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Abstract

We deal with the Q-curvature problem on a 4-dimensional compact Riemannian manifold (M, g) with
M QgdVg = 8π2 and positive Paneitz operator Pg . Let Q̃ be a positive smooth function. The question we

consider is, when can we find a metric g̃ which is conformal to g, such that Q̃ is just the Q-curvature of g̃.
A sufficient condition to this question is given in this paper.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most important problems in conformal geometry is the construction of conformal
metrics for which a certain curvature quantity equals a prescribed function, e.g. a constant. In two
dimensions, the problem of prescribed Gaussian curvature asks the following: given a smooth
function K on (M, g0), can we find a metric g conformal to g0 such that K is the Gaussian
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curvature of the new metric g? If we let g = e2u g0 for some u ∈ C∞(M), then the problem is
equivalent to solving the nonlinear elliptic equation:

1u + K e2u
− K0 = 0, (1.1)

where ∆ denotes the Beltrami–Laplacian of (M, g0) and K0 is the Gaussian curvature of g0.
In dimension four, there is an analogous formulation of Eq. (1.1). Let (M, g) be a compact

Riemannian four manifold, and let Ric and R denote respectively the Ricci tensor and the scalar
curvature of g. A natural conformal invariant in dimension four is

Q = Qg = −
1

12
(1R − R2

+ 3|Ric|2).

Note that, under a conformal change of the metric

g̃ = e2u g,

the quantity Q transforms according to

2Q g̃ = e−4u(Pu + 2Qg), (1.2)

where P = Pg denotes the Paneitz operator with respect to g, introduced in [18]. The operator
Pg acts on a smooth function u on M via

Pg(u) = ∆2
gu + div


2
3

Rg − 2Ricg


du,

which plays a similar role as the Laplace operator in dimension two. Note that the Paneitz
operator is conformally invariant in the sense that

Pg̃ = e−4u Pg

for any conformal metric g̃ = e2u g.
It follows from (1.2) that the expression k = kg :=


M QdVg is conformally invariant. A

natural problem to propose is to prescribe the Q-curvature: that is, to ask whether on a given
four-manifold (M, g) there exists a conformal metric g̃ := e2u g for which the Q-curvature of g̃
equals the prescribed function Q̃. This is related to solving the following equation

Pgu + 2Qg = 2Q̃e4u . (1.3)

This equation is the Euler–Langrange equation of the functional

I Ig(u) =


M

u PgudVg + 4


M
QgudVg −


M

QgdVg


log


M

Q̃e4udVg. (1.4)

A partial affirmative answer to the problem (1.3) in the case where Q̃ equals some constant
is given by Chang–Yang [3] provided the Paneitz operator is weakly positive and the integral k
is less than 8π2. In view of the result of Gursky [9] the former hypothesis is satisfied whenever
k > 0 and provided (M, g) is of positive Yamabe type. The result of Chang–Yang has been
extended recently by Djadli–Malchiodi [7] to the case in which Pg has no kernel and k is not a
positive integer multiple of 8π2.

In the critical case, when k = 8π2, the study of Eq. (1.3) becomes rather delicate. In this
case, the functional I Ig fails to satisfy standard compactness conditions like the Palais–Smale
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condition, and generally blow-up may occur. Note that when (M, g) = (S4, gc), Eq. (1.3) is
reduced to the following one

Pgu + 6 = 2Q̃e4u . (1.5)

This is the analogue of the well-known Nirenberg’s problem. We should mention that, the
blow-up phenomena for the Paneitz operator and other 4-th order elliptic equations have been
deeply studied by Druert–Robert [8] and Weinstein–Zhang [21]. For other recent results, one can
refer to [1,2,5,4,15,19,20,16]. We remark that, similar to Nirenberg’s problem, there are some
obstructions for the existence of the solution to Eq. (1.5) in the standard four-sphere case. The
Gauss–Bonnet–Chern formula implies that there could not be a solution if Q̃ ≤ 0. On the other
hand, one has the identities of Kazdan–Warner type to this equation.

The main goal of this paper is to study Eq. (1.3) with critical value k = 8π2 and positive
Q̃. We shall pursue a variational approach which was used in [6]. Let (M, g) be any closed
four dimensional Riemannian manifold with positive Pg , i.e.,


M u PgudVg ≥ 0 and ker Pg =

{constants}. Then we have
M

u PgudVg ≥ λ


M

|∇gu|
2dVg, when


M

udVg = 0 (1.6)

for some positive λ and the following improved Adams–Fontana inequality [3]:

log


M
e4udVg ≤

1

8π2


M

u PgudVg +
1

2π2


M

udVg + C, ∀u ∈ W 2,2(M). (1.7)

We consider (for any small ϵ > 0)

I Iϵ(u) =


M

⟨u, u⟩dVg + 4


1 −
ϵ

8π2

 
M

QgudVg − (8π2
− ϵ) log


M

Q̃e4udVg,

where we denote

⟨u, v⟩ = ∆gu∆gv +


2
3

Rg(∇u, ∇v) − 2Ricg(∇u, ∇v)


.

By using the inequality (1.7), it is not so difficult to prove that

inf I Iϵ(u) > −∞, ∀ϵ > 0, and moreover, I Iϵ has a minimum point uϵ .

For this minimizing sequence uϵ , two possibilities may occur: let mϵ = uϵ(xϵ) = maxx∈M
uϵ(x),

(1) supϵ mϵ < +∞, then, by passing to a subsequence, {uϵ} converges to some u0 as ϵ → 0,
and u0 minimizes I I ;

(2) mϵ → +∞, as ϵ → 0; We say, in this case, the uϵ blows up.

One of the main concern is to prove that, if the second case happens, then we find an explicit
bound for the I Iϵ . More precisely, we have

inf
u∈W 2,2(M)

I I (u) ≥ Λg(Q̃, p), (1.8)



J. Li et al. / Advances in Mathematics 231 (2012) 2194–2223 2197

where

Λg(Q̃, p) = −16π2 log


3Q̃(p)

12
− 8π2 log 8π2

− 16π2S0(p)

+ 2


M
QG pdVg + (8/3 − 16)π2,

p is the bubble point, and S0(p) is the constant term of the Green function at point p (see
Appendix).

On the other hand, if we can construct some test function sequence φϵ , s.t.

I I (φϵ) < Λg(Q̃, p),

we see that the blow-up does not happen. Therefore, we can get some sufficient condition under
which (1.3) has a solution.

One of our main theorems in this paper is as follows.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension four, with k = 8π2.
Suppose Pg is positive and Q̃ > 0. If infu∈W 2,2(M) I I (u) is not attained, i.e. Eq. (1.3) has no
minimal solution, then

inf
u∈W 2,2(M)

I I (u) = inf
p∈M

Λg(Q̃, p). (1.9)

Now let p′ be a point s.t.

Λg(Q̃, p′) = inf
x∈M

Λg(Q̃, x),

we will prove that p′ is in fact determined by the conformal class [g] of (M, g).
Another main result in this paper is the existence theorem of Eq. (1.3).

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension four, with k = 8π2.
Suppose Pg is positive. Let Q̃ be a positive smooth function on M. Assume that Λg(Q̃, x)

achieves its minimum at the point p′. If

Q̃(p′)


∆g S(p′) + 4|∇g S(p′)|2 −

R(p′)

18


+


(2∇g S∇g Q̃)(p′) +

1
4
∆g Q̃(p′)


> 0,

then Eq. (1.3) has a minimal solution.

Corollary 1.3. Under the assumption as in Theorem 1.2, if

∆g S(p′) + 4|∇g S(p′)|2 −
R(p′)

18
> 0,

then M has a constant Q-curvature up to conformal transformations.

It is interesting to note that, in the four-dimensional case, the method in [6] cannot be directly
used. Since Eq. (1.3) does not satisfy the Maximum Principle, the method used in [6] does not
work here to calculate

Bδ\BLrϵ (xϵ)

|∆guϵ |
2dVg. (1.10)



2198 J. Li et al. / Advances in Mathematics 231 (2012) 2194–2223

We will apply the capacity to get the lower bound of (1.10). The usefulness of capacity in similar
problems was first discovered by the second author, and has been used in [11,12].

