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Abstract

Universal algebra is often known within computer science in the guise of algebraic specification or equational
logic. In 1963, it was given a category theoretic characterisation in terms of what are now called Lawvere
theories. Unlike operations and equations, a Lawvere theory is uniquely determined by its category of mod-
els. Except for a caveat about nullary operations, the notion of Lawvere theory is equivalent to the universal
algebraist’s notion of an abstract clone. Lawvere theories were soon followed by a further characterisation
of universal algebra in terms of monads, the latter quickly becoming preferred by category theorists but not
by universal algebraists. In the 1990’s began a systematic attempt to dualise the situation. The notion of
monad dualises to that of comonad, providing a framework for studying transition systems in particular.
Constructs in universal algebra have begun to be dualised too, with different leading examples. But there
is not yet a definitive dual of the concept of Lawvere theory, or that of abstract clone, or even a definitive
dual of operations and equations. We explore the situation here.
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1 Introduction

There have been two main category theoretic formulations of universal algebra. The

earlier was by Bill Lawvere in 1963 [16]. Nowadays, his central construct is usually

called a Lawvere theory, more prosaically a single-sorted finite product theory [1,2].

Lawvere made a careful distinction between the notions of Lawvere theory and

equational theory. Equational theories are a form of presentation for Lawvere theo-

ries: every equational theory determines a Lawvere theory and every Lawvere theory
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is determined by an infinite class of equational theories. Choosing good presenta-

tions for a Lawvere theory and deriving an invariant description of the theory from

a presentation are important, but the semantics of a Lawvere theory can be consid-

ered independently of that [16]. We give the definitions and outline the situation in

Section 2.

Universal algebraists have had the same concerns about the lack of invariance

of presentations as category theorists have had. They have long used the notion of

clone, of which Lawvere was aware, and they have gradually moved towards that

of abstract clone [4]. Subject to a caveat about nullary operations, the notion of

abstract clone is equivalent to that of Lawvere theory. So, subject to the caveat,

universal algebraists readily recognise the definition of Lawvere theory and accept

its significance for universal algebra. We give the definitions and constructions in

Section 3.

The second category-theoretic formulation of universal algebra, which was in

terms of monads, has a more complicated history and is much less accepted by

universal algebraists. Monads typically arise from adjoint pairs of functors. The

notion of monad (or triple or standard construction) arose in algebraic topology for

reasons distinct from universal algebra, see for instance [6]. In 1965, Eilenberg and

Moore noted that in case T is the free group monad, their category of T -algebras

is the category of groups [5].

In 1966, Linton made the general connection between monads and Lawvere

theories: every Lawvere theory gives rise to a monad on Set whose category of

algebras is equivalent to the category of models of the Lawvere theory, and, subject

to a generalisation in the definition of Lawvere theory, every monad arises thus,

uniquely up to coherent isomorphism [17]. So Linton focused on a generalisation

of the notion of a Lawvere theory, one that corresponds exactly to the notion of

monad. We give the details in Section 4.

Monads have been the more common category theoretic formulation of universal

algebra, see for example [19]. But Lawvere theories relate more closely to universal

algebra; they arose directly from universal algebra; and they allow natural con-

structions that arise in universal algebra, such as the sum or tensor of theories,

while monads do not [9]. So it seems little wonder that, although many universal

algebraists are aware of monads, they seem generally not to have found them, or

an equivalent notion, very helpful. Much of the relevant historical development has

been summarised in [9].

Over the past decade or so, category theorists, computer scientists and universal

algebraists have all become interested in the dual of this situation, for a variety of

reasons [7,10,14,24,26,29].

A leading example for the interest by computer scientists arises from transition

systems, which play a fundamental role in, for example, concurrency [21]. A finitely

branching transition system is given by a set S together with a function t : S −→
Pf (S), where Pf (S) is the set of finite subsets of S. The functor Pf on Set generates

a cofree comonad G(Pf ), and t corresponds to the G(Pf )-coalgebra that sends an

element σ of S to the set of all possible streams of transitions generated by t with
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source σ. We would like to develop a body of theory that is dual to universal

algebra and includes this example, but it is not easy. We outline some of the issues

in Section 5.

