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Abstract

Using the Alexandroff one-point compactification as a point of departure, we study a general procedure
for building an extension ⟨X ∪ I, τ0⟩ of a topological space ⟨X, τ ⟩, given a family {Bi : i ∈ I } of nontrivial
closed ideals on X , indexed by the intended remainder I .
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1. Introduction

Casual students of point-set topology may not retain much from an introduction to the
subject, but among those constructions that surely have staying power is the Alexandroff one-
point compactification of a locally compact noncompact Hausdorff space ⟨X, τ ⟩. One adjoins
an ideal point i to X and takes as open sets all elements of τ plus all sets of the form
{X \ E ∪ {i} : E is compact} [23, p. 136]. In contrast, the Stone–Čech compactification of
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a noncompact Tychonoff space, whether it is approached through the Tychonoff embedding
theorem or ultrafilters of zero sets, seems not only more complicated but far removed from
the one-point compactification. While the topology of the completion of a noncomplete metric
space is much more accessible, this too seems to be fundamentally unrelated to the one-point
compactification construction.

The aim of this paper is to provide a framework to understand the most important extension
topologies — including those just mentioned — as refinements of the one-point compactification
construction. Throughout, we reassert the naive approach to extensions, that of adjoining points
to an initial space, as an alternative to the modern approach of embedding an initial space into a
larger structure, e.g., a filter system (see, e.g., [19, Chapter 17] or [17, Section 7.1]).

The point of departure to this understanding is to index a base for the one-point compactifica-
tion by the τ -closed subsets of X . Given E ⊆ X with X \ E ∈ τ , define WE ⊆ X ∪ {i} by

WE =


X \ E ∪ {i} if E is compact
X \ E otherwise.

Clearly {WE : E τ -closed} contains all open neighborhoods of the ideal point plus some mem-
bers of τ . To show that it forms a base for the extension topology, we need only show that it con-
tains this base for τ : the subfamily of open sets with compact closure. But if V ∈ τ has compact
closure, then since X is assumed noncompact, X \ V cannot be compact, whence V = WX\V .

Now in the present context, the family A of relatively compact subsets (i) forms an hereditary
family closed under finite unions, (ii) A ∈ A ⇒ cl(A) ∈ A , and (iii) X ∉ A . With respect to
conventional usage, this means that A is a nontrivial ideal of subsets of X with a closed base.
For our basic open sets for the extension topology, we adjoin i to the complement of a τ -closed
set E if and only if E belongs to the ideal. How should we organize things more generally if we
have many ideal points, each corresponding to such an ideal?

Let ⟨X, τ ⟩ be a topological space and let I be a nonempty set disjoint from X . Suppose
{Ai : i ∈ I } is a family of nontrivial ideals on X such that for each i ∈ I and for each
E ∈ Ai , clτ (E) ∈ Ai . Then all sets of the form

(X \ E) ∪ {i ∈ I : E ∈ Ai } (Eτ -closed)

form a base for an extension topology τ0 on X ∪ I . It turns out that different families of ideals
determine distinct extension topologies. In fact, we can recover the original family of ideals from
the extension topology that it determines, in a way that we now describe.

Each extension ⟨X ∪ I, σ ⟩ of ⟨X, τ ⟩ naturally induces such a family of ideals. For each i ∈ I ,
let Wi be the neighborhood system at i as determined by σ . Upon taking relative complements
of the members of each Wi in X , we obtain for each i ∈ I an ideal Bi (σ ) of proper subsets of
X which is stable under taking closures of its elements. When the extension is T1, each ideal is a
bornology on X , that is, an ideal that is also a cover of X .

We can define a second extension topology τ0(σ ) by performing the procedure outlined in the
first paragraph on the family of ideals {Bi (σ ) : i ∈ I }. Indeed, this is a well-known procedure
perhaps first explicitly described in dual form by Banaschewski using filters (see, e.g., [3,17,19,
20]). It can be shown that the basic open set determined by a τ -closed set E is the largest σ -open
set whose intersection with X yields X \ E and, as a result, the topology τ0(σ ) is weaker than σ .
The key fact here is this: if σ happens to arise from {Ai : i ∈ I } through our procedure, then for
each i ∈ I , we must have Bi (σ ) = Ai .

We call an extension ⟨X ∪ I, σ ⟩ that can be obtained from a family of ideals on X via
our construction a bornological extension. By the concluding remark of the last paragraph,
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this is equivalent to the property σ = τ0(σ ); in Banaschewski’s terminology, our bornological
extensions must be strict extensions. We choose the descriptor “bornological” because the most
important extensions are T1.

We take care to explain how standard approaches to various classical extensions fall within
our program when seen in the proper light: the Wallman extension of a T1 space, the Stone–
Čech compactification of a Tychonoff space, the completion of a metric space, and the
Dedekind–MacNeille compactification of the order topology. Particular attention is paid to one-
point (not necessarily compact) extensions.

We give several characterizations of bornological extensions. Most notable is the following
one stated in terms of an approximation property for closed sets: an extension ⟨X ∪ I, σ ⟩ is
bornological if and only if each σ -closed subset C can be expressed as ∩{clσ (A) : A ⊆

X and C ⊆ clσ (A)}. From a slight variant of this, we obtain an attractive proof of the following
old result of Stone [3,17,18]: all semiregular extensions ⟨X ∪ I, σ ⟩ are strict extensions. From
another characterization, we easily describe compactness of the extension.

It can happen that a topological space is a bornological extension of some of its dense sub-
spaces but not of the others. In fact, the binary relation of one space being a bornological exten-
sion of a second space fails to be transitive! We characterize those spaces that are bornological
extensions of each of its dense subspaces.

While it can happen that our construction produces an extension topology τ0 that contains our
initial topology τ — as is the case with the Alexandroff one-point compactification — this is not
to be expected. An extension of ⟨X, τ ⟩ is called a strong bornological extension if its topology σ

is generated by τ ∪ τ0(σ ). We study these as well.
At the end of the paper, we consider the lower separation axioms for bornological extensions

up through regularity.

2. Preliminaries

Let ⟨X, τ ⟩ be a topological space. We write P(X) for the power set of X and C (X) for the
family of closed subsets of X . As frequently more than one topology will be under consideration
at a given moment, if E ⊆ X , we denote its closure and interior with respect to τ by clτ (E) and
intτ (E), respectively.

A nonempty hereditary family of subsets of X closed under finite unions is called an ideal or
a boundedness [8,13] Evidently, each ideal must contain the empty set. Notice that if an ideal
contains X , then it must coincide with P(X). We call P(X) the trivial ideal.

Given a nonempty family of subsets A of X , there is a smallest ideal containing A . Writing
↓ A for {B ∈ P(X) : ∃A ∈ A with B ⊆ A} and Σ (A ) for the family of all finite unions of
members of A , this smallest ideal can be expressed as either ↓ Σ (A ) or Σ (↓ A ). As expected,
this is called the ideal generated by A .

We call a subfamily B0 of an ideal B a base for B if B =↓ B0. We say that an ideal is
closed (resp. open) if it has a closed (resp. open) base. Denoting the closed members of B by B,
to say that B is closed means that B =↓ B.

By a bornology B on a set X , we mean an ideal of subsets that also forms a cover of X
[4,6,12,14,21]. Clearly a bornology must contain all singleton subsets as well as the empty set.
The finite subsets of X form the smallest bornology on X while the power set is the largest
bornology. We call a bornology B local if it contains a neighborhood of each point of X .

Some notable bornologies are: (1) the bornology of relatively compact subsets of a topological
space; (2) the bornology of metrically bounded subsets of a metric space (this bornology is both
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closed and open); (3) the bornology of totally bounded subsets of a uniform space (this bornology
is closed but may not be open); (4) the bornology of Bourbaki bounded subsets of a uniform
space [7,21]; (5) the bornology of all subsets of a set X on which f : X → R is bounded. The
nowhere dense subsets of a topological space X form an ideal that is a bornology if and only if
each point of X is a limit point of X .

3. The bornological extension topologies

Suppose ⟨X, τ ⟩ is a topological space and ⟨X ∪ I, σ ⟩ is an extension of ⟨X, τ ⟩. For complete
clarity, this means that I is a nonempty set disjoint from X , each nonempty element of σ hits X ,
and the relative topology that X inherits from ⟨X ∪ I, σ ⟩ coincides with τ . For each i ∈ I ,

{X \ W : W ∈ σ, i ∈ W }

is a closed base for an ideal Bi (σ ) on X , and Bi (σ ) = {E ⊆ X : i ∉ clσ (E)} = {E ⊆ X :

∃W ∈ σ such that i ∈ W, W ∩ E = ∅}. By the denseness of X , the ideal is nontrivial.
If the extension is T1, the ideal becomes a bornology. More generally this is true, if given any

point x of X , there is a neighborhood of i that is disjoint from {x}.
Thus, each extension ⟨X ∪ I, σ ⟩ of ⟨X, τ ⟩ gives rise to a family of nontrivial closed ideals

{Bi (σ ) : i ∈ I } on X . A basic question to be addressed is the following: when does this family
of ideals determine σ in a natural way?

