P.H. Candidate
May 2, 2014



Abstract

Introduction:

Streptococcus pneumoniae is an important human pathogen with more than 92 identified
serotypes of varying invasiveness. Asymptomatic colonization of the nasopharynx can later
cause diseases such as sinusitis, AOM, or IPD. Children under age five are the major
reservoirs of infection. Pediatric conjugate vaccines effectively reduce vaccine-type
carriage and disease. Vaccinating children can have indirect effects on adults.

Materials and Methods:

This paper used CIRTS to describe patterns of three- and four-dose PCV uptake throughout
Connecticut in 2000 to 2009 birth cohorts. Spatial cluster analysis was used to detect any
clusters with higher than expected proportions of unvaccinated children. Log-binomial
regression models were used to assess unadjusted and adjusted associations between
variables from the 2000 U.S. Census and proportions of unvaccinated children in ZCTAs.
These factors describe the racial and socioeconomic composition, age distribution,
population density, and housing characteristics of ZCTAs.

Results:

There were 315,628 children across 266 ZCTAs in the registry. Across all cohorts and
ZCTAs, 91 percent of children received three doses of PCV and 74 percent received all four
doses. Vaccination rates varied across cohorts and by poverty level. Cluster analysis
revealed several significant clusters. All selected community-level variables were
independently associated with a high proportion of unvaccinated children in ZCTAs. All but
three variables comprise a final multivariate model.

Discussion:

Connecticut enjoys a robust uptake of both three and four doses of PCV. Areas near Groton,
New Haven, and parts of Windham, Tolland, Hartford, and New London counties would
benefit from increased vaccine delivery efforts. Socioeconomic variables were consistently
related to risk of ZCTAs having a high proportion of unvaccinated children.

Abbreviations Used:

AIC= Akaike information criterion

APIC=Advisory Committee on Immunization Practices
AOM=acute otitis media

CDC=Centers for Disease Control and Prevention
CIRTS=Connecticut Immunization Registry and Tracking System
HMO=health maintenance organization
[AP=Immunization Action Plan

[PD=invasive pneumococcal disease
NP=nasopharyngeal

PCP=primary care physician

PCV=pneumococcal conjugate vaccine
PCV7=heptavalent pneumococcal vaccine



PCV13=13-valent pneumococcal conjugate vaccine
PPV23=23-valent plain polysaccharide vaccine
RR=relative risk

CHIP=Children’s Health Insurance Program
UFFS=unassigned fee-for-service

VFC=Vaccines for Children

VT=vaccine type

ZCTA=zip code tabulation area
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Introduction
Streptococcus pneumoniae: Introduction and Epidemiology

Streptococcus pneumoniae is a lancet-shaped, Gram-positive bacterium with more
than 92 identified serotypes. Pneumococci are part of the normal flora found in the
nasopharynx, although rates of asymptomatic carriage vary with environment, presence of
upper respiratory tract infections, and age. In 2000, an estimated 14.5 million children
under age five worldwide were affected by severe pneumococcal disease, resulting in about
11 percent of deaths in this age group (Camilli et al., 2013). In 2011, in the United States,
more than 36,000 cases of invasive pneumococcal disease (IPD) were diagnosed; more
than 90 percent of these cases were in children younger than age two and in adults over
age 50 (Drijkoningen & Rohde, 2014). Children under five years old are the major
reservoirs of infection. The rate of colonization with the bacteria is usually quite high in the
first years of life. Transmission of S. pneumoniae occurs through direct person-to-person
contact by way of respiratory droplets or via autoinoculation in carriers.

Colonization with S. pneumoniae is a necessary precursor to disease development.
Serotype invasiveness and host susceptibility (such as age, nutritional and immune status,
recent infections, and co-morbidities) are important factors in disease incidence following
exposure. Factors found to be associated with carriage include young age, current upper
respiratory tract infection, child-care attendance, having younger siblings, lower income,
and living in communities with crowded households (Hsu et al,, 2013). Crowding and
season, particularly winter and spring, also play roles in transmission of the bacteria to

susceptible people.



S. pneumoniae causes a range of ailments if it moves from its ecological niche in the
nasopharynx (NP) to other sites in the body, such as the sinuses, middle ear cavity, lungs,
or bloodstream (Camilli et al., 2013). In these sites, it can manifest as sinusitis, acute otitis
media (AOM), or IPD, resulting in pneumonia, bacteremia, and meningitis. IPD is a
nationally notifiable disease to the Centers for Disease Control and Prevention via the
National Notifiable Diseases Surveillance System or Active Bacterial Core Surveillance (as
in Connecticut).

Not all pneumococci are encapsulated, but the antiphagocytic, complex
polysaccharide capsule surrounding the pneumococci is the major virulence factor and the
basis for serotype classification. Serotype distribution differs by age group and geography,
but the more heavily encapsulated serotypes are carried more frequently (Steens,
Bergsaker, Aaberge, Ronning, & Verstrheim, 2013; Weinberger, Malley, & Lipsitch 2011).
Type-specific antibody to the capsule is protective and some antibodies may cross-react
with additional serotypes. Antibodies and the complement system opsonize the bacterium
and mark it for phagocytosis and clearance. Serotypes vary in their capacity to evade
complement deposition (Weinberger et al., 2011). For example, serotype 19F has an
increased antibody requirement for clearance, likely due to its thick polysaccharide capsule

and increased resistance to C3 accumulation (Grant et al., 2013).

