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Abstract

The main result of this paper is that the integral operators between spaces of compactly supported
hyperfunctions must have properly supported kernels. We also discuss the uniqueness and the regularity
of the integral operators in hyperfunction theory.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Statement of the main result

Consider open sets U ⊂ Rm, V ⊂ Rn , and a hyperfunction K defined on V × U satisfying
the condition

{(x, y, 0, η) ∈ V ×U × Rn
× Rm

; η ≠ 0} ∩WFA K = ∅, (1.1)

where WFA K denotes the analytic wave front set of K. We can then associate with K a linear
operator T : A′(U )→ B(V ), by

(T u)(x) =


U
K(x, y)u(y) dy, for u ∈ A′(U ). (1.2)

∗ Corresponding author.
E-mail addresses: liess@dm.unibo.it (O. Liess), okada@math.s.chiba-u.ac.jp (Y. Okada).

0001-8708/$ - see front matter c⃝ 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.aim.2012.07.002

http://www.elsevier.com/locate/aim
http://dx.doi.org/10.1016/j.aim.2012.07.002
http://www.elsevier.com/locate/aim
mailto:liess@dm.unibo.it
mailto:okada@math.s.chiba-u.ac.jp
http://dx.doi.org/10.1016/j.aim.2012.07.002


1440 O. Liess, Y. Okada / Advances in Mathematics 231 (2012) 1439–1461

Here A′(U ) denotes the space of real-analytic functionals on U,B(V ) the space of
hyperfunctions on V and the meaning of the integral in (1.2) is the one given by microlocal
analysis to such expressions. (Cf. [18,9]. We shall have to come back to this in Section 4.) Note
that we shall identify A′(U )with the space Bc(U ) of hyperfunctions on U with compact support.
In this setting, T is said to be the integral operator associated with K, and K is said to be the kernel
of T .

Our main result is the following:

Theorem 1.1. Consider K ∈ B(V × U ) satisfying (1.1) and let T : A′(U ) → B(V ) be the
associated integral operator. The following conditions are equivalent:

(i) T (A′(U )) ⊂ A′(V ).
(ii) For every compact set K ⊂ U there is a compact set L ⊂ V such that supp u ⊂ K implies

supp T u ⊂ L.

(iii) The map p2|supp K : supp K → U is proper, where p2 denotes the second projection
V ×U → U.

(iv) T is a composition of a continuous linear map A′(U ) → A′(V ) and the inclusion map
A′(V )→ B(V ).

A kernel K satisfying (iii) in the theorem above is called a properly supported kernel in this
paper.

Theorem 1.1, or more precisely speaking, the implications (i) ⇒ (iii) and (i) ⇒ (iv) have
been announced in [13] (see Theorem 3.3(1)).

Note that the assumption in (i) is that for every fixed u ∈ A′(U ) there is a compact set L ⊂ V
with supp T u ⊂ L . The new information in (ii) is then just that this compact set L essentially only
depends on the support of u and not on u itself. It is nevertheless the implication (i)⇒ (ii)which
seems most interesting to us. In fact the main technical difficulty in the proof of this implication is
that it is not immediate how to use in a quantitative way (when u is varying) the information that
T u has compact support. At the origin of this is (by the very definition of hyperfunctions) the fact
that T u vanishes in a neighborhood of some point x0 gives only a cohomological information
about the holomorphic representation functions of T u near x0.

By contrast, the implications (ii) ⇒ (iii), respectively (iii) ⇒ (iv), are relatively easy
consequences of known results and the fact that (iv) implies (i) is of course trivial. Note also
that the implication (iii) ⇒ (ii) is a direct corollary of the definition of integration along fibers
for hyperfunctions. Moreover, we should mention that using functional analysis it is quite easy
to prove directly that (iv)⇒ (ii). (See Proposition 3.6.)

We also mention the following results concerning the uniqueness and the regularity of the
kernels.

Theorem 1.2. Let K ∈ B(V × U ) be a hyperfunction satisfying (1.1) and denote by T the
associated operator defined in (1.2). If T u = 0 for every u ∈ A′(U ), then K must vanish on
V ×U.

Theorem 1.3. Let K ∈ B(V ×U ) be a hyperfunction satisfying (1.1). Assume that the operator
T : A′(U )→ B(V ) defined in (1.2) actually maps A′(U ) into A(V ). Then K is real-analytic on
V ×U.
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These results in turn are based on the following three theorems:

Theorem 1.4 (Kaneko). Let p1 denote the first projection V × U → V , K ∈ B(V × U ) be a
hyperfunction for which the map p1|supp K : supp K → V is proper, and consider the operator
T : A(U )→ B(V ) given by (T u)(x) =


U K(x, y)u(y)dy. Assume that T u is real-analytic on

V for any u ∈ A(U ). Then K satisfies

{(x, y; ξ, 0) ∈ V ×U × Rn
× Rm

; ξ ≠ 0} ∩WFA K = ∅. (1.3)

Theorem 1.5 (Bastin–Laubin). Let K ∈ A′(Rn
× Rm), y0

∈ Rm, η0
∈ Rm . In the case η0

≠ 0,
also assume that

(x, y0, 0,−η0) ∉WFA K (1.4)

for every x ∈ Rn . If x0
∈ Rn, ξ0

∈ Rn and (x0, ξ0) ∉ WFA(


K(x, y)g(y)dy) for every
g ∈ B(Rm) which satisfies

WFAg ⊂ {(y0, tη0); t > 0} (1.5)

then (x0, y0, ξ0,−η0) ∉WFA K.

Theorem 1.6 (Oshima–Kataoka). Let K(x, y) ∈ B(V×U ) be a hyperfunction with real-analytic
parameter y satisfying

K(x, y)|y=y0 = 0 for any y0
∈ U.

Then K = 0 on V ×U.

Recall that by definition K(x, y) is said to be a “hyperfunction with real-analytic parameters
y” precisely when the condition (1.1) holds, and also that in this case the restrictions K(x, y)|y=y0

are well-defined in microlocal analysis. Cf. [9]. Hyperfunctions with real-analytic parameters y
form a subsheaf of B on Rn

× Rm .

Remark 1.7. (a) Theorem 1.4 is proved by Kaneko in [8], and also by Bastin and Laubin in [2].
Kaneko used the twisted Radon transform while Bastin–Laubin used the FBI transform. We
observe, on the other hand, that the converse is an easy consequence of the definitions. Our
next remark is that condition (1.3) is symmetric (when replacing ξ with η) to (1.1). This
corresponds to the fact that for continuous operators T : A′(U ) → A′(Q) with Q some
compact analytic manifold, we can calculate the adjoint operator T ∗ : A(Q) → A(U ) and
that then the kernel K∗ of T ∗ is related to the kernel K of T by K∗(y, x) = K(x, y).

(b) For Theorem 1.5 see [3]. In the case η0
= 0, the condition (1.5) reads that the test function

g runs through the space A(Rm). This special case is the main result of [2], which is a
refinement of Theorem 1.4.

(c) Theorem 1.6 is a variant for hyperfunctions with real-analytic parameters of a theorem of
Malgrange–Zerner. It was established independently by Kataoka and Oshima. (The only
proof in print of this theorem seems to be the one in Kaneko’s book [9, Theorem 4.4.7’].
For a related result see [14].)

The plan of the paper is the following. In Section 2, we shall prove Theorems 1.2 and 1.3
using Theorems 1.6 and 1.5 respectively. It is clear that once Theorem 1.2 is established, we also
have proved the implication (ii)⇒ (iii) in Theorem 1.1. On the other hand Theorem 1.2 is also
an immediate consequence of Theorem 1.3. Also this fact shall be explained in Section 2.
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We shall prove (iv)⇒ (ii) in Section 3 and (iii)⇒ (iv) in Section 4, after having previously
recalled some elementary facts concerning topologies in spaces of real-analytic functions and
functionals in Section 3.

At that moment we will know then already that the conditions (ii)–(iv) are equivalent and that
(i) follows from any one of them. To complete the proof of Theorem 1.1, we shall then show that
(i) ⇒ (iii). The necessary preparations for this will be given in Section 5 and the argument is
concluded in Section 6.

2. Uniqueness theorems

Proof of Theorem 1.2. Theorem 1.2 directly follows from Theorem 1.6. In fact, we have
K(x, y)|y=y0 = (T δy0)(x), where δy0(y) := δ(y− y0) is a translation of the Dirac δ-distribution
δ(y) on Rm . �

As mentioned above, we can also prove Theorem 1.2 starting from Theorem 1.3. This is seen
as follows: using Theorem 1.3 it follows that a kernel K(x, y) as in Theorem 1.2 must be real-
analytic. The action of T on δy0 for any y0

∈ U is then the analytic function K(x, y0) and we
know that this function vanishes as a hyperfunction. Therefore K vanishes.

