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Abstract

We prove that for a fibration of simply-connected spaces of finite type F ↩→ E → B with F being
positively elliptic and H∗(F, Q) not possessing non-trivial derivations of negative degree, the base B is
formal if and only if the total space E is formal. Moreover, in this case the fibration map is a formal map.
As a geometric application we show that positive quaternion Kähler manifolds are formal and so are their
associated twistor fibration maps.
c⃝ 2012 Elsevier Inc. All rights reserved.
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0. Introduction

The problem we shall address in this article gains its appeal from two rather disjoint sources:
the first one being inherent to algebraic topology, the other one motivated by a prominent question
in Riemannian geometry.

Let us begin by illustrating the motivating geometric setting. Riemannian manifolds with
special holonomy form a very interesting class of spaces which include Kähler manifolds
(manifolds with U(n)-holonomy), Calabi–Yau manifolds (manifolds with SU(n)-holonomy) and
Joyce manifolds (Spin(7)-holonomy and G2-holonomy). We will be interested in quaternion
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Kähler manifolds, which are manifolds with holonomy contained in Sp(n)Sp(1). Such manifolds
are known to be Einstein and they are called positive, if their scalar curvature is positive.

Positive quaternion Kähler geometry lies in the intersection of very classical yet rather
different fields in mathematics. Despite its geometric setting, it was discovered to be accessible
by methods from (differential) topology, symplectic geometry and complex algebraic geometry.

To the knowledge of the authors, the approach by rational homotopy theory, which we provide
in this article, is the first one of its kind in the setting of quaternion Kähler geometry.

The field of positive quaternion Kähler geometry settles around the following.

Conjecture 1 (LeBrun, Salamon). Every positive quaternion Kähler manifold is a symmetric
space.

There are a number of partial results supporting this conjecture and only symmetric examples,
the so-called Wolf spaces are known. However, the conjecture remains open in general. Thus our
motivating geometric question will be the following.

Question (Geometry). How close are positive quaternion Kähler manifolds to being symmetric?

Let us now describe the topological motivation, which arises from rational homotopy theory.
This is a very elegant and easily-computable version of homotopy theory at the expense of losing
information on torsion. It provides a transition from topology to algebra by encoding the rational
homotopy type of a space in a commutative differential graded algebra. In particular, rational
homotopy groups as well as Massey products can be derived from the algebra structure. Likewise,
the rational cohomology algebra of the space is the homology algebra of the corresponding
commutative differential graded algebra.

The concept of formality features prominently amongst the properties of topological spaces,
as this property reduces the study of the rational homotopy type entirely to the problem of
merely understanding the rational cohomology algebra. Or in other words: We may derive the
rational cohomology from the rational homotopy type, however, is the information contained
in the rational cohomology already sufficient to reconstruct the rational homotopy type? If the
answer is “yes”, the space is called formal.

Although it is not known to the authors that if the following conjecture is stated explicitly in
the literature, it is widely believed that the following holds.

Conjecture 2. A simply-connected compact Riemannian manifold of special holonomy is a
formal space.

A famous result by Berger – having undergone several refinements – states that a simply-
connected irreducible non-symmetric Riemannian manifold M has one of the holonomy groups
SO(n) (dim M = n) – the generic case not comprised in the term “special holonomy” – or U(n)

(dim M = 2n), SU(n) (dim M = 2n), Sp(n) (dim M = 4n), Sp(n)Sp(1) (dim M = 4n), G2
(dim M = 7) respectively Spin(7) (dim M = 8).

We draw the attention of the reader to how nicely the prerequisites of irreducibility and being
non-symmetric fit the context of formality. The finite Cartesian product of simply-connected
spaces is formal if and only if so is each factor. Due to a famous result by Cartan, symmetric
spaces are formal.

A celebrated result in [7] states that compact Kähler manifolds are formal. Obviously, this
comprises manifolds whose holonomy group is one of U(n), SU(n) and Sp(n). However, no
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further results in proving formality in the setting of special holonomy – yet a lot of attempts in
that direction (!) – are known to the authors.

It is noteworthy that the formality of Kähler manifolds is indeed a geometric result and
cannot be attributed to known topological properties of Kähler manifolds. In particular, there are
compact simply-connected manifolds having the hard-Lefschetz property but lacking formality
(for example see [6, Example 4.4 p. 346]). The result in [7] is derived from the famous
d dc-lemma, which itself reverberates strongly in many generalizations in the literature, be it
in the symplectic context, the generalized complex case etc. (see [5])—always with the intent
to relate it to formality. Although all sorts of partial results and counterexamples exist, the
d dc-lemma often seems to be related to a Lefschetz-like structure.

As for our purposes let us just mention the attempt in [37] to generalize the d dc-lemma to
the context of special holonomy (and G2-manifolds, in particular). (Note that Joyce manifolds
also satisfy a Lefschetz-like property.) The author’s goal was to present a sufficient criterion to
prove formality in this context. However, there seems to be a major problem with the main tool,
Proposition 2.19 on p. 1008 of that article. We are indebted to Spiro Karigiannis for pointing
that out to us. Finally, let us mention that there exists an example of a simply-connected compact
manifold sharing all the known topological properties of a G2-manifold but lacking formality—
see [5, Example 8.5, p. 131].

The main geometric application of the topological results of this article is to settle the
conjecture above for positive quaternion Kähler manifolds, thus stating a first positive result
in this direction, since the appearance of the article [7].

The following natural question – widely discussed in the literature – will be our topological
motivation.

Question (Topology). How do the formality of the base space and the one of the total space
relate in a fibration?

The answer we shall provide to this question relies on the following concepts. Recall that
a fibration F ↩→ E → B is called (rationally) totally non-cohomologous to zero or TNCZ, if
the induced homomorphism H∗(E, Q) → H∗(F, Q) is surjective. This is easily seen to be
equivalent to the Leray–Serre spectral sequence of this fibration degenerating at the E2-term. It
is also well-known that H∗(F, Q) has no negative degree derivations if and only if any fibration
over a simply-connected base with fiber F is TNCZ. We remark that an example of such fibers
is provided by any simply-connected space whose cohomology algebra satisfies hard-Lefschetz
duality. This applies, in particular, to all Kähler manifolds and (up to a degree shift, i.e. using the
Kraines form of degree 4 (see [28, equation (1.4), p. 86]) in place of the Kähler form) to – per se
rationally 3-connected, but eventually to all – positive quaternion Kähler manifolds (cf. [24,4]).

Moreover, recall that a simply-connected topological space F is called positively elliptic or
F0, if it is rationally elliptic, i.e. if it has finite dimensional rational homotopy and cohomology,
and if it has positive Euler characteristic. In this case its rational cohomology is concentrated in
even degrees only. These spaces admit pure Sullivan models – i.e. Sullivan models (ΛV, d) with
d |V even = 0 and d : V odd

→ ΛV even – and feature prominently in rational homotopy theory.
Classical examples of F0-spaces are biquotients (and, in particular, homogeneous spaces) G//H
with rk G = rk H .