Pneumococcal Vaccines
In the past, young children have experienced a significant burden of pneumococcal
disease prior to routine pediatric vaccination. The first pneumococcal vaccine targeting the

polysaccharide capsule was licensed in the United States in 1977, but was replaced by a 23-



valent polysaccharide vaccine (PPV23) in 1983. PPSV23 is currently recommended for
adults over 65 years old and for children over 2 years old with certain
immunocompromising conditions. The first pneumococcal conjugate vaccine (PCV) was
introduced in 2000. The vaccine works by conjugating the capsular polysaccharide to
proteins, resulting in antigens that are T-cell dependent immunogens. Children’s immune
systems are then able to develop an effective response (Shapiro, 2012). In the United
States, the conjugate vaccine is given in four doses at months two, four, and six, and
between months 12 and 15.

PPSV23 has been reported to be reasonably effective in preventing IPD in adults but
does not protect adults from noninvasive S. pneumonia infections such as non-bacteremic
pneumonia. Additionally, the vaccine is not effective in children under two years old, as
polysaccharide antigens induce T-cell independent immunity, resulting in low antibody
levels and inadequate immunologic memory (Kellner, Church, MacDonald, Tyrrell, &
Scheifele, 2005). It has been shown, however, to significantly reduce mortality due to
pneumonia in adults over age 65 (Soneji & Metlay, 2011).

After vaccination with a conjugate vaccine, serotype prevalence in the NP is in flux
for a few years before it reaches a steady state. Vaccine serotypes are less likely to colonize
the NP and transmission is therefore interrupted (Shapiro, 2012; Weinberger et al., 2011).
The heptavalent PCV (PCV7) contained serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F: the
seven most common causes of disease in children at the time of introduction (Camilli et al.,
2013). By 2005, uptake of PCV7 reached approximately 83 percent for a three-dose series
(Link-Gelles, Taylor, & Moore, 2013). In 2010, six additional serotypes were added to the

collection in PCV7 to make a 13-valent pneumococcal conjugate vaccine (PCV13). Schuck-
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Paim and colleagues (2013) explain PCV13 coverage rose rapidly, due in part to existing
procedures established for PCV7. They estimate by March 2012, 82 percent of children
aged six to 23 months were fully immunized with PCV13 and about 40 percent of toddlers
15 to 59 months old received a catch-up dose by March 2013. Therefore, most benefits
from the vaccine for children under five years old will be achieved within four years of

introduction, including coverage sufficient to achieve and maintain herd immunity.

Vaccine Effects

Worldwide, PCV7 is highly effective at reducing vaccine-type (VT) carriage and IPD
in places where it has been included in infant and childhood immunization programs.
However, effectiveness of PCV7 varied by serotype, ranging from 87 percent against 19F to
100 percent against 9V (Grant et al., 2013; Nurhonen and Auranen, 2014). Eight years after
the introduction of PCV7, about 60 percent of invasive disease in children under age five
was caused by non-vaccine types 1, 3, 5, 64, 7F, and 19A. Introducing PCV7 opened an
ecological niche to be filled by serotypes not included in the vaccine. The non-vaccine
serotypes that fill this void, such as 194, depend on biological properties of the strain (that
is, virulence) and antibiotic use (Weinberger et al., 2011). Additionally, community-level
variables can impact carriage rates differently (Hsu et al., 2013). VT 19F continues to
colonize and occasionally cause invasive disease in Navajo and Apache populations in the
United States (Grant et al., 2013). The introduction of PCV7 in 2000 resulted in diminished
cases of pediatric AOM and lower respiratory tract infections, as well as a net decline in [PD
in children under five years old except in certain populations in Spain, France, and Alaska

(Steens et al,, 2013; Weinberger et al., 2011). The decline in IPD observed in vaccinated
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children was similarly detected in unvaccinated people of all ages. However, because non-
PCV7 serotypes replaced PCV7 types as nasopharyngeal colonizers, there was little net
change in bacterial carriage prevalence (Weinberger et al.,, 2011). Antibodies against 19F
showed little cross-protection against 194, and this serotype caused a majority of the
increase in disease caused by non-PCV7 serotypes (Grant et al., 2013; Shapiro, 2012).
Several studies have also documented heterogeneity in the indirect benefits of vaccinating
children, describing no net benefit as a consequence of serotype replacement versus
modest replacement (Weinberger et al., 2011).

PCV13 has been shown to generate levels of antibodies commensurate to those
induced by PCV7. In a predictive model based on active surveillance data, Link-Gelles et al.
(2013) estimate PCV13 will prevent 167,000 to 170,000 IPD cases in the decade from 2010
to 2020. Rates of invasive disease in children under five years old will decrease from 21.9
to 9.3 cases per 100,000 population. Cross-reaction between serotypes 6A and 6C has been
demonstrated in vitro, and use of PCV13 resulted in a decrease in serotype 6C in both
targeted and non-targeted age groups in Norway (Camilli et al., 2013; Steens et al., 2013).
PCV13 is likely to result in additional serotype replacement in the same pattern of carriage
and disease replacement as resulted from PCV7 (Steens et al., 2013; Weinberger et al.,
2011). For example, incidence of non-PCV13 types, especially 23B and 154, increased in
Norway after the introduction of PCV13 (Steens et al.,, 2013). Nurhonen and Auranen
(2014) predict PCV13 can reduce IPD cases in Finnish children under five years old by 75
percent, but that serotype replacement on the population level is likely to temper this
reduction to 20 to 40 percent. The authors describe the currently available vaccines as sub-

optimal and introduce an algorithm to discover optimal serotype compositions for future
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pneumococcal vaccinations, depending on the age group of interest (Nurhonen & Auranen,

2014).

