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Abstract

We deal with the Q-curvature problem on a 4-dimensional compact Riemannian manifold (M, g) with
/ u QgdVy = 872 and positive Paneitz operator Pg. Let 0 be a positive smooth function. The question we
consider is, when can we find a metric § which is conformal to g, such that @ is just the Q-curvature of 3.
A sufficient condition to this question is given in this paper.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most important problems in conformal geometry is the construction of conformal
metrics for which a certain curvature quantity equals a prescribed function, e.g. a constant. In two
dimensions, the problem of prescribed Gaussian curvature asks the following: given a smooth
function K on (M, gp), can we find a metric g conformal to go such that K is the Gaussian
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curvature of the new metric g? If we let g = ¢2* g for some u € C> (M), then the problem is
equivalent to solving the nonlinear elliptic equation:

Au+ Ke* — Ky =0, (1.1

where A denotes the Beltrami-Laplacian of (M, gg) and K is the Gaussian curvature of go.

In dimension four, there is an analogous formulation of Eq. (1.1). Let (M, g) be a compact
Riemannian four manifold, and let Ric and R denote respectively the Ricci tensor and the scalar
curvature of g. A natural conformal invariant in dimension four is

1
0=0,= —E(AR — R? 4+ 3|Ric)?).
Note that, under a conformal change of the metric
g=e"g,
the quantity Q transforms according to

205 = e M(Pu+20Qy), (1.2)

where P = P, denotes the Paneitz operator with respect to g, introduced in [18]. The operator
Pg acts on a smooth function # on M via

2 . (2 .
Pg(u) = Agu + div §Rg — 2Ric, ) du,

which plays a similar role as the Laplace operator in dimension two. Note that the Paneitz
operator is conformally invariant in the sense that

P;=e P,

for any conformal metric § = e?“g.

It follows from (1.2) that the expression k =k, = f u QdV, is conformally invariant. A
natural problem to propose is to prescribe the Q-curvature: that is, to ask whether on a given
four-manifold (M, g) there exists a conformal metric § := ¢ g for which the Q-curvature of g
equals the prescribed function Q. This is related to solving the following equation

Pou+20, =20e™. (1.3)

This equation is the Euler—Langrange equation of the functional

[y (u) = /Mupgudvg+4/M QoudVy — (/M divg> 1og/M Qe dVy,. (1.4)

A partial affirmative answer to the problem (1.3) in the case where 0 equals some constant
is given by Chang—Yang [3] provided the Paneitz operator is weakly positive and the integral k
is less than 8772. In view of the result of Gursky [9] the former hypothesis is satisfied whenever
k > 0 and provided (M, g) is of positive Yamabe type. The result of Chang—Yang has been
extended recently by Djadli-Malchiodi [7] to the case in which P, has no kernel and & is not a
positive integer multiple of 872

In the critical case, when k = 872, the study of Eq. (1.3) becomes rather delicate. In this
case, the functional I/, fails to satisfy standard compactness conditions like the Palais—Smale
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condition, and generally blow-up may occur. Note that when (M, g) = (5%, g.), Eq. (1.3) is
reduced to the following one

Pou+ 6 =20e". (1.5)

This is the analogue of the well-known Nirenberg’s problem. We should mention that, the
blow-up phenomena for the Paneitz operator and other 4-th order elliptic equations have been
deeply studied by Druert—Robert [8] and Weinstein—Zhang [21]. For other recent results, one can
refer to [1,2,5,4,15,19,20,16]. We remark that, similar to Nirenberg’s problem, there are some
obstructions for the existence of the solution to Eq. (1.5) in the standard four-sphere case. The
Gauss—Bonnet—Chern formula implies that there could not be a solution if O < 0. On the other
hand, one has the identities of Kazdan—Warner type to this equation.

The main goal of this paper is to study Eq. (1.3) with critical value k = 872 and positive
0. We shall pursue a variational approach which was used in [6]. Let (M, g) be any closed
four dimensional Riemannian manifold with positive Py, i.e., f I uPgudVy > 0 and ker P, =
{constants}. Then we have

[upgudvgzxf |Voul?dV,, whenf udVy =0 (1.6)
M M M

for some positive A and the following improved Adams—Fontana inequality [3]:

1 1
4, 2,2
log/Me “dVy < W/MngudVg + 27T_2/M udVy +C, VYu € W2 (M). (1.7)

We consider (for any small € > 0)

1) =/ (1, u)d Vg + 4 (1 — i)/ QgudV, — (87% — e)log/ de*av,,
M 872/ Ju M
where we denote
2 .
(u,v) = AguAgv + §Rg(Vu, Vv) — 2Ricy (Vu, Vv) ).

By using the inequality (1.7), it is not so difficult to prove that

infII.(u) > —0o, Ve > 0, and moreover, Il has a minimum point u..

For this minimizing sequence u., two possibilities may occur: let me = u.(x¢) = maxyepy
MG ('x)s

(1) sup, me¢ < +o00, then, by passing to a subsequence, {u.} converges to some ug as € — 0,
and ug minimizes /1;
(2) me¢ — 400, as € — 0; We say, in this case, the u blows up.

One of the main concern is to prove that, if the second case happens, then we find an explicit
bound for the /.. More precisely, we have

inf  11(u) > Ag(Q, p), (1.8)
ueWw22(M)
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V30(p)
12

+2/ 0G ,dV, + (8/3 — 16)7%,
M

where

A4(Q, p) = —1677 log — 872 log 872 — 1672 S0(p)

p is the bubble point, and Sp(p) is the constant term of the Green function at point p (see
Appendix).
On the other hand, if we can construct some test function sequence ¢, s.t.

11(¢e) < Ag(0, p),

we see that the blow-up does not happen. Therefore, we can get some sufficient condition under
which (1.3) has a solution.
One of our main theorems in this paper is as follows.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension four, with k = 872
Suppose Py is positive and Q > 0. If inf,cy22(pp) I1 () is not attained, i.e. Eq. (1.3) has no
minimal solution, then

inf  I1(u) = inf A,(0, p). 1.9
sl T = 1nf 450, p) (1.9)

Now let p’ be a point s.t.
A ~’ ! =i f A ~7 )
g(Q ) xlgM g(Q x)

we will prove that p’ is in fact determined by the conformal class [g] of (M, g).
Another main result in this paper is the existence theorem of Eq. (1.3).

