The Q-curvature on a 4-dimensional Riemannian manifold (M, g) with $\int_{M} Q d V_{g}=8 \pi^{2}$

Jiayu Li ${ }^{\text {ab, }, *}$, Yuxiang Li ${ }^{\text {c }}$, Pan Liu ${ }^{\text {d }}$
${ }^{\text {a S School of Mathematical Science, University of Science and Technology of China, Hefei 230026, PR China }}$
${ }^{\mathrm{b}}$ Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, PR China
${ }^{\text {c }}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China
${ }^{\mathrm{d}}$ Department of Mathematics, East China Normal University, 3663, Zhong Shan North Rd, Shanghai 200062, PR China

Received 4 March 2011; accepted 5 June 2012
Available online 14 August 2012
Communicated by Gang Tian

Abstract

We deal with the Q-curvature problem on a 4-dimensional compact Riemannian manifold (M, g) with $\int_{M} Q_{g} d V_{g}=8 \pi^{2}$ and positive Paneitz operator P_{g}. Let \tilde{Q} be a positive smooth function. The question we consider is, when can we find a metric \tilde{g} which is conformal to g, such that \tilde{Q} is just the Q-curvature of \tilde{g}. A sufficient condition to this question is given in this paper. (C) 2012 Elsevier Inc. All rights reserved.

Keywords: Q-curvature 4-dimensional Riemannian manifold

1. Introduction

One of the most important problems in conformal geometry is the construction of conformal metrics for which a certain curvature quantity equals a prescribed function, e.g. a constant. In two dimensions, the problem of prescribed Gaussian curvature asks the following: given a smooth function K on $\left(M, g_{0}\right)$, can we find a metric g conformal to g_{0} such that K is the Gaussian

[^0]curvature of the new metric g ? If we let $g=e^{2 u} g_{0}$ for some $u \in C^{\infty}(M)$, then the problem is equivalent to solving the nonlinear elliptic equation:
\[

$$
\begin{equation*}
\Delta u+K e^{2 u}-K_{0}=0 \tag{1.1}
\end{equation*}
$$

\]

where Δ denotes the Beltrami-Laplacian of $\left(M, g_{0}\right)$ and K_{0} is the Gaussian curvature of g_{0}.
In dimension four, there is an analogous formulation of Eq. (1.1). Let (M, g) be a compact Riemannian four manifold, and let Ric and R denote respectively the Ricci tensor and the scalar curvature of g. A natural conformal invariant in dimension four is

$$
Q=Q_{g}=-\frac{1}{12}\left(\Delta R-R^{2}+3|\operatorname{Ric}|^{2}\right) .
$$

Note that, under a conformal change of the metric

$$
\tilde{g}=e^{2 u} g
$$

the quantity Q transforms according to

$$
\begin{equation*}
2 Q_{\tilde{g}}=e^{-4 u}\left(P u+2 Q_{g}\right), \tag{1.2}
\end{equation*}
$$

where $P=P_{g}$ denotes the Paneitz operator with respect to g, introduced in [18]. The operator P_{g} acts on a smooth function u on M via

$$
P_{g}(u)=\Delta_{g}^{2} u+\operatorname{div}\left(\frac{2}{3} R_{g}-2 \operatorname{Ric}_{g}\right) d u,
$$

which plays a similar role as the Laplace operator in dimension two. Note that the Paneitz operator is conformally invariant in the sense that

$$
P_{\tilde{g}}=e^{-4 u} P_{g}
$$

for any conformal metric $\tilde{g}=e^{2 u} g$.
It follows from (1.2) that the expression $k=k_{g}:=\int_{M} Q d V_{g}$ is conformally invariant. A natural problem to propose is to prescribe the Q-curvature: that is, to ask whether on a given four-manifold (M, g) there exists a conformal metric $\tilde{g}:=e^{2 u} g$ for which the Q-curvature of \tilde{g} equals the prescribed function \tilde{Q}. This is related to solving the following equation

$$
\begin{equation*}
P_{g} u+2 Q_{g}=2 \tilde{Q} e^{4 u} \tag{1.3}
\end{equation*}
$$

This equation is the Euler-Langrange equation of the functional

$$
\begin{equation*}
I I_{g}(u)=\int_{M} u P_{g} u d V_{g}+4 \int_{M} Q_{g} u d V_{g}-\left(\int_{M} Q_{g} d V_{g}\right) \log \int_{M} \tilde{Q} e^{4 u} d V_{g} . \tag{1.4}
\end{equation*}
$$

A partial affirmative answer to the problem (1.3) in the case where \tilde{Q} equals some constant is given by Chang-Yang [3] provided the Paneitz operator is weakly positive and the integral k is less than $8 \pi^{2}$. In view of the result of Gursky [9] the former hypothesis is satisfied whenever $k>0$ and provided (M, g) is of positive Yamabe type. The result of Chang-Yang has been extended recently by Djadli-Malchiodi [7] to the case in which P_{g} has no kernel and k is not a positive integer multiple of $8 \pi^{2}$.

In the critical case, when $k=8 \pi^{2}$, the study of Eq. (1.3) becomes rather delicate. In this case, the functional $I I_{g}$ fails to satisfy standard compactness conditions like the Palais-Smale
condition, and generally blow-up may occur. Note that when $(M, g)=\left(S^{4}, g_{c}\right)$, Eq. (1.3) is reduced to the following one

$$
\begin{equation*}
P_{g} u+6=2 \tilde{Q} e^{4 u} \tag{1.5}
\end{equation*}
$$

This is the analogue of the well-known Nirenberg's problem. We should mention that, the blow-up phenomena for the Paneitz operator and other 4-th order elliptic equations have been deeply studied by Druert-Robert [8] and Weinstein-Zhang [21]. For other recent results, one can refer to $[1,2,5,4,15,19,20,16]$. We remark that, similar to Nirenberg's problem, there are some obstructions for the existence of the solution to Eq. (1.5) in the standard four-sphere case. The Gauss-Bonnet-Chern formula implies that there could not be a solution if $\tilde{Q} \leq 0$. On the other hand, one has the identities of Kazdan-Warner type to this equation.

The main goal of this paper is to study Eq. (1.3) with critical value $k=8 \pi^{2}$ and positive \tilde{Q}. We shall pursue a variational approach which was used in [6]. Let (M, g) be any closed four dimensional Riemannian manifold with positive P_{g}, i.e., $\int_{M} u P_{g} u d V_{g} \geq 0$ and ker $P_{g}=$ \{constants\}. Then we have

$$
\begin{equation*}
\int_{M} u P_{g} u d V_{g} \geq \lambda \int_{M}\left|\nabla_{g} u\right|^{2} d V_{g}, \quad \text { when } \int_{M} u d V_{g}=0 \tag{1.6}
\end{equation*}
$$

for some positive λ and the following improved Adams-Fontana inequality [3]:

$$
\begin{equation*}
\log \int_{M} e^{4 u} d V_{g} \leq \frac{1}{8 \pi^{2}} \int_{M} u P_{g} u d V_{g}+\frac{1}{2 \pi^{2}} \int_{M} u d V_{g}+C, \quad \forall u \in W^{2,2}(M) \tag{1.7}
\end{equation*}
$$

We consider (for any small $\epsilon>0$)

$$
I I_{\epsilon}(u)=\int_{M}\langle u, u\rangle d V_{g}+4\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \int_{M} Q_{g} u d V_{g}-\left(8 \pi^{2}-\epsilon\right) \log \int_{M} \tilde{Q} e^{4 u} d V_{g},
$$

where we denote

$$
\langle u, v\rangle=\Delta_{g} u \Delta_{g} v+\left(\frac{2}{3} R_{g}(\nabla u, \nabla v)-2 \operatorname{Ric}_{g}(\nabla u, \nabla v)\right) .
$$

By using the inequality (1.7), it is not so difficult to prove that

$$
\inf I I_{\epsilon}(u)>-\infty, \quad \forall \epsilon>0, \text { and moreover, } I I_{\epsilon} \text { has a minimum point } u_{\epsilon} .
$$

For this minimizing sequence u_{ϵ}, two possibilities may occur: let $m_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right)=\max _{x \in M}$ $u_{\epsilon}(x)$,
(1) $\sup _{\epsilon} m_{\epsilon}<+\infty$, then, by passing to a subsequence, $\left\{u_{\epsilon}\right\}$ converges to some u_{0} as $\epsilon \rightarrow 0$, and u_{0} minimizes $I I$;
(2) $m_{\epsilon} \rightarrow+\infty$, as $\epsilon \rightarrow 0$; We say, in this case, the u_{ϵ} blows up.

One of the main concern is to prove that, if the second case happens, then we find an explicit bound for the $I I_{\epsilon}$. More precisely, we have

$$
\begin{equation*}
\inf _{u \in W^{2,2}(M)} I I(u) \geq \Lambda_{g}(\tilde{Q}, p), \tag{1.8}
\end{equation*}
$$

where

$$
\begin{aligned}
\Lambda_{g}(\tilde{Q}, p)= & -16 \pi^{2} \log \frac{\sqrt{3 \tilde{Q}(p)}}{12}-8 \pi^{2} \log 8 \pi^{2}-16 \pi^{2} S_{0}(p) \\
& +2 \int_{M} Q G_{p} d V_{g}+(8 / 3-16) \pi^{2}
\end{aligned}
$$

p is the bubble point, and $S_{0}(p)$ is the constant term of the Green function at point p (see Appendix).

On the other hand, if we can construct some test function sequence ϕ_{ϵ}, s.t.

$$
I I\left(\phi_{\epsilon}\right)<\Lambda_{g}(\tilde{Q}, p)
$$

we see that the blow-up does not happen. Therefore, we can get some sufficient condition under which (1.3) has a solution.

One of our main theorems in this paper is as follows.
Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension four, with $k=8 \pi^{2}$. Suppose P_{g} is positive and $\tilde{Q}>0$. If $\inf _{u \in W^{2,2(M)}} I I(u)$ is not attained, i.e. Eq. (1.3) has no minimal solution, then

$$
\begin{equation*}
\inf _{u \in W^{2,2}(M)} I I(u)=\inf _{p \in M} \Lambda_{g}(\tilde{Q}, p) . \tag{1.9}
\end{equation*}
$$

Now let p^{\prime} be a point s.t.

$$
\Lambda_{g}\left(\tilde{Q}, p^{\prime}\right)=\inf _{x \in M} \Lambda_{g}(\tilde{Q}, x)
$$

we will prove that p^{\prime} is in fact determined by the conformal class $[g]$ of (M, g).
Another main result in this paper is the existence theorem of Eq. (1.3).
Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension four, with $k=8 \pi^{2}$. Suppose P_{g} is positive. Let \tilde{Q} be a positive smooth function on M. Assume that $\Lambda_{g}(\tilde{Q}, x)$ achieves its minimum at the point p^{\prime}. If

$$
\tilde{Q}\left(p^{\prime}\right)\left(\Delta_{g} S\left(p^{\prime}\right)+4\left|\nabla_{g} S\left(p^{\prime}\right)\right|^{2}-\frac{R\left(p^{\prime}\right)}{18}\right)+\left[\left(2 \nabla_{g} S \nabla_{g} \tilde{Q}\right)\left(p^{\prime}\right)+\frac{1}{4} \Delta_{g} \tilde{Q}\left(p^{\prime}\right)\right]>0
$$

then Eq. (1.3) has a minimal solution.
Corollary 1.3. Under the assumption as in Theorem 1.2, if

$$
\Delta_{g} S\left(p^{\prime}\right)+4\left|\nabla_{g} S\left(p^{\prime}\right)\right|^{2}-\frac{R\left(p^{\prime}\right)}{18}>0
$$

then M has a constant Q-curvature up to conformal transformations.
It is interesting to note that, in the four-dimensional case, the method in [6] cannot be directly used. Since Eq. (1.3) does not satisfy the Maximum Principle, the method used in [6] does not work here to calculate

$$
\begin{equation*}
\int_{B_{\delta} \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\Delta_{g} u_{\epsilon}\right|^{2} d V_{g} \tag{1.10}
\end{equation*}
$$

We will apply the capacity to get the lower bound of (1.10). The usefulness of capacity in similar problems was first discovered by the second author, and has been used in [11,12].

2. Preliminary estimate

In this section we collect some useful preliminary facts and then derive some estimates for the solutions. We start with the following lemma.

Lemma 2.1. For any $\epsilon>0, I I_{\epsilon}$ has a minimum point.
Proof. By using the inequality (1.7), it is easy to see that, when $\int_{M} u d V_{g}=0$, we have

$$
\begin{aligned}
I I_{\epsilon}(u) & =\int_{M} u P_{g} u d V_{g}+4\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \int_{M} Q u d V_{g}-\left(8 \pi^{2}-\epsilon\right) \log \int_{M} \tilde{Q} e^{4 u} d V_{g} \\
& \geq C+\frac{\epsilon}{8 \pi^{2}} \int_{M} u P_{g} u d V_{g}+4\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \int_{M} Q u d V_{g} \\
& \geq C+\lambda \frac{\epsilon}{8 \pi^{2}} \int_{M}\left|\nabla_{g} u\right|^{2} d V_{g}+4\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \int_{M} Q u d V_{g} .
\end{aligned}
$$

For any $\epsilon_{1}>0$, we have

$$
\int_{M} Q u d V_{g} \leq \epsilon_{1} \int_{M}|u|^{2}+C_{\epsilon} \leq \lambda_{0} \epsilon_{1} \int_{M}|\nabla u|^{2} d V_{g}+C_{\epsilon},
$$

where λ_{0} is the first eigenvalue of Δ. Then,

$$
\begin{equation*}
\int_{M}\left|\nabla_{g} u\right|^{2} d V_{g} \leq C(\epsilon) I I_{\epsilon}(u)+C \tag{2.1}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{M}\left|\Delta_{g} u\right|^{2} d V_{g} \leq \frac{8 \pi}{\epsilon} I I_{\epsilon}(u)+C . \tag{2.2}
\end{equation*}
$$

Let $u_{k}=u_{\epsilon, k}$ be a minimizing sequence of $I I_{\epsilon}$, i.e.

$$
I I_{\epsilon}\left(u_{k}\right) \rightarrow \inf I I_{\epsilon}(u)=A,
$$

which, together with the above inequality, implies that

$$
\int_{M}\left|\Delta_{g} u_{k}\right|^{2} d V_{g} \leq C
$$

for some constant C which may depend on ϵ. Therefore, by passing to a subsequence, we have $u_{k} \rightarrow u_{\epsilon}$ and

$$
\int_{M}\left|\Delta_{g} u_{k}\right|^{2} d V_{g} \rightarrow B
$$

Since the functional $I I_{\epsilon}$ is invariant under a translation by a constant, we may assume that $\int_{M} u_{k} d V_{g}=0$, then by (1.7), we can see that $e^{4 u_{k}} \in L^{p}$ for any $p>0$.

