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Abstract

For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjec-
tured that there exist a family of inequalities each of which is stronger than the classical Brunn–Minkowski
inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume
inequality. It is shown that these two families of inequalities are “equivalent” in that once either of these
inequalities is established, the other must follow as a consequence. All of the conjectured inequalities are
established for plane convex bodies.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The fundamental Brunn–Minkowski inequality for convex bodies (compact convex subsets
with nonempty interiors) states that for convex bodies K , L in Euclidean n-space, Rn , the volume
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of the bodies and of their Minkowski sum K + L = {x + y : x ∈ K and y ∈ L}, are related by

V (K + L)
1
n ≥ V (K )

1
n + V (L)

1
n ,

with equality if and only if K and L are homothetic. As the first milestone of the Brunn–
Minkowski theory, the Brunn–Minkowski inequality is a far-reaching generalization of the
isoperimetric inequality. The Brunn–Minkowski inequality exposes the crucial log-concavity
property of the volume functional because the Brunn–Minkowski inequality has an equivalent
formulation as: for all real λ ∈ [0, 1],

V ((1 − λ)K + λL) ≥ V (K )1−λV (L)λ, (1.1)

and for λ ∈ (0, 1), there is equality if and only if K and L are translates. A big part of the classi-
cal Brunn–Minkowski theory is concerned with establishing generalizations and analogues of the
Brunn–Minkowski inequality for other geometric invariants (see, e.g., [1,56,61] for some recent
developments). The excellent survey article of Gardner [18] gives a comprehensive account of
various aspects and consequences of the Brunn–Minkowski inequality.

If hK and hL are the support functions (see (2.1) for the definition) of K and L , the Minkowski
combination (1 − λ)K + λL is given by an intersection of half-spaces,

(1 − λ)K + λL =


u∈Sn−1

{x ∈ Rn
: x ·u ≤ (1 − λ)hK (u) + λhL(u)},

where x ·u denotes the standard inner product of x and u in Rn . Assume that K and L are
convex bodies that contain the origin in their interiors, then the log Minkowski combination,
(1 − λ)·K +o λ·L , is defined by

(1 − λ)·K +o λ·L =


u∈Sn−1

{x ∈ Rn
: x ·u ≤ hK (u)1−λhL(u)λ}. (1.2)

The arithmetic–geometric mean inequality shows that for convex bodies K , L and λ ∈ [0, 1],

(1 − λ)·K +o λ·L ⊆ (1 − λ)K + λL . (1.3)

What makes the log Minkowski combinations difficult to work with is that while the convex body
(1 − λ)K + λL has (1 − λ)hK + λhL as its support function, the convex body (1 − λ)·K +o λ·L
is the Wulff shape of the function h1−λ

K hλ
L .

The authors conjecture that for origin-symmetric bodies (i.e., unit balls of finite dimensional
Banach spaces), there is a stronger inequality than the Brunn–Minkowski inequality (1.1), the
log-Brunn–Minkowski inequality.

Problem 1.1. Show that if K and L are origin-symmetric convex bodies in Rn , then for all
λ ∈ [0, 1],

V ((1 − λ)·K +o λ·L) ≥ V (K )1−λV (L)λ. (1.4)

That for origin-symmetric bodies, the log-Brunn–Minkowski inequality (1.4) is stronger than
its classical counterpart (1.1) can be seen from the arithmetic–geometric mean inequality (1.3).
Simple examples (e.g. an origin-centered cube and one of its translates) show that (1.4) cannot
hold for all convex bodies.

As is well known, the classical Brunn–Minkowski inequality (1.1) has as a consequence an
inequality of fundamental importance: the Minkowski mixed-volume inequality. One of the aims
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of this paper is to show that the log-Brunn–Minkowski inequality (1.4) also has an important
consequence, the log-Minkowski inequality.

Problem 1.2. Show that if K and L are origin-symmetric convex bodies in Rn , then
Sn−1

log
hL

hK
dV̄K ≥

1
n

log
V (L)

V (K )
. (1.5)

Here V̄K is the cone-volume probability measure of K (see definitions (2.5), (2.6), (2.8)).
Just as, for origin-symmetric bodies, the log-Brunn–Minkowski inequality (1.4) is stronger

than its classical counterpart (1.1), for origin-symmetric bodies, the log-Minkowski inequality
(1.5) turns out to be stronger than its classical counterpart.

The classical Minkowski mixed-volume inequality and the classical Brunn–Minkowski in-
equality are “equivalent” in that once either of these inequalities has been established, then the
other can be obtained as a simple consequence. One of the aims of this paper is to demon-
strate that the log-Brunn–Minkowski inequality (1.4) and the log-Minkowski inequality (1.5) are
“equivalent” in that once either of these inequalities has been established, then the other can
be obtained as a simple consequence, although perhaps a bit less simply than in the classical
(p = 1) case.

Even in the plane the above problems are non-trivial and unsolved. One of the aims of
this paper is to establish the plane log-Brunn–Minkowski inequality along with its equality
conditions.

Theorem 1.3. If K and L are origin-symmetric convex bodies in the plane, then for all real
λ ∈ [0, 1],

V ((1 − λ)·K +o λ·L) ≥ V (K )1−λV (L)λ. (1.6)

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L are dilates or K and L
are parallelograms with parallel sides.

In addition, in the plane, we will establish the log-Minkowski inequality along with its equality
conditions.

Theorem 1.4. If K and L are origin-symmetric convex bodies in the plane, then,
S1

log
hL

hK
dV̄K ≥

1
2

log
V (L)

V (K )
, (1.7)

with equality if and only if, either K and L are dilates or K and L are parallelograms with
parallel sides.

The above Minkowski combinations and problems are merely two (important) frames of a
long film. In the early 1960s, Firey (see e.g., [60, p. 383] and [20]) defined for each p ≥ 1,
what have become known as Minkowski–Firey L p-combinations (or simply L p-combinations)
of convex bodies. If K and L are convex bodies that contain the origin in their interiors and
0 ≤ λ ≤ 1 then the Minkowski–Firey L p-combination, (1 − λ)·K +p λ·L , is defined by

(1 − λ)·K +p λ·L =


u∈Sn−1


x ∈ Rn

: x ·u ≤

(1 − λ)hK (u)p

+ λhL(u)p1/p


. (1.8)
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Firey also established the L p-Brunn–Minkowski inequality (an inequality that is also known as
the Brunn–Minkowski–Firey inequality). If p > 1, then

V ((1 − λ)·K +p λ·L) ≥ V (K )1−λV (L)λ, (1.9)

with equality for λ ∈ (0, 1) if and only if K = L .
In the mid 1990s, it was shown in [40,41], that a study of the volume of Minkowski–Firey

L p-combinations leads to an embryonic L p-Brunn–Minkowski theory. This theory has expanded
rapidly (see e.g. [5,8–12,16,18,22–30,32–55,58,62–65,67–69]).

