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Abstract

In the first part of this paper, we establish the global existence of solutions of the liquid crystal (gradient)
flow for the well-known Oseen–Frank model. The liquid crystal flow is a prototype of equations from the
Ericksen–Leslie system in the hydrodynamic theory and generalizes the heat flow for harmonic maps into
the 2-sphere. The Ericksen–Leslie system is a system of the Navier–Stokes equations coupled with the
liquid crystal flow. In the second part of this paper, we also prove the global existence of solutions of the
Ericksen–Leslie system for a general Oseen–Frank model in R2.
Crown Copyright c⃝ 2012 Published by Elsevier Inc. All rights reserved.
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1. Introduction

A liquid crystal is a state of matter intermediate between a crystalline solid and a normal
isotropic liquid. Research into liquid crystals is an area of a very successful synergy between
mathematics and physics. There are a lot of analytical and computational issues, which arise in
the attempt to study static equilibrium configurations. Numerical and experimental analysis has
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shown that equilibrium configurations are expected to have point and line singularities [21].
Mathematically, Hardt et al. in their fundamental papers [15,16] proved the existence of an
energy minimizer u of the liquid crystal functional and showed that a minimizer u is smooth
away from a closed set Σ of Ω . Moreover, Σ has Hausdorff dimension strictly less than one.
In [1], Almgren and Lieb did some related analysis indicating that the phenomenon is of wider
interest. In physical theory, an equilibrium configuration corresponds to a critical point, not
necessarily an energy minimizer, of the liquid crystal energy. Critical points are much harder to
understand mathematically than minima. From the above result of Hardt et al., minimizers cannot
have line singularities. Following the work of Bethuel–Brezis–Coron on harmonic maps in [4],
Giaquinta et al. [12] found a relaxed energy for the liquid crystal systems, whose minimizers
are also equilibrium configurations. On the other hand, Giaquinta et al. [11] also proved that
minimizers of the relaxed energy for harmonic maps are smooth away from a 1-dimensional
singular set. Further developments on the regularity results on harmonic maps were surveyed
in [13]. There is an interesting open problem to prove that minimizers of the relaxed liquid crystal
energy have line singularities. The first author in [17] proved the partial regularity of minimizers
of the modified relaxed energy of the liquid crystal energy. However, the partial regularity of
minimizers of the relaxed energy for liquid crystals is still mysterious. In some related studies
of liquid crystals, Bauman et al. [3] studied the Landau–de Gennes free energy used to describe
the transition between chiral nematic and the smectic liquid crystal phase, Lin and Pan [29] used
the Landau–de Gennes models to investigate the magnetic field induced instabilities in liquid
crystals, and the existence of infinitely many liquid crystal equilibrium configurations prescribing
the same boundary was obtained in [18].

A general description of the static theory of liquid crystals is given by Ericksen in [9]. A liquid
crystal is composed of rod like molecules which display orientational order, unlike a liquid, but
lacking the lattice structure of a solid. The kinematic variable in the nematic and the cholesteric
phase may be taken to the optic axis, which is a unit vector field u in a region Ω ⊂ R3 occupied
by the materials. The liquid crystal energy for a configuration u ∈ H1(Ω; S2) is given by

E(u;Ω) =


Ω

W (u, ∇u) dx, (1.1)

where the Oseen–Frank density W (u, ∇u), depending on positive material constants k1, k2, k3
and k4, is given by

W (u, ∇u) = k1(div u)2
+ k2(u · curl u)2

+ k3|u × curl u|
2
+ k4[tr(∇u)2

− (div u)2
].

Without loss of generality, as in [15] or [13], we rewrite the density

W (u, ∇u) = a|∇u|
2
+ V (u, ∇u), a = min{k1, k2, k3} > 0, (1.2)

where

V (u, ∇u) = (k1 − a)(div u)2
+ (k2 − a)(u · curl u)2

+ (k3 − a)|u × curl u|
2.

A static equilibrium configuration corresponds to an extremal (critical point) of the energy
functional E in H1(Ω , S2). The Euler–Lagrange system for the general Oseen–Frank functional
(1.1) (see details in the Appendix of Section 5) is

∇α


Wpi

α
(u, ∇u) − ului Vpl

α
(u, ∇u)


− Wui (u, ∇u) + Wul (u, ∇u)ului

+ Wpl
α
(u, ∇u)∇αului

+ Vpl
α
(u, ∇u)ul

∇αui
= 0 in Ω (1.3)
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for i = 1, 2, 3, where we adopt the standard summation convention. In a special case of
k1 = k2 = k3, the system (1.3) becomes the harmonic map equations into S2. However, the
equilibrium system associated to the energy functional (1.1) is not elliptic for every choice of the
constants k1, k2 and k3.

In the first part of this paper, we investigate the liquid crystal flow for a model with the
Oseen–Frank density (1.2). For a domain Ω in R3 or in R2, a map u(x, t) : Ω × [0, ∞) → S2 is
a solution of the liquid crystal flow if u satisfies

∂ui

∂t
= ∇α


Wpi

α
(u, ∇u) − ului Vpl

α
(u, ∇u)


− Wui (u, ∇u)

+ Wul (u, ∇u)ului
+ Wpl

α
(u, ∇u)∇αului

+ Vpl
α
(u, ∇u)ul

∇αui (1.4)

in Ω × [0, ∞) for i = 1, 2, 3.
The flow equation (1.4) is a prototype of equations from the Ericksen–Leslie system in the

hydrodynamic theory (cf. [9]). The liquid crystal flow (1.4) also generalizes the heat flow for
harmonic maps into the 2-sphere. Since the seminal work of Eells and Sampson [7], many
studies on the heat flow for harmonic maps have been carried out. In 2-dimensional case,
Struwe [33] established the global existence of the weak solution of the harmonic maps flow
with initial data, where the solution is smooth except for a finite number of singularities. In
higher dimensional cases, Chen and Struwe [6] proved the global existence of partially regular
solutions to the harmonic map flow. Since (1.4) is not parabolic, the system of the liquid crystal
flow is complicated, so the question on global existence for the liquid crystal flow (1.4) for the
Oseen–Frank model remains unresolved. In this paper, we prove the global existence of solutions
of the liquid crystal flow in 2D.

We set

H1
b (R2

; S2) :=


u : u − b ∈ H1(R2

; R3), |u| = 1 a.e. in R2


for a constant vector b ∈ S2.
Then, one of our main results in this paper is the following global existence for this flow in

2D (i.e. u is a constant along a direction in R3):

Theorem 1. Let u0 ∈ H1
b (R2

; S2) be a given map. Then there exists a global weak solution
u(x, t) : R2

× [0, +∞) → S2 of (1.4) with initial value u(0) = u0 such that u is smooth in
Ω × [0, +∞) except for a finite number of singularities {(x l

i , Tl)}
K
l=1 ∈ R2

× [0, +∞) with an
integer K > 0 depending on u0. Moreover, there are two constants ε0 > 0 and R0 > 0 such that
each singular point x l

i at the time Tl is characterized by the condition

lim sup
t↗Tl

E


u (t) , BR


x l

i


≥ ε0

for any R > 0 with R ≤ R0.

This result can be regarded as an extension of the well-known result of Struwe in [33] on the
heat flow for harmonic maps in dimension two. Since the liquid crystal flow is not a parabolic
system, the flow (1.4) is more complicated than the harmonic map flow. In particular, we cannot
apply the well-known theory of partial differential equations directly to prove the local existence
for the liquid crystal flow. Instead, we consider a family of Ginzburg–Landau approximation
flows to prove the local existence of solutions to (1.4). To prove Theorem 1, we need to get a
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L2-estimate of ∇
2u similarly to one in [33]. However, the flow (1.4) is not a parabolic system, so

we overcome the difficulties due to the term ∇α[ului Vpl
α
(u, ∇u)] by using the fact that |u| = 1

as observed in [17].
In the second part of this paper, we investigate the Ericksen–Leslie system with the

Oseen–Frank density W (u, ∇u) in (1.2). In the 1960s, Ericksen [9] and Leslie [23] established
the hydrodynamic theory of liquid crystals independently. The Ericksen–Leslie theory describes
the dynamic flow of liquid crystals, including the velocity vector v and direction vector u of
the fluid. Let v = (v1, v2, v3) be the velocity vector of the fluid and u = (u1, u2, u3) the unit
direction vector. The Ericksen–Leslie system in Ω × [0, ∞) is given by (e.g. [24,27])

vi
t + (v · ∇)vi

− ν △ vi
+ ∇xi P = −λ∇x j (∇xi u

k Wpk
j
(u, ∇u)), (1.5)