For the convenience of the reader, we shall briefly review the notion of a biquotient. Let G be
a compact connected Lie group and let H ⊆ G × G be a closed Lie subgroup. Then H acts on
G on the left by (h1, h2) · g = h1gh−1

2 . The orbit space of this action is called the biquotient
G//H of G by H . If the action of H on G is free, then G//H possesses a manifold structure.
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This is the only case we shall consider. If H = K × L where K ⊂ G × 1 and L ⊂ 1× G then
the biquotient G//(K × L) is often denoted by K \ G/L .

Clearly, the category of biquotients contains the one of homogeneous spaces. It was shown
in [17] that biquotients admit pure models (cf. [13, Theorem 3.50]).

The most prominent conjecture which deals with F0-spaces is the following.

Conjecture 3 (Halperin). Suppose F is an F0-space. Then H∗(F, Q) has no negative degree
derivations.

The conjecture holds true for large classes of positively elliptic spaces. It is satisfied for

• homogeneous spaces [31],
• if the cohomology algebra H∗(F, Q) has at most 3 generators [35,22],
• if all the generators are of the same degree [33,34],
• in the “generic case” [26] or, as already mentioned,
• in the case of hard-Lefschetz spaces.

Because of this conjecture we shall refer to spaces whose rational cohomology algebras do
not possess negative degree derivations as spaces satisfying the Halperin conjecture—even if the
spaces in question are not rationally elliptic or of positive Euler characteristic.

It is a known fact (see [23, Theorem 3.4]) that if F is F0 and satisfies Halperin’s conjecture,
then, given a fibration F ↩→ E → B, the formality of the base space implies the formality of the
total space. In fact, more generally, if a fibration is TNCZ and the fiber is formal and elliptic,
then the formality of the base implies the formality of the total space [23, Proposition 3.2].

Recall that a space X is called of finite type if all its cohomology groups over Q are finite
dimensional and all its rationalized homotopy groups are finite dimensional. Our main result and
our proposed answer to the topological question is the following.

Theorem A. Let

F ↩→ E
f
→ B

be a fibration of simply-connected topological spaces of finite type. Suppose that F is elliptic,
formal and satisfies the Halperin conjecture. Then E is formal if and only if B is formal.

Moreover, if B and E are formal, then the map f is formal.

It is well-known that F0 spaces are formal; in fact, they are even hyperformal and therefore
intrinsically formal (see [2, Remark 2.7.11.2, p. 120]). Moreover, they admit pure Sullivan
models.

Consequently, the following corollary is a direct consequence of Theorem A and completes
the picture for F0-spaces. However, we remark that Example 3.1 given below shows that the
class of formal, elliptic spaces satisfying Halperin’s conjecture is strictly larger than the class of
F0-spaces satisfying the Halperin conjecture.

Corollary B. Let

F ↩→ E
f
→ B

be a fibration of simply-connected topological spaces of finite type. Suppose that F is an
F0-space which satisfies the Halperin conjecture. Then E is formal if and only if B is formal.

Moreover, if B and E are formal, then the map f is formal.
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We remark that there exists an example due to Thomas (see [36, Example III.13]) of a TNCZ
fibration (even a cohomologically trivial one!) with formal base and fiber but non-formal total
space. In Example 4.1 (due to Lupton), we produce a TNCZ fibration of simply-connected spaces
with formal yet hyperbolic fiber satisfying Halperin’s conjecture, formal base space and non-
formal total space.

The interlink between topology and geometry in our case is provided by the twistor fibration

CP1 ↩→ Z → M

of a Positive Quaternion Kähler Manifold M . (It is known that a positive quaternion Kähler
manifold M is compact and simply-connected.)

As the name “quaternion Kähler” indicates, the subject lies in certain proximity to the
field of Kähler geometry. Indeed, (positive) quaternion Kähler manifolds can be considered
a quaternionic analogue of (compact) Kähler manifolds. The twistor fibration is one way of
illustrating this proximity, as the twistor space Z of a positive quaternion Kähler manifold is
a Kähler manifold Z . Kähler manifolds have been found to be formal spaces by joint work of
Deligne et al. [7]. Obviously, CP1 ∼= S2 satisfies the Halperin conjecture.

Compact symmetric spaces are known to be formal; thus the formality of positive quaternion
Kähler manifolds would be a consequence of a confirmation of Conjecture 1. Thus we can offer
one more piece of the puzzle described via the geometric question we posed.

Theorem C. A positive quaternion Kähler manifold is formal. So is its twistor fibration.

Let us note that the only geometric input we use for this result is that positive quaternion
Kähler manifolds are compact and simply-connected and that the total space of the twistor bundle
admits a Kähler metric and hence is formal. Since this only uses Theorem A with F = S2, one
may suspect that in that special case it is easy to deduce formality of the base from formality of
the total space. However, we do not know of a substantially simpler proof of Theorem A even
for F = S2 than the one we present for a general F .

One may hope that some further progress in approaching the conjecture of LeBrun and
Salamon (Conjecture 1) that positive quaternion Kähler manifolds are symmetric spaces can
be obtained using methods from rational homotopy theory in conjunction with some further
geometric input.

For example, one can try to improve Theorem C in the following two directions, which might
also be considered a motivation for proving the formality of positive quaternion Kähler manifolds
in the first place.

On the one hand formality is an obstruction to geometric formality (see [18]) which
means that the product of harmonic forms is harmonic again. Geometric formality enforces
strong restrictions on the topological structure of the underlying manifold. For example, the
Betti numbers of the manifold Mn are restricted from above by the Betti numbers of the
n-dimensional torus [18, Theorem 6]. (This result was further strengthened for Kähler manifolds
by Nagy [25, Corollary 4.1]). Symmetric spaces are geometrically formal ([19,32]). Thus it is
tempting to conjecture the same for Positive Quaternion Kähler Manifolds.

On the other hand, the Bott conjecture speculates that simply-connected compact Riemannian
manifolds with nonnegative sectional curvature are rationally elliptic. In the quaternionic setting,
there are a number of results (see [8, Theorem A, p. 150], [3, Formula 14.42b, p. 406]) suggesting
that positive scalar curvature might be regarded as a substitute for positive sectional curvature to
a certain extent.
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In the case of positive quaternion Kähler manifolds – mainly since the rational cohomology
is concentrated in even degrees only – we suggest to see formality as a very weak substitute
for ellipticity. Indeed, if positive quaternion Kähler manifolds were elliptic spaces – e.g. like
simply-connected homogeneous spaces – then they would be F0-spaces, which are formal.

If one is willing to engage with this point of view, the formality of positive quaternion Kähler
manifolds may be seen as heading toward a quaternionic Bott conjecture.

Let us briefly state the following trivial consequences of Theorem C.

Corollary D. A rationally 3-connected positive quaternion Kähler manifold M4n satisfies

n =
dim M

4
= c0(M) = e0(M) = cat0(M) = cl0(M).

If M is not rationally 3-connected, then M ∼= Gr2(Cn+2) by Theorem 1.3 below and hence

2n =
dim M

2
= c0(M) = e0(M) = cat0(M) = cl0(M).

For the definition of the numerical invariants involved see the definition on [10, 28, p. 370],
which itself relies on various definitions on the pages 351, 360 and 366 in [10, 27].