Set

$$
I I_{\epsilon}\left(u_{k}\right):=\int_{M}\left|\Delta_{g} u_{k}\right|^{2} d V_{g}+\int_{M} F\left(u_{k}\right) d V_{g}
$$

then we have,

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} \int_{M} F\left(u_{k}\right) d V_{g}=A-B, \quad \text { and } \\
& \lim _{k \rightarrow+\infty, m \rightarrow+\infty} \int_{M} F\left(\frac{u_{k}+u_{m}}{2}\right) d V_{g}=A-B
\end{aligned}
$$

Since $I I_{\epsilon}\left(\frac{u_{k}+u_{m}}{2}\right) \geq A$, we have

$$
\frac{1}{4} \int_{M}\left(\left|\Delta_{g} u_{k}\right|^{2}+\left|\Delta_{g} u_{m}\right|^{2}\right) d V_{g}+\frac{1}{2} \int_{M} \Delta_{g} u_{k} \Delta_{g} u_{m} d V_{g} \geq B
$$

Hence

$$
\lim _{k \rightarrow+\infty, m \rightarrow+\infty} \int_{M} \Delta_{g} u_{k} \Delta_{g} u_{m} d V_{g} \geq B
$$

Then

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty, m \rightarrow+\infty} \int_{M}\left|\Delta_{g}\left(u_{k}-u_{m}\right)\right|^{2} d V_{g} \\
= & \lim _{k \rightarrow+\infty, m \rightarrow+\infty}\left(\int_{M}\left|\Delta_{g} u_{k}\right|^{2} d V_{g}+\int_{M}\left|\Delta_{g} u_{m}\right|^{2} d V_{g}-2 \int_{M} \Delta_{g} u_{k} \Delta_{g} u_{m} d V_{g}\right) \\
\leq & 0 .
\end{aligned}
$$

Therefore, $\left\{u_{k}\right\}$ is a Cauchy sequence in $W^{2,2}(M)$.
Lemma 2.2. We have

$$
\lim _{\epsilon \rightarrow 0} \inf I I_{\epsilon}=\inf I I .
$$

Proof. Obviously,

$$
\begin{aligned}
I I_{\epsilon}(u)= & \int_{M} u P_{g} u d V_{g}+4\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \int_{M} Q u d V_{g}-\left(8 \pi^{2}-\epsilon\right) \log \int_{M} \tilde{Q} e^{4 u} d V_{g} \\
= & \int_{M} u P_{g} u d V_{g}+4 \int_{M} Q u d V_{g}-8 \pi^{2} \log \int_{M} \tilde{Q} e^{4 u} d V_{g} \\
& -\frac{4 \epsilon}{8 \pi^{2}} \int_{M} Q u d V_{g}+\epsilon \log \int_{M} \tilde{Q} e^{4 u} d V_{g} \\
= & I I(u)-\frac{4 \epsilon}{8 \pi^{2}} \int_{M} Q u d V_{g}+\epsilon \log \int_{M} \tilde{Q} e^{4 u} d V_{g} .
\end{aligned}
$$

Let u_{k} satisfy

$$
\lim _{k \rightarrow+\infty} I I\left(u_{k}\right)=\inf I I .
$$

Then for any $\epsilon>0$ and fixed u_{k}, we have

$$
\inf I I_{\epsilon} \leq I I_{\epsilon}\left(u_{k}\right)=I I\left(u_{k}\right)-\frac{4 \epsilon}{8 \pi^{2}} \int_{M} Q_{g} u_{k} d V_{g}+\epsilon \log \int_{M} \tilde{Q} e^{4 u_{k}}
$$

Letting $\epsilon \rightarrow 0$, we get

$$
\varlimsup_{\epsilon \rightarrow 0}\left(\inf I I_{\epsilon}\right) \leq I I\left(u_{k}\right)
$$

Then letting $k \rightarrow+\infty$, we get

$$
\varlimsup_{\epsilon \rightarrow 0}\left(\inf I I_{\epsilon}\right) \leq \inf I I .
$$

Next, we prove

$$
\begin{equation*}
\underline{\lim }_{\epsilon \rightarrow 0}\left(\inf I I_{\epsilon}\right) \geq \inf I I . \tag{2.3}
\end{equation*}
$$

Let u_{ϵ} attain $\inf I I_{\epsilon}$. Since $I I_{\epsilon}(u+c)=I I_{\epsilon}(u)$, we may assume $\int_{M} u_{\epsilon} d V_{g}=0$. Obviously,

$$
I I_{\epsilon}\left(u_{\epsilon}\right)=\left(1-\frac{\epsilon}{8 \pi^{2}}\right) I I\left(u_{\epsilon}\right)+\frac{\epsilon}{8 \pi^{2}} \int_{M} u_{\epsilon} P_{g} u_{\epsilon} .
$$

By (1.6), we have

$$
\inf I I_{\epsilon}=I I_{\epsilon}\left(u_{\epsilon}\right) \geq\left(1-\frac{\epsilon}{8 \pi^{2}}\right) I I\left(u_{\epsilon}\right) \geq\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \inf I I .
$$

Letting $\epsilon \rightarrow 0$, we get (2.3).
Now let u_{ϵ} be the minimum point of $I I_{\epsilon}$. It is clear that u_{ϵ} satisfies the following equation:

$$
\left\{\begin{array}{l}
P_{g} u_{\epsilon}+2\left(1-\frac{\epsilon}{8 \pi^{2}}\right) Q_{g}=2\left(1-\frac{\epsilon}{8 \pi^{2}}\right) \tilde{Q} e^{4 u_{\epsilon}} \\
\int_{M} \tilde{Q} e^{4 u_{\epsilon}} d V_{g}=8 \pi^{2}
\end{array}\right.
$$

The same proof of Lemma 2.3 in [14] yields the following.
Lemma 2.3. There are constants $C_{1}(q), C_{2}(q), C_{3}(q)$ depending only on p and M such that, for r sufficiently small and for any $x \in M$ there holds

$$
\int_{B_{r}(x)}\left|\nabla^{3} u_{\epsilon}\right|^{q} d V_{g} \leq C_{1}(q) r^{4-3 q}, \quad \int_{B_{r}(x)}\left|\nabla^{2} u_{\epsilon}\right|^{q} d V_{g} \leq C_{2}(q) r^{4-2 q},
$$

and

$$
\int_{B_{r}(x)}\left|\nabla u_{\epsilon}\right|^{q} d V_{g} \leq C_{3}(q) r^{4-q}
$$

where, respectively, $q<\frac{4}{3}, q<2$, and $q<4$.

3. The proof of Theorem 1.1

Let x_{ϵ} be the maximum point of u_{ϵ}. Assume $m_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right), r_{\epsilon}=e^{-m_{\epsilon}}$, and $x_{\epsilon} \rightarrow p$. Let $\left\{e_{i}(x)\right\}$ be an orthonormal basis of $T M$ near p and $\exp _{x}: T_{x} M \rightarrow M$ be the exponential mapping. The smooth mapping $E: B_{\delta}(p) \times B_{r} \rightarrow M$ is defined as follows,

$$
E(x, y)=\exp _{x}\left(y^{i} e_{i}(x)\right),
$$

where B_{r} is a small ball in \mathbb{R}^{n}. Note that $E(x, \cdot): T_{x} M \rightarrow M$ are all differential homeomorphism if r is sufficiently small.

We set

$$
g_{i j}(x, y)=\left\langle\left(\exp _{x}\right)_{*} \frac{\partial}{\partial y^{i}},\left(\exp _{x}\right)_{*} \frac{\partial}{\partial y^{j}}\right\rangle_{E(x, y)} .
$$

It is well-known that $g=\left(g_{i j}\right)$ is smooth, and $g(x, y)=I+O\left(|y|^{2}\right)$ for any fixed x. That is, we are able to find a constant K, s.t.

$$
\|g(x, y)-I\|_{C^{0}\left(B_{\delta}(p) \times B_{r}\right)} \leq K|y|^{2}
$$

when δ and r are sufficiently small. Moreover, for any $\varphi \in C^{\infty}\left(B_{\rho}\left(x_{k}\right)\right)$ we have

$$
\begin{aligned}
& \Delta_{g} u_{\epsilon}=\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{k}}\left(\sqrt{|g|} g^{k m} \frac{\partial u_{\epsilon}\left(E\left(x_{\epsilon}, x\right)\right)}{\partial x^{m}}\right), \\
& \left|\nabla u_{\epsilon}\right|^{2}=g^{p q} \frac{\partial u_{\epsilon}\left(E\left(x_{\epsilon}, x\right)\right)}{\partial x^{p}} \frac{\partial u_{\epsilon}\left(E\left(x_{\epsilon}, x\right)\right)}{\partial x^{q}},
\end{aligned}
$$

and

$$
\int_{B_{\delta}\left(x_{k}\right)} \varphi d V_{g}=\int_{E^{-1}\left(x_{k}, y\right) B_{\delta\left(x_{k}\right)}} \varphi\left(E^{-1}\left(x_{k}, y\right)\right) \sqrt{|g|} d y .
$$

We define

$$
\tilde{u}_{\epsilon}(x)=u_{\epsilon}\left(E\left(x_{\epsilon}, x\right)\right)
$$

and

$$
\begin{equation*}
v_{\epsilon}(x)=\tilde{u}_{\epsilon}\left(r_{\epsilon} x\right), \quad v_{\epsilon}^{\prime}=v_{\epsilon}-m_{\epsilon} . \tag{3.1}
\end{equation*}
$$

Now $v_{\epsilon}, v_{\epsilon}^{\prime}$ are functions defined on $B_{\frac{r}{2}}^{2 r_{\epsilon}} \subset \mathbb{R}^{n}$.
We have

$$
\begin{equation*}
\Delta_{g_{\epsilon}}^{2} v_{\epsilon}^{\prime}=r_{\epsilon}^{2} O\left(\left|\nabla^{2} v_{\epsilon}^{\prime}\right|\right)+r_{\epsilon}^{3} O\left(\nabla v_{\epsilon}^{\prime}\right)+\tilde{Q}_{g}\left(E\left(x_{\epsilon}, r_{\epsilon} x\right)\right) e^{4 v_{\epsilon}^{\prime}} . \tag{3.2}
\end{equation*}
$$

It follows from Lemma 2.3 that,

$$
\left\|\nabla^{2} v_{\epsilon}^{\prime}\right\|_{L^{q}\left(B_{L}\right)} \leq C(L, q) \quad \text { and } \quad\left\|\nabla v_{\epsilon}^{\prime}\right\|_{L^{q}\left(B_{L}\right)} \leq C^{\prime}(L, q) \quad \text { for any } q \in(1,2)
$$

Then (3.2) implies that

$$
\left\|\Delta_{g_{\epsilon}}\left(\Delta_{g_{\epsilon}} v_{\epsilon}^{\prime}\right)\right\|_{L^{q}\left(B_{L}\right)} \leq C^{\prime}(L) .
$$

Using the standard elliptic estimates, we get

$$
\left\|\Delta_{g_{k}} v_{\epsilon}^{\prime}\right\|_{W^{2, q}\left(B_{L}\right)} \leq C_{2}(L)
$$

The Sobolev inequality then yields,

$$
\left\|\Delta_{g_{\epsilon}} v_{\epsilon}^{\prime}\right\|_{L^{q}\left(B_{L}\right)} \leq C_{3}(q, L) \quad \text { for any } q \in(0,4)
$$

We therefore have

$$
\left\|v_{\epsilon}^{\prime}\right\|_{W^{2, q}\left(B_{L}\right)} \leq C_{4}(L)
$$

Hence, by using the standard elliptic estimates, we see that v_{ϵ}^{\prime} converge smoothly to w, which satisfies

$$
\Delta_{0}^{2} w=2 \tilde{Q}(p) e^{4 w}
$$

where Δ_{0} is the Laplace operator in \mathbb{R}^{4}. Moreover, it is easy to check that

$$
\int_{B_{L}} \tilde{Q}(p) e^{4 w} d x \leq 8 \pi^{2}
$$

for any $L>0$. By the result of [13], we have
(a) $w=-\log \left(1+\frac{\sqrt{3 \tilde{Q}(p)}}{12}|x|^{2}\right)$, with

$$
\tilde{Q}(p) \int_{\mathbb{R}^{4}} e^{4 w} d V_{g}=8 \pi^{2}
$$

or
(b) w has the following asymptotic behavior:

$$
-\Delta w \rightarrow a>0 \quad \text { as }|x| \rightarrow+\infty .
$$

We claim that (b) does not happen. If it does, then we have

$$
\lim _{\epsilon \rightarrow+0} \int_{B_{R}}-\Delta_{g} v_{\epsilon} \sim \frac{\omega_{3}}{4} a R^{4}
$$

However, it follows from Lemma 2.3 that

$$
\int_{B_{R}}\left|\Delta_{g_{\epsilon}} v_{\epsilon}^{\prime}\right| d V_{g} \leq C R^{2}
$$

