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Abstract

The hyperdeterminant of a polynomial (interpreted as a symmetric tensor) factors into several irreducible
factors with multiplicities. Using geometric techniques these factors are identified along with their degrees
and their multiplicities. The analogous decomposition for the µ-discriminant of polynomial is found.
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1. Introduction

After degree and number of variables, perhaps the most important invariant of a polynomial
is the discriminant ∆( f )—a polynomial in the coefficients of f that vanishes precisely when f
has a double root. Much of the interesting behavior of f is encoded in ∆( f ).

Consider a homogeneous degree d polynomial on n variables xi

f =


1≤i j ≤n

ai1,...,id


d

m1, . . . , mn


xi1 · · · xid ,
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where ai1,...,id are constants, m j is the number of times that the index j appears in the set

{i1, . . . , id}, and


d
m1,...,mn


is the multinomial coefficient. In the case d = 2, f is equivalent

to the matrix of data A f := (ai, j )1≤i, j≤n , which is symmetric; a j,i = ai, j . It is well known
that when d = 2, the discriminant ∆( f ) is equal to the determinant det(A f ). In general f
is equivalent to the d-dimensional tensor of data A f := (ai1,...,id )1≤i1,...,id≤n , which is (fully)
symmetric; aiσ(1),...,iσ(d)

= ai1,...,id for all permutations σ ∈ Sd .
Cayley [6] introduced the notion of the hyperdeterminant of a multidimensional matrix

(tensor) analogous to the determinant of a square matrix. The hyperdeterminant, whose definition
we will recall below, may be thought of in analogy to the discriminant as a polynomial, which
tells when a tensor is singular.

The hyperdeterminant went relatively unstudied for approximately 150 years until Gel’fand,
Kapranov and Zelevinsky brought the hyperdeterminant into a modern light in their
groundbreaking work [9,10]. In particular they determined precisely when the hyperdeterminant
is non-trivial and computed the degree. Inspired by their work, we study the hyperdeterminant
applied to a polynomial. We are naturally led to consider the µ-discriminant, which is a partially
symmetric analog and generalization of the hyperdeterminant also developed in [10]. While the
hyperdeterminant and µ-discriminant are irreducible, this usually does not continue to hold after
symmetrization. Our goal is to determine how the symmetrized hyperdeterminant factors, to
determine the geometric meaning of each factor, and to determine the degrees and multiplicities
of the factors. In fact, we will answer these questions for the more general case of the
µ-discriminant and the result for the hyperdeterminant will follow as a special case.

The first example that is not a matrix is binary cubics. The discriminant of a binary cubic has
degree 4. The hyperdeterminant of a 2 × 2 × 2 tensor also has degree 4 and the formula is well
known (see [10, (1.5), p. 448]). The symmetrization of this polynomial is the discriminant of a
binary cubic. This is the last case that has such simple behavior.

Our curiosity was peaked by the following example that was first pointed out to us by Giorgio
Ottaviani. For plane cubics, the discriminant has degree 12. The hyperdeterminant of a 3 × 3 × 3
matrix has degree 36. Using Macaulay2 [11] Ottaviani used Schläfli’s method to compute the
hyperdeterminant, applied this to a symmetric tensor, specialized to a random line and found that
the symmetrization of the hyperdeterminant is a reducible polynomial which splits into a factor
of degree 12 (the discriminant) and a factor of degree 4 with multiplicity 6. The degree 4 factor
turned out to be Aronhold’s invariant for plane cubics and defines the variety of Fermat cubics.
While Aronhold’s invariant is classical, we refer the reader to [17] where one finds a matrix
construction which can be applied to construct Aronhold’s invariant for degree 3 symmetric
forms on 3 variables, Toeplitz’s invariant [20] for triples of symmetric 3 × 3 matrices, and
Strassen’s invariant [19] for 3 × 3 × 3 tensors.

After this example, Ottaviani posed the problem to understand and describe this phenomenon
in general. Indeed when d or n are larger than the preceding examples, the hyperdeterminant
becomes quite complicated, with much beautiful structure, (see [5,15]). Our approach is to study
these algebraic objects from a geometric point of view, thus avoiding some of the computational
difficulties, such as those that arise in computing an expansion of the hyperdeterminant in terms
of monomials, which would be very difficult in general.

The outline of the article is the following. In Section 2, we recall terminology from
combinatorics, namely the notion of one partition being refined by another and present a formula
for the number of such refinements. In Section 3, we review facts from multilinear algebra
necessary for our calculations. In Section 4, we recall the relevant geometric objects (including
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Segre–Veronese varieties, Chow varieties and projective duality). Finally in Section 5, we use
geometric methods to prove our main results, which are the following:

Theorem 1.1. The n×d -hyperdeterminant of a symmetric tensor of degree d ≥ 2 on n ≥ 2
variables splits as the product

λ

Ξ Mλ

λ,n ,

where Ξλ,n is the equation of the dual variety of the Chow variety ChowλPn−1 when it is

a hypersurface in P


n−1+d
d


−1

, λ = (λ1, . . . , λs) is a partition of d, and the multiplicity

Mλ =


d

λ1,...,λs


is the multinomial coefficient.

Geometrically, this theorem is essentially a statement about the symmetrization of the dual
variety of the Segre variety. It says that the symmetrization of this dual variety becomes the
union of several other varieties (with multiplicities).

In fact, Theorem 1.1 is a special case of the more general result for Segre–Veronese varieties
(see Section 4 for notation):

Theorem 1.2. Let µ be a partition of d ≥ 2, and V be a complex vector space of dimension
n ≥ 2. Then

Segµ


PV ×t∨

∩ P


Sd V ∗


=


λ≺µ

Chowλ (PV )∨ ,

where λ ≺ µ is the refinement partial order. In particular,

V(Sym(∆µ,n)) =


λ≺µ

Ξ Mλ,µ

λ,n

where ∆µ,n is the equation of the hypersurface Segµ(PV ×t )∨,Ξλ,n is the equation of
Chowλ (PV )∨ when it is a hypersurface in P(Sd V ), and the multiplicity Mλ,µ is the number
of partitions µ that refine λ.

We consider only the case where the vector spaces in a tensor product have the same
dimension, so [21, Corollary 3.4] implies that the duals to all Segre–Veronese varieties we will
study herein (where the individual factors all have the same dimension) are hypersurfaces. So we
need to know which dual varieties of Chow varieties are hypersurfaces.

Theorem 1.3. Suppose d ≥ 2, dim V = n ≥ 2 and λ = (λ1, . . . , λs) = (1m1 , . . . , pm p ) is a
partition of d. Then Chowλ (PV )∨ is a hypersurface with the only exceptions

• n = 2 and m1 ≠ 0
• n > 2, s = 2 and m1 = 1 (so λ = (d − 1, 1)).