In order to prove this corollary one uses Theorems 1.2 and 1.3 cited below in order to reduce
the problem to a rationally 3-connected manifold. A volume form is given by [un

], where u is the
Kraines form in degree 4. Due to rational 3-connectedness, this allows us to compute the rational
cup-length c0(M) = n. The rest of the equalities then are a consequence of formality (cf. [10],
Example 29.4, p. 388).

Recall that if b2(M) ≠ 0, we obtain that M is a complex Grassmannian. It is Kählerian, in
particular, with Kähler form ω. The equation c0(M) = 2n follows from the existence of the
volume form ω2n .

A simply-connected quaternion Kähler manifold with vanishing scalar curvature is hyper-
Kählerian and Kählerian, in particular. So it is a formal space. The twistor fibration in this case
is the canonical projection M × S2

→ M . This directly yields the following.

Corollary E. A compact simply-connected nonnegative quaternion Kähler manifold is formal.
The twistor fibration is formal.

Let us end the introduction with some more remarks. In general, positive quaternion Kähler
manifolds are not coformal, i.e. their rational homotopy type is not necessarily determined
by their rational homotopy Lie algebra or, equivalently, their minimal Sullivan models do not
necessarily have strictly quadratic differentials. An obvious counterexample is HPn for n ≥ 2.

In low dimensions, i.e. in dimensions 12 to 20, relatively simple proofs of formality of
positive quaternion Kähler manifolds can be given using the concept of s-formality developed
in [12]. Alternatively, one may use the existence of isometric S1-actions on 12-dimensional
and 16-dimensional positive quaternion Kähler manifolds and further structure theory to apply
Corollary [20, Theorem 5.9, p. 2785] which yields formality.

Structure of the article. In Section 1 we shall give a very brief introduction to positive quaternion
Kähler geometry whilst we do the same for the necessary techniques from rational homotopy
theory in Section 2. Section 3 is devoted to the proof of the Main Theorem A. Finally, in
Section 4, we conclude with a depiction of several counterexamples for possible statements
similar to Theorem A when assumptions on the fiber are weakened.
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As a general convention for this article we shall assume all spaces involved to be simply-
connected (and, in particular, connected) and have finite type. Also all graded algebras we
consider are assumed to be connected and also to have finite type, i.e. they have finite
dimensional cohomology in every dimension and are finitely generated in every degree.
Moreover, cohomology is taken with rational coefficients and all commutative differential graded
algebras are algebras over Q.

1. Positive quaternion Kähler manifolds

Due to Berger’s celebrated theorem the holonomy group Hol(M, g) of a simply-connected,
irreducible and non-symmetric Riemannian manifold (M, g) is one of SO(n), U(n), SU(n),
Sp(n), Sp(n)Sp(1), G2 and Spin(7).

A connected oriented Riemannian manifold (M4n, g) is called a quaternion Kähler manifold
if

Hol(M, g) ⊆ Sp(n)Sp(1) = Sp(n)× Sp(1)/⟨− id,−1⟩.

(In the case n = 1 one additionally requires M to be Einstein and self-dual.) Quaternion Kähler
manifolds are Einstein (see [3, Theorem 14.39, p. 403]). In particular, their scalar curvature is
constant.

Definition 1.1. A positive quaternion Kähler manifold is a quaternion Kähler manifold with
complete metric and with positive scalar curvature.

For an elaborate depiction of the subject we recommend the survey articles [27,28]. We shall
content ourselves by mentioning a few properties that will be of importance throughout this
article.

Foremost, we note that a positive quaternion Kähler manifold M is not necessarily Kählerian,
as the name might suggest. Moreover, the manifold M is compact and simply-connected
(see [27, p. 158] and [27, 6.6, p. 163]).

The only known examples of positive quaternion Kähler manifolds are given by the Wolf-
spaces, i.e. the symmetric positive quaternion Kähler manifolds. They are the only possible
homogeneous examples by a result of Alekseevski. They are given by the infinite series HPn ,
Gr2(Cn+2) and Gr4(Rn+4) (the Grassmannian of oriented real 4-planes) and by the exceptional
spaces G2/SO(4), F4/Sp(3)Sp(1), E6/SU(6)Sp(1), E7/Spin(12)Sp(1), E8/E7Sp(1). Besides,
it is known that in each dimension there are only finitely many positive quaternion Kähler
manifolds (cf. [21].0.1, p. 110). This endorses the fundamental conjecture by LeBrun and
Salamon (Conjecture 1) speculating that positive quaternion Kähler manifolds are symmetric
spaces.

A confirmation of the conjecture has been achieved in dimensions four (Hitchin) and eight
(Poon–Salamon, LeBrun–Salamon). For a discussion of dimension 12, see [1,14].

Remarkably, the theory of positive quaternion Kähler manifolds may be completely
transcribed to an equivalent theory in complex geometry. This is done via the twistor space
Z of the positive quaternion Kähler manifold M . This Fano contact Kähler Einstein manifold
may be constructed as follows.

Locally the principle Sp(n)Sp(1) structure bundle may be lifted to its double covering
with fiber Sp(n) × Sp(1). So, locally, one may use the standard representation of Sp(1) on
C2 to associate a vector bundle H . In general, H does not exist globally, but its complex
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projectivization Z = PC(H) does. In particular, we obtain the twistor fibration

CP1 ↩→PC(H)→ M.

Alternatively, the manifold Z may be considered as the unit sphere bundle S(E ′) associated to
the 3-dimensional subbundle E ′ of the vector bundle End(T M) generated locally by the almost
complex structures I , J , K which behave like the corresponding unit quaternions i , j and k. That
is, the twistor fibration is just

S2 ↩→ S(E ′)→ M.

(Comparing this bundle to its version above we need to remark that clearly CP1 ∼= S2.) The
existence of this twistor bundle together with the fact that the total space is a compact Kähler
manifold is basically the only property which we shall exploit in order to prove Corollary B.

As an example one may observe that on HPn we have a global lift of Sp(n)Sp(1) and that
the vector bundle associated to the standard representation of Sp(1) on C2 is just the tautological
bundle. Now complex projectivization of this bundle yields the complex projective space CP2n+1

and the twistor fibration is just the canonical projection.
More generally, on Wolf spaces one obtains the following. The Wolf space may be written as

G/K Sp(1) (cf. the table on [3, p. 409]) and its corresponding twistor space is given as G/K U(1)

with the twistor fibration being the canonical projection.
Using twistor theory a variety of remarkable results have been obtained. Let us mention just

the following ones.

Theorem 1.2. Odd-degree Betti numbers of M vanish, i.e. b2i+1 = 0 for i ≥ 0.

Proof. See [27, Theorem 6.6, p. 163], where it is shown that the Hodge decomposition of the
twistor space is concentrated in terms H p,p(Z , R). �

This implies that a rationally elliptic positive quaternion Kähler manifold is an F0-space and that
it is formal, in particular.

Theorem 1.3 (Strong Rigidity). Let (M, g) be a positive quaternion Kähler manifold. Then we
have

π2(M) =


0 iff M ∼= HPn

Z iff M ∼= Gr2(Cn+2)

finite with Z2-torsion contained in π2(M) otherwise.