2. Preliminary estimate

In this section we collect some useful preliminary facts and then derive some estimates for the
solutions. We start with the following lemma.

Lemma 2.1. For any ϵ > 0, I Iϵ has a minimum point.

Proof. By using the inequality (1.7), it is easy to see that, when


M udVg = 0, we have

I Iϵ(u) =


M

u PgudVg + 4


1 −
ϵ

8π2

 
M

QudVg − (8π2
− ϵ) log


M

Q̃e4udVg

≥ C +
ϵ

8π2


M

u PgudVg + 4


1 −
ϵ

8π2

 
M

QudVg

≥ C + λ
ϵ

8π2


M

|∇gu|
2dVg + 4


1 −

ϵ

8π2

 
M

QudVg.

For any ϵ1 > 0, we have
M

QudVg ≤ ϵ1


M

|u|
2
+ Cϵ ≤ λ0ϵ1


M

|∇u|
2dVg + Cϵ,

where λ0 is the first eigenvalue of ∆. Then,
M

|∇gu|
2dVg ≤ C(ϵ)I Iϵ(u) + C (2.1)

and then
M

|∆gu|
2dVg ≤

8π

ϵ
I Iϵ(u) + C. (2.2)

Let uk = uϵ,k be a minimizing sequence of I Iϵ , i.e.

I Iϵ(uk) → inf I Iϵ(u) = A,

which, together with the above inequality, implies that
M

|∆guk |
2dVg ≤ C,

for some constant C which may depend on ϵ. Therefore, by passing to a subsequence, we have
uk ⇁ uϵ and

M
|∆guk |

2dVg → B.

Since the functional I Iϵ is invariant under a translation by a constant, we may assume that
M ukdVg = 0, then by (1.7), we can see that e4uk ∈ L p for any p > 0.

Set

I Iϵ(uk) :=


M

|∆guk |
2dVg +


M

F(uk)dVg,
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then we have,

lim
k→+∞


M

F(uk)dVg = A − B, and

lim
k→+∞,m→+∞


M

F


uk + um

2


dVg = A − B.

Since I Iϵ(
uk+um

2 ) ≥ A, we have

1
4


M

(|∆guk |
2
+ |∆gum |

2)dVg +
1
2


M

∆guk∆gumdVg ≥ B.

Hence

lim
k→+∞,m→+∞


M

∆guk∆gumdVg ≥ B.

Then

lim
k→+∞,m→+∞


M

|∆g(uk − um)|2dVg

= lim
k→+∞,m→+∞


M

|∆guk |
2dVg +


M

|∆gum |
2dVg − 2


M

∆guk∆gumdVg


≤ 0.

Therefore, {uk} is a Cauchy sequence in W 2,2(M). �

Lemma 2.2. We have

lim
ϵ→0

inf I Iϵ = inf I I.

Proof. Obviously,

I Iϵ(u) =


M

u PgudVg + 4


1 −
ϵ

8π2

 
M

QudVg − (8π2
− ϵ) log


M

Q̃e4udVg

=


M

u PgudVg + 4


M
QudVg − 8π2 log


M

Q̃e4udVg

−
4ϵ

8π2


M

QudVg + ϵ log


M
Q̃e4udVg

= I I (u) −
4ϵ

8π2


M

QudVg + ϵ log


M
Q̃e4udVg.

Let uk satisfy

lim
k→+∞

I I (uk) = inf I I.

Then for any ϵ > 0 and fixed uk , we have

inf I Iϵ ≤ I Iϵ(uk) = I I (uk) −
4ϵ

8π2


M

QgukdVg + ϵ log


M
Q̃e4uk .

Letting ϵ → 0, we get

lim
ϵ→0

(inf I Iϵ) ≤ I I (uk).
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Then letting k → +∞, we get

lim
ϵ→0

(inf I Iϵ) ≤ inf I I.

Next, we prove

lim
ϵ→0

(inf I Iϵ) ≥ inf I I. (2.3)

Let uϵ attain inf I Iϵ . Since I Iϵ(u + c) = I Iϵ(u), we may assume


M uϵdVg = 0. Obviously,

I Iϵ(uϵ) =


1 −

ϵ

8π2


I I (uϵ) +

ϵ

8π2


M

uϵ Pguϵ .

By (1.6), we have

inf I Iϵ = I Iϵ(uϵ) ≥


1 −

ϵ

8π2


I I (uϵ) ≥


1 −

ϵ

8π2


inf I I.

Letting ϵ → 0, we get (2.3). �

Now let uϵ be the minimum point of I Iϵ . It is clear that uϵ satisfies the following equation:
Pguϵ + 2


1 −

ϵ

8π2


Qg = 2


1 −

ϵ

8π2


Q̃e4uϵ

M
Q̃e4uϵ dVg = 8π2.

The same proof of Lemma 2.3 in [14] yields the following.

Lemma 2.3. There are constants C1(q), C2(q), C3(q) depending only on p and M such that,
for r sufficiently small and for any x ∈ M there holds

Br (x)

|∇
3uϵ |

qdVg ≤ C1(q)r4−3q ,


Br (x)

|∇
2uϵ |

qdVg ≤ C2(q)r4−2q ,

and 
Br (x)

|∇uϵ |
qdVg ≤ C3(q)r4−q

where, respectively, q < 4
3 , q < 2, and q < 4.

3. The proof of Theorem 1.1

Let xϵ be the maximum point of uϵ . Assume mϵ = uϵ(xϵ), rϵ = e−mϵ , and xϵ → p. Let
{ei (x)} be an orthonormal basis of T M near p and expx : Tx M → M be the exponential
mapping. The smooth mapping E : Bδ(p) × Br → M is defined as follows,

E(x, y) = expx (yi ei (x)),

where Br is a small ball in Rn . Note that E(x, ·) : Tx M → M are all differential homeomorphism
if r is sufficiently small.

We set

gi j (x, y) =


(expx )∗

∂

∂yi , (expx )∗
∂

∂y j


E(x,y)

.
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It is well-known that g = (gi j ) is smooth, and g(x, y) = I + O(|y|
2) for any fixed x . That is,

we are able to find a constant K , s.t.

∥g(x, y) − I∥C0(Bδ(p)×Br )
≤ K |y|

2

when δ and r are sufficiently small. Moreover, for any ϕ ∈ C∞(Bρ(xk)) we have

∆guϵ =
1

√
|g|

∂

∂xk


|g|gkm ∂uϵ(E(xϵ, x))

∂xm


,

|∇uϵ |
2

= g pq ∂uϵ(E(xϵ, x))

∂x p

∂uϵ(E(xϵ, x))

∂xq ,

and 
Bδ(xk )

ϕdVg =


E−1(xk ,y)Bδ(xk )

ϕ(E−1(xk, y))


|g|dy.

We define

ũϵ(x) = uϵ(E(xϵ, x)),

and

vϵ(x) = ũϵ(rϵx), v′
ϵ = vϵ − mϵ . (3.1)

Now vϵ, v
′
ϵ are functions defined on B r

2rϵ
⊂ Rn .

We have

∆2
gϵ

v′
ϵ = r2

ϵ O(|∇2v′
ϵ |) + r3

ϵ O(∇v′
ϵ) + Q̃g(E(xϵ, rϵx))e4v′

ϵ . (3.2)

It follows from Lemma 2.3 that,

∥∇
2v′

ϵ∥Lq (BL ) ≤ C(L , q) and ∥∇v′
ϵ∥Lq (BL ) ≤ C ′(L , q) for any q ∈ (1, 2).

Then (3.2) implies that

∥∆gϵ (∆gϵv
′
ϵ)∥Lq (BL ) ≤ C ′(L).

Using the standard elliptic estimates, we get

∥∆gk v
′
ϵ∥W 2,q (BL ) ≤ C2(L).

The Sobolev inequality then yields,

∥∆gϵv
′
ϵ∥Lq (BL ) ≤ C3(q, L) for any q ∈ (0, 4).

We therefore have

∥v′
ϵ∥W 2,q (BL ) ≤ C4(L).