In the binary case we have the following closed formula.

Theorem 1.4. The degree of Chowλ(P1)∨ with λ = (1m1 , 2m2 , . . . , pm p ), m1 = 0 and m =
i mi is

(m + 1)


m

m2, . . . , m p


1m22m3 · · · (p − 1)m p .
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In more than 2 variables we have a recursive procedure for computing the degree which is a
consequence of Theorem 1.2.

Corollary 1.5. Suppose dim V ≥ 2. Let dλ denote deg(Chowλ (PV )∨) when it is a hypersurface
and 0 otherwise. Then the vector (dλ)λ is the unique solution to the (triangular) system of
equations

deg(∆µ,n) =


λ≺µ

dλMλ,µ.

The multiplicities Mλ,µ have a nice generating function.

Proposition 1.6. Suppose λ, µ, are partitions of d, pλ and mµ are respectively the power-sum
and monomial symmetric functions. Then the matrix (Mλ,µ) is the change of basis matrix

pλ(x) =


µ⊢d

Mλ,µmµ(x). (1)

The degree of ∆µ,n is given by a generating function (see [9, Theorem 3.1, Proposition 3.2]
or [10, p. 454]). So Corollary 1.5 gives a recursive way to compute all of the degrees of the duals
of the Chow varieties, and moreover we can package this with Proposition 1.6 into a generating
function.

Theorem 1.7. Suppose dim V ≥ 2. Let dλ denote deg(Chowλ (PV )∨) when it is a hypersurface
and 0 otherwise. Let ∆µ,n denote the equation of the hypersurface Segµ(PV ×t )∨. The degrees
dλ are computed by

µ

deg(∆µ,n)mµ(x) =


λ

dλ pλ(x),

where mµ and pλ are respectively the monomial and power sum symmetric functions.

Remark 1.8. The hypersurfaces Chowλ(PV )∨ are SL(V )-invariant, and thus each defining
polynomial is an SL(V )-invariant for polynomials. Since invariants of polynomials have been
well studied, many of the dual varieties to Chow varieties have alternative descriptions as
classically studied objects, however we prefer to ignore these connections for our proofs in
order to have a more uniform treatment. However we point out that Corollary 1.5 may be
used in retrospect as a way to determine degrees and give geometric interpretations of classical
invariants. In particular, the equations of Chowλ(PV )∨ are distinguished SL(V )-invariants in
S p(Sd(V )) (see [13].)

Recently there has been a considerable amount of work on hyperdeterminants, Chow varieties
and related topics; see [2–4,7–9,14,16,21,22]. We are particularly grateful for the very rich
book [10], which provided us both with several useful results and techniques, as well as
inspiration.

In this paper, we will work over C (or any algebraically closed field of characteristic 0), it is
likely that some of these results can be extended to arbitrary characteristic, but we do not concern
ourselves with this problem here. All polynomials will be assumed to be homogeneous.

2. Combinatorial ingredients

An integer vector λ = (λ1, . . . , λs) is called a partition of an integer d with s parts if
d ≥ λ1 ≥ · · · ≥ λs > 0 and


i λi = d . We often shorten this by writing λ ⊢ d and #λ = s.
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The number of repetitions that occur in λ may be recorded by writing λ = (1m1 , 2m2 , . . . , pm p ),
where imi is to be interpreted as the integer i repeated mi times.

The set of partitions of d is partially ordered by refinement. Namely we will write λ ≺ µ1if
the parts of µ can be partitioned into blocks so that the parts of λ are precisely the sum of the
elements in each block of µ [18, Exercise 3.135].

Concretely, we will say λ = (λ1, . . . , λs) is refined by µ and write λ ≺ µ if there is an
expression

λ1 = µi1,1 + · · · + µi1,t1
λ2 = µi2,1 + · · · + µi2,t2

. . .

λs = µis,1 + · · · + µit,ts

(2)

and µ = (µi1,1 , . . . , µi1,t1
, . . . , µis,1 , . . . , µis,ts

) is (after a possible permutation) a partition of d.
Here we emphasize that we do not distinguish two expressions as different if only the orders of
the summations in (2) change, but we do distinguish the case when different choices of indices
of µ appear in different equations even if some of the µi take the same value.

Let Mλ,µ denote the number of distinct expressions of the form (2) (ignoring rearrangements
in the individual summations). We will say that Mλ,µ is the number of refinements from µ to λ.2

The refinement partial order is stricter than the dominance partial order.
Here are some easy properties of Mλ,µ that follow immediately from the definition.

Proposition 2.1. Let Mλ,µ denote the number of refinements from µ to λ. Then the following
properties hold.
• M(d),µ = 1 for all |µ| = d.
• Mλ,µ = 0 if s > t or if s = t and λ ≠ µ, and the matrix (Mλ,µ)λ,µ is lower triangular for a

good choice in ordering of the indices.
• If λ = (1m1 , 2m2 , . . . , pm p ), then Mλ,λ = m1! · · · m p!.

• Mλ,1d =


d
λ


:=


d

λ1,...,λs


=

d!

λ1!···λs !
, the multinomial coefficient.

One is first tempted to compute Mλ,µ via brute force—but this gets complicated quickly.
However, one result from the theory of symmetric functions allows for an easy way to compute
Mλ,µ. Before stating the result, we declare some notation. Consider the ring of symmetric
functions


[x] =


[x1, x2, . . .]. For a partition λ = (λ1, . . . , λs) ⊢ d , let pλ ∈


[x] denote

the power-sum symmetric function,

pλ(x) =


i

(xλi
1 + xλi

2 · · ·).

For a partition µ ⊢ d, let mµ ∈


[x] denote the monomial symmetric function,

mµ(x) =


σ∼

xσ.µ,

where the sum is over distinct permutations σ of µ = (µ1, µ2, . . . , µt , 0, . . .) and xµ
=

xµ1
1 · · · xµt

t · · ·.

1 Our convention is in the reverse order as in [18], because we prefer to write λ ≺ µ to mimic Chowλ(PV ) ⊂

Chowµ(PV ).
2 [9] uses the same symbol Mλ,µ for the Gale–Ryser number, but in [10] they use dλ,µ for the Gale–Ryser number.

We emphasize that our Mλ,µ and dλ,µ are related, but not equal.
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Then we have the following (apparently well-known) result.

Proposition 2.2 (Proposition 1.6). Suppose λ, µ, pλ and mµ are as above. Then the matrix
(Mλ,µ) is the change of basis matrix

pλ(x) =


µ⊢d

Mλ,µmµ(x). (3)

Thus the matrix (Mλ,µ) can be quickly computed in any computer algebra system that allows
one to compare the coefficients of (3), namely Mλ,µ is the coefficient on the monomial xµ in (3).
Note that from Proposition 1.6 also follow the properties listed in Proposition 2.1.