Proof. See [21, Theorem 0.2, p. 110] and [28, Theorem 5.5, p. 103]. �

2. Rational homotopy theory

2.1. Formal spaces

Definition 2.1. A commutative differential graded algebra (A, d) (over a field K ⊇ Q) is
called formal, if it is weakly equivalent to the cohomology algebra (H(A, K), 0) (with trivial
differential).
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We call a path-connected topological space formal if (APL(X), d) is formal. In detail, the
space X is formal if and only if there is a weak equivalence (APL(X), d) ≃ (H∗(X), 0), i.e. a
chain of quasi-isomorphisms

(APL(X), d)
≃
←− . . .

≃
−→ . . .

≃
←− . . .

≃
−→ (H∗(X), 0).

The algebras involved are algebras over the rationals. However, it turns out that the notion of
formality does not depend on rational coefficients.

Theorem 2.2. Let X have rational homology of finite type and let K ⊇ Q be a field extension.
Then the algebra (APL(X, K), d) is formal if and only if X is a formal space.

Proof. See [10, p. 156] and [10, Theorem 12.1, p. 316]. �

Thus we need not worry about field extensions and it suffices to consider rational coefficients
only.

Example 2.3. The following spaces are formal.

• H -spaces ([10, Example 12.3, p. 143]).
• Symmetric spaces of compact type ([10, Example 12.3, p. 162]).
• N -symmetric spaces (see [32, Main Theorem, p. 40] for the precise statement, [19]).
• Compact Kähler manifolds ([7, Main Theorem, p. 270]). �

2.2. Formal maps

Let us recall the following definition.

Definition 2.4 (Formal Maps). Let (A, d), (A′, d′) be formal dga’s and let f : (A, d)→ (A′, d′)
be a morphism of dga’s. Let µA : (MA, d̂)→ (A, d) and µA : (MA′ , d̂

′
)→ (A′, d′) be minimal

Sullivan models.
Let f̂ : (MA, d̂) → (MA′ , d̂

′
) be a Sullivan representative, i.e. an induced map of minimal

models unique up to homotopy. Then f is called formal if there exist quasi-isomorphisms
m A : (MA, d̂) → (H(A, d), 0) and m A′ : (MA′ , d̂

′
) → (H(A′, d′), 0) which are the identity

on cohomology and make the following diagram commute up to homotopy

(MA, d̂)
f̂ //

m A

��

(MA′ , d̂
′
)

m A′

��
(H(A, d), 0)

f ∗ // (H(A′, d′), 0)

(1)

where we identify H(A, d) with H(MA, d̂) via µ∗A and H(A′, d′) with H(MA′ , d̂
′
) via µ∗A′ .

A map f : X → Y between formal topological spaces is called formal if the induced map
fQ : (AP L(Y ), d)→ (AP L(X), d′) is formal.

Remark 2.5. Let us remark that the minimality of MA and MA′ is not necessary in the above
definition and f is formal if and only if one can find Sullivan models MA and MA′ satisfying the
above definition.
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2.3. Absolute bigraded and filtered models

Theorem 2.6 (Halperin–Stasheff Bigraded Model [15]). Let A be a finitely generated graded
commutative algebra over Q. We suppose that A0 = Q. Then the cdga (A, 0) admits a minimal
model ρ : (ΛV, d) → (A, 0) where V is equipped with a lower gradation V = ⊕p≥0 Vp
extended in a multiplicative way to ΛV and where the following properties hold.

(1) d(Vp) ⊂ (ΛV )p−1. In particular, d(V0) = 0. Therefore the cohomology is a bigraded
algebra H(ΛV, d) = ⊕p≥0 Hp(ΛV, d).

(2) ρ(Vp) = 0 for p > 0.
(3) Hp(ΛV, d) = 0 for p > 0 and ρ∗ : H0(ΛV, d)→ H(A, 0) = A is an isomorphism

The cdga (ΛV, d) is called a bigraded model of the graded algebra A.

Bigraded models are unique in the natural sense.
As noted above the fact that d is homogeneous of lower degree -1 means that Hp(ΛV, d)→

H(ΛV, d) is injective for any p. Also recall that the algebra of derivations of a dga (C, d) denoted
by Der(C) is naturally a differential graded Lie algebra with the differential D given by the
bracket with d:

D(θ) = [d, θ] = d ◦θ − (−1)qθ ◦ d

where θ is a derivation of degree q. If (C, d) = (ΛV, d) is a bigraded model of a dga (A, 0), the
lower filtration on ΛV induces a lower filtration on Der(ΛV, d). We denote by Derq

p(ΛV, d) the
set of derivations of (ΛV, d) which increase the usual degree by q and decrease the lower degree
by p. With these notations we have that

D : Derq
p(ΛV, d)→ Derq+1

p+1(ΛV, d).

We shall denote the cohomology of this complex by Hq
p (Der(ΛV, d)). As before, the

(−1)-homogeneity of D with respect to the lower degree implies that the natural map
Hq

p (Der(ΛV, d))→ Hq(Der(ΛV, d)) is injective for any p, q .
For cdga’s with non-zero differentials Halperin and Stasheff [15] introduced the so-called

filtered models exhibiting such algebras as deformations of their cohomology algebras in an
appropriate sense.

Theorem 2.7. Let (A, dA) be a connected cdga of finite type. Let ρ : (ΛV, d)→ (H(A, dA), 0)

be a bigraded model of A.
Then there exists a differential D on ΛV such that

(1) (ΛV, D)
π
→(A, dA) is a Sullivan model of (A, dA); (This model is not necessarily minimal.)

(2) D− d decreases the lower degree by at least two:

D− d : Vp → (ΛV )≤p−2.

That is, the differential D can be written as D = d+ d2+ d3+ · · · where di is homogeneous
of degree −i in lower degree:

di : Vp → (ΛV )p−i .

Filtered and bigraded models are useful for a number of reasons. Of particular interest to us is
the fact that they provide a good framework for distinguishing formal cdga’s amongst all cdga’s
with a given cohomology ring. As shown by Halperin and Stasheff, the deformation differentials
di define a series of obstructions oi .



2058 M. Amann, V. Kapovitch / Advances in Mathematics 231 (2012) 2048–2068

Theorem 2.8 (Obstructions to Formality [15]). Let (A, dA) be a connected cdga of finite type.
Let ρ : (ΛV, d)→ (H(A), 0) be a bigraded model of A. Let (ΛV, D)

π
→ A with D = d+ d2+

d3+ · · · be a filtered model of A with respect to the chosen bigraded model. Then we obtain:
If d j = 0 for j < i , then di is a closed derivation in Der1

i (ΛV, d) and its cohomology
class in H1

i (Der(ΛV, d)) is denoted by oi . If oi = 0, then there exists an automorphism of ΛV
as a cga (but not as cdga) such that conjugating both the algebra and the differential by this
automorphism yields a new filtered model (ΛV, D′). This model has the important property that
the decomposition of its differential

D′ = d′+ d′2+ d′3+ · · ·

as above satisfies that the d′j are identically zero for j = 2, 3, . . . , i .
Repeating this process one obtains that A is formal if and only if the consecutive sequence of

obstructions oi obtained in this fashion vanishes for all i ≥ 2.

