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Abstract

Consider an irreducible finite Coxeter system. We show that for any nonnegative integer n the sum of
the nth powers of the Coxeter exponents can be written uniformly as a polynomial in four parameters: h
(the Coxeter number), r (the rank), α, β (two further parameters).
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Let (W, S) be an irreducible finite Coxeter system of rank r with S = {s1, . . . , sr } its set of
simple reflections. The Coxeter transformation c := s1 · · · sr ∈ W has order |c| = h known as
the Coxeter number, and the eigenvalues of c in the reflection representation of W are of the
form e2π im1/h, . . . , e2π imr /h with 1 = m1 6 m2 6 · · · 6 mr = h − 1 the exponents of (W, S).
Furthermore, for any permutation σ of {1, . . . , r} the elements c and sσ(1) · · · sσ(r) are conjugate
in W . Hence the exponents do not depend on the enumeration of the simple reflections. Recall
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that the symmetry mi + mr+1−i = h follows from the facts that c has no eigenvalue 1 and that
the reflection representation is defined over the reals.

In this note we will derive uniform expressions for the power sums
r

i=1 m n
i for any n ∈ Z>0.

Of course, for n = 0 the sum is r , and for n = 1 the symmetry mi + mr+1−i = h shows that the
sum is 1

2rh. We shall see that

r
i=1

m n
i = n! rTdn(γ1, . . . , γn)

where Tdn(γ1, . . . , γn) denotes the nth Todd polynomial evaluated at γ1, . . . , γn (for n > 3
odd Tdn(γ1, . . . , γn) does not depend on γn , as follows from Proposition 3.1). The γi ’s can
be chosen to be polynomials in four parameters (details below) with integer coefficients. This
answers Panyushev’s question in [9]. Furthermore, this once again unites the work of Coxeter
and Todd, who were students together at Cambridge (see also [1]).

2. Some history and preliminaries

For type Ar the exponents are just 1, 2, . . . , r and one has Bernoulli’s formula

r
i=1

in
=

1
n + 1


Bn+1(r + 1)− Bn+1(1)


(2.1)

where Bn+1(x) is the (n + 1)st Bernoulli polynomial, defined by the expansion

∞
n=0

Bn(x)
tn

n!
=

t ext

et − 1
.

For general types uniform formulae for the power sums up to third power are listed in the
epilogue of [12]. Besides the Coxeter number h and the rank r they depend (for the squares
and the cubes) on a further parameter γ which is defined for the crystallographic types with
crystallographic root system Φ (= Φ+∪Φ− a decomposition into the sets of positive and negative
roots) by the formula (see [3, Chapter VI, Section 1, no. 12])

ϕ∈Φ

⟨λ|ϕ⟩⟨µ|ϕ⟩

⟨ϕ|ϕ⟩2 = γ ⟨λ|µ⟩ (λ, µ ∈ spanRΦ) (2.2)

where ⟨ | ⟩ denotes the Killing form on spanRΦ, which is the W -invariant (symmetric) bilinear
form characterized by

⟨λ|µ⟩ =


ϕ∈Φ

⟨λ|ϕ⟩⟨µ|ϕ⟩ (λ, µ ∈ spanRΦ).

It turns out that γ = kgg∨ where k = ⟨θ |θ⟩/⟨θs|θs⟩ ∈ {1, 2, 3} with θ, θs ∈ Φ+ the highest
resp. highest short roots, and g = 1/⟨θ |θ⟩ ∈ Z>0 is the dual Coxeter number of Φ whereas g∨

is the dual Coxeter number of the dual root system Φ∨. So γ = h2 if Φ is simply-laced. For
the noncrystallographic types γ = 2m2

− 5m + 6 for I2(m) (the formula is also valid for the
crystallographic types, where m = 3, 4, 6); γ = 124 for type H3; and γ = 1116 for type H4.
The values of γ for the noncrystallographic types may seem somewhat ad hoc at first glance, but
Proposition 5.3 offers a general formula. The formulae from [12] read as follows:
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r
i=1

m n
i =



r if n = 0,

1
2

rh if n = 1,

1
6

r(h2
+ γ − h) if n = 2,

1
4

rh(γ − h) if n = 3.

(2.3)

Remark 2.1. The power sums for the fourth and higher powers are not of the form r times some
functions depending only on h and γ , as a computation for the types Ah−1 and D(h+2)/2 shows.