3. Some multi-linear algebra

The elementary facts below will turn out to be useful later. By following the philosophy to not
use coordinates unless necessary, we hope to give a more streamlined approach. As a reference
and for much more regarding multilinear algebra and tensors we suggest [16], which is where
we learned this perspective.

Suppose a hyperplane in PV ⊗d is represented by a point [F] in P(V ⊗d)∗. The multi-
linear structure of the underlying vector space V ⊗d allows F to also be considered as a linear
map F : V ⊗d

−→ C, or equivalently as a multilinear form F : V ×d
−→ C. More explicitly, let

[v1 ⊗ v2 ⊗ · · · ⊗ vd ] ∈ P

V ⊗d


. Then

F (v1 ⊗ v2 ⊗ · · · ⊗ vd) = F (v1, v2, . . . , vd) , (4)

where on the left we are thinking of F as a linear map, and on the right as a multilinear form.
Our choice of interpretation of F and how to evaluate F will be clear from the context so we will
not introduce new notation for the different uses.

Consider µ ⊢ d, µ = (µ1, . . . , µt ) and

uµ1
1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt
t ∈ Sµ1 V ⊗ · · · ⊗ Sµt V .

The form F may be evaluated on points of P (Sµ1 V ⊗ · · · ⊗ Sµt V ) via the inclusion into
P

V ⊗d


F

uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t


= F (u1, . . . , u1, u2, . . . , u2, . . . , ut , . . . , ut ) ,

where ui is repeated µi times.
Now suppose λ and µ are such that Mλ,µ is non-zero, and consider the inclusion

Sλ1 V ⊗ Sλ2 V ⊗ · · · ⊗ Sλs V ⊂ Sµ1 V ⊗ Sµ2 V ⊗ · · · ⊗ Sµt V,

Let v
λ1
1 ⊗ · · · ⊗ v

λs
s ∈ Sλ1 V ⊗ Sλ2 V ⊗ · · · ⊗ Sλs V . Since v j

= v⊗ j for any j , we may make

explicit the above inclusion by writing v
λ1
1 ⊗ · · · ⊗ v

λs
s in the form uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t , where
each vector ui is an element of {v1, . . . , vs} and there is re-ordering of the factors implied by the
inclusion above. In this case, we say that uµ1

1 ⊗uµ2
2 ⊗· · ·⊗uµt

t symmetrizes to v
λ1
1 ⊗· · ·⊗v

λs
s . In

addition, there is an inclusion Sd V ⊂ Sλ1 V ⊗ Sλ2 V ⊗· · ·⊗ Sλs V , so we may further symmetrize
both points to v

λ1
1 · · · v

λs
s .

Now suppose [F] is a symmetric hyperplane in PV ⊗d , i.e, F ∈ Sd V ∗. Then (4) implies that
F takes the same value at every tensor in PV ⊗d that symmetrizes to v

λ1
1 · · · v

λs
s . We will use this

fact several times in the sequel.
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As a matter of notation, if u ∈ {v1, . . . , vn} we will write v1···vn
u to denote the product

omitting u.

4. Geometric ingredients

The hyperdeterminant, the discriminant and their cousins, whose definitions we will recall
below, are all equations of irreducible hypersurfaces in projective space, and moreover each
hypersurface is the dual variety of another variety.

To say that a polynomial splits into many irreducible factors (with multiplicities) geo-
metrically says that the associated hypersurface decomposes as the union of many hypersurfaces
(with multiplicities). Geometrically, we would like to describe one dual variety as the union
of other dual varieties. Our perspective is to study the relation between dual varieties and
(geometric) symmetrization. In what follows we will introduce all of the geometric notions we
will need to prove our main results.

4.1. Segre–Veronese and Chow varieties

Let V be a complex vector space of dimension n. Let λ ⊢ d with #λ = s. Consider the
Segre–Veronese embedding via O(λ), which is given by

Segλ : PV ×s |O(λ)|
−→ P


Sλ1 V ⊗ · · · ⊗ Sλs V


⊆ P


V ⊗d


([a1], . . . , [as]) → [aλ1

1 ⊗ · · · ⊗ aλs
s ].

We call the image of this map a Segre–Veronese variety, and denote it by Segλ


PV ×s


. More

generally, all of the vector spaces could be different, but we do not need that generality here. It
is easy to see that Segλ


PV ×s


is a smooth, non-degenerate, homogeneous variety of dimension

s(n − 1).
When λ = (1d) = (1, . . . , 1) this is the usual Segre embedding, whose image we will denote

by Seg

PV ×d


, and when λ = (d) the map is the dth Veronese embedding, whose image we

will denote by νd (PV ).
Recall that a consequence of the Pieri formula is that for all λ ⊢ d, there is an inclusion

Sd V ⊂ Sλ1 V ⊗ · · · ⊗ Sλs V .

Since G = GL(V ) is reductive, there is a unique G-invariant complement to Sd V in Sλ1 V ⊗

· · · ⊗ Sλs V , which we will denote by W λ.
The linear span of the Segre–Veronese variety is its whole ambient space. This means, in

particular, that there is always a basis of Sλ1 V ⊗· · ·⊗ Sλs V consisting of monomials of the form
v

λ1
1 ⊗ v

λ2
2 ⊗ · · · ⊗ v

λs
s .

For each λ there is a natural projection from W λ, namely

πWλ : P

Sλ1 V ⊗ · · · ⊗ Sλs V


99K PSd V,

whose definition on decomposable elements is

[aλ1
1 ⊗ · · · ⊗ aλs

s ] → aλ1
1 · · · aλs

s ,

and is extended by linearity.
For each λ we define a Chow variety, denoted Chowλ(PV ), as the image of the Segre–

Veronese variety under the projection πWλ . The image of the projection is not changed by
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permutations acting on λ. So Chowλ(PV ×s) is equally the projection of Segσ(λ)(PV ×s) for any
permutation σ ∈ Ss , i.e. Chowλ(PV ×s) = Chowσ(λ)(PV ×s). The number of unique projections
is Mλ,λ. On the other hand, Segλ(PV ×s) and Segπ (PV ×s) are (only) isomorphic if π = σ(λ)

for some permutation σ , and equal only if π = λ.
Chow varieties are also sometimes called coincident root loci (see [8] related to the case

n = 2). When λ = (1d), the Chow variety is the variety of polynomials that are completely
reducible as a product of linear forms, and is sometimes called the split variety, [1]. For general
λ, the Chow variety is the closure of the set of polynomials that are completely reducible as the
product of linear forms that are respectively raised to powers λ1, . . . , λs . One can check that the
definition we have given is equivalent to the usual definition of a Chow variety; see [4].