This obstruction theory will be one of our main tools in proving Corollary B.
Before we go on let us observe that the minimality of a bigraded model is not important in the

above result. This fact is probably well-known; yet, since we do not have an explicit reference
for this, we sketch a proof here.

Let (A, 0) be a cdga and let φ : (ΛV, d)→ (A, 0) be a Sullivan model of A satisfying all the
properties of a bigraded model except possibly minimality. Following Saneblidze [30] we shall
refer to such a model as a multiplicative resolution of A. It is also a Tate-Jozefiak resolution of
A in the category of cgas (i.e. forgetting the zero differential on A)—cf. [16].

In complete analogy to Theorem 2.7, we may speak of a filtered model with respect to a
multiplicative resolution.

Corollary 2.9. Let (A, dA) be a connected cdga. Let φ : (ΛV, d)→ (H(A), 0) be a multiplica-

tive resolution of A. Let π : (ΛV, D)
≃
→(A, dA) with D = d+ d2+ d3+ · · · be a filtered model

of (A, dA) with respect to the multiplicative resolution φ.
We derive the following results. If d j = 0 for j < i , then di is a closed derivation in

Der1
i (ΛV, d) and its cohomology class in H1

i (Der(ΛV, d)) is denoted by oi .
As a consequence, the cdga (A, dA) is formal if and only if oi = 0 for all i ≥ 2.

Proof. The “if” direction is proved in exactly the same way as in [15] as it does not use
minimality of the multiplicative resolution. For the “only if” direction recall that Saneblidze
constructed relative bigraded and filtered models for fibrations (see [29] or [30]). While his
construction is somewhat different from the ones in [35] or [38], which we discuss below, in
the case the base equals a point it reduces to the filtered model of the fiber based on an arbitrary
(not necessarily minimal) multiplicative resolution of the fiber. Moreover, Saneblidze also proved
the uniqueness of such filtered models (see [29, Theorem 3.3] or [30, Theorem A]) generalizing
the uniqueness theorem for bigraded models of Halperin and Stasheff [15, Theorem 4.4] where
the same statement was proved for filtered models based on minimal multiplicative resolutions.
This uniqueness implies the “only if” direction in exactly the same way as in [15]. �

2.4. Relative bigraded and filtered models

We shall also need relative versions of bigraded and filtered models developed by Vigué-
Poirrier [38] (cf. also [30,29,36]).
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As in the absolute case, one begins by constructing a bigraded model in the relative category.
For this let φ : (H, 0) → (H ′, 0) be a morphism of two cdga’s (with trivial differentials). Let

ρ : (ΛZ , d)
≃
−→ (H, 0) be a bigraded model and let

(ΛZ , d)
i

↩→(ΛZ ⊗ ΛX, d′)
p
→(ΛX, d′′)

be a minimal relative model for φ ◦ ρ. That is, (ΛZ , d)
i

↩→(ΛZ ⊗ ΛX, d′) is a minimal relative
Sullivan algebra (see [11, Section 14] for definitions) such that the following diagram commutes.

(H, 0)
φ // (H ′, 0)

(ΛZ , d)

ρ

OO
φ◦ρ

77pppppp i // (ΛZ ⊗ ΛX, d′)

ρ′

OO

p // (ΛX, d′′)

(2)

Here both ρ and ρ′ are quasi-isomorphisms. (Note that (ΛZ⊗ΛX, d′) is a Sullivan algebra which
is minimal as a relative algebra but might not be minimal as an absolute algebra.)

Theorem 2.10 (Relative Bigraded Model, [38]). With the terminology from above one obtains
the following. The algebra (Y, d′) := (ΛZ ⊗ ΛX, d′) can be chosen in such a way that it admits
a lower grading satisfying the following properties.

(a) It holds that Z = ⊕i≥0 Zi as well as X = ⊕i≥0 X i and Yi = X i ⊕ Zi .
(b) The differential d′ is homogeneous of degree −1 with respect to the lower grading.
(c) All the maps in diagram (2) preserve the lower grading. For this (H, 0) and (H ′, 0) are

understood to have trivial lower gradings, i.e. H0 = H and Hi = 0 for i > 0 respectively,
H ′0 = H ′ and H ′i = 0 for i > 0.

(d) The morphism ρ′ : (ΛY, d′)→ (H ′, 0) is a multiplicative resolution. That is
(i) ρ′ : ΛY0 → H ′ is onto,

(ii) ρ′(Yi ) = 0 for i > 0,
(iii) Hi (ΛY, d′) = 0 for i > 0 and (ρ′)∗0 : H0(ΛY, d′)→ H ′ is an isomorphism.

We shall refer to this relative Sullivan algebra

(ΛZ , d)
i

↩→(ΛZ ⊗ ΛX, d′)
p
→(ΛX, d′′)

as the (relative) bigraded model of φ.
Finally, Vigué-Poirrier (see [38]) proved the existence of a relative filtered model for

morphisms between arbitrary cdga’s.

Theorem 2.11. Let α : (A, d)→ (A′, d′) be a morphism of cdga’s with the property that H1(α)

is injective. Let

(H(A, d), 0)
α∗ // (H(A′, d′), 0)

(ΛZ , d)

ρ

OO
α∗◦ρ

66nnnnnn i // (ΛZ ⊗ ΛX, d′)

ρ′

OO

p // (ΛX, d′′)

(3)

be a bigraded model of α∗ provided by Theorem 2.10.
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Let (ΛZ , D)
π
→(A, d) be a filtered model of (A, d). Then α ◦ π : (ΛZ , D)→ (A′, d) admits

a minimal relative model

(A, d)
α // (A′, d′)

(ΛZ , D)

π

OO
α◦π

77oooooo i // (ΛZ ⊗ ΛX, D′)

π ′

OO

p // (ΛX, D′′)

(4)

where D′− d′ decreases the lower grading by at least 2, i.e.

D′− d′ : (ΛZ ⊗ ΛX)p → (ΛZ ⊗ ΛX)≤p−2 for any p ≥ 0. (5)

We shall refer to the relative Sullivan algebra

(ΛZ , D)
i
→(ΛZ ⊗ ΛX, D′)

p
→(ΛX, D′′)

as the (relative) filtered model of α.

Remark 2.12. In [35] Thomas considered a simplified version of a relative filtered model,
which is obtained by pushing forward the above construction via the quasi-isomorphism
π : (ΛZ , D) → (A, d), i.e. his filtered model can be obtained from the one defined above by
taking (A, d)⊗(ΛZ ,D)(ΛZ ⊗ ΛX, D′). �

2.5. Bigraded and filtered models of TNCZ fibrations

For a general filtered model of a map α : A → A′ the fiber cdga (ΛX, D′′) is not a filtered
model of the fiber. However, it is one if the map α : A → A′ is a model of a TNCZ fibration,
which is the situation we are interested in this article. More precisely, the following holds.