Proof of Theorem 1.3. Let K ∈ B(V × U ) be a hyperfunction satisfying the assumption of
Theorem 1.3. We fix an arbitrary point (x0, y0

; ξ0,−η0) ∈ V × U × Ṙn+m and will show that
(x0, y0

; ξ0,−η0) ∉WFA K, using Theorem 1.5. Note that Ṙp denotes Rp
\ {0} in this paper, and

that here we used it in case p = n + m.
We may assume from the beginning that ξ0

≠ 0, since (x0, y0
; 0,−η0) ∉ WFA K is a direct

consequence of the condition (1.1).
We take open sets V0, V1,U1 with x0

∈ V0 b V1 b V and y0
∈ U1 b U . Then

from the flabbiness of the sheaf of microfunctions and the existence of a global hyperfunction
representative for any microfunction, there exists a hyperfunction K1 ∈ B(V ×U ) such that

(K1 −K)|V0×U ∈ A(V0 ×U ), (2.1)

and that

WFA K1 =WFA K ∩ (V0 ×U )× Ṙn+m, (2.2)

where the closure in the right hand side is taken in (V × U ) × Ṙn+m . From (2.2), we have an
estimate WFA K1 ⊂WFA K∩(V 0×U )×Ṙn+m , which in particular implies that K1 also satisfies
the wave front set estimate (1.1). Moreover K1 is real-analytic on (V \ V 0)×U .

Therefore we can define a hyperfunction K̃ ∈ B(V ×U ) with compact support by

K̃(x, y) := K1(x, y)χV1(x)χU1(y),

where χV1 and χU1 denote the characteristic functions of V1 and U1 respectively. Note that the
product in the right hand side is well-defined. Moreover in the case of η0

≠ 0, we can easily see
that K̃ satisfies (1.4). Now we shall show that (x0

; ξ0) ∉WFA(


K̃(x, y)g(y)dy) for g ∈ B(Rm)

with (1.5). In the formula
K̃(x, y)g(y)dy =


K1(x, y)χV1(x)χU1(y)g(y)dy

= χV1(x)(T (χU1 g))(x)+ χV1(x)
 

K1(x, y)−K(x, y)

(χU1(y)g(y))dy,
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we have that (T (χU1 g))(x) ∈ A(V ) from the assumption of Theorem 1.3, and that the second
term is real-analytic on V0 from (2.1). Applying Theorem 1.5, we have (x0, y0

; ξ0,−η0) ∉

WFA K̃. Again from (2.1) and the definition of K̃, it follows that (x0, y0
; ξ0,−η0) ∉WFA K. �

3. Topologies

The purpose of this section is to review some results on the topology of the space A(V ) of
real-analytic functions on an open set V ⊂ Rn and on the topology of its strong dual space
A′(V ). Most of the results which we need are known, but since there are scattered through the
literature, we thought it useful to collect them in a single section.

As a preliminary remark we consider an open set W ⊂ Cn and the space O(W ) of
holomorphic functions on W , endowed with the topology of uniform convergence on compact
sets in W . Then O(W ) is clearly a Fréchet space. A set M ⊂ O(W ) is bounded in O(W ) if
for every increasing sequence of compact sets K j b W which exhausts W (in the sense that

j K j = W ) there exist constants c j such that | f (z)| ≤ c j , for all z ∈ K j and all f ∈ M.
Let us turn back to A(V ). There are three natural topologies on A(V ), and we shall briefly

recall two of them. (As for the “third” natural topology on A(V ) given by explicit semi-norms,
we refer to [12] and references therein.) The equivalence of these two topologies is shown in [16].
The first is when we write A(V ) = lim

−→Ω
O(Ω), where Ω runs through open sets in Cn satisfying

Ω ∩ Rn
= V . We call such Ω a complex neighborhood of V . It is then natural to endow A(V )

with the inductive limit topology of the spaces O(Ω). The second topology is a little bit more
involved, but is better adapted to the topological study of the spaces A(V ).

We start by considering the space A(K ) (≃ O(K )) for a compact set K in Rn , which we
regard as the (non-strict) inductive limit of the spaces O(Kd) where the Kd are defined by

Kd = {z ∈ Cn
; dist(z, K ) < d}. (3.1)

While it is only a non-strict limit of Fréchet spaces, it is known that it is also a DFS space.
(DFS = dual of Fréchet–Schwartz.)

We now want to recall the “second” topology on A(V ). Since A(V ) can be identified in a
natural way with A(V ) = lim

←−KbV
A(K ), it is indeed also natural to consider A(V ) endowed

with the projective limit topology of the spaces A(K ). The limit is here of course essentially for
countably many K . As mentioned above the two topologies coincide.

We also want to see how bounded sets in A(K ) and A(V ) can be characterized. We start with
the following result of Martineau:

Theorem 3.1 ([15, Lemma A in p. 14]). Let M be bounded in A(K ). Then there is d > 0 so
that M ⊂ O(Kd) and so that M is bounded in O(Kd).

Since we already know how to characterize bounded sets in O(Kd) we can conclude the
following:

Remark 3.2. A set N ⊂ A(K ) is bounded precisely if there is d > 0 so that all functions in N
have analytic extensions to O(Kd) and such that for every d ′ < d there is a constant cd ′ > 0 for
which

| f (z)| ≤ cd ′ , ∀z ∈ Kd ′ , ∀ f ∈ N . (3.2)

Thus, it is also equivalent to the condition that there is d > 0 and c > 0 so that N ⊂ O(Kd) and
that supz∈Kd

| f (z)| ≤ c for any f ∈ N .
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We can now study bounded sets in A(V ) for V ⊂ Rn . Since A(V ) is the projective limit
of the A(K ), a set M ⊂ A(V ) will be bounded if the image of M under the restriction map
A(V )→ A(K ) is bounded in A(K ) for every compact K in V . If we now take into account also
the characterization of bounded sets in A(K ) mentioned above, we can conclude that a set M is
bounded precisely when there is an open neighborhood Ω ⊂ Cn of V such that all functions f in
M admit analytic extensions to functions in O(Ω) and that M considered as a subset in O(Ω) is
bounded there. In fact, if we fix an increasing sequence of compact sets K j ⊂ V which exhausts
V , then there are positive constants c j and d j such that any f ∈ M admits an analytic extension
to the complex d j -neighborhood Ω j of K j and satisfies supz∈Ω j

| f (z)| ≤ c j . By shrinking d j ,
we may assume that Ω j ∩ Rn

⊂ V . Therefore, Ω :=


j Ω j becomes a complex neighborhood
of V and we have that

M ⊂ { f ∈ O(Ω); sup
z∈Ω j

| f (z)| ≤ c j , for any j}.

It is in particular clear from this that the domains of analyticity of the functions in M all contain
some neighborhood of V in Cn .

Theorem 3.3 (Martineau [16, Proposition 1.7]). The space of real-analytic functions on V
is a complete Schwartz space (for the definition of Schwartz spaces cf. [19, p. 112]) and
ultrabornological.

We now consider some statements on the topology of A′(K ) and of A′(V ), the strong dual
spaces of A(K ), respectively A(V ). At first we study semi-norms in A′(K ). In view of the
characterization of bounded sets in A(K ) a fundamental system of semi-norms in A′(K ) is
given as {∥ · ∥−d,K }d>0 by the expressions

∥u∥−d,K = sup
g∈N
|u(g)|, (3.3)

where N = {g ∈ O(Kd), |g(z)| ≤ 1, ∀z ∈ Kd} and Kd is given by (3.1). We explicitly mention
that ∥u∥−d,K also defines by the same expression a continuous semi-norm on O′(Kd).

We also recall the following well-known fact. (See [16, Proposition 1.4 and Théorème 1.2(a)].)

Proposition 3.4. A′(V ) is the inductive limit of the A′(K ).
We conclude the section with some statements on continuous linear maps between spaces of

analytic functionals. We recall at first the following result in abstract functional analysis:

Theorem 3.5 ([6, p. 198, Chapter 4, Part 1, Section 5, Theorem 1]). Let · · · → X i → X i+1
→ · · · be a sequence of Fréchet spaces and continuous maps. Denote by X the inductive limit
of the X i , by fi : X i → X the natural maps and consider a continuous linear map T : F → X
where F is a Fréchet space. Assume that X is Hausdorff. Then there is an index i0 such that
T (F) ⊂ fi0(X i0). Moreover if fi0 is injective, then there is a continuous map T 0

: F → X i0

such that T is factorized into F
T 0

−→ X i0

fi0
−→ X.

As a consequence of Theorem 3.5 we can give a direct proof of the implication (iv)⇒ (ii) in
Theorem 1.1.