Panyushev gave the universal formula [9, Proposition 3.1]
ϕ∈Φ+

ht(ϕ)2 =
1

12
r(h + 1)γ (2.4)

for the sum of the heights squares of all positive roots. He then suspects [9, Remark 3.4] that
for the sum of the heights of all positive roots there is no similar formula in the general case;
however, for simply-laced root systems he mentions

ϕ∈Φ+

ht(ϕ) =
1
6

r(h2
+ h) (2.5)

and asks for which values of n there is a nice closed expression for

ϕ∈Φ+

ht(ϕ)n . Our result
shows that there are universal formulae for all n ∈ Z>0. In fact, let (k1, . . . , kh−1) be the partition
dual to (mr , . . . ,m1); then it is well-known (see, e.g., [6, Section 3.20]) that there are exactly k j
roots of height j in Φ+. Hence

ϕ∈Φ+

ht(ϕ)n =

r
i=1


1n

+ 2n
+ · · · + m n

i


. (2.6)

In particular, using (2.3) we recover (2.4) and have
ϕ∈Φ+

ht(ϕ) =

r
i=1

m 2
i + mi

2
=

1
12

r

h2

+ γ + 2h


(2.7)

which generalizes (2.5) to all types.

Remark 2.2. The formula (2.7) for the integer e(2ρ) :=

ϕ∈Φ+

ht(ϕ) may be applied as
follows. For complex full flag manifolds G/T , Fino studied the invariant

Q(G/T ) =
e(2ρ)

3 dimC G/T
−

1
3


=

1
9
(h − 2) if G is of ADE type (see [5, Theorem 2.2])


and she tabulated the values of Q(G/T ) for all types in [5, Table I on p. 304]. We have the
uniform expression

Q(G/T ) =
e(2ρ)

3 dimC G/T
−

1
3

(2.7)
=

1
9
(h − 2)+

γ − h2

18h
.
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An alternative way to derive (2.7) is by using the symmetry mi + mr+1−i = h. We can write
as in [4, Proposition 2.1]

h2
r

i=1

mi − 3h
r

i=1

m 2
i + 2

r
i=1

m 3
i = 0. (2.8)

Hence
ϕ∈Φ+

ht(ϕ)2
(2.6)
=

r
i=1

mi (mi + 1)(2mi + 1)
6

=

r
i=1

m 3
i

3
+

r
i=1

m 2
i

2
+

r
i=1

mi

6

(2.8)
= −h2

r
i=1

mi

6
+ h

r
i=1

m 2
i

2
+

r
i=1

m 2
i

2
+

r
i=1

mi

6

= (h + 1)
r

i=1

mi (mi + 1)
2

−


h + 1

2
+

h2
− 1
6


r

i=1

mi  
=

rh
2

(2.6)
= (h + 1)


ϕ∈Φ+

ht(ϕ)− (h + 1)
rh(h + 2)

12

so that (2.7) is recovered from (2.4).
We shall stick to the exponents rather than the heights in order not to restrict our considerations

to the crystallographic types.

3. Power sums and Todd polynomials

Observe that (2.3) can be written as

r
i=1

m n
i =



r = 0! rTd0 if n = 0,

1
2

rh = 1! rTd1(h) if n = 1,

1
6

r(h2
+ γ − h) = 2! rTd2(h, γ − h) if n = 2,

1
4

rh(γ − h) = 3! rTd3(h, γ − h, ∗) if n = 3,

(3.1)

where Td0 = 1,Td1(c1) =
1
2 c1,Td2(c1, c2) =

1
12 (c

2
1 + c2), and Td3(c1, c2, c3) =

1
24 c1c2 are

Todd polynomials. Recall that, calculating in the formal power series ring in a variable t with
coefficients in the ring of symmetric functions in x1, x2, . . . with rational coefficients, we can
define the Todd polynomials via their generating series

∞
n=0

Tdn(c1, . . . , cn)t
n

=

∞
j=1

x j t

1 − e−x j t (3.2)

where c0(= 1), c1, c2, . . . are the elementary symmetric functions in x1, x2, . . . , that is,

∞
n=0

cn tn
=

∞
j=1

(1 + x j t). (3.3)



J.M. Burns, R. Suter / Advances in Mathematics 231 (2012) 1291–1307 1295

The observation (3.1) suggests the ansatz

r
i=1

m n
i = n! rTdn(γ1, . . . , γn). (3.4)

From (3.1) and (3.4) we get

γ1 = h and γ2 = γ − h (3.5)

and are looking for solutions γ3, γ4, . . . . Since
r

i=1 m a
r+1−i m

b
i =

r
i=1 m a

i m b
r+1−i and using

the symmetry mi + mr+1−i = h we get after binomial expansion of (h − mi )
a and (h − mi )

b the
identities (for a, b ∈ Z>0)

a
j=0

(−1)a− j


a

j


h j

r
i=1

m a+b− j
i =

b
j=0

(−1)b− j


b

j


h j

r
i=1

m a+b− j
i (3.6)

that generalize (2.8), which is (3.6) for {a, b} = {1, 2}.