One approach to dualising the theory of Lawvere theories is by defining a co-

model of a Lawvere theory L in Set to be a model of L in Setop. That line of thought

has proved to be valuable for category theorists, for computer scientists, and for uni-

versal algebraists [14,24,26]. The category of comodels induces a comonad and is

the category of coalgebras for the induced comonad on Set. But this approach does

not include transition systems.

Alternatively, one can dualise definitions associated with presentations, carefully

dualising the structure of [13,27]. That line of thought has value too [7]. But the

fact that Set is a locally finitely presentable category while Setop is not, leads to less

elegant results than one would wish [7], and one loses the presentation independence

that is central to the notions of Lawvere theory and abstract clone.

Linton’s generalised notion of Lawvere theory, corresponding exactly to the no-

tion of monad on Set, suggests a third approach: Linton did not require size con-

ditions [17,18], so dualising his definition is immediate, yielding a definition that is

equivalent to that of comonad on Set, thus including transition systems. But sums

of monads need not exist, so products of comonads need not exist either; similarly

for tensors.

So the question is open, hence the question mark in the title of this paper. We

outline the above three proposals in Section 6, and we propose a tentative definition

of a dual Lawvere theory in Section 7, leaving its development for further work.

2 Lawvere theories

In his 1963 PhD thesis, Lawvere gave a category theoretic formulation of universal

algebra along the following lines.

Definition 2.1 Let ℵ0 denote a skeleton of the category of finite sets and all func-

tions between them, considered as a category with strictly associative coproducts.

Since ℵ0 is equipped with strictly associative finite coproducts given by the

ordinal sum of natural numbers, the opposite category ℵop0 is equipped with strictly

associative finite products. It is equivalent to the free category with finite products

on 1 as ℵ0 is equivalent to the free category with finite coproducts on 1.

Definition 2.2 A Lawvere theory consists of a small category L with (necessarily

strictly associative) finite products and a strict finite-product preserving identity-

on-objects functor I : ℵop0 −→ L. A map of Lawvere theories from L to L′ is a

(necessarily strict finite-product preserving) functor from L to L′ that commutes

with the functors I and I ′.

Thus the objects of any Lawvere theory L are exactly the objects of ℵ0, and
every function between such objects yields a map in L. Note that the functor I

need not be an inclusion. One often refers to the maps of a Lawvere theory as
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operations. The notion of map between Lawvere theories encapsulates the idea of

an interpretation of one theory in another.

The definitions of Lawvere theory and map between them yield a category Law,

with composition given by ordinary composition of functors. The category Law is

complete and cocomplete, indeed a locally finitely presentable category.

Given an equational theory, one generates a Lawvere theory by putting L(n, 1) =

Fn, the free algebra on n generators. This determines L(n,m) for any m as L(n,m)

must be the product ofm copies of L(n, 1). The composition of L is fully determined

by the family of maps

(Fp)n × Fn −→ Fp

determined by substitution of n terms of p variables into a term of n variables.

For most mathematical purposes, one understands a Lawvere theory by study

of its models.

Definition 2.3 A model of a Lawvere theory L in a category C with finite products

is a finite-product preserving functor M : L −→ C.

Note that one has preservation of finite products here, not strict preservation.

Preservation rather than strict preservation of finite products is fundamental: if one

demanded strict preservation, the category of models for the Lawvere theory for a

monoid would be empty, rather than being the category of monoids as one wants.

The reason is that, with the usual set-theoretic definitions, finite products in Set

are not strictly associative, whereas they are strictly associative in any Lawvere

theory. Preservation rather than strict preservation also allows a smooth account

of change of base category along a finite product preserving functor H : C −→ C ′.
The requirement that M preserves projections, which is part of what preserva-

tion of products means, determines the behaviour of M on all operations of the form

If : projections in L amount to coprojections in ℵ0, and every function f is given

by a family of coprojections. So what determines a model is the interpretation of

the other operations.