Proposition 3.6. Let T : A′(U )→ A′(V ) be a continuous linear map. Then for every K b U
there is L b V such that

T (A′(K )) ⊂ A′(L).
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4. Defining functions of kernels

In this section, we give the proof of the implication (iii) ⇒ (iv) in Theorem 1.1. In the
argument we must understand the structure of a (properly supported) kernel which satisfies the
condition (1.1) in terms of defining functions. The first result in this direction is Lemma 4.2,
which we shall use again in Section 6. Note that the last statement regarding C∞ kernels is used
only there. See Remark 6.2.

Recall that the dual cone G⊥ ⊂ Rp of a cone G ⊂ Rp is defined by G⊥ := {ξ ∈ Rp
; ⟨s, ξ⟩

≥ 0, ∀s ∈ G}. Also recall the twisted Radon kernel W (z,∆) of Bony-type on Rp with respect
to a proper cone ∆ ⊂ Rp. It is defined by

W (z,∆) :=


S p−1∩∆
W (z, ξ)dω(ξ), (4.1)

where

W (z, ξ) :=
(p − 1)!
(−2π i)p ·

1+ i⟨z, ξ⟩

(⟨z, ξ⟩ + i⟨z, z⟩)p ,

for (z, ξ) ∈ Cp
× S p−1 with |Im z−ξ/2|2 < 1/4+|Re z|2, and where ω(ξ) denotes the standard

surface element of S p−1. (See (A.8.1) in [4].) We will use W in the proof of Lemma 4.2, in case
of p = n +m with z replaced by (z, w). For the theory of the twisted Radon transform, we refer
to [10,9,1]. Here we only add the following preparation, which is an analogue for Bony-type
kernels of Lemma 2.3.5 in [9].

Lemma 4.1. For f (x) ∈ C∞0 (R
p), the function

f̃ (z, ξ) :=


Rp
W (z − x, ξ) f (x)dx

defined on {(z, ξ) ∈ Cp
× S p−1

; |Im z − ξ/2| < 1/2} can be extended continuously to

{(z, ξ) ∈ Cp
× S p−1

; |Im z − ξ/2| ≤ 1/2, |Im z| < 1/2}.

Moreover the derivatives ∂αz f̃ (z, ξ) in z admits the same domain of continuity.

Proof. We define Φ(z, ξ) := ⟨z, ξ⟩ + i⟨z, z⟩, Ψ(z, ξ) := Φ(z, ξ)

log Φ(z, ξ)− 1


, and

P(z, ξ, ∂z) :=
(−1)p−1(1+ i⟨z, ξ⟩)

(−2π i)p


1

1+ 2i⟨z, ξ⟩
⟨ξ, ∂z⟩

p+1

.

Here we regard P as a differential operator of order p+ 1 with holomorphic coefficients defined
on {|Im z| < 1/2}. Note that Ψ is continuous on {|Im z−ξ/2| ≤ 1/2} since Im Φ ≥ 0 holds there.
With these notations, we have W (z, ξ) = P(z, ξ, ∂z)Ψ(z, ξ), and therefore f̃ can be written as

f̃ (z, ξ) =


Rp
Ψ(z − x, ξ)Q(x, z, ξ, ∂x ) f (x)dx,

where Q(x, z, ξ, ∂x ) is the adjoint operator of P(z − x, ξ,−∂x ). The conclusion for f̃ follows
from the hypothesis f ∈ C∞0 (R

p) and the continuity of Ψ . As for its k-th order derivatives, we

repeat the same argument, with Ψ replaced by a Ck-function Φk+1(log Φ −
k+1

j=1 1/j)/(k + 1)!
on Im Φ ≥ 0, and with the power p + 1 by p + 1+ k in the definition of P . �
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Lemma 4.2. Let K ∈ B(V × U ) be a kernel satisfying (1.1), and consider proper open convex
cones G j ⊂ Rn ( j = 1, . . . , J ) such that the interiors of their dual cones form a covering of Ṙn .
Then there exist open sets Ω j ⊂ Cn+m

z,w and holomorphic functions F j ∈ O(Ω j ), j = 1, 2, . . . , J
satisfying the following properties:

(1) For any relatively compact open set M b V × U, we can find open convex cones Λ j ⊂

Rn+m ( j = 1, . . . , J ) with Λ j ⊃ (G j \ {0})× {0} and a positive constant ε > 0 for which

{(z, w) ∈ M + iΛ j ; |Im z| < ε, |Imw| < ε} ⊂ Ω j , ∀ j.

(2) (V ×U ) \ singsuppA K ⊂ Ω j , ∀ j , where singsuppA K denotes the analytic singular support
of K. In other words, when M b (V × U ) \ singsuppA K in the situation (1), then we can
take Λ j = Rn+m for any j . In particular, every F j extends holomorphically to a complex
neighborhood of (V ×U ) \ singsuppA K.

(3) K is the sum of the boundary values of the F j ’s, i.e.,

K =


j

b(F j ) on V ×U.

Here the b(F j ) are defined, locally in the variables (x, y) = Re(z, w) ∈ M, as the
hyperfunctional boundary values of the F j from the region Im(z, w) ∈ Λ j . (M and Λ j
are as in (1)).
Moreover, if K ∈ C∞(V ×U ), then we can take F j ∈ O(Ω j ) with the additional property

(4) each F j (z, w) can be continued to a continuous function on Ω j∪V×U, and the continuations
satisfy

J
j=1 F j (x, y) = K(x, y) on V ×U.

Remark 4.3. We want to make a comment on the geometry of the domains appearing in the
lemma: for any M b V ×U , the functions F j are holomorphic in a set of form

{(z, w) ∈ M + i(G j × Rm); |Imw| < δ|Im z|, |Im z| < ε, |Imw| < ε}

with some positive δ and ε which may depend on the choice of M .

Proof of Lemma 4.2. We take larger proper open convex cones G ′j ⊃ G j \ {0} such that the

interiors of their duals form a covering of Ṙn , and also take a covering
J

j=1 Γ j = Ṙn consisting

of proper closed convex cones Γ j in Ṙn , such that their interiors are mutually disjoint and that
Γ j ⊂ Int G ′⊥j . For each j = 1, 2, . . . , J , we fix some vector s j

∈ G ′j and define open convex
cones Λ j,k in Rn+m by

Λ j,k := {(s, 0)+ r(s j , t) ∈ Rn
× Rm

; s ∈ G ′j , r > 0, |t | < 1/k},

for k ∈ N. By this definition, we can see that

Int Λ⊥j,k = {(ξ, η) ∈ Rn
× Rm

; ξ ∈ Int G ′⊥j , |η| < k⟨s j , ξ⟩},

and that Int Λ⊥j,k for k = 1, 2, . . . form an absorbing family of increasing open conic subsets of

Int G ′⊥j × Rm .
Now for an arbitrarily fixed relatively compact open set M b V × U , we associate with

M holomorphic functions F j,M as follows. Since K satisfies (1.1), WFA K is included in
V ×U × Ṙn

×Rm
=
J

j=1 V ×U × Int G ′⊥j ×Rm
=

∞

k=1
J

j=1 V ×U × Int Λ⊥j,k . Moreover
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since M is compact and since WFA K is conic, there exists a constant kM such that

(M × Ṙn+m) ∩WFA K ⊂ M ×
J

j=1

Int Λ⊥j,kM
.

Then we define a closed convex cone ∆ j,M ⊂ Ṙn+m by

∆ j,M := (Γ j × Rm) ∩ Λ⊥j,kM
,

and it trivially follows that

(M × Γ j × Rm) ∩WFA K ⊂ M ×∆ j,M .

Note that ∆ j,M is included in Int Λ⊥j,kM+1, which can be seen by a straightforward argument.
Next we take a hyperfunction L M ∈ B(Rn+m) with compact support, which coincides with
K in a neighborhood of M . This can be in general done using the flabbiness of B, but when
K ∈ C∞(V ×U ), we can take L M ∈ C∞0 (R

n+m). Finally we define F j,M by

F j,M (z, w) :=


Rn+m
W (z − x, w − y,∆ j,M )L M (x, y)dxdy,

where W (z, w,∆ j,M ) is given by (4.1) with z replaced by (z, w). Then, we have the following:

• Each F j,M is holomorphic on

Ω̃ j,M := {(z, w) ∈ Rn+m
+ iΛ j,kM+1; |Im z| < εM , |Imw| < εM }

with some εM > 0, since ∆ j,M ⊂ Int Λ⊥j,kM+1.

• Each F j,M can be continued holomorphically to a complex neighborhood of Rn+m
\

singsuppA L M , in particular, to a complex neighborhood of M \ singsuppA K.

• L M −
J

j=1 b(F j,M ) ∈ A(Rn+m). Therefore K −
J

j=1 b(F j,M ) ∈ A(M).
• If L M ∈ C∞0 (R

n+m), then F j,M can be continued to a continuous function on Ω̃ j,M ∪ Rn+m .