Note that definition (1.8) makes sense for all p > 0. The case where p = 0 is the limiting case
given by (1.2). The crucial difference between the cases where 0 < p < 1 and the cases where
p ≥ 1 is that the function


(1 − λ)h p

K + λh p
L

1/p
is the support function of (1 − λ)·K +p λ·L

when p ≥ 1, but this is not necessarily the case whenever 0 < p < 1. When 0 < p < 1,
the convex body (1 − λ)·K +p λ·L is the Wulff shape of


(1 − λ)h p

K + λh p
L

1/p
. Unfortunately,

progress in the L p-Brunn–Minkowski theory for p < 1 has been slow. The present work is a
step in that direction.

It is easily seen from definition (1.8) that for fixed convex bodies K , L and fixed λ ∈ [0, 1], the
L p-Minkowski–Firey combination (1 − λ)·K +p λ·L is increasing with respect to set inclusion,
as p increases; i.e., if 0 ≤ p ≤ q ,

(1 − λ)·K +p λ·L ⊆ (1 − λ)·K +q λ·L . (1.10)

From (1.10) one sees that the classical Brunn–Minkowski inequality (1.1) (i.e. the case p = 1
of (1.9)) immediately yields Firey’s L p-Brunn–Minkowski inequality (1.9) for each p > 1.
The difficult situation arises when p ∈ [0, 1) because now we are seeking inequalities that are
stronger than the classical Brunn–Minkowski inequality.

The L p-Brunn–Minkowski inequality (1.9) cannot be established for all convex bodies that
contain the origins in their interiors, for any fixed p < 1. Even an origin-centered cube and one
of its translates show that. However, the following problem is of fundamental importance in the
L p-Brunn–Minkowski theory.

Problem 1.5. Suppose 0 < p < 1. Show that if K and L are origin-symmetric convex bodies in
Rn , then for all λ ∈ [0, 1],

V ((1 − λ)·K +p λ·L) ≥ V (K )1−λV (L)λ. (1.11)

From the monotonicity of the L p-Minkowski combination (1.10), it is clear that the log-
Brunn–Minkowski inequality implies the L p-Brunn–Minkowski inequalities for each p > 0. We
note that there are easy examples that show that the L p-Brunn–Minkowski inequality (1.11) fails
to hold for any p < 0 — even if attention were restricted to simple origin symmetric bodies.

One of the aims of this paper is to show that the L p-Brunn–Minkowski inequality (1.5) can
be formulated equivalently as the L p-Minkowski inequality.

Problem 1.6. Suppose 0 < p < 1. Show that if K and L are origin-symmetric convex bodies in
Rn , then

Sn−1


hL

hK

p

dV̄K

 1
p

≥


V (L)

V (K )

 1
n

. (1.12)
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For each p ≥ 1, the inequalities (1.11) and (1.12) are well known to hold for all convex bodies
(that contain the origin in their interior) and are also well known to be equivalent, in that given
one, the other is an easy consequence.

From Jensen’s inequality it can be seen that the L p-Minkowski inequality (1.12) for the case
p = 0, the log-Minkowski inequality (1.5), is stronger than any of the L p-Minkowski inequalities
(1.12). The L p-Minkowski inequality for the case p = 1, the classical Minkowski mixed-volume
inequality, is weaker than all the cases of (1.12) where p ∈ (0, 1).

Even in the plane the above problems are non-trivial and unsolved. One of the aims of this
paper is to solve the problems in the plane. Solutions in higher dimensions would be highly
desirable.

We will prove the following theorems.

Theorem 1.7. Suppose 0 < p < 1. If K and L are origin-symmetric convex bodies in the plane,
then for all λ ∈ [0, 1],

V ((1 − λ)·K +p λ·L) ≥ V (K )1−λV (L)λ. (1.13)

When λ ∈ (0, 1), equality in the inequality holds if and only if K = L.

Observe that the equality conditions here are different than those of Theorem 1.3.

Theorem 1.8. Suppose 0 < p < 1. If K and L are origin-symmetric convex bodies in the plane,
then, 

S1


hL

hK

p

dV̄K

 1
p

≥


V (L)

V (K )

 1
2

, (1.14)

with equality if and only if K and L are dilates.

Observe that the equality conditions here are different than those of Theorem 1.4.
The approach used in this paper to establish the geometric inequalities of these theorems is

new.

2. Preliminaries

For quick later reference we develop some notation and basic facts about convex bodies. Good
general references for the theory of convex bodies are provided by the books of Gardner [19],
Gruber [21], Leichtweiss [31], Schneider [60], and Thompson [66].

The support function hK : Rn
→ R, of a compact, convex set K ⊂ Rn is defined, for x ∈ Rn ,

by

hK (x) = max{x ·y : y ∈ K }, (2.1)

and uniquely determines the convex set. Obviously, for a pair K , L ⊂ Rn of compact, convex
sets, we have

hK ≤ hL , if and only if , K ⊆ L . (2.2)

Note that support functions are positively homogeneous of degree one and subadditive.
A convex body is a compact convex subset of Rn with non-empty interior. A boundary point

x ∈ ∂K of the convex body K is said to have u ∈ Sn−1 as one of its outer unit normals provided
x ·u = hK (u). A boundary point is said to be singular if it has more than one unit normal vector.
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It is well known (see, e.g., [60]) that the set of singular boundary points of a convex body has
(n − 1)-dimensional Hausdorff measure Hn−1 equal to 0.

Let K be a convex body in Rn and νK : ∂K → Sn−1 the generalized Gauss map. For arbi-
trary convex bodies, the generalized Gauss map is properly defined as a map into subsets of Sn−1.
However, Hn−1-almost everywhere on ∂K it can be defined as a map into Sn−1. For each Borel
set ω ⊂ Sn−1, the inverse spherical image ν−1

K (ω) of ω is the set of all boundary points of K
which have an outer unit normal belonging to the set ω. Associated with each convex body K in
Rn is a Borel measure SK on Sn−1 called the Aleksandrov–Fenchel–Jessen surface area measure
of K , defined by

SK (ω) = Hn−1(ν−1
K (ω)), (2.3)

for each Borel set ω ⊆ Sn−1; i.e., SK (ω) is the (n − 1)-dimensional Hausdorff measure of the
set of all points on ∂K that have a unit normal that lies in ω.

The set of compact convex subsets of Rn will be viewed as equipped with the Hausdorff
metric and thus a sequence of convex bodies, Ki , is said to converge to a body K , i.e.,

lim
i→∞

Ki = K ,

provided that their support functions converge in C(Sn−1), with respect to the max-norm, i.e.,

∥hKi − hK ∥∞ → 0.