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension four, with k = 8.
Suppose Pg is positive. Let 0 be a positive smooth function on M. Assume that A (Q X)
achieves its minimum at the point p'. If

R(p"

o(p') (Agsua’) + 4|V, S(pHI> - 3

~ 1 ~
) + |:(2ngVg o) (p") + ZAg Q(p’)} >0
then Eq. (1.3) has a minimal solution.

Corollary 1.3. Under the assumption as in Theorem 1.2, if

R(p"
18
then M has a constant Q-curvature up to conformal transformations.

AgS(p)) + 4|V S(pHI* — > 0,

It is interesting to note that, in the four-dimensional case, the method in [6] cannot be directly
used. Since Eq. (1.3) does not satisfy the Maximum Principle, the method used in [6] does not
work here to calculate

/ | Ague|?d V. (1.10)
Bs\BLye (xe)
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We will apply the capacity to get the lower bound of (1.10). The usefulness of capacity in similar
problems was first discovered by the second author, and has been used in [11,12].

2. Preliminary estimate

In this section we collect some useful preliminary facts and then derive some estimates for the
solutions. We start with the following lemma.

Lemma 2.1. For any € > 0, I I, has a minimum point.

Proof. By using the inequality (1.7), it is easy to see that, when || y 4dVy =0, we have

IIe(u):/ uPgudV, +4( / QudV, — (87° —e)log/ De*av,
_c+8—2/ upgudvg+4(1——2 / QudV,
= Cthg /|Vu| dv, +4 / QudV,.

For any €; > 0, we have

[ ouavezer [ Wl cosne [ wutav, .,
M M M

where A is the first eigenvalue of A. Then,

/ \Veu2dV, < C(e)IIc(u) + C @.1)
M
and then
8
/ |AguPdVy < = 11.(u) + C. 2.2)
M €

Let uy = uc x be a minimizing sequence of 1/, i.e.
II.(uy) — infll.(u) = A

which, together with the above inequality, implies that
/ | Aguk|*dV, < C,
M

for some constant C which may depend on €. Therefore, by passing to a subsequence, we have
uy — ue and

/ | Agur|*dVy — B.
M

Since the functional 7/, is invariant under a translation by a constant, we may assume that
fM uxdV, = 0, then by (1.7), we can see that eME ¢ LP for any p > 0.
Set

T (uy) = / | Agu PV, + / F(ug)d Vg,
M M
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then we have,

lim / F(up)dVe=A— B, and
M

k——+00

lim f F(uk+um)dvg=A—B.
k—+o00,m—+00 Sy 2

Since IIG(”H%) > A, we have

1 1
Z /M(|Aguk|2 + | Agum|?)dVy + 5 fM Agug AgupdVy > B.
Hence
li AgupAout;,dVy > B.
k—)—&-ool,r12—>+oo /M gtk Sghmd Vg =

Then

lim / | Ag (g — um)*dV,

k—+o0,m—+o0 [y

= lim (f | Agur|*d Vg +/ | Agm|*d Vg —2/ AgukAgumdvg>
k—+00,m—+00 M M M
<0.

Therefore, {uy} is a Cauchy sequence in W>2(M). O

Lemma 2.2. We have
lim inf /I, = inf I1.

e—0

Proof. Obviously,
1. (1) :/ uPgudV, +4< / QudV, — (872 —e)log/ De*av,
=/ ngudVg+4/ QudV, — 87 log/ Qe*dv,
M

/ QudV, +610g/ Qe*av,

 8xn2
A 4
=11 — @fM QudVg+elog[M Qe™dVy.

Let uy satisfy

lim [I7(ug)=infI]1.
k——+00

Then for any € > 0 and fixed uy, we have

4 .
infll, < II.(uy) = 11(u) — —6/ QgupdVy + elog/ Qe
87[2 M M

Letting ¢ — 0, we get

Er%)(infllé) < I1(up).
€—>

2199
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Then letting k — 400, we get

E%)(inflle) <infIl.
€—

Next, we prove

lim (inf /7,) > inf 1. 2.3)

e—0
Let u, attain inf I I,. Since Il (u + c) = I 1. (1), we may assume fM uedVy = 0. Obviously,

€

€
et = (1= go3) 110+ 555 [ wepoue

By (1.6), we have
. € € .
infll, = I1.(u) > (1 _ @) 1) > (1 _ W> infIl.
Letting ¢ — 0, we get (2.3). O
Now let u, be the minimum point of 7 /.. It is clear that u satisfies the following equation:
Pouc +2(1— — =2(1--5) Qe
e +2(1-g5) 05 =2 (1 5) e
/ Oe*edV, = 8r°.
M
The same proof of Lemma 2.3 in [14] yields the following.

Lemma 2.3. There are constants C1(q), C2(q), C3(q) depending only on p and M such that,
for r sufficiently small and for any x € M there holds

/ IV3uc|7dV, < Ci(q)r*3, / IV2uc|1dV, < Ca(q)r*=>,
B, (x) By (x)

and

/ |Vuel?dV, < C3(q)r*™

By (x)

where, respectively, g < ‘3—‘, q <2 andq <4
3. The proof of Theorem 1.1

Let x. be the maximum point of u.. Assume m, = uc(xc),re = e ¢, and x. — p. Let
{e;(x)} be an orthonormal basis of TM near p and exp, : TxM — M be the exponential
mapping. The smooth mapping E : Bs(p) x B, — M is defined as follows,

E(x,y) = exp, (' e; (x)),

where B, is a small ball in R”. Note that E(x, -) : Ty M — M are all differential homeomorphism
if r is sufficiently small.
We set

a a
gij(x,y) = <(e"px)*3_yi’ (eXpX)*@>E(x,y> '
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It is well-known that ¢ = (g;;) is smooth, and g(x, y) = I + O(|y|?) for any fixed x. That is,
we are able to find a constant K, s.t.