∇ · v = 0, (1.6)

ui
t + (v · ∇)ui

= ∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


− Wui (u, ∇u)

+ Wuk (u, ∇u)ukui
+ Wpl

α
(u, ∇u)∇αului

+ Vpk
α
(u, ∇u)uk

∇αui (1.7)

for i = 1, 2, 3, prescribing the boundary condition

v(x, t) = 0, u(x, t) = u0(x), ∀(x, t) ∈ ∂Ω × (0, ∞) (1.8)

and with initial data

v(x, 0) = v0(x), u(x, 0) = u0(x), div v0 = 0 ∀x ∈ Ω . (1.9)

Here ν, λ are given positive constants, and P is the pressure.
The system (1.5)–(1.7) is a system of the Navier–Stokes equations coupled with the liquid

crystal flow (1.4). The study of the Navier–Stokes equations is of great interest. Tremendous
results on the existence and the partial regularity for the Navier–Stokes equations have been
established (e.g. [31,5,25,35]). In this paper, we are only concentrating on the existence of
solutions of the Ericksen–Leslie system. Since the functional E(u;Ω) in (1.1) with the constraint
|u| = 1 is complicated, one considers Ginzburg–Landau functionals

Eε(u;Ω) =


Ω


W (u, ∇u) +

1

2ε2 (1 − |u|
2)2


dx

for any function u ∈ H1(Ω; R3). Then, the approximating Ericksen–Leslie system is given by

vi
t + (v · ∇)vi

− ν △ vi
+ ∇xi P = −λ∇x j (∇xi u

k Wpk
j
(u, ∇u)), (1.10)

∇ · v = 0, (1.11)

ui
t + (v · ∇)ui

= ∇α


Wpi

α
(u, ∇u)


− Wui (u, ∇u) +

1

ε2 ui (1 − |u|
2) (1.12)

for i = 1, 2, 3, prescribing the boundary condition (1.8) and initial condition (1.9).
In the case of k1 = k2 = k3, Lin and Liu [27] proved the global existence of the classical

solution of (1.10)–(1.12) with (1.8) and (1.9) in dimension two and the weak solution of the
same system in dimension three. Lin and Liu in [28] also analyzed the limit of solutions (vε, uε)

of (1.10)–(1.12) as ε → 0, but it is not clear that the limiting solution satisfies the original
Ericksen–Leslie system (1.5)–(1.7) with |u| = 1. Therefore, there is an interesting question to
establish the global existence of solutions of (1.5)–(1.7) with (1.8) and (1.9). The question for
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the case of k1 = k2 = k3 has been answered by the first author in [19] in R2 and Lin et al. [26] in
a general case for a domain of R2 independently. The system (1.5)–(1.7) or (1.10)–(1.12) for the
general Oseen–Frank model is more complicated than the system for the case of k1 = k2 = k3
since there is no maximum principle for the parabolic system (1.12) in the case k1 ≠ k2 (see [2])
and the term Wui (u, ∇u) in (1.12) will cause a trouble to prove the global existence for the
system.

In this paper, we will prove the global existence of weak solutions to the Ericksen–Leslie
system (1.5)–(1.7) for a general Oseen–Frank model in R2. More precisely, we have the
following.

Theorem 2. Let (u0, v0) ∈ H1
b (R2

; S2) × L2(R2, R2) be given initial data with dvi v0 = 0.
Then, there exists a global weak solution (u, v) : R2

× [0, +∞) → S2
× R2 of (1.5)–(1.7) with

initial values (1.9), where the solution (u, v) is smooth in R2
× ((0, +∞) \ {Tl}

L
l=1) for a finite

number of times {Tl}
L
l=1. Moreover, there are two constants ε0 > 0 and R0 > 0 such that each

singular point

x l

i , Tl


∈ Σ × {Tl} is characterized by the condition

lim sup
t↗Tl


BR(x l

i )

|∇u (·, t) |
2
+ |v (·, t) |

2 dx ≥ ε0

for any R > 0 with R ≤ R0.

The main idea to prove Theorem 2 is to combine the idea in [19] with the proofs of Theorem 1.
The first key step is to prove the local existence of solutions of the system (1.5)–(1.7) by
considering the approximation system (1.10)–(1.12). To prove the global existence of solutions
to (1.5)–(1.7), one of the key steps is to get a L2-estimate of ∇

2u and ∇v in R2
× [0, T ] under a

small energy condition as in [33]. To show the regularity of the weak solution (u, v) of (1.5)–(1.7)
in R2

×(0, T ), we establish a local energy inequality under the small energy condition, which was
first used by Struwe in [34] for the H -system flow. Finally, we prove the regularity of solutions
by controlling L2-estimate of ∇

2u and ∇v in R2 for t ∈ (0, T ). Since (1.7) is not a parabolic
system, the proof of Theorem 2 is more difficult than one for the case of k1 = k2 = k3 in [19].
We overcome a number of difficulties on the regularity and the uniqueness for the systems by
employing the invariance of the density (1.2) after a rotation.

Remark 1.1. The referee kindly pointed out to us that Lin and Wang [30] proved recently the
uniqueness of the weak solutions in Theorem 2 for the case of k1 = k2 = k3. However, it does
not seem easy for us to adapt their analysis to prove the uniqueness of the weak solutions in
Theorems 1 and 2, due to the difficulty in handling the term ∇α[Wpi

α
(u, ∇u) − ului Vpl

α
(u, ∇u)]

in Eq. (1.4) or (1.7). We hope to investigate this issue elsewhere.

The rest of the paper is organized as follows. In Section 2, we prove the global existence
for the liquid crystal flow (1.4) in 2D. Some global estimates for (1.5)–(1.7) are established in
Section 3. Then, we complete a proof of Theorem 2 in Section 4. Finally, the regularity issue for
the systems is dealt with in Section 5.

2. Existence of partial regular solutions of the liquid crystal flow

First, it is noted that due to (1.2), the density function W (z, p) satisfies

a|p|
2

≤ W (z, p) ≤ C |p|
2, ∀z ∈ R3, p ∈ M3×3



M.-C. Hong, Z. Xin / Advances in Mathematics 231 (2012) 1364–1400 1369

for some 0 < a ≤ C < +∞ and since W (z, p) is quadratic and convex in p, it holds that

∇
2
pk

i pl
j
W (z, p)ξ k

i ξ l
j ≥ a|ξ |

2

for any ξ ∈ M3×3, any z ∈ R3 and p ∈ M3×3.
In this section, we consider the flow (1.4) in R2. For simplicity of notations, u is assumed to

be a constant along x3-direction in R3; i.e. ∂u
∂x3

= 0.
For any two positive constants τ and T with τ < T , we define

V (τ, T ) :=


u : R2

× [τ, T ] → S2, | u is measurable and satisfies

ess sup
τ≤t≤T


R2

|∇u(·, t)|2 dx +

 T

τ


R2

|∇
2u|

2
+ |∂t u|

2 dx dt < ∞


.

Lemma 2.1. Let u ∈ V (0, T ) be a solution of the system (1.4) with initial value u0 ∈ H1

(R2, S2). Then, for any t1 ∈ [0, T ]
R2×(0,t1)

|∂t u|
2 dx dt + E(u(t1)) ≤ E(u0). (2.1)

Moreover, for all t ∈ [0, T ], x0 ∈ R2 and R > 0, it holds that
BR(x0)

W (u(x, t), ∇u(x, t)) dx ≤


B2R(x0)

W (u0(x), ∇u0(x)) dx

+ C
t

R2


R2

|∇u0|
2 dx, (2.2)

where C is a constant.

Proof. Multiplying (1.4) by ∂ui

∂t yields
R2

∂u

∂t

2 dx = −


R2

Wpi
α
(u, ∇u)

d

dt
∇αui dx −


R2

Wui (u, ∇u)
∂ui

∂t
dx .

This implies
R2

∂u

∂t

2 dx +
d

dt


R2

W (u, ∇u) dx = 0.

(2.1) follows from integrating the above identity.
Let φ ∈ C∞

0 (B2R(x0)) be a cut-off function satisfying 0 ≤ φ ≤ 1, |∇φ| ≤ C/R and φ ≡ 1

on BR(x0). Multiplying (1.4) by ∂ui

∂t φ2 and then using Young’s inequality yields
R2

∂u

∂t

2 φ2 dx +
d

dt


R2

W (u(x, t), ∇u(x, t))φ2 dx ≤ C


R2

∂u

∂t

 |∇u||φ∇φ| dx

≤
1
2


R2

∂u

∂t

2 φ2 dx + C


R2
W (u, ∇u)|∇φ|

2 dx .