This shows that the case (b) does not happen.
For simplicity, let $\lambda=\frac{\sqrt{3 Q(p)}}{12}$, so that we have

$$
w=-\log \left(1+\lambda|x|^{2}\right)
$$

Now, we consider the convergence of u_{ϵ} outside the bubble. By Lemma 2.3, u_{ϵ} is bounded in $W^{3, q}$ for any $q<\frac{4}{3}$. Then, it is easy to check that $u_{\epsilon}-\bar{u}_{\epsilon} \rightharpoondown G_{p}$, where $\bar{u}_{\epsilon}=\frac{1}{|M|} \int_{M} u_{\epsilon} d V_{g}$ and

$$
P_{g} G_{p}+2 Q_{g}=16 \pi^{2} \delta_{p}, \quad \int_{M} G_{p} d V_{g}=0
$$

To prove the strong convergence of $u_{\epsilon}-\bar{u}_{\epsilon}$, we first show the following lemma.
Lemma 3.1. Given $\Omega \subset \subset M \backslash\{p\}$, there holds

$$
\int_{\Omega} e^{q\left(u_{\epsilon}-\bar{u}_{\epsilon}\right)} d V_{g}<C(\Omega, q)
$$

for any $q>0$.
Proof. Let $f_{\epsilon}=\tilde{Q}_{g} e^{4 u_{\epsilon}}$. For any $x \in \Omega$, we have the following representation formula,

$$
u_{\epsilon}(x)-\bar{u}_{\epsilon}=-\int_{M} G(x, y) Q_{g} d V_{g, y}+\int_{M} G(x, y) f_{\epsilon} .
$$

Hence, if we let $\Omega_{\epsilon}=M \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)$, and $\mu_{\epsilon}=1 / \int_{\Omega_{\epsilon}}\left|f_{\epsilon}\right| d V_{g}$, we have, for any $q^{\prime}>0$,

$$
e^{q^{\prime} \mu_{\epsilon}\left(u_{\epsilon}-\bar{u}_{\epsilon}+\int_{M} G(x, y) Q_{g} d V_{g}\right)}=e^{\int_{\Omega_{\epsilon}} q^{\prime} G(x, y) \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y}+\int_{B_{L r_{\epsilon}}} q^{\prime} G(x, y) \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y}} .
$$

Notice that for any $x \in \Omega$ and $y \in B_{L r_{\epsilon}}\left(x_{\epsilon}\right),|G(x, y)|<C(\Omega, L)$. We have

$$
\int_{B_{L r_{\epsilon}}\left(x_{\epsilon}\right)} q^{\prime}|G(x, y)| \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y} \leq C_{1}(L) \int_{B_{L r_{\epsilon}(}\left(x_{\epsilon}\right)} f_{\epsilon}(y) d V_{g} \leq C_{2}(L)
$$

and

$$
e^{\int_{\Omega_{\epsilon}} q^{\prime} G(x, y) \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y}} \leq \int_{\Omega_{\epsilon}} \frac{f_{\epsilon}(y)}{\left\|f_{\epsilon}\right\|_{L^{1}\left(\Omega_{\epsilon}\right)}} e^{q^{\prime} G(x, y)} d V_{g, y}
$$

Therefore, by using Jensen's inequality and Fubini's theorem, we obtain

$$
\begin{aligned}
\int_{\Omega} e^{\int_{\Omega_{\epsilon}} q^{\prime} G(x, y) \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y}} d V_{g} & \leq \int_{\Omega} \frac{f_{\epsilon}(y)}{\left\|f_{\epsilon}\right\|_{L^{1}\left(\Omega_{\epsilon}\right)}}\left(\int_{\Omega_{\epsilon}} e^{q^{\prime} G(x, y)} d V_{g, x}\right) d V_{g, y} \\
& \leq C \int_{\Omega} \frac{f_{\epsilon}(y)}{\left\|f_{\epsilon}\right\|_{L^{1}\left(\Omega_{\epsilon}\right)}}\left(\int_{\Omega_{\epsilon}} \frac{1}{|x-y|^{\frac{q^{\prime}}{8 \pi^{2}}}} d V_{g, x}\right) d V_{g, y}
\end{aligned}
$$

The last integral is finite provided $q^{\prime}<32 \pi^{2}$. Hence, for any $q>0$, if ϵ is sufficiently small so that $q \leq q^{\prime} \mu_{\epsilon}$ we have

$$
\begin{aligned}
\int_{\Omega} e^{q\left(u_{\epsilon}(x)-\bar{u}_{\epsilon}\right)} d x & \leq \int_{\Omega} e^{q^{\prime} \mu_{\epsilon}\left(u_{\epsilon}(x)-\bar{u}_{\epsilon}\right)} d x \\
& \leq C \int_{\Omega} e^{\int_{\Omega_{\epsilon}} q^{\prime} G(x, y) \mu_{\epsilon} f_{\epsilon}(y) d V_{g, y}} d V_{g} \leq C
\end{aligned}
$$

As a consequence of the above lemma, we have the following lemma.
Lemma 3.2. Let $\Omega \subset \subset M \backslash\left\{x_{0}\right\}$. Then $u_{\epsilon}-\bar{u}_{\epsilon}$ converges to $G_{x_{0}}$ in $C^{k}(\Omega)$ as $\epsilon \rightarrow 0$.
Proof. It is easy to see that $\bar{u}_{\epsilon}<C$. Then the lemma follows.
Remark 3.3. In $B_{\delta_{0}}$, using the above coordinates, we set $p=y_{\epsilon}$ for any ϵ. Clearly, $y_{\epsilon} \rightarrow 0$. Then we also have $u_{\epsilon}(E(p, x))-\bar{u}_{\epsilon} \rightarrow G_{p}(E(p, x))$. Moreover, we may write

$$
G(E(p, x))=-2 \log |x|+S_{0}(p)+S_{1}(x)
$$

where $S_{0}(p)$ is a constant and $S_{1}=O(r)$. It is easy to check $\tilde{u}_{\epsilon}-\bar{u}_{\epsilon} \rightarrow G(E(p, x))$ smoothly in $B_{\delta_{0}} \backslash B_{\delta}$ for any fixed δ.

Now, we give a lower bound of $\lim _{\epsilon \rightarrow 0} \int_{M}\left\langle u_{\epsilon}, u_{\epsilon}\right\rangle d V_{g}$. We write

$$
\int_{M}\left\langle u_{\epsilon}, u_{\epsilon}\right\rangle d V_{g}=I_{1}+I_{2}+I_{3}
$$

where I_{1}, I_{2}, I_{3} denote the integrals on $M \backslash B_{\delta}\left(x_{\epsilon}\right), B_{L r_{\epsilon}}\left(x_{\epsilon}\right)$ and $B_{\delta} \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)$ (any fixed L and δ) respectively. We remark that the integral I_{1}, I_{2} can be easily treated due to the above lemmas. On the other hand, by Lemma 2.3, we have

$$
\int_{B_{\delta} \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\nabla_{g} u_{\epsilon}\right|^{2} d V_{g} \rightarrow \int_{B_{\delta}(p)}\left|\nabla_{g} G\right|^{2}=O\left(\delta^{2}\right)
$$

So, the key point is to calculate

$$
\int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\Delta_{g} u_{\epsilon}\right|^{2} d V_{g} .
$$

We are going to prove the following lemma.

Lemma 3.4. We have

$$
\int_{B_{\delta}\left(x_{\epsilon}\right) \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\Delta_{g} u_{\epsilon}\right|^{2} d V_{g} \geq \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\left(1-b|x|^{2}\right) \Delta_{0} \tilde{u}_{\epsilon}\right|^{2} d x+J(L, \epsilon, \delta),
$$

for some $b>0$, where

$$
\lim _{\delta \rightarrow 0} \lim _{\epsilon \rightarrow 0} J(L, \epsilon, \delta)=0
$$

Proof. Since we have

$$
\begin{aligned}
\left|\Delta_{g} u_{\epsilon}\right|^{2} & =\left|g^{k m} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{k} \partial x^{m}}+O\left(\left|\nabla \tilde{u}_{\epsilon}\right|\right)\right|^{2} \\
& =\left|g^{k m} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{k} \partial x^{m}}\right|^{2}+O\left(\left|\nabla^{2} \tilde{u}_{\epsilon}\right|\left(\left|\nabla \tilde{u}_{\epsilon}\right|\right)\right)+O\left(\left(\left|\nabla \tilde{u}_{\epsilon}\right|^{2}\right)\right),
\end{aligned}
$$

and since $\tilde{u}_{\epsilon}-\bar{u}_{\epsilon}$ converges to $G_{p}(E(p, x))$ in $W^{3, q}$ for any $q<\frac{4}{3}$, we get

$$
\begin{aligned}
& \int_{B_{\delta} \backslash B_{L r_{\epsilon}}} O\left|\nabla^{2} \tilde{u}_{\epsilon}\right|\left(\left|\nabla \tilde{u}_{\epsilon}\right|\right)+O\left(\left|\nabla \tilde{u}_{\epsilon}\right|^{2}\right) \\
& \quad \leq C\left(\left\|\nabla^{2} G_{p}\right\|_{L^{q}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)}\left\|\nabla_{g} G_{p}\right\|_{L^{\prime}}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)+\left\|G_{p}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)}\right) \\
& \quad=J(L, \epsilon, \delta),
\end{aligned}
$$

where $\frac{3}{2}<q<2$, and $\frac{1}{q^{\prime}}+\frac{1}{q}=1$.
Let $g^{k m}=\delta^{k m}+A^{k m}$, with $\left|A^{k m}\right| \leq K|x|^{2}$ for any ϵ, k, m. Consequently, we have

$$
\left|g^{k m} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{k} \partial x^{m}}\right|^{2}=\left|\Delta_{0} \tilde{u}_{\epsilon}\right|^{2}+2 \sum_{s, t} A^{s t} \Delta_{0} \tilde{u}_{\epsilon} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}+\sum_{k, m, s, t} A^{k m} A^{s t} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{k} \partial x^{m}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}} .
$$

It is clear that

$$
2 \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|A^{s t} \Delta_{0} \tilde{u}_{\epsilon} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}\right| \leq K \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left(|x|^{2}\left|\Delta_{0} \tilde{u}_{\epsilon}\right|^{2}+|x|^{2}\left|\frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}\right|^{2}\right) d x
$$

and

$$
\begin{aligned}
\int_{B_{\delta} \backslash B_{L r_{\epsilon}}}|x|^{2}\left|\frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}\right|^{2} d x= & \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}|x|^{2} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{t} \partial x^{t}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{s}} d x \\
& +\int_{B_{\delta} \backslash B_{L r_{\epsilon}}} O\left(|x|\left|\nabla \tilde{u}_{\epsilon}\right|\left|\nabla^{2} \tilde{u}_{\epsilon}\right|\right) d x \\
& +\int_{\partial\left(B_{\delta} \backslash B_{\left.L r_{\epsilon}\right)}\right)}|x|^{2} \frac{\partial \tilde{u}_{\epsilon}}{\partial x^{t}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}\left\langle\frac{\partial}{\partial x^{t}}, \frac{\partial}{\partial r}\right\rangle d s \\
& +\int_{\partial\left(B_{\delta} \backslash B_{\left.L r_{\epsilon}\right)}\right)}|x|^{2}\left(\frac{\partial \tilde{u}_{\epsilon}}{\partial x^{t}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{s}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle\right) d s \\
= & \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}|x|^{2} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{t} \partial x^{t}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{s}} d x+J(L, \epsilon, \delta) .
\end{aligned}
$$

On $\partial B_{\delta}\left(x_{\epsilon}\right)$, since $\tilde{u}_{\epsilon}-\bar{u}_{\epsilon} \rightarrow G_{p}(E(p, x))$, as $\epsilon \rightarrow 0$, we have

$$
\begin{aligned}
& \int_{\partial B_{\delta}}|x|^{2} \frac{\partial \tilde{u}_{\epsilon}}{\partial x^{i}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{j} \partial x^{k}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle d s \\
& \quad \rightarrow \int_{\partial B_{\delta}}|x|^{2}\left(\frac{\partial G_{p}(E(p, x))}{\partial x^{i}} \frac{\partial^{2} G_{p}(E(p, x))}{\partial x^{j} \partial x^{k}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle\right) d s \\
& \quad=\int_{\partial B_{\delta}} O\left(\frac{1}{\delta}\right) d s \\
& \quad=O\left(\delta^{2}\right)
\end{aligned}
$$

On $\partial B_{L r_{\epsilon}}$, since $\tilde{u}_{k}\left(r_{\epsilon} x\right)-m_{\epsilon} \rightarrow \omega$ as $\epsilon \rightarrow 0$, we have

$$
\frac{1}{r_{\epsilon}^{2}} \int_{\partial B_{L r_{\epsilon}}}|x|^{2} \frac{\partial \tilde{u}_{\epsilon}}{\partial x^{i}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{j} \partial x^{k}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle d s \rightarrow \int_{\partial B_{L}}|x|^{2} \frac{\partial \omega}{\partial x^{i}} \frac{\partial^{2} \omega}{\partial x^{j} \partial x^{k}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle d s
$$

Then we get

$$
\lim _{\delta \rightarrow 0} \lim _{\epsilon \rightarrow 0} \int_{\partial\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)}|x|^{2} \frac{\partial \tilde{u}_{\epsilon}}{\partial x^{i}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{j} \partial x^{k}}\left\langle\frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial r}\right\rangle d s=0 .
$$

Moreover,

$$
2 \sum_{k, s, t} \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|A^{s t} \Delta_{0} \tilde{u}_{\epsilon} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}}\right| \leq 4 K \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}|x|^{2}\left|\Delta_{0} \tilde{u}_{\epsilon}\right|^{2} d x+J(L, \epsilon, \delta) .
$$

A similar argument as above then gives

$$
\int_{B_{\delta} \backslash B_{L r_{\epsilon}}} \sum_{k, m, s, t} A^{k m} A^{s t} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{k} \partial x^{m}} \frac{\partial^{2} \tilde{u}_{\epsilon}}{\partial x^{s} \partial x^{t}} \leq K^{2} \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}|x|^{4}\left|\Delta_{0} \tilde{u}_{\epsilon}\right|^{2} d x+J(L, \epsilon, \delta) .
$$

This proves the lemma.
Lemma 3.5. There is a function sequence $U_{\epsilon} \in W^{2,2}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)$ s.t.