lg(x, ¥) = IllcospyxB,) = K|)’|

when § and r are sufﬁcwntly small. Moreover, for any ¢ € C*°(B,(x;)) we have

km due(E(xe, x))
Aghte = \/_ dxk <r dxm )
|VM |2 pq auG(E('xéa-x)) auG(E(-xéa-x))

axP dx4

and
f 0dV, = f o(E™" (i )V Igldy.
B (xk) E~1 (g, ) By

We define
Ue(x) = ue(E(xe, x)),
and
Ve(X) = fie(rex), V. = Ve — M. 3.1

Now v, v are functions defined on B c R".
We have

A2 0L =r20(IV20L]) +r20(VV)) + Qg (E(xc, rex))e™. (3.2)
It follows from Lemma 2.3 that,

IV20.llzap,) < C(L,q) and | Vv.llzas,) < C'(L,q) foranygq € (1,2).
Then (3.2) implies that

1 Ag. (Ag v)llLa(m,) < C'(L).
Using the standard elliptic estimates, we get

| Ag, g”WZq(BL) < Ca(D).
The Sobolev inequality then yields,

| Ag.vilias,) < C3(q, L) foranyq € (0,4).
We therefore have

lvellwaap,) < Ca(L).

Hence, by using the standard elliptic estimates, we see that v, converge smoothly to w, which
satisfies

Adw =20(p)e*”,

where A is the Laplace operator in R*. Moreover, it is easy to check that

O(p)e*’dx < 8r*
Br
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for any L > 0. By the result of [13], we have
(2) w = —log(1 + Y2221 12) with

O(p) /R4 edv, = 8n?,

or
(b) w has the following asymptotic behavior:

—Aw —>a >0 as|x| > +o0.
We claim that (b) does not happen. If it does, then we have

. w3
lim —Agve ~ —aR*.
e—>+0 Br 4

However, it follows from Lemma 2.3 that
/ |Ag vl1dV, < CR>.
Br

This shows that the case (b) does not happen.
v/30(p)

For simplicity, let . = 13— SO that we have

w = —log(1 + Ax|?).

Now, we consider the convergence of u, outside the bubble. By Lemma 2.3, u, is bounded in

W34 for any g < 4 Then, it is easy to check that ue — ue — G, where u, = |17| fM uedVy

3
and

PyGp+20, = 161%5,, /M GpdVy = 0.
To prove the strong convergence of u. — u,, we first show the following lemma.
Lemma 3.1. Given 2 CC M \ {p}, there holds

fgeﬂ"f—ﬁe)dvg <C(R,q)

forany g > 0.

Proof. Let f. = Q ge4”f. For any x € {2, we have the following representation formula,
Ue(X) — Ue = _/ G(x, }’)divg,y + f G(x, y) fe.
M M
Hence, if we let 2 = M \ B, (x¢), and pe = l/fgé | feld Vg, we have, for any q >0,
o4 e (e —Tic+ [y Gx,3) Qd V) _ efge 4G ue fedVeytfp, q’G(x,y)Mefe(y)dVg\v'

Notice that forany x € 2and y € Bz, (xc), |G(x, y)| < C(§2, L). We have

/ q'1G(x, y)|pe fe(»)d Vg y < Ci(L) Je()dVy < Ca(L),
BLre (xe) BLrg (xe)
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and

ol 4G fe(Vey f ) qGangy,
2 ”fe”Ll(_Qe)

Therefore, by using Jensen’s inequality and Fubini’s theorem, we obtain

/ eJac 4 GEIRS Ve gy, < / fe) ( / eq’G(x,y)dVg’x> Ve,
2 0 ||fe||L1(QE) A

1
< C/ Je) / —dVy, | ave.,.
2 Wfellproy \Ja -

< |x — yls2

The last integral is finite provided ¢’ < 3272. Hence, for any ¢ > 0, if € is sufficiently small so
that ¢ < g’ue we have

/ QA=) g < / o' e e (0)=T0)
N 2

IA

c /Q a4 GEIRSDVer gy < €, [

As a consequence of the above lemma, we have the following lemma.
Lemma 3.2. Let {2 CC M \ {xo}. Then uc — uc converges to G, in CK(2) ase — 0.

Proof. It is easy to see that u, < C. Then the lemma follows. [

Remark 3.3. In Bs,, using the above coordinates, we set p = y. for any €. Clearly, yo — O.
Then we also have uc(E(p, x)) —ue — G,(E(p, x)). Moreover, we may write

G(E(p,x)) = —2log|x[ + So(p) + S1(x),

where So(p) is a constant and S1 = O(r). It is easy to check u, —u. — G(E(p, x)) smoothly
in Bs, \ Bs for any fixed 8.

Now, we give a lower bound of lim¢_, ¢ fM(ug, ue)dVy. We write
/ (e, ue)dVe = 1 + I + I,
M
where 11, I, I3 denote the integrals on M \ Bs(x¢), By, (x¢) and Bs \ By, (x¢) (any fixed L and

8) respectively. We remark that the integral I, I> can be easily treated due to the above lemmas.
On the other hand, by Lemma 2.3, we have

/ |Voue|?dVy — IV,G|> = 0(8%).
BS\BLre (xe) Bs(p)

So, the key point is to calculate

f | Aguc|*dVy.
BS(Xe)\BLrE (xe)

We are going to prove the following lemma.
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We have

/l;a (x)\BLre (xe)

for some b > 0, where

Lemma 3.4.

|Aguc?dVy > /
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Bs\BLre

lim lim J(L,¢€,8) =0.

§—>0e—0

Proof. Since we have

2 k
|Ag“e| "

km

and since i, —

9%,
axkgxm
82l
dxkgxm

2
+ O(|Vue))

2
+ O(IV2ic|(|Viie]) + O((|Viie]?)),

/ OIV%iic[([Viie]) + O(Viic )
B(S\BLI“(

(1 — blx [%) Agiie|*dx + J(L, €, 5),

ue converges to G, (E(p, x)) in W34 for any ¢ < %‘, we get

= C(||V2Gp||L‘7(Bg\BL,€)”Vng”Lq/ (Bs \ BLr) + 11G pllwizpy\By,,))

=J(L,€,9),

where 2 5<q<2, and
Let gkm

km 82126 ’ A 2 AY),‘A ué km st 8 ug azﬁe
dxkgxm = | Aoitel” + Z 0u€ x5 Pt Z dxkaxm dxsaxt”
It is clear that
~ . 2
82
2./ A¥ Ao 'Met = K/ —ut dx,
B(S\BLrg axdax B,s\BL,AE “8
and
2| 9% | , B 9%
[X|7 | z—=%=]| dx = |x]
Bs\BLr, Jx* 9 Bs\By,,  0x'0x! dx*9xS