Theorem 2.13 ([38] (cf. [36])). Let F ↩→ E
f
→ B be a Serre fibration of path-connected spaces

where B is simply-connected and H∗(F) has finite type. Suppose this fibration is TNCZ. Let
fQ : MB → ME be the induced map of minimal models. Then fQ admits a relative filtered
model

(ΛZ , D)
i

↩→(ΛZ ⊗ ΛX, D′)
p
→(ΛX, D′′)

such that (ΛX, D′′) is a filtered model of F.
In particular, D′′1 = d′′ where d′′ is the fiber differential in the bigraded model of f ∗ :

H∗(B)→ H∗(E). Here D′′1 denotes the part of D′′ decreasing the lower degree by 1.

3. Proof of the main results

Before we prove Theorem A, let us show by an example that the class of formal
elliptic spaces satisfying the Halperin conjecture is strictly larger than the class of F0-spaces
satisfying Halperin’s conjecture. In other words, there are formal elliptic spaces with vanishing
Euler characteristic which do not possess non-trivial derivations of negative degree on their
cohomology algebras.

However, we remark that a formal elliptic space is necessarily two-stage due to [9]. Moreover,
as a consequence of finite dimensionality of cohomology, the filtration degree 1 in this two-stage
decomposition only consists of odd-degree elements. This follows from comparing the minimal
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model with the E0-term of the odd spectral sequence (see [10, Section 32b, p. 438]), i.e. the
pure Sullivan algebra associated with the minimal model. This associated algebra has finite
cohomological dimension if and only if the minimal model does (see [10, Proposition 32.4,
p. 438]). However, any even degree element in filtration degree one in the minimal model
becomes an element in filtration degree zero in the associated pure algebra. Such an element
freely generates an infinite sequence of non-vanishing cohomology classes of increasing degrees.

Thus, basically, the “only difference” of a formal elliptic space from an F0-space, which
admits a pure model, lies in the fact that in filtration degree zero odd degree elements may occur.

Nonetheless, this suffices to give the following.

Example 3.1. We define a minimal Sullivan algebra (ΛV, d) by

V = ⟨a, b, c, d, u, v⟩ with deg a = deg b = deg c = deg d = 3,

deg u = 6, deg v = 11.

We set d a = d b = d c = d d = d u = 0 and d v = abcd + u2.
This algebra is easily seen to be the minimal model of a rationally non-trivial S6-bundle over

S3
× S3

× S3
× S3. Therefore this algebra is elliptic and also formal, since the base is formal

and the fiber is F0. In order to compute the derivations of negative degree on its cohomology
algebra, one notes that the cohomology algebra is generated by elements of degrees 3 and 6.
Consequently, every non-trivial homogeneous such derivation has to have degree −3 or −6.
However, it is impossible to specify a non-trivial derivation on [v] and on the [a], [b], [c], [d]
(and extend it as a derivation to the whole of H(ΛV, d)) which would be compatible with the
fact that [abcd] = −[u2

] in cohomology.
As (ΛV, d) has non-zero cohomology generators of odd degree, its spatial realization is not

an F0-space. �

Proof of Theorem A. We are now ready to proceed with the proof of Theorem A.

Let F ↩→ E
f
→ B be a Serre fibration where E, F, B are simply-connected and of finite type.

Suppose further that H∗(F) is finite dimensional, E and F are formal and that F is a two-stage
space satisfying Halperin’s conjecture.

Let f ∗ : H∗(B)→ H∗(E) be the induced map on cohomology and let

(H(B), 0)
f ∗ // (H(E), 0)

(ΛZ , d)

ρ

OO
f ∗◦ρ

77nnnnnn i // (ΛZ ⊗ ΛX, d′)

ρ′

OO

p // (ΛX, d′′)

(6)

be its relative bigraded model.
Let MB , ME be the minimal models of B and E and let fQ : MB → ME be a Sullivan

representative, a corresponding map of minimal models.
Let

MB
fQ // ME

(ΛZ , D)

π

OO
fQ◦π

77oooooo i // (ΛZ ⊗ ΛX, D′)

π ′

OO

p // (ΛX, D′′)

(7)

be the filtered model of fQ.
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We decompose D = d+ d2+ d3+ · · · and D′ = d′+ d′2+ d′3+ · · · as above. Note that, since

(ΛZ , D)
i

↩→(ΛZ ⊗ ΛX, D′)
p
→(ΛX, D′′)

is a relative Sullivan algebra, we have that

d′i |ΛZ⊗1 = di . (8)

Since F satisfies the Halperin conjecture, the fibration F ↩→ E
f
→ B is TNCZ and therefore,

by Theorem 2.13, we obtain that (ΛX, d′′) is a bigraded model of H(F) and (ΛX, D′′) is a filtered
model of F . Since F is formal and elliptic, by [9] we know that X i = 0 for i ≥ 2. Thus, for
degree reasons,

D′′− d′′ |1⊗ΛX = 0 (9)

and, in particular, D′′ = d′′.
This is a very useful fact which simplifies the situation considerably as it means that the

relative filtered model is completely determined by the relative bigraded model and the filtered
model of the base. In particular, it immediately implies the fact mentioned in the introduction
that for a TNCZ fibration with elliptic and formal fiber the formality of the base space implies
the formality of the total space.

Recall that di ∈ Der1
i (ΛZ , d) and d′i ∈ Der1

i (ΛZ ⊗ΛX, d′). Since Der(−,−) is contravariant
in the first argument and covariant in the second argument, there are no natural maps between
Der1

i (ΛZ) and Der1
i (ΛZ ⊗ΛX). However, both of them naturally map to Der1

i (ΛZ ,ΛZ ⊗ΛX).
Here we view (ΛZ ⊗ ΛX, d′) as a dga-module over (ΛZ , d) via the dga-homomorphism
(ΛZ , d) ↩→(ΛZ ⊗ ΛX, d′).

Der1
i (ΛZ ,ΛZ)

j

**UUUUUUUUUUUUUUUU

Der1
i (ΛZ ,ΛZ ⊗ ΛX)

Der1
i (ΛZ ⊗ ΛX,ΛZ ⊗ ΛX)

j ′
44iiiiiiiiiiiiiiii

(10)

By (8) and (9) we have that j ′(d′i ) = j (di ) for every i .
The differential on Der1

i (ΛZ ,ΛZ ⊗ ΛX) is given by

D(θ) = d′ ◦θ − (−1)kθ ◦ d

where θ ∈ Der(ΛZ ,ΛZ ⊗ ΛX) is a derivation of degree k. The morphisms j respectively j ′

commute with the differentials d respectively d′ and D, since (ΛZ⊗ΛX, d′) is a relative Sullivan
algebra over (ΛZ , d).

Let us assume that d j = 0 for j < i . Due to Eqs. (8) and (9) this equally implies that d′j = 0
for j < i .

Then d′i is a closed derivation and, since E is formal, by Corollary 2.9 it is also exact.
Therefore, the cocycle j ′(di ) ∈ Der1

i (ΛZ ,ΛZ ⊗ ΛX) is exact, too.
Our key observation is that the map j is injective in cohomology.
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Lemma 3.2. Under the above assumptions

j∗ : H∗(Der(ΛZ ,ΛZ))→ H∗(Der(ΛZ ,ΛZ ⊗ ΛX))

is injective.