There is a mild difference here between universal algebra and category theory

traditions. Some universal algebraists only admit non-empty models [3]. So, for

example, a category theorist would regard the empty set as a carrier for the struc-

ture of a semigroup, whereas some universal algebraists would not. For a category

theorist, the empty semigroup is important as it is the initial object in the category

of semigroups.

Definition 2.4 For any Lawvere theory L and any category C with finite products,

the category Mod(L,C) is defined to have objects given by all models of L in C,

with maps given by all natural transformations between them.

The definition of map in Mod(L,C) is subtle. One can readily prove that any

natural transformation between models respects finite products: for any natural

transformation α between models M and N , and for any n in ℵ0, the map αn :

Mn −→ Nn is given by the product of n copies of the map α1 : M1 −→ N1. Thus
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the maps in Mod(L,C) could equally be defined to be those natural transformations

that respect the product structure of L.

The semantic category C of primary interest is Set. Consider a model M of a

Lawvere theory L in Set. The set M1 determines Mn up to coherent isomorphism

for every n in L: for M preserves finite products of L, equivalently of ℵop0 ; these

are finite coproducts of ℵ0, which are given by finite sums; and so Mn must be

a product of n copies of M1. Thus to give a model M is equivalent to giving a

set X = M1 together with, a function from Xm to X for each map of the form

f : m −→ 1 in the category L, subject to the equations given by the composition

and product structure of L; and Mod(L, Set) is equivalent to the evident category

of such structures. This analysis routinely extends to any category C with finite

products.

The category Mod(L, Set) is always complete and cocomplete, with the initial

object given by the empty set if L has no nullary operations.

Unlike equational theories, Lawvere theories are semantically invariant. The

precise sense in which that is so is as follows. With each Lawvere theory L, we

associate the underlying set functor

ev1 : Mod(L, Set) −→ Set

given by evaluation at 1. This is the semantics functor of Lawvere [16]. We say that

the categories Mod(L, Set) and Mod(L′, Set) of models are coherently equivalent if

there is an equivalence of categories between them that respects the underlying set

functor.

Proposition 2.5 [16] Given Lawvere theories L and L′, if the categories

Mod(L, Set) and Mod(L′, Set) are coherently equivalent, then the Lawvere theo-

ries L and L′ are isomorphic in the category Law.

3 Abstract clones

Let C be an arbitrary category and let X be an object of C for which all finite

powers of X also exist in C.

Definition 3.1 Setting OX =
∐

n>0C(Xn, X), a subset Cl ⊆ OX is called a clone

of operations over the object X if it contains all projections πi : X
n −→ X and

is closed under composition, i.e., writing Cln for those elements of Cl that lie in

C(Xn, X), given f εCln and f1, . . . , fn ε Clk, the composite f(f1, . . . , fn) is in Clk.

This seems the most straightforward possible generalisation of a clone to abstract

categories [14]. It is almost verbatim the definition in universal algebra [4] except

that the composition under which the clones must be closed is written with the help

of tuplings. In particular, putting C = Set, this is exactly the notion of a clone as

studied in universal algebra [25,28,15].

Note that nullary operations are excluded from the definition, i.e., C(X0, X) �⊆
OX . This follows a convention in universal algebra, which has its advantages but

also disadvantages. The notion is naturally connected with that of models of Law-
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vere theories, although it would be even more natural if one would allow nullary

operations, which are less often encountered in universal algebraic literature, e.g.,

in [20].

Proposition 3.2 [14] A subset Cl ⊆ OX is a clone of operations over X if and

only if there exists a model M : L −→ C of a Lawvere theory L in C such that

M(1) = X and Cl =
∐

n>0{M(f) | fεL(n, 1)}.
The notion of clone is standard within universal algebra and has been so for

many years. What is less standard is the abstraction from a base set X to a notion

corresponding exactly to that of a Lawvere theory, modulo the above caveat about

nullary operations. In order to state a precise equivalence result, in the following,

we shall allow abstract clones to have nullary operations.