We shall make use of the weak continuity of surface area measures; i.e., if K is a convex body
and Ki is a sequence of convex bodies then

lim
i→∞

Ki = K H⇒ lim
i→∞

SKi = SK , weakly. (2.4)

Let K be a convex body in Rn that contains the origin in its interior. The cone-volume measure
VK of K is a Borel measure on the unit sphere Sn−1 defined for a Borel ω ⊆ Sn−1 by

VK (ω) =
1
n


x∈ν−1

K (ω)

x ·νK (x) d Hn−1(x), (2.5)

and thus

dVK =
1
n

hK d SK . (2.6)

Since,

V (K ) =
1
n


u∈Sn−1

hK (u) d SK (u), (2.7)

we can turn the cone-volume measure into a probability measure on the unit sphere by normal-
izing it by the volume of the body. The cone-volume probability measure V̄K of K is defined by

V̄K =
1

V (K )
VK . (2.8)
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Suppose K , L are convex bodies in Rn that contain the origin in their interiors. For p ≠ 0,
the L p-mixed volume Vp(K , L) can be defined as

Vp(K , L) =


Sn−1


hL

hK

p

dVK . (2.9)

We need the normalized L p-mixed volume V̄p(K , L), which was first defined in [48],

V̄p(K , L) =


Vp(K , L)

V (K )

 1
p

=


Sn−1


hL

hK

p

dV̄K

 1
p

.

Letting p → 0 gives

V̄0(K , L) = exp


Sn−1
log

hL

hK
dV̄K


,

which is the normalized log-mixed volume of K and L . From Jensen’s inequality we know that
p → V̄p(K , L) is strictly monotone increasing, unless hL/hK is constant on suppSK .

Suppose that the function kt (u) = k(t, u) : I × Sn−1
→ (0, ∞) is continuous, where I ⊂ R

is an interval. For fixed t ∈ I , let

Kt =


u∈Sn−1

{x ∈ Rn
: x ·u ≤ k(t, u)}

be the Wulff shape (or Aleksandrov body) associated with the function kt . We shall make use of
the well-known fact that

hKt ≤ kt and hKt = kt , a.e. w.r.t. SKt , (2.10)

for each t ∈ I . If kt is the support function of a convex body, then hKt = kt , everywhere.
The following variant (proved in e.g., [25]) of Aleksandrov’s Lemma (see e.g., [2, p. 103]

or [60, p. 345]) will be needed.

Lemma 2.1. Suppose k(t, u) : I × Sn−1
→ (0, ∞) is continuous, where I ⊂ R is an open

interval. Suppose also that the convergence in

∂k(t, u)

∂t
= lim

s→0

k(t + s, u) − k(t, u)

s

is uniform on Sn−1. If {Kt }t∈I is the family of Wulff shapes associated with kt , then

dV (Kt )

dt
=


Sn−1

∂k(t, u)

∂t
d SKt (u).

Suppose K , L are convex bodies in Rn . The inradius r(K , L) and outradius R(K , L) of K
with respect to L are defined by

r(K , L) = sup{t > 0 : x + t L ⊂ K and x ∈ Rn
},

R(K , L) = inf{t > 0 : x + t L ⊃ K and x ∈ Rn
}.

If L is the unit ball, then r(K , L) and R(K , L) are the radii of maximal inscribable and minimal
circumscribable balls of K , respectively. Obviously from the definition, it follows that

r(K , L) = 1/R(L , K ). (2.11)
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If K , L happen to be origin-symmetric convex bodies, then clearly

r(K , L) = min
u∈Sn−1

hK (u)

hL(u)
and R(K , L) = max

u∈Sn−1

hK (u)

hL(u)
. (2.12)

It will be convenient to always translate K so that for 0 ≤ t < r = r(K , L), the function
kt = hK − thL is strictly positive. Let Kt denote the Wulff shape associated with the function
kt ; i.e., let Kt be the convex body given by

Kt = {x ∈ Rn
: x ·u ≤ hK (u) − thL(u) for all u ∈ Sn−1

}. (2.13)

Note that K0 = K , and that obviously

lim
t→0

Kt = K0 = K .

From definition (2.13) and (2.2) we immediately have

Kt = {x ∈ Rn
: x + t L ⊆ K }. (2.14)

Using (2.14) we can extend the definition of Kt for the case where t = r = r(K , L):

Kr = {x ∈ Rn
: x + r L ⊆ K }.

It is not hard to show (see e.g. the proof of (6.5.11) in [60]) that Kr is a degenerate convex set
(i.e. has empty interior) and that

lim
t→r

V (Kt ) = V (Kr ) = 0. (2.15)

From Lemma 2.1 and (2.9), we obtain the well-known fact that for 0 < t < r = r(K , L),

d

dt
V (Kt ) = −nV1(Kt , L). (2.16)

Integrating both sides of (2.16), and using (2.15), give the following lemma.

Lemma 2.2. Suppose K and L are convex bodies, and for 0 ≤ t < r = r(K , L), the body Kt is
the Wulff shape associated with the positive continuous function kt = hK − thL . Then, whenever
0 ≤ t ≤ r = r(K , L),

V (K ) − V (Kt ) = n
 t

0
V1(Ks, L) ds. (2.17)

More general versions of Lemma 2.2 can be found in the literature (see e.g., Diskant [13]).

3. Equivalence of the L p-Brunn–Minkowski and the L p-Minkowski inequalities

In this section, we show that for each fixed p ≥ 0 the L p-Brunn–Minkowski inequality and the
L p-Minkowski inequality are equivalent in that one is an easy consequence of the other. In par-
ticular, the log-Brunn–Minkowski inequality and the log-Minkowski inequality are equivalent.

Suppose p > 0. If K and L are convex bodies that contain the origin and s, t ≥ 0 (not both
zero) the L p-Minkowski combination s·K +p t ·L , is defined by

s·K +p t ·L = {x ∈ Rn
: x ·u ≤


shK (u)p

+ thL(u)p1/p for all u ∈ Sn−1
}.
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We see that for a convex body K and real s ≥ 0 the relationship between the L p-scalar multipli-
cation, s·K , and Minkowski scalar multiplication sK is given by:

s·K = s
1
p K .

Suppose p > 0 is fixed and suppose the following “weak” L p-Brunn–Minkowski inequality
holds for all origin-symmetric convex bodies K and L in Rn such that V (K ) = 1 = V (L):

V ((1 − λ)·K +p λ·L) ≥ 1, (3.1)

for all λ ∈ (0, 1). We claim that from this it follows that the following seemingly “stronger”
L p-Brunn–Minkowski inequality holds: if K and L are origin-symmetric convex bodies in Rn ,
then

V (s·K +p t ·L)
p
n ≥ sV (K )

p
n + tV (L)

p
n , (3.2)

for all s, t ≥ 0. To see this assume that the “weak” L p-Brunn–Minkowski inequality (3.1) holds
and that K and L are arbitrary origin-symmetric convex bodies. Define the volume-normalized

bodies K̄ = V (K )−
1
n K and L̄ = V (L)−

1
n L . Then (3.1) gives

V ((1 − λ)·K̄ +p λ·L̄) ≥ 1. (3.3)

Let λ = V (L)
p
n (V (K )

p
n + V (L)

p
n )−

p
n . Then

(1 − λ)·K̄ +p λ·L̄ =
1

(V (K )
p
n + V (L)

p
n )

1
p

(K +p L).

Therefore, from (3.3), we get

V (K +p L)
p
n ≥ V (K )

p
n + V (L)

p
n .