The following is well known (see [8] for example).

Proposition 4.1. dim(Chowλ(PV )) = (#λ)(n − 1).

Proof. Let dim(V ) = n, and d = |λ|. The Segre–Veronese map PV × · · · × PV −→

P

Sλ1 V ⊗ · · · ⊗ Sλs V


is an embedding, and in particular the dimension of the image is s(n−1).

The projection to PSd V is a finite morphism, so the image is also s(n − 1)-dimensional. �

Remark 4.2. It is interesting to note that the refinement partial order on partitions also exactly
controls the containment partial order on Chow varieties. Namely

Chowλ(PV ) ⊂ Chowµ(PV )

precisely when λ ≺ µ.
We also note that SegPV ×d

∩ PSdV= νd(PV ). More generally, if λ ≺ µ, then SegµPV ×t
∩

P(Sλ1 V ⊗ · · · ⊗ Sλs V ) = SegλPV (after appropriately re-ordering).

4.2. Dual varieties

Let U denote a complex, finite dimensional vector space and let U∗ denote the dual vector
space of linear forms {U −→ C}. For a smooth projective variety X ⊂ PU , the dual variety
X∨

⊂ PU∗ is the variety of tangent hyperplanes to X . Specifically, let Tx X ⊂ U denote the cone
over the tangent space to X at [x] ∈ X . The dual variety of X in PU∗ is defined as

X∨
:=

[H ] ∈ PU∗

| ∃[x] ∈ X,Tx X ⊂ H

.

Remark 4.3. If X ⊂ PU is not smooth the dual variety can still be defined with a bit more care.
Consider the incidence variety (conormal variety)

P = {([x], [H ]) | Tx ⊂ H} ⊂ PU × PU∗
⊂ P(U ⊗ U∗),

which we define only for smooth points of X and then take the Zariski closure (see [23] for a
more thorough treatment). The conormal variety is equipped with projections p1 and p2 to the
first and second factors respectively. The projection p2 to the second factor defines X∨.

Recall that the dual variety of an irreducible variety is also irreducible, [10, Proposition 1.3,
p. 15]. Usually, we expect the dual variety X∨ to be a hypersurface. When this does not occur,
we say that X is defective.

The dual variety of the Veronese νd (PV )∨ is a hypersurface defined by the classical
discriminant of a degree d polynomial on n variables, which we will denote ∆(d),n , see
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[10, Example I.4.15, p. 38]. We are told in the same passage that G. Boole in 1842 introduced
this discriminant and found that deg(∆(d),n) = (n)(d − 1)n−1.

The hyperdeterminant of format n×d , denoted H Dn,d , is the equation of the (irreducible)
hypersurface Seg


PV ×d

∨
⊂ P


V ⊗d

∗
. Note that H Dn,d is a polynomial of degree N (n, d) on

V ⊗d
∗

where N (n, d) can be computed via the generating functions found in [9, Theorem 3.1,
Proposition 3.2] or also [10, Theorem XIV.2.4, p. 454].

Segre–Veronese varieties and their duals are also well-studied objects. In particular, it is
known precisely when they are hypersurfaces [10, Proposition XIII.2.3, p. 441], and their
degree is given in [10, Theorem XIII.2.4, p. 441] via a nice generating function. Since we
consider multiple copies of V rather than vector spaces of different dimensions the duals
of Segre–Veronese varieties are always hypersurfaces. For µ ⊢ d we denote by ∆µ,n the
µ-discriminant,3 which is the equation of Segµ


PV ×t

∨.
When the dual variety Chowλ (PV )∨ is a hypersurface (see Theorem 1.3), we will let Ξλ,n

denote its equation, which is unique up to multiplication by a non-zero scalar.

4.3. Projections and dual varieties

The focus of this article is the symmetrization of the hyperdeterminant. In general the
symmetrization of a polynomial (whose variables are elements of a tensor product) is the map
induced by the map that symmetrizes the variables. This may be described invariantly as follows.
If f ∈ Se(V ⊗d)∗ is a degree e homogeneous polynomial on V ⊗d , then Sym( f ) is the image of
f under the projection Se(V ⊗d)∗ −→ Se(Sd V )∗. While this map can be described in bases in
complete detail, we do not need this for the current work.

To study the dual varieties of the varieties we have introduced we need to understand
relation between taking dual variety and taking projection. This is the content of the following
proposition, which can be found in Landsberg’s book, [16, Proposition 8.2.6.1], and is similar
to [10, Proposition 4.1, p. 31] and closely related to [12]. If W is a subspace of V let W ⊥ denote
the annihilator of W in the dual vector space V ∗, which is isomorphic to the quotient (V/W )∗.

Proposition 4.4 ([16]). Let X ⊂ PV be a variety and let W ⊂ V be a linear subspace. Consider
the rational map π : PV 99K P(V/W ). Assume X ⊄ PW . Then

π(X)∨ ⊆ X∨
∩ PW ⊥

and if π(X) ∼= X, then equality holds.

When W = W λ
= (Sd V ∗)⊥ ⊂ Sλ1 V ⊗ · · · ⊗ Sλs V , the map π is the symmetrization and we

will denote it by Sym.

Proposition 4.5. Suppose U is a subspace of V . Let X ⊂ PV be a variety and let Y = X ∩ PU.
Then Y ∨

⊂ X∨
∩ P(V/U )⊥.

We identify P(V/U )⊥ with U∗ and by abuse of notation write Y ∨
⊂ X∨

∩ PU∗.

Proof. This statement is almost a tautology, but we give a proof anyway. We prove this for
smooth points of Y , the rest follows by standard arguments taking Zariski closure.

3 The µ-discriminant is called an A-discriminant in [10].
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Let HU be a hyperplane in U tangent to Y at some point y. Then HU is naturally associated
to a point p ∈ U∗, and we identify U∗ ∼= (V/U )⊥. This identification allows us to conclude that
p (now considered as a point in V ∗) is associated to a hyperplane H in V that contains V/U . We
will write this as H = HU

+ V/U . To conclude we must show that H is tangent to X at some
point.

The direct sum V = U ⊕ W , where W = V/U induces a decomposition of X and of the
tangent space of X . In particular, we may assume at a general point p ∈ X that there is
w ∈ X ∩ PW , so that p = y + w ∈ X and the decomposition is

Ty+w X = TyY + Tw(X ∩ PW ).