L=t

+ / O(x| |Viie| [V2itc )dx
BB\BLrg

+/ |x|23ﬁe 3%
3(BB\BLr€) th 8x58x’
+ / x?
9(Bs\BLre)

f x|
Bs\BLr,

d
axt’

0

die 02
ox! 9x50x*s

, %iie  0%iic
ox'ox! oxs0x*

ar

axs’

= §km 4 Ak’”, w1th |Ak’"| < K|)c|2 for any €, k, m. Consequently, we have

0

o
o)

ar

dx + J(L,€,9).
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On 9 Bs(x¢), since e — ue — Gp(E(p, x)), as € — 0, we have

[ el i (0 0,
3Bj dx! dxJoxk \dxs Odr

ﬁ/|w0@@%w¥%wmm«ia»m
dBjs

ax! dxJ oxk axs ar
1
=/ 0] <—) ds
JdBs )

= 0(8?).

On 3By, since iy (rex) —me — w as € — 0, we have

1 e % [ 9 D ,do 3w

- x| -\ T oo )ds X" = =%

ré Jasy,, ox' dxJox* \ox* or 9B dx! dxJ/ox
Then we get

lim lim X rrrow:
§—>0e—0 d(Bs\BLr,) dox! oxJox

i 0%a 9 9
2 JHe te ,—)ds =0.
oxs or

<

d

xS’

0
—>ds.
or

Moreover,
st ~ 82"26 2 ~ 2
22: AV Agite ———| < 4K Ix|?| Agiic|?dx + J(L, €, §).
i Bs\BL, dx*ox B5\Biy,

A similar argument as above then gives

Axkaxm dxs9xt

3. 9%
/ Z AkmASl Ue Ue S K2/ |)C|4|A0ﬁe|2dx + J(L, €, 8)
Bs\BLr, k,m,s,t Bs\BLre

This proves the lemma. [

Lemma 3.5. There is a function sequence Ue € W??(Bs \ By, s.t.

Uelaps = —210gd + So(p) + e, Uelap,,, = w(L) + me
U, 2 aU;

= -, =w'(L)
ar |yp; 1) ar 3B1,,
and
2 _ 2
[ A (@b - )| ax
BS\BLrg
=/ (1 = blx P) Agiie Pdx + J(L. €. 8),
Bs\BLe
where

Blim lim J(L,e¢,8) =0.

—0e—>0

2205
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Proof. Let u, be the solution of

Abul = Ajve

due _ e uglag,, = Vel

n . n 8B2L’ eldByy €l0Byy,
oue _ v ullyp, = me + wl;

an 95, = an 33L’ eldB, = Me 0B »

where v, is defined by (3.1). We set

u, (—x> Lre < |x| <2Lr¢
U/: rE
€

e (x) 2Lre < |x|.
It is easy to see that u, — m¢ converges to w smoothly on By, \ Br; then we have
lim (1 = blx*)*(| QUL * — | Agiic [P)dx = 0.
e~0 BZLr; \BLrg
Let n be a smooth function which satisfies:
1 t<1/2
n() = {0 t>2/3.

Set Ge = n(E) (@i — So(p) +2log |x|* — i) — 2 log |x| + So(p). Recall that ue — 7 converges
to G, smoothly on M \ B s (p); then we have

X
Ge — —2log|x|> + So(p) + 1 (%) S1(x),

e — Ge — e — (n <|j;—|) — 1) S1(x).
Therefore

lim
e—0

/ | Agiic |2dx —/ | AgGe|*dx
Bs\Bs )2 Bs\Bs)2

/ | 20G p (E(p. x))2dx f | 240G Pdx
Bs\Bs)2 Bs\Bs >

/ 206 (E(p, x) + G)dx f Ao(Go(E(p. x)) — G)dx
Bs\Bs)2

Bs\Bs2

- A ([ 2o (I

< o(n( =) —1)8i00| dx 20 (Gp—2l0g [xP+n () 1)
Bs\Bs2 8 Bs\Bs2 s

< C,/d|logé].

Now set

U, <0
UE:{ (@ =S
Ge(x)+ue 6/2=<|x|<6.

2 2

dx
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‘We then have,

f (1 = Blx 1) Ao (Ue — o) Pdx = / |A0(1 — Blx ) (Ue — we)|Pdx
Bs\Bp¢ BS\BLrg

+ / O(VU? + |Ue — )V,
Bs\BLr,

To complete the proof, we only need to prove

lim lim lim ||Uc — u, i =0. 3.3
L—+008—0€—0 1Ue = ttellwiacy\be,,) (3.3)
We have
1Ue — el = |Ue — el + |Ue — ucll;
WL2(Bs\BLr,) € €WL.2(Bs\Bs)2) € €'W1-2(Bs/2\Barr,)

— 12 — 12
+ ||U€ - MGHWI'Z(BS/Z\BZLre) + ||U€ - uEHWl’Z(BerE\BLrG)

_ S =2
— ”Ge |I/t€ MGHWI’Z(BS/Z\BZLrg)

+ U,

2
128,75 |

~ — 2 ~ 2
Flue = el \sy,.) ey, \By,)

IA

2 ~ byl 2
1Geliyr2ip,py 0 e = Bellyragg, )

~ 2
U = ielliyraz,,,,\By,, )
It is easy to check that
0.

lim ||U! — iie||? =
lim [[Ue = ttellyr128,,, 8y, o)

Recall iie — e — G,(E(p,x)). We get (3.3). [

Now, we are going to apply capacity estimate to derive the lower bound for

[, fan(0mwpiw o)
5\BLre

First we need to calculate

inf / | Ag @%dx,
— o — 9P — 9P -
Plop,=P1, Plapr=P2, aBr—le I 3BR—Q2 Br\B;

o

where P1, P2, Q1, Q> are constants. Obviously, the minimum can be attained by the function ¢
which satisfies
Ad=0

0P
Plyp, = Py, Dlapr = P2,

ar

0P
01, = 0».