If we now replace K with s·K and L with t ·L and note that V (s·K )
p
n = sV (K )

p
n , we obtain the

desired “stronger” L p-Brunn–Minkowski inequality (3.2).

Lemma 3.1. Suppose p > 0. When restricted to origin-symmetric convex bodies in Rn , the L p-
Brunn–Minkowski inequality (1.11) and the L p-Minkowski inequality (1.12) are equivalent.

Proof. Suppose K and L are fixed origin-symmetric convex bodies in Rn . For 0 ≤ λ ≤ 1, let

Qλ = (1 − λ)·K +p λ·L;

i.e., Qλ is the Wulff shape associated with the function qλ =

(1 − λ)h p

K + λh p
L

 1
p . It will be

convenient to consider qλ as being defined for λ in the open interval (−ϵo, 1 + ϵo), where ϵo > 0
is chosen so that for λ ∈ (−ϵo, 1 + ϵo), the function qλ is strictly positive.

We first assume that the L p-Minkowski inequality (1.12) holds. From (2.7), the fact that

hQλ =

(1 − λ)h p

K + λh p
L

 1
p a.e. with respect to the surface area measure SQλ , (2.6) and (2.9),

and finally the L p-Minkowski inequality (1.12), we have

V (Qλ) =
1
n


Sn−1

hQλ d SQλ

=
1
n


Sn−1

((1 − λ)h p
K + λh p

L)h1−p
Qλ

d SQλ
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= (1 − λ)Vp(Qλ, K ) + λVp(Qλ, L)

≥ (1 − λ)V (Qλ)
n−p

n V (K )
p
n + λV (Qλ)

n−p
n V (L)

p
n . (3.4)

This gives

V (Qλ) ≥


(1 − λ)V (K )

p
n + λV (L)

p
n

n/p
≥ V (K )1−λV (L)λ, (3.5)

which is the L p-Brunn–Minkowski inequality (1.11).
Now assume that the L p-Brunn–Minkowski inequality (1.11) holds. As was seen at the

beginning of this section, this inequality (in fact a seemingly weaker one) implies the seemingly
stronger L p-Brunn–Minkowski inequality (3.2). From inequality (3.2) we may conclude that

the function f : [0, 1] → (0, ∞), given by f (λ) = V (Qλ)
p
n , has the property that f (λ) ≥

(1 − λ) f (0) + λ f (1). Unfortunately this is less than concavity, which is the property of f
we require. In the classical case (p = 1) the desired concavity can be obtained (as described
in e.g., Schneider [60, p. 309]) by applying (3.2) to subintervals. That this argument works for
p < 1 is not obvious since a property of Wulff shapes is needed. A full argument runs as follows.

For given σ, τ ∈ [0, 1], let

Kσ = (1 − σ)·K +p σ ·L , Kτ = (1 − τ)·K +p τ ·L .

Since Kσ is the Wulff shape of the function ((1 − σ)h p
K + σh p

L)1/p, we have

hKσ ≤ ((1 − σ)h p
K + σh p

L)1/p.

If λ ∈ [0, 1] and α = (1 − λ)σ + λτ , this gives

(1 − λ)h p
Kσ

+ λh p
Kτ

≤ (1 − λ)[(1 − σ)h p
K + σh p

L ] + λ[(1 − τ)h p
K + τh p

L ]

= [(1 − λ)(1 − σ) + λ(1 − τ)]h p
K + [(1 − λ)σ + λτ ]h p

L

= (1 − α)h p
K + αh p

L .

Thus, [(1 − λ)h p
Kσ

+ λh p
Kτ

]
1/p

≤ [(1 − α)h p
K + αh p

L ]
1/p and taking the Wulff shapes of these

functions allows us to conclude that

(1 − λ)·Kσ +p λ·Kτ ⊆ (1 − α)·K +p α·L .

This gives

f ((1 − λ)σ + λτ) = V ((1 − α)·K +p α·L)p/n

≥ V ((1 − λ)·Kσ +p λ·Kτ )
p/n

≥ (1 − λ)V (Kσ )p/n
+ λV (Kτ )

p/n

= (1 − λ) f (σ ) + λ f (τ ),

which is the desired concavity of f .
The convex body Qλ is the Wulff shape of the function qλ = ((1 − λ) h p

K + λ h p
L)1/p. Now,

the convergence as λ → 0 in

qλ − q0

λ
−→

h1−p
K

p
(h p

L − h p
K ) =

h1−p
K h p

L − hK

p
,
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is uniform on Sn−1. By Lemma 2.1, (2.6) and (2.9), and (2.7),

dV (Qλ)

dλ


λ=0

=


Sn−1

h1−p
K h p

L − hK

p
d SK =

n

p
[Vp(K , L) − V (K )].

Therefore, the concavity of f yields

V (K )
p−n

n (Vp(K , L) − V (K )) = f ′(0) ≥ f (1) − f (0) = V (L)
p
n − V (K )

p
n ,

which gives the L p-Minkowski inequality (1.12). �

Lemma 3.2. For origin symmetric convex bodies in Rn , the log-Brunn–Minkowski inequal-
ity (1.4) and the log-Minkowski inequality (1.5) are equivalent.

Proof. Suppose K and L are fixed origin-symmetric convex bodies in Rn . For 0 ≤ λ ≤ 1, let

Qλ = (1 − λ)·K +o λ·L;

i.e., Qλ is the Wulff shape associated with the function qλ = h1−λ
K hλ

L . It will be convenient to
consider qλ as being defined for all λ in the open interval (−ϵo, 1 + ϵo), for some sufficiently
small ϵo > 0 and let Qλ be the Wulff shape associated with the function qλ. Observe that since
q0 and q1 are the support functions of convex bodies, Q0 = K and Q1 = L .

We will first suppose that we have the log-Minkowski inequality (1.5) for K and L . Now
hQλ = h1−λ

K hλ
L a.e. with respect to SQλ , and thus,

0 =
1

nV (Qλ)


Sn−1

hQλ log
h1−λ

K hλ
L

hQλ

d SQλ

= (1 − λ)
1

nV (Qλ)


Sn−1

hQλ log
hK

hQλ

d SQλ + λ
1

nV (Qλ)


Sn−1

hQλ log
hL

hQλ

d SQλ

≥ (1 − λ)
1
n

log
V (K )

V (Qλ)
+ λ

1
n

log
V (L)

V (Qλ)

=
1
n

log
V (K )1−λV (L)λ

V (Qλ)
. (3.6)

This gives the log-Brunn–Minkowski inequality (1.4).
Suppose now that we have the log-Brunn–Minkowski inequality (1.4) for K and L . The body

Qλ is the Wulff shape associated with the function qλ = h1−λ
K hλ

L , and the convergence as λ → 0
in

qλ − q0

λ
−→ hK log

hL

hK
,

is uniform on Sn−1. By Lemma 2.1,

dV (Qλ)

dλ


λ=0

=


Sn−1

hK log
hL

hK
d SK . (3.7)

However, in a manner similar to that used in the proof of Lemma 3.1, the log-Brunn–Minkowski
inequality (1.4) can be used to conclude that λ → log V (Qλ) is a concave function, and thus

1
V (Q0)

dV (Qλ)

dλ


λ=0

≥ V (Q1) − V (Q0) = log V (L) − log V (K ). (3.8)

When (3.7) and (3.8) are combined the result is the log-Minkowski inequality (1.5). �
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4. Blaschke’s extension of the Bonnesen inequality

From this point forward we shall work exclusively in the Euclidean plane. We will make use
of the properties of mixed volumes of compact convex sets, some of which might possibly be
degenerate (i.e., not convex bodies). For quick later reference we list these properties now.