Proposition 3.1. For a, b ∈ Z>0 one has the identity

a
j=0

(−1)a− j


a

j


c j

1(a + b − j)!Tda+b− j (c1, . . . , ca+b− j )

=

b
j=0

(−1)b− j


b

j


c j

1(a + b − j)!Tda+b− j (c1, . . . , ca+b− j ). (3.7)

Proof. To verify that (3.7) holds for all pairs (a, b) ∈ Z2
>0, we start with a = 0 and then proceed

by induction.
For a = 0 we have to check that for each b ∈ Z>0

b!Tdb(c1, . . . , cb) =

b
j=0

(−1)b− j


b

j


c j

1(b − j)!Tdb− j (c1, . . . , cb− j ). (3.8)

Equivalently, we must verify that the exponential generating series of both sides in (3.8) are
equal. For the left hand side we write

∞
b=0

b!Tdb(c1, . . . , cb)
tb

b!
=

∞
b=0

Tdb(c1, . . . , cb)t
b

=: Td(t)

and for the right hand side we get

∞
b=0

b
j=0

(−1)b− j


b

j


c j

1(b − j)!Tdb− j (c1, . . . , cb− j )
tb

b!

=

∞
b=0

b
j=0

(c1t) j

j !
Tdb− j (c1, . . . , cb− j )(−t)b− j

= ec1t Td(−t).
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It thus remains to see that Td(t) = ec1t Td(−t), which follows from the definitions (3.2) and (3.3)
together with the identity x

1−e−x = ex (−x)
1−ex .

Now we proceed by induction on a. We employ the identities (3.7) for the pairs (a, b) and
(a, b + 1), denoted by (3.7)|(a,b) and (3.7)|(a,b+1), and compute c1 · (3.7)|(a,b) − (3.7)|(a,b+1)

a+1
j=1

(−1)a+1− j


a

j − 1


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j )

−

a
j=0

(−1)a− j


a

j


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j )

=

b+1
j=1

(−1)b+1− j


b

j − 1


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j )

−

b+1
j=0

(−1)b+1− j


b + 1
j


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j ).

Adding zero summands (for j = 0 in the first and third sums and for j = a + 1 in the second
sum) and cancelling the j = b + 1 summands in the third and fourth sums, we get by combining
the binomial coefficients

a+1
j=0

(−1)a+1− j


a + 1
j


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j )

=

b
j=0

(−1)b− j


b

j


c j

1(a + b + 1 − j)!Tda+b+1− j (c1, . . . , ca+b+1− j ),

which is just the identity (3.7)|(a+1,b) that we wanted to deduce. �

Strictly speaking we do not need Proposition 3.1. But it is worth noting that it indicates that
we seem to be on the right track when using the ansatz (3.4).

Lemma 3.2. Let m1 6 · · · 6 mr ∈ Z>0 be such that there are multisets V+ and V− of positive
integers satisfying

r
i=1

qmi =

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)
. (3.9)

Then

|V+| = |V−| (3.10)
v∈V+

v = r

v∈V−

v. (3.11)

Proof. (3.10) follows since 1 − qv has exactly one factor 1 − q and the polynomial on the left
hand side in (3.9) has neither a zero nor a pole at q = 1; the equality (3.11) is clear from the
q → 1 limit in (3.9). Note also that m1 = 1 and m2 > 1 if r > 2. �
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The following theorem employs a parameter p (at first required to be a positive integer; later
it should become evident that p can be considered as a variable or p ∈ C). We could put p = 1
at the outset and forget this parameter, but we restrain from doing so with apparently good reason
(see Remark 5.7).

Theorem 3.3. Let m1 6 · · · 6 mr ∈ Z>0 be such that there are multisets V+ and V− of positive
integers satisfying

r
i=1

qmi =

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)
. (3.9)

We fix a positive integer p and define γ0(= 1), γ1, γ2, γ3, . . . by the generating series

∞
n=0

γn tn
=


v∈V−

(1 − vt)
v∈V+

(1 − vt)
p


1 + pt

1 − pt
. (3.12)

Then for n ∈ Z>0

r
i=1

m n
i = n! rTdn(γ1, . . . , γn). (3.13)

Proof. We consider the exponential generating series (with q := et ) of both sides in (3.13)

∞
n=0


r

i=1

m n
i


tn

n!
=

r
i=1

emi t
=

r
i=1

qmi (3.9)
=

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)
(3.14)

∞
n=0


n! rTdn(γ1, . . . , γn)

 tn

n!
= r

∞
n=0

Tdn(γ1, . . . , γn)t
n

= r
∞
j=1

x j t

1 − e−x j t (3.15)

where the last equality incorporates the definition of the Todd polynomials if we let

∞
j=1

(1 + x j t) =

∞
n=0

γn tn

and hence by (3.12)

(1 − pt)

v∈V+

(1 − vt)p

(1 + pt)

v∈V−

(1 − vt)p

∞
j=1

(1 + x j t)
p

= 1. (3.16)

This is an equation of the form

∞
j=1

1 + z j t

1 − w j t
= 1 (3.17)
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and upon expanding the product in a power series in t as
∞
j=1

1 + z j t

1 − w j t
=

∞
n=0

En(z1, z2, . . . ;w1, w2, . . .)t
n

it means that all the nontrivial elementary supersymmetric functions En(z1, z2, . . . ;w1, w2, . . .)