3B, ar dBR

Clearly, we can set

C
@:Alogr+Br2+r—2+D,
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where A, B, C, D are all constants. Then we have
, C
Alogr+Br°+ = +D =P
r
2 C
AlogR + BR +E+D=P2

A C
= +2Br-2= =0
r r

A r-2S -9
R R~ 2%
We have
A Pi— P+ 5701+ %R0
logr/R+ o0
—2Py +2P, = Q) (1+ o logr/R) + RQ: (14 2 logr/R)
B:

4(R* +r?)(logr/R + o) ’

2_ .2
where ¢ = 22—4_:2. Furthermore,

/ |Ag®2dx = —872A%logr/R + 3272 AB(R?> — r?) + 3212 B2(R* — ™).
Br\By

In our case, R = 6,r = Lre,

P = (1 — Blx[")Uclos,,,
Py = (1 — Blx|*)Uclss,

_9(1 = Blx[H)U.
or 9B,
a(1 — B|x|H)U.
Qr=———F
or 9Bs
If we define

N(L,e,8) = w(L)+2logd — Sp —

e

=me — e +w(L) + O(reute),

—2logé + So(p) + O(§1ogé),
o 2\L
T (14 L%

2
=3 + O(51ogé).

o 21L?
21+ AL2

1
= w(L)+2logd — o — 2+ OSlogd) + O (ﬁ> + O(Lro),

and
P =logé —logL,

then we have

me — e + N(L, €,8)\>
Az(—logLre/(S):( € ¢ ( )) (me + P)
me+ P —o
P—o\2 P i  N(L,e8)\>
=(1+ Q) <1+—>m€<1—”—6+£>
e me me me
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P—o 1 P
=(1-2 +0(—))(1+—)me
me me Mme
x [(1 _ E)2 +2 (1 - E) NL.<9)
me me me
1 —m
+ 0 + O(e Eme)—
me
—\2
Ue
= m, (1——) +2<1——)N(L €, 8)
Ue me
— 2 — 2
1 1
rosali-2) o) (-2 ().
me me me me

and

f__me—HANLed) (o1 _Te oL
me —logL +1logé + o Me Me Mme

|
L
_|_
IEy
+
Q
/N
B
SN—

Notice that reme — 0 as € — 0, we have

Ome + 27 + O(1) + ( T 00 10g8)> me
4(8%2 + (Lre)r)(log L — me —logd + o)

)
=g (e acro(i)

It concludes that

/ |A0(1 — blx [} (Ue — te)|*dx
Bs\BLr¢

— \2 — — \2
> 872m, <1 - ”i) + 1672 (1 - ”—€> N(L,e,8) — 872(P — 20) (1 - ”—€>
me me me
_ —_ — 2
+ 1672 (1 —k) <1+—> + 872 <1+”i>
Me Me Me
1 7 \? 1
yo(—)(1=-==) +0(—)+Js.e05.
me Me me

Using the fact that u, < C, we have

872 — )i, > 872, +€C.
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Therefore

I (ue) z/ |Ague|2dvg+/ |A0(1 = |B ) (Ue — i) Pdx + 87t
BLre (xe) B(S\BLre
+/ <Gp,Gp>+4/ 0G dV, + J(L. €. 5)
M\ Bs(x0) M

— 2 _
u u
> 872 (me + C1) (1 + —€> +C (1 + —€> +C;3
e €
where Cy, C3, C3 are some constants. Since I/ (ue) = inf Il < C’' < 00, we must have (1 +
”;—Z) — 0ase — 0, ie. ;‘l—i - —1.
Consequently, we have

/ [Ao(1 — blx ) (Ue —1e)|2dx + 872,
Bé\BLre

me e

— 2 _
> 872m, (1 + k) 1+ 1672N(L, €, 8) (1 — k)

2
—872(log§ — log L — 20) <1 - ”i> + UL, €8
m

€

— —\2
> 1672 (1 — ”—€> N(L,¢€,8) —8n%(logs — log L — 20) (1 — ”—E) + J(L,¢€,9).
e €
(3.4)
Since we have
422 |x |2 81
A()w = — ,
(I4+A|x)2 14 Alx|?
a direct calculation yields that
872 log L
/ | Agw[2dx = 1672 log(1 + AL%) + 22— 4+ 0 ( 2 > .
BL 3 L
On the other hand, it is obvious to see that,
/ |Vuc|? — IVG,|*> = 0(8log$), (3.5)
Bs(x¢) Bs(xe)

and

/ (Gp, Gp)dV,
M\ Bs (x0)

G, IAG,
= G,P;GpdVy — a—AngdVg—i- Gy 5 dVv,
M\ Bjs(xo) aB; OF 0Bs r

2 3G ‘
n / <_RG_ — 2GRic(dG, dr)) dS,
9B \3 ar

= —2/ Q.G ,dVy — 167% 4+ 167%(—210g § + So(p)) + O (8 log$). (3.6)
M
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Together with Lemmas 3.4 and 3.5, (3.4)—(3.6), we have
lim I, > 3272 1imO N(L,€,8) —32n%(ogs — log L — 2) + 1672 log(1 + AL?)
€—

e—0
87‘[2 2 2 2
+ =+ (=2logd + So(p)167° +2 | 0,GpdVy — 8 log8n
M

log L
+O0(S5logd) + O 2

1+AL* 872
JFLZ + = — 1672S)(p) — 1672

= —167%log

2 G,dV. — 872 log8n? + 0(slogs) + 0 [ &L
+ MQngg—nogn—i-O( 0gd) + 2 )

Letting first 5§ — 0, then L — +o00, we get

lim /I, > —167% log ) — 872 log 87% — 16728y + (8/3 — 16)7* + 2/ 0,G ,dV,.
M

e—0

This shows the first part of Theorem 1.1, that is

inf  I1(u) > inf 4,(0, p).
. S ( )_peM ¢(0,p)

The second part

inf  II(u) < inf A,(Q, p)
ueW22(M) PEM 8 Q.p

follows from the proof of Theorem 1.2 in the next section. ~
To end this section, we will prove a conformal property of A,(Q, p).