But from this description we see that since HU
⊃ TyY , and by definition W ⊃ Tw(X ∩ PW ), H

is tangent to X at y + w. �

The following statement, which follows directly from the definition, relates the sym-
metrization of the µ-discriminant to the geometric setting. (This statement is essentially
[10, Corollary 4.5].)

Proposition 4.6 (Proposition/Definition). Let µ ⊢ d. The symmetrization of the µ-discriminant
is the µ-discriminant of a symmetric tensor

V(Sym(∆µ,n)) = Segµ


PV ×t∨

∩ P


Sd V ∗


,

where we are using the isomorphism Sd V ∗ ∼=

(Sµ1 V ⊗ · · · ⊗ Sµt V )/Sd V

⊥
.

In particular, the symmetrization of the hyperdeterminant (of format n×d ) is the hyper-
determinant of a symmetric multi-linear form;

V(Sym(H Dd,n)) = Seg

PV ×d

∨

∩ P


Sd V ∗


.

4.4. Plane cubics again

As a prototypical example, we return to plane cubics. It was classically known that decom-
posable plane cubics and Fermat cubics are related by projective duality.

Proposition 4.7. Consider Chow1,1,1P2
= {[l1l2l3] ∈ PS3C3

| 0 ≠ li ∈ C3
} ⊂ PS3C3.

Chow1,1,1 (PV )∨ is the closure of the orbit of the Fermat cubic, i.e. the 3rd secant variety to the
cubic Veronese:

Chow1,1,1


P2
∨

= σ3(ν3P2)

=

h ∈ PS3(C3)∗ | h = e3

1 + e3
2 + e3

3, ei ∈ (C3)∗


⊂ PS3(C3)∗.

In particular, Chow1,1,1 (PV )∨ is a hypersurface.

The proof of 4.7 is a straightforward calculation considering the conditions imposed on a
hyperplane in S3V ∗ that annihilates a tangent vector through a curve on the Chow variety of the
form l1(t)l2(t)l3(t), where for each t li (t) is a linear form. We leave the details for the reader.

Lemma 5.1 implies that since Chow1,1,1 (PV )∨ is a hypersurface, its equation must divide the
symmetrization of the hyperdeterminant of format 3×3×3. This geometric statement, however,
ignores multiplicity. Because of our generality assumption, there are six different tensors –
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l1 ⊗ l2 ⊗ l3 and its permutations – that symmetrize to l1l2l3. This fact implies that there are
6 copies of the equation of Chow1,1,1 (PV )∨ in the symmetrized hyperdeterminant.

Proposition 4.7 is characteristic of the theme of the rest of the article. The splitting of the
hyperdeterminant of a polynomial will depend on the dimensions and multiplicities of the dual
varieties of Chow varieties. We also will show that this is sufficient.

Remark 4.8. One may attempt to do something similar to Proposition 4.7 more generally for
Chowλ(PV ) for any λ ⊢ d, and #λ = s ≤ n. One finds that (as long as s ≤ n),

Chowλ(PV )∨ ⊃ σd(νd(PV )),

where σd(νd(PV )) is the variety of points on secant d −1-planes to the Veronese variety νd(PV ).
Equality does not hold in general. One may use the dual of Chow varieties as a source for
equations for secant varieties of Veronese varieties. The utility of this fact is limited by the degree
of the equations obtained.

4.5. Dimension of the duals to Chow varieties

Herein we prove Theorem 1.3 about the dimension of the duals of Chow varieties. For
the reader’s convenience, we repeat that we need to show that for λ = (1m1 , . . . , pm p ), and
n = dim(V ), Chowλ (PV )∨ a hypersurface with the only exceptions

• n = 2 and m1 ≠ 0
• n > 2, s = 2 and m1 = 1 (so λ = (d − 1, 1)).

The case d = 2 is already well understood, so we will assume d > 2.

Proof of Theorem 1.3. The dimension of a dual variety can be calculated via the Katz
dimension formula, essentially calculating the Hessian at a general point, but we prefer to work
geometrically.

A dual variety X∨ is a hypersurface unless a general tangent hyperplane is tangent to X in
a positive dimensional space. This is the condition that we will apply in both cases. Our proof
follows a standard proof about the non-degeneracy for the dual of Segre–Veronese varieties.

For any n, the Chow variety Chowλ(PV ) does not contain any linear spaces if m1 = 0, so in
this case the dual is a hypersurface.

Now suppose m1 > 0. We must then show that a generic hyperplane is tangent to Chowλ(PV )

along (at least) a line precisely when n = 2 or when n > 2 and λ = (d − 1, 1).
Consider a general point [x] ∈ Chowλ(PV ) with λ = (1m1 , . . . , pm p ) and m1 > 0. Then we

may write x = l f , where f is completely decomposable and l is a linear form. Then the tangent
space is

Tx Chowλ(PV ) = {l f, w f, l f ′z | w, z ∈ V }

= V · f +


i

V · l ·
f

yi
,

where yi are the factors of f .
The linear space PL = P(V · f ) is contained in Chowλ(PV ), and up to reordering of the

factors of x , every linear space on Chowλ(PV ) is of this form.
Suppose H is a general hyperplane that contains a general tangent space Tx := Tx Chowλ(PV )

as above. If H is to be tangent along a line on Chowλ(PV ), then there must be another point of
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the form [l ′ f ] ∈ V · f that is distinct from [x] = [l f ]. So we must choose l ′ ∈ l⊥ ⊂ V and l⊥ is
an n −1 dimensional vector space. Next we consider two cases, first #λ = s = 2 and later s > 2.

If s = 2, consider x = l1 · f , with f = ld−1
2 , and generically we may assume l1 and l2 are

linearly independent. Let y = l3ld−1
2 be a general point in V ld−1

2 , where l3 is assumed to be
independent of l1 so that x and y are independent.

Since H annihilates Tx , we should calculate Ty modulo Tx . The vectors that remain are all of
the form l3l ′2ld−2

2 . If l ′2 is in the line [l2] then l3l ′2ld−2
2 is contained in Tx . Additionally, if l ′2 is

in the line [l1], then l2l ′3ld−2
3 is not on Chow(1, d − 1)PV . So we generically have a non-trivial

condition H(l2l ′3ld−2
3 ) = 0 for each l ′2 ∈ {l1, l2}⊥, which is at most n − 2 conditions. Therefore

the dimension of the space of possible points l ′ f is at least n − 1 − (n − 2) = 1, thus a generic
hyperplane is tangent along a line.

Now suppose s > 2. We will consider first the case s = 3 and later argue that considering this
case suffices.