Here we used Lemma 4.1 for the last property. We shrink Ω̃ j,M to

Ω j,M := {(z, w) ∈ M + iΛ j,kM+1; |Im z| < εM , |Imw| < εM } (4.2)

and regard F j,M and b(F j,M ) as holomorphic functions on Ω j,M and hyperfunctions on M
respectively.

Now we fix j and take two relatively compact open subsets M and N in V × U , and
compare F j,M and F j,N . We may assume without loss of generality that kM ≤ kN , then we
have ∆ j,M ⊂ ∆ j,N and

(F j,N − F j,M )(z, w) =


Rn+m
W (z − x, w − y,∆ j,N \∆ j,M )L N (x, y)dxdy

+


Rn+m

W (z − x, w − y,∆ j,M )(L N − L M )(x, y)dxdy.

The first term in the right hand side extends holomorphically to a complex neighborhood of
M ∩N , since (M ∩N )× (∆ j,N \∆ j,M )∩WFA L N = (M ∩N )× (∆ j,N \∆ j,M )∩WFA K = ∅.
The second term also extends holomorphically to a complex neighborhood of M ∩ N , since



1448 O. Liess, Y. Okada / Advances in Mathematics 231 (2012) 1439–1461

L N − L M = 0 on M ∩ N . Therefore, F j,N − F j,M also extends to a complex neighborhood
of M ∩ N , which implies that b(F j,N ) − b(F j,M ) is real-analytic on M ∩ N . In view of this,
the family b(F j,N ) − b(F j,M ) on M ∩ N forms for M, N b V × U a cocycle with real-
analytic coefficients associated with the open covering {M}MbV×U of V × U , and we can
find, (using the cohomological triviality of A), H j,M ∈ A(M) for M b V × U such that
b(F j,N )−b(F j,M ) = H j,N −H j,M on M∩N . We denote the holomorphic extension of H j,M by
the same symbol H j,M , and then the last equality shows that b(F j,N −H j,N ) = b(F j,M −H j,M )

on M∩N . Since an equality of two single boundary value expressions implies the equality of their
defining functions, {F j,M − H j,M }MbV×U can be glued together to a holomorphic function F j .

Let us next show that we can find Ω j as in the relations (1)–(3) in the lemma. For any M b
V×U , we can take N b V×U satisfying M b N . Then we have the equality F j = F j,N−H j,N
on the intersection of Ω j,N and a complex neighborhood of N . Since a complex neighborhood
of N must include a set of form {(z, w) ∈ M + iRn+m

; |Im z| < ε′, |Imw| < ε′} with some
ε′ > 0, F j is holomorphic on

{(z, w) ∈ M + iΛ j,kN+1; |Im z| < ε, |Imw| < ε},

where ε := min{εN , ε
′
}, and by taking the union of such open sets for M b V × U , we get Ω j

satisfying the property (1) and F j ∈ O(Ω j ).
We can add a complex neighborhood of V × U \ singsuppA K to Ω j since F j,M extends to a

neighborhood of M \ singsuppA K.

At this moment, the property (3) does not yet hold. However, since K −
J

j=1 b(F j,M ) ∈

A(M) and b(F j,M ) − b(F j ) ∈ A(M) hold for any M , we have H := K −
J

j=1 b(F j ) ∈

A(V × U ). By adding H to F1, then (3) will now hold. Note that by this change it might be
necessary to shrink Ω1, but both (1) and (2) will still remain valid.

Finally we consider the case K ∈ C∞(V × U ). Then F j,M extends to a continuous function
up to Rn+m , which implies also that F j,M − H j,M does so up to M . Therefore we can define the
extension of F j to Ω j ∪V ×U , and the continuity holds since continuity is a local property. This
proves the first part of (4), and the second part follows from the first part and (3). �

The decomposition in the lemma gives us the possibility to write an integral operator as
in (1.2) in an explicit way. We shall start by decomposing K into the sum

J
j=1 K j , where

K j = b(F j ) with F j as in Lemma 4.2. This leads us to a decomposition of the operator
T =

J
j=1 T j with T j : A′(U )→ B(V ) given by

(T j u)(x) :=


K j (x, y)u(y)dy.

For any given u ∈ A′(U ), we take M := V0 × U0 b V × U with supp u ⊂ U0. Then, F j is
holomorphic in a set of form (4.2). (The notations are as in the proof of Lemma 4.2.) Thus the
defining function of T j u is given by

F j (z, y)u(y)dy,

which is holomorphic on {z ∈ V0 + iG j ; |Im z| < ε}. We note here that the constant ε > 0 may
depend on V0 (and on supp u). But, since the choice of V0 b V was arbitrary, the boundary value
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bG j


F j (z, y)u(y)dy


is an element of B(V ). Therefore we have the formula

(T u)(x) =


K(x, y)u(y)dy =
J

j=1

bG j


F j (z, y)u(y)dy


, (4.3)

for a kernel K ∈ B(V ×U ) satisfying (1.1) and u ∈ A′(U ).
Consider next the case when K ∈ B(V ×U ) is a properly supported kernel, i.e., assume that

the projection p2|supp K : supp K → U is proper. We fix an open set U0 b U . Then there exists
a compact set L ⊂ V such that

(V ×U0) ∩ supp K ⊂ L ×U0. (4.4)

For these U0 and L , we take a compact set L0 and an open set V0 in V such that L b L0 b
V0 b V . In this situation, the property (2) of Lemma 4.2 gives also the following estimate of the
domains of holomorphy of the F j ’s: there exist positive constants ε and δ such that each F j is
holomorphic in the union

{(z, w) ∈ (V0 ×U0)+ i(G j × Rm); |Imw| < δ|Im z|, |Im z| < ε, |Imw| < ε}

∪ {(z, w) ∈ ((V0 \ L0)×U0)+ iRn+m
; |Im z| < ε, |Imw| < ε}, (4.5)

and the sum
J

j=1 F j (z, w) vanishes on the set {(z, w) ∈ ((V0 \ L0) × U0) + iRn+m
; |Im z|

< ε, |Imw| < ε}.
We now apply this for the operator in (1.2). For a hyperfunction u with supp u ⊂ U0, the

functions

H j (z) :=


F j (z, y)u(y)dy,

are holomorphic in

{z ∈ V0 + iG j ; |Im z| < ε} ∪ {z ∈ (V0 \ L0)+ iRn
; |Im z| < ε}, (4.6)

and the sum


j H j vanishes on {z ∈ (V0 \ L0) + iRn
; |Im z| < ε}. The duality pairing

of T u =


j T j u with a real-analytic function ϕ(x) defined in a neighborhood of L can be
calculated as follows: take the V0 and L0 as above such that V0 is included in the domain
of definition of ϕ, and also take a compact set Z with piecewise smooth boundary satisfying
L0 b Z b V0. We choose vectors s j

∈ G j and define contours γ j ’s by

γ j := {x + iψ(x)s j
; x ∈ Z}.

Here ψ is a non negative function satisfying ψ(x) = 0 on ∂Z , chosen such that γ j is included in
the set (4.6) and in the domain of analyticity of ϕ. Then


(T u)(x)ϕ(x)dx is given by

J
j=1


γ j

H j (z)ϕ(z)dz.

Note that the single integrals depend on the choice of Z but the sum does not.
In this way, we have an explicit integration formula

⟨T u, ϕ⟩ =
J

j=1


γ j


ϕ(z)F j (z, y)u(y)dydz, ∀u ∈ A′(U0),∀ϕ ∈ A(V0), (4.7)
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for fixed U0 and V0. This formula now shows that the operator T is the formal adjoint of the
operator S : A(V ) → A(U ) defined in the following way: if ϕ ∈ A(V ) is given and if we fix
some U0 b U , then the value of Sϕ for y ∈ U0 is given by

(Sϕ)(y) =
J

j=1


γ j

ϕ(z)F j (z, y)dz, (4.8)

where the γ j are associated with ϕ as above.
After these preparations, we can now prove the implication (iii) ⇒ (iv). To do so, we recall

that a fundamental system of semi-norms on A′(V ) is given by the expressions ∥v∥M =

sup f ∈M |v( f )| where M runs through the family of bounded sets in A(V ). We fix such a
bounded set M and want to show that there is c and a bounded set N ⊂ A(U ) such that
∥T u∥M ≤ c∥u∥N for every u ∈ A′(U ). In view of the duality (4.7), it shall suffice to show then
that the operator S defined in (4.8) maps bounded sets in A(V ) to bounded sets in A(U ).

Lemma 4.4. Let M be a bounded set in A(V ). Define N ⊂ A(U ) by N = {


V K(x, y)
ϕ(x)dx;ϕ ∈ M}. Then N is bounded in A(U ).