Lemma 3.6. Letting § € [g] : § = ¢*’g for some v € C*®° (M), we have

1) = g+ o)~

(v, v)dV, —4/ QudV,.
M M

If we set
~ 2
P;Gy +2Q0; = 16778y,

then

Gy=Gy—v, and Sy(y) = So(y)+v(y).
Proof. Since P; = e_4”Pg, 20; = e_4”(ng +20,), we get
1;(u) = / (u, u)d Vg +2/ (Pgv +20,)udVy — 87r2log/ 0t av,
M M M
= / (u+v,u+v)ydV, +4/ QqudV,
M M
—8n210g/ etttV gy, —/ (v, v)dV,
M M

= Ilg(u—l—v)—/ (v, v)dVg—4/ QudVs,.
M M
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On the other hand, we have
P(G —v) +2Q; = e (PyG +2Q,) = 16178, , = 16728, ;
Since dist;z (y, x) = e“(y)distg(y, x) + O(distg (y, x))2, we have
Gy =Gy—v
= —2logdistg (y, x) + So(y) — v(y) + O(dist(y, x))
= —2logdistz(y, x) + v(y) + So(y) + O(dist(y, x)).

Thus So(y) = So(») +v(y). O
4. Testing function

In this section, we will construct a blow up sequence ¢« s.t.

I11(¢e) < xiél{/l A(x).

We use standard notation from [10]. In a normal geodesic coordinate system {x’}, we denote
Rijki = (R(%, 91)3;, 9;), Rij = —g'" Riju.
where R is the curvature operator, defined as follows,
R(X,Y) = VxVy — VyVx — Vix.y].
Suppose that p’ is a point such that A(p’) = infycp A(x).

We know that, locally we have

1 | .
§Rpijq(p’)x’xf + ngijq,k(p’)x’x-’xk

+ : i k1+ Rpijm (P Ryram (P ) x'x7xkx! 4+ 0().
20 PJq 45 ptj q

8pq = Bpg +

1 1 .
3 t]x i gRij,k(p/)xl]k

1 1
(20 ij, kl(P)+ Oha]m(P ) Rukim (p ))X X xk m—i—O(rS).

lgl = 1-—

In the sequel, let us denote

xi'l"'i{":xil“'imjl"'jn and all im 1 xirimvein g g
J1Jn ’ J1Jn 27-[2 ’

then around the point p’ we write

gkm =5km+Mkm 8km+Ml] km+Mkm3 kms_’_Mkm” kmst+0(r5)

M = MY 8ij = Miynx"" + Mynsx™ + M x*™' + 0 (),
1 . .. ..

Vigl=1- gRijxlj + Kijix"* + Kijgmx ¥ + 0 ().

N* = —¢'T} = Nfx' + Nfx" + Nf, x

ijm%

I 0(r).

It is easy to check that M,gn = —%Rikmj(p'), My, = %Rij(p’) and Nik = —%Rik(p’).
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We prove the following lemma.
Lemma 4.1. We have

1
75 Rii (P Rin (o™ + NI + Mijuna /" = 4Kijuno /. (4.1)

Proof. We have, for any small r > 0,

/ Agr?dv,
By
ijk

2
:/ (8—§R1]x1+2Mkaf + 2M;jkmx ’Jk’"+2Nk +2N”kx,, )
B,

X (1 - éRijxij + Kijix' 4 K,-jkmxijkm) dx +o(t%)
=472t — 2Rijocij X 27rZf
1 i jkm m p ijkm o8 8
+ <9R,1kaoz/ +2M]kmoz/ + 2N kozp ~|—8K,jk ol )271 g—i—o(t );
on the other hand, we have
/ 2rdsy = / 2r (1 - lR,-,-xl‘/ + Kijmx'TEm 4 O(r5)> dso
9B, 9B, 6
= 4%t — 4n? L 6 1% £ 2K jkma 2% 4 o(e%).
Now the conclusion follows from Stokes’ theorem. [
Note that locally, we may write (see Lemma A.1 in the Appendix),
G, = —2logr + 8§,
with
S = So(p') + aix’ + %xi-/ 002,
We define

x |2 5
0. = —log 1+AH +Co+ulxl’, xeBr

where
B 1 - V30(p)
M="ea+ay "7 12
and

Ce =log(1 4+ AL?) —2log Le — nL%e.
We set

b = G+ e +2logr x € Bpe
< G X¢BL67
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then, in By, we have
X |2 5
¢€=—log<l+)»’z))+C€+S+M|x| =@et+S. 4.2)

Hence, it is easy to check that ¢, € WP (M) for any p > 0.
We write

11(¢e) ;:/ (e, pe)d Vg +4/ QepedV, —8n210g/ Qe*fedv,
M M M
= I1hH+1L+11.
First we will calculate the term 1 I3. In the small neighborhood around the point p’, we set
b i 3
0= Q(p)erer2 X+ 0@,

then we have
3 PAC+4S) , . » ~
Qe /|g| = —4[(1 +daix’ + 2a;x" + 8aja;x" + 4urt) Q(p')
et (14+2]2)

bl] i i 24 V2€2
+bix' + 2L 5 x4 daibix + 0*T*) + 0

LS
Rijxi
x (1 ——’f6x +0(r3))

4Cc+4S) . , y R;ixt
= e—4 |:<1 +daix’ 4 2a;;x7 + 8a;a;xV + dur® — %)

et (142 [2)

b 2
% O(p)) + bix' + ;’ xii +4a,bx”+0(r2+°‘)+0(£8>i|

Therefore, by using the symmetry of the ball and the fact that o;; = A—ILSI- i, we have

0e*?\/IgldVy

Bre

/ L 1 ~ aji
=2n2e4C5+4S0(p)64A T o) 1+ Z(%j%“iz)

i

4 (p) 24 r? 3
nw— +Z a;b; + +O(er) + 0 I3 dr.

A direct calculation then yields that

) 2/L r3dr 72 i 1
T _— -
o (I+ar2)* 6a2 4

L
L rdr w2 1

wm? | ————=—+0(—

d /0 AQrmDE 33 (L)
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2 2 L pdr . i
4pe” x 2w —— =0 .
o (1+ard)4 L*

Hence we get

Qe*%e\/|gldx
2

BLE
2 .
— ACet450 4 [8712 B 24w n ﬂ_ez (Z (al +2a,~2) Q(p’) (P)Q( )

and

A2L4 323 2

+Z<a~b‘+lﬂ> +0< ! )+0(ez+"‘)+0<62)
i (A 8 L .