Definition 3.3 cite [4,14] An abstract clone consists of

• for each n ≥ 0, a set Cln, the elements of which are called n-ary operations

• for 1 ≤ i ≤ n, an n-ary operation πi (allowing overloading of notation as, strictly

speaking, we have a πi for each n)

• for each n-ary operation g and m-ary operations f1, . . . , fn, an m-ary operation

g(f1, . . . , fn)

such that, subject to the composites being defined,

• (h(g1, . . . , gn))(f1, . . . , fm) = h(g1(f1, . . . , fm), . . . , gn(f1, . . . , fm))

• πi(f1, . . . , fn) = fi for all ≤ i ≤ n

• f(π1, . . . , πn) = f .

Proposition 3.4 To give an abstract clone is equivalent to giving a Lawvere theory.

Proof. Given an abstract clone Cl, put LCl(n,m) = Clmn , with composition de-

termined by the composition of operations in Cl, and with the identity on n given

by (π1, . . . , πn). Observe that LCl forms a category with strictly associative finite

products given by ordinal sum of natural numbers together with tuples of the πi’s,

and use the fact that ℵop0 is the free category with finite products on 1 to generate

the functor I : ℵop0 −→ LCl. Thus LCl is a Lawvere theory.

For the converse, given a Lawvere theory L, put (ClL)n = L(n, 1), define the πi’s

using projections of L, and define composition of operations by the composition of

L together with the universal property of finite products. This data readily satisfies

the axioms for an abstract clone.

The two constructions are routinely checked to be mutually inverse. �

4 Monads

Soon after Lawvere theories were defined, Linton showed that every Lawvere theory

yields a monad on Set [17]. The construction extends to a fully faithful functor from

Law to the category Mnd of monads on Set. The functor is not an equivalence of
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categories. So in this precise sense, a monad on Set is a more general notion than

that of Lawvere theory.

Linton also gave a partial converse. One can generalise the definition of Lawvere

theory to allow for arities of arbitrary size, with a generalised theory no longer a

small category or fully determined by one. The construction of a monad from a

Lawvere theory then generalises to an equivalence of categories between the category

of generalised Lawvere theories and Mnd. In [18], Linton accordingly generalised

Lawvere’s treatment of semantics and algebraic structure.

In more detail, for any Lawvere theory L, let UL : Mod(L,C) −→ C denote

evaluation at 1, cf. Proposition 2.5. If UL has a left adjoint FL, as it does whenever

C is locally presentable, it exhibits Mod(L,C) as equivalent to the category TL-Alg

for the induced monad TL on C [1]. Since Set is locally finitely presentable, every

Lawvere theory L induces a monad TL on Set.

Proposition 4.1 The monad TL may be described by the following colimit:

TLX =

nεℵ0∫
L(n, 1)×Xn

This colimit can be constructed by taking the coproduct∐
nεℵ0

L(n, 1)×Xn

then factoring by identifying elements determined by taking projections and diago-

nal maps of ℵop0 . So it is the set of all equivalence classes of terms generated by the

operations of L, with variables among the elements of X, subject to the equalities

determined by L.

Proposition 4.2 The construction sending a Lawvere theory L to the monad TL

extends to a fully faithful functor from Law to Mnd. Moreover, the comparison

functor exhibits an equivalence between Mod(L, Set) and TL-Alg.

One can readily check that TL is always finitary. When the base category is Set,

finitariness characterises the image of the construction, but that was an observation

of a later time [12].

For a converse, observe that for any monad T on Set, the Kleisli category Kl(T )

has all small coproducts and the canonical functor I : Set −→ Kl(T ) preserves

them: the canonical functor I has a right adjoint and is identity-on-objects. Re-

stricting I to the full subcategory ℵ0, we obtain (the opposite of) a Lawvere theory

as in the diagram.

Lop
T

� Kl(T )

ℵ0

�

� Set

�
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It is straightforward to show the following.

Proposition 4.3 The construction sending a monad T on Set to the category

Kl(T )opℵ0
determined by restricting Kl(T ) to the objects of ℵ0 extends to a func-

tor L− : Mnd −→ Law.

Given a Lawvere theory L, one can readily prove that L(TL) is isomorphic to

L, but the converse is false: the only monads of the form TL are the finitary ones.

Thus we have the following.