We will now describe a natural way to associate an extension of X to every family of nontrivial
closed ideals on X . Let ⟨X, τ ⟩ be a topological space and let I be a nonempty set disjoint from
X . Suppose {Bi : i ∈ I } is a family of nontrivial closed ideals on X . For each E ∈ C (X), put

UE := {i ∈ I : E ∈ Bi }, VE = X \ E .

Lemma 3.1. Let {Bi : i ∈ I } be a family of nontrivial closed ideals on ⟨X, τ ⟩. Then the family
{UE ∪ VE : E ∈ C (X)} is closed under finite intersections.

Proof. For E, F closed in X , one has

UE ∩ UF = {i ∈ I : E ∈ Bi and F ∈ Bi } = {i ∈ I : E ∪ F ∈ Bi } = UE∪F ;

hence,

(UE ∪ VE ) ∩ (UF ∪ VF ) = (UE ∩ UF ) ∪ (VE ∩ VF ) = UE∪F ∪ VE∪F . �

Since each ideal contains the empty set, it is clear that U∅ ∪ V∅ = X ∪ I . Since {UE ∪ VE :

E ∈ C (X)} is closed under finite intersections, this family forms a base for a topology
τ0({Bi : i ∈ I }) on X ∪ I [23, Theorem 5.3]. When no ambiguity can result, we just write
τ0 for this topology.

Proposition 3.2. Let ⟨X, τ ⟩ be a topological space, and let {Bi : i ∈ I } be a family of nontrivial
closed ideals on X. Then ⟨X ∪ I, τ0({Bi : i ∈ I })⟩ is an extension of X.

Proof. The relative topology on X determined by τ0 is contained in τ as the intersection of each
basic open set with X evidently lies in τ . To show the reverse inclusion, let W ∈ τ be a nonempty
proper subset of X . Evidently,

W = (UX\W ∪ VX\W ) ∩ X

which shows that W is relatively open.
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To see that X is dense, suppose i ∈ I belongs to some basic open set UE ∪ VE . Then i ∈ UE
so that E ∈ Bi which means E ≠ X and thus (UE ∪ VE ) ∩ X = VE ∩ X ≠ ∅. �

We will call ⟨X ∪ I, τ0({Bi : i ∈ I })⟩ the bornological extension of X determined by
{Bi : i ∈ I } and τ0 the associated bornological extension topology.

The family {UE ∪ VE : E ∈ C (X)}∪ τ is also closed under finite intersections and thus forms
a base for a formally stronger topology τ s

0 on X ∪ I . We call ⟨X ∪ I, τ s
0 ⟩ the strong bornological

extension of X with respect to {Bi : i ∈ I }. In this extension in which X is also dense, the
remainder is closed. Notice that for each i ∈ I, {W ∈ τ0 : i ∈ W } is a local base for τ s

0 at i , and
in particular, the two topologies restricted to the remainder agree. Presently, we will see when
the two extensions coincide.

Definition 3.3. We will say that the extension ⟨X ∪ I, σ ⟩ of X is a bornological extension (resp.
strong bornological extension) if there exists a family {Bi : i ∈ I } of nontrivial closed ideals on
X such that σ = τ0({Bi : i ∈ I }) (resp. σ = τ s

0 ({Bi : i ∈ I })).

For an extension ⟨X ∪ I, σ ⟩, recall that we denoted by {Bi (σ ) : i ∈ I } the family of closed
ideals naturally determined by σ . We will denote by τ0(σ ) the bornological extension topology
τ0({Bi (σ ) : i ∈ I }) and by τ s

0 (σ ) the corresponding strong bornological extension topology.
Given a bornological extension ⟨X ∪ I, τ0({Bi : i ∈ I })⟩, it would seem possible that

there could be a different family of closed nontrivial ideals {Ai : i ∈ I } on X such that
τ0({Bi : i ∈ I }) = τ0({Ai : i ∈ I }). The next result rules this out.

Proposition 3.4. Let {Ai : i ∈ I } be a family of nontrivial closed ideals on ⟨X, τ ⟩ and let τ0 be
the topology on X ∪ I that it induces. Then ∀i ∈ I , we have Ai = Bi (τ0).

Proof. Since both Ai and Bi (τ0) have closed bases, we need only show that for each index i ,
we have Ai = Bi (τ0).

Suppose first that E ∈ Bi (τ0); by definition, there exists W ∈ τ0 with i ∈ W and W ∩ E = ∅.
In view of the standard base for τ0, ∃F ∈ C (X) such that i ∈ UF ∪ VF and (UF ∪ VF )∩ E = ∅.
It follows that E ⊆ F , and thus, E ∈ Ai because F ∈ Ai and Ai is hereditary. We conclude that
E ∈ Ai because E is τ -closed.

For the reverse inclusion, suppose E ∈ Ai so that i ∈ UE . Then UE ∪VE is a τ0-neighborhood
of i disjoint from E , and so E ∈ Bi (τ0). �

Corollary 3.5. Suppose {Bi : i ∈ I } is a family of nontrivial closed ideals on ⟨X, τ ⟩. Then
τ0(τ0({Bi : i ∈ I })) = τ0({Bi : i ∈ I }).

Banaschewski [3] called an extension topology strict if it satisfies condition (2) of the
next summary result, which says that all extensions that arise from our construction are strict
extensions in his sense and conversely. It is anticipated by a parallel understanding in the context
of filter systems (see, e.g., [3, pp. 4–8] or [19, pp. 133-137]).

Theorem 3.6. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩. The following conditions are equivalent:

(1) ⟨X ∪ I, σ ⟩ is a bornological extension;
(2) σ = τ0(σ );
(3) there exists an extension ⟨X ∪ I, µ⟩ such that σ = τ0(µ).

Proof. (1) ⇒ (2) follows immediately from Corollary 3.5 and (2) ⇒ (3) is trivial. For
(3) ⇒ (1), we simply recall that τ0(µ) = τ0({Bi (µ) : i ∈ I }). �
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Of course ⟨X∪I, σ ⟩ will be a strong bornological extension of ⟨X, τ ⟩ if and only if σ = τ s
0 (σ ),

or, equivalently, if σ is generated by τ0(σ ) ∪ τ .
Let E denote the family of all topologies σ on X ∪ I that determine extensions of ⟨X, τ ⟩.

Define an operator Φ : E → E by Φ(σ ) = τ0(σ ). From Corollary 3.5 we obtain, in particular,
τ0(τ0(σ )) = τ0(σ ); that is, Φ is an idempotent operator whose range is the family of bornological
extension topologies for ⟨X, τ ⟩.

In general, τ0(σ ) will be weaker than σ [3, p. 5]. This is an immediate consequence of the
following key lemma, the second part of which describes in a tangible way how the standard
basic open sets for τ0(σ ) arise.

Lemma 3.7. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩, and ∀i ∈ I , let Bi (σ ) be the ideal
generated by {X \ W : W ∈ σ, i ∈ W }. Then for each E ∈ C (X), one has

(X ∪ I ) \ clσ (E) = UE ∪ VE .

Thus, UE ∪ VE is the largest element of σ whose intersection with X is X \ E.

Proof. Clearly, the points in X that are in both sets are the same and comprise X \ E . Put
W = (X ∪ I ) \ clσ (E), and suppose i ∈ I ∩ W . Then E = X \ W ∈ Bi (σ ); hence i ∈ UE .
Conversely, let i ∈ UE . Then E ∈ Bi (σ ) and so there exists W ∈ σ with E ∩ W = ∅ and i ∈ W .
Since i ∈ W , one has i ∈ (X ∪ I ) \ clσ (E).

From the equality we have proved, it follows that UE ∪ VE is an element of σ and clearly its
intersection with X is X \ E = VE . If W ∈ σ and W ∩ X = X \ E , then W ∩ E = ∅; hence
W ⊆ (X ∪ I ) \ clσ (E) = UE ∪ VE . �

Corollary 3.8. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩. Then τ0(σ ) ⊆ σ .

We now give some easy examples that consider whether or not a particular extension is a
bornological extension.

Example 3.9. We give here an example of a one-point extension that is a bornological extension.
Let X = {x1, x2} and let I = {i}. Our extension topology is given by

σ = {∅, X ∪ I, {x2, i}}.

This induces the relative topology τ = {∅, X, {x2}} on X , and we also have Bi (σ ) = {∅, {x1}}.
As C (X) = {∅, X, {x1}}, and U∅ ∪ V∅ = X ∪ I, UX ∪ VX = ∅, and U{x1} ∪ V{x1} = {x2, i}, the
extension topology σ agrees with τ0(σ ).