$$
\begin{aligned}
& \left.U_{\epsilon}\right|_{\partial B_{\delta}}=-2 \log \delta+S_{0}(p)+\bar{u}_{\epsilon},\left.\quad U_{\epsilon}\right|_{\partial B_{L r_{\epsilon}}}=w(L)+m_{\epsilon} \\
& \left.\frac{\partial U_{\epsilon}}{\partial r}\right|_{\partial B_{\delta}}=-\frac{2}{\delta},\left.\quad \frac{\partial U_{\epsilon}}{\partial r}\right|_{\partial B_{L r_{\epsilon}}}=w^{\prime}(L)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(\left(1-b|x|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right)\right|^{2} d x \\
& \quad=\int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\left(1-b|x|^{2}\right) \Delta_{0} \tilde{u}_{\epsilon}\right|^{2} d x+J(L, \epsilon, \delta),
\end{aligned}
$$

where

$$
\lim _{\delta \rightarrow 0} \lim _{\epsilon \rightarrow 0} J(L, \epsilon, \delta)=0
$$

Proof. Let u_{ϵ}^{\prime} be the solution of

$$
\left\{\begin{array}{l}
\Delta_{0}^{2} u_{\epsilon}^{\prime}=\Delta_{0}^{2} v_{\epsilon} \\
\left.\frac{\partial u_{\epsilon}^{\prime}}{\partial n}\right|_{\partial B_{2 L}}=\left.\frac{\partial v_{\epsilon}}{\partial n}\right|_{\partial B_{2 L}},\left.\quad u_{\epsilon}^{\prime}\right|_{\partial B_{2 L}}=\left.v_{\epsilon}\right|_{\partial B_{2 L}} \\
\left.\frac{\partial u_{\epsilon}^{\prime}}{\partial n}\right|_{\partial B_{L}}=\left.\frac{\partial w}{\partial n}\right|_{\partial B_{L}},\left.\quad u_{\epsilon}^{\prime}\right|_{\partial B_{L}}=m_{\epsilon}+\left.w\right|_{\partial B_{L}}
\end{array}\right.
$$

where v_{ϵ} is defined by (3.1). We set

$$
U_{\epsilon}^{\prime}= \begin{cases}u_{\epsilon}^{\prime}\left(\frac{x}{r_{\epsilon}}\right) & L r_{\epsilon} \leq|x| \leq 2 L r_{\epsilon} \\ \tilde{u}_{\epsilon}(x) & 2 L r_{\epsilon} \leq|x|\end{cases}
$$

It is easy to see that $u_{\epsilon}^{\prime}-m_{\epsilon}$ converges to w smoothly on $B_{2 L} \backslash B_{L}$; then we have

$$
\lim _{\epsilon \rightarrow 0} \int_{B_{2 L r_{\epsilon} \backslash B_{L r_{\epsilon}}}}\left(1-b|x|^{2}\right)^{2}\left(\left|\Delta_{0} U_{\epsilon}^{\prime}\right|^{2}-\left|\Delta_{0} \tilde{u}_{\epsilon}\right|^{2}\right) d x=0
$$

Let η be a smooth function which satisfies:

$$
\eta(t)= \begin{cases}1 & t \leq 1 / 2 \\ 0 & t>2 / 3\end{cases}
$$

Set $G_{\epsilon}=\eta\left(\frac{|x|}{\delta}\right)\left(\tilde{u}_{\epsilon}-S_{0}(p)+2 \log |x|^{2}-\bar{u}_{\epsilon}\right)-2 \log |x|^{2}+S_{0}(p)$. Recall that $u_{\epsilon}-\bar{u}_{\epsilon}$ converges to G_{p} smoothly on $M \backslash B_{\frac{\delta}{2}}(p)$; then we have

$$
\begin{aligned}
& G_{\epsilon} \rightarrow-2 \log |x|^{2}+S_{0}(p)+\eta\left(\frac{|x|}{\delta}\right) S_{1}(x), \\
& \tilde{u}_{\epsilon}-G_{\epsilon}-\bar{u}_{\epsilon} \rightarrow\left(\eta\left(\frac{|x|}{\delta}\right)-1\right) S_{1}(x) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left.\lim _{\epsilon \rightarrow 0}\left|\int_{B_{\delta} \backslash B_{\delta / 2}}\right| \Delta_{0} \tilde{u}_{\epsilon}\right|^{2} d x-\int_{B_{\delta} \backslash B_{\delta / 2}}\left|\Delta_{0} G_{\epsilon}\right|^{2} d x \mid \\
& =\left.\left|\int_{B_{\delta} \backslash B_{\delta / 2}}\right| \Delta_{0} G_{p}(E(p, x))\right|^{2} d x-\int_{B_{\delta} \backslash B_{\delta / 2}}\left|\Delta_{0} G_{\epsilon}\right|^{2} d x \mid \\
& =\left|\int_{B_{\S} \backslash B_{\delta / 2}} \Delta_{0} G_{p}\left(E(p, x)+G_{\epsilon}\right) d x \int_{B_{\delta} \backslash B_{\delta / 2}} \Delta_{0}\left(G_{0}(E(p, x))-G_{\epsilon}\right) d x\right| \\
& \leq \sqrt{\int_{B_{\delta} \backslash B_{\delta / 2}}\left|\Delta_{0}\left(\eta\left(\frac{|x|}{\delta}\right)-1\right) S_{1}(x)\right|^{2} d x \int_{B_{\delta} \backslash B_{\delta / 2}}\left|\Delta_{0}\left(G_{p}-2 \log |x|^{2}+\eta\left(\frac{|x|}{\delta}\right) S_{1}(x)\right)\right|^{2} d x} \\
& \quad \leq C \sqrt{\delta|\log \delta| .}
\end{aligned}
$$

Now set

$$
U_{\epsilon}= \begin{cases}U_{\epsilon}^{\prime}(x) & |x| \leq \frac{\delta}{2} \\ G_{\epsilon}(x)+\bar{u}_{\epsilon} & \delta / 2 \leq|x| \leq \delta\end{cases}
$$

We then have,

$$
\begin{aligned}
\int_{B_{\delta} \backslash B_{L \epsilon}}\left|\left(1-B|x|^{2}\right) \Delta_{0}\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right|^{2} d x= & \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(1-B|x|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right|^{2} d x \\
& +\int_{B_{\delta} \backslash B_{L r_{\epsilon}}} O\left(\left|\nabla U_{\epsilon}\right|^{2}+\left|U_{\epsilon}-\bar{u}_{\epsilon}\right|^{2}\right) d V_{g}
\end{aligned}
$$

To complete the proof, we only need to prove

$$
\begin{equation*}
\lim _{L \rightarrow+\infty} \lim _{\delta \rightarrow 0} \lim _{\epsilon \rightarrow 0}\left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)}=0 \tag{3.3}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{L r_{\epsilon}}\right)}^{2}= & \left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{\delta / 2}\right)}^{2}+\left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta / 2} \backslash B_{2 L r_{\epsilon}}\right)}^{2} \\
& +\left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta / 2} \backslash B_{2 L r_{\epsilon}}\right)}^{2}+\left\|U_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{2 L r_{\epsilon}} \backslash B_{L r_{\epsilon}}\right)}^{2} \\
= & \left\|G_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{\delta / 2}\right)}^{2}+\left\|\tilde{u}_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta / 2} \backslash B_{2 L r_{\epsilon}}\right)}^{2} \\
& +\left\|\tilde{u}_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\left.2 L r_{\epsilon} \backslash B_{\left.L r_{\epsilon}\right)}\right)}^{2}+\left\|U_{\epsilon}^{\prime}-\tilde{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{2 L r_{\epsilon}} \backslash B_{L r_{\epsilon}}\right)}^{2}\right)}^{\leq} \begin{aligned}
& \left\|G_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta} \backslash B_{\delta / 2}\right)}^{2}+\left\|\tilde{u}_{\epsilon}-\bar{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{\delta / 2}\right)}^{2} \\
& +\left\|U_{\epsilon}^{\prime}-\tilde{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{2 L r_{\epsilon}}^{2} \backslash B_{L r_{\epsilon}}\right)}^{2} .
\end{aligned} .
\end{aligned}
$$

It is easy to check that

$$
\lim _{\epsilon \rightarrow 0}\left\|U_{\epsilon}^{\prime}-\tilde{u}_{\epsilon}\right\|_{W^{1,2}\left(B_{2 L r_{\epsilon}}^{2} \backslash B_{L r_{\epsilon}}\left(x_{\epsilon}\right)\right)}=0 .
$$

Recall $\tilde{u}_{\epsilon}-\bar{u}_{\epsilon} \rightarrow G_{p}(E(p, x))$. We get (3.3).
Now, we are going to apply capacity estimate to derive the lower bound for

$$
\int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(\left(1-b|x|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right)\right|^{2} d x .
$$

First we need to calculate

$$
\inf _{\left.\Phi\right|_{\partial B_{r}}=P_{1},\left.\Phi\right|_{\partial B_{R}}=P_{2},\left.\frac{\partial \Phi}{\partial r}\right|_{\partial B_{r}}=Q_{1},\left.\frac{\partial \Phi}{\partial r}\right|_{\partial B_{R}}=Q_{2}} \int_{B_{R} \backslash B_{r}}\left|\Delta_{0} \Phi\right|^{2} d x,
$$

where $P_{1}, P_{2}, Q_{1}, Q_{2}$ are constants. Obviously, the minimum can be attained by the function Φ which satisfies

$$
\left\{\begin{array}{l}
\Delta_{0}^{2} \Phi=0 \\
\left.\Phi\right|_{\partial B_{r}}=P_{1},\left.\quad \Phi\right|_{\partial B_{R}}=P_{2},\left.\quad \frac{\partial \Phi}{\partial r}\right|_{\partial B_{r}}=Q_{1},\left.\quad \frac{\partial \Phi}{\partial r}\right|_{\partial B_{R}}=Q_{2} .
\end{array}\right.
$$

Clearly, we can set

$$
\Phi=A \log r+B r^{2}+\frac{C}{r^{2}}+D
$$

where A, B, C, D are all constants. Then we have

$$
\left\{\begin{array}{l}
A \log r+B r^{2}+\frac{C}{r^{2}}+D=P_{1} \\
A \log R+B R^{2}+\frac{C}{R^{2}}+D=P_{2} \\
\frac{A}{r}+2 B r-2 \frac{C}{r^{3}}=Q_{1} \\
\frac{A}{R}+2 B R-2 \frac{C}{R^{3}}=Q_{2}
\end{array}\right.
$$

We have

$$
\left\{\begin{array}{l}
A=\frac{P_{1}-P_{2}+\frac{\varrho}{2} r Q_{1}+\frac{\varrho}{2} R Q_{2}}{\log r / R+\varrho} \\
B=\frac{-2 P_{1}+2 P_{2}-r Q_{1}\left(1+\frac{2 r^{2}}{R^{2}-r^{2}} \log r / R\right)+R Q_{2}\left(1+\frac{2 R^{2}}{R^{2}-r^{2}} \log r / R\right)}{4\left(R^{2}+r^{2}\right)(\log r / R+\varrho)}
\end{array}\right.
$$

where $\varrho=\frac{R^{2}-r^{2}}{R^{2}+r^{2}}$. Furthermore,

$$
\int_{B_{R} \backslash B_{r}}\left|\Delta_{0} \Phi\right|^{2} d x=-8 \pi^{2} A^{2} \log r / R+32 \pi^{2} A B\left(R^{2}-r^{2}\right)+32 \pi^{2} B^{2}\left(R^{4}-r^{4}\right)
$$

In our case, $R=\delta, r=L r_{\epsilon}$,

$$
\begin{aligned}
& P_{1}=\left.\left(1-B|x|^{2}\right) U_{\epsilon}\right|_{\partial B_{L r_{\epsilon}}}=m_{\epsilon}-\bar{u}_{\epsilon}+w(L)+O\left(r_{\epsilon} \bar{u}_{\epsilon}\right), \\
& P_{2}=\left.\left(1-B|x|^{2}\right) U_{\epsilon}\right|_{\partial B_{\delta}}=-2 \log \delta+S_{0}(p)+O(\delta \log \delta), \\
& Q_{1}=\left.\frac{\partial\left(1-B|x|^{2}\right) U_{\epsilon}}{\partial r}\right|_{\partial B_{L r_{\epsilon}}}=\frac{2 \lambda L}{r_{\epsilon}\left(1+\lambda L^{2}\right)}, \\
& Q_{2}=\left.\frac{\partial\left(1-B|x|^{2}\right) U_{\epsilon}}{\partial r}\right|_{\partial B_{\delta}}=-\frac{2}{\delta}+O(\delta \log \delta) .
\end{aligned}
$$

If we define

$$
\begin{aligned}
N(L, \epsilon, \delta) & =w(L)+2 \log \delta-S_{0}-\frac{\varrho}{2} \frac{2 \lambda L^{2}}{1+\lambda L^{2}} \\
& =w(L)+2 \log \delta-S_{0}-2+O(\delta \log \delta)+O\left(\frac{1}{L^{2}}\right)+O\left(L r_{\epsilon}\right)
\end{aligned}
$$

and

$$
P=\log \delta-\log L
$$

then we have

$$
\begin{aligned}
A^{2}\left(-\log L r_{\epsilon} / \delta\right) & =\left(\frac{m_{\epsilon}-\bar{u}_{\epsilon}+N(L, \epsilon, \delta)}{m_{\epsilon}+P-\varrho}\right)^{2}\left(m_{\epsilon}+P\right) \\
& =\left(1+\frac{P-\varrho}{m_{\epsilon}}\right)^{-2}\left(1+\frac{P}{m_{\epsilon}}\right) m_{\epsilon}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}+\frac{N(L, \epsilon, \delta)}{m_{\epsilon}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(1-2 \frac{P-\varrho}{m_{\epsilon}}+O\left(\frac{1}{m_{\epsilon}^{2}}\right)\right)\left(1+\frac{P}{m_{\epsilon}}\right) m_{\epsilon} \\
& \times\left[\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+2\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) \frac{N(L, \epsilon, \delta)}{m_{\epsilon}}\right. \\
& \left.+O\left(\frac{1}{m_{\epsilon}^{2}}\right)+O\left(e^{-m_{\epsilon}} m_{\epsilon}\right) \frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right] \\
= & m_{\epsilon}\left(1-\frac{\bar{u}_{\epsilon}}{u_{\epsilon}}\right)^{2}+2\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) N(L, \epsilon, \delta) \\
& -(P-2 \varrho)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+O\left(\frac{1}{m_{\epsilon}}\right)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+O\left(\frac{1}{m_{\epsilon}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
A & =-\frac{m_{\epsilon}-\bar{u}_{\epsilon}+N(L, \epsilon, \delta)}{m_{\epsilon}-\log L+\log \delta+\varrho}=-\left(1-O\left(\frac{1}{m_{\epsilon}}\right)\right)^{-1}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}+O\left(\frac{1}{m_{\epsilon}}\right)\right) \\
& =-1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}+O\left(\frac{1}{m_{\epsilon}}\right)
\end{aligned}
$$