Let x = l1l i
2l j

3 , where i + j +1 = d and i, j > 0, else we revert to the previous case. Consider

y = l4l i
2l j

3 ∈ V l i
2l j

3 and compute Ty modulo Tx . Points on Ty have the form

l ′4l i
2l j

3 + i · l4l ′2l i−1
2 l j

3 + j · l4l i
2l3l j−1

3 ,

which reduces to

i · l4l ′2l i−1
2 l j

3 + j · l4l i
2l3l j−1

3 ,

modulo Tx . As before, the maximum number of independent conditions we can impose on the
choices of y ∈ V l i

2l j
3 will come from the cases when

l ′2 ∈ {l1, l2}
⊥ and l ′3 ∈ {l1, l3}

⊥,

which are n − 2 + n − 2 = 2n − 4 conditions, and for generic H this bound will be achieved.
When n = 2 no additional conditions are imposed and Chowi, j,1P1 is not a hypersurface. On
the other hand, 2n − 4 independent conditions imposed on a space of dimension n − 1 will not
have positive dimension as soon as n ≥ 3, and thus Chowi, j,1PV is a hypersurface whenever
dim V ≥ 3.

Finally, when s > 3 the analogous calculation provides at least as many conditions to impose
on the n − 1 choices of possible additional points in V f where a generic hyperplane may
be tangent to Chowλ(PV ), so the dimension of the resulting space will not be positive for
dim V ≥ 3. �

5. Proof of main results

We will prove Theorem 1.2 in two steps. The first step is the following.

Lemma 5.1. Suppose λ ⊢ d with #λ = s. Then for every µ ⊢ d with #µ = t such that λ ≺ µ

(by refinement)

Chowλ (PV )∨ ⊂ Segµ


PV ×t∨

∩ P


Sd V ∗


. (5)

Moreover when Chowλ (PV )∨ is a hypersurface it occurs with multiplicity Mλ,µ in Segµ
PV ×t

∨
∩ P


Sd V ∗


, where Mλ,µ is the number of partitions µ that refine λ.
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A generating function for Mλ,µ is given in Proposition 1.6. We will give two proofs of
Lemma 5.1. The first relies only on the two statements Propositions 4.4 and 4.5 and is more
efficient, however it only proves a lower bound for the multiplicity. The second is more
computational and gives some ideas as to how the subsequent statements will be proved. The
second proof has the advantage of providing an exact count for the multiplicity.

Proof (1). Suppose as in the statement that λ ≺ µ. Proposition 4.4 implies

Chowλ(PV )∨ ⊂ Segλ(PV ×t )∨ ∩ P(Sd V )∗.

Up to re-ordering of the tensor product we have

Segλ(PV ×s) = Segµ(PV ×t ) ∩ P(Sλ1 ⊗ · · · ⊗ Sλs V ),

so

Chowλ(PV )∨ ⊂

Segµ(PV ×t ) ∩ P(Sλ1 ⊗ · · · ⊗ Sλs V )

∨
∩ PSd V ∗.

Proposition 4.5 implies that the right hand side of the above expression satisfies
Segµ(PV ×t ) ∩ P(Sλ1 ⊗ · · · ⊗ Sλs V )

∨
∩ P(Sd V )∗

⊂

Segµ(PV ×t )∨ ∩ P(Sλ1 ⊗ · · · ⊗ Sλs V )∗


∩ P(Sd V )∗

= Segµ(PV ×t )∨ ∩ P(Sd V )∗,

and this yields the result (5).
Finally, this occurs for every λ and µ for which we have λ ≺ µ, so Mλ,µ is a lower bound for

the multiplicity of Chowλ ⊂ Segµ(PV ×t )∨ ∩ P(Sd V )∗. �

Proof (2). Suppose F is a symmetric hyperplane tangent to Chowλ


PV ×s


at a general point

[v
λ1
1 · · · v

λs
s ]. Then we have

F


w

v
λ1
1 · · · v

λs
s

vi


= 0 (6)

for all 1 ≤ i ≤ s and for all w ∈ V .
Now we apply the ideas outlined in Section 3. Since λ ≺ µ, we can consider the inclusion

Sλ1 V ⊗ Sλ2 V ⊗ · · · ⊗ Sλs V ⊂ Sµ1 V ⊗ Sµ2 V ⊗ · · · ⊗ Sµt V . (7)

This implies that v
λ1
1 · · · v

λs
s ∈ Sµ1 V ⊗ · · · ⊗ Sµt V , and there exists a tensor uµ1

1 ⊗ uµ2
2

⊗· · ·⊗uµt
t , where each vector ui is an element of {v1, . . . , vs}, and in particular uµ1

1 uµ2
2 · · · uµt

t =

v
λ1
1 · · · v

λs
s . In other words uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t symmetrizes to v
λ1
1 · · · v

λs
s , and thus F


uµ1

1 ⊗

uµ2
2 ⊗ · · · ⊗ uµt

t


= 0 (see Section 3).
We claim that F is tangent to Segµ


PV ×t


at each [uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t ]. Indeed, any
tangent vector through uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t can be written as a linear combination of tensors
of the form

uµ1
1 ⊗ · · · ⊗ uµi−1

i−1 ⊗ w · uµi −1
i ⊗ uµi+1

i+1 ⊗ · · · ⊗ uµt
t

for 1 ≤ i ≤ t and w ∈ V . This tensor symmetrizes to

w ·
uµ1

1 · · · uµt
t

ui
= w ·

v
λ1
1 · · · v

λs
s

v j
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where the equality holds because uµ1
1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt
t symmetrizes to v

λ1
1 · · · v

λs
s and

moreover ui = v j for some j . Since F is symmetric and takes the same value at every tensor
that symmetrize to the same form, (6) implies that F is tangent to Segµ


PV ×t


at each

[uµ1
1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt
t ].

The number of points uµ1
1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt
t ∈ Sµ1 V ⊗ · · · ⊗ Sµt V that symmetrize to

v
λ1
1 · · · v

λs
s is computed by Mλ,µ and is a lower bound for the multiplicity of Chowλ in

Segµ


PV ×t


∩ PSd V ∗.

On the other hand, suppose Chowλ(PV )∨ is a hypersurface and is contained in Segµ


PV ×t


∩

PSd V ∗.
Suppose uµ1

1 ⊗ uµ2
2 ⊗ · · · ⊗ uµt

t ∈ Sµ1 V ⊗ · · · ⊗ Sµt V is a tensor that does not symmetrize

to v
λ1
1 · · · v

λs
s but still [uµ1

1 · · · uµt
t ] ∈ ChowλPV . In particular [uµ1

1 · · · uµt
t ] ≠ [v

λ1
1 · · · v

λs
s ].