(for n > 0) in the “positive variables” z1, z2, . . . and “negative variables” w1, w2, . . . vanish. For
any power series with constant term 1, f (t) = 1 +


∞

n=1 bn tn , we have then

∞
j=1

f (z j t)

f (−w j t)
=

∞
j=1

1 +

∞
n=1

bn(z j t)n

1 +

∞
n=1

bn(−w j t)n
= 1 (3.18)

because the coefficient of tn in the power series expansion of (3.18) has the form
λ⊢n

Bλ(b1, . . . , bn)Eλ(z1, z2, . . . ;w1, w2, . . .)

where the sum runs over all partitions λ = (λ1, . . . , λk) of n and where

Eλ(z1, z2, . . . ;w1, w2, . . .)

:= Eλ1(z1, z2, . . . ;w1, w2, . . .) · . . . · Eλk (z1, z2, . . . ;w1, w2, . . .)

and Bλ(b1, . . . , bn) is a homogeneous polynomial (with integer coefficients) of degree n if bl is
assigned degree l. In fact, in the absence of “negative variables” (i.e., for w1 = w2 = · · · = 0)
it is a very well-known classical result that the elementary symmetric functions generate the ring
of symmetric functions (as a ring with 1). This extends to the supersymmetric situation (cf. [8]).
It is indeed evident because the equality (3.17) when rewritten as

∞
j=1

(1 + z j t) =

∞
j=1

(1 − w j t)

means that the nth elementary symmetric function in z1, z2, . . . equals the nth elementary
symmetric function in −w1,−w2, . . . (for all n > 0) and hence

∞
j=1

f (z j t) =

∞
n=0

tn

λ⊢n

Bλ(b1, . . . , bn)Eλ(z1, z2, . . . ; 0, 0, . . .)

=

∞
n=0

tn

λ⊢n

Bλ(b1, . . . , bn)Eλ(−w1,−w2, . . . ; 0, 0, . . .) =

∞
j=1

f (−w j t)

or in other words: (3.18) holds.
In our case (3.16) the “positive variables” are −p (once), −v (p times, for every v ∈ V+), x1

(p times), x2 (p times), . . . ; and the “negative variables” are −p (once), v (p times, for every
v ∈ V−), and all further variables 0. With f (t) =

t
1−e−t the product (3.18) specializes to the

formal expansion
−pt

1 − ept


1 − e−pt

pt


  

=e−pt


v∈V+


−vt

1 − evt

p 
v∈V−


1 − evt

−vt

p


∞
j=1

x j t

1 − e−x j t

p

= 1
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or after taking pth roots (look at t = 0 to choose the correct branch)
∞
j=1

x j t

1 − e−x j t = et

v∈V+


1 − evt

−vt

 
v∈V−


−vt

1 − evt


.

Therefore we can write the right hand side in (3.15) as (recall q = et )

r
∞
j=1

x j t

1 − e−x j t =

r

v∈V−

v
v∈V+

v  
=1

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)
=

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)

where we have used (3.10) |V+| = |V−| to cancel factors −t and then (3.11) to simplify the
product. Thus the right hand side of (3.15) equals the right hand side of (3.14), which proves
(3.13). �

Remark 3.4. Instead of the definition (3.12) for γ0, γ1, γ2, γ3, . . . one can define more generally

∞
n=0

γn tn
=


v∈V−

(1 − vt)
v∈V+

(1 − vt)

K
k=1


1 + πk t

1 − πk t

µk

with π1, . . . , πK ∈ R and µ1, . . . , µK ∈ Q satisfying
K

k=1 πkµk = 1 (and for general
m1 (with qm1 instead of q as the first factor on the right hand side of (3.9)) just require thatK

k=1 πkµk = m1).

4. Root system considerations

To apply Theorem 3.3 in the context of root systems we need the following proposition.

Proposition 4.1. Let m1 6 · · · 6 mr be the exponents of an irreducible (crystallographic (and
reduced) or noncrystallographic) finite root system (of rank r). Then there are multisets V+ and
V− of positive integers such that

r
i=1

qmi =

q

v∈V+

(1 − qv)
v∈V−

(1 − qv)
. (3.9)

Furthermore, |V±| 6 2 if V+ ∩ V− = ∅.

Proof. According to the first note added in proof in [10] I. G. Macdonald was acquainted with
the fact that (3.9) holds for all irreducible finite Coxeter groups.

The classification shows that the following three cases exhaust all possible types.