This Paper

Clearly, PCV uptake is not only important in protecting children from disease, but
can impact adults as well. Immunization registries record pediatric vaccinations, which
help ensure high coverage, decrease over-immunization, and provide data regarding
vaccine safety (Linkins et al.,, 2006). Unfortunately, despite available resources in the
United States for registry development, only about 48 percent of children were enrolled in
one in 2004. Funding for registries can be supplied by federal, state, or local governments,
private foundations, or managed care organizations. Registries can include mandatory
provider reporting or may need explicit parental consent for participation (opt-in). Linkins
and colleagues (2006) found most parents in a sample from Colorado, Massachusetts,
Missouri, and Washington were unaware of immunization registries in their areas. Parents
of vaccinated children were more likely than parents of exempt children to support laws
authorizing registries and to support mandatory physician reporting to registries.
Therefore, parental support for registries may increase as awareness of their existence
increases, in addition to improved knowledge about vaccine preventable diseases, the risks
of refusing vaccination, and the safety and utility of childhood vaccines. Registries can be
especially useful given the increasingly complex pediatric vaccination recommendations.
Additionally, widespread registry participation will improve the usefulness of the registry
and help ensure more complete and accurate information for both the individual and the

population.
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The goal of this paper is to use the Connecticut Immunization Registry and Tracking
System (CIRTS) to describe patterns of PCV uptake throughout the state, by zip code, in
2000 to 2009 birth cohorts. The paper assesses which, if any, community-level factors
collected in the 2000 United States Census are associated with lower vaccine uptake and
how they may describe the patterns in uptake. Spatial cluster analysis identifies parts of
Connecticut with higher proportions of unvaccinated children, which provides areas for
continued research and possible future interventions. Community-level variables
hypothesized to be associated with vaccine coverage are based on previously published
reports (Omer et al., 2008). These include variables that describe the racial and
socioeconomic composition, age distribution, population density, and housing

characteristics of Connecticut zip code tabulation areas (ZCTA).

Materials

Vaccination information come from previously collected CIRTS surveillance data
and include the total number of Connecticut children in the registry, the total number
vaccinated with three doses of PCV, and the total number vaccinated with four doses of
PCV, all aggregated by zip code and birth cohort (2000 to 2009). CIRTS is a statewide
pediatric immunization registry introduced in 1998. It helps keep children’s vaccinations
up-to-date by making such records available to healthcare providers and parents. The
registry is an integral part of the Connecticut Immunization Action Plan (IAP). The Centers
for Disease Control and Prevention (CDC) funds the IAP to increase and maintain
immunization rates of preschool children in an effort to reduce the burden of disease and

the spread of vaccine-preventable diseases. The IAP program is maintained by 11 sites in
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areas with the highest risk of low immunization rates: Bridgeport, Danbury, health
departments of Hartford, New Britain, New Haven, Norwalk, Stamford, Waterbury, and
West Haven, and health districts of Naugatuck Valley and Torrington Area (Connecticut
Department of Health, 2013).

In addition to tracking immunization rates through CIRTS, the IAP provides
education to the pubic regarding the importance of vaccination and conducts assessments
in a variety of locations to improve vaccine delivery. Connecticut children born after
January 1, 1998, are included in CIRTS via their birth certificate information, although
parents can opt-out of the registry. The Connecticut Department of Health sends monthly
compliance reports to pediatric practices to collect immunization histories of children who
have turned seven to 19 months old, key ages at which immunization status should be
confirmed. Connecticut law protects confidentiality of all records.

Community-level demographic information was drawn from the U.S. Census
Bureau’s American FactFinder, which makes information from various censuses and
surveys available to the public. Variables were drawn from several matrices in summary
files one and three of the 2000 U.S. Census, and, as described above, were chosen for this
study based on previously published reports (Omer, 2008). These variables are: (1)
average household size (total households, including family and non-family households); (2)
family size (total households; related by birth, marriage, etc.); (3) total population (both
sexes); (4) total population under five years old (both sexes); (5) percent of population
under five years old (both sexes); (6) percent of population identified as black (alone or in
combination with other races); (7) income per capita (U.S. dollars, in 1999); (8) median

household income (U.S. dollars, in 1999); and (9) percent of the population below the U.S.
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Census poverty threshold (all individuals for whom status is determined; $17,029 for a
family of four in 1999). Percent below the poverty threshold was also made into a four-
level categorical variable (0.0-4.9 percent, 5.0-9.9 percent, 10.0-19.9 percent, and greater
than or equal to 20.0 percent) based on published work by Kreiger, Chen, Waterman,
Rehkopf, and Subramanian (2003, 2005) on using a priori cut-points for area-based
socioeconomic measures in studying public health disparities. Area information (in square
miles) was also obtained and was used to calculate population density variables for the
total population and population less than five years old.

Because CIRTS data is aggregated at the zip code level, it was necessary to obtain
U.S. Census information at the ZCTA level. ZCTAs are statistical entities used by the U.S.
Census Bureau to tabulate summary statistics. They were first used in the 2000 U.S. Census
and are comprised of census blocks. ZCTAs may represent a few city blocks or many square
miles, as they reflect the size of the census blocks in the area. All addresses (residential and
non-residential) in each census block were examined for United States Postal Service zip
codes (available in the U.S. Census Bureau’s MAF/TIGER database), and the most
frequently occurring zip code was assigned to the block. Blocks were then aggregated by
zip code to create larger areas. Blocks without a single most frequently occurring zip code
were assigned to the ZCTA with the longest shared boundary. Individual businesses or
organizations with their own zip codes may not have a ZCTA, and zip codes representing
very few addresses are not assigned a ZCTA. In most cases, the ZCTA code matches the zip
code for an area. CIRTS data sets were merged with FactFinder sets and restricted to those

observations with census-defined ZCTAs.
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Methods

Vaccination rates for three and four doses of PCV were calculated from the CIRTS
data. Univariate analysis was conducted on the demographic and geographic variables to
better understand their distributions across Connecticut.