Note that ⟨X ∪ I, σ ⟩ fails to be a strong bornological extension (cf. Proposition 5.14 below),
and for future reference, that σ is not regular as {x2, i} contains no closed neighborhood of x2.
In fact σ fails to have a local base at x2 consisting of regular open sets.

Example 3.10. Next is an example of an extension with a two-point closed remainder that is not
a bornological extension. Let X = {x}, let I = {i1, i2} and let

σ = {∅, X ∪ I, {x, i1}, {x, i2}, {x}}.

Here, Bi1(σ ) = Bi2(σ ) = {∅}, and the relative topology is {∅, X}. For τ0(σ ), we only get the
indiscrete topology {∅, X ∪ I }. Note that τ s

0 (σ ) = {∅, X, X ∪ I } is properly weaker than σ as
well.
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In the last two examples, the induced family of ideals {Bi (σ ) : i ∈ I } failed to be a family of
bornologies. In the next two examples, we do obtain bornologies, as both the extensions satisfy
the T1 separation axiom.

Example 3.11. Let ⟨X ∪ I, σ ⟩ be a pseudo-metrizable extension of ⟨X, τ ⟩. We will show that
⟨X ∪ I, σ ⟩ is a bornological extension of X . As announced in the Introduction, we will strengthen
this result in the sequel, but using very different machinery.

Let d be a compatible pseudo-metric for σ . For each i ∈ I , it is clear that Bi (σ ) = {E ∈

P(X) : d(i, E) > 0}, where the distance from any point to the empty set is understood to be ∞.
To show σ ⊆ τ0(σ ), let w ∈ W ∈ σ , and choose n ∈ N with

u ∈ X ∪ I : d(u, w) <
1
n


⊆ W.

Put E = {x ∈ X : d(x, w) ≥
1

2n }. We claim that w ∈ UE ∪VE ⊆ W . If w ∈ X , since VE = X\E
and d(w, w) = 0 < 1

2n , we get w ∈ VE . On the other hand, if w ∈ I , then d(w, E) > 0 gives
E ∈ Bw(σ ) which means w ∈ UE .

For the inclusion, it is obvious that VE ⊆ W : if x ∈ VE = X \ E , we have d(x, w) < 1
2n < 1

n .
To show UE ⊆ W , we show that if i ∈ I \ W , then i ∉ UE . Since d(i, w) ≥

1
n and X is

dense in the extension, we can find a sequence ⟨xk⟩ in X that is convergent to i such that for all
k, d(xk, w) > 1

2n . By definition, each xk lies in E , and so d(i, E) = 0 which means that i ∉ UE ,
as required.

Example 3.12. Let X be an infinite set and let I be nonempty. Equipping X ∪ I with the cofinite
topology σ [23, p. 26] produces an extension of X , the relative topology τ being the cofinite
topology on X . Note that for each i ∈ I , we have

Bi (σ ) = {E ⊆ X : E is finite},

and

τ0(σ ) = {∅, X ∪ I } ∪ {I ∪ (X \ E) : E ⊆ X and E is finite}.

If I is a singleton, then X ∈ σ \ τ0(σ ). On the other hand, if I contains at least two distinct
members, let I1 be a nonempty proper subset of I that is cofinite in I . Then X ∪ I1 ∈ σ \ τ0(σ ).
Thus the cofinite topology on X ∪ I fails to be a bornological extension.

The following result allows us to easily prove by an example that there are Hausdorff exten-
sions which are not bornological, while, as we will prove in Section 5, all regular extensions are
bornological extensions.

Proposition 3.13. Let ⟨X ∪ I, σ ⟩ and ⟨X ∪ I, µ⟩ be extensions of ⟨X, τ ⟩. Suppose for each i ∈ I ,
the relative topology that X ∪ {i} inherits from σ coincides with the one inherited from µ. Then
τ0(σ ) = τ0(µ). Moreover, if ⟨X ∪ I, σ ⟩ is a bornological extension, then σ ⊆ µ.

Proof. By Lemma 3.7, a closed subset E of X is in Bi (σ ) if and only if i ∉ clσ (E) that is, if
and only if E is closed in X ∪ {i}. Thus if σ and µ induce the same topology on X ∪ {i}, thenBi (σ ) = Bi (µ). Therefore, under our assumption, τ0(σ ) = τ0(µ).

If σ is a bornological extension topology, using Theorem 3.6 and Corollary 3.8, we obtain

σ = τ0(σ ) = τ0(µ) ⊆ µ. �
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Example 3.14. Let X be the open upper half plane in R × R, and let I be the x-axis. Let σ be
the Euclidean topology on X ∪ I and let τ be the relative topology on X . For every i ∈ I , and
r ∈ (0, ∞), put

Ui,r = {p ∈ X : d(p, i) < r},

where d is the Euclidean metric. Then the family of subsets of X ∪ I

τ ∪ {{i} ∪ Ui,r : i ∈ I, r > 0}

is clearly a base for a finer Hausdorff topology µ on X ∪ I which induces the discrete topology on
I and which is also an extension topology for ⟨X, τ ⟩. As {{i} ∪Ui,r : i ∈ I, r > 0} forms a local
base at i for both relative topologies on X ∪ {i}, the one-point extensions agree. By metrizability
of σ , we have τ0(σ ) = σ . Since τ ⊆ σ , we also have σ = τ s

0 (σ ). From the previous proposition
we obtain τ0(µ) = τ0(σ ) = σ . Moreover, τ s

0 (µ), being generated by τ ∪ τ0(σ ) = σ is in fact,
equal to σ ; hence, ⟨X ∪ I, µ⟩ is neither a bornological nor a strong bornological extension.

The remainder of this section contains assorted other results regarding bornological exten-
sions. The next result will be applied in Section 5.

Proposition 3.15. Let ⟨X, τ ⟩ be a topological space, and let ⟨X ∪ I, τ0⟩ be determined by a
family {Bi : i ∈ I } of nontrivial closed ideals on X. Then a subset W of X belongs to τ0 if and
only ∀x ∈ W, ∃Ex ∈ C (X) such that Ex ∉ ∪i∈I Bi and x ∈ X \ Ex ⊆ W .

Proof. We begin with necessity. If W = ∅, the condition is satisfied vacuously. Otherwise,
let x ∈ W be arbitrary. In consideration of the standard base for the extension, there exists
Ex ∈ C (X) with

x ∈ UEx ∪ VEx ⊆ W.

Since UEx ∩ X = ∅, it follows that ∀i ∈ I, Ex ∉ Bi and x ∈ X \ Ex ⊆ W .
For sufficiency, simply observe that for all x ∈ W, UEx = ∅, and we get

W =


x∈W

X \ Ex =


x∈W

VEx =


x∈W

(UEx ∪ VEx ) ∈ τ0. �

Using this proposition we can immediately describe when the remainder is closed, i.e., when
the bornological extension agrees with the strong bornological extension.

Corollary 3.16. Let ⟨X, τ ⟩ be a topological space, and let ⟨X ∪ I, τ0⟩ be determined by a family
{Bi : i ∈ I } of nontrivial closed ideals on X. The following conditions are equivalent:

(i) τ0 = τ s
0 ;

(ii) X ∈ τ0;
(iii) there exists ∆ ⊆ C (X) with ∩∆ = ∅ and ∀E ∈ ∆, ∀i ∈ I, E ∉ Bi .

Proof. Conditions (i) and (ii) are equivalent because τ is the relative topology on X and so
X ∈ τ0 is equivalent to τ ⊆ τ0. In view of Proposition 3.15, conditions (ii) and (iii) are equivalent
because ∩∆ = ∅ means ∪E∈∆ X \ E = X . �

In a bornological extension of ⟨X, τ ⟩, it is always the case that X must be dense. We now see
when the remainder is dense (note that the remainder cannot be dense in a strong bornological
extension).
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Proposition 3.17. Let ⟨X, τ ⟩ be a topological space, and let ⟨X ∪ I, τ0⟩ be determined by a
family {Bi : i ∈ I } of nontrivial closed ideals on X. Then I is τ0-dense if and only if whenever
E ∈ C (X) and E ≠ X, then ∃i ∈ I with E ∈ Bi .

Proof. For sufficiency, suppose E ∈ C (X) and UE ∪ VE is nonempty. This means that E is a
proper subset of X , and by choosing i with E ∈ Bi , we have i ∈ UE ⊆ UE ∪ VE . Thus, I is
dense. For necessity, suppose I is dense and E is a closed proper subset of X . Then UE ∪ VE is
nonempty as X \ E is nonempty, so for some i ∈ I , we have i ∈ UE , i.e., E ∈ Bi . �

Let {Bi : i ∈ I } be a family of nontrivial closed ideals in ⟨X, τ ⟩. If we replace our
index set C (X) for our construction by a closed base C that is stable under finite unions
and contains ∅, then the proofs of Lemma 3.1 and Proposition 3.2 go through with almost no
modification to show that {UE ∪ VE : E ∈ C } is a base for an extension topology τ1 on
X ∪ I . In the next proposition, which we will presently apply to construct the Stone–Čech
compactification within our framework, we give sufficient conditions on the family of ideals
so that {UE ∪ VE : E ∈ C (X)} generates no finer topology on X ∪ I .