Suppose K , L are plane compact convex sets. Of fundamental importance is the fact that for
real s, t ≥ 0, the area, V (sK +t L), of sK +t L = {sx +t y : x ∈ K and y ∈ L} is a homogeneous
polynomial of degree 2 in s and t :

V (sK + t L) = s2V (K ) + 2stV (K , L) + t2V (L). (4.1)

The coefficient V (K , L), the mixed area of K and L , is uniquely defined by (4.1) if we require
(as we always will) that it is symmetric in its arguments; i.e.

V (K , L) = V (L , K ). (4.2)

From its definition, we see that the mixed area functional V (·, ·) is invariant under independent
translations of its arguments. Clearly, for each K ,

V (K , K ) = V (K ). (4.3)

The mixed area of K , L is just the mixed volume V1(K , L) in the plane and thus from (2.9),
we see it has the integral representation

V (K , L) =
1
2


S1

hL(u) d SK (u). (4.4)

For u ∈ S1 we will write u⊥ for the image of u under the counterclockwise rotation by a right
angle. Observe that if K is degenerate with K = {su : −c ≤ s ≤ c}, where u ∈ S1 and c > 0,
then SK is an even measure concentrated on the two point set {±u⊥

} with total mass 4c.
From (4.1), or from (4.4), we see that for plane compact convex K , L , L ′ and real s, s′

≥ 0,

V (K , sL + s′L ′) = sV (K , L) + s′V (K , L ′), (4.5)

and this, together with (4.2), shows that the mixed area functional V (·, ·) is linear (with respect
to Minkowski linear combinations) in both arguments.

From (4.4) we see that for plane compact convex K , L , L ′, we have

L ⊆ L ′
H⇒ V (K , L) ≤ V (K , L ′), (4.6)

with equality if and only if hL = hL ′ a.e. w.r.t. SK .
The basic inequality in this section, inequality (4.7), is Blaschke’s extension of the Bonnesen

inequality. It has been a valuable tool used to establish a variety of isoperimetric inequalities
(see e.g., [6,15,57,59]). In the form presented below, Lemma 4.1 can already be found in Bol’s
work [7]. Since the equality conditions of inequality (4.7) are one of the critical ingredients in the
proof of the log-Brunn–Minkowski inequality, we present a complete proof of inequality (4.7),
with its equality conditions.

Lemma 4.1. If K , L are plane convex bodies, then for r(K , L) ≤ t ≤ R(K , L),

V (K ) − 2tV (K , L) + t2V (L) ≤ 0. (4.7)
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The inequality is strict whenever r(K , L) < t < R(K , L). When t = r(K , L), equality will
occur in (4.7) if and only if K is the Minkowski sum of a dilation of L and a line segment. When
t = R(K , L), equality will occur in (4.7) if and only if L is the Minkowski sum of a dilation of
K and a line segment.

Proof. Let r = r(K , L) and suppose t ∈ [0, r ]. Recall from (2.13) that

Kt = {x ∈ Rn
: x ·u ≤ hK (u) − thL(u) for all u ∈ Sn−1

},

and that from (2.14), we have

Kt + t L ⊆ K . (4.8)

However, (4.8) together with the monotonicity (4.6), linearity (4.5), the symmetry of mixed vol-
umes (4.2), and (4.3) gives

V (K , L) ≥ V (Kt + t L , L) = V (Kt , L) + tV (L). (4.9)

Now Lemma 2.2 and (4.9) give

V (K ) − V (Kt ) = 2
 t

0
V (Ks, L) ds

≤ 2
 t

0
(V (K , L) − sV (L)) ds

= 2tV (K , L) − t2V (L). (4.10)

Thus,

V (K ) − 2tV (K , L) + t2V (L) ≤ V (Kt ). (4.11)

From (4.9) and (4.10) we see that equality holds in (4.11) if and only if,

V (K , L) = V (Ks + sL , L), for all s ∈ [0, t], (4.12)

which, from (4.6) and (4.8), gives

hK = hKs + shL , a.e. w.r.t. SL

for all s ∈ [0, t].
By (2.15) we know V (Kr ) = 0 and thus Kr is a line segment, possibly a single point. There-

fore, from (4.11) we have

V (K ) − 2r V (K , L) + r2V (L) ≤ 0. (4.13)

We will now establish the equality conditions in (4.13). To that end, suppose:

V (K ) − 2r V (K , L) + r2V (L) = 0. (4.14)

Then, by (4.12) we have

V (K , L) = V (Kr + r L , L).

However, this in (4.14) gives

V (K ) − 2r V (Kr + r L , L) + r2V (L) = 0,
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which, using (4.5), can be rewritten as

V (K ) − 2r V (Kr , L) − r2V (L) = 0.

But, since V (Kr ) = 0 this can be written, using (4.1), as

V (K ) − V (Kr + r L) = 0.

Since Kr +r L ⊆ K , the equality of their volumes forces us to conclude that in fact Kr +r L = K .
Therefore, K is the Minkowski sum of a dilation of L and the line segment Kr (which may be a
point).

Since 1/R(K , L) = r(L , K ) from (2.12), from inequality (4.13), and its established equality
conditions, we get

V (L) − 2r ′V (L , K ) + r ′2V (K ) ≤ 0, where r ′
= r(L , K ) = 1/R(K , L),

with equality if and only if L is the Minkowski sum of a dilation of K and a line segment.
However, using the symmetry of mixed volumes (4.2), this means that

V (K ) − 2RV (K , L) + R2V (L) ≤ 0, where R = R(K , L), (4.15)

with equality if and only if L is the Minkowski sum of a dilation of K and a line segment.
Finally, inequalities (4.13) and (4.15) together with the well-known properties of quadratic

functions show that

V (K ) − 2tV (K , L) + t2V (L) < 0, whenever r(K , L) < t < R(K , L). �

5. Uniqueness question for planar cone-volume measures

Given a finite Borel measure on the unit sphere, under what necessary and sufficient conditions
is the measure the cone-volume measure of a convex body? This is the existence question for
the unsolved log-Minkowski problem. It requires solving a Monge–Ampère equation and is
connected with some important curvature flows (see e.g. [3,4,17,64]). The uniqueness question
for the log-Minkowski problem asks under what conditions can two different bodies have
identical cone-volume measures. It appears to be more difficult than the existence question. Even
in the plane, the uniqueness question has not been settled. Gage [17] showed that within the
class of origin-symmetric plane convex bodies that are also smooth and have positive curvature,
the cone-volume measure determines the convex body uniquely. For even discrete measures, the
uniqueness question for the log-Minkowski problem, for plane convex bodies, was treated by
Stancu [64].