SaTScan version 9.2 was used for spatial cluster detection, again, for three and four
doses of PCV. The analysis was purely spatial and used a Bernoulli model to scan
Connecticut ZCTAs for high rates of unvaccinated children, based on ZCTA centroids and a
circular window shape with a maximum spatial cluster size of 50 percent of the population
at risk. SaTScan handles sparse data well due to its continuously moving window design
(Kulldorff & Nagarwalla, 1995). The program runs a number of simulations to generate
random replications of the data set under the null hypothesis of complete spatial
randomness. If the maximum likelihood ratio calculated for the most likely cluster in the
data set is high compared to the maximum likelihood ratio calculated for the most likely
cluster in the randomly generated data sets, there is evidence against the null and for the
presence of clusters. P-values were calculated with the default option, which is a
combination of standard and sequential Monte Carlo methods and the Gumbel
approximation, and included 999 Monte Carlo replications. P-values are adjusted for
multiple testing. No geographic overlap was chosen for reporting of secondary clusters,
which is the default setting, but more importantly, the most restrictive option. Setting no
restrictions on secondary clusters would result in reporting the most likely cluster for each
grid point, including clusters with p=1.0. Clusters were also based on the Gini index, which

is a measure of spatial dispersion. SaTScan selects the group of non-overlapping clusters
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that maximizes this index, engendering large differences in rates between the cluster and
non-cluster areas.

SAS version 9.3 (SAS Institute, Inc., Cary, N.C.) was used for all statistical analyses
and mapping. Bivariate analysis examined the unadjusted associations between the study
variables and the proportion of unvaccinated children in the registry across ZCTAs. These
analyses were carried out for both three and four doses of PCV. This analysis was
accomplished using log-binomial regression, which is an appropriate method to estimate
relative risk (RR) when the outcome of a cohort study is common. In such scenarios, the
odds ratios become increasing different from relative risks and tend to overestimate the
true effect of an exposure variable on the risk of the outcome (McNutt, Wu, Xue, & Hafner,
2003; Robbins, Chao & Fonseca, 2002). Three variables were log-transformed because they
were highly positively skewed (population under five years old, population density, and
population density under five years old). Analyses were also restricted to 2006 to 2009
birth cohorts, as vaccination uptake rates were relatively stable in these cohorts, as
compared with the 2000 to 2005 cohorts.

Multivariate analysis on the restricted data sets was conducted to understand the
adjusted associations between study variables and the proportion of unvaccinated children
across ZCTAs. These analyses were again performed with both the three- and four-PCV
dose data sets. The same log-transformed variables were included. Backwards selection
sequentially dropped the least-significant predictor variables (p-value greater than 0.05),

and Akaike information criterion (AIC) was used to determine the best fit.
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Results
Demographic Information

Table 1 describes the median and range of the selected demographic and geographic
variables. The variability in size and population represented inherent in ZCTAs as entities

for the U.S. Census is apparent, compared to, for example, census tracts.

Table 1. Selected demographic and geographic variables of Connecticut ZCTAs (n=266).

Variable Median Range

Household Size 2.57 1.54-3.21

Family Size 3.05 2.38-4.00

Total Population 8,696.00 42.00 - 60,153.00
Population Under 5 Years Old 553.00 2.00 - 4,086.00
Percent of Population Under 5 Years Old 6.30 0.20- 23.50

Percent Black Residents 1.53 0.00-90.19

Area® 20.11 0.01-112.55
Population Densityb 458.84 22.91-9,449.42
Population Density Under 5 Years Old® 27.43 1.03-994.31
Percent Poverty 4.10 0.00 - 44.80

Income per Capitad 27,750.00 3,042.00-97,111.00
Median Household Income® 68,901.00 18,760.00 - 175,083.00

®Square miles.

®People per square mile.

“Children under 5 years old per square mile.

4U.S. dollars, in 1999.

For instance, total population of ZCTAs in 2000 ranged from 42 to 60,153 people. The
median area of ZCTAs was approximately 20 square miles, although it ranged from 0.01 to
more than 112 square miles. Median population density in ZCTAs was approximately 460

people per square mile. Population under five years old and population density of this

group was similarly variable. Discrepancies in the racial and socioeconomic composition of
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ZCTAs are also clear: the median percent of black residents ranged from zero to more than
90 percent and percent of residents below the poverty threshold was as low as zero and as
high as 45 percent in some ZCTAs.

Figure 1 (panels a through d) illustrates a few of these demographic variables. Panel

(a) shows population density across Connecticut ZCTAs. As expected the most densely
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Figure 1. Selected demographic variables in Connecticut ZCTAs (n=266): (a) population
density; (b) black residents as percent of total population; (c) percent of ZCTA residents
below the U.S. Census poverty threshold, determined in 1999; (d) ZCTA poverty level [Level

1: 0.0-4.9%; Level 2: 5.0-9.9%; Level 3: 10.0-19.9%; Level 4: 220.0%)].

populated areas are along the Atlantic coast, parts of the New York metropolitan area, and
around Hartford, the capital. The state is generally more densely populated west of the
Connecticut River. Population is less dense in the northeastern and northwestern corners
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of the state. The highest percentages of black residents (see panel [b]) are concentrated in
large, densely populated urban areas like Hartford, Bridgeport, New Haven, Stamford, and
Groton and New London. In general, these larger cities also have higher percentages of the
population below the U.S. Census poverty threshold (see panel [c]). Poverty levels are also
higher in some of the less densely populated parts of the northeastern, northwestern, and

southeastern corners (see panels [c] and [d]).