Proposition 3.18. Let C be a closed base for ⟨X, τ ⟩ that is stable under finite unions and
contains the empty set. Suppose {Bi : i ∈ I } is a family of nontrivial ideals each having a
base consisting of elements of C . Let τ1({Bi : i ∈ I }) be the topology on X ∪ I generated by
{UE ∪ VE : E ∈ C }. Then τ1({Bi : i ∈ I }) = τ0({Bi : i ∈ I }).

Proof. We need only show that ∀E ∈ C (X), we have UE ∪ VE ∈ τ1. By assumption, this is true
if E = ∅, so, suppose E is nonempty. First, suppose x ∈ VE . By the definition of a closed base,
∃F ∈ C with x ∈ X \ F ⊆ VE . Then E ⊆ F , and we have x ∈ UF ∪ VF ⊆ UE ∪ VE . On the
other hand, if i ∈ UE , then E ∈ Bi . By assumption, we can find H ∈ C ∩ Bi with E ⊆ H .
Clearly, i ∈ UH ∪ VH ⊆ UE ∪ VE . We have shown that UE ∪ VE contains a τ1-neighborhood of
each of its points, as required. �

4. Classical extensions viewed as bornological extensions

The aim of this section is to show how our construction can unify some different methods for
building extensions of a space. We will explicitly describe how several important extensions can
be obtained as bornological extensions, that is, as extensions arising from a family of nontrivial
closed ideals. Our treatment is intended to be representative rather than exhaustive.

The first example presents a construction of historical significance in a new light: the ultrafilter
construction of the Wallman extension [9,22,23].

Example 4.1. The classical construction of the Wallman extension of a T1 space ⟨X, τ ⟩ regards
the remainder I as the set of all free order ultrafilters on C (X), that is, exclusive of those of the
form {E ∈ C (X) : p ∈ E} where p runs over X , as these correspond to points of X . Let us
denote by {Fi : i ∈ I } the family of free order ultrafilters on C (X). We will explain here how
this classical construction can be understood as an application of our construction.

A subfamily F of C (X) is an order ultrafilter as the term is usually understood [23, p. 83] if
and only if C (X) \F is a minimal prime order ideal (cf. [1, p. 154]). This means that C (X) \F
is minimal among the subfamilies I of C (X) satisfying the four properties below:

(1) X ∉ I ;
(2) whenever E1, E2 ∈ I , then E1 ∪ E2 ∈ I ;
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(3) whenever E1 ∈ I and E2 ∈ C (X) with E2 ⊆ E1, then E2 ∈ I ;
(4) whenever E1, E2 ∈ C (X) and E1 ∩ E2 ∈ I , then either E1 ∈ I or E2 ∈ I .

Since an ultrafilter on C (X) is free if and only if it does not contain singletons, the complement
of a free ultrafilter F is a prime ideal which contains all singletons. Then ↓ (C (X) \ F ), taken
within P(X), is a nontrivial bornology on X with closed base. We are in a position to apply
our construction to the induced family of nontrivial bornologies {Bi : i ∈ I }, where for each
i ∈ I, Bi =↓ (C (X) \ Fi ).

We can consider on X ∪ I the bornological extension topology τ0 and the Wallman topology
τw, identifying each Fi with its index i . It is easy to see that τ0 = τw. As is well-known
[23, p. 142], a base for the closed subsets of τw consists of all subsets of X ∪ I of the form

E ∪ {i ∈ I : E ∈ Fi }, E ∈ C (X).

As a result, a base for the open subsets of τw consists of all sets of the form

(X \ E) ∪ {i ∈ I : E ∉ Fi } = (X \ E) ∪ {i ∈ I : E ∈ Bi } = UE ∪ VE ,

with E ∈ C (X).

To recapitulate: to obtain the Wallman extension, the family of nontrivial ideals {Bi : i ∈ I }
corresponding to the remainder are the bornologies having a closed base forming a minimal
prime order ideal in C (X), other than those of form

↓ {E ∈ C (X) : x ∉ E} (x ∈ X),

which correspond to points of X .

Example 4.2. The classical ultrafilter construction of the Stone–Čech compactification of a
Tychonoff space [11,23] exactly parallels the construction of the Wallman extension, where
C (X) is replaced by the family of zero-sets which is at once a closed base and a lattice (see,
e.g., [9, pp. 64–65]). Denoting the zero-sets by Z (X), the arguments in the last example can be
easily adapted to show that a base for the compactification topology is {UE ∪ VE : E ∈ Z (X)}

with respect to the family of all bornologies {Bi : i ∈ I } on X having as a base a minimal
prime order ideal of zero-sets, other than those of the form ↓ {E ∈ Z (X) : x ∉ E}. But by
Proposition 3.18, the Stone–Čech compactification topology is equally well generated by the
larger collection

{UE ∪ VE : E ∈ C (X)}.

More generally, this program can be pursued for extensions of the Wallman type (see, e.g.,
[2,10,16,23]).

Example 4.3. A standard way to present the completion of a noncomplete metric space ⟨X, d⟩

is to equip equivalence classes of Cauchy sequences in X with a natural metric [23, p. 176]. Two
Cauchy sequences g and h are declared equivalent if

lim
n→∞

d(h(n), g(n)) = 0,

in which case we write g ∼ h. If g is convergent, then g ∼ ha for some a ∈ X where
∀n ∈ N, ha(n) = a. Equivalence classes of nonconvergent Cauchy sequences correspond to
points of the remainder I . The (well-defined) complete metric on pairs of equivalence classes
is defined by d(g, h) := limn→∞ d(h(n), g(n)) where g and h are representatives of each
equivalence class.
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We now explain how to externally construct the topology σ of the completion on X ∪ I within
our framework as τ0({Bi : i ∈ I }). We cheat a little, in that the family of ideals — actually
bornologies — comes from an understanding of {Bi (σ ) : i ∈ I } more refined than the more
general understanding gained from Example 3.11. Now if E ⊆ X and i ∈ I , we have

E ∉ Bi (σ ) ⇔ i ∈ clσ (E) ⇔ ∀n ∈ N, ∃an ∈ E with d(han , i) <
1
n

⇔ ∃ a Cauchy sequence h in E with h ∼ i.

In view of Proposition 3.4, the family {Bi : i ∈ I } must be described by the condition:
E ∈ Bi if and only if no Cauchy sequence in E is equivalent to i . Further, for each E ∈ C (X),
the basic open set in the completion topology that E determines adjoins to X \ E all points in I
that fail to be equivalent to any Cauchy sequence in E .

Example 4.4. There is more than one way to order embed a lattice ⟨X, ≼⟩ into a second lattice in
which suprema and infima of arbitrary subsets exist, i.e., into a complete lattice. It is well-known
that a linearly ordered set is a complete lattice if and only if its order topology is compact (see,
e.g. [23, pp. 124–125]). In this example, we explain how we obtain a base for the topology for
the most important of these extensions of a linearly ordered set that is not already a complete
lattice.

The smallest complete order extension of a noncomplete lattice is the Dedekind–MacNeille
completion, characterized by the property that each element of the completion can be realized as
the supremum of a subset of X and the infimum of a subset of X as well (cf. [1, p. 237]). Given
a subset A of X , let Au be its set of upper bounds and let Al be its set of lower bounds. The
points ∆ of the completion consist of those subsets D for which (Du)l

= D. The family ∆ is
closed under arbitrary intersections and so forms a complete lattice with respect to inclusion (see
[1, p. 46]). The join operation is more complicated [15]:


i∈I Di =


i∈I Du

i

l .
Let us now focus our attention on the special case of a linearly ordered set ⟨X, ≼⟩

which we assume not to be a complete lattice. In view of the characteristic property of the
Dedekind–MacNeille completion mentioned above, the assignment a → Da := {x ∈ X : x ≼ a}

densely embeds ⟨X, ≼⟩ into ⟨∆, ⊆⟩ where both linearly ordered sets are equipped with the order
topology.

Denote the compact Hausdorff order topology on ∆ by σ , and let I denote the remainder.
Notice that ∅ ∈ I if and only if X has no smallest element, while X ∈ I if and only if X has no
largest element. There are there possibilities for the bornology Bi (σ ) for i ∈ I . If i = ∅, then
E ∈ Bi (σ ) if and only if {De : e ∈ E} is disjoint from some order interval of the form [∅, Da).
If i = X , then E ∈ Bi (σ ) if and only if {De : e ∈ E} is disjoint from some order interval of
the form (Db, X ]. If i ∈ I is some proper nonempty subset of X , then E ∈ Bi (σ ) if and only if
{De : e ∈ E} is disjoint from some order interval of the form (Da, Db) containing i .