Proof. Consider the following filtration on Der(ΛZ ,ΛZ ⊗ ΛX): let

F p(Der(ΛZ ,ΛZ ⊗ ΛX))

be the set of derivations which increase the ΛZ -degree by at least p; note that p can be
negative. This filtration is clearly invariant under the differential D(θ) = d′ ◦θ − (−1)kθ ◦ d
(with θ ∈ Der(ΛZ ,ΛZ ⊗ ΛX) of degree k).

Let us examine the spectral sequence arising from this filtration. Note that the filtration is
bi-infinite on every Derk(ΛZ ,ΛZ ⊗ΛX). Therefore it is not immediately clear why this spectral
sequence converges. However, we compute

E0 = Der(ΛZ ,ΛZ ⊗ ΛX) ∼= Der(ΛZ ,ΛZ)⊗ ΛX

and the differential d0 on E0 satisfies d0 = d′′. It follows that

E1 = Der(ΛZ ,ΛZ)⊗ H(ΛV, d′′).

Since H(F) ∼= H(


V, d′′) is finite dimensional, this implies that all but finitely many rows of
E∗,∗1 are zero. This easily implies that the spectral sequence converges (and does so after finitely
many steps, i.e. it collapses) to

H(Der(ΛZ ,ΛZ ⊗ ΛX)).

We readily compute that

E p,q
2 = H p(Der(ΛZ ,ΛZ))⊗ Hq(ΛX, d′′)

and that j∗ is the edge homomorphism of this spectral sequence.
Recall that H(ΛX, d′′) ∼= H(F). By a standard argument the multiplicative properties of the

spectral sequence imply that non-trivial spectral sequence differentials dr (for r ≥ 2) produce
non-trivial derivations on H(F) of negative degree.

More precisely, suppose that r = 2 or that dt = 0 for 2 ≤ t < r for r ≥ 3. This identifies
the Er -term with the E2-term. Thus for [θ ] ⊗ [z] ∈ E p,q

r with [θ ] ∈ H(Der(ΛZ ,ΛZ)) and
[z] ∈ H(


V, d′′) we write dr ([θ ] ⊗ [z]) as

dr ([θ ] ⊗ [z]) = Σi [θi ] ⊗ [zi ]

where {[θi ]}i∈I is a homogeneous basis of H(Der(ΛZ ,ΛZ)) and the [zi ] are the corresponding
coefficients from H(F). Write

dr ([θ ] ⊗ [z]) = Σi [θi ] ⊗ (dr )i ([θ ] ⊗ [z])

where (dr )i ([θ ] ⊗ [z]) denotes the coefficient [zi ] in H(F) for [θi ] of the term dr ([θ ] ⊗ [z]).
Suppose dr is not identically zero so that

dr ([θ ] ⊗ [z]) ≠ 0

for some [θ ] ∈ H(ΛX, d′′) and [z] ∈ H(F). Pick i0 with [θi0 ] ⊗ [zi0 ] ≠ 0. Let φ : H(F) →

H(F) be given by

φ([z]) = (dr )i0([θ ] ⊗ [z]) ≠ 0.



2064 M. Amann, V. Kapovitch / Advances in Mathematics 231 (2012) 2048–2068

Then the multiplicative properties of the spectral sequence imply that φ is a non-trivial derivation
of H(F) of negative degree.

Since by assumptions F satisfies Halperin’s conjecture, this means that the derivations spectral
sequence degenerates at the E2-term. This immediately implies that the edge homomorphism j∗

is injective. �

We can now easily finish the proof of Corollary B. In the situation depicted in diagram (10)
we observe the following for the deformation differentials di from above:

j∗([di ]) = j ′∗([d′i ]) = j ′∗(0) = 0

and since j∗ is injective by Lemma 3.2, we have that

[di ] = 0 ∈ H1(Der(ΛZ , d)).

Next, since H1
i (Der(ΛZ , d)) ↩→ H1(Der(ΛZ , d)) is injective, we derive that [di ] = 0 as an

element of H1
i (Der(ΛZ , d)).

By Theorem 2.8 this means that we can modify the filtered model (ΛZ , D) so that d j = 0 for
j ≤ i . This also modifies the relative filtered model so that using (8) and (9) we can also assume
that d′j = 0 for j ≤ i . Consequently, the differential d′i+1 is closed – whence exact – and we may
proceed by induction.

This results in the fact that all the obstructions [di ] vanish. Hence the space B is formal due
to Theorem 2.8.

Finally, in order to prove the last statement of the theorem, we observe that whenever E
is formal, the above procedure yields a relative filtered model which coincides with a relative
bigraded model. This trivially implies that f is formal by Remark 2.5. The converse is also true
by [38, Proposition 2.3.4], but we do not need it here. �

Remark 3.3. Examining the proof it is clear that it applies to any fiber F which is of finite type,
has finite dimensional cohomology, satisfies Halperin’s conjecture and the bigraded model of
which has height 2. That is, Vi (F) = 0 for any i > 1. In this case the F is automatically formal,
since all the deformation differentials di (for i ≥ 2) necessarily vanish for degree reasons.

By an inductive argument on the lower degree it is easy to see that a space of finite type with
finite dimensional cohomology satisfies dim Vi <∞ for all i . As a consequence, a formal space
of finite type with finite dimensional cohomology and Vi = 0 for i > 1 is necessarily rationally
elliptic. �

4. Counterexamples

In view of Theorem A one may wonder if the assumptions on the fiber in that theorem can be
weakened while retaining at least one direction of the theorem. Since the product of two spaces
is formal if and only if so are the factors, it is clear that the assumption on the fiber being formal
is needed.

However, this condition alone is easily seen not to be sufficient and some further restrictions
on the fiber are clearly necessary in order to relate formality of the base and of the total space in
a fibration.

In algebraic terms, the simplest examples of fibrations of simply-connected spaces in which
either only both fiber and base are formal or only both fiber and total space are formal can
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be provided as follows. For the first case one may apply a “degree-shift” of generators in the
respective minimal models of the bundle

S1 ↩→M3
→ S1

× S1

from [7, p. 261] where M is the 3-dimensional compact Heisenberg manifold, which is
considered the simplest non-formal compact manifold. Now let the underlying vector space
of a minimal algebra (ΛV, d) be generated by elements x, y, z with deg x = deg y = n,
deg z = 2n − 1, n odd, d x = d y = 0 and d z = xy. Then it is a direct observation that
it can be realized as the non-formal total space of an analogous fibration of simply-connected
spaces.

For the second case construct the formal minimal algebra (ΛV, d) with V = ⟨b, c, n⟩ and
deg b = 3, deg c = 4, deg n = 6 and with d b = d c = 0, d n = bc. We then realize it as
the base space of a fibration with the formal total space provided by the relative minimal model
(ΛV ⊗ Λ⟨z⟩, d) with d z = c, deg z = 3 and with fiber rationally an S3.