PCV Uptake

There were 315,628 children across 266 Connecticut ZCTAs in the CIRTS registry in
the 2000 to 2009 birth cohorts. Across all cohorts and ZCTAs combined, 90.6 percent of
children in the registry received three doses of PCV, and 74.3 percent received all four
recommended doses (data not shown). Figure 2 shows the total percent of children
vaccinated with three (blue line) and four doses (green line) of PCV across all birth cohorts.
The 2000 cohort started with roughly 80 percent uptake of the initial three vaccine doses
and steadily increased through 2009, as compared to the 51 percent vaccination rate for
four doses in the 2000 cohort. There was some variability in uptake of four doses from the
2000 to 2003 cohorts; uptake did not exceed 80 percent until the 2004 cohort. Figure 3
shows the same data but graphed by poverty level. Panel (a) shows the trends in uptake of
three doses of PCV. ZCTAs with the lowest poverty level (0.0-4.9 percent) maintained the
highest vaccination rates across birth cohorts, while those ZCTAs with at least 20 percent
of residents below the poverty threshold increased uptake of three doses slowly but had
the second highest vaccination rates in the 2009 cohort. Panel (b) illustrates trends with

four doses of PCV. ZCTAs with the lowest poverty levels were again always more highly
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Figure 2. Total percent of Connecticut children vaccinated with three and four
doses of PCV, 2000 to 2009 birth cohorts.

vaccinated than the other levels. All ZCTAs experienced the variability in vaccination rates
in the 2000 to 2003 cohorts, but rates were generally higher in ZCTAs with lower poverty
levels. It is clear from both panels (a and b) that vaccination rates were generally stable
beginning with the 2006 cohort.

Figure 4 illustrates these more stable trends across ZCTAs. The majority of ZCTAs
had at least 92 percent of children vaccinated with three doses of PCV (panel [a]). West of
the Connecticut River is a more highly vaccinated area (and more densely populated in
general). Large parts of New London, Windam, Tolland, and Litchfield counties and areas
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Figure 3. Total percent of Connecticut children vaccinated with three and four doses of PCV,
by ZCTA poverty level, 2000 to 2009 birth cohorts: (a) three doses of PCV; (b) four doses of
PCV. [Poverty levels are as follows: Level 1: 0.0-4.9%; Level 2: 5.0-9.9%; Level 3: 10.0-
19.9%; Level 4: 220.0%.]

near some urban areas (East Haven, Hartford, Fairfield, for example) stand out with
between zero and 91 percent of children vaccinated. Panel (b) makes clear which towns in
these counties had less than 80 percent of children vaccinated with three doses in the 2006
to 2009 cohorts. The majority of ZCTAs had vaccinated had least 83 percent of children
with four doses (panel [c]). Very few had vaccination rates above 94 percent. The same
northwestern, northeastern, and southeastern corners again stand out with less than 80

percent of children vaccinated (panel [d]).

Spatial Cluster Analysis
The results of the spatial cluster analysis are shown in Figure 5. Three clusters of

ZCTAs are significant at the p<0.0001 level, indicating significantly higher proportions of
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Figure 4. PCV vaccination rates and uptake levels in Connecticut ZCTAs (n=266), 2006 to
2009 birth cohorts: (a) percent of children vaccinated with three doses of PCV; (b) uptake
levels of three doses of PCV [Level 1: <80%; Level 2: 81-90%; Level 3: 291%]; (c) percent of
children vaccinated with four doses of PCV; (d) uptake levels of four doses of PCV [Level 1: <
80%; Level 2: 81-90%; Level 3: 291%].

unvaccinated children than would be expected (panel [a]). The most likely cluster (red) is
near Groton. The second cluster is comprised of almost entire portions of Windham,
Tolland, New London, Hartford, and New Haven counties. A third cluster is found around
New Haven and Branford towns. Panel (b) presents the seven significant clusters of ZCTAs
with higher proportions of children not vaccinated with four doses of PCV than expected.

The most likely cluster is again around Groton. Parts of Windham, Tolland, and New

London counties are again significant clusters. ZCTAs near Stamford, Bridgeport, and New
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Figure 5. Significant spatial clusters of unvaccinated Connecticut children: (a) three doses
of PCV [clusters significant at p<0.0001]; (b) four doses of PCV [clusters significant at
p<0.0005].

Haven are clusters, as is a ZCTA near the town of Sharon in the northwestern corner of the

state.

Associations between Study Variables and ZCTA Unvaccinated Status

Tables 2 and 3 present the results of the log-binomial regression on the proportion
of unvaccinated children (three and four doses, respectively). All study variables were
independently associated with the proportion of unvaccinated children in ZCTAs and
statistically significant at p<0.05. Household and family size, as well as income per capita
and median household income, were protective against being unvaccinated—for example,
the risk of being unvaccinated with three doses was about 0.38 times more likely (about 60
percent less likely) when the family size increased by one person. Similarly, the unadjusted
relative risk for median household income was 0.663 for each $50,000 increase in

household income. Total population had the opposite effect: for every 100,000 person
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increase in total population, the risk of being unvaccinated increased by 1.255. Higher
poverty levels also increased the risk of

Table 2. Unadjusted associations between study variables and the proportion of
unvaccinated children in ZCTAs, three doses of PCV.