For each closed subset E of X , our construction produces the basic open set that adjoins to
X \ E (i) the empty set provided X has no smallest element and E is lower bounded in X ,
(ii) X provided X has no largest element and E is upper bounded in X and (iii) all points of the
remainder located in some order interval (Da, Db) where E ∩ {x ∈ X : a ≺ x ≺ b} = ∅.

5. When is an extension a bornological extension?

As usual, let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩, and for each i ∈ I , let Bi (σ ) be the ideal
generated by {X \ W : W ∈ σ, i ∈ W }. Our goal in this section is to produce sufficient (that may
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also be necessary) conditions for the extension to be either a bornological extension or strong
bornological extension of ⟨X, τ ⟩. By Theorem 3.6, this amounts to showing that σ agrees with
τ0(σ ) or τ s

0 (σ ) as determined by the family of ideals {Bi (σ ) : i ∈ I }.

Theorem 5.1. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩. The following conditions are equivalent.

(1) σ = τ0(σ );
(2) {(X ∪ I ) \ clσ (E) : E ∈ C (X)} is a base for σ ;
(3) whenever C is σ -closed, ∃{Eλ : λ ∈ Λ} ⊆ C (X) such that C = ∩λ∈Λ clσ (Eλ);
(4) whenever C is σ -closed, C = ∩{clσ (A) : A ⊆ X and C ⊆ clσ (A)};
(5) whenever A ⊆ I and p ∈ (X ∪ I ) \ clσ (A), there exists B ⊆ X with p ∉ clσ (B) and

clσ (A) ⊆ clσ (B).

Proof. By Lemma 3.7, condition (2) says that the standard base for τ0(σ ) is a base for σ as well.
Thus, conditions (1) and (2) are equivalent. Condition (3) says that {clσ (E) : E ∈ C (X)} is a
closed base associated with σ , and so conditions (2) and (3) are equivalent. Clearly, condition (3)
implies (4), and condition (4) implies condition (5). It remains to prove if condition (5) holds,
then (3) holds.

To this end, let C ⊆ X ∪ I be closed in the extension. We have the decomposition
C = clσ (C ∩ X) ∪ clσ (C ∩ I ). Suppose p ∉ C ; as p ∉ clσ (C ∩ I ), by condition (5), ∃Bp ⊆ X
with

clσ (C ∩ I ) ⊆ clσ (Bp) and p ∉ clσ (Bp).

For each p ∈ (X ∪ I ) \ C , put E p := clτ ((C ∩ X) ∪ Bp) ∈ C (X). We compute

clσ (E p) = clσ (C ∩ X) ∪ clσ (Bp) ⊇ C,

and so by construction, C = ∩p∉C clσ (E p) as required. �

Note that Stone [18, p. 120] originally defined strictness of an extension by an opaque
condition on the structure of its open subsets that can be viewed as a translation of our transparent
condition (4). We next use condition (2) to characterize compactness of a bornological extension.

Theorem 5.2. Let ⟨X, τ ⟩ be a topological space and let {Bi : i ∈ I } be a family of closed
nontrivial ideals on X. Then the bornological extension ⟨X ∪ I, τ0⟩ determined by the family of
ideals is compact if and only if whenever {Fλ : λ ∈ Λ} is a family of closed subsets of X such
that for any finite subfamily, either their intersection is nonempty or there exists an element i of
the remainder such that each member of the finite subfamily fails to lie in Bi , then the same is
true for the entire family.

Proof. The condition asserted to be equivalent to compactness says that whenever {Fλ : λ ∈ Λ}

is a family of closed subsets of X such that {clτ0(Fλ) : λ ∈ Λ} has the finite intersection
property, then {clτ0(Fλ) : λ ∈ Λ} has nonempty intersection. But by condition (2), {clτ0(F) :

F ∈ C (X)} forms a closed base for the extension topology, so the condition is equivalent to
compactness. �

While condition (3) is not so transparent, we intend now to apply it to obtain an elegant proof
of a classical result of Stone [18, Theorem 65] asserting that any extension having a base of
regular open sets is strict in his sense. A space with this property is called semiregular [23].
Obviously, each regular space is semiregular, and so all Hausdorff compactifications, all real
compactifications, and all pseudo-metrizable extensions are bornological extensions.
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Theorem 5.3. Let ⟨X ∪ I, σ ⟩ be a semiregular extension of ⟨X, τ ⟩. Then σ = τ0(σ ).

Proof. Let C be σ -closed. For each p ∈ (X ∪ I ) \ C choose by semiregularity Wp ∈ σ such that
W ∩ C = ∅ and Wp = intσ clσ (Wp). Using the fact that X is dense in each open subset of the
extension, we compute

(X ∪ I ) \ Wp = clσ ((X ∪ I ) \ clσ (Wp)) = clσ (intσ ((X ∪ I ) \ Wp))

= clσ (X ∩ intσ ((X ∪ I ) \ Wp))

= clσ (clτ (X ∩ intσ ((X ∪ I ) \ Wp)))

and the desired subfamily of C (X) with respect to condition (3) of the last theorem is
{clτ (X ∩ intσ ((X ∪ I ) \ Wp)) : p ∉ C}. �

Example 3.9 shows that semiregularity of an extension is not necessary for it to be a bornolog-
ical extension.

We now turn to strong bornological extensions. Theorem 5.1 immediately yields the
following.

Theorem 5.4. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩. Then σ = τ s
0 (σ ) if and only if

τ ∪ {(X ∪ I ) \ clσ (E) : E ∈ C (X)}

is a base for σ .

Corollary 5.5. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩. Then σ = τ s
0 (σ ) if and only if X ∈ σ

and ∀i ∈ I, {(X ∪ I ) \ clσ (E) : E ∈ Bi (σ )} is a local base for σ at i .

Proof. Suppose that σ = τ s
0 (σ ). Since X ∈ τ s

0 (σ ), we get X ∈ σ . Now if i ∈ I , since i belongs
to no member of τ , a local base for σ at i is

{(X ∪ I ) \ clσ (E) : i ∈ (X ∪ I ) \ clσ (E), E ∈ C (X)}.

But if i ∈ (X ∪ I ) \ clσ (E) where E ∈ C (X), then i has a σ -neighborhood disjoint from E ,
which means E ∈ Bi (σ ), and so E ∈ Bi (σ ). This proves necessity of the conditions.

For sufficiency, first note that X ∈ σ and the fact that σ is an extension of τ guarantees τ ⊆ σ .
As always we have τ0(σ ) ⊆ σ , we conclude that τ ∪ τ0(σ ) ⊆ σ , and so τ s

0 (σ ) ⊆ σ .
For the reverse inclusion, we must show that each W ∈ σ contains a τ s

0 (σ )-neighborhood
of each of its points. Let w ∈ W be arbitrary. If w ∈ X , then W ∩ X lies in τ ⊆ τ s

0 (σ ) and
clearly w ∈ W ∩ X ⊆ W . On the other hand, if w ∈ I , we can find E ∈ Bw(σ ) such that
w ∈ (X ∪ I ) \ clσ (E) ⊆ W . Then E ∈ C (X), and by Lemma 3.7, w ∈ UE ∪ VE ⊆ W . �

Obviously, if σ contains X and σ is regular, then σ = τ0(σ ) = τ s
0 (σ ). But just as in the

previous result, a weaker statement guarantees coincidence. We leave the proof of the following
result to the reader.

Proposition 5.6. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩ such that X ∈ σ . Then σ = τ0(σ ) =

τ s
0 (σ ) provided σ has a closed local base at each point of the remainder I .

Our next goal is to produce conditions of a different flavor that ensure that an extension topol-
ogy σ reduces to τ0(σ ). Necessity of these conditions will be established by the next proposition
along with Proposition 3.15.
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Proposition 5.7. Let ⟨X, τ ⟩ be a topological space, and let ⟨X ∪ I, τ0⟩ be determined by a family
{Bi : i ∈ I } of nontrivial closed ideals on X. Then there is a base W for τ0 such that whenever
i ∈ I and x ∈ X and {i, x} ⊆ W ∈ W , there exists W1 ∈ τ0 such that {i, x} ⊆ W1 ⊆ W and
UX\W1 ⊆ W .

Proof. The standard base for τ0 satisfies the conditions, for if W = UE ∪ VE where UE is
nonempty, then we can take W1 = W whatever x and i may be in W . �

Theorem 5.8. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩, and ∀i ∈ I , let Bi (σ ) be the ideal
generated by {X \ W : W ∈ σ, i ∈ W }. Then σ = τ0(σ ) if and only if σ has a base W with the
following properties:

(P1) whenever W ∈ W and W ⊆ X, ∀x ∈ W, ∃Ex ∈ C (X) such that Ex ∉ ∪i∈I Bi (σ ) and
x ∈ X \ Ex ⊆ W ;

(P2) whenever W ∈ W and W ∩ I ≠ ∅, then for each i ∈ I and x ∈ X with {i, x} ⊆ W , there
exists W1 ∈ σ such that {i, x} ⊆ W1 ⊆ W and UX\W1 ⊆ W .