If [uµ1
1 · · · uµt

t ] ∈ T
[v

λ1
1 ···v

λs
s ]

Chowλ(PV ) ⊂ [F], then F is not tangent to Chowλ(PV ) at

[uµ1
1 · · · uµt

t ] else this would violate the condition that ChowλPV ×s be a hypersurface.
If [uµ1

1 · · · uµt
t ] is not in the tangent space and Chow(PV ) is not the whole ambient space, a

generic F satisfying s(n − 1) independent conditions will miss a point, thus we can choose an F
that does not vanish at [uµ1

1 · · · uµt
t ].

So Mλ,µ is also the maximum multiplicity of a hypersurface Chowλ(PV )∨ in Segµ(PV ×t )∨∩

PSd V ∗. �

The second step of the proof of Theorem 1.2 is the following.

Lemma 5.2. Suppose F ⊂ V ⊗d is a symmetric hyperplane that is tangent to the Segre–Veronese
variety Segµ


PV ×t


at [u⊗µ1

1 ⊗· · ·⊗ u⊗µt
t ]. Suppose λ ≺ µ. Then [uµ1

1 · · · uµt
t ] ∈ Chowλ (PV )

and F is also tangent to Chowλ(PV ) at [uµ1
1 · · · uµt

t ].

Proof. By hypothesis since λ ≺ µ, there is a symmetrization of u⊗µ1
1 ⊗ · · · ⊗ u⊗µt

t so that

uµ1
1 · · · uµt

t = v
λ1
1 · · · v

λs
s and for all 1 ≤ i ≤ s, vi ∈ {u1, . . . , ut }.

The conditions that F be tangent to Segµ


PV ×t


at [u⊗µ1

1 ⊗ · · · ⊗ u⊗µt
t ] are

F


uµ1
1 ⊗ · · · ⊗ uµi−1

i−1 ⊗ w · uµi −1
i ⊗ uµi+1

i+1 ⊗ · · · ⊗ uµt
t


= 0

for 1 ≤ i ≤ t and w ∈ V . Again we apply the ideas in Section 3. Indeed

uµ1
1 ⊗ · · · ⊗ uµi−1

i−1 ⊗ w · uµi −1
i ⊗ uµi+1

i+1 ⊗ · · · ⊗ uµt
t

symmetrizes to
u

µ1
1 ···uµt

t
ui

w, so

F


uµ1

1 · · · uµt
t

ui
w


= 0, for all 1 ≤ i ≤ p for all w ∈ V .

But since uµ1
1 · · · uµt

t = v
λ1
1 · · · v

λs
s and ui = v j for some i, j ,

F


uµ1

1 · · · uµt
t

ui
w


= F


v

λ1
1 · · · v

λs
s

v j
w


= 0.
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This holds for all w ∈ V , and these are the conditions that F be tangent to Chowλ(PV ) at
[uµ1

1 · · · uµt
t ] = [v

λ1
1 · · · v

λs
s ] so we are done. �

Proof of Theorem 1.2. The proof of the theorem is now just the combination of Lemmas 5.1
and 5.2. Lemma 5.1 showed that

λ≺µ

Chowλ (PV )∨ ⊂ Segµ


PV ×t∨

∩ P


Sd V ∗


,

and moreover that each Chowλ (PV )∨ that is a hypersurface occurs with multiplicity Mλ,µ.
For the other direction, apply Lemma 5.2. Suppose F ∈ Segµ


PV ×t

∨
∩ P


Sd V ∗


. Then

F is a symmetric hyperplane, and moreover, F must be tangent to Segµ


PV ×t


in some point

[v
⊗µ1
1 ⊗· · ·⊗v

⊗µt
t ], and tangent to Chowλ (PV ) for every λ such that v

µ1
1 · · · v

µt
t ∈ Chowλ(PV )

and more specifically for every λ ≺ µ. This means that F ∈ Chowλ (PV )∨ for such λ, and
therefore

Segµ


PV ×t∨

∩ P


Sd V ∗


⊂


λ≺µ

Chowλ (PV )∨ . �

Theorem 1.1 is a specific case of Theorem 1.2, we only need to note that Mλ,λ =


d
λ


is the binomial coefficient (see Section 2). Corollary 1.5 also follows from Theorem 1.2.
This is because in Section 2 we also showed that the multiplicities Mλ,µ can be both
computed and organized in a lower triangular matrix. Using the generating function for Dµ =

deg(Segµ(PV ×t )), found [9, Theorem 3.1, Proposition 3.2] or also [10, p. 454], we can compute
the vector of degrees (Dµ)µ. Therefore we can solve the linear system (Dµ)µ = (Mλ,µ)λ,µ(dλ)λ,
where dλ denotes the degree of Chowλ(PV ×s). For this we use Proposition 1.6 to compute Mλ,µ

efficiently. See the appendix for a few examples.

5.1. A degree formula in the binary case

Theorem 5.3. Suppose V = C2. Let λ = (1m1 , 2m2 , . . . , pm p ), with m =


i mi and suppose
m1 = 0. The degree of Chowλ(P1)∨ is

(m + 1)


m

m2, . . . , m p


1m22m3 · · · (p − 1)m p . (8)

Proof. Consider the hyperdeterminant of format κ = (k1, . . . , kr ), which by [10, Theorem
XIV.2.5] has degree:

deg(Seg(Pk1 × · · · × Pkr )∨) =


λ

(m2 + m2 + · · · + m p + 1)! · dκ,λ ·

p
i=2

(i − 1)mi

mi !
,

where the sum is over λ = (1m1 , 2m2 , . . . , pm p ) with m1 = 0, κ = (k1, . . . , kr ), and dκ,λ is the
Gale–Ryser matrix (whose κ, λ entry corresponds to the number of 0–1 matrices with row sums
κ and column sums λ).

By the Fundamental Theorem of Algebra,

Seg(Pk1 × · · · × Pkr ) ∼= Segκ(P1
× · · · × P1),

so deg(Seg(Pk1 × · · · × Pkr )∨) = deg(∆κ,1).
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Let m =


i mi , m1 = 0 and compare to the formula given by Corollary 1.5:

deg(∆κ,1) =


λ≺κ,λ⊢d,κ⊢d

deg(ChowλP1)∨ · Mλ,κ

=


λ

(m2 + m2 + · · · + m p + 1)! · dκ,λ ·

p
i=2

(i − 1)mi

mi !

=


λ

(m + 1)


m

m2, . . . , m p


·

p
i=2

(i − 1)mi · dκ,λ. (9)

The claim is proved by noting that d(1r ),λ = Mλ,(1r ) (see Proposition 2.1), and that

(m + 1)


m

m2, . . . , m p


·

p
i=2

(i − 1)mi = deg(ChowλP1)∨

provides a solution to the system of equations given by varying κ in (9), but the solution is unique
by Corollary 1.5. �

While d(1r ),λ = Mλ,(1r ), in general dκ,λ ≥ Mλ,κ , (the number of partitions that dominate a
given partition is more than the number of partitions that refine it) so expressing deg(∆κ,1) as an
expression involving the dκ,λ instead of the Mλ,κ will involve a possibly different combination
of degrees of duals of Chow varieties.