Then, (2.2) follows from using (2.1) and integrating the above inequality. �
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From [33] we obtain the following.

Lemma 2.2. There are constants C and R0 such that for any u ∈ V (0, T ) and any R ∈ (0, R0],
we have

R2×[0,T ]

|∇u|
4 dx dt ≤ C ess sup

0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 dx

·


R2×[0,T ]

|∇
2u|

2 dx dt + R−2


R2×[0,T ]

|∇u|
2 dx dt


.

Lemma 2.3. Let u ∈ V (0, T ) be a solution of (1.4) with initial value u0 ∈ H1. Then there are
constants ε1 and R0 > 0 such that if

ess sup
0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0], then
R2×[0,T ]

|∇
2u|

2 dx dt ≤ C E(u0) (1 + T R−2), (2.3)
R2×[0,T ]

|∇u|
4 dx dt ≤ Cε1 E(u0) (1 + T R−2). (2.4)

Proof. Multiplying (1.4) by △ui yields
R2

∂ui

∂t
△ ui dx =


R2

∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


△ ui dx

−


R2

Wui (u, ∇u)(△ui
− ukui

△ uk) dx

+


R2

Wpk
α
(u, ∇u)∇αukui

△ ui dx

+


R2

Vpk
α
(u, ∇u)uk

∇αui
△ ui dx := I1 + I2 + I3 + I4.

Note that the terms I2 and I3 of the above identity can be controlled by C |∇u|
2
| △ u|. It suffices

to estimate terms I1 and I4. Since |u|
2

= 1, −ui
△ ui

= |∇u|
2. We note

∇α[ukui Vpk
α
(u, ∇u)] = ∇αukui Vpk

α
(u, ∇u) + uk

∇αui Vpk
α
(u, ∇u) + ukui

∇αVpk
α
(u, ∇u).

Integration by parts twice yields

I1 + I4 =


R2

∇β


Wpi

α
(u, ∇u)


∇

2
αβui dx +


R2

∇αukui Vpk
α
(u, ∇u) △ ui dx

−


R2

uk
∇αVpk

α
(u, ∇u)|∇u|

2 dx .

Note

∇αVpk
α
(u, ∇u) = Vpk

α pl
γ
(u, ∇u)∇2

γαul
+ Vpk

αul (u, ∇u)∇αul
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and

∇β Wpi
α
(u, ∇u) = W

pi
α p j

γ
(u, ∇u)∇2

γβu j
+ Wpi

αu j (u, ∇u)∇βu j .

This implies

d

dt


R2

|∇u|
2 dx +


R2

W
pi
α p j

γ
(u, ∇u)∇2

αβui
∇

2
γβu j dx

≤ C


R2
|∇u|

2(|∇u|
2
+ |∇

2u|) dx . (2.5)

As pointed out at the beginning of this section, we have

W
pi
α p j

γ
(u, ∇u)∇2

αβui
∇

2
γβu j

≥ a|∇
2u|

2

for the constant a > 0. Then, choosing ε1 > 0 to be sufficiently small and applying Lemma 2.2
lead to (2.3) and (2.4). �

Lemma 2.4. Let u ∈ V (0, T ) be a solution of (1.4) with initial value u0 ∈ H1. Assume that

ess sup
0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0]. Let τ ∈ (0, T ] be any constant. Then it holds for all t ∈ [τ, T ],
R2

|∇
2u(x, t)|2 dx ≤ C0, (2.6)

with a uniform constant depending only on τ, T, R0, and E(u0).

Proof. The proof is similar to Lemma 3.10 of [33]. Using a proper cut-off function if necessary,
we assume in the following proof that


|∂t∇u|

2(·, t), dx is finite.
Differentiate (1.4) with respect to t , multiply the resulting identity by ∂t ui , and then integrate

to obtain
1
2

d

dt


R2

|∂t u|
2 dx +


R2

W
pi
α p j

β

(u, ∇u)∇α ∂t ui
∇β ∂t u j dx

≤ C


R2
(|∂t u|

2
|∇u|

2
+ |∇u| |∂t u| |∇∂t u|] dx

+


R2

∂t ui
∇α


ui uk Vpk

α
(u, ∇∂t u)


dx .

Note that
R2

W
pi
α p j

β

(u, ∇u)∇α ∂t ui
∇β ∂t u j dx ≥ a


R2

|∇∂t u(x, t)|2 dx .

Since |u| = 1, so


i ∂t ui ui
= 0. And hence,

R2
∂t u

i
∇α


ui uk Vpk

α
(u, ∇∂t u)


dx ≤ C


R2

|∂t u| |∇u| |∇∂t u| dx .

It follows from these and Cauchy’s inequality that

1
2

d

dt


R2

|∂t u(x, t)|2 dx +
a

2


R2

|∇∂t u(x, t)|2 dx ≤ C


R2
|∂t u|

2
|∇u|

2 dx . (2.7)
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Note that

C


R2
|∂t u|

2
|∇u|

2 dx ≤ C


R2

|∂t u|
4 dx

 1
2


R2
|∇u|

4 dx

 1
2

≤ C


R2

|∂t u|
2 (x, t) dx

 1
2


R2
|∂t ∇u|

2 (x, t)

 1
2


R2
|∇u|

4 dx

 1
2

≤
a

4


R2

|∇∂t u(x, t)|2 dx +


C


R2
|∇u(x, t)|4 dx

 
R2

|∂t u(x, t)|2 dx .

This, together with (2.7), yields that for all t ∈ (0, T ],

d

dt


R2

|∂t u(·, t)|2 dx +
a

2


R2

|∇∂t u(·, t)|2 dx

≤


C


R2
|∇u(·, t)|4 dx

 
R2

|∂t u(·, t)|2 dt. (2.8)

It follows from (2.8), (2.4), Lemma 2.1, and Gronwall’s inequality that for any 0 < s ≤ t ≤ T ,
R2

|∂t u(·, t)|2 dt ≤


eC

 t
s


R2 |∇u(·,l)|4 dx dl

 
R2

|∂t u(·, s)|2 dx

≤ eCε1 E(u0)(1+T R−2)
·


R2

|∂t u(·, s)|2 dx .

Combining this with (2.1) shows that for any fixed 0 < τ < T , there exists a constant C such
that

ess sup
τ≤t≤T


R2

|∂t u(·, t)|2 dt ≤ Cτ−1 E(u0) eCε1 E(u0)(1+T R−2), (2.9)

with a uniform constant C . On the other hand, using (2.5), integration by parts yields that for any
t ∈ [τ, T ],

R2
|∇

2u(·, t)|2 dx ≤ C


R2
|∇u(·, t)|4 dx + C


R2

|∂t u(·, t)|2 dx

≤ Cε1


R2

|∇
2 u(·, t)|2 dx +

Cε1

R2
0

E(u0) + C


R2
|∂t u(·, t)|2 dx .

Combining this with (2.9) shows that for suitably small ε1, the desired estimate (2.6) holds with

C0 ≡ C E(u0)
 ε1

R2 + τ−1 eCε1 E(u0)(1+T R−2)


. (2.10)

By the well-known Gagliardo–Nirenberg–Sobolev inequality, we have for any x ∈ R2

|u(x, t1) − u(x, t2)| ≤ C∥u(x, t1) − u(x, t2)∥
3/4
H2(B1(x))

∥u(x, t1) − u(x, t2)∥
1/4
L2(B1(x))

≤ C


sup

τ≤t≤T
∥∇

2u(·, t)∥3/4
L2(R2)

+ 1


|t1 − t2|

1/8

×

 T

0


R2

|∂t u|
2 dx dt

1/8

≤ C |t1 − t2|
1/8.
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It follows from (2.6) and the Sobolev embedding theorem that u(x, t) is Hölder continuous in x
uniformly for t ∈ [τ, T ]. Then we get that u is Hölder continuous in C1/8(R2

× [τ, T ]) for any

T < T1. Due to Proposition 5.1 in the Appendix, u is in C1, 1
8 . Hence, u is regular in (0, T1). �

Remark 2.1. Let u ∈ V (0, T ) be a solution of (1.4) with initial value u0 ∈ H2
b . Assume that

there are constants ε1 and R0 > 0 such that

ess sup
0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 dx < ε1

for any R ∈ (0, R0]. Then, for any t ∈ [0, T ] and R ≤ R0, we have
R2

|∇
2u(x, t)|2 dx ≤ C1 ≡ C1(∥u0∥H2

b
, C0).