Notice that $r_{\epsilon} m_{\epsilon} \rightarrow 0$ as $\epsilon \rightarrow 0$, we have

$$
\begin{aligned}
B & =\frac{-2 m_{\epsilon}+2 \bar{u}_{\epsilon}+O(1)+\left(2 \frac{2 \delta^{2}}{\bar{\delta}^{2}-\left(L r_{\epsilon}\right)^{2}}+O(\delta \log \delta)\right) m_{\epsilon}}{4\left(\delta^{2}+\left(L r_{\epsilon}\right)^{2}\right)\left(\log L-m_{\epsilon}-\log \delta+\varrho\right)} \\
& =-\frac{1}{2 \delta^{2}}\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}+O\left(\frac{1}{m_{\epsilon}}\right)\right)\left(1-O\left(\frac{1}{m_{\epsilon}}\right)\right)^{-1} \\
& =-\frac{1}{2 \delta^{2}}\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}+O\left(\frac{1}{m_{\epsilon}}\right)\right) .
\end{aligned}
$$

It concludes that

$$
\begin{aligned}
& \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(1-b|x|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right|^{2} d x \\
& \quad \geq 8 \pi^{2} m_{\epsilon}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+16 \pi^{2}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) N(L, \epsilon, \delta)-8 \pi^{2}(P-2 \varrho)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2} \\
& \quad+16 \pi^{2}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)+8 \pi^{2}\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2} \\
& \quad+O\left(\frac{1}{m_{\epsilon}}\right)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+O\left(\frac{1}{m_{\epsilon}}\right)+J_{6}(L, \epsilon, \delta) .
\end{aligned}
$$

Using the fact that $\bar{u}_{\epsilon} \leq C$, we have

$$
\left(8 \pi^{2}-\epsilon\right) \bar{u}_{\epsilon}>8 \pi^{2} \bar{u}_{\epsilon}+\epsilon C .
$$

Therefore

$$
\begin{aligned}
I I_{\epsilon}\left(u_{\epsilon}\right) \geq & \int_{B_{L r_{\epsilon}}\left(x_{\epsilon}\right)}\left|\Delta_{g} u_{\epsilon}\right|^{2} d V_{g}+\int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(1-|B|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right|^{2} d x+8 \pi^{2} \bar{u}_{\epsilon} \\
& +\int_{M \backslash B_{\delta}\left(x_{0}\right)}\left\langle G_{p}, G_{p}\right\rangle+4 \int_{M} \tilde{Q} G_{p} d V_{g}+J(L, \epsilon, \delta) \\
\geq & 8 \pi^{2}\left(m_{\epsilon}+C_{1}\right)\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+C_{2}\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)+C_{3}
\end{aligned}
$$

where C_{1}, C_{2}, C_{3} are some constants. Since $I I_{\epsilon}\left(u_{\epsilon}\right)=\inf I I_{\epsilon}<C^{\prime}<\infty$, we must have $(1+$ $\left.\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) \rightarrow 0$ as $\epsilon \rightarrow 0$, i.e. $\frac{\bar{u}_{\epsilon}}{m_{\epsilon}} \rightarrow-1$.

Consequently, we have

$$
\begin{align*}
& \int_{B_{\delta} \backslash B_{L r_{\epsilon}}}\left|\Delta_{0}\left(1-b|x|^{2}\right)\left(U_{\epsilon}-\bar{u}_{\epsilon}\right)\right|^{2} d x+8 \pi^{2} \bar{u}_{\epsilon} \\
& \geq 8 \pi^{2} m_{\epsilon}\left(1+\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+16 \pi^{2} N(L, \epsilon, \delta)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) \\
& \quad-8 \pi^{2}(\log \delta-\log L-2 \varrho)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+J(L, \epsilon, \delta) \\
& \geq 16 \pi^{2}\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right) N(L, \epsilon, \delta)-8 \pi^{2}(\log \delta-\log L-2 \varrho)\left(1-\frac{\bar{u}_{\epsilon}}{m_{\epsilon}}\right)^{2}+J(L, \epsilon, \delta) . \tag{3.4}
\end{align*}
$$

Since we have

$$
\Delta_{0} w=\frac{4 \lambda^{2}|x|^{2}}{\left(1+\lambda|x|^{2}\right)^{2}}-\frac{8 \lambda}{1+\lambda|x|^{2}},
$$

a direct calculation yields that

$$
\int_{B_{L}}\left|\Delta_{0} w\right|^{2} d x=16 \pi^{2} \log \left(1+\lambda L^{2}\right)+\frac{8 \pi^{2}}{3}+O\left(\frac{\log L}{L^{2}}\right) .
$$

On the other hand, it is obvious to see that,

$$
\begin{equation*}
\int_{B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla u_{\epsilon}\right|^{2} \rightarrow \int_{B_{\delta}\left(x_{\epsilon}\right)}\left|\nabla G_{p}\right|^{2}=O(\delta \log \delta), \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{M \backslash B_{\delta}\left(x_{0}\right)}\left\langle G_{p}, G_{p}\right\rangle d V_{g} \\
& =\int_{M \backslash B_{\delta}\left(x_{0}\right)} G_{p} P_{g} G_{p} d V_{g}-\int_{\partial B_{\delta}} \frac{\partial G_{p}}{\partial r} \Delta_{g} G_{p} d V_{g}+\int_{\partial B_{\delta}} G_{p} \frac{\partial \Delta G_{p}}{\partial r} d V_{g} \\
& \quad+\int_{\partial B_{\delta}}\left(\frac{2}{3} R G \frac{\partial G}{\partial r}-2 G \operatorname{Ric}(d G, d r)\right) d S_{g} \\
& \quad=-2 \int_{M} Q_{g} G_{p} d V_{g}-16 \pi^{2}+16 \pi^{2}\left(-2 \log \delta+S_{0}(p)\right)+O(\delta \log \delta) . \tag{3.6}
\end{align*}
$$

Together with Lemmas 3.4 and 3.5, (3.4)-(3.6), we have

$$
\begin{aligned}
\lim _{\epsilon \rightarrow 0} I I_{\epsilon} \geq & 32 \pi^{2} \lim _{\epsilon \rightarrow 0} N(L, \epsilon, \delta)-32 \pi^{2}(\log \delta-\log L-2)+16 \pi^{2} \log \left(1+\lambda L^{2}\right) \\
& +\frac{8 \pi^{2}}{3}+\left(-2 \log \delta+S_{0}(p)\right) 16 \pi^{2}+2 \int_{M} Q_{g} G_{p} d V_{g}-8 \pi^{2} \log 8 \pi^{2} \\
& +O(\delta \log \delta)+O\left(\frac{\log L}{L^{2}}\right) \\
= & -16 \pi^{2} \log \frac{1+\lambda L^{2}}{L^{2}}+\frac{8 \pi^{2}}{3}-16 \pi^{2} S_{0}(p)-16 \pi^{2} \\
& +2 \int_{M} Q_{g} G_{p} d V_{g}-8 \pi^{2} \log 8 \pi^{2}+O(\delta \log \delta)+O\left(\frac{\log L}{L^{2}}\right) .
\end{aligned}
$$

Letting first $\delta \rightarrow 0$, then $L \rightarrow+\infty$, we get

$$
\lim _{\epsilon \rightarrow 0} I I_{\epsilon} \geq-16 \pi^{2} \log \lambda-8 \pi^{2} \log 8 \pi^{2}-16 \pi^{2} S_{0}+(8 / 3-16) \pi^{2}+2 \int_{M} Q_{g} G_{p} d V_{g}
$$

This shows the first part of Theorem 1.1, that is

$$
\inf _{u \in W^{2,2}(M)} I I(u) \geq \inf _{p \in M} \Lambda_{g}(\tilde{Q}, p) .
$$

The second part

$$
\inf _{u \in W^{2,2}(M)} I I(u) \leq \inf _{p \in M} \Lambda_{g}(\tilde{Q}, p)
$$

follows from the proof of Theorem 1.2 in the next section.
To end this section, we will prove a conformal property of $\Lambda_{g}(\tilde{Q}, p)$.
Lemma 3.6. Letting $\tilde{g} \in[g]: \tilde{g}=e^{2 v} g$ for some $v \in C^{\infty}(M)$, we have

$$
I I_{\tilde{g}}(u)=I I_{g}(u+v)-\int_{M}\langle v, v\rangle d V_{g}-4 \int_{M} Q v d V_{g} .
$$

If we set

$$
P_{\tilde{g}} \tilde{G}_{y}+2 Q_{\tilde{g}}=16 \pi^{2} \delta_{y},
$$

then

$$
\tilde{G}_{y}=G_{y}-v, \quad \text { and } \quad \tilde{S}_{0}(y)=S_{0}(y)+v(y) .
$$

Proof. Since $P_{\tilde{g}}=e^{-4 v} P_{g}, 2 Q_{\tilde{g}}=e^{-4 v}\left(P_{g} v+2 Q_{g}\right)$, we get

$$
\begin{aligned}
I I_{\tilde{g}}(u)= & \int_{M}\langle u, u\rangle d V_{g}+2 \int_{M}\left(P_{g} v+2 Q_{g}\right) u d V_{g}-8 \pi^{2} \log \int_{M} \tilde{Q} e^{4(u+v)} d V_{g} \\
= & \int_{M}\langle u+v, u+v\rangle d V_{g}+4 \int_{M} Q_{g} u d V_{g} \\
& -8 \pi^{2} \log \int_{M} \tilde{Q} e^{4(u+v)} d V_{g}-\int_{M}\langle v, v\rangle d V_{g} \\
= & I I_{g}(u+v)-\int_{M}\langle v, v\rangle d V_{g}-4 \int_{M} Q v d V_{g} .
\end{aligned}
$$

On the other hand, we have

$$
P_{\tilde{g}}(G-v)+2 Q_{\tilde{g}}=e^{-4 v}\left(P_{g} G+2 Q_{g}\right)=16 \pi^{2} e^{-4 v} \delta_{y, g}=16 \pi^{2} \delta_{y, \tilde{g}} .
$$

Since $\operatorname{dist}_{\tilde{g}}(y, x)=e^{v(y)} \operatorname{dist}_{g}(y, x)+O\left(\operatorname{dist}_{g}(y, x)\right)^{2}$, we have

$$
\begin{aligned}
\tilde{G}_{y} & =G_{y}-v \\
& =-2 \log \operatorname{dist}_{g}(y, x)+S_{0}(y)-v(y)+O(\operatorname{dist}(y, x)) \\
& =-2 \log \operatorname{dist}_{\tilde{g}}(y, x)+v(y)+S_{0}(y)+O(\operatorname{dist}(y, x)) .
\end{aligned}
$$

Thus $\tilde{S}_{0}(y)=S_{0}(y)+v(y)$.

4. Testing function

In this section, we will construct a blow up sequence ϕ_{ϵ} s.t.

$$
I I\left(\phi_{\epsilon}\right)<\inf _{x \in M} \Lambda(x)
$$

We use standard notation from [10]. In a normal geodesic coordinate system $\left\{x^{i}\right\}$, we denote

$$
R_{i j k l}=\left\langle R\left(\partial_{k}, \partial_{l}\right) \partial_{j}, \partial_{i}\right\rangle, \quad R_{i j}=-g^{j k} R_{i j k l}
$$

where R is the curvature operator, defined as follows,

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} .
$$

Suppose that p^{\prime} is a point such that $\Lambda\left(p^{\prime}\right)=\inf _{x \in M} \Lambda(x)$.
We know that, locally we have

$$
\begin{aligned}
g_{p q}= & \delta_{p q}+\frac{1}{3} R_{p i j q}\left(p^{\prime}\right) x^{i} x^{j}+\frac{1}{6} R_{p i j q, k}\left(p^{\prime}\right) x^{i} x^{j} x^{k} \\
& +\left(\frac{1}{20} R_{p i j q, k l}+\frac{2}{45} R_{p i j m}\left(p^{\prime}\right) R_{q k l m}\left(p^{\prime}\right)\right) x^{i} x^{j} x^{k} x^{l}+O\left(r^{5}\right) . \\
|g|= & 1-\frac{1}{3} R_{i j} x^{i j}-\frac{1}{6} R_{i j, k}\left(p^{\prime}\right) x^{i j k} \\
& -\left(\frac{1}{20} R_{i j, k l}\left(p^{\prime}\right)+\frac{1}{90} R_{h i j m}\left(p^{\prime}\right) R_{h k l m}\left(p^{\prime}\right)\right) x^{i} x^{j} x^{k} x^{m}+O\left(r^{5}\right) .
\end{aligned}
$$

In the sequel, let us denote

$$
x_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{m}}=x^{i_{1} \cdots i_{m} j_{1} \cdots j_{n}}, \quad \text { and } \quad \alpha_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{m}}=\frac{1}{2 \pi^{2}} \int_{S^{3}} x^{i_{1} \cdots i_{m} j_{1} \cdots j_{n}} d s
$$

then around the point p^{\prime} we write

$$
\begin{aligned}
& g^{k m}=\delta^{k m}+M^{k m}=\delta^{k m}+M_{k m}^{i j} x^{k m}+M_{k m s}^{i j} x^{k m s}+M_{k m s t}^{i j} x^{k m s t}+O\left(r^{5}\right) \\
& M=M^{i j} \delta_{i j}=M_{k m} x^{k m}+M_{k m s} x^{k m s}+M_{k m s t} x^{k m s t}+O\left(r^{5}\right), \\
& \sqrt{|g|}=1-\frac{1}{6} R_{i j} x^{i j}+K_{i j k} x^{i j k}+K_{i j k m} x^{i j k m}+O\left(r^{5}\right) . \\
& N^{k}=-g^{i j} \Gamma_{i j}^{k}=N_{i}^{k} x^{i}+N_{i j}^{k} x^{i j}+N_{i j m}^{k} x^{i j m}+O\left(r^{5}\right) .
\end{aligned}
$$

It is easy to check that $M_{k m}^{i j}=-\frac{1}{3} R_{i k m j}\left(p^{\prime}\right), M_{k m}=\frac{1}{3} R_{i j}\left(p^{\prime}\right)$ and $N_{i}^{k}=-\frac{2}{3} R_{i k}\left(p^{\prime}\right)$.