In this section, we shall settle the uniqueness question for the log-Minkowski problem for
arbitrary origin-symmetric plane convex bodies. For plane convex bodies that are not origin-
symmetric, the problem remains both open and important.

The uniqueness question for the log-Minkowski problem is related to Firey’s worn stone
problem. In determining the ultimate shape of a worn stone, Firey [14] showed that if the cone-
volume measure of a smooth origin-symmetric convex body in Rn is a constant multiple of
Lebesgue measure (on Sn−1), then the convex body must be a ball. This established uniqueness
for the worn stone problem for the origin-symmetric case. In R3, Andrews [3] established the
uniqueness of solutions to the worn stone problem by showing that a smooth (not necessarily
origin-symmetric) convex body in R3 must be a ball if its cone volume measure is a constant
multiple of Lebesgue measure on S2.
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The following inequality (5.1) was established by Gage [17] when the convex bodies are
smooth and of positive curvature. A limit process gives the general case, but the equality con-
ditions do not follow. As will be seen, the equality conditions are critical for establishing the
uniqueness for cone-volume measures in the plane.

Lemma 5.1. If K , L are origin-symmetric plane convex bodies, then
S1

h2
K

hL
d SK ≤

V (K )

V (L)


S1

hL d SK , (5.1)

with equality if and only if K and L are dilates, or K and L are parallelograms with parallel
sides.

Proof. Since K and L are origin symmetric, from (2.12) we have

r(K , L) ≤
hK (u)

hL(u)
≤ R(K , L),

for all u ∈ S1. Thus, from Lemma 4.1 we get

V (K ) − 2
hK (u)

hL(u)
V (K , L) +


hK (u)

hL(u)

2

V (L) ≤ 0.

Integrating both sides of this, with respect to the measure hLd SK , and using (4.4) and (2.7), give

0 ≥


S1


V (K ) − 2

hK (u)

hL(u)
V (K , L) +


hK (u)

hL(u)

2

V (L)


hL(u) d SK (u)

= −2V (K )V (K , L) + V (L)


S1

hK (u)2

hL(u)
d SK (u).

This yields the desired inequality (5.1).
Suppose there is equality in (5.1). Thus,

V (K ) − 2
hK (u)

hL(u)
V (K , L) +


hK (u)

hL(u)

2

V (L) = 0, for all u ∈ supp SK . (5.2)

If K and L are dilates, we are done. So assume that K and L are not dilates. However, K and L
not being dilates implies that r(K , L) < R(K , L). From Lemma 4.1, we know that when

r(K , L) <
hK (u)

hL(u)
< R(K , L),

it follows that

V (K ) − 2
hK (u)

hL(u)
V (K , L) +


hK (u)

hL(u)

2

V (L) < 0,

and thus we conclude that

hK (u)/hL(u) ∈ {r(K , L), R(K , L)} for all u ∈ supp SK . (5.3)

Note that since K is origin symmetric, supp SK is origin symmetric as well. Let u0 ∈ supp SK ;
then either hK (u0)/hL(u0) = r(K , L), or hK (u0)/hL(u0) = R(K , L). Suppose it is the case
that hK (u0)/hL(u0) = r(K , L). Then from (5.2) and the equality conditions of Lemma 4.1 we
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know that K must be a dilation of the Minkowski sum of L and a line segment. However, K and
L are not dilates, so there exists an x0 ≠ 0 such that

hK (u) = |x0·u| + r(K , L)hL(u),

for all unit vectors u. This together with hK (u0)/hL(u0) = r(K , L) shows that x0 is orthogo-
nal to u0 and that the only unit vectors at which hK /hL = r(K , L) are u0 and −u0. However,
supp SK must contain at least one unit vector u1 ∈ supp SK other than ±u0. From (5.3), and
the fact that the only unit vectors at which hK /hL = r(K , L) are the vectors u0 and −u0, we
conclude hK (u1)/hL(u1) = R(K , L) and by the same argument we conclude that the only unit
vectors at which hK /hL = R(K , L) are u1 and −u1. Now (5.3) allows us to conclude that

supp SK = {±u0, ±u1}.

This implies that K is a parallelogram. Since K is the Minkowski sum of a dilate of L and a line
segment, L must be a parallelogram with sides parallel to those of K . If we had assumed that
hK (u0)/hL(u0) = R(K , L), rather than r(K , L), the same argument would lead to the same
conclusion.

It is easily seen that the equality holds in (5.1) if K and L are dilates. A trivial calculation
shows that equality holds in (5.1) if K and L are parallelograms with parallel sides. �

The following theorem was established by Gage [17] when the convex bodies are smooth and
have positive curvature. When the convex bodies are polytopes the theorem is due to Stancu [65].

Theorem 5.2. If K and L are plane origin-symmetric convex bodies that have the same cone-
volume measure, then either K = L or else K and L are parallelograms with parallel sides.

Proof. Assume that K ≠ L . Since

VK = VL ,

it follows that V (K ) = V (L). Thus, since K ≠ L , the bodies cannot be dilates. Thus inequality
(5.1) becomes

S1

hL

hK
dVK ≥


S1

hK

hL
dVK and


S1

hK

hL
dVL ≥


S1

hL

hK
dVL , (5.4)

with equality, in either inequality, if and only if K and L are parallelograms with parallel sides.
Using (5.4) and the fact that VK = VL , both twice, we get

S1

hL(u)

hK (u)
dVK (u) ≥


S1

hK (u)

hL(u)
dVK (u)

=


S1

hK (u)

hL(u)
dVL(u)

≥


S1

hL(u)

hK (u)
dVL(u)

=


S1

hL(u)

hK (u)
dVK (u).

Thus, we have equality in both inequalities of (5.4), and from the equality conditions of (5.4) we
conclude that K and L are parallelograms with parallel sides. �
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6. Minimizing the logarithmic mixed volume

Lemma 6.1. Suppose K is a plane origin-symmetric convex body, with V (K ) = 1, that is not a
parallelogram. Suppose that Pk is an unbounded sequence of origin-symmetric parallelograms
all of which have orthogonal diagonals, and such that V (Pk) ≥ 2. Then, the sequence

S1
log h Pk (u) dVK (u)

is not bounded from above.

Proof. Let u1,k, u2,k be orthogonal unit vectors along the diagonals of Pk . Denote the vertices
of Pk by ±h1,ku1,k, ±h2,ku2,k . Without loss of generality, assume that 0 < h1,k ≤ h2,k . The
condition V (Pk) ≥ 2 is equivalent to h1,kh2,k ≥ 1. The support function of Pk is given by

h Pk (u) = max{h1,k |u·u1,k |, h2,k |u·u2,k |}, (6.1)

for u ∈ S1. Since S1 is compact, the sequences u1,k and u2,k have convergent subsequences.
Again, without loss of generality, we may assume that the sequences u1,k and u2,k are themselves
convergent with

lim
k→∞

u1,k = u1 and lim
k→∞

u2,k = u2,

where u1 and u2 are orthogonal.
It is easy to see that if the cone-volume measure, VK ({±u1}), of the two-point set {±u1} is

positive, then K contains a parallelogram whose area is 2VK ({±u1}). Since K itself is not a
parallelogram and V (K ) = 1, it must be the case that

VK ({±u1}) <
1
2
. (6.2)

For δ ∈

0, 1

3


, consider the neighborhood, Uδ , of {±u1}, on S1,

Uδ = {u ∈ S1
: |u·u1| > 1 − δ}.