Theorem 3 (Local Existence). For a map u0 ∈ H1
b (R2, S2), there is a solution u ∈ V (0, t1) of

(1.4) with initial value u0 for some t1 > 0.

Proof. For any map u0 ∈ H1
b (R2, S2), it can be approximated by a sequence of smooth maps in

H2
b (R2, S2). Without loss of generality, we assume that u0 ∈ H2

b (R2, S2) is smooth. The liquid
crystal flow is not a parabolic system, so one cannot apply the well-known local existence theory.
Instead, we prove the local existence by an approximation of the Ginzburg–Landau flow in the
following:

∂ui
ε

∂t
= ∇α


Wpi

α
(uε, ∇uε)


− Wui (uε, ∇uε) +

1

ε2 ui
ε(1 − |uε|

2) (2.11)

with initial value u0 ∈ H2
b (R2, S2) and u0 ∈ C∞. Applying the standard local existence theory

of quasi-linear parabolic systems (cf. [8] or [2]), there is a local regular solution uε of (2.11) with
initial value uε(0) = u0.

For simplicity of notations, we define

Ṽ (τ, T ) =


u : R2

× [τ, T ] → R3
|u is measurable and satisfies

ess sup
τ≤t≤T


R2

|∇u(·, t)|2 dx +

 T

τ


R2

(|∇2u|
2
+ |∂t u|

2) dx dt < ∞


for 0 ≤ τ < T < +∞ and set

eε(u) = W (u, ∇u) +
1

2ε2 (1 − |u|
2)2, Eε(u) =


R2

eε(u) dx .

Taking the inner product of (2.11) with ∂t uε, one can obtain that for any s > 0 in the maximal
interval of existence,

R2×(0,s)
|∂t uε|

2 dx dt + Eε(uε(s)) ≤ E(u0). (2.12)

Moreover, repeating similar arguments in Lemma 2.3 (see (2.29) below) yields that the solution
uε belongs to Ṽ (0, Tε) for a maximum time Tε and hence is regular R2

× [0, Tε). The maximum
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time Tε is characterized in the following: For a singular point x0 at Tε, there are ε0 and R0 > 0
such that

lim sup
t→Tε


BR(x0)

|∇uε(·, t)|2 dx ≥ ε0 > 0

for any positive R ≤ R0.
Next, we will show that there is a uniform lower bound time t1 > 0 such that Tε ≥ t1 and uε

is bounded in Ṽ (0, t1) uniformly in ε.
A similar argument as in Lemma 2.1 shows

BR(x0)

eε(uε(x, t)) dx ≤


B2R(x0)

eε(u0(x)) dx + C
t

R2


R2

|∇u0|
2 dx

for t ≤ Tε.
It follows from this inequality that for suitably small ε1 and R0, there is a time t1 uniform in

ε with t1 ≤ Tε such that

sup
0≤t≤t1


BR(x0)

eε(uε(x, t)) dx < ε1 (2.13)

for R ≤ R0 and thus uε is smooth for [0, t1] for all ε > 0. Next, we claim that for 0 ≤ t ≤ t1

1
2

≤ |uε(x, t)| ≤
3
2

for all x ∈ R2. (2.14)

To verify this claim, we re-scale the solution by ũ(x, t) = uε(εx, ε2t). Then ũ satisfies

∂ ũi

∂t
= ∇α


Wpi

α
(ũ, ∇ũ)


− Wui (ũ, ∇ũ) + ũi (1 − |ũ|

2) (2.15)

with initial value u0(εx). Let τ be the maximal time in

0,

t1
ε2


such that (2.14) holds, i.e.,

1
2

≤ |ũ(x, t)| ≤
3
2

for any (x, t) ∈ R2
× [0, τ ]. Note that in this case, the basic energy inequality (2.12) becomes

R2×[0,s]
|∂t ũ|

2 dx dt +


R2

(W (ũ, ∇ũ)(s) +
1
2
(1 − |ũ(s)|2)2)dx ≤ E(u0)

for all s ∈


0,

t1
ε2


, (2.16)

and the condition (2.13) turns into

ess sup
0≤s≤

t1
ε2 ,x∈R2


B R

ε
(x)


|∇ũ(·, s)|2 +

1
2
(1 − |ũ|

2)2


dx < ε1 (2.17)

for R ≤ R0.
Multiplying (2.15) by △ũ and integrating over R2 lead to

1
2

d

dt


R2

|∇ũ|
2 dx +


R2

∇α


Wpi

α
(ũ, ∇ũ)


△ ũi dx

−


R2

Wũi (ũ, ∇ũ) △ ũi dx +


R2

ũi (1 − |ũ|
2) △ ũi dx = 0. (2.18)
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Note that
R2

ũi (1 − |ũ|
2) △ ũi dx = −


R2

|∇ũ|
2(1 − |ũ|

2) dx + 2


R2
|∇|ũ |

2
|
2 dx .

Then, combining the above identity with (2.18) yields that for any s, t ∈ [0, τ ] with s ≤ t ,

1
2


R2

|∇ũ(·, t)|2 dx +

 t

s


R2

W
pi
α p j

γ
(ũ, ∇ũ)∇2

αβ ũi
∇

2
γβ ũ j dx dt

≤ C


R2
|∇u(·, s)|2 dx + C

 t

s


R2

|∇ũ|
4
+ η[(1 − |ũ|

2)2
+ |∇

2ũ|
2
] dx dt (2.19)

for a sufficiently small η > 0 to be chosen.
On the other hand, it follows from (2.15) that for s, t ∈ [0, τ ]

R2×[s,t]
(1 − |ũ|

2)2 dx dt ≤ C


R2×[s,t]
(|∂t ũ|

2
+ |∇ũ|

4
+ |∇

2ũ|
2)dx dt. (2.20)

Combining Lemma 2.2 with (2.17) shows that
R2×[s,t]

|∇ũ|
4 dx dt ≤ C1 ε1


R2×[s,t]

|∇
2ũ|

2 dx dt

+
ε2

R2
0


R2×[s,t]

|∇ũ|
2 dx dt


. (2.21)

As a consequence of (2.19)–(2.21), (2.16), and suitable choices of η and ε1, one can get that
ũ ∈ Ṽτ , and for any 0 ≤ s ≤ t ≤ τ ,

R2×[s,t]


|∇

2ũ|
2
+ (1 − |ũ|

2)2


dx dt ≤ C E(u0)(1 + ε2(t − s)R−2
0 ), (2.22)

R2×[s,t]
|∇ũ(x, t)|4 dx dt ≤ Cε1 E(u0)(1 + ε2(t − s)R−2

0 ). (2.23)

By an argument similar to the proof of Lemma 2.4, one can derive from (2.15) that there exists
a positive uniform constant a such that

1
2

d

dt


R2

|∂t ũ(x, t)|2 dx + a


R2
|∂t ∇ũ(x, t)|2 dx +

1
2


R2

|∂t (|ũ(x, t)|2)|2 dx

≤ C


R2
|∂t ũ(x, t)|2 |∇ũ(x, t)|2dx +


R2

|∂t ũ(x, t)|2 (1 − |ũ(x, t)|2)dx . (2.24)

Note that

C


R2
|∂t ũ(x, t)|2 |∇ũ(x, t)|2dx

≤ C


R2

|∂t ũ(x, t)|4 dx

 1
2


R2
|∇ũ(x, t)|4 dx

 1
2

≤ C


R2

|∂t ũ(x, t)|2 dx

 1
2


R2
|∂t ∇ũ(x, t)|2 dx

 1
2


R2
|∇ũ(x, t)|4 dx

 1
2

≤
a

2


R2

|∂t ∇ũ(x, t)|2 dx + C


R2

|∇ũ(x, t)|4 dx


R2

|∂t ũ(x, t)|2 dx .
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Hence,

d

dt


R2

|∂t ũ(x, t)|2 dx + a


R2
|∂t ∇ũ(x, t)|2 dx +


R2

|∂t (|ũ(x, t)|2)|2 dx

≤


C


R2
|∇ũ(x, t)|4 dx


R2

|∂t ũ(x, t)|2 dx

+ 2


R2
|∂t ũ(x, t)|2(1 − |ũ(x, t)|2)dx,

which yields immediately that for any 0 ≤ t ≤ τ ∈


0,

t1
ε2


,

R2
|∂t ũ(x, t)|2 dx ≤ eC

 t
0


R2 |∇ũ(x,t)|4 dx dt


R2

|∂t ũ(x, 0)|2 dx

+

 t

0


eC

 t
0


R2 |∇ũ(x,l)|4 dx dl


R2

|∂t ũ(x, s)|2(1 − |ũ(x, s)|2)dx


ds.