The proof of Lemma 4.4 is by direct inspection of (4.8), taking also into account that the
functions in M admit a common domain of definition. Indeed, it follows for example from (4.8)
that if the functions ϕ ∈ A(V ) are analytic near the set {z ∈ Cn

;Re z ∈ V0, |Im z| < ε}, then Sϕ
is analytic on {w ∈ Cm

;Rew ∈ U0, |Imw| < min{δε, ε}}. (See (4.5).) It then just remains to
estimate the functions Sϕ. We omit further details.

5. Preparations for the proof of (i) ⇒ (iii)

In the remaining part of the paper we shall essentially deal with the implication (i)⇒ (iii) in
Theorem 1.1.

We start the argument with a review of terminology and a preliminary result. In describing
terminology, we shall work in n variables, but similar notations shall be used also in related
situations. A function ℓ : Rn

→ R+ is said to be “sublinear” if for every ε > 0 there is c such
that ℓ(ξ) ≤ c + ε|ξ |, ∀ξ ∈ Rn . A measurable function f : Rn

→ C shall be called of “infra-
exponential type” if there is a sublinear function ℓ(ξ) such that | f (ξ)| ≤ exp [ℓ(ξ)], ∀ξ ∈ Rn .
Similarly, a measurable function f : Cn

→ C shall be called of infra-exponential type if
log(1 + | f (ζ )|) is sublinear on Cn

≃ R2n . We also mention the following simple lemma on
sublinear functions.

Lemma 5.1. For every sequence of positive sublinear functions ℓ j , j ∈ N, there is a sublinear
function ℓ and constants c′j such that ℓ j (ξ) ≤ ℓ(ξ)+ c′j holds for any j ∈ N and ξ ∈ Rn .

Consider next an entire function P(ζ ) on Cn of infra-exponential type. In particular, we can
expand P into a power series P(ζ ) =


|α|<∞ aαζα, ζ ∈ Cn . We can associate with it an

“infinite order partial differential operator of infra-exponential type”, P(D), first on holomorphic
functions F(z) defined on open sets Ω ⊂ Cn , and then on hyperfunctions u(x) on open
sets V ⊂ Rn in the following way: P(Dz)F(z) =


|α|<∞ aα(−i∂/∂z)αF(z), and to define

P(Dx )u, we write u locally near some point x0
∈ V as the sum of hyperfunctional boundary

values of some holomorphic functions F j , defined on wedges which live near x0, in notations,
u =

J
j=1 b(F j ), and then we set P(Dx )u =

J
j=1 b(P(Dz)F j ). (We have written P(Dz)
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when P(D) acts on holomorphic functions, since it then corresponds to

|α|<∞ aα(−i∂/∂z)α ,

and we have written P(Dx ) when it acts on hyperfunctions, since it then corresponds formally
to

|α|<∞ aα(−i∂/∂x)α .)

We next recall how one can define the Fourier inverse transform of a measurable infra-
exponential function f (ξ) on Rn by what we call “Carleman regularization”. (cf. [9].) Our
aim is to give a meaning in hyperfunctions to the integral


Rn exp [i⟨x, ξ⟩] f (ξ)dξ . For this

purpose we fix open convex cones Γ j ⊂ Ṙn, j = 1, . . . , J , such that Ṙn
=
J

j=1 Γ j . Also

consider a splitting of f into a sum of measurable infra-exponential functions
J

j=1 f j such
that supp f j ⊂ Γ j . The functions F j (z) =


Rn exp [i⟨z, ξ⟩] f j (ξ)dξ are then holomorphic on

the set Rn
+ iInt Γ⊥j and therefore admit hyperfunctional boundary values to Rn . We denote

these hyperfunctional boundary values by b(F j ). The Fourier inverse transform of f is then by
definition

F−1( f ) = (2π)−n
J

j=1

b(F j ). (5.1)

It is easy to see that this definition does not depend on the way we have split f into the sum
f =

J
j=1 f j . Moreover, Proposition 5.2 is well-known and follows from the definition. Note

that the Fourier transform F u of a hyperfunction u with compact support is defined by

(F u)(ξ) :=


u(x) exp[−i⟨x, ξ⟩]dx,

and is an infra-exponential function on Rn .

Proposition 5.2. Let f be a measurable infra-exponential function on Rn .

(i) If f is equal to the Fourier transform F u of a hyperfunction u with compact support, then
its Fourier inverse transform F−1 f = F−1 F u is equal to u.

(ii) Let Γ ⊂ Rn be a closed cone. If f satisfies

| f (ξ)| ≤ Ce−ε|ξ | for ξ ∉ Γ ,

with some positive constants C and ε, then

WFA F−1( f ) ⊂ Rn
× Γ . (5.2)

In particular, (5.2) holds when supp f ⊂ Γ .
(iii) If |ξ |k f (ξ) is bounded for any k, then F−1( f ) ∈ C∞(Rn).
(iv) When P(D) is an infra-exponential differential operator constructed as above, then

P(D)F−1( f ) = F−1(P(ξ) f (ξ)). (5.3)

After these remarks concerning terminology, we now turn to the preparations part. We need
in fact to show that hyperfunctions can be represented modulo real-analytic functions as images
of (say) C∞ functions by a partial differential operator of infinite order. For an early instance of
such a representation, we refer to [7]. (Infinite order infra-exponential operators as used in the
present argument were used at about the same time by Kawai [11] and Boutet de Monvel [5].
Since in [7] no real-analytic parameters y were used, there was no need there for real-analytic
“remainder terms”.)
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As a consequence, we shall have to deal with the analytic singular supports of (the
hyperfunctions in) the ranges of integral operators with differentiable kernels, rather than with
the supports of the ranges of operators with hyperfunction kernels.

Theorem 5.3. Let K ∈ B(V × U ) be a kernel satisfying the wave front set estimate (1.1). Then
there are an elliptic (infinite order) partial differential operator P(Dx ) with constant coefficients
in the variables x, a C∞ function K′ on V ×U, which also satisfies the wave front set estimate

{(x, y; 0, η) ∈ V ×U × Rn
× Rm

; η ≠ 0} ∩WFA K′ = ∅, (5.4)

and a real-analytic function K′′ on V ×U, such that K = P(Dx )K′ +K′′.

Proof. We start by taking an increasing sequence K1 ⊂ K2 ⊂ · · · of compact subsets in V ×U
satisfying


j Int K j = V × U , and consider for each K j a hyperfunction K j with compact

support which coincides with K in a neighborhood of K j .
We shall prove Theorem 5.3 in three steps. In the first, our main goal is to find an elliptic

operator P(Dx ), whose symbol increases sufficiently rapidly on Rn , depending on the growth
orders of the Fourier transforms of the K j and the wave front set estimates of the K j ’s over the
sets K j ’s. In the second step, we shall construct functions K′j ∈ C∞(Int K j ) and K′′j ∈ A(Int K j )

for j = 1, 2, . . . satisfying the desired properties for K j on Int K j . The final step is then to glue
the various functions and hyperfunctions together.

Step 1. Since K satisfies (1.1), there exist positive constants c j , j = 1, 2, . . . , such that

WFA K j ∩ {(x, y; ξ, η); (x, y) ∈ K j } ⊂ {(x, y; ξ, η); |η| ≤ c j |ξ |}. (5.5)

Moreover, the K j being compactly supported hyperfunctions we can find sublinear functions
ℓ j : Rn+m

→ R+ such that their Fourier transforms F K j can be estimated in the form

|F K j (ξ, η)| ≤ exp ℓ j (ξ, η), ∀(ξ, η) ∈ Rn+m . (5.6)

Actually, we shall not need this estimate in the regions (in the phase space) where there is no
wave front set (over K j : see (5.5)), and in the regions where we want to use (5.6) we want to
replace the sequence of functions ℓ j by a single sublinear function which depends only on ξ . To
achieve the latter goal, we consider at first the sublinear functions

ℓ̃ j (ξ) = sup
|η|≤2c j |ξ |


ℓ j (ξ, η)+ |(ξ, η)|

1/2 (5.7)

and then we take a sublinear function ℓ : Rn
→ R+ and constants c′j such that ℓ̃ j (ξ) ≤

c′j + ℓ(ξ), ∀ξ ∈ Rn . (See Lemma 5.1.) It follows that we have

|F K j (ξ, η)| ≤ A j exp

ℓ(ξ)− |(ξ, η)|1/2


if |η| ≤ 2c j |ξ |,

with some positive constants A j . Finally, to conclude Step 1, we take an infra-exponential elliptic
symbol P(ζ ) (ζ ∈ Cn) and a positive constant c satisfying

|P(ζ )| ≥ eℓ(Re ζ ) if |Im ζ | < c|Re ζ |. (5.8)

(See [11,7].)
Step 2. We define measurable functions Q j (ξ, η) and R j (ξ, η) by

Q j (ξ, η) =


F K j (ξ, η)/P(ξ) if |η| ≤ 2c j |ξ |,

0 if |η| > 2c j |ξ |,
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and

R j (ξ, η) = F K j (ξ, η)− P(ξ)Q j (ξ, η).