Proof. Necessity of the conditions follows from Propositions 3.15 and 5.7 above. For sufficiency,
we need only show that W ⊆ τ0(σ ) provided (P1) and (P2) hold because always τ0(σ ) ⊆ σ .

Suppose W ∈ W and W ⊆ X . By (P1) for each x ∈ W , we have UEx = ∅, and so the
condition ∀x ∈ W, x ∈ X \ Ex ⊆ W can be rewritten as

∀x ∈ W, x ∈ UEx ∪ VEx ⊆ W,

and we see that W contains a τ0(σ )-neighborhood of each of its points.
Now suppose W ∈ W and W ∩ I ≠ ∅, so that by density of X , we have W ∩ X ≠ ∅ as well.

Let i ∈ I and x ∈ X be arbitrary with {i, x} ⊆ W and let W1 ∈ σ be as guaranteed by (P2).
Since VX\W1 = W1 ∩ X , we obtain

{i, x} ⊆ UX\W1 ∪ VX\W1 ⊆ W,

and this shows W contains a τ0(σ )-neighborhood of each of its points in the second case. �

The second condition (P2) in the Theorem 5.8 is superfluous in the case of one-point
extensions.

Proposition 5.9. Let ⟨X ∪ {i}, σ ⟩ be a one-point extension of ⟨X, τ ⟩. Then σ = τ0(σ ) if and
only if whenever w ∈ W ∈ σ and W ⊆ X, there exists E ∈ C (X) such that w ∈ X \ E ⊆ W
and i ∈ clσ (E).

Proof. Condition (P1) holds for a particular base W if and only if it holds for σ itself. The stated
condition is just a reformulation of condition (P1) in the context of one-point extensions when
W = σ and so it is necessary. To show it is sufficient, we need only observe that condition
(P2) is automatically satisfied in a one-point extension when W = σ as then (P1) and (P2) hold
with respect to this largest possible base: if {i, x} ⊆ W ∈ W , then with W1 = W , we have
{i, x} ⊆ W1 ⊆ W and {i} = UX\W1 ⊆ W . �

Example 5.10. Let A and B be nonempty disjoint sets and let X = A ∪ B and I = {i}. For
our extension topology σ , take {∅, X ∪ {i}, B, B ∪ {i}}. Now the only bases for σ are σ and
{X ∪ {i}, B, B ∪ {i}}, and the condition of Proposition 5.9 fails for W = B; so such an extension
cannot be a bornological extension.
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Corollary 5.11. Let ⟨X ∪ {i}, σ ⟩ be a one-point extension of ⟨X, τ ⟩ such that ∀x ∈ X, x and i
have disjoint neighborhoods. Then the extension is bornological. In particular, this is true if σ

is Hausdorff.

Proof. Let B = {E ⊆ X : i ∉ clσ (E)} so that τ0(σ ) = τ0(B). Suppose w ∈ W ∈ σ where
W ⊆ X . Choose Gw ∈ σ and Gi ∈ σ with w ∈ Gw, i ∈ Gi and Gw ∩ Gi = ∅. Then
Gw ∩ W ∈ B so that E := X \ (Gw ∩ W ) ∉ B. Clearly, w ∈ X \ E ⊆ W and i ∈ clσ (E). Apply
Proposition 5.9. �

It is natural to ask whether a bornological extension of a bornological extension need be a
bornological extension of the initial space. We are now in a position to answer this question in
the negative.

Example 5.12. We produce spaces ⟨X, τ ⟩, ⟨Y, σ ⟩, and ⟨W, µ⟩ such that the second is a
bornological extension of the first, the third is a bornological extension of the second, but ⟨W, µ⟩

fails to be a bornological extension of ⟨X, τ ⟩. We start with the largest space: let W = R
be equipped with the Hausdorff topology µ generated by {(a, b) : a ∈ R, b ∈ R and a <

b} ∪


R \


1
n : n ∈ N


(see, e.g., [23, Example 14.2]). Let Y = W \ {0} be equipped with

the relative topology it inherits from ⟨W, µ⟩ which is nothing but the relative usual topology of

the line. Finally, let X = Y \


1
n : n ∈ N


be equipped with the relative topology τ . Clearly,

X is dense in Y and Y is dense in W . Further, by regularity of ⟨Y, σ ⟩, the second space is a
bornological extension of the first, and by Corollary 5.11, the third is a bornological extension
of the second. But viewing ⟨W, µ⟩ as an extension of ⟨X, τ ⟩, it is clear that condition (4) of

Theorem 5.1 fails with respect to C =


1
n : n ∈ N


, for if the µ-closure of a subset of X were to

contain C , it would also contain 0.

The last example shows in particular that a topological space can be a bornological extension
of some dense subspaces but not of others. Criterion (5) of Theorem 5.1 was included precisely
because it leads to a simple answer that we now give to the following natural question: when is a
topological space a bornological extension of each of its dense subspaces?

Theorem 5.13. Let ⟨Y, σ ⟩ be a topological space. Then ⟨Y, σ ⟩ is a bornological extension of
each of its dense subspaces if and only if whenever I is a nonempty subset of Y with empty
interior, A ⊆ I and p ∈ Y \clσ (A), there exists B ⊆ Y \I with p ∉ clσ (B) and clσ (A) ⊆ clσ (B).

Proof. Evidently, Y \ I is dense in Y if and only if intσ (I ) = ∅. The result immediately
follows from criterion (5) of Theorem 5.1 for a space to be a bornological extension of a dense
subspace. �

For completeness, we include one further result on one-point extensions.

Proposition 5.14. Let ⟨X ∪ {i}, σ ⟩ be a one-point extension of ⟨X, τ ⟩. Then

(1) τ s
0 (σ ) = σ if and only if X ∈ σ ;

(2) σ = τ0(σ ) = τ s
0 (σ ) if and only if τ contains a subfamily A such that ∀A ∈ A , i ∈

clσ (X \ A) and ∪A = X.

Proof. Necessity in (1) is obvious. For sufficiency, we have τ ∪ τ0(σ ) ⊆ σ , and so τ s
0 (σ ) ⊆ σ .

For the reverse inclusion, let W ∈ σ . If W ⊆ X , then W ∈ τ ⊆ τ s
0 (σ ). Otherwise, i ∈ W , and

W = UX\W ∪ VX\W ∈ τ0(σ ) ⊆ τ s
0 (σ ).
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For statement (2), we note that the condition is a rephrasing of condition (iii) in Corollary 3.16,
which guarantees X ∈ τ0(σ ) and the equality of τ0(σ ) with τ s

0 (σ ). But since X ∈ τ0(σ ) ⊆ σ

gives X ∈ σ , by statement (1), we have τ s
0 (σ ) = σ . In view of Corollary 3.16, the converse holds

just knowing τ0(σ ) = τ s
0 (σ ). �

Statement (1) in the above proposition implies the known fact that every T1 one-point exten-
sion is a strong bornological extension (cf. [8, Section 2])

An example of a one-point extension which is a strong bornological extension but not a
bornological extension is X ∪ {i}, where X is infinite, equipped with the cofinite topology (see
Example 3.12).

Theorem 5.15. Let ⟨X ∪ I, σ ⟩ be an extension of ⟨X, τ ⟩ such that σ ⊇ τ . The following
conditions are equivalent:

(1) ⟨X ∪ I, σ ⟩ is a strong bornological extension;
(2) ⟨X ∪ I, σ ⟩ is the weakest extension topology µ on X ∪ I containing τ such that for each

i ∈ I , the relative topology on X ∪ {i} inherited from σ coincides with the one inherited
from µ.

Proof. If condition (1) holds, Proposition 3.13 guarantees that condition (2) also holds. Suppose
that condition (2) holds. We claim that τ s

0 (σ ) has the same trace on each one point extension
as does σ . For each i ∈ I , let ⟨X ∪ {i}, σi ⟩ be the one point extension induced by ⟨X ∪ I, σ ⟩.
By Proposition 5.14, we have σi = τ s

0 (σi ), and upon reflection, τ s
0 (σi ) is seen to be the relative

topology on X ∪ {i} induced by τ s
0 (σ ). By condition (2), we have σ ⊆ τ s

0 (σ ). But σ ⊇ τ and
Corollary 3.8 force the reverse inclusion. Thus, σ = τ s

0 (σ ) as required. �

Condition (P2) in Theorem 5.8 was formulated in the symmetric way it was with a particular
application in mind. Suppose ⟨X ∪ I, σ ⟩ is an extension of ⟨X, τ ⟩ in which both X and I are
dense. Then we can ask this question: when is ⟨X ∪ I, σ ⟩ a bornological extension of both X and
I separately, equipped with their relative topologies? Let us denote the relative topology for I by
µ, and let µ0(σ ) be the induced bornological extension on X ∪ I where now I is viewed as the
primal space and X is viewed as the remainder. Further, for H a µ-closed subset of I , let U ′

H
denote {x ∈ X : x ∉ clσ (H)}.