On the other hand, it is not difficult to check that

450
~ 1
f 0c*\/Igldx = Q(p)—27r2dr+ 0( > 2)
M\BLe Le L

247 €2
_ AC.+4Sy 4
=e O¢ (_A2L4 + 0 <—L2>> .

871210g/ Qe*%./|gldx
M

= 8n2[log 872 + 4(Ce +loge + Sp)]

2 B ) .
+3%[Q(p/)Xi:(a—é’+2af>+Xi:(aibi+bT:>_R;Z) p/]ez

2
+0(62+°‘)+0<6 )+0<1> 423)
2 Iz

Next, we calculate I1: first of all, by (4.2) we have

In conclusion, we have

/(‘bev(pe)dvg :/ <¢ev¢e)dvg+/ (e, De)dV,
M M\B_,

BLe

=/ (G,¢e)dVg+/ (G, ¢c)dV,
M\Bp. Bre

+ / (@ +21ogr, )V,
BLE

=/<G,¢>e>dvg+/ (@ +2logr, p)dV,
M Bre

1672(Ce + So(p))) — 2/M Q¢cdV,

+ / (g + 2logr, pc + S)d V. (4.4)
BLe
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We set 1 to be a cut-off function which is 0 at 1 and 1 in [0, 1/4] with (1) = 1, and

|x|

n(—) +logt |x| <7t

hy = T

logr x| > t.

Then for fixed € and L, we have

lim {(@e +2h,,g05+S)dVg=/ (@ +2logr, pe + S)d V.

=0JB;. BlLe

On the other hand, we have

/ (‘Pe+2hr,‘ﬂe+s>dvg
Bre

=/ (q)e—i—Zh,,G)dVg—i—/ (e +2hz, @c +210gr>dvg
Bl Bre

= 1672C. + 327%5(0) + 3272 log T — 2/ Qg (e + 2hy)
BLE

+ / (@e, 9e)dVy +/ (@e, 2logr +2he)dV, +/ (2logr, 2h;)dV,.
Bpe Bpe Bre

Therefore, we get
/ (@e +2logr, g + S)dV,
BLe

= 327%(0) —2/ Qg(¢e+210gr)+/ (e, pe)dV,
BLe

BLe

+ f (¢, 4logr)dVy + lim (/ (2logr, 2h;)dV, + 327% log r)
BLe =0 BLE
= 32729(0) — 2/ Q¢ (pe +2logr) +/ Age Agped Vg
Bl Bre
+4 | AgpedglogrdVs + lim < Ag2logr Ag2hdV,y + 321% log 5)
BLe T BLe
2
+ / §R(d(<p€ +2logr), d(ge +2logr))dV,
BLe
- / 2Ric(d(ge + 2logr), d(ge +2logr))d V. 4.5)
BLE

By a simple calculation, one gets

/ (Ag2logr)Ag(2h)dV, = / Ap(2logr)Ag (27] <m>> dx + O(7)
B; B

T

—327%9(0) + 1672 + O (7). (4.6)
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To compute | BL\Bs Aglogr A, logr, we first verify that, for any function f which is smooth
on [fy, t1], where 19 < t;, we have

Ag f(r) = (St + MEXT 4 MERGITS 4 MED US4 0(%))

,6
% (f//ka f ﬂ_f ka) Nk);—kf/

.. iik k _ij ijk
ey g B R;jx' N M;jgxt +Nijxk N M,]kmx m o4 szkxm
r

3r r r

+O0@ ") + o0t £,

Here, we use the fact that Ml’;mka Mz];r?z ,i{;t = 0. Then, applying Lemma 4.1, for any f; and

f> which are smooth in [7, #1], we have

/ Ag fillx) Ag f2(Ix)d Vg
B \By,
/ i ( - —r + K,jkmaijk’"r4) 2723 dr

i 1 5R , y
+/ 1+ )= (3 5" +7Kl]kma’/kmr4) 2r2r3dr
fo r

n 1 . 7R 1
+/ fl/fz/ﬁ <9 + 33K,~jkmot”kmr4 g 24 9R,1kaot”kmr2> 2m2r3dr
fo
n
+/ (0CSIA 50+ 0GTA B+ LA LD + 0C°1 13D)
fo
2 " el ! ol ///3 //9 2.3
=[G BB 4 S
fo
n 2.3
+R/t ( fz T (fl ) - f1f2> 27r
0
+ Kijgma Tk / B+ 11+ £ ) + 33 ] farh)2nrar

. |
+ Rij Rgma 74" / g /1 ridr
fo

3l
+ / (0C8A 50+ 067U B+ A1) + OCCIf f3D)) ar. @.7)
0]
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Then, choosing f; = f> =2logr, t; = Le, tp = T, we get

/ Ag(210gr)Ag(2h,)dV =f Ag(ZIOgF)Ag(Zlogr)dVg

Bre\B: Bre\B:

ijkm_2 4 27° ijkm 4
=40Kijkm0l] m“(Le) +TRinkmOlj (Le)

—2Rn%(Le)* + 3272 log Le — 3272 log T
+0(t) + O(Le). (4.8)

Now we will calculate the term fBLe Agpe Ag(pe + 4logr)dVy: in (4.7), we choose f1 =
Qe, fr = @c +4logr, tg =0, 11 = Le then we get

88 1672
Dg@e Ag(pe +4logrydVy = —— 12 +

— 1672 log(1 + AL?
. 3 e 7~ log(1 4+ AL")

82 -
- Rezgl/\ + 272 R(L€)? — 40K jjmat ¥ 72 (Le)*
27 ijkm y 4 40, € 5
—TR,-ijma/ (Le)* 4+ O(e"L )+E+O(L6) . “4.9)
By a direct calculation, we have