We prove the following lemma.
Lemma 4.1. We have

$$
\begin{equation*}
\frac{1}{18} R_{i j}\left(p^{\prime}\right) R_{k m}\left(p^{\prime}\right) \alpha^{i j k m}+N_{i j k}^{m} \alpha_{m}^{i j k}+M_{i j k m} \alpha^{i j k m}=4 K_{i j k m} \alpha^{i j k m} \tag{4.1}
\end{equation*}
$$

Proof. We have, for any small $t>0$,

$$
\begin{aligned}
\int_{B_{t}} & \Delta_{g} r^{2} d V_{g} \\
= & \int_{B_{t}}\left(8-\frac{2}{3} R_{i j} x^{i j}+2 M_{i j k} x^{i j k}+2 M_{i j k m} x^{i j k m}+2 N_{i j}^{k} x_{k}^{i j}+2 N_{i j k}^{p} x_{p}^{i j k}\right) \\
& \times\left(1-\frac{1}{6} R_{i j} x^{i j}+K_{i j k} x^{i j k}+K_{i j k m} x^{i j k m}\right) d x+o\left(t^{8}\right) \\
= & 4 \pi^{2} t^{4}-2 R_{i j} \alpha^{i j} \times 2 \pi^{2} \frac{t^{6}}{6} \\
& +\left(\frac{1}{9} R_{i j} R_{k m} \alpha^{i j k m}+2 M_{i j k m} \alpha^{i j k m}+2 N_{i j k}^{p} \alpha_{p}^{i j k}+8 K_{i j k m} \alpha^{i j k m}\right) 2 \pi^{2} \frac{t^{8}}{8}+o\left(t^{8}\right)
\end{aligned}
$$

on the other hand, we have

$$
\begin{aligned}
\int_{\partial B_{t}} 2 r d s_{g} & =\int_{\partial B_{t}} 2 r\left(1-\frac{1}{6} R_{i j} x^{i j}+K_{i j k m} x^{i j k m}+O\left(r^{5}\right)\right) d s_{0} \\
& =4 \pi^{2} t^{4}-4 \pi^{2} \frac{R_{i j}}{6} \alpha^{i j} t^{6}+2 K_{i j k m} \alpha^{i j k m} 2 \pi^{2} t^{8}+o\left(t^{8}\right)
\end{aligned}
$$

Now the conclusion follows from Stokes' theorem.
Note that locally, we may write (see Lemma A. 1 in the Appendix),

$$
G_{p^{\prime}}=-2 \log r+S,
$$

with

$$
S=S_{0}\left(p^{\prime}\right)+a_{i} x^{i}+\frac{a_{i j}}{2} x^{i j}+O\left(r^{2+\alpha}\right)
$$

We define

$$
\varphi_{\epsilon}=-\log \left(1+\lambda\left|\frac{x}{\epsilon}\right|^{2}\right)+C_{\epsilon}+\mu|x|^{2}, \quad x \in B_{L \epsilon}
$$

where

$$
\mu=-\frac{1}{L^{2} \epsilon^{2}\left(1+\lambda L^{2}\right)}, \quad \lambda=\frac{\sqrt{3 \tilde{Q}\left(p^{\prime}\right)}}{12}
$$

and

$$
C_{\epsilon}=\log \left(1+\lambda L^{2}\right)-2 \log L \epsilon-\mu L^{2} \epsilon^{2}
$$

We set

$$
\phi_{\epsilon}= \begin{cases}G+\varphi_{\epsilon}+2 \log r & x \in B_{L \epsilon} \\ G & x \notin B_{L \epsilon},\end{cases}
$$

then, in $B_{L \epsilon}$, we have

$$
\begin{equation*}
\phi_{\epsilon}=-\log \left(1+\lambda\left|\frac{x}{\epsilon}\right|^{2}\right)+C_{\epsilon}+S+\mu|x|^{2}=\varphi_{\epsilon}+S . \tag{4.2}
\end{equation*}
$$

Hence, it is easy to check that $\phi_{\epsilon} \in W^{2, p}(M)$ for any $p>0$.
We write

$$
\begin{aligned}
I I\left(\phi_{\epsilon}\right) & :=\int_{M}\left\langle\phi_{\epsilon}, \phi_{\epsilon}\right\rangle d V_{g}+4 \int_{M} Q_{g} \phi_{\epsilon} d V_{g}-8 \pi^{2} \log \int_{M} \tilde{Q} e^{4 \phi_{\epsilon}} d V_{g} \\
& =I I_{1}+I I_{2}+I I_{3} .
\end{aligned}
$$

First we will calculate the term $I I_{3}$. In the small neighborhood around the point p^{\prime}, we set

$$
\tilde{Q}=\tilde{Q}\left(p^{\prime}\right)+b_{i} x^{i}+\frac{b_{i j}}{2} x^{i j}+O\left(r^{3}\right)
$$

then we have

$$
\begin{aligned}
\tilde{Q} e^{4 \phi_{\epsilon}} \sqrt{|g|}= & \frac{e^{4 C_{\epsilon}+4 S_{0}}}{\epsilon^{4}\left(1+\lambda\left|\frac{x}{\epsilon}\right|^{2}\right)^{4}}\left[\left(1+4 a_{i} x^{i}+2 a_{i j} x^{i j}+8 a_{i} a_{j} x^{i j}+4 \mu r^{2}\right) \tilde{Q}\left(p^{\prime}\right)\right. \\
& \left.+b_{i} x^{i}+\frac{b_{i j}}{2} x^{i j}+4 a_{i} b_{i} x^{i j}+O\left(r^{2+\alpha}\right)+O\left(\frac{r^{2} \epsilon^{2}}{L^{8}}\right)\right] \\
& \times\left(1-\frac{R_{i j} x^{i j}}{6}+O\left(r^{3}\right)\right) \\
= & \frac{e^{4 C_{\epsilon}+4 S_{0}}}{\epsilon^{4}\left(1+\lambda\left|\frac{x}{\epsilon}\right|^{2}\right)^{4}}\left[\left(1+4 a_{i} x^{i}+2 a_{i j} x^{i j}+8 a_{i} a_{j} x^{i j}+4 \mu r^{2}-\frac{R_{i j} x^{i j}}{6}\right)\right. \\
& \left.\times \tilde{Q}\left(p^{\prime}\right)+b_{i} x^{i}+\frac{b_{i j}}{2} x^{i j}+4 a_{i} b_{i} x^{i j}+O\left(r^{2+\alpha}\right)+O\left(\frac{r^{2}}{L^{8}}\right)\right] .
\end{aligned}
$$

Therefore, by using the symmetry of the ball and the fact that $\alpha_{i j}=\frac{1}{4} \delta_{i j}$, we have

$$
\begin{aligned}
& \int_{B_{L \epsilon}} \tilde{Q} e^{4 \phi_{\epsilon}} \sqrt{|g|} d V_{g} \\
& = \\
& =2 \pi^{2} e^{4 C_{\epsilon}+4 S_{0}\left(p^{\prime}\right)} \epsilon^{4} \int_{0}^{L} \frac{1}{\left(1+\lambda r^{2}\right)^{4}}\left[\tilde { Q } (p ^ { \prime }) \left(1+\epsilon^{2} r^{2}\left(\sum_{i}\left(\frac{a_{i i}}{2}+2 a_{i}^{2}\right)\right.\right.\right. \\
& \left.\left.\left.\quad+4 \mu-\frac{R\left(p^{\prime}\right)}{24}\right)\right)+\sum_{i}\left(a_{i} b_{i}+\frac{b_{i i}}{8}\right) \epsilon^{2} r^{2}+O(\epsilon r)^{2+\alpha}+O\left(\frac{r^{2}}{L^{4}}\right)\right] r^{3} d r .
\end{aligned}
$$

A direct calculation then yields that

$$
\begin{aligned}
& 2 \pi^{2} \int_{0}^{L} \frac{r^{3} d r}{\left(1+\lambda r^{2}\right)^{4}}=\frac{\pi^{2}}{6 \lambda^{2}}+O\left(\frac{1}{L^{4}}\right), \\
& 2 \pi^{2} \int_{0}^{L} \frac{r^{5} d r}{\left(1+\lambda r^{2}\right)^{4}}=\frac{\pi^{2}}{3 \lambda^{3}}+O\left(\frac{1}{L^{2}}\right),
\end{aligned}
$$

and

$$
4 \mu \epsilon^{2} \times 2 \pi^{2} \int_{0}^{L} \frac{r^{5} d r}{\left(1+\lambda r^{2}\right)^{4}}=O\left(\frac{1}{L^{4}}\right)
$$

Hence we get

$$
\begin{aligned}
& \int_{B_{L \epsilon}} \tilde{Q} e^{4 \phi_{\epsilon}} \sqrt{|g|} d x \\
& =e^{4 C_{\epsilon}+4 S_{0}} \epsilon^{4}\left[8 \pi^{2}-\frac{24 \pi^{2}}{\lambda^{2} L^{4}}+\frac{\pi^{2}}{3 \lambda^{3}} \epsilon^{2}\left(\sum_{i}\left(\frac{a_{i i}}{2}+2 a_{i}^{2}\right) \tilde{Q}\left(p^{\prime}\right)-\frac{R\left(p^{\prime}\right)}{24} \tilde{Q}\left(p^{\prime}\right)\right.\right. \\
& \left.\left.\quad+\sum_{i}\left(a_{i} b_{i}+\frac{b_{i i}}{8}\right)\right)+O\left(\frac{1}{L^{4}}\right)+O\left(\epsilon^{2+\alpha}\right)+O\left(\frac{\epsilon^{2}}{L^{2}}\right)\right]
\end{aligned}
$$

On the other hand, it is not difficult to check that

$$
\begin{aligned}
\int_{M \backslash B_{L \epsilon}} \tilde{Q} e^{4 \phi_{\epsilon}} \sqrt{|g|} d x & =\int_{L \epsilon}^{\delta} \tilde{Q}\left(p^{\prime}\right) \frac{e^{4 S_{0}}}{r^{5}} 2 \pi^{2} d r+O\left(\frac{1}{L^{2} \epsilon^{2}}\right) \\
& =e^{4 C_{\epsilon}+4 S_{0}} \epsilon^{4}\left(\frac{24 \pi^{2}}{\lambda^{2} L^{4}}+O\left(\frac{\epsilon^{2}}{L^{2}}\right)\right) .
\end{aligned}
$$

In conclusion, we have

$$
\begin{align*}
& 8 \pi^{2} \log \int_{M} \tilde{Q} e^{4 \phi_{\epsilon}} \sqrt{|g|} d x \\
&= 8 \pi^{2}\left[\log 8 \pi^{2}+4\left(C_{\epsilon}+\log \epsilon+S_{0}\right)\right] \\
&+\frac{\pi^{2}}{3 \lambda^{3}}\left[\tilde{Q}\left(p^{\prime}\right) \sum_{i}\left(\frac{a_{i i}}{2}+2 a_{i}^{2}\right)+\sum_{i}\left(a_{i} b_{i}+\frac{b_{i i}}{8}\right)-\frac{R\left(p^{\prime}\right)}{24} \tilde{Q}\left(p^{\prime}\right)\right] \epsilon^{2} \\
& \quad+O\left(\epsilon^{2+\alpha}\right)+O\left(\frac{\epsilon^{2}}{L^{2}}\right)+O\left(\frac{1}{L^{4}}\right) . \tag{4.3}
\end{align*}
$$

Next, we calculate $I I_{1}$: first of all, by (4.2) we have

$$
\begin{align*}
\int_{M}\left\langle\phi_{\epsilon}, \phi_{\epsilon}\right\rangle d V_{g}= & \int_{M \backslash B_{L \epsilon}}\left\langle\phi_{\epsilon}, \phi_{\epsilon}\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle\phi_{\epsilon}, \phi_{\epsilon}\right\rangle d V_{g} \\
= & \int_{M \backslash B_{L \epsilon}}\left\langle G, \phi_{\epsilon}\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle G, \phi_{\epsilon}\right\rangle d V_{g} \\
& +\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 \log r, \phi_{\epsilon}\right\rangle d V_{g} \\
= & \int_{M}\left\langle G, \phi_{\epsilon}\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 \log r, \phi_{\epsilon}\right\rangle d V_{g} \\
= & 16 \pi^{2}\left(C_{\epsilon}+S_{0}\left(p^{\prime}\right)\right)-2 \int_{M} Q \phi_{\epsilon} d V_{g} \\
& +\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 \log r, \varphi_{\epsilon}+S\right\rangle d V_{g} . \tag{4.4}
\end{align*}
$$

We set η to be a cut-off function which is 0 at 1 and 1 in $[0,1 / 4]$ with $\eta^{\prime}(1)=1$, and

$$
h_{\tau}= \begin{cases}\eta\left(\frac{|x|}{\tau}\right)+\log \tau & |x| \leq \tau \\ \log r & |x| \geq \tau\end{cases}
$$

Then for fixed ϵ and L, we have

$$
\lim _{\tau \rightarrow 0} \int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 h_{\tau}, \varphi_{\epsilon}+S\right\rangle d V_{g}=\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 \log r, \varphi_{\epsilon}+S\right\rangle d V_{g} .
$$