In view of the definitions, we also have

supp Q j ⊂ {(ξ, η); |η| ≤ 2c j |ξ |}, supp R j ⊂ {(ξ, η); |η| ≥ 2c j |ξ |},

|Q j (ξ, η)| ≤ A j exp

−|(ξ, η)|1/2


for (ξ, η) ∈ Rn+m . (5.9)

Both Q j and R j are infra-exponential functions, so their Fourier inverse transforms are well-
defined. It follows from (i) and (iv) of Proposition 5.2 that

K j (x, y) = P(Dx )F−1 Q j (x, y)+ F−1 R j (x, y).

It is also immediate from (ii) and (iii) of Proposition 5.2 that

WFA F−1 Q j ⊂ {(x, y; ξ, η); |η| ≤ 2c j |ξ |},

WFA F−1 R j ⊂ {(x, y; ξ, η); |η| ≥ 2c j |ξ |},

F−1 Q j ∈ C∞(Rn+m).

(The last statement follows from (5.9), which actually shows that F−1 Q j is a Gevrey-2 function.)
Moreover if we take into account (5.5) and the microlocal ellipticity of P away from

{(ξ, η) ∈ Rn+m
; ξ = 0}, we have

WFA F−1 Q j ∩ {(x, y; ξ, η); (x, y) ∈ K j } ⊂ {|η| ≤ c j |ξ |} ∪ {|η| = 2c j |ξ |},

WFA F−1 R j ∩ {(x, y; ξ, η); (x, y) ∈ K j } ⊂ {|η| = 2c j |ξ |}.

Now we claim that for each j , there exists a C∞ function K′j on Int K j satisfying

WFA K′j ⊂ {(x, y; ξ, η); |η| ≤ c j |ξ |}, (5.10)

WFA(F−1 Q j −K′j ) ⊂ {(x, y; ξ, η); |η| = 2c j |ξ |}. (5.11)

In fact, we define K′j as the restriction to Int K j of the iterated integral
|η|≤ 3

2 c j |ξ |

dω(ξ, η)


Rn+m
W (x − x̃, y − ỹ, ξ, η)(χ · F−1 Q j )(x̃, ỹ)dx̃d ỹ,

with some χ ∈ C∞0 (R
n+m), χ ≡ 1 on K j . Precisely speaking, we first integrate for complex

(x, y), and then take a continuous extension to (x, y) ∈ Rn+m . The existence of such an extension
and its differentiability in (x, y) follow from Lemma 4.1. On the other hand, by a standard
argument concerning the twisted Radon kernel, (5.10) and (5.11) follow from the estimates of
WFA(F−1 Q j ).

The estimate (5.10) directly gives the wave front set estimate (5.4) for K′j . Moreover if we
look at the estimates of the wave front sets on both sides of the equality

K j − P(Dx )K′j = P(Dx )(F−1 Q j −K′j )+ F−1 R j ,

we can see easily that K′′j := K j − P(Dx )K′j is real-analytic on Int K j .
Step 3. For any j < k,K′j −K′k is real-analytic on the common part Int K j ∩ Int Kk = Int K j

of the domains of definition. In fact, P(Dx )(K′j − K′k) = −K′′j + K′′k ∈ A(Int K j ) and the
microlocal ellipticity of P(Dx ) outside {(x, y; ξ, η); ξ = 0} implies WFA(K′j −K′k) ⊂ {ξ = 0},
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while (5.10) implies WFA(K′j −K′k) ⊂ {ξ ≠ 0}. Thus the family (K′j −K′k) j,k forms a cocycle
with real-analytic coefficients associated with the open covering {Int K j } j of V ×U , and we can
take L j ∈ A(Int K j ) ( j ∈ N) such that K′j −K′k = L j −Lk . Then the family (K′j −L j ) j defines
a global section K′ ∈ C∞(V ×U ). It is easily seen that K′ and K′′ := K − P(Dx )K′ satisfy all
the desired properties. �

Remark 5.4. Under the hypothesis of (i) of Theorem 1.1, we can apply Theorem 5.3 to the
kernel of T and get K′,K′′ and P(Dx ) as in that theorem. Denote by T ′ the operator

(T ′u)(x) =


U
K′(x, y)u(y) dy.

If u ∈ A′(U ), then T ′u is real-analytic outside some compact set (which depends on u).
In fact, in view of T u = P(Dx )(T ′u) +


K′′(x, y)u(y)dy, we have singsuppAT u =

singsuppA P(Dx )(T ′u) = singsuppAT ′u, since


K′′(x, y)u(y)dy is real-analytic and since
P(Dx ) is elliptic.

6. End of the proof of Theorem 1.1

In view of the discussions in the preceding section, we can easily prove that (i) ⇒ (iii) will
follow if we can prove the following:

Theorem 6.1. Let K ∈ C∞(V × U ) be such that the analytic singular support of (T u)(x) =
U K(x, y)u(y) dy is compact for every compactly supported Radon measure u. Then for every

K b U there is L b V such that T u is analytic outside L if u is a Radon measure with
supp u ⊂ K .

Remark 6.2. (i) Radon measures on U are elements in the dual of C(U ), where the latter is
endowed with the topology of uniform convergence on compact sets in U . When we speak
about Radon measures on a compact set K , we mean elements in the dual of C(K ), where
C(K ) is the space of continuous functions on K with the topology of uniform convergence
on K . The dual of C(K ) shall be denoted by C ′(K ).

(ii) Consider the explicit formula (4.3) for the situation of Theorem 6.1, that is, K ∈ C∞(V ×U )
and u ∈ C ′(K ) with K b U . Now we use the notations G j ,Ω j , F j , and so on, as in
Lemma 4.2. As is seen from Lemma 4.2, defining functions F j ∈ O(Ω j ) of K can be chosen
so as to be continuous up to V × U . In this case, the integral H j (z) :=


F j (z, y)u(y)dy,

which is a priori holomorphic on {z ∈ V0 + iG j ; |Im z| < ε} for any V0 b V , extends
continuously to {z ∈ V0 + iG j ; |Im z| < ε} ∪ V0, and also H j (x) =


F j (x, y)u(y)dy

holds. Therefore the hyperfunction b(H j ) is equal to a continuous function H j (x), and
by summing up, we have that the hyperfunction T u is equal to a continuous function
x →


K(x, y)u(y)dy, where the right hand side is calculated, for any fixed x , as the Radon

measure u evaluated at the continuous function y → K(x, y).

Proof of Theorem 1.1. (i) ⇒ (iii) using Theorem 6.1. Under the hypothesis of (i) of
Theorem 1.1, we can apply Remark 5.4 to K and get a decomposition K = P(Dx )K′ + K′′
where K′ satisfies the hypothesis of Theorem 6.1. Then, Theorem 6.1 guarantees that for every
K b U , there exists L b V such that u ∈ C ′(K ) implies singsuppA


K′(x, y)u(y)dy ⊂ L ,

which also implies singsuppAT u ⊂ L .
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Now we denote by L̂ the union of L and the connected components of V \ L which are
relatively compact in V . Then L̂ is also compact and no component of V \ L̂ is relatively compact
in V .

We claim here that supp T u ⊂ L̂ for any u ∈ C ′(K ). In fact, assume by contradiction that
supp T u contains a point x0 in V \ L̂ . Since T u is real-analytic outside L̂ , the component V0 of
V \ L̂ containing x0 is included in supp T u. On the other hand, again from the hypothesis of (i)
of Theorem 1.1, the support of T u is compact, which contradicts the facts that supp T u ⊃ V0
and that V0 is not relatively compact in V .

We can use Theorem 1.6 for K(x, y) restricted to (V \ L̂) × Int K . In fact, for any y0
∈

Int K , δy0 belongs to C ′(K ) and we have

K(x, y0) = T δy0 = 0 on V \ L̂.

Therefore K vanishes on (V \ L̂) × Int K . Since the choice of K b U was arbitrary, this
implies (iii). �

It is clear from Remark 6.2 that, for any fixed compact K ⊂ U , the linear map T restricted on
C ′(K ) is a continuous map from the Banach space C ′(K ) to C∞(V ). Therefore, Theorem 6.1
follows directly from the following.

Theorem 6.3. Let T : X → C∞(V ) be a continuous linear map from some Fréchet space X
to C∞(V ). Assume that for any u ∈ X, the analytic singular support singsuppAT u of T u is
compact. Then there exists a compact set L ⊂ V such that singsuppAT u ⊂ L holds for any
u ∈ X.