Hence, by using the standard elliptic estimates, we see that v′
ϵ converge smoothly to w, which

satisfies

∆2
0w = 2Q̃(p)e4w,

where ∆0 is the Laplace operator in R4. Moreover, it is easy to check that
BL

Q̃(p)e4wdx ≤ 8π2
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for any L > 0. By the result of [13], we have

(a) w = − log(1 +

√
3Q̃(p)

12 |x |
2), with

Q̃(p)


R4

e4wdVg = 8π2,

or
(b) w has the following asymptotic behavior:

−1w → a > 0 as |x | → +∞.

We claim that (b) does not happen. If it does, then we have

lim
ϵ→+0


BR

−∆gvϵ ∼
ω3

4
a R4.

However, it follows from Lemma 2.3 that
BR

|∆gϵv
′
ϵ |dVg ≤ C R2.

This shows that the case (b) does not happen.

For simplicity, let λ =

√
3Q(p)
12 , so that we have

w = − log(1 + λ|x |
2).

Now, we consider the convergence of uϵ outside the bubble. By Lemma 2.3, uϵ is bounded in
W 3,q for any q < 4

3 . Then, it is easy to check that uϵ − uϵ ⇁ G p, where uϵ =
1

|M |


M uϵdVg

and

PgG p + 2Qg = 16π2δp,


M

G pdVg = 0.

To prove the strong convergence of uϵ − uϵ , we first show the following lemma.

Lemma 3.1. Given Ω ⊂⊂ M \ {p}, there holds
Ω

eq(uϵ−uϵ)dVg < C(Ω , q)

for any q > 0.

Proof. Let fϵ = Q̃ge4uϵ . For any x ∈ Ω , we have the following representation formula,

uϵ(x) − uϵ = −


M

G(x, y)QgdVg,y +


M

G(x, y) fϵ .

Hence, if we let Ωϵ = M \ BLrϵ (xϵ), and µϵ = 1/

Ωϵ

| fϵ |dVg , we have, for any q ′ > 0,

eq ′µϵ(uϵ−uϵ+


M G(x,y)QgdVg)
= e


Ωϵ

q ′G(x,y)µϵ fϵ(y)dVg,y+


BLrϵ
q ′G(x,y)µϵ fϵ(y)dVg,y

.

Notice that for any x ∈ Ω and y ∈ BLrϵ (xϵ), |G(x, y)| < C(Ω , L). We have
BLrϵ (xϵ)

q ′
|G(x, y)|µϵ fϵ(y)dVg,y ≤ C1(L)


BLrϵ (xϵ)

fϵ(y)dVg ≤ C2(L),
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and

e

Ωϵ

q ′G(x,y)µϵ fϵ(y)dVg,y ≤


Ωϵ

fϵ(y)

∥ fϵ∥L1(Ωϵ)

eq ′G(x,y)dVg,y .

Therefore, by using Jensen’s inequality and Fubini’s theorem, we obtain
Ω

e

Ωϵ

q ′G(x,y)µϵ fϵ(y)dVg,y dVg ≤


Ω

fϵ(y)

∥ fϵ∥L1(Ωϵ)


Ωϵ

eq ′G(x,y)dVg,x


dVg,y

≤ C

Ω

fϵ(y)

∥ fϵ∥L1(Ωϵ)


Ωϵ

1

|x − y|

q′

8π2

dVg,x

 dVg,y .

The last integral is finite provided q ′ < 32π2. Hence, for any q > 0, if ϵ is sufficiently small so
that q ≤ q ′µϵ we have

Ω
eq(uϵ(x)−uϵ)dx ≤


Ω

eq ′µϵ(uϵ(x)−uϵ)dx

≤ C

Ω

e

Ωϵ

q ′G(x,y)µϵ fϵ(y)dVg,y dVg ≤ C. �

As a consequence of the above lemma, we have the following lemma.

Lemma 3.2. Let Ω ⊂⊂ M \ {x0}. Then uϵ − uϵ converges to Gx0 in Ck(Ω) as ϵ → 0.

Proof. It is easy to see that uϵ < C . Then the lemma follows. �

Remark 3.3. In Bδ0 , using the above coordinates, we set p = yϵ for any ϵ. Clearly, yϵ → 0.
Then we also have uϵ(E(p, x)) − uϵ → G p(E(p, x)). Moreover, we may write

G(E(p, x)) = −2 log |x | + S0(p) + S1(x),

where S0(p) is a constant and S1 = O(r). It is easy to check ũϵ − uϵ → G(E(p, x)) smoothly
in Bδ0 \ Bδ for any fixed δ.

Now, we give a lower bound of limϵ→0


M ⟨uϵ, uϵ⟩dVg . We write
M

⟨uϵ, uϵ⟩dVg = I1 + I2 + I3,

where I1, I2, I3 denote the integrals on M \ Bδ(xϵ), BLrϵ (xϵ) and Bδ \ BLrϵ (xϵ) (any fixed L and
δ) respectively. We remark that the integral I1, I2 can be easily treated due to the above lemmas.
On the other hand, by Lemma 2.3, we have

Bδ\BLrϵ (xϵ)

|∇guϵ |
2dVg →


Bδ(p)

|∇gG|
2

= O(δ2).

So, the key point is to calculate
Bδ(xϵ)\BLrϵ (xϵ)

|∆guϵ |
2dVg.

We are going to prove the following lemma.
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Lemma 3.4. We have
Bδ(xϵ)\BLrϵ (xϵ)

|∆guϵ |
2dVg ≥


Bδ\BLrϵ

|(1 − b|x |
2)∆0ũϵ |

2dx + J (L , ϵ, δ),

for some b > 0, where

lim
δ→0

lim
ϵ→0

J (L , ϵ, δ) = 0.

Proof. Since we have

|∆guϵ |
2

=

gkm ∂2ũϵ

∂xk∂xm + O(|∇ũϵ |)

2
=

gkm ∂2ũϵ

∂xk∂xm

2 + O(|∇2ũϵ |(|∇ũϵ |)) + O((|∇ũϵ |
2)),

and since ũϵ − uϵ converges to G p(E(p, x)) in W 3,q for any q < 4
3 , we get

Bδ\BLrϵ

O|∇
2ũϵ |(|∇ũϵ |) + O(|∇ũϵ |

2)

≤ C(∥∇2G p∥Lq (Bδ\BLrϵ )∥∇gG p∥Lq′ (Bδ \ BLrϵ ) + ∥G p∥W 1,2(Bδ\BLrϵ ))

= J (L , ϵ, δ),

where 3
2 < q < 2, and 1

q ′ +
1
q = 1.

Let gkm
= δkm

+ Akm , with |Akm
| ≤ K |x |

2 for any ϵ, k, m. Consequently, we havegkm ∂2ũϵ

∂xk∂xm

2 = |∆0ũϵ |
2
+ 2


s,t

Ast∆0ũϵ

∂2ũϵ

∂x s∂x t +


k,m,s,t

Akm Ast ∂2ũϵ

∂xk∂xm

∂2ũϵ

∂x s∂x t .

It is clear that

2


Bδ\BLrϵ

Ast∆0ũϵ

∂2ũϵ

∂x s∂x t

 ≤ K


Bδ\BLrϵ


|x |

2
|∆0ũϵ |

2
+ |x |

2
 ∂2ũϵ

∂x s∂x t

2


dx,

and 
Bδ\BLrϵ

|x |
2
 ∂2ũϵ

∂x s∂x t

2 dx =


Bδ\BLrϵ

|x |
2 ∂2ũϵ

∂x t∂x t

∂2ũϵ

∂x s∂x s dx

+


Bδ\BLrϵ

O(|x | |∇ũϵ | |∇
2ũϵ |)dx

+


∂(Bδ\BLrϵ )

|x |
2 ∂ ũϵ

∂x t

∂2ũϵ

∂x s∂x t


∂

∂x t ,
∂

∂r


ds

+


∂(Bδ\BLrϵ )

|x |
2


∂ ũϵ

∂x t

∂2ũϵ

∂x s∂x s


∂

∂x s ,
∂

∂r


ds

=


Bδ\BLrϵ

|x |
2 ∂2ũϵ

∂x t∂x t

∂2ũϵ

∂x s∂x s dx + J (L , ϵ, δ).
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On ∂ Bδ(xϵ), since ũϵ − uϵ → G p(E(p, x)), as ϵ → 0, we have
∂ Bδ

|x |
2 ∂ ũϵ

∂x i

∂2ũϵ

∂x j∂xk


∂

∂x s ,
∂

∂r


ds

→


∂ Bδ

|x |
2


∂G p(E(p, x))

∂x i

∂2G p(E(p, x))

∂x j∂xk


∂

∂x s ,
∂

∂r


ds

=


∂ Bδ

O


1
δ


ds

= O(δ2).