(1) For the types Ar ,Cr/Br , and types of rank 6 3 the sequence of exponents forms an
arithmetic progression 1,m2, . . . , 1 + (r − 1)(m2 − 1) (or just 1 if r = 1). Hence

r
i=1

qmi =


q if r = 1

q(1 − qr(m2−1))

1 − qm2−1 if r > 2
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so that we can take V+ = V− = ∅ if r = 1 and V+ = {r(m2 − 1)} and V− = {m2 − 1}

if r > 2.
(2) For the types of rank 4 we have

4
i=1

qmi = q + qm2 + qh−m2 + qh−1
=

q(1 − q2(m2−1))(1 − q2(h−m2−1))

(1 − qm2−1)(1 − qh−m2−1)

so that we can take V+ = {2(m2 − 1), 2(h − m2 − 1)} and V− = {m2 − 1, h − m2 − 1}.
(3) For the simply-laced types (ADE) the root system is the Weyl group orbit of the highest

root: Φ = Wθ . The stabilizer of θ is W⊥θ , the reflection group generated by those simple
reflections in W that fix θ . The root system is thus isomorphic as a W -set to W/W⊥θ . We
need the usual length function ℓ : W → Z>0 defined as ℓ(w) = k if w can be written as
a product of k but not less than k simple reflections. If ϕ = wθ is any positive root with
w chosen such that ℓ(w) is minimal, then ht(ϕ) = ht(θ) − ℓ(w) = h − 1 − ℓ(w). Since
the reflection along a simple root ψ maps ψ (of height 1) to −ψ (of height −1), we have
similarly the equality ht(ϕ) = ht(θ)− ℓ(w)− 1 = h − 2 − ℓ(w) if ϕ = wθ is any negative
root with w chosen such that ℓ(w) is minimal. So we have

wW⊥θ∈W/W⊥θ
ℓ(w) minimal

qℓ(w) =


ϕ∈Φ+


qh−1−ht(ϕ)

+ qh−2+ht(ϕ)
and since 1, . . . ,m1, 1, . . . ,m2, . . . , 1, . . . ,mr (where 1, . . . ,m1 is actually just 1)
enumerates ht(ϕ) as ϕ runs over Φ+, we can continue

=

r
i=1

mi
j=1


qh−1− j

+ qh−2+ j 
and using the symmetry mi + mr+1−i = h we obtain

=

r
i=1

h−1
j=0

qmi −1+ j
=


r

i=1

qmi −1


1 − qh

1 − q
.

On the other hand by the Chevalley–Solomon identity for the Poincaré series of finite Coxeter
groups (see, e.g., [6, Section 3.15]) we have

wW⊥θ∈W/W⊥θ
ℓ(w) minimal

qℓ(w) =


r

i=1

1 − qmi +1

1 − q


s

i=1

1 − q

1 − qmi +1



where m1, . . . , ms lists the exponents of all the irreducible components of W⊥θ (note that
s = r − 1 except for types Ar with r > 2, where s = r − 2). Since mr + 1 = h we finally get

r
i=1

qmi =
q

(1 − q)r−s−1

r−1
i=1
(1 − qmi +1)

s
i=1
(1 − qmi +1)

.

The following table, where we have left out the types Ar which were already dealt with in
case (1), finishes the proof.
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Type W Exponents + 1 Type W⊥θ Exponents + 1 V+ V−

Dr (r > 4) 2, 4, . . . , 2r −2, r A1+Dr−2 2, 2, 4, . . . ,
2r − 6, r − 2

{r, 2r −4} {2, r −2}

E6 2, 5, 6, 8, 9, 12 A5 2, 3, 4, 5, 6 {8, 9} {3, 4}

E7 2, 6, 8, 10, 12, 14,
18

D6 2, 4, 6, 8, 10,
6

{12, 14} {4, 6}

E8 2, 8, 12, 14, 18,
20, 24, 30

E7 2, 6, 8, 10,
12, 14, 18

{20, 24} {6, 10}

Multisets are needed for type D4. �

Note that for r > 2 (3.9) implies that m2 − 1 ∈ V−. Furthermore, for all the crystallographic
types except A1 and G2,m2 − 1 = d is the largest coefficient of the highest root (when written
as a linear combination of the simple roots). Likewise put d := m2 − 1 = 4 for H3 and
d := m2 − 1 = 10 for H4. For I2(m) put d :=

m
2


.

For Ar ,Cr ,Br , I2(m), and H3 one can append the same element(s) to both V+ and V− to make
all the above multisets V+ and V− have cardinality 2.

The following proposition gives a uniform description of multisets V+ = {A, B} and V− =

{α, β} satisfying (3.9) in terms of three parameters: the Coxeter number h, the coefficient d, and
ν := the number of times d occurs among the marks in the extended Dynkin diagram minus
1, and extended to the noncrystallographic types as displayed in the following table. The table
also shows the values of γ (see (2.2) and the text afterwards). Some parameters β (and for type
A1 also α) are irrelevant and are left unspecified. Clearly, one can interchange A ↔ B and also
α ↔ β.