Theorem 4.4 The constructions sending L to TL and that sending T to LT exhibit

Law as a full coreflective subcategory of Mnd, the category of monads on Set.

Because this is not an equivalence of categories, Linton generalised the definition

of Lawvere theory to consider a locally small category L with all small products,

together with a strict product preserving identity-on-objects functor from the oppo-

site of a skeleton of Set to L. With this generalised notion of Lawvere theory, Linton

showed that the construction of Proposition 4.2 extends, and in the corresponding

version of Theorem 4.4, one has an equivalence of categories [17].

The different range of generality of the ideas of monads and Lawvere theories

extends to the connection between (generalised) Lawvere theories and monads. One

can consider monads on any category, while Lawvere theories correspond to (fini-

tary) monads on Set. On the other hand, a monad on a category C has algebras,

i.e., models, only in C, while a Lawvere theory naturally has models in any cat-

egory with products. So while monad maps between monads on Set (see [1] for

this notion of monad map) correspond directly to maps of Lawvere theories, there

is nothing in the world of monads (at least nothing to which one has immediate

access) corresponding to the functoriality of Mod(L,C) in C.

5 Comonads and transition systems

The notions of monad and algebra dualise to those of comonad and coalgebra: that

is easy.

Definition 5.1 A comonad on a category C is a monad on Cop. Given a comonad

G on C, a G-coalgebra is a G-algebra for G qua monad on Cop.

So the body of abstract theory initiated by Eilenberg and Moore for algebra

immediately yields a body of abstract theory for coalgebra [5], and that has proved

to be of considerable importance for computer science over the past twenty years

or so [10]. A leading example is as follows.

Definition 5.2 Given a set A, a finitely branching A-labelled transition system is

a pair (S, t) consisting of a set S and a function t : S −→ Pf (A× S), where Pf (X)

is the set of finite subsets of a set X.

The transition function t tells you, given a machine in state σ, to what states

it might pass in one A-labelled move. The notion is fundamental to the theory of

concurrency, for instance, playing a central role in CCS [21].
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The axiomatic situation is that in a category C such as Set, one considers a

pair (X,x) consisting of an object X of C and a map x : X −→ H(X), where H is

an endofunctor on C. Such a pair is called an H-coalgebra [10]. In such axiomatic

terms, a finitely branching A-labelled transition system is precisely a Pf (A × −)-
coalgebra.

The structure of the category of Pf (A×−)-coalgebras can be used to characterise

the critical notion of bisimulation in concurrency [21]. In fact, the body of theory of

bisimulation can be defined and developed axiomatically in terms of H-coalgebras

for an arbitrary endofunctor H satisfying axiomatically defined conditions [10].

The most fundamental construct one makes in coalgebra is the construction of

the cofree comonad G(H) on H if it exists. To give an H-coalgebra is equivalent to

giving a G(H)-coalgebra, where the term coalgebra is overloaded, as H is treated

as an endofunctor while G(H) is treated as a comonad.

Theorem 5.3 [7] For any finitary endofunctor H on any locally finitely pre-

sentable category C, a cofree comonad G(H) on H exists.

Although the statement of this theorem is dual to the statement of a theorem

about algebras [11], the proof is different, not dual to the proof of the corresponding

theorem for algebras. The reason for the difference is that Set is a locally finitely

presentable category, while Setop is not. Much of the category-theoretic effort in-

volved with coalgebra revolves around handling that fact.

Although a cofree comonad on a finitary endofunctor on a locally finitely pre-

sentable category necessarily exists, it typically is not finitary.

Example 5.4 [7] Given a set A, consider the endofunctor H = A × − on Set.

The cofree comonad G(H) sends a set X to the set of infinite streams of elements

of A×X. So, for any countably infinite set X, the set G(H)(X) contains a stream

involving infinitely many different elements of X. Such a stream cannot be given

by a finite subset of X, and so although G(H) has a rank, that rank is necessarily

greater than ℵ0.
This phenomenon has been studied extensively and generalised by Worrell [29].

The key consequence of these issues for us is that dualising notions such as that of

Lawvere theory is subtle, and we cannot expect to obtain as neat a relationship as

that between Lawvere theories and monads.