2
/ §R(Vg(<pe +2logr), Ve(pe +2logr))dV,
BrLe

2 Le 262 2
[ R / - 2 2 2.3
3/0 (p)<(62+)»r2)r+ W) mr
2¢2
(€2 4+ Ardyr

2

+ 2m> 1+ 0@3))dx

2 N D 2
+—[ (Ri(p)x" + O(r ))(
3 Bpe

2

2¢2 5
——— 4+ 2ur ) O@“)dx

8
— 2 R(p 2.2 /
3A (p)m7e” + (€2 4+ Ardyr

Bre

8 2.2 452 e
=§R(p/)7f €+ 0(EL)Y+0 77) (4.10)

and

/ 2Ric(Vg(pe +21ogr), Vo (e +2logr))dV,
BLe

LR ’)/Le 2 22 2,34
=5 5 - 5 r T°r r
2 p 0 (€2 + ardyr H

2 2
+2/ § g/ (Rij k (pPHx* + 0(r?)) (
BLE

2e 3
m + 2M> x5t (1 4+ O(r7))dx
2
= ZR(p)m*e® +2 / (Rijx(P)x* + 0 ()
k BLe
2 2

2e ij 3
X m+2ﬂ xY (1 4+ 0(@r))dx
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2 2
= %R(p/)nzez +/ __ 2 +2u) O0Gr*Hdx
A B \ (€2 + Ar?)r?
= zR(p’)nze2 + 0L+ 0 < . (4.11)
A L2
Together with (4.4)—(4.6) and (4.8)—(4.11), we obtain the following identity
Il.(ue) =1L+ 1L+ 113

_ 2 _ 2 2 8L2 _ 2 _ 2
= —16m“logA — 8w log 87~ + 3 16 +2 | QG —167°Sy
M

bii R(p) ~
(Q(p)Z( +24; )+Z(a,b+8> e p)

2
+0 < ) + 0¥ +0 ( ! ) + 0*L?) + 0((Le)). (4.12)

1
Proof of Theorem 1.2. We set L = log] < then

€2
¢’ 2 1 472 5
€ >>0< >+0(e +"‘)+0< >+0(e L)+ O((Le)”)
when € is very small. Therefore, we get Theorem 1.2. [
5. The local conformally case

In this section, we will discuss the local conformally flat case of Theorem 1.2.
In this situation, locally we may write

2 : 3
g=ce fzi:dxl ®dx' with f =c¢ix' + Ecijx” + 0(r),
and
5 A i L 3
Q=Q(p)+bix +§bin' +O(l" )

Note that by the conformal property of P,, the corresponding Green function has the following
local expression:

. 1 ..
G = —2log|x| + So(p) + aix' + Eaijx” + 0.
When f = 0, we can use Theorem 1.2 to obtain: if

a 1 bii
E ° + 2 it = <a,~b,- + l)) > 0,
; (2 o(p") 8

then (1.3) has a solution.
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For the general case, we set g’ = ¢2/ g, then applying Lemma 3.6, we get G;,, =G+ f,
and then

al{ =a; +¢, and al{i =aj; + Cji.
Thus we have the following results.

Theorem 5.1.  Let (M, g) be a closed 4-dimensional manifold with k = 872 and let P, be
positive. Suppose further that it is locally conformal flat near p'. If

aij + cij 1 bii
Z % + 2(a; + ¢i)? + o <(a,~ +¢i)b; + %) >0,

r)

i
then Eq. (1.3) has a minimal solution.

As a corollary, we have the following.

Corollary 5.2. With the same assumption as in Theorem 5.1. If

YT 2+ e = 0,

i
then in the conformal class of (M, g) there is a constant Q-curvature.
To end this section, we propose the following conjecture.

Conjecture. Let (M, g) be a locally conformal flat closed Riemannian manifold of dimension
four, with k = 87 and let Py be positive. Then we have

.o + . .
Z (—a” 5 G (s + Ci)2> >0, atthe point p' where Ag(p') = min Ag (872, x),
X€

i
and the equality holds if and only if (M, g) is in the conformal class of the standard 4-sphere.
Let § = ¢?Cg; then we have
Q;(x)=0
for any x # p. Near p, we can write
eSo(p)+(ci +a;)x +(cij+aij)x e50(p)

< ' ij 3
g= = = " 6;x* +9isz/ + O(|x]”)).

So the above conjecture is equivalent to
Z 9,',' >0
i
when M # S*. So, this problem is very similar to the positive mass problem.
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Appendix
Suppose Ker P, = {constant}. Let G be the Green function which satisfies
PG +2Q, = 167%5,,.
As a corollary of a result in [17], we have the following.
Lemma A.1. In a normal coordinate system of p, we have

G = —2logr + So + aix' + aijx" + 0.

However, for the reader’s sake, we give a brief proof of this lemma here.
Proof. In a normal coordinate system, we set
1 . 1 .
gl =1 - sRijx" + 0(3), and g =gk — 3 Ruijmx'! + o)

where @; jx and 0;j; are smooth.
Given a smooth function F, we have

1 0 d
A F(|x]) = ——( |g|g"'”TF)

Vgl axk ax™
O ([ am o Xm 1, 9
=2 (gkmF ) —gtmp, 2
™ ( + 28 " og gl
0 1 kij 1 ij
= (P Ry F'— + F O ) — =R F'— + 0(F'r?)
0Xy, r 3 r 3 r
9 1 i
=2 (F/x—" + F/O(r3)) — SR F'— + 0(F'r)
Xy r 3 r
1 /xij 7.2 7.3
= AoF—gR,'/‘F—-f-O(Fr )+ O(F'r”).
’ r
Then
4 2 4
and

4 4 8R;ix/ 1 8R;;ixi/ 1
A== ) =40 (-5 ) - =2 O-)=16x%8— ——+0(-).
8 ( r2> 0 ( r2> 34 + (r) 00 34 + r

It is easy to check that

2 Xl 2 xi Lo <1) 4R 16R;x"

g3z = A3k =377 e

A A
r2 3792

r

Hence, we get

4R Rijx' 1
2 2 ij
Ag(—ZIOgI")Zléﬂ' 5p+m—8 }"4 +O<;>
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Moreover, we have

2
div <§Rg(—d2 logr) — 2Ricg (d(~2logr), ->>

2 1
= ng (P)(logr)ik — 2Rkm (p)2logr)im + O (;)

2 4 1 xkm 1
=§Rg(p)r—2—4Rg(P)r_2+8kar—4+0 -

We therefore have
1
Py(—2logr) = 16728y + O (-) )
r
We set
G = —2logr+3S

where S € C1?. Then, we get

1 1 1
A§S=PgS+O<;):PgG+2Pglogr+0< ):0(-).

r r

This proves the lemma. [
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