Type r h γ d A, B α, β ν

A1 1 2 4 1 α, β α, β 1
Ar (r > 2) r r + 1 (r + 1)2 1 r, β 1, β r
Cr/Br (r > 2) r 2r 4r2

+ 2r − 2 2 2r, β 2, β r−2
Dr (r > 4) r 2r − 2 (2r − 2)2 2 r, 2(r−2) 2, r − 2 r−4
E6 6 12 144 3 8, 9 3, 4 0
E7 7 18 324 4 12, 14 4, 6 0
E8 8 30 900 6 20, 24 6, 10 0
F4 4 12 162 4 8, 12 4, 6 0
G2 = I2(6) 2 6 48 3 8, β 4, β 0
H2 = I2(5) 2 5 31 2 6, β 3, β 1
H3 3 10 124 4 12, β 4, β 0
H4 4 30 1116 10 20, 36 10,18 0
I2(2k+1) (k > 3) 2 2k + 1 8k2

− 2k + 3 k 4k − 2, β 2k −1, β 1
I2(2k) (k > 4) 2 2k 8k2

− 10k + 6 k 4k − 4, β 2k −2, β 0
Redefined parameters d and ν for I2(2k + 1) (k > 2)
Type r h γ d A, B α, β ν

I2(m) (m > 4) 2 m 2m2
−5m +6 m

2 2m −4, β m − 2, β 0

The table shows that in the cases where β has a well-defined value (and α = m2 − 1), this
value is m3 − 1 except for Dr (r > 7), where β = m⌊(r+1)/2⌋ − 1. With the redefinition of d and
ν for the types I2(2k + 1) (k > 2) the formula h =

d
2 (r + 2 + ν) is true in general, and it is also

true for H2 = I2(5) with the original parameters d = 2 and ν = 1.
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Proposition 4.2. The equality (3.9) in Proposition 4.1 holds if the multisets V± are given as

V− = {d, 2d − 2 + ν} and

V+ = {4d − 4 + dν, h − d − (d − 1)ν}

with d =
m
2 and ν = 0 for I2(m) (m > 4); and for H2 = I2(5) the original values d = 2 and

ν = 1 also work.

The choice in Proposition 4.2 of the irrelevant parameters is thus α = β = 1 for type A1 and as
shown in the following table.

Type Ar Cr/Br G2 H2 with d = 2, ν = 1 H3 I2(m) with d =
m
2 , ν = 0

β r r 3 2 6 m
2

Proof. Let us first look at those exceptional types for which d | h (including I2(m) (m > 5)).
Here we have ν = 0 and the (multi)set of exponents is

m1, . . . ,mr


=


1 + jd

0 6 j 6
h

d
− 2


∪


2d − 1 + jd

0 6 j 6
h

d
− 2


(see [4, Theorem 3.2 (i)] adding H4 and I2(m)) so that

r
i=1

qmi =

h
d −2
j=0


q1+ jd

+ q2d−1+ jd
= q(1 + q2d−2)

h
d −2
j=0

q jd

=
q(1 − q4d−4)(1 − qh−d)

(1 − qd)(1 − q2d−2)

in agreement with the expressions for V± (with ν = 0).
For the remaining types we use the following table.

Type h d ν 4d − 4 + dν, h − d − (d − 1)ν d, 2d − 2 + ν

Ar (r > 1) r + 1 1 r r, r 1, r
Cr/Br (r > 2) 2r 2 r−2 2r, r 2, r
Dr (r > 4) 2r − 2 2 r−4 2r − 4, r 2, r − 2
E7 18 4 0 12,14 4,6
H2 5 2 1 6,2 2,3
H3 10 4 0 12,6 4,6

This is in agreement with the table before Proposition 4.2. �

Remark 4.3. For the DE types one has V− =
 a

2 ,
b
2


and V+ =


b, ra

4


, where the parameters

a and b are as in Kostant’s article [7]. Note also that for those types a
2 = d and b

2 =
h+2

2 − d .
We can already look ahead and use (5.4) to obtain h = dr − 4d + 6; from (5.5) and h2

= γ (still
for the DE types) and using the equality h = dr − 4d + 6 we get d(h − 2r − 6d + 26) = 24.

Remark 4.4. Another source for lists of integers (again called exponents) m1 6 · · · 6 mr such
that

r
i=1 qmi factors up to a power of q into a product of cyclotomic polynomials is provided by

Saito’s regular systems of weights (the reduced ones having only positive exponents correspond
to ADE type root systems). See [11] where Saito mentions a preprint according to which the
nth power sum of the exponents is expressed by a product of r and a polynomial of degree n in
a, b, c, h where (a, b, c; h) is a regular system of weights.
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5. Synthesis and further computations

Proposition 4.1 shows that Theorem 3.3 can be applied in the context of root systems with
V+ = {A, B} and V− = {α, β} as in the table before Proposition 4.2.