Parameter 95% Confidence Relative 95% Confidence

Variable Estimate® Interval Risk® Interval
Household Size -0.943* -1.045, -0.840 0.390* 0.352,0.432
Family Size 0.966* -1.114, 0.817 0.381* 0.328,0.442
Total Population 0.227** 0.087, 0.367 1.255%* 1.091, 1.443
Population Under 5 Years 0.054* 0.027,0.082 1.056* 1.027, 1.085
Oldt
Percent of Population 0.092* 0.075, 0.110 1.097* 1.078, 1.116
Under 5 Years Old
Percent Black Residents 0.005* 0.004, 0.006 1.005* 1.004, 1.006
Area® 0.006* 0.004, 0.007 1.006* 1.004, 1.007
Population Density“t -0.041* -0.059, -0.023 0.960* 0.943, 0.977
Population Density Under -0.026*** -0.043, -0.009 0.975%** 0.958, 0.991
5 Years Old®t
Percent Poverty 0.007* 0.005, 0.010 1.007* 1.005, 1.010
Poverty Level

0.0-4.9% — —, — Reference —, —

5.0-9.9% 0.404* 0.350, 0.458 2.243* 2.013, 2.499

10.0-19.9% 0.253* 0.192,0.314 3.359* 2.856, 3.950

>20% 0.251* 0.189, 0.312 5.030* 4.052,6.244
Income per Capita® -0.659* -0.764, -0.553 0.518* 0.466, 0.575
Median Household -0.411* -0.459, -0.363 0.663* 0.632, 0.695

Income®

®P-values: *p < 0.0001; **p = 0.0015; ***p = 0.0025.
bSquare miles.

‘People per square mile.

dChildren under 5 years old per square mile.

€U.S. dollars, in 1999.

tLog-transformed variable.



Table 3. Unadjusted associations between study variables and the proportion of
unvaccinated children in ZCTAs, four doses of PCV.

Parameter 95% Confidence Relative 95% Confidence

Variable Estimate Interval® Risk Interval®
Household Size -0.375* -0.446, -0.304 0.687* 0.640, 0.738
Family Size 0.163** 0.068, 0.258 1.177** 1.071, 1.294
Total Population 0.359* 0.264, 0.454 1.432* 1.302, 1.575
Population Under 5 Years 0.087* 0.068, 0.107 1.091* 1.070, 1.112
Oldt
Percent of Population 0.117* 0.105, 0.129 1.124* 1.111,1.137
Under 5 Years Old
Percent Black Residents 0.009* 0.008, 0.010 1.009* 1.008, 1.010
Area® -0.003* -0.004, -0.002 0.997* 0.997, 0.998
Population Density“t 0.075* 0.062, 0.088 1.078* 1.065, 1.091
Population Density Under ~ 0.080* 0.068, 0.092 1.083 1.071, 1.096
5 Years Old“t
Percent Poverty 0.016* 0.014, 0.017 1.016* 1.014, 1.017
Poverty Level

0.0-4.9% — —, — Reference —, —

5.0-9.9% 0.252* 0.213,0.291 1.656* 1.532,1.790

10.0-19.9% 0.369* 0.328, 0.409 2.130* 1.895, 2.394

>20% 0.435* 0.395, 0.475 2.741* 2.345,3.203
Income per Capita® -0.594%* -0.666, -0.522 0.553* 0.514,0.594
Median Household -0.384* -0.416, -0.351 0.682* 0.660, 0.704

Income®

P-values: *p < 0.0001; **p = 0.0007.

®Square miles.
‘People per square mile.

dChildren under 5 years old per square mile.

U.S. dollars, in 1999.

tLog-transformed variable.
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being unvaccinated. Those ZCTAs with at least 20 percent of residents below the poverty
threshold were more than five times more likely to be unvaccinated with three doses than
those with the lowest poverty.

The RRs, in general, are similar in the four-dose analysis. However, family size had
the opposite effect; that is, being unvaccinated with four doses of PCV is about 1.18 times
more likely when family size increases by one person. Poverty levels still have an effect on
risk of being unvaccinated with four doses, but it is not as large as in the three dose
analysis (5.0-9.9% RR=1.66, 10.0-19.9% RR=2.13, +20.0% RR=2.74).

Results of the multivariate analysis on the association between study variables and
the proportion of unvaccinated children in ZCTAs are presented in Tables 4 and 5 (three
and four doses, respectively), as are the final models resulting from model selection. In
both models, family size, total population, and area variables were removed. In the model
predicting proportion unvaccinated with three doses, household size remains protective
against risk of being vaccinated (adjusted RR=0.201). The percent of the population under
five years old, income per capita, and log-transformed population density have substantial
impacts on the risk of being unvaccinated (adjusted RRs=3.316, 199.554, 6.432,
respectively). Poverty levels are now protective against the risk of being unvaccinated,
after controlling for the other variables in the model (5.0-9.9% RR=0.844, 10.0-19.9%
RR=0.857, +20.0% RR=0.561). Similar results, although somewhat tempered, are seen in

Table 5.
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Table 4. Multivariate regression model of factors associated with the proportion of
unvaccinated children in ZCTAs, three doses of PCV.