It is also easy to construct nice geometric examples of fiber bundles with elliptic fibers
where both the base and the fiber are formal but the total space is not. For example, let
E = Sp(5)/SU(5). This space is well-known to be non-formal. It fibers with fiber S3 over
the biquotient B = Sp(1) \ Sp(5)/SU(5) where the action of Sp(1) on the left on Sp(5) comes

from the embedding Sp(1)
ρ
−→ Sp(5) with ρ(g) = diag(g, 1, . . . , 1). (It is easy to see that the

resulting action of Sp(1)× SU(5) on Sp(5) is free). Notice that the biquotient B is F0 and hence
formal. Thus we have a fibration S3 ↩→ E → B with formal base but non-formal total space.

If one does not insist on a simply-connected fiber, the fibration

S1 ↩→Sp(n)/SU(n)→ Sp(n)/U(n)

for n ≥ 5 is an even simpler example of that kind.
Note that there are many non-formal homogeneous spaces G/H (such as aforementioned

Sp(5)/SU(5) or SU(6)/(SU(3)×SU(3))). Any such space fits into a fibration H ↩→ G → G/H
where both the fiber and the total space are formal (and elliptic), but the base space is not.

As was mentioned earlier, Thomas constructed an example of a fibration S3
∨ S3 ↩→

E → S3
× S5 with H(E) ∼= H(B) ⊗ H(F) as an algebra, but where E is not formal

(see [36, Example II.13]). Note that here both B and F are obviously formal and the fibration is
TNCZ.

The following example is due to Greg Lupton.

Example 4.1. We shall produce a fibration with formal, yet hyperbolic, fiber F , which satisfies
the Halperin conjecture and with a formal base space B = S3. However, the total space of this
fibration is not formal.

Let F = S2
∨ S2
∨ S2 and B = S3. Then F is formal and its bigraded model (ΛV, d) is as

follows:

V0 = ⟨a, b, c⟩

V1 = ⟨α, β, γ, δ, ε, φ⟩

V2 = ⟨w, . . .⟩

...
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where deg a = deg b = deg c = 2, d a = d b = d c = 0, deg α = deg β = deg γ = deg δ =

deg ε = deg φ = 3, d α = a2, d β = ab, d γ = c2, d δ = b2, d ε = ac, d φ = bc, deg w = 4,
d w = αb − aβ, etc.

We will construct a closed derivation θ of ΛV decreasing the lower and upper degrees by 2.
Define θ to be 0 on V0 and V1, θ(w) = c and θ = 0 on the rest of the generators of V2. It is trivial
to check that [d, θ] = 0 on (ΛV )≤2.

We claim that θ can be extended to ΛV to be a closed derivation of bi-degree (2,−2).
We proceed by induction on lower degree. Assume i ≥ 3 and we have constructed θ on

(ΛV )≤i−1 so that [d, θ] = 0 on (ΛV )≤i−1. We claim that we can extend θ to (ΛV )≤i so that
[θ, d] = 0 on (ΛV )≤i .

In order to prove this claim, we pick a basis of Vi and let v ∈ Vi be an element of this basis.
We have that dv ∈ (ΛV )i−1 and due to the induction hypothesis

0 = [d, θ](d v) = d(θ(d v))

so that θ(d v) ∈ (ΛV )i−3 is closed. We then obtain two cases we need to consider separately.

Case 1. First suppose i = 3.
Note that deg d v > 4 and hence deg θ(d v) > 2. Since H0(ΛV, d) ∼= H∗(S2

∨ S2
∨ S2) is

zero in (usual) degree > 2 we have that θ(d v) is exact. Therefore there is an x ∈ (ΛV )1 with
d x = θ(d v). Set θ(v) = x . Then [d, θ](v) = 0.

Case 2. Now suppose i ≥ 4.
Then we have that i−3 ≥ 1. Since H>0(ΛV, d) = 0, this again implies that θ(d v) is exact. As

before we choose x ∈ (ΛV )i−2 with d x = θ(d v) and set θ(v) = x . Then again [d, θ](v) = 0.
Thus, in any case we can extend the derivation to a closed derivation on (ΛV )≤i .
Next notice that [θ ] ≠ 0 in H−2

2 (Der(ΛV, d)). Indeed, suppose θ = [d, µ] for some
µ ∈ Der−3

1 (ΛV, d). For degree reasons we must have that µ = 0 on V0. Then

c = θ(w) = [d, µ](w) = d(µ(w))− µ(d w) = d(µ(w))− µ(αb − aβ)

is in the ideal I (a, b) (generated by a and b) up to a coboundary. However, c ∉ I (a, b) up to
coboundary and hence θ is not exact.

Recall that we have an isomorphism H−2(Der(ΛV, d)) ∼= π2(Aut1 F) ⊗ Q constructed as
follows. For any formal space W and any “nice” space X (e.g. simply connected and homotopy
equivalent to a CW complex) we have a bijection of sets of homotopy classes of morphisms

[W, XQ] ∼= [MX , MW ] ∼= [MX , H∗(W, Q)]

where MX and MW are minimal models of X and W respectively. Applying this to W = FQ×S2

and X = FQ we get

[FQ × S2, FQ] ∼= [(ΛV, d), H∗(F)⊗ H(S2)]

∼= [(ΛV, d), (ΛV, d)⊗ H∗(S2)]

∼= [(ΛV, d), (ΛV, d)⊗ Λ⟨u⟩/(u2)]

where we identified H∗(S2) with Λ⟨u⟩/(u2) with deg u = 2 and zero differential in the last
equality.

Consider the map h : (Λ, d) → (Λ, d) ⊗ Λ(u)/(u2) given by h(x) = x ⊗ 1 + θ(x) ⊗ u.
The fact that θ is a closed derivation immediately implies that this is a dga homomorphism. Let
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h̃ : FQ × S2
→ FQ be the corresponding element of [FQ × S2, FQ]. By the adjunction formula

it defines an element

h̄ ∈ π3(B Aut1(F))⊗Q ∼= π2(Aut1(F))⊗Q ∼= π2(Aut1(FQ)).

Let F ↩→ E
f
−→ S3 be the pullback via h̄ of the universal fibration

F ↩→B Aut•1(F)→ B Aut1(F)

where Aut•1(F) is the monoid of self-homotopy equivalences of F homotopic to the identity
relative to the base point. By construction, the minimal model of f is given by

(Λ⟨v⟩, 0) ↩→(Λ⟨v⟩ ⊗ ΛV, D)→ (ΛV, d)

where deg v = 3 and the lower degree of v is 0. Also, D(v) = 0, D(x) = d x + vθ(x) for
any x ∈ ΛV . We can view (Λ⟨v⟩ ⊗ ΛV, D) as an absolute filtered model of E . Observe that
D(w) = d w + vc. Therefore, the d2-part of D is not zero, since the lower degree of w is 2 and
the lower degree of vc is 0.

By the same argument as before it is easy to see that d2 cannot be exact. Therefore the
obstruction class o2 ≠ 0 and hence E is not formal. On the other hand, the fiber and the base
are formal and the cohomology algebra of the fiber obviously has no non-trivial negative degree

derivations; so, in particular, the fibration F ↩→ E
f
−→ S3 is TNCZ. �

Motivated by Example 4.1 it remains natural to ask for a fibration F ↩→ E
f
−→ B with formal

fiber F and formal total space E and with F satisfying Halperin’s conjecture, whilst B is not
formal.
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