On ∂ BLrϵ , since ũk(rϵx) − mϵ → ω as ϵ → 0, we have

1

r2
ϵ


∂ BLrϵ

|x |
2 ∂ ũϵ

∂x i

∂2ũϵ

∂x j∂xk


∂

∂x s ,
∂

∂r


ds →


∂ BL

|x |
2 ∂ω

∂x i

∂2ω

∂x j∂xk


∂

∂x s ,
∂

∂r


ds.

Then we get

lim
δ→0

lim
ϵ→0


∂(Bδ\BLrϵ )

|x |
2 ∂ ũϵ

∂x i

∂2ũϵ

∂x j∂xk


∂

∂x s ,
∂

∂r


ds = 0.

Moreover,

2

k,s,t


Bδ\BLrϵ

Ast∆0ũϵ

∂2ũϵ

∂x s∂x t

 ≤ 4K


Bδ\BLrϵ

|x |
2
|∆0ũϵ |

2dx + J (L , ϵ, δ).

A similar argument as above then gives
Bδ\BLrϵ


k,m,s,t

Akm Ast ∂2ũϵ

∂xk∂xm

∂2ũϵ

∂x s∂x t ≤ K 2


Bδ\BLrϵ

|x |
4
|∆0ũϵ |

2dx + J (L , ϵ, δ).

This proves the lemma. �

Lemma 3.5. There is a function sequence Uϵ ∈ W 2,2(Bδ \ BLrϵ ) s.t.

Uϵ |∂ Bδ = −2 log δ + S0(p) + uϵ, Uϵ |∂ BLrϵ
= w(L) + mϵ

∂Uϵ

∂r


∂ Bδ

= −
2
δ
,

∂Uϵ

∂r


∂ BLrϵ

= w′(L)

and 
Bδ\BLrϵ

∆0


(1 − b|x |

2)(Uϵ − uϵ)
2 dx

=


Bδ\BLrϵ

|(1 − b|x |
2)∆0ũϵ |

2dx + J (L , ϵ, δ),

where

lim
δ→0

lim
ϵ→0

J (L , ϵ, δ) = 0.



2206 J. Li et al. / Advances in Mathematics 231 (2012) 2194–2223

Proof. Let u′
ϵ be the solution of

∆2
0u′

ϵ = ∆2
0vϵ

∂u′
ϵ

∂n


∂ B2L

=
∂vϵ

∂n


∂ B2L

, u′
ϵ |∂ B2L = vϵ |∂ B2L

∂u′
ϵ

∂n


∂ BL

=
∂w

∂n


∂ BL

, u′
ϵ |∂ BL = mϵ + w|∂ BL ,

where vϵ is defined by (3.1). We set

U ′
ϵ =


u′

ϵ


x

rϵ


Lrϵ ≤ |x | ≤ 2Lrϵ

ũϵ(x) 2Lrϵ ≤ |x |.

It is easy to see that u′
ϵ − mϵ converges to w smoothly on B2L \ BL ; then we have

lim
ϵ→0


B2Lrϵ \BLrϵ

(1 − b|x |
2)2(|∆0U ′

ϵ |
2
− |∆0ũϵ |

2)dx = 0.

Let η be a smooth function which satisfies:

η(t) =


1 t ≤ 1/2
0 t > 2/3.

Set Gϵ = η(
|x |

δ
)(ũϵ − S0(p)+2 log |x |

2
−uϵ)−2 log |x |

2
+ S0(p). Recall that uϵ −uϵ converges

to G p smoothly on M \ B δ
2
(p); then we have

Gϵ → −2 log |x |
2
+ S0(p) + η


|x |

δ


S1(x),

ũϵ − Gϵ − uϵ →


η


|x |

δ


− 1


S1(x).

Therefore

lim
ϵ→0




Bδ\Bδ/2

|∆0ũϵ |
2dx −


Bδ\Bδ/2

|∆0Gϵ |
2dx


=




Bδ\Bδ/2

|∆0G p(E(p, x))|2dx −


Bδ\Bδ/2

|∆0Gϵ |
2dx


=




Bδ\Bδ/2

∆0G p(E(p, x) + Gϵ)dx


Bδ\Bδ/2

∆0(G0(E(p, x)) − Gϵ)dx


≤


Bδ\Bδ/2

∆0


η


|x |

δ


− 1


S1(x)

2 dx


Bδ\Bδ/2

∆0


G p − 2 log |x |2 + η


|x |

δ


S1(x)

2 dx

≤ C


δ| log δ|.

Now set

Uϵ =


U ′

ϵ(x) |x | ≤
δ

2
Gϵ(x) + uϵ δ/2 ≤ |x | ≤ δ.
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We then have,
Bδ\BLϵ

|(1 − B|x |
2)∆0(Uϵ − uϵ)|

2dx =


Bδ\BLrϵ

|∆0(1 − B|x |
2)(Uϵ − uϵ)|

2dx

+


Bδ\BLrϵ

O(|∇Uϵ |
2
+ |Uϵ − uϵ |

2)dVg.

To complete the proof, we only need to prove

lim
L→+∞

lim
δ→0

lim
ϵ→0

∥Uϵ − uϵ∥W 1,2(Bδ\BLrϵ ) = 0. (3.3)

We have

∥Uϵ − uϵ∥
2
W 1,2(Bδ\BLrϵ )

= ∥Uϵ − uϵ∥
2
W 1,2(Bδ\Bδ/2)

+ ∥Uϵ − uϵ∥
2
W 1,2(Bδ/2\B2Lrϵ )

+ ∥Uϵ − uϵ∥
2
W 1,2(Bδ/2\B2Lrϵ )

+ ∥Uϵ − uϵ∥
2
W 1,2(B2Lrϵ \BLrϵ )

= ∥Gϵ∥
2
W 1,2(Bδ\Bδ/2)

+ ∥ũϵ − uϵ∥
2
W 1,2(Bδ/2\B2Lrϵ )

+ ∥ũϵ − uϵ∥
2
W 1,2(B2Lrϵ \BLrϵ )

+ ∥U ′
ϵ − ũϵ∥

2
W 1,2(B2Lrϵ \BLrϵ )

≤ ∥Gϵ∥
2
W 1,2(Bδ\Bδ/2)

+ ∥ũϵ − uϵ∥
2
W 1,2(Bδ/2)

+ ∥U ′
ϵ − ũϵ∥

2
W 1,2(B2Lrϵ \BLrϵ )

.

It is easy to check that

lim
ϵ→0

∥U ′
ϵ − ũϵ∥

2
W 1,2(B2Lrϵ \BLrϵ (xϵ))

= 0.

Recall ũϵ − uϵ → G p(E(p, x)). We get (3.3). �

Now, we are going to apply capacity estimate to derive the lower bound for
Bδ\BLrϵ

∆0


(1 − b|x |

2)(Uϵ − uϵ)
2 dx .

First we need to calculate

inf
Φ|∂ Br =P1,Φ|∂ BR =P2,

∂Φ
∂r


∂ Br

=Q1,
∂Φ
∂r


∂ BR

=Q2


BR\Br

|∆0Φ|
2dx,

where P1, P2, Q1, Q2 are constants. Obviously, the minimum can be attained by the function Φ
which satisfies

∆2
0Φ = 0

Φ|∂ Br = P1, Φ|∂ BR = P2,
∂Φ
∂r


∂ Br

= Q1,
∂Φ
∂r


∂ BR

= Q2.