Since VK (S1) = V (K ) = 1, we see that for all or δ ∈

0, 1

3


VK (Uδ) + VK (U c

δ ) = 1, (6.3)

where U c
δ is the complement of Uδ .

Since the Uδ are decreasing (with respect to set inclusion) in δ and have a limit of {±u1},

lim
δ→0+

VK (Uδ) = VK ({±u1}).

This together with (6.2), shows the existence of a δo > 0 such that

VK (Uδo) <
1
2
.

However, this implies that there is a small ϵo ∈

0, 1

2


so that

τo = VK (Uδo) −
1
2

+ ϵo < 0. (6.4)

This together with (6.3) gives

VK (Uδo) =
1
2

− ϵo + τo and VK (U c
δo

) =
1
2

+ ϵo − τo. (6.5)
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Since ui,k converge to ui , we have |ui,k − ui | < δo whenever k is sufficiently large (for both
i = 1 and i = 2). Then for u ∈ Uδo and k sufficiently large, we have

|u·u1,k | ≥ |u·u1| − |u·(u1,k − u1)|

≥ |u·u1| − |u1,k − u1|

≥ 1 − δo − δo

≥ δo,

where the last inequality follows from the fact that δo < 1
3 . We know that |u·u1|

2
+ |u·u2|

2
= 1,

for all u ∈ S1. Thus, for u ∈ U c
δo

, we have |u·u2| > (1 − (1 − δo)
2)

1
2 > 2δo, which shows that

when k is sufficiently large,

|u·u2,k | ≥ |u·u2| − |u·(u2,k − u2)|

≥ |u·u2| − |u2,k − u2|

≥ 2δo − δo

= δo.

From the last paragraph and (6.1) it follows that when k is sufficiently large,

h Pk (u) ≥


δoh1,k if u ∈ Uδo ,

δoh2,k if u ∈ U c
δo

.
(6.6)

By (6.3) and (6.6), (6.5), the fact that 0 < h1,k ≤ h2,k together with (6.4), and finally the fact
that h1,kh2,k ≥ 1 together with ϵo ∈


0, 1

3


, we see that for sufficiently large k,

S1
log h Pk dVK =


Uδo

log h Pk dVK +


U c

δo

log h Pk dVK

≥ log δo + VK (Uδo) log h1,k + VK (U c
δo

) log h2,k

= log δo +


1
2

+ τo − ϵo


log h1,k +


1
2

− τo + ϵo


log h2,k

= log δo + 2ϵo log h2,k +


1
2

− ϵo


log(h1,kh2,k)

+ τo(log h1,k − log h2,k)

≥ log δo + 2ϵo log h2,k .

Since Pk is not bounded, the sequence h2,k is not bounded from above. Thus, the sequence
S1

log h Pk dVK

is not bounded from above. �

Lemma 6.2. If K is a plane origin-symmetric convex body that is not a parallelogram, then
there exists a plane origin-symmetric convex body K0 so that V (K0) = 1 and

S1
log hQ dVK ≥


S1

log hK0 dVK

for every plane origin-symmetric convex body Q with V (Q) = 1.
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Proof. Without loss of generality we may assume that V (K ) = 1. Consider the minimization
problem,

inf


S1
log hQ dVK ,

where the infimum is taken over all plane origin-symmetric convex bodies Q with V (Q) = 1.
Suppose that Qk is a minimizing sequence; i.e., Qk is a sequence of origin-symmetric convex
bodies with V (Qk) = 1 and such that


S1 log hQk dVK tends to the infimum (which may be −∞).

We shall show that the sequence Qk is bounded and the infimum is finite.
By John’s Theorem, there exist ellipses Ek centered at the origin so that

Ek ⊂ Qk ⊂
√

2Ek . (6.7)

Let u1,k, u2,k be the principal directions of Ek so that

h1,k ≤ h2,k, where h1,k = hEk (u1,k) and h2,k = hEk (u2,k).

Let Pk be the origin-centered parallelogram that has vertices {±h1,ku1,k, ±h2,ku2,k} (observe
that by the Principal Axis Theorem the diagonals of Pk are perpendicular). Since Ek ⊂

√
2Pk , it

follows from (6.7) that

Pk ⊂ Qk ⊂ 2Pk . (6.8)

From this and V (Qk) = 1, we see that V (Pk) ≥
1
4 .

Assume that Qk is not bounded. Then Pk is not bounded. Applying Lemma 6.1 to
√

8Pk
shows that the sequence


S1 log h Pk dVK is not bounded from above. Therefore, from (6.8) we see

that the sequence


S1 log hQk dVK cannot be bounded from above. However, this is impossible
because Qk was chosen to be a minimizing sequence.

We conclude that Qk is bounded. By Blaschke’s Selection Theorem, Qk has a convergent
subsequence that converges to an origin-symmetric convex body K0, with V (K0) = 1. It follows
that


S1 log hK0 dVK is the desired infimum. �

7. The log-Minkowski inequality

We repeat the statement of Theorem 1.4.

Theorem 7.1. If K and L are plane origin-symmetric convex bodies, then
S1

log
hL

hK
dV̄K ≥

1
2

log
V (L)

V (K )
,

with equality if and only if either K and L are dilates or when K and L are parallelograms with
parallel sides.

Proof. Without loss of generality, we can assume that V (K ) = V (L) = 1. We shall establish
the theorem by proving

S1
log hL dVK ≥


S1

log hK dVK ,

with equality if and only if either K and L are dilates or if they are parallelograms with parallel
sides.
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First, assume that K is not a parallelogram. Consider the minimization problem

min


S1
log hQ dVK ,

taken over all plane origin-symmetric convex bodies Q with V (Q) = 1. Let K0 denote a solution,
whose existence is guaranteed by Lemma 6.2. Our aim is to prove that K0 = K and thereby
demonstrate that K itself is the only solution to this minimization problem.

Suppose f is an arbitrary but fixed even continuous function on S1. For some sufficiently
small δo > 0, consider the deformation of hK0 , defined on (−δo, δo) × S1, by

qt (u) = q(t, u) = hK0(u)et f (u).

Let Qt be the Wulff shape associated with qt . Observe that Qt is an origin symmetric convex
body and that since q0 is the support function of the convex body K0, we have Q0 = K0.