6 Dualising Lawvere theories

One approach to dualising the body of theory of Lawvere theories is as follows.

Definition 6.1 A comodel of a Lawvere theory L in a category with finite coprod-

ucts C is a model of L in Cop.

Comodels in C generate a category Comod(L,C), with maps given by natural

transformations, and a forgetful functor UL : Comod(L,C) −→ C given by evalua-

tion at 1, just as for models as in Section 2. Moreover, albeit with a different proof

M. Behrisch et al. / Electronic Notes in Theoretical Computer Science 286 (2012) 5–16 13



to that for models, we have the following, cf. Proposition 4.3.

Theorem 6.2 [26] For any Lawvere theory L and locally finitely presentable cat-

egory C, the forgetful functor UL has a right adjoint, generating a comonad GL on

C, whereupon Comod(L,C) is coherently equivalent to GL-Coalg.

This dual of the theory of Lawvere theories appeared in [26], where it was used to

model arrays. If LS be the (countable) Lawvere theory for global state, as described

in [23,8], the category Comod(LS , Set) is equivalent to the category of arrays [26].

Lawvere theories and their comodels have also been used, extending [23], to model

operational semantics [24]. And they have been used, in terms of coclones, in [14].

But this dualisation of the theory of Lawvere theories does not include transition

systems [10].

A second approach to dualising algebra is to start not with the notion of Law-

vere theory but rather with that of equational theory, dualise it to a notion of co-

equational theory, then look for an invariant, allowing us to mimic Proposition 2.5.

There is an axiomatic account of the notions of operations, equations, algebras and

monads in [13,27] that has been dualised in [7]. The idea is as follows.

Example 6.3 Consider three binary operations and no equations. This may be

seen as a single binary operation with codomain 3, cf. the way in which one generates

a Lawvere theory from an equational theory [13,27]. A model is a set X together

with a function of the form X2 −→ X3. Dualise this to consider a function of the

form 2X −→ 3X .

Axiomatically, in [7], one retained the natural numbers as arities, defined the

notions of co-operation, co-equation and coalgebra in the spirit of Example 6.3,

and proved that any family of co-operations and co-equations generates a comonad

G on Set such that the category of G-coalgebras is isomorphic to the category of

coalgebras for the co-operations and co-equations. Finitely branching A-labelled

transition systems provided a leading example.

A third approach to a dual notion of Lawvere theory is generated by Linton’s

work [17,18], as his generalised notion of Lawvere theory as discussed in Section 4

does not depend upon Set being locally finitely presentable, and so generates a

dual just as the notion of monad does. As for algebra, this has the drawback of not

allowing duals of basic universal algebraic constructs such as sum.

These three approaches, together with a recent characterisation of Lawvere the-

ories in [22], collectively suggest a tentative definition of dual Lawvere theory, which

we give in Section 7.

7 Further Work: a proposal for dualising

There are several different but equivalent formulations of the notions of Lawvere

theory and model. Starting with the usual definition of Lawvere theory as in Defini-

tion 2.2, to give a model of L in Set (Definition 2.3) is equivalent to giving a functor

M : L −→ Set such that the composite MI is of the form Set(J−, X), where J
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is the inclusion of ℵ0 in Set: it follows from this definition that M preserves finite

products; the converse is given by putting X = M1.

With considerably more effort, one can prove that to give a Lawvere theory is

equivalent to giving a small category L together with an identity-on-objects functor

I : ℵop0 −→ L such that I preserves all finite limits in ℵop0 : this does not imply that

L has all finite limits, although it does follow that L has all finite products [22].

So one possible notion of dual to investigate is as follows: a dual Lawvere theory

is a small category L together with an identity-on-objects functor I : ℵ −→ L that

preserves all finite limits in ℵ. Note the dropping of (−)op. A comodel in Set is a

functor C : L −→ Set for which CI is of the form Set(X, J−).
This seems to bear comparison with the definitions in [7] and seems to restrict

Linton’s abstract work [17,18], which does not require size. It is not clear yet how

it relates to comodels of Lawvere theories qua finite coproduct preserving functors.

We propose this as further work.
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