Clearly, we can set

Φ = A log r + Br2
+

C

r2 + D,
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where A, B, C, D are all constants. Then we have

A log r + Br2
+

C

r2 + D = P1

A log R + B R2
+

C

R2 + D = P2

A

r
+ 2Br − 2

C

r3 = Q1

A

R
+ 2B R − 2

C

R3 = Q2.

We have
A =

P1 − P2 +
ϱ
2 r Q1 +

ϱ
2 RQ2

log r/R + ϱ

B =

−2P1 + 2P2 − r Q1


1 +

2r2

R2−r2 log r/R


+ RQ2


1 +

2R2

R2−r2 log r/R


4(R2 + r2)(log r/R + ϱ)
,

where ϱ =
R2

−r2

R2+r2 . Furthermore,
BR\Br

|∆0Φ|
2dx = −8π2 A2 log r/R + 32π2 AB(R2

− r2) + 32π2 B2(R4
− r4).

In our case, R = δ, r = Lrϵ ,

P1 = (1 − B|x |
2)Uϵ |∂ BLrϵ

= mϵ − uϵ + w(L) + O(rϵuϵ),

P2 = (1 − B|x |
2)Uϵ |∂ Bδ = −2 log δ + S0(p) + O(δ log δ),

Q1 =
∂(1 − B|x |

2)Uϵ

∂r


∂ BLrϵ

=
2λL

rϵ(1 + λL2)
,

Q2 =
∂(1 − B|x |

2)Uϵ

∂r


∂ Bδ

= −
2
δ

+ O(δ log δ).

If we define

N (L , ϵ, δ) = w(L) + 2 log δ − S0 −
ϱ

2
2λL2

1 + λL2

= w(L) + 2 log δ − S0 − 2 + O(δ log δ) + O


1

L2


+ O(Lrϵ),

and

P = log δ − log L ,

then we have

A2(− log Lrϵ/δ) =


mϵ − uϵ + N (L , ϵ, δ)

mϵ + P − ϱ

2

(mϵ + P)

=


1 +

P − ϱ

mϵ

−2 
1 +

P

mϵ


mϵ


1 −

uϵ

mϵ

+
N (L , ϵ, δ)

mϵ

2
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=


1 − 2

P − ϱ

mϵ

+ O


1

m2
ϵ


1 +

P

mϵ


mϵ

×


1 −

uϵ

mϵ

2

+ 2


1 −
uϵ

mϵ


N (L , ϵ, δ)

mϵ

+ O


1

m2
ϵ


+ O(e−mϵ mϵ)

uϵ

mϵ



= mϵ


1 −

uϵ

uϵ

2

+ 2


1 −
uϵ

mϵ


N (L , ϵ, δ)

− (P − 2ϱ)


1 −

uϵ

mϵ

2

+ O


1

mϵ


1 −

uϵ

mϵ

2

+ O


1

mϵ


,

and

A = −
mϵ − uϵ + N (L , ϵ, δ)

mϵ − log L + log δ + ϱ
= −


1 − O


1

mϵ

−1 
1 −

uϵ

mϵ

+ O


1

mϵ


= −1 +

uϵ

mϵ

+ O


1

mϵ


.

Notice that rϵmϵ → 0 as ϵ → 0, we have

B =

−2mϵ + 2uϵ + O(1) +


2 2δ2

δ2−(Lrϵ)2 + O(δ log δ)


mϵ

4(δ2 + (Lrϵ)2)(log L − mϵ − log δ + ϱ)

= −
1

2δ2


1 +

uϵ

mϵ

+ O


1

mϵ


1 − O


1

mϵ

−1

= −
1

2δ2


1 +

uϵ

mϵ

+ O


1

mϵ


.

It concludes that
Bδ\BLrϵ

|∆0(1 − b|x |
2)(Uϵ − uϵ)|

2dx

≥ 8π2mϵ


1 −

uϵ

mϵ

2

+ 16π2


1 −
uϵ

mϵ


N (L , ϵ, δ) − 8π2(P − 2ϱ)


1 −

uϵ

mϵ

2

+ 16π2


1 −
uϵ

mϵ


1 +

uϵ

mϵ


+ 8π2


1 +

uϵ

mϵ

2

+ O


1

mϵ


1 −

uϵ

mϵ

2

+ O


1

mϵ


+ J6(L , ϵ, δ).

Using the fact that uϵ ≤ C , we have

(8π2
− ϵ)uϵ > 8π2uϵ + ϵC.
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Therefore

I Iϵ(uϵ) ≥


BLrϵ (xϵ)

|∆guϵ |
2dVg +


Bδ\BLrϵ

|∆0(1 − |B |
2)(Uϵ − uϵ)|

2dx + 8π2uϵ

+


M\Bδ(x0)

⟨G p, G p⟩ + 4


M
Q̃G pdVg + J (L , ϵ, δ)

≥ 8π2(mϵ + C1)


1 +

uϵ

mϵ

2

+ C2


1 +

uϵ

mϵ


+ C3

where C1, C2, C3 are some constants. Since I Iϵ(uϵ) = inf I Iϵ < C ′ < ∞, we must have (1 +
uϵ

mϵ
) → 0 as ϵ → 0, i.e. uϵ

mϵ
→ −1.

Consequently, we have
Bδ\BLrϵ

|∆0(1 − b|x |
2)(Uϵ − uϵ)|

2dx + 8π2uϵ

≥ 8π2mϵ


1 +

uϵ

mϵ

2

+ 16π2 N (L , ϵ, δ)


1 −

uϵ

mϵ


−8π2(log δ − log L − 2ϱ)


1 −

uϵ

mϵ

2

+ J (L , ϵ, δ)

≥ 16π2


1 −
uϵ

mϵ


N (L , ϵ, δ) − 8π2(log δ − log L − 2ϱ)


1 −

uϵ

mϵ

2

+ J (L , ϵ, δ).

(3.4)

Since we have

∆0w =
4λ2

|x |
2

(1 + λ|x |2)2 −
8λ

1 + λ|x |2
,

a direct calculation yields that
BL

|∆0w|
2dx = 16π2 log(1 + λL2) +

8π2

3
+ O


log L

L2


.

On the other hand, it is obvious to see that,
Bδ(xϵ)

|∇uϵ |
2

→


Bδ(xϵ)

|∇G p|
2

= O(δ log δ), (3.5)

and 
M\Bδ(x0)

⟨G p, G p⟩dVg

=


M\Bδ(x0)

G p PgG pdVg −


∂ Bδ

∂G p

∂r
∆gG pdVg +


∂ Bδ

G p
∂1G p

∂r
dVg

+


∂ Bδ


2
3

RG
∂G

∂r
− 2GRic(dG, dr)


d Sg

= −2


M
QgG pdVg − 16π2

+ 16π2(−2 log δ + S0(p)) + O(δ log δ). (3.6)
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Together with Lemmas 3.4 and 3.5, (3.4)–(3.6), we have

lim
ϵ→0

I Iϵ ≥ 32π2 lim
ϵ→0

N (L , ϵ, δ) − 32π2(log δ − log L − 2) + 16π2 log(1 + λL2)

+
8π2

3
+ (−2 log δ + S0(p))16π2

+ 2


M
QgG pdVg − 8π2 log 8π2

+ O(δ log δ) + O


log L

L2


= −16π2 log

1 + λL2

L2 +
8π2

3
− 16π2S0(p) − 16π2

+ 2


M
QgG pdVg − 8π2 log 8π2

+ O(δ log δ) + O


log L

L2


.

Letting first δ → 0, then L → +∞, we get

lim
ϵ→0

I Iϵ ≥ −16π2 log λ − 8π2 log 8π2
− 16π2S0 + (8/3 − 16)π2

+ 2


M
QgG pdVg.

This shows the first part of Theorem 1.1, that is

inf
u∈W 2,2(M)

I I (u) ≥ inf
p∈M

Λg(Q̃, p).

The second part

inf
u∈W 2,2(M)

I I (u) ≤ inf
p∈M

Λg(Q̃, p)

follows from the proof of Theorem 1.2 in the next section.
To end this section, we will prove a conformal property of Λg(Q̃, p).

Lemma 3.6. Letting g̃ ∈ [g] : g̃ = e2vg for some v ∈ C∞(M), we have

I Ig̃(u) = I Ig(u + v) −


M

⟨v, v⟩dVg − 4


M
QvdVg.