Parameter Standard 95% Confidence

Variable Estimate Error Relative Risk Interval®
Household Size -1.605* 0.085 0.201* 0.170, 0.237
Population Under 5 Years Old Tt 0.205* 0.022 1.228* 1.176, 1.282
Percent of Population Under 5 1.199* 0.078 3.316%* 2.845, 3.866
Years Old
Percent Black Residents 0.009* 0.001 1.009* 1.007, 1.011
Population Density“t 5.296* 0.527 199.554* 71.061, 560.394
Population Density Under 5 -5.686* 0.527 0.003* 0.001, 0.010
Years Old’t
Percent Poverty -0.027%* 0.004 0.937* 0.965, 0.982
Poverty Level

0.0-4.9% — —, — Reference —_, —

5.0-9.9% -0.170* 0.041 0.844* 0.778,0.914

10.0-19.9% -0.154** 0.057 0.857* 0.766, 0.958

>20% -0.579* 0.103 0.561* 0.458, 0.686
Income per Capita® 1.860* 0.181 6.423* 4.507,9.152
Median Household Income® -1.826%* 0.113 0.161* 0.129,0.201

®P-values: *p < 0.0001; **p = 0.0068.
®Square miles.

‘People per square mile.

dChildren under 5 years old per square mile.
°U.S. dollars, in 1999.

tLog-transformed variable.

Discussion

This paper described patterns in uptake of three and four doses of PCV in CIRTS
birth cohorts across Connecticut and has attempted to identify selected community-level
variables associated with higher proportions of unvaccinated children in Connecticut

ZCTAs. Although Connecticut is largely a wealthy state, substantial disparities persist



Table 5. Multivariate regression model of factors associated with the proportion of
unvaccinated children in ZCTAs, four doses of PCV.

Parameter Standard 95% Confidence

Variable Estimate Error Relative Risk Interval®
Household Size -0.870%* 0.060 0.419* 0.372,0.471
Total Population 0.581* 0.072 1.788* 1.553, 2.059
Percent of Population Under 5 0.922* 0.059 2.515%* 2.242, 2.820
Years Old
Percent Black Residents 0.009* 0.001 1.009* 1.007, 1.011
Population Density“t 4.283* 0.388 72.486* 33.897, 155.006
Population Density Under 5 -4.473* 0.387 0.011* 0.005, 0.024
Years Old’t
Percent Poverty -0.018* 0.003 0.982* 0.976, 0.988
Poverty Level

0.0-4.9% — — — Reference —, —

5.0-9.9% -0.062%*** 0.031 0.940* 0.885, 0.999

10.0-19.9% 0.092*** 0.042 1.096* 1.010, 1.190

>20% -0.167** 0.075 0.846* 0.731, 0.980
Income per Capita® 1.397* 0.128 4.044* 3.145, 5.200
Median Household Income® -1.144%* 0.079 0.319* 0.273,0.372

®P-values: *p < 0.0001; **p = 0.0259; ***p = 0.0281; ****p = 0.047.
bSquare miles.

‘People per square mile.

dChildren under 5 years old per square mile.

€U.S. dollars, in 1999.

tLog-transformed variable.

across ZCTAs of heterogeneous size and population density, age-structure, and racial and
socioeconomic compositions. Perhaps unsurprisingly, population density is concentrated
near major north-south (I-91) and east-west interstates (I-95) and within the New York

metropolitan area. These areas also have higher percentages of residents living below the
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U.S. Census poverty threshold. Higher poverty levels are found in less densely populated
parts of the northwestern, southeastern, and northeastern corners of the state as well.

Connecticut generally enjoys a robust uptake of both three and four doses of PCV. By
the 2009 birth cohort, almost 95 percent of children in the registry had received three
doses, while 89 percent were fully vaccinated with four doses. However, the percent of
children receiving four doses did not reach 80 percent until the 2004 birth cohort,
illustrating a dramatic increase in uptake compared with the previous cohorts (in which
about 50 to 60 percent were fully vaccinated). A shortage of the vaccine from 2001 to 2003
may partially explain these patterns, a time during which receiving a third dose of PCV
likely took priority over a fourth dose (N. Sharova, personal communication, March 31,
2014). Pockets of the state with fewer than 80 percent of children vaccinated with either
three or four doses of PCV (see Figure 4, panels [b] and [d]) were predominately confirmed
by spatial cluster analysis (Figure 5, both panels).

These significant clusters varied in density from large urban areas to some of the
most sparsely populated ZCTAs, but were consistent in having higher poverty levels. The
ZCTA around Groton was identified as the most likely cluster of a higher proportion of
children unvaccinated with three or four doses of PCV. ZCTAs in the New Haven and
Hartford areas, in addition to Bridgeport and Stamford, were significant clusters and had
higher levels of poverty. Groton, Sharon, and the majority of the eastern part of the state
are not covered by Connecticut’s IAP area.

Poverty levels had a greater effect on uptake of four doses of the vaccine, and there
was a clear gradient across the four levels, especially in the earlier cohorts. Continuous and

categorical variables indicate poverty and socioeconomic status in ZCTAs had similar,
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significant associations with unvaccinated status in bivariate analysis for both three and
four vaccine doses. Increasing poverty was a risk factor for a ZCTA being home to a larger
proportion of unvaccinated children, while increases in income per capita and median
household income were protective. Surprisingly, however, this pattern was not observed
again in multivariate analysis; rather, income per capita became a risk factor, while
increasing poverty and median household income were protective factors. It is not clear
what caused these patterns. Log-transformed total population densities in both
multivariate analyses were associated with considerable increased risk of a ZCTA having a
large proportion of unvaccinated children.