On the other hand, we have

$$
\begin{aligned}
\int_{B_{L \epsilon}} & \left\langle\varphi_{\epsilon}+2 h_{\tau}, \varphi_{\epsilon}+S\right\rangle d V_{g} \\
= & \int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 h_{\tau}, G\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}+2 h_{\tau}, \varphi_{\epsilon}+2 \log r\right\rangle d V_{g} \\
= & 16 \pi^{2} C_{\epsilon}+32 \pi^{2} \eta(0)+32 \pi^{2} \log \tau-2 \int_{B_{L \epsilon}} Q_{g}\left(\varphi_{\epsilon}+2 h_{\tau}\right) \\
& +\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}, \varphi_{\epsilon}\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}, 2 \log r+2 h_{\tau}\right\rangle d V_{g}+\int_{B_{L \epsilon}}\left\langle 2 \log r, 2 h_{\tau}\right\rangle d V_{g} .
\end{aligned}
$$

Therefore, we get

$$
\begin{align*}
\int_{B_{L \epsilon}} & \left\langle\varphi_{\epsilon}+2 \log r, \varphi_{\epsilon}+S\right\rangle d V_{g} \\
= & 32 \pi^{2} \eta(0)-2 \int_{B_{L \epsilon}} Q_{g}\left(\varphi_{\epsilon}+2 \log r\right)+\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}, \varphi_{\epsilon}\right\rangle d V_{g} \\
& +\int_{B_{L \epsilon}}\left\langle\varphi_{\epsilon}, 4 \log r\right\rangle d V_{g}+\lim _{\tau \rightarrow 0}\left(\int_{B_{L \epsilon}}\left\langle 2 \log r, 2 h_{\tau}\right\rangle d V_{g}+32 \pi^{2} \log \tau\right) \\
= & 32 \pi^{2} \eta(0)-2 \int_{B_{L \epsilon}} Q_{g}\left(\varphi_{\epsilon}+2 \log r\right)+\int_{B_{L \epsilon}} \Delta_{g} \varphi_{\epsilon} \Delta_{g} \varphi_{\epsilon} d V_{g} \\
& +4 \int_{B_{L \epsilon}} \Delta_{g} \varphi_{\epsilon} \Delta_{g} \log r d V_{g}+\lim _{\tau \rightarrow 0}\left(\int_{B_{L \epsilon}} \Delta_{g} 2 \log r \Delta_{g} 2 h_{\tau} d V_{g}+32 \pi^{2} \log \delta\right) \\
& +\int_{B_{L \epsilon}} \frac{2}{3} R\left\langle d\left(\varphi_{\epsilon}+2 \log r\right), d\left(\varphi_{\epsilon}+2 \log r\right)\right\rangle d V_{g} \\
& -\int_{B_{L \epsilon}} 2 \operatorname{Ric}\left(d\left(\varphi_{\epsilon}+2 \log r\right), d\left(\varphi_{\epsilon}+2 \log r\right)\right) d V_{g} . \tag{4.5}
\end{align*}
$$

By a simple calculation, one gets

$$
\begin{align*}
\int_{B_{\tau}}\left(\Delta_{g} 2 \log r\right) \Delta_{g}\left(2 h_{\tau}\right) d V_{g} & =\int_{B_{\tau}} \Delta_{0}(2 \log r) \Delta_{0}\left(2 \eta\left(\frac{|x|}{\tau}\right)\right) d x+O(\tau) \\
& =-32 \pi^{2} \eta(0)+16 \pi^{2}+O(\tau) . \tag{4.6}
\end{align*}
$$

To compute $\int_{B_{L \epsilon} \backslash B_{\delta}} \Delta_{g} \log r \Delta_{g} \log r$, we first verify that, for any function f which is smooth on [t_{0}, t_{1}], where $t_{0}<t_{1}$, we have

$$
\begin{aligned}
\Delta_{g} f(r)= & \left(\delta_{k m}+M_{i j}^{k m} x^{i j}+M_{i j s}^{k m} x^{i j s}+M_{i j s t}^{k m} x^{i j s t}+O\left(r^{5}\right)\right) \\
& \times\left(f^{\prime \prime} \frac{x_{k m}}{r^{2}}+f^{\prime} \frac{\delta_{k m}}{r}-f^{\prime} \frac{x_{k m}}{r^{3}}\right)+N^{k} \frac{x_{k}}{r} f^{\prime} \\
= & f^{\prime \prime}+f^{\prime}\left(\frac{3}{r}-\frac{R_{i j} x^{i j}}{3 r}+\frac{M_{i j k} x^{i j k}+N_{i j}^{k} x_{k}^{i j}}{r}+\frac{M_{i j k m} x^{i j k m}+N_{i j k}^{m} x_{m}^{i j k}}{r}\right) \\
& +O\left(r^{5}\left|f^{\prime \prime}\right|\right)+O\left(r^{4}\left|f^{\prime}\right|\right) .
\end{aligned}
$$

Here, we use the fact that $M_{i j}^{k m} x_{k m}^{i j}=M_{i j s t}^{k m} x_{k m}^{i j s t}=0$. Then, applying Lemma 4.1, for any f_{1} and f_{2} which are smooth in $\left[t_{0}, t_{1}\right]$, we have

$$
\begin{align*}
& \int_{B_{t_{1}} \backslash B_{t_{0}}} \Delta_{g} f_{1}(|x|) \Delta_{g} f_{2}(|x|) d V_{g} \\
& =\int_{t_{0}}^{t_{1}} f_{1}^{\prime \prime} f_{2}^{\prime \prime}\left(1-\frac{R}{24} r^{2}+K_{i j k m} \alpha^{i j k m} r^{4}\right) 2 \pi^{2} r^{3} d r \\
& \quad+\int_{t_{0}}^{t_{1}}\left(f_{1}^{\prime} f_{2}^{\prime \prime}+f^{\prime \prime} f_{2}^{\prime}\right) \frac{1}{r}\left(3-\frac{5 R}{24} r^{2}+7 K_{i j k m} \alpha^{i j k m} r^{4}\right) 2 \pi^{2} r^{3} d r \\
& \quad+\int_{t_{0}}^{t_{1}} f_{1}^{\prime} f_{2}^{\prime} \frac{1}{r^{2}}\left(9+33 K_{i j k m} \alpha^{i j k m} r^{4}-\frac{7 R}{8} r^{2}+\frac{1}{9} R_{i j} R_{k m} \alpha^{i j k m} r^{2}\right) 2 \pi^{2} r^{3} d r \\
& \quad+\int_{t_{0}}^{t_{1}}\left(O\left(r^{8}\left|f_{1}^{\prime \prime} f_{2}^{\prime \prime}\right|\right)+O\left(r^{7}\left(\left|f_{1}^{\prime \prime} f_{2}^{\prime}\right|+\left|f_{1}^{\prime}\right|\left|f_{2}^{\prime \prime}\right|\right)\right)+O\left(r^{6}\left|f_{1}^{\prime} f_{2}^{\prime}\right|\right)\right) \\
& =\int_{t_{0}}^{t_{1}}\left(f_{1}^{\prime \prime} f_{2}^{\prime \prime}+\left(f_{1}^{\prime} f_{2}^{\prime \prime}+f_{1}^{\prime \prime} f_{2}^{\prime}\right) \frac{3}{r}+f_{1}^{\prime} f_{2}^{\prime} \frac{9}{r^{2}}\right) 2 \pi^{2} r^{3} \\
& \quad+R \int_{t_{0}}^{t_{1}}\left(-f_{1}^{\prime \prime} f_{2}^{\prime \prime} \frac{r^{2}}{24}-\frac{5 r}{24}\left(f_{1}^{\prime} f_{2}^{\prime \prime}+f^{\prime \prime} f_{2}^{\prime}\right)-\frac{7}{8} f_{1}^{\prime} f_{2}^{\prime}\right) 2 \pi^{2} r^{3} \\
& \quad+K_{i j k m} \alpha^{i j k m} \int_{t_{0}}^{t_{1}}\left(f_{1}^{\prime \prime} f_{2}^{\prime \prime} r^{4}+7\left(f_{1}^{\prime} f_{2}^{\prime \prime}+f_{1}^{\prime \prime} f_{2}^{\prime}\right) r^{3}+33 f_{1}^{\prime} f_{2}^{\prime} r^{2}\right) 2 \pi^{2} r^{3} d r \\
& \quad+R_{i j} R_{k m} \alpha^{i j k m} \int_{t_{0}}^{t_{1}} \frac{1}{9} f_{1}^{\prime} f_{2}^{\prime} r^{2} 2 \pi^{2} r^{3} d r \\
& \quad+\int_{t_{0}}^{t_{1}}\left(O\left(r^{8}\left|f_{1}^{\prime \prime} f_{2}^{\prime \prime}\right|\right)+O\left(r^{7}\left(\left|f_{1}^{\prime \prime} f_{2}^{\prime}\right|+\left|f_{1}^{\prime}\right|\left|f_{2}^{\prime \prime}\right|\right)\right)+O\left(r^{6}\left|f_{1}^{\prime} f_{2}^{\prime}\right|\right)\right) d r . \tag{4.7}
\end{align*}
$$

Then, choosing $f_{1}=f_{2}=2 \log r, t_{1}=L \epsilon, t_{0}=\tau$, we get

$$
\begin{align*}
\int_{B_{L \epsilon \backslash B_{\tau}}} \Delta_{g}(2 \log r) \Delta_{g}\left(2 h_{\tau}\right) d V_{g}= & \int_{B_{L \epsilon \backslash B_{\tau}}} \Delta_{g}(2 \log r) \Delta_{g}(2 \log r) d V_{g} \\
= & 40 K_{i j k m} \alpha^{i j k m} \pi^{2}(L \epsilon)^{4}+\frac{2 \pi^{2}}{9} R_{i j} R_{k m} \alpha^{i j k m}(L \epsilon)^{4} \\
& -2 R \pi^{2}(L \epsilon)^{2}+32 \pi^{2} \log L \epsilon-32 \pi^{2} \log \tau \\
& +O(\tau)+O(L \epsilon)^{5} \tag{4.8}
\end{align*}
$$

Now we will calculate the term $\int_{B_{L \epsilon}} \Delta_{g} \varphi_{\epsilon} \Delta_{g}\left(\varphi_{\epsilon}+4 \log r\right) d V_{g}$: in (4.7), we choose $f_{1}=$ $\varphi_{\epsilon}, f_{2}=\varphi_{\epsilon}+4 \log r, t_{0}=0, t_{1}=L \epsilon$ then we get

$$
\begin{align*}
& \int_{B_{L \epsilon}} \Delta_{g} \varphi_{\epsilon} \Delta_{g}\left(\varphi_{\epsilon}+4 \log r\right) d V_{g}=-\frac{88}{3} \pi^{2}+\frac{16 \pi^{2}}{\lambda L^{2}}-16 \pi^{2} \log \left(1+\lambda L^{2}\right) \\
& -R \epsilon^{2} \frac{8 \pi^{2}}{9 \lambda}+2 \pi^{2} R(L \epsilon)^{2}-40 K_{i j k m} \alpha^{i j k m} \pi^{2}(L \epsilon)^{4} \\
& -\frac{2 \pi^{2}}{9} R_{i j} R_{k m} \alpha^{i j k m}(L \epsilon)^{4}+O\left(\epsilon^{4} L^{2}\right)+\frac{\epsilon^{2}}{L^{2}}+O(L \epsilon)^{5} . \tag{4.9}
\end{align*}
$$

By a direct calculation, we have

$$
\begin{align*}
\int_{B_{L \epsilon}} & \frac{2}{3} R\left(\nabla_{g}\left(\varphi_{\epsilon}+2 \log r\right), \nabla_{g}\left(\varphi_{\epsilon}+2 \log r\right)\right) d V_{g} \\
= & \frac{2}{3} \int_{0}^{L \epsilon} R\left(p^{\prime}\right)\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r}+2 \mu r\right)^{2} 2 \pi^{2} r^{3} \\
& +\frac{2}{3} \int_{B_{L \epsilon}}\left(R_{, i}\left(p^{\prime}\right) x^{i}+O\left(r^{2}\right)\right)\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r}+2 \mu r\right)^{2}\left(1+O\left(r^{3}\right)\right) d x \\
= & \frac{8}{3 \lambda} R\left(p^{\prime}\right) \pi^{2} \epsilon^{2}+\int_{B_{L \epsilon}}\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r}+2 \mu r\right)^{2} O\left(r^{2}\right) d x \\
= & \frac{8}{3 \lambda} R\left(p^{\prime}\right) \pi^{2} \epsilon^{2}+O\left(\epsilon^{4} L^{2}\right)+O\left(\frac{\epsilon^{2}}{L^{2}}\right), \tag{4.10}
\end{align*}
$$

and

$$
\begin{aligned}
\int_{B_{L \epsilon}} & 2 \operatorname{Ric}\left(\nabla_{g}\left(\varphi_{\epsilon}+2 \log r\right), \nabla_{g}\left(\varphi_{\epsilon}+2 \log r\right)\right) d V_{g} \\
= & \frac{1}{2} R\left(p^{\prime}\right) \int_{0}^{L \epsilon}\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r}+2 \mu r\right)^{2} 2 \pi^{2} r^{3} d r \\
& +2 \int_{B_{L \epsilon}} g^{i s} g^{j t}\left(R_{i j, k}\left(p^{\prime}\right) x^{k}+O\left(r^{2}\right)\right)\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r^{2}}+2 \mu\right)^{2} x_{s t}\left(1+O\left(r^{3}\right)\right) d x \\
= & \frac{2}{\lambda} R\left(p^{\prime}\right) \pi^{2} \epsilon^{2}+2 \int_{B_{L \epsilon}}\left(R_{i j, k}\left(p^{\prime}\right) x^{k}+O\left(r^{2}\right)\right) \\
& \times\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r^{2}}+2 \mu\right)^{2} x^{i j}\left(1+O\left(r^{3}\right)\right) d x
\end{aligned}
$$

$$
\begin{align*}
& =\frac{2}{\lambda} R\left(p^{\prime}\right) \pi^{2} \epsilon^{2}+\int_{B_{L \epsilon}}\left(\frac{2 \epsilon^{2}}{\left(\epsilon^{2}+\lambda r^{2}\right) r^{2}}+2 \mu\right)^{2} O\left(r^{4}\right) d x \\
& =\frac{2}{\lambda} R\left(p^{\prime}\right) \pi^{2} \epsilon^{2}+O\left(\epsilon^{4} L^{2}\right)+O\left(\frac{\epsilon^{2}}{L^{2}}\right) \tag{4.11}
\end{align*}
$$

Together with (4.4)-(4.6) and (4.8)-(4.11), we obtain the following identity

$$
\begin{align*}
I I_{\epsilon}\left(u_{\epsilon}\right)= & I I_{1}+I I_{2}+I I_{3} \\
= & -16 \pi^{2} \log \lambda-8 \pi^{2} \log 8 \pi^{2}+\frac{8 \pi^{2}}{3}-16 \pi^{2}+2 \int_{M} Q G-16 \pi^{2} S_{0} \\
& -\frac{\epsilon^{2} \pi^{2}}{3 \lambda^{3}}\left(\tilde{Q}\left(p^{\prime}\right) \sum_{i}\left(\frac{a_{i i}}{2}+2 a_{i}^{2}\right)+\sum_{i}\left(a_{i} b_{i}+\frac{b_{i i}}{8}\right)-\frac{R\left(p^{\prime}\right)}{36} \tilde{Q}\left(p^{\prime}\right)\right) \\
& +O\left(\frac{\epsilon^{2}}{L^{2}}\right)+O\left(\epsilon^{2+\alpha}\right)+O\left(\frac{1}{L^{4}}\right)+O\left(\epsilon^{4} L^{2}\right)+O\left((L \epsilon)^{5}\right) \tag{4.12}
\end{align*}
$$

Proof of Theorem 1.2. We set $L=\frac{\log \frac{1}{\epsilon}}{\epsilon^{\frac{1}{2}}}$, then

$$
\epsilon^{2} \gg O\left(\frac{\epsilon^{2}}{L^{2}}\right)+O\left(\epsilon^{2+\alpha}\right)+O\left(\frac{1}{L^{4}}\right)+O\left(\epsilon^{4} L^{2}\right)+O\left((L \epsilon)^{5}\right)
$$

when ϵ is very small. Therefore, we get Theorem 1.2.