Define γ0, γ1, γ2, γ3, . . . (depending on a parameter p) by the series expansion

∞
n=0

γn tn
=
(1 − αt)(1 − βt)

(1 − At)(1 − Bt)
p


1 + pt

1 − pt
. (5.1)

The series expansions

(1 − αt)(1 − βt)

(1 − At)(1 − Bt)
=

1 − (α + β)t + αβt2 ∞

n=0


n

j=0

A j Bn− j


tn (5.2)

and

p


1 + pt

1 − pt
=


∞
j=0


1
p

j


(pt) j


∞

k=0


−

1
p

k


(−pt)k


=:

∞
n=0

pn tn

= 1 + 2t + 2t2
+

2p2
+ 4

3
t3

+
4p2

+ 2
3

t4
+

6p4
+ 20p2

+ 4
15

t5
+ · · · (5.3)

specializing for p = 1 and p = 2

1 + t

1 − t
= 1 + 2

∞
n=1

tn


1 + 2t

1 − 2t
=

∞
n=0


2n

n


(1 + 2t)t2n

= 1 + 2t + 2t2
+ 4t3

+ 6t4
+ 12t5

+ · · ·

can be used to write down an explicit formula for γn defined in (5.1).
Note that the series expansion of


(1 + pt)/(1 − pt)

1/p has integer coefficients if p = 2k

with k ∈ Z>0. In fact, for f (t) = 1 +


∞

n=1 an tn we let

T f (t) :=


f (2t) = 1 +

∞
n=1

bn tn .

A comparison of coefficients shows that

bn = 2n−1an −
1
2

n−1
j=1

b j bn− j ,

and hence if a1 is even and all an are integers, then all bn are even. Starting with the series

f (t) := (1+t)/(1−t) = 1+2


∞

n=1 tn , we get

(1+2k t)/(1−2k t)

1/2k
= T k f (t) ∈ 1+2tZ[[t]].

(Note also that in the limit p → 0 we get the power series expansion of e2t , which is a fixed
point of the transformation T .)

Remark 5.1. The transformation T on (generating series of) integer sequences starting with 1
and having an even integer as next term may be investigated. Here is a tiny list of examples:
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a0, a1, a2, . . .
T

−→ b0, b1, b2, . . .

an = n + 1 bn = 2n

an = 2n bn =


2n
n


an = Cn+1 =

1
n+2


2n+2
n+1


bn = 2nCn

More generally, one may fix a positive integer l and look at the transformation

f (t) −→
l


f (lt)

for f (t) = 1 +


∞

n=1 an tn with l | a1 and an ∈ Z.

Lemma 5.2. The elementary symmetric polynomials in A and B can be written as follows.

A + B = h − 2 + α + β (5.4)

AB = h2
− γ + (h − 2)(α + β − 1)+ αβ. (5.5)

Furthermore,

Xn :=

n
j=0

A j Bn− j

=

⌊ n
2 ⌋

j=0

(−1) j


n − j

j


× (h − 2 + α + β)n−2 j h2

− γ + (h − 2)(α + β − 1)+ αβ
 j
. (5.6)

Proof. From (5.1) we get using (3.5)

γ1 = 2 + (A + B)− (α + β) = h

γ2 = 2 + 2(A + B)+ (A2
+ AB + B2)− 2(α + β)− (α + β)(A + B)+ αβ

= γ − h

and solving for the elementary symmetric polynomials in A and B we get (5.4) and (5.5).
Note that for n > 2

Xn = (A + B)
n−1
j=0

A j Bn−1− j
− AB

n−2
j=0

A j Bn−2− j

= (h − 2 + α + β)Xn−1 −

h2

− γ + (h − 2)(α + β − 1)+ αβ

Xn−2

with X0 = 1 and X1 = h − 2 + α + β. By solving the recursion we have (5.6). �

Proposition 5.3. The invariant γ is expressible as a polynomial in h, r, α, β, namely,

γ = h2
+ (h − 2)(α + β − 1)− (r − 1)αβ. (5.7)

Proof. From (3.11) we have AB = rαβ. The formula (5.7) follows by combining with (5.5). �

Remark 5.4. The formula h =
d
2 (r +2+ν) follows by inserting into AB = rαβ the expressions

in Proposition 4.2 for V+ = {A, B} and V− = {α, β} and using the fact that the product
d(ν − r)+ 4(d − 1)


(d − 2)ν vanishes.
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To summarize we state the following theorem.