It follows from this, (2.23), u0 ∈ H2
b , and the definition of τ that

R2
|∂t ũ(x, t)|2 dx ≤ C1 ≡ C1(E(u0), ε1, t1, ∥u0∥H2

b
, R0) (2.25)

with a positive constant C1 independent of τ ∈


0,

t1
ε2


given by

C1 = C(∥u0∥H2
b
) e

ε1 E(u0)


1+

t1
R2

0


. (2.26)

Using (2.18), an integration by parts implies that for all t ∈ (0, τ ],
R2

|∇
2ũ(·, t)|2 dx ≤ C


R2

|∇ũ(x, t)|4 dx + C


R2
(1 − |ũ|

2)2 dx

+ C


R2
|∂t ũ(x, t)|2 dx

Due to Lemma 2.2, and (2.17), one has

C


R2
|∇ũ(x, t)|4 dx ≤ ε1


R2

|∇
2 ũ(x, t)|2 dx +

Cε1 ε2

R2
0

E(u0).

Thus one can get that for all t ∈ (0, τ )
R2

|∇
2 u(x, t)|2 dx ≤ C E(u0)


1 +

ε1 ε2

R2
0


+ CC1. (2.27)

By the Sobolev embedding theorem, ũ is β-Hölder continuous in x uniformly in all t ∈

[0, τ ] with β < 1. Repeating the similar analysis as in the proof of Lemma 2.4 and using

Proposition 5.1 in the Appendix, we get ũ ∈ C1, 1
8 on R2

× (0, τ ). If there is a x1 ∈ R2 such
that either |ũ(x1, t)| < 1

2 or |ũ(x1, t)| > 3
2 . By the uniform Hölder continuity of ũ, there exists a

constant C2 with the property that 1
4C2

<
R0
ε

, and

(1 − |ũ(x, t)|2)2
≥

1
4
, x ∈ B 1

4C2
(x1).
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Hence,
B 1

4C2

(x1)

(1 − |ũ(x, t)|2)2 dx ≥
1
4
|B 1

4C2
(0)| > 2ε1, (2.28)

which contradicts to (2.17) for suitably small ε1. Here we have used the fact that C2 depends
only on the upper bound of C1, which may be chosen to be independent of ε1 by the choice of t1.
This implies that 1

2 ≤ |ũ(x, t)| ≤
3
2 for all t ∈ [0, τ ]. By the continuity of u at τ and the maximal

choice of τ, τ must be the value t1
ε2 . This shows that (2.14) holds for all t ∈ [0, t1].

Next, it follows from (2.12), (2.22) and (2.23) that uε are uniformly bounded in Ṽ (0, t1) for
all ε and t1

0


R2


|∇

2 uε(x, t)|2 +
1

ε2 (1 − |uε(x, t)|2)2


dx dt ≤ C E(u0)


1 +

t1
R2

0


, (2.29)

 t1

0


R2

|∇ uε(x, t)|4 dx dt ≤ Cε1 E(u0)


1 +

t1
R2

0


. (2.30)

Letting ε → 0, we can prove the local existence of a solution of (1.4) in V (0, t1). �

Now we complete the proof of Theorem 1.

Proof. By Theorem 3, there is a local solution u on [0, t1) for some t1 > 0. By Lemmas 2.3
and 2.4, the solution can be extended to [0, T1) for a maximal time T1 > 0 such that there is a
singular set Σ at T1. Each singularity x1

i ∈ Σ at T1 is characterized by the condition

lim sup
t↗T1

E


u (t) , BR


x1

i


≥ ε0

for any R > 0 with R ≤ R0. It is easily shown that the solution u ∈ V is regular for all t ∈

(0, T1). By Lemma 2.1, we can show that the singular set Σ and the singular times are finite
(See [33]). Theorem 1 is thus proved. �

Remark 2.2. Although we cannot prove the uniqueness of the weak solutions in Theorem 1, we
will prove the uniqueness of smooth solutions (see Lemma 3.5 below in Section 3).

3. Global existence for the Ericksen–Leslie system

In this section, we derive a priori estimates for solutions to the Ericksen–Leslie system
(1.5)–(1.7). Without loss of generality, we assume that ν = λ = 1 in (1.5).

For the case Ω = R2, we still consider (1.5)–(1.7) in R3 by taking ∂v
∂x3

= 0, ∂u
∂x3

= 0. In this

case, ∇ · v =
∂v1

∂x1
+

∂v2

∂x2
= 0 in (1.6) is well-defined.

For two positive constants τ and T with τ < T , we denote

V (τ, T ) :=


u : R2

× [τ, T ] → S2
|u is measurable and satisfies

ess sup
τ≤t≤T


R2

|∇u(·, t)|2 dx +

 T

τ


R2

|∇
2u|

2
+ |∂t u|

2 dx dt < ∞
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and

H(τ, T ) :=


v : R2

× [τ, T ] → R2
|v is measurable and satisfies

ess sup
τ≤t≤T


R2

|v(·, t)|2 dx +

 T

τ


R2

|∇v|
2 dx dt < ∞


.

For each pair (u, v), define

e(u, v) = W (u, ∇u) +
1
2
|v|

2, E(u, v) =


R2

e(u, v)dx .

Lemma 3.1. Let (u, v) ∈ V (0, T ) × H(0, T ) be a solution of (1.5)–(1.7) with initial values
u0 ∈ H1(R2

; S2) and v0 ∈ L2(R2
; R3). Then for t ∈ (0, T ],

R2
e(u(·, t), v(·, t)) dx +

 t

0


R2

(|ut + (v · ∇)u|
2
+ |∇v|

2) dx dt

=


R2

e(u0, v0) dx . (3.1)

Proof. Multiplying (1.5) by v and using (1.6), one gets

1
2

d

dt


R2

|v|
2 dx +


R2

|∇v|
2 dx =


R2

∇ jv
i
∇i u

k Wpk
j
(u, ∇u) dx . (3.2)

Multiplying (1.7) by ut + (v · ∇)u yields
R2

(ui
t + (v · ∇)ui )


∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


dx

+


R2

(ui
t + (v · ∇)ui )(−Wui (u, ∇u) + Wuk (u, ∇u)ukui  dx

+


R2

(ui
t + (v · ∇)ui )


+Wpk

α
(u, ∇u)∇αukui

+ Vpk
α
(u, ∇u)uk

∇αui  dx

=


R2

|ut + (v · ∇)u|
2 dx . (3.3)

Note that |u|
2

= 1 implies

ui∂t u
i
= 0, ui

∇xα ui
= 0.

Integration by parts yields
R2

ui
t


∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


− Wui (u, ∇u) + Vpk

α
(u, ∇u)uk

∇αui


dx

= −


R2

∇αui
t


Wpi

α
(u, ∇u)


− ui

t Wui (u, ∇u) dx = −
d

dt


R2

W (u, ∇u) dx . (3.4)
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Using (1.6) and integrating by parts, we get
R2

(v · ∇)ui

∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


− Wui (u, ∇u) + Vpk

α
(u, ∇u)uk

∇αui


dx

= −


R2

∇αvk
∇kui Wpi

α
(u, ∇u) + vk

[∇k∇αui Wpi
α
(u, ∇u) + ∇kui Wui (u, ∇u)] dx

= −


R2

∇αvk
∇kui Wpi

α
(u, ∇u) dx . (3.5)

It follows from (3.3)–(3.5) that

d

dt


R2

W (u, ∇u) dx +


R2

|ut + (v · ∇)u|
2 dx = −


R2

∇αvk
∇kui Wpi

α
(u, ∇u) dx . (3.6)

Therefore, (3.1) follows from integrating (3.2) and (3.6) in t . �

By the same proof as in Lemma 3.1 of [33] (see also [20]), there exists a constant C1 such
that for any f ∈ H(0, T ) and any R > 0, it holds that

R2×[0,T ]

| f |
4 dx dt ≤ C1 ess sup

0≤t≤T,x∈R2


BR(x)

| f (·, t)|2 dx

·


R2×[0,T ]

|∇ f |
2 dx dt + R−2


R2×[0,T ]

| f |
2 dx dt


. (3.7)

Then, we have the following.