5. The local conformally case

In this section, we will discuss the local conformally flat case of Theorem 1.2.
In this situation, locally we may write

$$
g=e^{2 f} \sum_{i} d x^{i} \otimes d x^{i} \quad \text { with } f=c_{i} x^{i}+\frac{1}{2} c_{i j} x^{i j}+O\left(r^{3}\right)
$$

and

$$
\tilde{Q}=\tilde{Q}\left(p^{\prime}\right)+b_{i} x^{i}+\frac{1}{2} b_{i j} x^{i j}+O\left(r^{3}\right)
$$

Note that by the conformal property of P_{g}, the corresponding Green function has the following local expression:

$$
G=-2 \log |x|+S_{0}\left(p^{\prime}\right)+a_{i} x^{i}+\frac{1}{2} a_{i j} x^{i j}+O\left(r^{3}\right)
$$

When $f=0$, we can use Theorem 1.2 to obtain: if

$$
\sum_{i}\left(\frac{a_{i i}}{2}+2 a_{i}^{2}+\frac{1}{\tilde{Q}\left(p^{\prime}\right)}\left(a_{i} b_{i}+\frac{b_{i i}}{8}\right)\right)>0
$$

then (1.3) has a solution.

For the general case, we set $g^{\prime}=e^{-2 f} g$, then applying Lemma 3.6, we get $G_{p^{\prime}}^{\prime}=G+f$, and then

$$
a_{i}^{\prime}=a_{i}+c_{i}, \quad \text { and } \quad a_{i i}^{\prime}=a_{i i}+c_{i i}
$$

Thus we have the following results.
Theorem 5.1. Let (M, g) be a closed 4-dimensional manifold with $k=8 \pi^{2}$ and let P_{g} be positive. Suppose further that it is locally conformal flat near p^{\prime}. If

$$
\sum_{i} \frac{a_{i i}+c_{i i}}{2}+2\left(a_{i}+c_{i}\right)^{2}+\frac{1}{\tilde{Q}\left(p^{\prime}\right)}\left(\left(a_{i}+c_{i}\right) b_{i}+\frac{b_{i i}}{8}\right)>0
$$

then Eq. (1.3) has a minimal solution.
As a corollary, we have the following.
Corollary 5.2. With the same assumption as in Theorem 5.1. If

$$
\sum_{i} \frac{a_{i i}+c_{i i}}{2}+2\left(a_{i}+c_{i}\right)^{2}>0
$$

then in the conformal class of (M, g) there is a constant Q-curvature.
To end this section, we propose the following conjecture.
Conjecture. Let (M, g) be a locally conformal flat closed Riemannian manifold of dimension four, with $k=8 \pi^{2}$ and let P_{g} be positive. Then we have

$$
\sum_{i}\left(\frac{a_{i i}+c_{i i}}{2}+2\left(a_{i}+c_{i}\right)^{2}\right) \geq 0, \quad \text { at the point } p^{\prime} \text { where } \Lambda_{g}\left(p^{\prime}\right)=\min _{x \in M} \Lambda_{g}\left(8 \pi^{2}, x\right)
$$

and the equality holds if and only if (M, g) is in the conformal class of the standard 4 -sphere.
Let $\tilde{g}=e^{2 G} g$; then we have

$$
Q_{\tilde{g}}(x)=0
$$

for any $x \neq p$. Near p , we can write

$$
\tilde{g}=\frac{e^{S_{0}(p)+\left(c_{i}+a_{i}\right) x^{i}+\left(c_{i j}+a_{i j}\right) x^{i j}}}{r^{2}}=\frac{e^{S_{0}(p)}}{r^{2}}\left(\theta_{i} x^{i}+\theta_{i j} x^{i j}+O\left(|x|^{3}\right)\right) .
$$

So the above conjecture is equivalent to

$$
\sum_{i} \theta_{i i}>0
$$

when $M \neq S^{4}$. So, this problem is very similar to the positive mass problem.

Acknowledgments

The authors thank the referee for his helpful comments. The research was supported by the National Natural Science Foundation of China, Nos11071236 and 11131007.

Appendix

Suppose $\operatorname{Ker} P_{g}=\{$ constant $\}$. Let G be the Green function which satisfies

$$
P_{g} G+2 Q_{g}=16 \pi^{2} \delta_{p}
$$

As a corollary of a result in [17], we have the following.
Lemma A.1. In a normal coordinate system of p, we have

$$
G=-2 \log r+S_{0}+a_{i} x^{i}+a_{i j} x^{i j}+O\left(r^{2+\alpha}\right) .
$$

However, for the reader's sake, we give a brief proof of this lemma here.
Proof. In a normal coordinate system, we set

$$
|g|=1-\frac{1}{3} R_{i j} x^{i j}+O\left(r^{3}\right), \quad \text { and } \quad g^{k m}=\delta^{k m}-\frac{1}{3} R_{k i j m} x^{i j}+O\left(r^{3}\right)
$$

where $\varphi_{i j k}$ and $\theta_{i j k}$ are smooth.
Given a smooth function F, we have

$$
\begin{aligned}
\Delta_{g} F(|x|) & =\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{k}}\left(\sqrt{|g|} g^{k m} \frac{\partial}{\partial x^{m}} F\right) \\
& =\frac{\partial}{\partial x_{k}}\left(g^{k m} F^{\prime} \frac{x_{m}}{r}\right)+\frac{1}{2} g^{k m} F_{m} \frac{\partial}{\partial x_{k}} \log |g| \\
& =\frac{\partial}{\partial x_{k}}\left(F^{\prime} \frac{x_{k}}{r}-\frac{1}{3} R_{k i j m} F^{\prime} \frac{x^{k i j}}{r}+F^{\prime} O\left(r^{3}\right)\right)-\frac{1}{3} R_{i j} F^{\prime} \frac{x^{i j}}{r}+O\left(F^{\prime} r^{2}\right) \\
& =\frac{\partial}{\partial x_{k}}\left(F^{\prime} \frac{x_{k}}{r}+F^{\prime} O\left(r^{3}\right)\right)-\frac{1}{3} R_{i j} F^{\prime} \frac{x^{i j}}{r}+O\left(F^{\prime} r^{2}\right) \\
& =\Delta_{0} F-\frac{1}{3} R_{i j} F^{\prime} \frac{x^{i j}}{r}+O\left(F^{\prime} r^{2}\right)+O\left(F^{\prime \prime} r^{3}\right)
\end{aligned}
$$

Then

$$
\Delta_{g}(-2 \log r)=-\frac{4}{r^{2}}+\frac{2}{3} R_{i j} \frac{x^{i j}}{r^{2}}+O(r)
$$

and

$$
\Delta_{g}\left(-\frac{4}{r^{2}}\right)=\Delta_{0}\left(-\frac{4}{r^{2}}\right)-\frac{8 R_{i j} x^{i j}}{3 r^{4}}+O\left(\frac{1}{r}\right)=16 \pi^{2} \delta_{0}-\frac{8 R_{i j} x^{i j}}{3 r^{4}}+O\left(\frac{1}{r}\right)
$$

It is easy to check that

$$
\Delta_{g} \frac{2}{3} R_{i j} \frac{x^{i j}}{r^{2}}=\Delta_{0} \frac{2}{3} R_{i j} \frac{x^{i j}}{r^{2}}+O\left(\frac{1}{r}\right)=\frac{4 R}{3 r^{2}}-\frac{16 R_{i j} x^{i j}}{3 r^{4}}
$$

Hence, we get

$$
\Delta_{g}^{2}(-2 \log r)=16 \pi^{2} \delta_{p}+\frac{4 R}{3 r^{2}}-8 \frac{R_{i j} x^{i j}}{r^{4}}+O\left(\frac{1}{r}\right)
$$

Moreover, we have

$$
\begin{aligned}
\operatorname{div} & \left(\frac{2}{3} R_{g}(-d 2 \log r)-2 \operatorname{Ric}_{g}\langle d(-2 \log r), \cdot\rangle\right) \\
& =\frac{2}{3} R_{p}\left(p^{\prime}\right)(2 \log r)_{k k}-2 R_{k m}\left(p^{\prime}\right)(2 \log r)_{k m}+O\left(\frac{1}{r}\right) \\
& =\frac{2}{3} R_{g}\left(p^{\prime}\right) \frac{4}{r^{2}}-4 R_{g}\left(p^{\prime}\right) \frac{1}{r^{2}}+8 R_{k m} \frac{x^{k m}}{r^{4}}+O\left(\frac{1}{r}\right) .
\end{aligned}
$$

We therefore have

$$
P_{g}(-2 \log r)=16 \pi^{2} \delta_{0}+O\left(\frac{1}{r}\right)
$$

We set

$$
G=-2 \log r+S
$$

where $S \in C^{1, \alpha}$. Then, we get

$$
\Delta_{g}^{2} S=P_{g} S+O\left(\frac{1}{r}\right)=P_{g} G+2 P_{g} \log r+O\left(\frac{1}{r}\right)=O\left(\frac{1}{r}\right) .
$$

This proves the lemma.

References

[1] F. Adimurthi, M. Robert, Struwe: concentration phenomena for Liouville's equation in dimension four, J. Eur. Math. Soc. 8 (2006) 171-180.
[2] S. Brendle, Convergence of the Q-curvature flow on S^{4}, Adv. Math. 205 (2006) 1-32.
[3] S-Y.A. Chang, P.C. Yang, Extremal metrics of zeta functional determinants on 4-manifolds, Ann. of Math. 142 (1995) 172-212.
[4] X. Chen, X. Xu, The scalar curvature flow on S^{n}-perturbation theorem revisited, Invent. Math. 187 (2012) 395-506.
[5] X. Chen, X. Xu, Q-curvature flow on the standard sphere of even dimension, J. Funct. Anal. 261 (2011) 934-980.
[6] W.Y. Ding, J. Jost, J. Li, G. Wang, The differential equation $\Delta u=8 \pi-8 \pi h e^{u}$ on a compact Riemann surface, Asian J. Math. 1 (1997) 230-248.
[7] Z. Djadli, A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math. 168 (2008) 813-858.
[8] O. Druet, F. Robert, Bubbling phenomena for fourth-order four-dimensional PDEs with exponential growth, Proc. Amer. Math. Soc. 134 (2006) 897-908.
[9] M. Gursky, The principle eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, 1998. Preprint.
[10] J.M. Lee, T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (NS) 17 (1987) 37-91.
[11] Y. Li, Moser-Trudinger inequality on a compact Riemannian manifold of dimesion two, J. Partial Differential Equations 14 (2001) 163-192.
[12] J. Li, Y. Li, Solutions for Toda systems on Riemann surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (2005) 703-728.
[13] C.S. Lin, A classification of solutions of conformally invariant fourth order equation in \mathbb{R}^{n}, Comment. Math. Helv. 73 (1998) 206-231.
[14] A. Malchiodi, Compactness of solutions to some geometric fourth-order equations, J. Reine Angew. Math. 594 (2006) 137-174.
[15] A. Malchiodi, Conformal metrics with constant Q-curvature, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007) 11. Paper 120.
[16] A. Malchiodi, M. Struwe, Q-curvature flow on S^{4}, J. Differential Geom. 73 (2006) 1-44.
[17] C.B. Ndiaye, Constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal. 251 (2007) 1-58.
[18] S. Paneitz, A quartic conformally covariant differential operator for pseudo-Riemannian manifolds, 1983. Preprint.
[19] J. Qing, D. Raske, Compactness for conformal metrics with constant Q curvature on locally conformally flat manifolds, Calc. Var. Partial Differential Equations 26 (2006) 343-356.
[20] J. Wei, X. Xu, On conformal deformations of metrics on S^{n}, J. Funct. Anal. 157 (1998) 292-325.
[21] G. Weinstein, L. Zhang, The profile of bubbling solutions of a class of fourth order geometric equations on 4-manifolds, J. Funct. Anal. 257 (2009) 3895-3929.

[^0]: * Corresponding author at: School of Mathematical Science, University of Science and Technology of China, Hefei 230026, PR China.

 E-mail addresses: jiayuli@ustc.edu.cn (J. Li), yxli@ math.tsinghua.edu.cn (Y. Li), pliu@math.ecnu.edu.cn (P. Liu).