In the present paper, there is no need to work for an abstract Fréchet space in this Theorem 6.3,
but this formulation costs no additional effort and will be useful in a forthcoming paper.

In the proof of Theorem 6.3, we shall use the following remark about “non-analyticity”.

Lemma 6.4. Assume that f ∈ C∞(V ) is not real-analytic at x0. Then there is a sequence of
points x i in V converging to x0 and a sequence of multiindices αi such that

|Dαi
f (x i )/αi

!|
1/|αi

|
≥ i2. (6.1)

(The “square” in i2 in (6.1) is for later convenience.)

Proof. The real-analyticity of f at x0 can be characterized by the existence of constants ε > 0
and c such that

sup
|x−x0|<ε

sup
α
|Dα f (x)/α!|1/|α| ≤ c.

The opposite is at first that for every ℓ ∈ N we have

sup
|x−x0|<1/ℓ

sup
α
|Dα f (x)/α!|1/|α| = ∞.

We can then, in a second step, find a sequence of points x i and of multiindices αi such that (for
example)

|x i
− x0
| ≤ 1/ i, |Dαi

f (x i )/αi
!|

1/|αi
|
≥ i2. �
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Our next lemma is as follows.

Lemma 6.5. Let T be as in Theorem 6.3. Assume that for every compact set L ⊂ V we can find
u ∈ X satisfying singsuppAT u ⊄ L. Then we can find a sequence of compact sets Lk ⊂ V , of
points xk

∈ V and of elements uk ∈ X, k = 1, 2, . . . , with the following properties:

• Lk ⊂ Lk+1,

∞

k=1 Int Lk = V ,
• xk
∈ V \ Lk ,

• T ui , i = 1, . . . , k − 1, are real-analytic on V \ Lk , whereas T uk is not real-analytic at xk .
•

∞

k=1 ckuk converges in X for any bounded sequence {ck}k in C.

Proof. At first we consider a sequence of compact sets {L ′k}k in V satisfying the condition
∞

k=1 Int L ′k = V , then we define Lk with Lk ⊃ L ′k and uk recursively for k = 1, 2, . . . as
follows. Putting L1 = L ′1, we can find u1 ∈ X satisfying singsuppAT u1 ⊄ L1. After defining
L j and u j for j = 1, 2, . . . , k − 1, we define

Lk = Lk−1 ∪ L ′k ∪
k−1
j=1

singsuppAT u j ,

which is compact since so is every singsuppAT u j , and pick uk ∈ X satisfying singsuppAT uk ⊄

Lk . Finally we consider a sequence of points xk
∈ singsuppAT uk \ Lk . Now all the requirements

except the last one are fulfilled.
Let {∥ · ∥ j } j∈N be a countable system of semi-norms on X which defines the Fréchet topology

of X . Then we take positive constants λk such that λk > 2k max j=1,...,k ∥uk∥ j . The remaining
thing to do is to replace uk by uk/λk , so that

k

∥uk∥ j ≤

k< j

∥uk∥ j +

k≥ j

2−k < +∞ for any j ∈ N,

which implies the last property in Lemma 6.5. �

Proof of Theorem 6.3. We argue by contradiction and can therefore find Lk, uk, xk, k =
1, 2, . . . as in the preceding Lemma 6.5.

We shall achieve a contradiction by choosing constants cp such that u =

∞

p=1 cpu p

converges in X , but such that T u is not real-analytic at any of the points xk . For the first condition,
we will choose cp such that |cp| ≤ 1.

Since the functions T u p, p ≤ k − 1, are real-analytic in a neighborhood of xk , we can find
constants µk ≥ 0 and νk > 0 such that

|DαT u p(x)| ≤ µ
|α|+1
k α! for |x − xk

| ≤ νk, p ≤ k − 1, α ∈ Nn
0 . (6.2)

According to Lemma 6.4 we can also find sequences i → xk,i and i → αk,i such that
limi→∞ xk,i

= xk and that

|Dαk,i
T uk(x

k,i )| ≥ i2|αk,i
|αk,i
! ≥ i1+|αk,i

|αk,i
!, ∀i. (6.3)

The main task in the argument is to find the correct constants cp. They shall be found
iteratively. The index in the iteration shall be denoted by “ j”. The choice of c1, . . . , c j−1 will
be done in such a way that most of the work related to the points x1, . . . , x j−1 is already done.
When we look for a new c j we shall have to take care not to ruin what has been achieved for
x1, . . . , x j−1, but also to take care of what is required for x j .
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The c j shall be found iteratively together with some subsequences i → z j,k,i , i →
β j,k,i , k ≤ j , of the initial sequences i → xk,i , i → αk,i , such that the following inductive
statement holds:

Lemma 6.6. For every j ∈ N and every k ≤ j we can find a constant c j (which we shall always
choose with the property |c j | ≤ 1) and sequences i → z j,k,i , i → β j,k,i , k ≤ j , satisfying the
following properties:

(a) For every j and every k ≤ j , the sequence i → (z j,k,i , β j,k,i ) is a subsequence of
i → (xk,i , αk,i ). By this we mean that for every j and every k there is a strictly increasing
sequence of natural numbers i → qi such that (z j,k,i , β j,k,i ) = (xk,qi , αk,qi ). In particular,
limi→∞ z j,k,i

= xk, ∀k, ∀ j . Also note that by writing i → (z j,k,i , β j,k,i ) and similar
expressions, we want to make it notationally clear that choices for subsequences are made
simultaneously for the “z” and for the “β”.

(b) For j ≥ 2, i ≤ j − 1, k ≤ j − 1, we have

(z j,k,i , β j,k,i ) = (z j−1,k,i , β j−1,k,i ). (6.4)

(c) For every j ≥ 2 and every k ≤ j − 1, the sequence i → (z j,k,i , β j,k,i ) is a subsequence
of the sequence i → (z j−1,k,i , β j−1,k,i ). This means in analogy with the above that for
every j and every k there is a strictly increasing sequence of natural numbers qi such
that (z j,k,i , β j,k,i ) = (z j−1,k,qi , β j−1,k,qi ), ∀i, ∀k. Also note that the index j is associated
with the iteration step and the index “k” relates our choices to the point xk . In particular,
sequences with different k are not related to each other.

(d) For every j , every k ≤ j and every i ,Dβ j,k,i
T


j

p=1

cpu p


(z j,k,i )

 ≥ (1+ 2− j )i |β
j,k,i
|β j,k,i

!. (6.5)

(Observe that we do not consider sequences i → (z j,k,i , β j,k,i ) for k > j .)

Proof of Lemma 6.6 (Beginning). We denote the conditions (a)–(d) with arbitrarily fixed j by
(a j ), (b j ), (c j ), and (d j ) respectively. For j = 1 we choose c1 = 1, z1,1,i

= x1,i , β1,1,i
= α1,i .

(a1) is then trivial, (b1) and (c1) are void and (d1) follows from (6.3).
Assume now by induction that for some fixed j we have already found cp, p ≤ j − 1, and

sequences i → (z p,k,i , β p,k,i ), k ≤ p ≤ j −1, which satisfy (a j−1), (b j−1), (c j−1) and (d j−1).
Our aim is to find a constant c j with 0 ≠ |c j | ≤ 1, and sequences i → (z j,k,i , β j,k,i ), k ≤ j ,
which have the properties (a j ), (b j ), (c j ) and (d j ).

The first remark is, if we want to have (b j ), that we must set

(z j,k,i , β j,k,i ) := (z j−1,k,i , β j−1,k,i ) for i ≤ j − 1, k ≤ j − 1. (6.6)

We next fix a constant d > 0 for which the conclusion in the following remark holds.

Remark 6.7. Assume thatDβ j−1,k,i
T


j−1
p=1

cpu p


(z j−1,k,i )

 ≥ (1+ 2− j+1)i |β
j−1,k,i

|β j−1,k,i
!,

∀i ≤ j − 1, ∀k ≤ j − 1, (6.7)
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and (6.6). Then there exists a constant d > 0 such that the inequality (6.5) will hold for
i ≤ j − 1, k ≤ j − 1, and for any c j satisfying |c j | ≤ d.

To see this, we use the trivial inequalities

(1+ 2− j+1)i |β
j,k,i
|β j,k,i

! > (1+ 2− j )i |β
j,k,i
|β j,k,i

!, for i ≤ j − 1, (6.8)

which giveDβ j,k,i
T


j−1
p=1

cpu p


(z j,k,i )

 > (1+ 2− j )i |β
j,k,i
|β j,k,i

!, for i ≤ j − 1, k ≤ j − 1,

since (z j,k,i , β j,k,i ) := (z j−1,k,i , β j−1,k,i ) (in view of (6.6)) for the relevant indices. By adding
the term c j u j to

 j−1
p=1 cpu p with some sufficiently small c j , we can then obtain (6.5) for

i ≤ j − 1, k ≤ j − 1, since this involves only finitely many inequalities.
In order to define c j , and in order to define (z j,k,i , β j,k,i ) for i ≥ j, k ≤ j − 1, and for

i ≥ 1, k = j , we prepare the following:

Lemma 6.8. We take the index set N≥ j := { j, j + 1, . . .} and fix a sequence β̂ := {β i
}i≥ j of

multiindices, where the index i runs through N≥ j . For a sequence { f i
}i≥ j of complex numbers,

we define

ρ
β̂
({ f i
}i ) := sup

i
(| f i
|/β i
!)1/(1+|β

i
|).