Lemma 3.2. Let (u, v) ∈ V (0, T ) × H(0, T ) be a solution of (1.5)–(1.7) with initial values
u0 ∈ H1 and v0 ∈ L2. Then there are constants ε1 and R0 > 0 such that if

ess sup
0≤t≤T,x∈R2


BR(x)

e(u(·, t), v(·, t)) dx < ε1

for any R ∈ (0, R0], then
R2×[0,T ]

|∇
2u|

2
+ |∇v|

2 dx dt ≤ C (1 + T R−2)


R2

e(u0, v0) dx, (3.8)
R2×[0,T ]

(|∇u|
4
+ |v|

4)dx dt ≤ Cε1(1 + T R−2)


R2

e(u0, v0)dx . (3.9)

Proof. Multiplying △ui with (1.7) yields
R2


∂ui

∂t
+ (v · ∇)ui


△ ui dx

=


R2

∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


△ ui dx

−


R2

Wui (u, ∇u) △ ui dx +


R2

uk ui Wuk (u, ∇u) △ ui dx

+


R2

Wpk
α
(u, ∇u)∇αukui

△ ui dx +


R2

Vpk
α
(u, ∇u)uk

∇αui
△ ui dx .
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As in the proof of Lemma 2.3, one can derive

d

dt


R2

|∇u|
2 dx +


R2

W
pi
α p j

γ
(u, ∇u)∇2

αβui
∇

2
γβu j dx

≤ C


R2
(|∇u|

2
+ |v|

2)(|∇u|
2
+ |∇

2u|) dx

≤
b

4


R2

|∇
2u|

2 dx + C


R2
(|∇u|

4
+ |v|

4) dx .

Applying (3.7) and Lemma 2.2 again shows
R2×[0,T ]

|∇u|
4
+ |v|

4 dx dt ≤ C1ε1


R2×[0,T ]

|∇
2u|

2
+ |∇v|

2 dx dt

+ C1 ε1 R−2


R2×[0,T ]

|∇u|
2
+ |v|

2 dx dt.

Then (3.8) and (3.9) follow by choosing ε1 =
b

4C1
. �

Lemma 3.3. Let (u, v) ∈ V (0, T ) × H(0, T ) be a solution of (1.5)–(1.7) with initial values
(u0, v0). Assume that there exist constants ε1 > 0 and R0 > 0 such that

sup
x∈R2,0≤t≤T


BR0 (x)

|∇u(x, t)|2 + |v (·, t) |
2 dx < ε1.

Then for all t ∈ [0, T ], x0 ∈ R and R ≤ R0, it holds that
BR(x0)

e(u(·, t), v(·, t)) dx +

 t

0


BR(x0)


|∇v|

2
+

1
2
|∂t u + v · ∇u|

2


dx dt

≤


B2R(x0)

e(u0, v0) dx + C2
t

1
2

R


1 +

t

R2

 1
2


R2
e(u0, v0)dx, (3.10)

where C2 is a uniform positive constant.

Proof. Let φ ∈ C∞

0 (B2R(x0)) be a cut-off function with φ ≡ 1 on BR(x0) and |∇φ| ≤
C
R ,

|∇
2φ| ≤

C
R2 for all R ≤ R0.

Multiplying (1.5) by vφ2 and integrating over R2 show
R2

vt · vφ2
+ (v · ∇)v · vφ2

− △v · vφ2
+ ∇ P · vφ2 dx

=


R2

∇xi u
k Wpk

j
(u, ∇u)∇x j v

iφ2 dx +


R2

∇xi u
k Wpk

j
(u, ∇u)vi

∇x j φ
2 dx .

Integration by parts yields
R2

(vt · vφ2
− △v · vφ2) dx =

1
2

d

dt


R2

|v|
2φ2 dx +


R2

∇v · ∇(vφ2) dx

=
1
2

d

dt


R2

|v|
2φ2 dx +


R2

|∇v|
2φ2 dx −


R2

|v|
2(|∇φ|

2
+ φ △ φ) dx .

Integrating by parts and using (1.6) give
R2

∇xi Pviφ2 dx = −2


R2
Pviφ∇xi φ dx
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and 
R2

vk
∇xk v

iviφ2
=

1
2


R2

vk
∇xk (|v|

2)φ2
= −


R2

vk
|v|

2φ∇xk φ dx .

Hence,

1
2

d

dt


R2

|v|
2φ2 dx +


|∇v|

2φ2 dx

=


R2

(|v|
2
+ 2P + |∇u|

2)viφ∇xi φ dx +


R2

|v|
2(|∇φ|

2
+ φ △ φ) dx

+


R2

∇xi u
k Wpk

j
(u, ∇u)∇x j v

iφ2 dx +


R2

∇xi u
k Wpk

j
(u, ∇u)vi

∇x j φ
2 dx . (3.11)

Multiplying (1.7) by (ui
t + (v · ∇)ui )φ2 and using |u| = 1 lead to

R2
|ut + (v · ∇)u|

2φ2 dx =


R2

(ui
t + vl

∇lu
i )∇α[Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)]ϕ2 dx

+


R2

(ui
t + vl

∇lu
i )(−Wui (u, ∇u) + Vpk

α
(u, ∇u)uk

∇αui )φ2 dx .

Integration by parts yields
R2

ui
t∇α[Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)]φ2 dx

+


R2

ui
t (−Wui (u, ∇u) + Vpk

α
(u, ∇u)uk

∇αui )φ2 dx

= −


R2

[∇αui
t Wpi

α
(u, ∇u) + ui

t Wui (u, ∇u)]φ2 dx −


R2

ui
t Wpi

α
(u, ∇u)∇αφ2 dx

= −
d

dt


R2

W (u, ∇u)φ2 dx − 2


R2
ui

t Wpi
α
(u, ∇u)φ∇αφ dx .

Integrating by parts twice and using (1.6), we obtain
R2

vl
∇lu

i
∇α[Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)]φ2 dx

+


R2

vl
∇lu

i (−Wui (u, ∇u) + Vpk
α
(u, ∇u)uk

∇αui )φ2 dx

= −


R2

(∇αvl
∇lu

i
+ vl

∇l∇αui )Wpi
α
(u, ∇u)φ2 dx

−


R2

(vl
∇lu

i )Wpi
α
(u, ∇u)∇αφ2 dx −


R2

vl
∇lu

i Wui (u, ∇u)φ2 dx

= −


R2

∇αvl
∇lu

i Wpi
α
(u, ∇u)φ2 dx −


R2

(vl
∇lu

i )Wpi
α
(u, ∇u)∇αφ2 dx

+ 2


R2
vl W (u, ∇u)φ∇lφ dx .
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Combining the above three identities yields

d

dt


R2

W (u, ∇u)φ2 dx +


R2

|ut + (v · ∇)u|
2φ2 dx

= −


R2

∇αvk
∇kui Wpi

α
(u, ∇u)φ2 dx −


R2

(ui
t + vk

∇kui )Wpi
α
(u, ∇u)∇αφ2 dx

+ 2


R2
vk W (u, ∇u)φ∇kφ dx

≤ −


R2

∇αvk
∇kui Wpi

α
(u, ∇u)φ2 dx +

1
2


R2

|ut + (v · ∇)u|
2φ2 dx

+ C


R2
|∇u|

2
|∇φ|

2 dx + 2


R2
vk W (u, ∇u)φ ∇k φ dx . (3.12)

Integrating (3.11) and (3.12) in t on [0, s] leads to
R2

e(u(·, s), v(·, s))φ2 dx +

 s

0


R2


|∇v|

2
+

1
2
|ut + (v · ∇)u|

2


φ2 dxdt

≤


R2

e(u0, v0)φ
2 dx +

 s

0


R2

(|v|
2
+ |∇u|

2
+ 2P)viφ∇xi φ dxdt

+ 2
 s

0


R2

(v · ∇)uk Wpk
i
(u, ∇u)φ∇xi φ dxdt + 2

 s

0


R2

vl W (u, ∇u)φ∇lφ dx

+ C
 s

0


R2

(|v|
2
+ |∇u|

2)(|∇φ|
2
+ |φ| | △ φ|) dxdt. (3.13)

This, together with (3.1), shows immediately that
BR(x0)

(|v(·, s)|2 + |∇u(·, s)|2) dx +

 s

0


R2


|∇v|

2
+

1
2
|ut + (v · ∇)u|

2


φ2 dxdt

≤


B2R(x0)