Theorem 5.16. Let ⟨X ∪ I, σ ⟩ be a topological space in which both X and I are dense, and let τ

(resp. µ) be the relative topology on X (resp. I). Then σ = τ0(σ ) = µ0(σ ) provided σ has a base
W such that whenever W ∈ W and {i, x} ⊆ W , there exists W1 ∈ σ such that {i, x} ⊆ W1 ⊆ W
and UX\W1 ∪ U ′

I\W1
⊆ W .

Proof. This follows from the fact that each member of σ hits both X and I so that condition (P1)
in Theorem 5.8 never comes into play. �

6. The separation axioms in bornological extensions

Proposition 6.1. Let ⟨X, τ ⟩ be a T0-space and let {Bi : i ∈ I } be a family of nontrivial closed
ideals. Then ⟨X ∪ I, τ0⟩ is T0 if and only if

(1) Bi ≠ B j for i ≠ j ;
(2) for every x ∈ X and i ∈ I , whenever {x} ∉ Bi , there exists a closed subset F = Fx,i of X

such that F ∉ Bi and x ∉ F.
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Proof. Suppose that ⟨X ∪ I, τ0⟩ is T0. Let i, j ∈ I , i ≠ j . Without loss of generality, we can
suppose that there is a basic open set UE ∪ VE such that i ∈ UE and j ∉ UE . This implies
E ∈ Bi \ B j and so Bi ≠ B j . To prove (2), suppose {x} ∉ Bi and let i ∈ UE ∪ VE . Then
E ∈ Bi and, by our assumption, x ∉ E , so x ∈ VE . Therefore, every open set containing i
also contains x . The T0 assumption for the extension gives a basic open set UF ∪ VF such that
x ∈ UF ∪ VF and i ∉ UF ∪ VF . This means x ∉ F and F ∉ Bi .

Now suppose conditions (1) and (2) hold. For the T0 property, if both points lie in X , we can
use the fact that X is T0. Next, suppose x ∈ X, i ∈ I . If {x} ∈ Bi , putting E = clτ ({x}) ∈ Bi ,
one has x ∉ UE ∪ VE and i ∈ UE ∪ VE . If {x} ∉ Bi , let F = Fx,i be as in condition (2). Then
x ∈ UF ∪ VF and i ∉ UF ∪ VF . Finally, if i, j ∈ I with i ≠ j , we can suppose Bi ⊈ B j . If
E ∈ Bi \ B j , then i ∈ UE ∪ VE and j ∉ UE ∪ VE . �

Proposition 6.2. Let ⟨X, τ ⟩ be a T0-space and let {Bi : i ∈ I } be a family of nontrivial closed
ideals. Then ⟨X ∪ I, τ s

0 ⟩ is T0 if and only if Bi ≠ B j for i ≠ j .

Proof. The condition is sufficient. Let w1, w2 be distinct points in X ∪ I . The case when both
points are in X is trivial, since τ is assumed to be T0. When exactly one of the points, say w1, is
in X , then w1 ∈ X ∈ τ s

0 and w2 ∉ X . The case w1, w2 ∈ I can be handled just as in the previous
proposition. The proof of necessity is also the same as before. �

Proposition 6.3. Let ⟨X, τ ⟩ be a T1-space and let {Bi : i ∈ I } be a family of nontrivial closed
ideals. Then ⟨X ∪ I, τ0⟩ is T1 if and only if

(1) each Bi is a bornology;
(2) Bi ⊈ B j for i ≠ j ;
(3) for every x ∈ X and i ∈ I , there exists F = Fx,i ∈ C (X) such that F ∉ Bi and x ∉ F.

Proof. Assume that ⟨X ∪ I, τ0⟩ is T1. As mentioned before, each Bi is a bornology because for
each x ∈ X and i ∈ I , we can find a neighborhood of i that does not contain x . To prove (2) we
can use the same argument used to prove (1) in Proposition 6.1. As for (3), if x ∈ X and i ∈ I ,
there is a closed subset F of X such that x ∈ UF ∪ VF , i ∉ UF ∪ VF , that is, F ∉ Bi and x ∉ F .

Conversely, assume that the conditions hold. We consider cases on distinct points of X ∪ I .
We need only look at distinct points where at least one lies in I . If x ∈ X and i ∈ I , then by
condition (1), i ∈ U{x} ∪ V{x} which does not contain x . On the other hand, taking F = Fx,i ,
one has x ∈ UF ∪ VF which does not contain i . If i, j ∈ I with i ≠ j , we can appropriate the
argument in the final lines of the proof of Proposition 6.1. �

Proposition 6.4. Let ⟨X, τ ⟩ be a T1-space and let {Bi : i ∈ I } be a family of nontrivial closed
ideals. Then ⟨X ∪ I, τ s

0 ⟩ is T1 if and only if

(1) each Bi is a bornology;
(2) Bi ⊈ B j for i ≠ j ;.

Proof. Necessity is established as in Proposition 6.3. For sufficiency, the only difference comes
when x ∈ X and i ∈ I : i ∈ U{x} ∪ V{x} which does not contain x , while x ∈ X which does not
contain i . �

Proposition 6.5. Let ⟨X, τ ⟩ be a Hausdorff space and let {Bi : i ∈ I } be a family of nontrivial
closed ideals. The following are equivalent:

(1) ⟨X ∪ I, τ0⟩ is Hausdorff;
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(2) ⟨X ∪ I, τ s
0 ⟩ is Hausdorff;

(3) each Bi is a local bornology, and for distinct i, j in I , there exists E ∈ Bi , F ∈ B j with
E ∪ F = X.

Proof. (1) ⇒ (2). This is obvious because τ0 ⊆ τ s
0 .

(2) ⇒ (3). By the last proposition, every Bi is a bornology. We now prove that each Bi
is local. Let x ∈ X . There exist W ∈ τ s

0 with x ∈ W and UE ∪ VE with E ∈ Bi , such that
W ∩ (UE ∪ VE ) = ∅. This implies W1 := W ∩ X ⊆ E , and so x ∈ W1 ∈ Bi . Finally, let
i, j ∈ I, i ≠ j and let UE ∪ VE and UF ∪ VF be disjoint basic neighborhoods of i and j ,
respectively. Then E ∈ Bi , F ∈ B j and VE ∩ VF = ∅, that is, E ∪ F = X .

(3) ⇒ (1). Assuming (3), we must separate distinct points of X ∪ I by disjoint τ0-
neighborhoods.

First, let x, y ∈ X with x ≠ y. Choose A and B to be disjoint open subsets of X containing x
and y, respectively. Putting E = X \ A and F = X \ B, one has E ∪ F = X . We now obtain

(UE ∪ VE ) ∩ (UF ∪ VF ) = (UE ∪ A) ∩ (UF ∪ B)

= (UE ∩ UF ) ∪ (A ∩ B) = UE∪F ∪ ∅

= UX ∪ ∅ = ∅,

and we have produced disjoint τ0-neighborhoods of x and y.
Next, let x ∈ X and i ∈ I . Since Bi is local, we can find W ∈ τ with x ∈ W ∈ Bi . Put

E = X \W and F = clτ (W ). Since the bornology is closed, we have F ∈ Bi . Since E ∪ F = X ,
again one has UE ∩ UF = ∅, and VE ∩ VF = X \ (E ∪ F) = ∅. Clearly x ∈ UE ∪ VE and
i ∈ UF ∪ VF , and these neighborhoods are disjoint.

Finally, let i, j ∈ I with i ≠ j . Since Bi and B j are closed bornologies, we can choose
E ∈ Bi , F ∈ B j such that E ∪ F = X . Then UE ∪ VE and UF ∪ VF are disjoint members of
τ0 containing i and j , respectively. �

Proposition 6.6. Let ⟨X, τ ⟩ be a regular space and let {Bi : i ∈ I } be a family of closed
nontrivial ideals on X. Then the bornological extension ⟨X ∪ I, τ0⟩ is regular if and only if the
following three conditions hold:

(1) for every x ∈ X and for every E ∈ C (X) such that x ∉ E, there is a τ -neighborhood Wx,E
of x such that: ∀i ∈ I, Wx,E ∉ Bi ⇒ E ∈ Bi ;

(2) each ideal Bi is open;
(3) for every i ∈ I and for every closed E ∈ Bi , there is a family {Aλ : λ ∈ Λ} of closed subsets

of X such that X \


λ∈Λ Aλ


∈ Bi , and ∀ j ∈ I, {Aλ : λ ∈ Λ} ∩ B j = ∅ ⇒ E ∈ B j .