If we set

Pg̃G̃ y + 2Q g̃ = 16π2δy,

then

G̃ y = G y − v, and S̃0(y) = S0(y) + v(y).

Proof. Since Pg̃ = e−4v Pg, 2Q g̃ = e−4v(Pgv + 2Qg), we get

I Ig̃(u) =


M

⟨u, u⟩dVg + 2


M
(Pgv + 2Qg)udVg − 8π2 log


M

Q̃e4(u+v)dVg

=


M

⟨u + v, u + v⟩dVg + 4


M
QgudVg

− 8π2 log


M
Q̃e4(u+v)dVg −


M

⟨v, v⟩dVg

= I Ig(u + v) −


M

⟨v, v⟩dVg − 4


M
QvdVg.
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On the other hand, we have

Pg̃(G − v) + 2Q g̃ = e−4v(PgG + 2Qg) = 16π2e−4vδy,g = 16π2δy,g̃.

Since distg̃(y, x) = ev(y)distg(y, x) + O(distg(y, x))2, we have

G̃ y = G y − v

= −2 log distg(y, x) + S0(y) − v(y) + O(dist(y, x))

= −2 log distg̃(y, x) + v(y) + S0(y) + O(dist(y, x)).

Thus S̃0(y) = S0(y) + v(y). �

4. Testing function

In this section, we will construct a blow up sequence φϵ s.t.

I I (φϵ) < inf
x∈M

Λ(x).

We use standard notation from [10]. In a normal geodesic coordinate system {x i
}, we denote

Ri jkl = ⟨R(∂k, ∂l)∂ j , ∂i ⟩, Ri j = −g jk Ri jkl ,

where R is the curvature operator, defined as follows,

R(X, Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ].

Suppose that p′ is a point such that Λ(p′) = infx∈M Λ(x).
We know that, locally we have

gpq = δpq +
1
3

Rpi jq(p′)x i x j
+

1
6

Rpi jq,k(p′)x i x j xk

+


1

20
Rpi jq,kl +

2
45

Rpi jm(p′)Rqklm(p′)


x i x j xk x l

+ O(r5).

|g| = 1 −
1
3

Ri j x i j
−

1
6

Ri j,k(p′)x i jk

−


1

20
Ri j,kl(p′) +

1
90

Rhi jm(p′)Rhklm(p′)


x i x j xk xm

+ O(r5).

In the sequel, let us denote

x i1···im
j1··· jn

= x i1···im j1··· jn , and α
i1···im
j1··· jn

=
1

2π2


S3

x i1···im j1··· jn ds;

then around the point p′ we write

gkm
= δkm

+ Mkm
= δkm

+ M i j
km xkm

+ M i j
kms xkms

+ M i j
kmst x

kmst
+ O(r5)

M = M i jδi j = Mkm xkm
+ Mkms xkms

+ Mkmst x
kmst

+ O(r5),
|g| = 1 −

1
6

Ri j x i j
+ Ki jk x i jk

+ Ki jkm x i jkm
+ O(r5).

N k
= −gi jΓ k

i j = N k
i x i

+ N k
i j x i j

+ N k
i jm x i jm

+ O(r5).

It is easy to check that M i j
km = −

1
3 Rikm j (p′), Mkm =

1
3 Ri j (p′) and N k

i = −
2
3 Rik(p′).
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We prove the following lemma.

Lemma 4.1. We have

1
18

Ri j (p′)Rkm(p′)αi jkm
+ N m

i jkα
i jk
m + Mi jkmαi jkm

= 4Ki jkmαi jkm . (4.1)

Proof. We have, for any small t > 0,
Bt

∆gr2dVg

=


Bt


8 −

2
3

Ri j x i j
+ 2Mi jk x i jk

+ 2Mi jkm x i jkm
+ 2N k

i j x i j
k + 2N p

i jk x i jk
p


×


1 −

1
6

Ri j x i j
+ Ki jk x i jk

+ Ki jkm x i jkm


dx + o(t8)

= 4π2t4
− 2Ri jα

i j
× 2π2 t6

6

+


1
9

Ri j Rkmαi jkm
+ 2Mi jkmαi jkm

+ 2N p
i jkα

i jk
p + 8Ki jkmαi jkm


2π2 t8

8
+ o(t8);

on the other hand, we have
∂ Bt

2rdsg =


∂ Bt

2r


1 −

1
6

Ri j x i j
+ Ki jkm x i jkm

+ O(r5)


ds0

= 4π2t4
− 4π2 Ri j

6
αi j t6

+ 2Ki jkmαi jkm2π2t8
+ o(t8).

Now the conclusion follows from Stokes’ theorem. �

Note that locally, we may write (see Lemma A.1 in the Appendix),

G p′ = −2 log r + S,

with

S = S0(p′) + ai x i
+

ai j

2
x i j

+ O(r2+α).

We define

ϕϵ = − log


1 + λ

 x
ϵ

2+ Cϵ + µ|x |
2, x ∈ BLϵ

where

µ = −
1

L2ϵ2(1 + λL2)
, λ =


3Q̃(p′)

12

and

Cϵ = log(1 + λL2) − 2 log Lϵ − µL2ϵ2.

We set

φϵ =


G + ϕϵ + 2 log r x ∈ BLϵ

G x ∉ BLϵ,
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then, in BLϵ , we have

φϵ = − log


1 + λ

 x
ϵ

2+ Cϵ + S + µ|x |
2

= ϕϵ + S. (4.2)

Hence, it is easy to check that φϵ ∈ W 2,p(M) for any p > 0.
We write

I I (φϵ) :=


M

⟨φϵ, φϵ⟩dVg + 4


M
QgφϵdVg − 8π2 log


M

Q̃e4φϵ dVg

= I I1 + I I2 + I I3.

First we will calculate the term I I3. In the small neighborhood around the point p′, we set

Q̃ = Q̃(p′) + bi x i
+

bi j

2
x i j

+ O(r3),

then we have

Q̃e4φϵ


|g| =
e4Cϵ+4S0

ϵ4


1 + λ
 x
ϵ

24


(1 + 4ai x i

+ 2ai j x i j
+ 8ai a j x i j

+ 4µr2)Q̃(p′)

+ bi x i
+

bi j

2
x i j

+ 4ai bi x i j
+ O(r2+α) + O


r2ϵ2

L8


×


1 −

Ri j x i j

6
+ O(r3)



=
e4Cϵ+4S0

ϵ4


1 + λ
 x
ϵ

24


1 + 4ai x i

+ 2ai j x i j
+ 8ai a j x i j

+ 4µr2
−

Ri j x i j

6



× Q̃(p′) + bi x i
+

bi j

2
x i j

+ 4ai bi x i j
+ O(r2+α) + O


r2

L8


.

Therefore, by using the symmetry of the ball and the fact that αi j =
1
4δi j , we have

BLϵ

Q̃e4φϵ


|g|dVg

= 2π2e4Cϵ+4S0(p′)ϵ4
 L

0

1

(1 + λr2)4


Q̃(p′)


1 + ϵ2r2


i

ai i

2
+ 2a2

i


+ 4µ −

R(p′)

24


+


i


ai bi +

bi i

8


ϵ2r2

+ O(ϵr)2+α
+ O


r2

L4


r3dr.

A direct calculation then yields that

2π2
 L

0

r3dr

(1 + λr2)4 =
π2

6λ2 + O


1

L4


,

2π2
 L

0

r5dr

(1 + λr2)4 =
π2

3λ3 + O


1

L2


,
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and

4µϵ2
× 2π2

 L

0

r5dr

(1 + λr2)4 = O


1

L4


.

Hence we get
BLϵ

Q̃e4φϵ


|g|dx

= e4Cϵ+4S0ϵ4


8π2

−
24π2

λ2L4 +
π2

3λ3 ϵ2


i

ai i

2
+ 2a2

i


Q̃(p′) −

R(p′)

24
Q̃(p′)

+


i


ai bi +

bi i

8


+ O


1

L4


+ O(ϵ2+α) + O


ϵ2

L2


.