Since K0 is an assumed solution of the minimization problem, the function defined on
(−δo, δo) by

t −→ V (Qt )
−

1
2 exp


S1

log hQt dVK


,

attains a minimal value at t = 0. Since hQt ≤ qt this function is dominated by the differentiable
function defined on (−δo, δo) by

t −→ V (Qt )
−

1
2 exp


S1

log qt dVK


.

However, clearly both functions have the same value at 0 and thus the latter function attains a
local minimum at 0. Thus, differentiating the latter function at t = 0, by using Lemma 2.1, and
recalling that V (Q0) = V (K0) = 1, shows that

−
1
2


S1

hK0(u) f (u) d SK0(u) +


S1

f (u) dVK (u) = 0.

Thus, since f was an arbitrary even continuous function, we conclude that
S1

f (u) dVK0(u) =


S1

f (u) dVK (u)

for every even continuous f , and therefore,

VK = VK0 .

By Theorem 5.2, and the assumption that K is not a parallelogram, we conclude that K0 = K .
Thus, for each L such that V (L) = 1,

S1
log hL dVK ≥


S1

log hK dVK ,

with equality if and only if K = L . This is the desired result when K is not a parallelogram.
If K is a parallelogram the proof is trivial, but for the sake of completeness we shall include

it. Assume that K is the parallelogram whose support function, for u ∈ S1, is given by

hK (u) = a1|v1·u| + a2|v2·u|,
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where v1, v2 ∈ S1 and a1, a2 > 0. It follows that suppSK = {±v⊥

1 , ±v⊥

2 }, while also
VK ({±v⊥

i }) = 2a1a2|v1·v
⊥

2 |, and |v1·v
⊥

2 | = |v2·v
⊥

1 |. It is easily seen that V (K ) =

4a1a2|v1·v
⊥

2 | = 1, and that

exp


S1
log hL dVK =


hL(v⊥

1 )hL(v⊥

2 ). (7.1)

Recall that V (L) = 1. The parallelogram circumscribed about L with sides parallel to those of
K has volume

4hL(v⊥

1 )hL(v⊥

2 )|v1·v
⊥

2 |
−1

= 16a1a2hL(v⊥

1 )hL(v⊥

2 ),

and thus, 16a1a2hL(v⊥

1 )hL(v⊥

2 ) ≥ V (L) = 1, or equivalently

hL(v⊥

1 )hL(v⊥

2 ) ≥
1

16a1a2
,

with equality if and only if L itself is a parallelogram with sides parallel to those of K . Thus,
by (7.1), the functional


S1 log hL dVK attains its minimal value if and only if

hL(v⊥

1 )hL(v⊥

2 ) =
1

16a1a2
;

i.e., if and only if L is a parallelogram with sides parallel to those of K . �

Proof of Theorem 1.3. Lemma 3.2 shows that the log-Minkowski inequality of Theorem 7.1
yields the log-Brunn–Minkowski inequality (1.6) of Theorem 1.3. To obtain the equality
conditions of the log-Brunn–Minkowski inequality (1.6), we need to analyze the equality
conditions of the inequality (3.6) in the proof of Lemma 3.2. The equality conditions for the
log-Minkowski inequality of Theorem 7.1 show that equality in inequality (3.6) would imply
that either K , L and Qλ are dilates or that K , L and Qλ are parallelograms with parallel sides.
This establishes the equality conditions of Theorem 1.3. �

Proof of Theorem 1.8. Jensen’s inequality (along with its equality conditions), shows that the
L p-Minkowski inequality, for p > 0, of Theorem 1.8 follows from the L0-Minkowski inequality
of Theorem 7.1. �

Proof of Theorem 1.7. Lemma 3.1 shows that the L p-Minkowski inequality of Theorem 1.8
yields the L p-Brunn–Minkowski inequality of Theorem 1.7.

To obtain the equality conditions of the L p-Brunn–Minkowski inequality (1.13) of Theo-
rem 1.7 we need to analyze the equality conditions of inequalities (3.4) and (3.5) of Lemma 3.1
which were used to derive the L p-Brunn–Minkowski inequality of Theorem 1.7 from the
L p-Minkowski inequality of Theorem 1.8.

From the equality conditions of Theorem 1.8, we know that equality in inequality (3.4) im-
plies that K and L are dilates. However, inequality (3.5) is a direct consequence of the concavity
of the log function and this concavity is strict. Hence, equality in inequality (3.5) implies that
V (K ) = V (L). Thus we conclude that equality in the L p-Brunn–Minkowski inequality (1.13)
of Theorem 1.7 implies that K = L . �

Acknowledgments

The authors thank Prof. Rolf Schneider for his help on two earlier versions of this paper.
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[16] B. Fleury, O. Guédon, G. Paouris, A stability result for mean width of L p-centroid bodies, Adv. Math. 214 (2007)

865–877. MR 2349721, Zbl 1132.52012.
[17] M.E. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993) 441–466.

MR 1248680, Zbl 0798.53041.
[18] R.J. Gardner, The Brunn–Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002) 355–405. MR 1898210, Zbl

1019.26008.
[19] R.J. Gardner, Geometric Tomography, second ed., in: Encyclopedia of Mathematics and its Applications, vol. 58,

Cambridge University Press, Cambridge, 2006, MR 2251886, Zbl 1102.52002.
[20] R.J. Gardner, D. Hug, W. Weil, Operations between sets in geometry, J. Eur. Math. Soc. (in press).
[21] P.M. Gruber, Convex and Discrete Geometry, in: Grundlehren der Mathematischen Wissenschaften, vol. 336,

Springer, Berlin, 2007, MR 2335496, Zbl 1139.52001.
[22] C. Haberl, L p intersection bodies, Adv. Math. 217 (2008) 2599–2624. MR 2397461, Zbl 1140.52003.
[23] C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009) 2253–2276. MR 2583498, Zbl 1183.52003.
[24] C. Haberl, M. Ludwig, A characterization of L p intersection bodies, Int. Math. Res. Not. (2006) 29. Article ID

10548, MR 2250020, Zbl 1115.52006.
[25] C. Haberl, E. Lutwak, D. Yang, G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010) 2485–2510.

MR 2652213, Zbl 1198.52003.
[26] C. Haberl, F.E. Schuster, General L p affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1–26. MR

2545028, Zbl 1185.52005.
[27] C. Haberl, F.E. Schuster, Asymmetric affine L p Sobolev inequalities, J. Funct. Anal. 257 (2009) 641–658. MR

2530600, Zbl 1180.46023.
[28] C. Hu, X.-N. Ma, C. Shen, On the Christoffel–Minkowski problem of Firey’s p-sum, Calc. Var. Partial Differential

Equations 21 (2004) 137–155. MR 2085300, Zbl 1161.35391.
[29] D. Hug, E. Lutwak, D. Yang, G. Zhang, On the L p Minkowski problem for polytopes, Discrete Comput. Geom. 33

(2005) 699–715. MR 2132298, Zbl 1078.52008.
[30] N.J. Kalton, A. Koldobsky, V. Yaskin, M. Yaskina, The geometry of L0, Canad. J. Math. 59 (2007) 1029–1049.

MR 2354401, Zbl 1139.52011.
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