The patterns described above could indicate a deficiency of resources in these areas.
Urban areas with high poverty may have more residents without insurance or who lack
consistent access to preventive care. Less densely populated parts of Connecticut may have
a dearth of primary care physicians or options for fulfilling the pediatric immunization
schedule. Additionally, poorer Connecticut residents are more likely to delay the fourth
vaccination until after 24 months. It is more difficult to encourage families to return for a
fourth PCV dose after children have turned two years old, especially because they should
have completed almost all other pediatric vaccinations by that point, or would not need
additional doses of other vaccines until about age four (N. Sharova, personal
communication, March31, 2014). Out-of-pocket costs have been found to be negatively
correlated with up-to-date vaccination status, and families below 250 percent of the federal
poverty line had the lowest immunization coverage in Georgia (Molinari, Kolasa,
Messonnier, & Schieber, 2007). Similarly, children in Colorado who were shifted from a

health management organization (HMO) to unassigned fee-for-service (UFFS) program
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(under which they were not required to have a primary care physician [PCP]), had fewer
primary care and preventive service visits and lower vaccination rates of recommended
pediatric immunizations than children not in the UFFS program (Berman, Armon, & Todd,
2005).

PCV adoption by physicians is necessary for overall success of the vaccination in the
population. Physicians who had not adopted PCV7 within one year of its introduction in a
sample from 24 states were concerned about the purchasing cost of the vaccine and lack of
insurance reimbursement, and instead, sent families to health departments for routine
pediatric immunizations (Davis, Ndiaye, Freed, & Clark, 2003a). Therefore, state financing
of vaccine programs may affect whether physicians vaccinate children without insurance
covering PCV. The Vaccines for Children program (VFC), Medicaid, and Children’s Health
Insurance Program (CHIP) can decrease or eliminate most costs for the poor and reduce
burdens on local health departments (Molinari et al., 2007; Davis et al, 2003a), although the
type or combination of financing is important. For example, Davis, Ndiaye, Freed, Kim, and
Clark (2003b) found physicians practicing in states with only the VFC purchase strategy
were less likely to give PCV7 to children without coverage, versus those practicing in states
with a universal purchase strategy or an enhanced VFC strategy covering VFC-eligible
children and other children seen at private practices without insurance covering all
Advisory Committee on Immunization Practices (ACIP)-recommended vaccines.

This paper has a range of limitations in the data and methods. It is important to
remember CIRTS aggregated data by zip codes, while the U.S. Census uses ZCTAs for data
collection (because zip codes are defined and changed by the U.S. Postal Service). Although

the ZCTA code matches the zip code in most instances, a zip code will not be represented
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within the ZCTA sphere if the zip code was never the most frequently occurring zip code
during the ZCTA creation process. Therefore, some zip codes in CIRTS may not correspond
directly with the ZCTA with the same number.

Krieger et al. (2005) explain measuring poverty levels (for example, “percent below
the poverty line”) consistently detects expected socioeconomic gradients in health across
many outcomes, and further, that area-based measures of socioeconomic status are able to
capture a mix of individual-level and area-based socioeconomic effects. Using a priori
versus data-dependent cut-points for percent below the poverty line enables more
meaningful comparisons across place and time. Although there is no consensus on which
area-based measure is best, census tracts were found to be more consistent than census
block groups or zip codes (Krieger et al., 2003). This is likely due to the homogenous nature
of census tracts with respect to population characteristics. Zip codes and ZCTAs represent
more heterogeneous populations, and therefore, may not be the most meaningful area-
based measure of socioeconomic status.

It would be interesting to know how many parents opt-out of the registry, and to
relate data in this paper to pneumococcal disease rates in children and adults. The results
of this analysis cannot be assumed to hold for those children who are not in the registry.
Analyzing temporal clusters could also provide important insight to the study questions.
Future studies with these data should adjust cluster analyses for covariates. Clusters found
after adjustment can be understood to be explained by the covariates. For example, the
clusters in Figure 5 may be explained by population density of children under age five.
Additional analyses should also control for collinearity among the selected predictor

variables in the log-binomial regression models. Principal component analysis is sensitive
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to the original scaling of variables and could be used to create adjusted variables for use in
the regression models in place of the original variables. Further, other community-level
variables may be missing from the analyses that have an effect on ZCTAs having a high
proportion of children unvaccinated for PCV. For example, the proportion of the population
who are immigrants may have an effect (Pavlopoulou, Michail, Samoli, Tsiftis, &
Tsoumakas, 2013). Finally, results from this paper should not be understood as an
individual child’s risk of being under vaccinated; ecological associations may not be present
at the individual level.

In conclusion, this paper made use of previously collected surveillance data from
CIRTS to describe PCV uptake patterns with three and four doses across Connecticut.
Vaccination levels in CIRTS-registered children generally increased from the 2000 to 2009
birth cohorts and varied by poverty level. Spatial cluster analysis revealed several
significant clusters of ZCTAs with higher than expected proportions of children
unvaccinated with three or four doses of PCV. Areas near Groton, New Haven, and parts of
Windham, Tolland, Hartford, and New London counties would benefit from increased
vaccine advocacy and delivery efforts, especially given that some of these areas are not
covered by Connecticut’s IAP. Community-level variables from the 2000 U.S. Census that
describe the racial and socioeconomic composition, age distribution, population density,
and housing characteristics of Connecticut ZCTAs were independently associated with a

high proportion of unvaccinated children in ZCTAs and comprise final multivariate models.
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