On the other hand, it is not difficult to check that
M\BLϵ

Q̃e4φϵ


|g|dx =

 δ

Lϵ

Q̃(p′)
e4S0

r5 2π2dr + O


1

L2ϵ2


= e4Cϵ+4S0ϵ4


24π2

λ2L4 + O


ϵ2

L2


.

In conclusion, we have

8π2 log


M
Q̃e4φϵ


|g|dx

= 8π2
[log 8π2

+ 4(Cϵ + log ϵ + S0)]

+
π2

3λ3


Q̃(p′)


i

ai i

2
+ 2a2

i


+


i


ai bi +

bi i

8


−

R(p′)

24
Q̃(p′)


ϵ2

+ O(ϵ2+α) + O


ϵ2

L2


+ O


1

L4


. (4.3)

Next, we calculate I I1: first of all, by (4.2) we have
M

⟨φϵ, φϵ⟩dVg =


M\BLϵ

⟨φϵ, φϵ⟩dVg +


BLϵ

⟨φϵ, φϵ⟩dVg

=


M\BLϵ

⟨G, φϵ⟩dVg +


BLϵ

⟨G, φϵ⟩dVg

+


BLϵ

⟨ϕϵ + 2 log r, φϵ⟩dVg

=


M

⟨G, φϵ⟩dVg +


BLϵ

⟨ϕϵ + 2 log r, φϵ⟩dVg

= 16π2(Cϵ + S0(p′)) − 2


M
QφϵdVg

+


BLϵ

⟨ϕϵ + 2 log r, ϕϵ + S⟩dVg. (4.4)
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We set η to be a cut-off function which is 0 at 1 and 1 in [0, 1/4] with η′(1) = 1, and

hτ =

η


|x |

τ


+ log τ |x | ≤ τ

log r |x | ≥ τ.

Then for fixed ϵ and L , we have

lim
τ→0


BLϵ

⟨ϕϵ + 2hτ , ϕϵ + S⟩dVg =


BLϵ

⟨ϕϵ + 2 log r, ϕϵ + S⟩dVg.

On the other hand, we have
BLϵ

⟨ϕϵ + 2hτ , ϕϵ + S⟩dVg

=


BLϵ

⟨ϕϵ + 2hτ , G⟩dVg +


BLϵ

⟨ϕϵ + 2hτ , ϕϵ + 2 log r⟩dVg

= 16π2Cϵ + 32π2η(0) + 32π2 log τ − 2


BLϵ

Qg(ϕϵ + 2hτ )

+


BLϵ

⟨ϕϵ, ϕϵ⟩dVg +


BLϵ

⟨ϕϵ, 2 log r + 2hτ ⟩dVg +


BLϵ

⟨2 log r, 2hτ ⟩dVg.

Therefore, we get
BLϵ

⟨ϕϵ + 2 log r, ϕϵ + S⟩dVg

= 32π2η(0) − 2


BLϵ

Qg(ϕϵ + 2 log r) +


BLϵ

⟨ϕϵ, ϕϵ⟩dVg

+


BLϵ

⟨ϕϵ, 4 log r⟩dVg + lim
τ→0


BLϵ

⟨2 log r, 2hτ ⟩dVg + 32π2 log τ


= 32π2η(0) − 2


BLϵ

Qg(ϕϵ + 2 log r) +


BLϵ

∆gϕϵ∆gϕϵdVg

+ 4


BLϵ

∆gϕϵ∆g log rdVg + lim
τ→0


BLϵ

∆g2 log r∆g2hτ dVg + 32π2 log δ


+


BLϵ

2
3

R⟨d(ϕϵ + 2 log r), d(ϕϵ + 2 log r)⟩dVg

−


BLϵ

2Ric(d(ϕϵ + 2 log r), d(ϕϵ + 2 log r))dVg. (4.5)

By a simple calculation, one gets
Bτ

(∆g2 log r)∆g(2hτ )dVg =


Bτ

∆0(2 log r)∆0


2η


|x |

τ


dx + O(τ )

= −32π2η(0) + 16π2
+ O(τ ). (4.6)
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To compute


BLϵ\Bδ
∆g log r∆g log r , we first verify that, for any function f which is smooth

on [t0, t1], where t0 < t1, we have

∆g f (r) = (δkm + Mkm
i j x i j

+ Mkm
i js x i js

+ Mkm
i jst x

i jst
+ O(r5))

×


f ′′

xkm

r2 + f ′
δkm

r
− f ′

xkm

r3


+ N k xk

r
f ′

= f ′′
+ f ′

3
r

−
Ri j x i j

3r
+

Mi jk x i jk
+ N k

i j x i j
k

r
+

Mi jkm x i jkm
+ N m

i jk x i jk
m

r


+ O(r5

| f ′′
|) + O(r4

| f ′
|).

Here, we use the fact that Mkm
i j x i j

km = Mkm
i jst x

i jst
km = 0. Then, applying Lemma 4.1, for any f1 and

f2 which are smooth in [t0, t1], we have
Bt1\Bt0

∆g f1(|x |)∆g f2(|x |)dVg

=

 t1

t0
f ′′

1 f ′′

2


1 −

R

24
r2

+ Ki jkmαi jkmr4


2π2r3dr

+

 t1

t0
( f ′

1 f ′′

2 + f ′′ f ′

2)
1
r


3 −

5R

24
r2

+ 7Ki jkmαi jkmr4


2π2r3dr

+

 t1

t0
f ′

1 f ′

2
1

r2


9 + 33Ki jkmαi jkmr4

−
7R

8
r2

+
1
9

Ri j Rkmαi jkmr2


2π2r3dr

+

 t1

t0


O(r8

| f ′′

1 f ′′

2 |) + O(r7(| f ′′

1 f ′

2| + | f ′

1| | f ′′

2 |)) + O(r6
| f ′

1 f ′

2|)


=

 t1

t0
( f ′′

1 f ′′

2 + ( f ′

1 f ′′

2 + f ′′

1 f ′

2)
3
r

+ f ′

1 f ′

2
9

r2 )2π2r3

+ R
 t1

t0


− f ′′

1 f ′′

2
r2

24
−

5r

24
( f ′

1 f ′′

2 + f ′′ f ′

2) −
7
8

f ′

1 f ′

2


2π2r3

+ Ki jkmαi jkm
 t1

t0
( f ′′

1 f ′′

2 r4
+ 7( f ′

1 f ′′

2 + f ′′

1 f ′

2)r
3
+ 33 f ′

1 f ′

2r2)2π2r3dr

+ Ri j Rkmαi jkm
 t1

t0

1
9

f ′

1 f ′

2r22π2r3dr

+

 t1

t0


O(r8

| f ′′

1 f ′′

2 |) + O(r7(| f ′′

1 f ′

2| + | f ′

1| | f ′′

2 |)) + O(r6
| f ′

1 f ′

2|)


dr. (4.7)
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Then, choosing f1 = f2 = 2 log r, t1 = Lϵ, t0 = τ , we get
BLϵ\Bτ

∆g(2 log r)∆g(2hτ )dVg =


BLϵ\Bτ

∆g(2 log r)∆g(2 log r)dVg

= 40Ki jkmαi jkmπ2(Lϵ)4
+

2π2

9
Ri j Rkmαi jkm(Lϵ)4

− 2Rπ2(Lϵ)2
+ 32π2 log Lϵ − 32π2 log τ

+ O(τ ) + O(Lϵ)5. (4.8)

Now we will calculate the term


BLϵ
∆gϕϵ∆g(ϕϵ + 4 log r)dVg: in (4.7), we choose f1 =

ϕϵ, f2 = ϕϵ + 4 log r, t0 = 0, t1 = Lϵ then we get
BLϵ

∆gϕϵ∆g(ϕϵ + 4 log r)dVg = −
88
3

π2
+

16π2

λL2 − 16π2 log(1 + λL2)

− Rϵ2 8π2

9λ
+ 2π2 R(Lϵ)2

− 40Ki jkmαi jkmπ2(Lϵ)4

−
2π2

9
Ri j Rkmαi jkm(Lϵ)4

+ O(ϵ4L2) +
ϵ2

L2 + O(Lϵ)5. (4.9)