The degree formula in the binary case is the same as that of a resultant R f0,..., fm of type
(m2, . . . , m p; 1, 2, . . . , p − 1). So another proof strategy would be to find a way to relate this
dual variety to a resultant whose degree is equal to the degree we have written above. This can
be done, and essentially only relies on the Fundamental Theorem of Algebra, but for brevity we
omit it.

5.2. A generating function for the degree of dual of a Chow variety

Utilizing the expression in Proposition 1.6 relating power-sum symmetric functions and
monomial symmetric functions, we can improve Theorem 1.2, and provide a generating function
for the degree of the duals of the Chow varieties (when they are hypersurfaces).

Theorem 5.4. Suppose dim V ≥ 2. Let dλ denote deg(Chowλ (PV )∨) when it is a hypersurface
and 0 otherwise. Let ∆µ,n denote the equation of the hypersurface Segµ(PV ×t )∨. The degrees
dλ are computed by

µ

deg(∆µ,n)mµ(x) =


λ

dλ pλ(x),

where mµ and pλ are respectively the monomial and power sum symmetric functions.

Proof. By Corollary 1.5 we have

deg(∆µ,n) =


λ≺µ

dλMλ,µ.

Multiply by the monomial symmetric functions mµ(x) on both sides and sum over all partitions
µ, to get

µ⊢d

deg(∆µ,n)mµ(x) =


µ⊢d


λ⊢d

dλMλ,µmµ(x).
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Change the order of summation and apply Proposition 1.6:
µ⊢d

deg(∆µ,n)mµ(x) =


λ⊢d

dλ


µ⊢d

Mλ,µmµ(x) =


λ⊢d

dλ pλ(x). �

Theorem 5.4 can also provide an alternate proof of Theorem 1.3 because it predicts dλ = 0
precisely when Chowλ(PV )∨ is not a hypersurface.

Theorem 5.4 gives an effective way to compute the degrees of the duals of the Chow
varieties because we have a generating function for the degree of the µ-discriminant given by
[10, Theorem XIII.2.4, p. 441]. Combining the GKZ generating function with Theorem 5.4, we
can give a generating function for the degrees of the duals of Chow varieties.

Proposition 5.5. Let dλ be the degree of Chowλ(PV ×s)∨ and extend dλ to dκ,λ =
dλ if κ = (nt )
0 else . Then

κ


λ⊢d

dκ,λ pλ(x)zκ
=


µ⊢d

1
i
(1 + zi ) −


j

µ j z j

i≠ j

(1 + zi )

2 mµ(x).

Proof. From [10, Theorem XIII.2.4, p. 441] we have
κ

N (κ; µ)zκ
=

1
i
(1 + zi ) −


j

µ j z j

i≠ j

(1 + zi )

2 ,

where N (κ; µ) is the degree of Segµ(Pk1 × · · · × Pkt )∨ and κ ∈ Zt
>0. Since we only care about

the hyperdeterminants where the dimensions ki are all equal, i.e.

N (n, . . . , n; µ1, . . . , µt ) = deg(∆µ,n),

we consider the coefficient of zn
1 · · · zn

t on both sides. We denote by

zn

1 · · · zn
t


the operation “take

the coefficient of zn
1 · · · zn

t ”.
Multiply by mµ(x), sum over all µ ⊢ d , and apply Theorem 5.4

λ⊢d

dκ,λ pλ(x) =


µ⊢d

N (n, . . . , n; µ1, . . . , µt )mµ(x)

=

zn

1 · · · zn
t


µ⊢d

1
i
(1 + zi ) −


j

µ j z j

i≠ j

(1 + zi )

2 mµ(x),

and this implies the result. �

5.3. Examples

We can use Proposition 5.5 to compute the degrees of the duals to the Chow varieties
explicitly. We found it convenient to separately apply Theorem 5.4 and Proposition 1.6 to do
the same computation. We have included our Maple code that does this in the ancillary files to
the arXiv version of this paper.
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Let dλ denote the degree of Ξλ, and let Dµ denote the degree of ∆µ,n . Consider the case of
octic curves, d = 8 and n = 2. Using the GKZ generating function, we find that

(D(8), D(6,2), D(5,3), D(4,4), D(4,2,2), D(3,3,2), D(2,2,2,2), D(18))

= (14, 44, 62, 68, 200, 236, 848, 60032).

The unique solution to Mλ,µdλ = Dµ is

(d(8), d(6,2), d(5,3), d(4,4), d(4,2,2), d(3,3,2), d(2,2,2,2)) = (14, 30, 48, 27, 36, 48, 5).

Notice that d(2,2,2,2) = 5 is a relic of the fact that Chow(2,2,2,2)(P1)∨ is the hypersurface given by
the determinant of the 5×5 catalecticant (Hankel) matrix of partial derivatives. To a binary form
a8,0x8

+ a7,1x7 y + a6,2x6 y2
+ a5,3x5 y3

+ a4,4x4 y4
+ a3,5x3 y5

+ a2,6x2 y6
+ a1,7xy7

+ a0,8 y8

the associated Hankel matrix is
a8,0 a7,1 a6,2 a5,3 a4,4
a7,1 a6,2 a5,3 a4,4 a3,5
a6,2 a5,3 a4,4 a3,5 a2,6
a5,3 a4,4 a3,5 a2,6 a1,7
a4,4 a3,5 a2,6 a1,7 a0,8

 ,

and the determinant of this matrix gives the degree 5 hypersurface associated to the (closure
of) forms that are sums of four 8th powers. The analogous feature propagates to all
(Chow(2,2,...,2)P1)∨.

Proceeding in the same way, in the case d = 4, n = 3 we find

(D(4), D(3,1), D(2,2), D(2,1,1), D(14)) = (27, 27, 129, 225, 1269)

and the unique solution to Mλ,µdλ = Dµ is

(d(4), d(2,2), d(2,1,1), d(14)) = (27, 51, 48, 15).

Finally for d = 5, n = 4, we have

(D(5), D(4,1), D(3,2), D(3,1,1), D(2,2,1), D(2,13), D(15))

= (48, 48, 360, 576, 1440, 7128, 68688),

and the unique solution to Mλ,µdλ = Dµ is

(d(5), d(3,2), d(3,1,1), d(2,2,1), d(2,13), d(15)) = (48, 312, 108, 384, 480, 192).

To produce more examples, we are only limited by our ability to handle more coefficients of
larger power series.
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