Proof. We first prove necessity which is the easier direction. Let x ∈ X and E ∈ C (X)

with x ∉ E . By regularity of the extension, there exists a τ0-neighborhood W of x such that
clτ0(W )∩ clτ0(E) = ∅. Put Wx,E = W ∩ X . If Wx,E ∉ Bi then i ∈ clτ0(Wx,E ) ⊆ clτ0(W ). Then
i ∉ clτ0(E), that is, E ∈ Bi . Thus, condition (1) holds.

To prove (2), let E ∈ Bi . Then there exists an open τ0-neighborhood W of i disjoint from E .
By regularity, there is W1 ∈ τ0 such that i ∈ W1 ⊆ clτ0(W1) ⊆ W . Then one has

E ⊆ X \ W ⊆ X \ clτ0(W1) ⊆ X \ W1.

Clearly X \ W1 ∈ Bi ; hence X \ clτ0(W1) is an open member of Bi containing E .
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Now we prove (3). Let i ∈ I and let E ∈ Bi . The neighborhood UE ∪ VE of i must contain
a closed neighborhood. So there is a τ0-closed subset C of X ∪ I and a closed member F of Bi
such that

i ∈ UF ∪ VF ⊆ C ⊆ UE ∪ VE .

By Theorem 5.1, {clτ0(A) : A ∈ C (X)} forms a base for the closed subsets of X ∪ I . Thus,
we can find {Aλ : λ ∈ Λ} ⊆ C (X) with C = ∩λ∈Λ clτ0(Aλ), and so

UF ∪ VF ⊆


λ∈Λ

clτ0(Aλ) ⊆ UE ∪ VE .

Taking the intersections with X , we obtain

VF ⊆


λ∈Λ

Aλ ⊆ VE .

Taking complements, X \


λ∈Λ Aλ


⊆ F and this implies X \


λ∈Λ Aλ


∈ Bi .

For the last part of condition (3), suppose B j does not contain Aλ for any λ. Then

j ∈


λ∈Λ

clτ0(Aλ)


∩ I ⊆ UE ,

which means E ∈ B j as required. We have proved (3).
Now we turn to sufficiency. First, let x ∈ X and suppose UE ∪ VE is a basic open

neighborhood of x . By regularity of ⟨X, τ ⟩, let W be a τ -open neighborhood of x such that
clτ (W ) ⊆ Wx,E ∩ VE , where Wx,E is chosen to satisfy condition (1). We put T = X \ W and
F = clτ (W ). Clearly UT ∪ VT is a neighborhood of x . We want to prove that

UT ∪ VT ⊆ clτ0(F) ⊆ UE ∪ VE .

For the inclusion UT ∪ VT ⊆ clτ0(F), clearly, VT = W ⊆ F ⊆ clτ0(F). If i ∈ UT , then
T ∈ Bi ; being that T ∪ F = X, F ∉ Bi . This implies i ∈ clτ0(F). For the second inclusion, if
x ∈ clτ0(F)∩ X , then x ∈ clτ (W ) ⊆ VE . If i ∈ clτ0(F)∩ I , then F ∉ Bi . Since F ⊆ Wx,E , this
implies that Wx,E ∉ Bi as well. Hence, by condition (1), we have E ∈ Bi , that is, i ∈ UE .

We finally consider points of the remainder which proves to be quite delicate. Let i ∈ I and
suppose UE ∪ VE is a basic open neighborhood of i . Let {Aλ}λ∈Λ satisfy condition (3) (with
respect to i and E) and put W = X \


λ∈Λ Aλ


. By condition (2), let W1 be an open member

of Bi containing E and put F = clτ (W ∪ W1) ∈ Bi . Clearly UF ∪ VF is a τ0-neighborhood of
i . Put

C =


clτ0


λ∈Λ

Aλ


∩ clτ0(X \ W1).

Evidently, C is τ0-closed. We will be done if we can verify that

UF ∪ VF ⊆ C ⊆ UE ∪ VE .

For the first inclusion, let x ∈ VF = X \ F , then clearly x ∉ W ∪ W1; hence x ∈
λ∈Λ Aλ


∩ (X \ W1) ⊆ C . If j ∈ UF , then F ∈ B j . Now by the definition of W , for

each λ ∈ Λ, F contains X \ Aλ. As a result, Aλ ∪ F = X for every λ, and so Aλ ∉ B j . This
implies ∀λ ∈ Λ, j ∈ clτ0(Aλ). Similarly, X \ W1 ∉ B j ; hence, j ∈ clτ0(X \ W1).
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For the inclusion C ⊆ UE ∪ VE , let x ∈ C ∩ X . Then x ∉ W1 and so x ∈ VE . If j ∈ C ∩ I ,
then j ∈


λ∈λ clτ0(Aλ). This implies ∀λ ∈ Λ, Aλ ∉ B j . Applying condition (3), E ∈ B j and

this implies j ∈ UE . �

Our regularity result for strong bornological extensions involves a uniform localness condition
which implies that each ideal is a bornology.

Proposition 6.7. Let ⟨X, τ ⟩ be a regular space and let {Bi : i ∈ I } be a family of closed
nontrivial ideals on X. Then the strong bornological extension ⟨X ∪ I, τ s

0 ⟩ is regular if and only
if the following hold:

(1) each x in X has a τ -neighborhood Wx that belongs to every Bi ;
(2) each ideal Bi is open;
(3) for every i ∈ I and for every closed E ∈ Bi , there is a family {Aλ : λ ∈ Λ} of closed subsets

of X such that X \


λ∈Λ Aλ


∈ Bi , and ∀ j ∈ I, {Aλ : λ ∈ Λ} ∩ B j = ∅ ⇒ E ∈ B j .

Proof. Suppose that the three conditions hold. As condition (1) above ensures that condition
(1) of Proposition 6.6 holds (take Wx,E = Wx whatever E may be), the bornological extension
is regular. Let i ∈ I ; since {UE ∪ VE : E ∈ Bi } remains a local base for τ s

0 at i , and since
clτ s

0
(UE ∪ VE ) ⊆ clτ0(UE ∪ VE ), each τ s

0 -neighborhood of i contains a closed τ s
0 -neighborhood.

Next let x ∈ X and let W be an open τ s
0 -neighborhood of x . Then W ∩ Wx ∈ τ and since

W ∩ Wx ∈ ∩i∈I Bi , each point of I has a τ0-neighborhood disjoint from W ∩ Wx . By regularity
of X, ∃W1 ∈ τ with

x ∈ W1 ⊆ clτ (W1) ⊆ W ∩ Wx .

Clearly, each point of X \ W has a τ -neighborhood disjoint from W1. In summary, each point of
(X ∪ I ) \ W has a τ s

0 -neighborhood disjoint from W1, and so

x ∈ W1 ⊆ clτ s
0
(W1) ⊆ W.

Conversely, if ⟨X∪I, τ s
0 ⟩ is assumed regular, then by Theorem 5.2, ⟨X∪I, τ s

0 ⟩ is a bornological
extension, that is, τ s

0 = τ0. By Proposition 6.6, conditions (2) and (3) hold. To prove (1), we
observe that, since X ∈ τ s

0 , every x ∈ X has a τ -neighborhood Wx such that clτ s
0
(Wx ) is disjoint

from I . This means that each i ∈ I has a τ0-neighborhood disjoint from Wx so that Wx belongs
to each Bi . �

Corollary 6.8. Let ⟨X, τ ⟩ be a regular space and let {Bi : i ∈ I } be a family of closed nontrivial
ideals on X. Then the strong bornological extension ⟨X ∪ I, τ s

0 ⟩ is regular if and only if τ0 = τ s
0

and ⟨X ∪ I, τ0⟩ is regular.

In all of the above results, the separation property under consideration is assumed for the
primal space ⟨X, τ ⟩ rather than listed as a condition to be satisfied. This is a matter of taste, given
that each property is hereditary.

7. Concluding remarks

While our paper can be viewed as contained within the framework of general topology, it
is just as importantly a paper on structures that represent larger phenomena, the carriers of
which are ideals and bornologies. General topology, with its focus on nearness, is simply not
equipped to explicitly deal with large phenomena, e.g., coercivity of functions as it is understood



1618 G. Beer, M.C. Vipera / Advances in Mathematics 231 (2012) 1598–1618

in optimization theory (see, e.g., [4]). With this deficiency in mind, Hu in his seminal paper [13]
conceived of a space as consisting of a set equipped with a topology and an ideal with some
interplay between them. He coined the term universe to describe such a triple, and as a main
result, gave necessary and sufficient conditions on a bornology relative to a pseudo-metrizable
topology so that it is the bornology of d-bounded subsets with respect to some compatible
pseudo-metric d (a parallel exercise for bornologies of Bourbaki bounded sets in a uniform
space was undertaken in [21], whereas bornologies of totally bounded subsets of a metrizable
space were recently characterized in [5]).

Our results suggest a broader possible definition for a universe: a set equipped with a topology
and a family of ideals.
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