(|v0|
2
+ |∇u0|

2) dx + C
 s

0


R2

(|v|
2
+ |∇u|

2
+ |P|)|v||φ||∇φ| dxdt

+ C
s

R2


R2

(|v0|
2
+ |∇u0|

2) dx . (3.14)

It follows from Hölder inequality, (3.1) and (3.9) that s

0


R2

(|v|
2
+ |∇u|

2)|v||φ||∇φ| dxdt ≤ C
 s

0


R2

(|v|
2
+ |∇u|

2)
|v|

R
dx dt

≤ C

 s

0


R2

(|v|
4
+ |∇u|

4)dx dt

 1
2
 s

0


R2

|v|
2

R2 dx dt



≤ Cε
1
2

s
1
2

R


1 +

s

R2

 1
2


R2
e(u0, v0)dx . (3.15)

Similarly, s

0


R2

|P||v||φ||∇φ| dxdt ≤ C
 s

0


R2

|P|
|v|

R
dx dt
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≤ C

 s

0


R2

|P|
2 dx dt

 1
2
 s

0


R2

|v|
2

R2 dx dt

 1
2

≤ C
s

1
2

R


R2

e(u0, v0)dx

 1
2
 s

0


R2

|P|
2 dxdt

 1
2

(3.16)

for R ≤ R0.
On the other hand, it follows from the relation that

△P = −∇xi x j


∇xi u

k Wpk
j
(u, ∇u) + v jvi


on R2

× (0, T ],

due to (1.5), and the Calderon–Zygmund estimate (cf. [5]) that s

0


R2

|P|
2 dx dt ≤ C

 s

0


R2

(|∇u|
4
+ |v|

4) dx dt ≤ C ε1


1 +

s

R2

 
R2

e(u0, v0)dx .

This, together with (3.16), yields s

0


R2

|P| |v| |ϕ| |∇φ| dx dt ≤ C
s

1
2

R


1 +

s

R2

 1
2

ε
1
2
1


R2

e(u0, v0)dx . (3.17)

The desired estimate (3.10) now follows from (3.14), (3.15) and (3.17). �

Lemma 3.4. Let (u, v) ∈ V (0, T ) × H(0, T ) be a solution of (1.5)–(1.7) with initial value
(u0, v0) ∈ H1

b (R2, S2) × L2(R2, R3) and div v0 = 0. Assume that there are constants ε1 and
R0 > 0 such that

ess sup
0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 + |v (·, t) |
2 dx < ε1

for any R ∈ (0, R0]. Let τ be any positive constant. Then, for t ∈ [τ, T ], it holds that
R2

|∇
2u(x, t)|2 + |∇v(x, t)|2 dx ≤ C τ−1(1 + T R−2). (3.18)

Moreover, u and v are regular for all t ∈ (0, T ).

Proof. Note that, in a-priority,


R2 | △ v|
2and


R2 |∇

3u|
2 might not be finite. However, by a

standard cut-off argument, we can assume that


R2 | △ v|
2 and


R2 |∇

3u|
2 are finite without loss

of generality in the following proof.
Multiplying (1.5) by △vi and integrating by parts, we obtain

1
2

d

dt


R2

|∇v|
2 dx +


R2

| △ v|
2 dx

=


R2

(v · ∇vi ) △ vi dx +


R2

∇ j [∇i u
k Wpk

j
(u, ∇u)] △ vi dx

≤
1
4


R2

| △ v|
2 dx + C


R2

|v · ∇v|
2 dx + C


R2

(|∇2u|
2
+ |∇u|

4)|∇u|
2 dx . (3.19)

Differentiating (1.7) in xβ , multiplying the above equation by ∇β △ui and then integrating by
parts, one can obtain

−
1
2

d

dt


R2

| △ u|
2 dx +


R2


(∇βv · ∇)ui

+ (v · ∇)∇βui

∇β △ ui dx
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=


R2


∇β∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


− ∇β Wui (u, ∇u)


∇β △ ui dx

+


R2

∇β [Wuk (u, ∇u)ukui
+ Wpk

α
(u, ∇u)∇αukui

] ∇β △ ui dx

+


R2

∇β [Vpk
α
(u, ∇u)uk

∇αui
] ∇β △ ui dx . (3.20)

The first term on the right hand side of (3.20) is a bit more complicated. Since W (u, p) is
quadratic in p, we have

∇
2
γβ Wpi

α
(u, ∇u) = ∇γ [Wu j pi

α
(u, ∇u)∇βu j

+ Wpi
α
(u, ∇∇βu)]

= Wu j pi
α
(u, ∇u)∇2

γβu j
+ Wu j uk pi

α
(u, ∇u)∇γ uk

∇βu j

+ W
p j

l pi
α
(u, ∇∇βu)∇3

βγ lu
j
+ Wu j pi

α
(u, ∇∇βu)∇γ u j . (3.21)

Then, integrating by parts and using Young’s inequality, we have
R2

∇β∇αWpi
α
(u, ∇u)∇β △ ui dx =


R2

∇
2
γβ Wpi

α
(u, ∇u)∇3

γβαui dx

≥
a

4


R2

|∇
3u|

2 dx − C


R2
|∇u|

2(|∇u|
4
+ |∇

2u|
2) dx . (3.22)

Note that |u|
2

= 1 implies

ui
∇β △ ui

+ ∇βui
△ ui

= −∇β |∇u|
2.

By this identity, one can estimate the second term and the last term on the right hand side of
(3.20) as follows:

R2
∇β


∇α


ukui Vpk

α
(u, ∇u)


− Vpk

α
(u, ∇u)uk

∇αui

∇β △ ui dx

=


R2

∇
2
αβ


uk Vpk

α
(u, ∇u)


ui

∇β △ ui dx

+


R2

∇βui
∇α


uk Vpk

α
(u, ∇u)


∇β △ ui dx

≤
a

4


R2

|∇
3u|

2 dx + C


R2
|∇u|

2(|∇2u|
2
+ |∇u|

4) dx . (3.23)

The other terms can be estimated easily in (3.20). Then it follows from (3.20)–(3.23) that

1
2

d

dt


R2

| △ u|
2dx +

a

4


R2

|∇
3u|

2 dx

≤ C


R2
|∇v|

2
|∇u|

2
+ |v|

2
|∇

2u|
2
+ (|∇2u|

2
+ |∇u|

4)|∇u|
2 dx . (3.24)

It follows from −u · △u = |∇u|
2, (3.18) and (3.24) that

d

dt


R2

|∇
2u|

2
+ |∇v|

2


+
a

4


R2


|∇

3u|
2
+ |∇

2v|
2


dx

≤ C


R2
(|v|

2
+ |∇u|

2)

|∇v|

2
+ |∇

2u|
2


dx . (3.25)
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By the Gagliardo–Nirenberg–Sobolev inequality, one has

C


R2
(|v|

2
+ |∇u|

2)(|∇v|
2
+ |∇

2u|
2)dx

≤ C


R2

(|v|
4
+ |∇u|

4)dx

 1
2


R2
(|∇v|

4
+ |∇

2u|
4)dx

 1
2

≤ C


R2

(|∇v|
2
+ |∇

2u|
2)dx

 1
2


R2
(|∇2v|

2
+ |∇

3u|
2)dx

 1
2

·


R2

(|v|
4
+ |∇u|

4)dx

 1
2

≤
a

8


R2

(|∇2v|
2
+ |∇

3u|
2)dx +


C


R4
(|v|

4
+ |∇u|

4)dx


·


R2

(|∇v|
2
+ |∇

2u|
2)dx


.