Then,
(i) The condition ρ

β̂
({ f i
}i ) = ∞ is equivalent to the existence of a strictly increasing sequence

i → qi ∈ N≥ j such that

| f qi | ≥ 2i1+|βqi |βqi !, i = 1, 2, . . . .

(ii) Let { f i
}i and {gi

}i be two sequences and assume that at least one of the two quantities
ρ
β̂
({ f i
}i ) and ρ

β̂
({gi
}i ) is not finite. Then ρ

β̂
({ f i
+ cgi

}i ) = ∞ except for at most one

complex value c ∈ C. (That is, the set {c ∈ C; ρ
β̂
({ f i
+ cgi

}i ) < +∞} is either empty, or is
a set with precisely one element.)

Proof. (i) Can be seen by a straightforward argument. To check (ii), it suffices to pay attention
to the fact that the set Y := {{ f i

}i≥ j ; ρβ̂({ f i
}i ) < +∞} becomes a subspace of the vector space

CN≥ j of the sequences of complex numbers indexed by N≥ j . In fact, assume by contradiction
that there were two distinct numbers c1 ≠ c2 for which ρ

β̂
({ f i
+ cpgi

}i ) < +∞ (p = 1, 2),

i.e., with { f i
+ cpgi

}i ∈ Y . Then it would follow that we had {gi
}i =

{ f i
+c1gi

}i−{ f i
+c2gi

}i
c1−c2

∈ Y

and also that { f i
}i = { f i

+ c1gi
}i − c1{gi

}i ∈ Y . This would violate the assumption that
ρ
β̂
({ f i
}i )+ ρβ̂({g

i
}i ) = ∞. �

We now return to the proof of Lemma 6.6. Recall that the index j is fixed, and that the
constants cp (p ≤ j − 1) and the sequences {(z p,k,i , β p,k,i )}i (k ≤ p ≤ j − 1) have been found.

For each fixed k = 1, . . . , j − 1, we can apply (ii) of Lemma 6.8 for the case that the
index set is N≥ j , the sequence of multiindices is β̂ j−1,k

:= {β j−1,k,i
}i≥ j , and two sequences

{ f i
}i≥ j , {gi

}i≥ j are given by

f i
:= Dβ j−1,k,i

T


j−1
p=1

cpu p


(z j−1,k,i ), gi

:= Dβ j−1,k,i
T (u j )(z

j−1,k,i ).
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Note that in this case ρ
β̂ j−1,k ({ f i

}i ) = ∞. Then we get at most one exceptional value for c j , for

which ρ
β̂ j−1,k ({ f i

+ c j gi
}i ) = ∞ fails. Since k can have only the values 1, . . . , j − 1, we get a

set E ′ of at most j − 1 exceptional values for c j , such that if c j ∉ E ′, then

ρ
β̂ j−1,k

Dβ j−1,k,i
T


j−1
p=1

cpu p + c j u j


(z j−1,k,i )


i

 = ∞,
if k = 1, . . . , j − 1. (6.9)

For k = j , we again apply (ii) of Lemma 6.8, now for the case that the index set is N≥1, the
sequence of multiindices is α̂ j

:= {α j,i
}i , and two sequences { f i

}i≥1, {gi
}i≥1 are given by

f i
:= Dα j,i

T


j−1
p=1

cpu p


(x j,i ), gi

:= Dα j,i
T (u j )(x

j,i ).

Note that in this case ρα̂ j ({gi
}i ) = ∞ by (6.3). Then we get at most one exceptional value for

c j . Explicitly, we obtain that if c j does not take this exceptional value, then

ρα̂ j

Dα j,i
T


j−1
p=1

cpu p + c j u j


(x j,i )


i

 = ∞. (6.10)

Since T (
 j−1

p=1 cpu p) is real-analytic at x j , we know that ρα̂ j ({ f i
}i ) <∞ and therefore that the

exceptional value for (6.10) is 0. But we do not need this explicit information in this context.
We have thus proved the following intermediate statement:

There is an exceptional set E ⊂ C of at most j elements such that (6.9) and (6.10) hold if
c j ∉ E .

We are now ready to specify the choice of c j : we ask for the condition |c j | ≤ 1 to guarantee
the convergence of


∞

p=1 cpu p, for the condition |c j | < d with d given by Remark 6.7, and for
the condition c j ∉ E with E given as above. Since E is a finite set, we can take c j satisfying
these conditions. Note that (6.5) holds for k = 1, . . . , j−1 and i ≤ j−1 in view of Remark 6.7.

Once we have chosen c j , we define (z j,k,i , β j,k,i ) for i ≥ j, k ≤ j − 1 and for i ≥ 1, k = j ,
as follows.

For each fixed k with k ≤ j − 1, we now use (6.9) and the part (i) of Lemma 6.8. We can
then take a (simultaneous) subsequence {(z j,k,i , β j,k,i )}i≥ j of {(z j−1,k,i , β j−1,k,i )}i≥ j , such that
(6.5) holds also for i ≥ j . This shows that (c j ) and (d j ) hold for k with k = 1, . . . , j − 1. Note
that (c j ) and (a j−1) imply (a j ).

As for the case k = j , we use (6.10), in combination again with (i) of Lemma 6.8. This shows
that if {(z j, j,i , β j, j,i )}i≥1 is a suitable subsequence of {(x j,i , α j,i )}i≥1 then (6.5) with k = j will
hold. Therefore (a j ) and (d j ) hold also in the case k = j . Note that (c j ) with k = j is void.

As mentioned in the beginning of the proof, we can now argue by induction in j , and complete
the proof of Lemma 6.6. �

Corollary 6.9. For j, k, i satisfying k ≤ i ≤ j , we have

(z j,k,i , β j,k,i ) = (zi,k,i , β i,k,i ), (6.11)Dβi,k,i
T


j

p=1

cpu p


(zi,k,i )

 ≥ (1+ 2− j )i |β
i,k,i
|β i,k,i

!. (6.12)
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In fact, (6.11) is a consequence of repeated use of Lemma 6.6(b), and (6.12) follows from
(6.11) and (6.5), asDβi,k,i

T


j

p=1

cpu p


(zi,k,i )

 =
Dβ j,k,i

T


j

p=1

cpu p


(z j,k,i )


≥ (1+ 2− j )i |β

j,k,i
|β j,k,i

! = (1+ 2− j )i |β
i,k,i
|β i,k,i

!.

We now return to the proof of Theorem 6.3. Let c j for j ∈ N and i → (z j,k,i , β j,k,i ) for k ≤ j
be constants and sequences given by Lemma 6.6. Now we consider for every k the “diagonal”
sequence i → (zi,k,i , β i,k,i ) and u =


∞

p=1 cpu p. We can see from Lemma 6.6(a) and (c), that
the diagonal sequence i → (zi,k,i , β i,k,i ) form a subsequence of i → (xk,i , αk,i ) for any k,
which in particular shows that limi→∞ zi,k,i

= xk .
By passing to the limit j →∞ in (6.12) in Corollary 6.9, we now have that

|Dβi,k,i
T u(zi,k,i )| ≥ i |β

i,k,i
|β i,k,i

!, if i ≥ k. (6.13)

Here we used the convergence of

∞

p=1 cpu p to u in the Fréchet space X and the continuity of
the map T : X → C∞(V ). Since limi→∞ zi,k,i

= xk , the estimate (6.13) shows that T u is not
real-analytic at every xk , and that singsuppAT u ⊄ Lk for any k. Since


k Int Lk = V , this leads

to a contradiction in that singsuppAT u is not compact, concluding the proof of Theorem 6.3. �

Remark 6.10. We mention that there is some analogy to the proof of a theorem of J. Peetre
in distribution theory which states that a linear operator from D(U ) to D′(U ) which shrinks
supports must be continuous outside a locally finite set of “points of discontinuity”, and is
therefore (by a theorem of Schwartz) a linear partial differential operator with D′(U )-coefficients
outside that same set. (This is a vague statement, cf. [17] for details. Also recall that using this
theorem, Peetre proved that a linear operator D(U )→ D(U ) which shrinks supports is a linear
partial differential operator with C∞-coefficients.)
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