By a direct calculation, we have
BLϵ

2
3

R(∇g(ϕϵ + 2 log r), ∇g(ϕϵ + 2 log r))dVg

=
2
3

 Lϵ

0
R(p′)


2ϵ2

(ϵ2 + λr2)r
+ 2µr

2

2π2r3

+
2
3


BLϵ

(R,i (p′)x i
+ O(r2))


2ϵ2

(ϵ2 + λr2)r
+ 2µr

2

(1 + O(r3))dx

=
8

3λ
R(p′)π2ϵ2

+


BLϵ


2ϵ2

(ϵ2 + λr2)r
+ 2µr

2

O(r2)dx

=
8

3λ
R(p′)π2ϵ2

+ O(ϵ4L2) + O


ϵ2

L2


, (4.10)

and 
BLϵ

2Ric(∇g(ϕϵ + 2 log r), ∇g(ϕϵ + 2 log r))dVg

=
1
2

R(p′)

 Lϵ

0


2ϵ2

(ϵ2 + λr2)r
+ 2µr

2

2π2r3dr

+ 2


BLϵ

gis g j t (Ri j,k(p′)xk
+ O(r2))


2ϵ2

(ϵ2 + λr2)r2 + 2µ

2

xst (1 + O(r3))dx

=
2
λ

R(p′)π2ϵ2
+ 2


BLϵ

(Ri j,k(p′)xk
+ O(r2))

×


2ϵ2

(ϵ2 + λr2)r2 + 2µ

2

x i j (1 + O(r3))dx
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=
2
λ

R(p′)π2ϵ2
+


BLϵ


2ϵ2

(ϵ2 + λr2)r2 + 2µ

2

O(r4)dx

=
2
λ

R(p′)π2ϵ2
+ O(ϵ4L2) + O


ϵ2

L2


. (4.11)

Together with (4.4)–(4.6) and (4.8)–(4.11), we obtain the following identity

I Iϵ(uϵ) = I I1 + I I2 + I I3

= −16π2 log λ − 8π2 log 8π2
+

8π2

3
− 16π2

+ 2


M
QG − 16π2S0

−
ϵ2π2

3λ3


Q̃(p′)


i

ai i

2
+ 2a2

i


+


i


ai bi +

bi i

8


−

R(p′)

36
Q̃(p′)



+ O


ϵ2

L2


+ O(ϵ2+α) + O


1

L4


+ O(ϵ4L2) + O((Lϵ)5). (4.12)

Proof of Theorem 1.2. We set L =
log 1

ϵ

ϵ
1
2

, then

ϵ2
≫ O


ϵ2

L2


+ O(ϵ2+α) + O


1

L4


+ O(ϵ4L2) + O((Lϵ)5)

when ϵ is very small. Therefore, we get Theorem 1.2. �

5. The local conformally case

In this section, we will discuss the local conformally flat case of Theorem 1.2.
In this situation, locally we may write

g = e2 f


i

dx i
⊗ dx i with f = ci x i

+
1
2

ci j x i j
+ O(r3),

and

Q̃ = Q̃(p′) + bi x i
+

1
2

bi j x i j
+ O(r3).

Note that by the conformal property of Pg , the corresponding Green function has the following
local expression:

G = −2 log |x | + S0(p′) + ai x i
+

1
2

ai j x i j
+ O(r3).

When f = 0, we can use Theorem 1.2 to obtain: if
i


ai i

2
+ 2a2

i +
1

Q̃(p′)


ai bi +

bi i

8


> 0,

then (1.3) has a solution.
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For the general case, we set g′
= e−2 f g, then applying Lemma 3.6, we get G ′

p′ = G + f ,
and then

a′

i = ai + ci , and a′

i i = ai i + ci i .

Thus we have the following results.

Theorem 5.1. Let (M, g) be a closed 4-dimensional manifold with k = 8π2 and let Pg be
positive. Suppose further that it is locally conformal flat near p′. If

i

ai i + ci i

2
+ 2(ai + ci )

2
+

1

Q̃(p′)


(ai + ci )bi +

bi i

8


> 0,

then Eq. (1.3) has a minimal solution.

As a corollary, we have the following.

Corollary 5.2. With the same assumption as in Theorem 5.1. If
i

ai i + ci i

2
+ 2(ai + ci )

2 > 0,

then in the conformal class of (M, g) there is a constant Q-curvature.

To end this section, we propose the following conjecture.

Conjecture. Let (M, g) be a locally conformal flat closed Riemannian manifold of dimension
four, with k = 8π2 and let Pg be positive. Then we have

i


ai i + ci i

2
+ 2(ai + ci )

2


≥ 0, at the point p′ where Λg(p′) = min
x∈M

Λg(8π2, x),

and the equality holds if and only if (M, g) is in the conformal class of the standard 4-sphere.

Let g̃ = e2G g; then we have

Q g̃(x) = 0

for any x ≠ p. Near p, we can write

g̃ =
eS0(p)+(ci +ai )x i

+(ci j +ai j )x i j

r2 =
eS0(p)

r2 (θi x i
+ θi j x i j

+ O(|x |
3)).

So the above conjecture is equivalent to
i

θi i > 0

when M ≠ S4. So, this problem is very similar to the positive mass problem.

Acknowledgments

The authors thank the referee for his helpful comments. The research was supported by the
National Natural Science Foundation of China, Nos11071236 and 11131007.



J. Li et al. / Advances in Mathematics 231 (2012) 2194–2223 2221

Appendix

Suppose KerPg = {constant}. Let G be the Green function which satisfies

PgG + 2Qg = 16π2δp.

As a corollary of a result in [17], we have the following.

Lemma A.1. In a normal coordinate system of p, we have

G = −2 log r + S0 + ai x i
+ ai j x i j

+ O(r2+α).

However, for the reader’s sake, we give a brief proof of this lemma here.

Proof. In a normal coordinate system, we set

|g| = 1 −
1
3

Ri j x i j
+ O(r3), and gkm

= δkm
−

1
3

Rki jm x i j
+ O(r3)

where ϕi jk and θi jk are smooth.
Given a smooth function F , we have

∆g F(|x |) =
1

√
|g|

∂

∂xk


|g|gkm ∂

∂xm F


=

∂

∂xk


gkm F ′

xm

r


+

1
2

gkm Fm
∂

∂xk
log |g|

=
∂

∂xk


F ′

xk

r
−

1
3

Rki jm F ′
xki j

r
+ F ′O(r3)


−

1
3

Ri j F ′
x i j

r
+ O(F ′r2)

=
∂

∂xk


F ′

xk

r
+ F ′O(r3)


−

1
3

Ri j F ′
x i j

r
+ O(F ′r2)

= ∆0 F −
1
3

Ri j F ′
x i j

r
+ O(F ′r2) + O(F ′′r3).

Then

∆g(−2 log r) = −
4

r2 +
2
3

Ri j
x i j

r2 + O(r)

and

∆g


−

4

r2


= ∆0


−

4

r2


−

8Ri j x i j

3r4 + O


1
r


= 16π2δ0 −

8Ri j x i j

3r4 + O


1
r


.

It is easy to check that

∆g
2
3

Ri j
x i j

r2 = ∆0
2
3

Ri j
x i j

r2 + O


1
r


=

4R

3r2 −
16Ri j x i j

3r4 .

Hence, we get

∆2
g(−2 log r) = 16π2δp +

4R

3r2 − 8
Ri j x i j

r4 + O


1
r


.
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Moreover, we have

div


2
3

Rg(−d2 log r) − 2Ricg⟨d(−2 log r), ·⟩


=

2
3

Rp(p′)(2 log r)kk − 2Rkm(p′)(2 log r)km + O


1
r


=

2
3

Rg(p′)
4

r2 − 4Rg(p′)
1

r2 + 8Rkm
xkm

r4 + O


1
r


.

We therefore have

Pg(−2 log r) = 16π2δ0 + O


1
r


.

We set

G = −2 log r + S

where S ∈ C1,α . Then, we get

∆2
g S = Pg S + O


1
r


= PgG + 2Pg log r + O


1
r


= O


1
r


.

This proves the lemma. �
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