Theorem 5.5. Let m1 6 · · · 6 mr be the exponents of an irreducible (crystallographic (and
reduced) or noncrystallographic) finite root system (of rank r) with Coxeter number h and
parameters γ and d as in the table before Proposition 4.2. Put

α :=


arbitrary if r = 1,
m2 − 1 if r > 2,
or
d

and define

β :=


arbitrary if h = (r − 1)α + 2,

h2
− γ + (h − 2)(α − 1)
2 + (r − 1)α − h

if h ≠ (r − 1)α + 2.
(5.8)

Let
∞

n=0

γn tn
=

1 − (α + β)t + αβt2  ∞

n=0

Xn tn


∞

n=0

pn tn


with Xn as in (5.6) and pn as in (5.3). (So γn is a polynomial in h, γ, α, β (or, by (5.7),
alternatively in h, r, α, β) (symmetric in α, β) and depends on an additional parameter p which
can be chosen arbitrarily.) Then

r
i=1

m n
i = n! rTdn(γ1, . . . , γn). (5.9)

Proof. As already mentioned, this is an application of Theorem 3.3 in the context of root systems,
that is, using Proposition 4.1 with V+ = {A, B} and V− = {α, β} and inserting (5.2), (5.3) and
(5.6) into the series expansion (5.1). The expression for β follows from Proposition 5.3.

For r = 1 there is nothing more to say. So let us assume r > 2. To finish the proof, it remains
to be explained why we can take α = d instead of α = m2 − 1. The reason is that d = m2 − 1 in
all cases except possibly for types I2(m), but then we get β = m2 − 1 = m − 2. Or still slightly
more generally: for the types Ar (r > 2),Cr/Br , I2(m), and H3 we could choose α ≠ m2 − 1
and automatically get β = m2 − 1 from (5.8). �

Let us continue by writing down γ3 and γ4 in terms of h, γ, α, β (and p)

γ3 = −h3
+ 2hγ − 2γ +

1
3
(2p2

+ 4)− (h2
− γ − h + 2)(α + β)− (h − 2)αβ (5.10)

γ4 = −h4
+ h2γ + γ 2

+ 3h3
− 6hγ − h2

+ 2γ +
2
3

h(p2
+ 5)− 2

− (h2
− γ − h + 2)


(2h − 2 + α + β)(α + β)− αβ


− (h − 2)(2h − 2 + α + β)αβ. (5.11)

By inserting (3.5), (5.10) and (5.11) into (5.9) using the formulae Td4(c1, c2, c3, c4) =
1

720


−c 4

1 + 4c 2
1 c2 + c1c3 + 3c 2

2 − c4


and Td5(c1, c2, c3, c4, c5) =
1

1440


−c 3

1 c2 + 3c1c 2
2 +

c 2
1 c3 − c1c4


we get
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r
i=1

m 4
i =

r

30


−h4

+ 5h2γ + 2γ 2
− 7h3

− 2hγ + 4h2
− 2γ − 2h + 2 + R45


(5.12)

r
i=1

m 5
i =

r

12
h

2γ 2

− 2h3
− 2hγ + 4h2

− 2γ − 2h + 2 + R45


(5.13)

where

R45 = (h2
− γ − h + 2)


(h − 2 + α + β)(α + β)− αβ


+ (h − 2)(h − 2 + α + β)αβ. (5.14)

Surely, one could continue and give explicit formulae for higher power sums. Let us stop here
and display formulae for the sums of the heights cubes and fourth powers.

Proposition 5.6. With R45 as in (5.14) above we have
ϕ∈Φ+

ht(ϕ)3 =
r

120


−h4

+ 5h2γ + 2γ 2
− 7h3

+ 13hγ − 6h2
+ 3γ − 7h + 2 + R45



ϕ∈Φ+

ht(ϕ)4 =
r

60
(h + 1)


2γ 2

− 3h3
+ 3hγ − 2γ − 3h + 2 + R45


.

Proof. Insert (2.3), (5.12) and (5.13) into (2.6). �

Remark 5.7. Using the power series expansions for (5.1) one computes the following explicit
expressions for the quantities γn . For the types Ar one gets for n > 1

γn|p=1 = rn
+ rn−1

and has
r

i=1

in
= n! rTdn


r + 1, r2

+ r, . . . , rn
+ rn−1

as an alternative to Bernoulli’s formula (2.1). Note also that even for r = 1, the resulting formula
Tdn(2, . . . , 2) =

1
n!

is not trivial.
For the types Cr (r > 2) one gets

γn|p=1 = (2r)n − 2
n−2
j=0

(2r) j

but it looks somewhat more natural to specialize to p = 2

γn|p=2 = −2
⌊ n

2 ⌋
j=0

C j−1 (2r)n−2 j

where Ck =
1

k+1


2k
k


is the kth Catalan number (for k > 0) and employing the (−1)st Catalan

number C−1 = −
1
2 .

One may ask whether as an alternative to our considerations using generating series a more
geometric/combinatorial approach via toric geometry/counting lattice points in polytopes can be
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found (see also [2, Section 2.4], where the Bernoulli polynomials are recognized as lattice point
enumerators of certain pyramids).
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