This, together with (3.25), shows that for t ∈ (0, T ),

d

dt


R2

(|∇v(x, t)|2 + |∇
2u(x, t)|2)dx +

a

8


R2

(|∇2v(x, t)|2 + |∇
3u(x, t)|2)dx

≤


C


R2
(|∇u|

4
+ |v|

4)dx


R2

(|∇v(x, t)|2 + |∇
2u(x, t)|2)dx . (3.26)

It follows from (3.9), (3.26), and Gronwall’s inequality that for any s and t with τ ≤ s < t
≤ T , 

R2
(|∇v|

2
+ |∇

2u|
2)(x, t) dx

≤


eC

 t
s


R2 (|∇u|

4
+|v|

4)(x,t) dx dl


R2
(|∇v|

2
+ |∇

2u|
2)(x, s) dx



≤


eC ε1(1+T R−2)


R2

e(u0, v0)dx


R2

(|∇v|
2
+ |∇

2u|
2)(x, s)dx . (3.27)

Thanks to (3.8), (3.27), and the mean value theorem, we conclude that

sup
τ≤t≤T


R2

(|∇2u|
2
+ |∇v|

2)(·, t)dx

≤ Cτ−1(1 + T R−2) E(u0, v0) eC ε1(1+T R−2)E(u0,v0) (3.28)

for any τ > 0. Then, by a proof similar to the one in Lemma 2.4, we can show that u belongs to
C1/8(R2

× [τ, T ]) for any τ > 0. In the Appendix below (Section 5), we can show that (u, v) is
regular for all t ∈ (0, T ]. �

Remark 3.1. Let (u, v) ∈ V (0, T ) × H(0, T ) be a solution of (1.5)–(1.7) with initial values
(u0, v0) ∈ H2

b (R2
; S2) × H1(R2

; R2) and div v0 = 0. Assume that there are constants ε1 and
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R0 > 0 such that

ess sup
0≤t≤T,x∈R2


BR(x)

|∇u(·, t)|2 + |v (·, t) |
2 dx < ε1

for any R ∈ (0, R0]. Then, for t ∈ [0, T ], we have

sup
0≤t≤T


R2

(|∇2u(x, t)|2 + |∇v(x, t)|2) dx

≤ C3(1 + T R−2) E(u0, v0) eCε1(1+T R−2)E(u0,v0), (3.29)

with C3 = C(∥u0∥H2
b

+ ∥v0∥H1).

We are not able to prove the uniqueness of solutions to (1.5)–(1.7) for initial value in H1
× L2

as one in Lemma 3.12 of [33]. However, we obtain

Lemma 3.5. Let (u1, v1), (u2, v2) ∈ V (0, T ) × H(0, T ) be two smooth solutions of (1.5)–(1.7)
with smooth initial values (u0, v0) ∈ H2

b (R2
; S2) × H1(R2

; R2) and div v0 = 0. Then (u1, v1)

= (u2, v2).

Proof. Following the proof of Proposition 5.2 in the Appendix, we can assume that

|∇u1| + |∇u2| + |v1| + |v2| ≤ C

for a constant C > 0. For simplicity, we set in (1.7)

B(u, ∇u) := −Wui (u, ∇u) + Wuk (u, ∇u)ukui
+ Wpk

α
(u, ∇u)∇αukui

+ Vpk
α
(u, ∇u)uk

∇αui

It follows from (1.7) that

1
2

d

dt


R2

|(u1 − u2)|
2 dx +


R2

(Wpi
α
(u1, ∇u1) − Wpi

α
(u2, ∇u2))∇α(ui

1 − ui
2) dx

=


R2

(u j
1ui

1V
p j
α
(u1, ∇u1) − u j

2ui
2V

p j
α
(u2, ∇u2))∇α(ui

1 − ui
2) dx

−


R2

[−B(u1, ∇u1) + B(u2, ∇u2) + (v1 · ∇u1) − (v2 · ∇)u2] · (u1 − u2) dx

:= I5 + I6. (3.30)

By Young’s inequality, the last term on the right hand side of the above identity can be estimated
as

I6 = −


R2

[−B(u1, ∇u1) + B(u2, ∇u2) + (v1 · ∇u1) − (v2 · ∇)u2] · (u1 − u2) dx

≤ C


R2
|u1 − u2|

2
+ |v1 − v2|

2 dx +
a

4


R2

|∇(u1 − u2)|
2 dx .

The difficult part is to estimate I5. Using a uniform open ball covering of R2, we can estimate
only the local integral

Br0 (x0)

(u j
1ui

1V
p j
α
(u1, ∇u1) − u j

2ui
2V

p j
α
(u2, ∇u2))∇(u1 − u2) dx .
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Now we can think about Eq. (1.7) with ∂u
∂x3

= 0 in a domain of R3. After a rotation R ∈ O(3),
the integrand (1.2) has the following invariant property:

W (Ru, R∇uRT ) = W (u, ∇u).

Therefore, the system (1.5)–(1.7) is invariant for a rotation. Without loss of generality, we can
assume that u0(x0) = (0, 0, 1). Since u1 and u2 are uniformly continuous in (x, t) ∈ R2

× [0, τ ]

for some τ > 0, there exists a constant r0 > 0 such that for any (x, t) ∈ Br0(x0) × [0, τ ]

|u1(x, t) − u0(x0)| ≤ ε, |u2(x, t) − u0(x0)| ≤ ε.

Then 
Br0 (x0)

u j
1ui

1V
p j
α
(u1, ∇u1 − ∇u2)∇α(ui

1 − ui
2) dx

≤ Cε


Br0 (x0)

|∇(u1 − u2)|
2 dx + C


Br0 (x0)

|∇(u3
1 − u3

2)|
2 dx .

It follows from |u| = 1 that

u3
∇lu

3
= −u1

∇lu
1
− u2

∇lu
2.

Then an elementary calculation shows that

|∇(u3
1 − u3

2)| ≤ C |u1 − u2| + Cε|∇(u1 − u2)|.

By a covering argument, we apply all above estimates to obtain

I5 ≤ Cε


R2

|∇(u1 − u2)|
2 dx + C


R2

|(u1 − u2)|
2 dx .

Therefore, choosing ε sufficiently small yields

1
2

d

dt


R2

|(u1 − u2)|
2 dx +

a

2


R2

|∇(u1 − u2)|
2 dx

≤ C


R2
|(u1 − u2)|

2
+ |v1 − v2|

2 dx . (3.31)

Using (1.5) and (1.6), one can obtain

1
2

d

dt


R2

|v1 − v2|
2 dx +


R2

|∇(v1 − v2)|
2 dx

≤ C̃


R2
(|v1 − v2|

2
+ |u1 − u2|

2
+ |∇(u1 − u2)|

2) dx

+
1
2


R2

|∇(v1 − v2)|
2 dx . (3.32)

Combining (3.31) with (3.32) gives

1
2

d

dt


R2


C̃ |u1 − u2|

2
+

a

4
|v1 − v2|

2


dx

≤ C


R2


C̃ |u1 − u2|

2
+

a

4
|v1 − v2|

2


dx . (3.33)
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Integrating (3.33) in t and applying Gronwall’s inequality, we conclude
R2


C̃ |u1 − u2|

2
+

a

4
|v1 − v2|

2


(·, t) dt

≤ C


R2


C̃ |u1 − u2|

2
+

a

4
|v1 − v2|

2


(·, 0) dt = 0.

This proves our claim. �

4. Local existence and proof of Theorem 2

In this section, we prove the local existence of solutions of (1.5)–(1.7) and complete the proof
of Theorem 2. Recall the notation that Ṽ (τ, t) denotes the space V (τ, t) where S2 is replaced
by R3.

Lemma 4.1. For a pair (u0, v0) ∈ H1
b (R2, S2) × L2(R2, R2) with div v0 = 0 in R2 in the sense

of distribution, there is a local regular solution (uε, vε) ∈ Ṽ (0, T ) × H(0, T ) of (1.10)–(1.12)
with initial data (1.9) for some T > 0.

Proof. Although Lin–Liu proved only the global existence of the solution to (1.10)–(1.12) with
initial data (1.9) for the case of k1 = k2 = k3, their proofs still work for the local existence for
the system (1.10)–(1.12). Thus we omit the details and refer readers to [27,28]. �

Theorem 4 (Local Existence). For a pair (u0, v0) ∈ H1
b (R2, S2) × L2(R2, R3) with div v0 = 0

in R2 in the sense of distribution, there is a local solution (u, v) ∈ V (0, t1) × H(0, t1) of
(1.5)–(1.7) with initial value (u0, v0) for some t1 > 0.

Proof. For any map u0 ∈ H1
b (R2, S2), one can approximate it by a sequence of smooth maps in

H1
b (R2, S2). Without loss of generality, we assume that u0 ∈ H2

b (R2, S2) and v0 ∈ H1(R2, R3)

with div v0 = 0 in R2 are smooth. Then thanks to Lemma 4.1, there is a local regular solution
(uε, vε) ∈ Ṽ × H of (1.10)–(1.12) with initial data (1.9).

For each pair (u, v), set

eε(u, v) = W (u, ∇u) +
1

2ε2 (1 − |u|
2)2

+ |v|
2, E(u, v) =


R2

eε(u, v)dx .

Then same calculations as for (3.1) give

E(uε(·, t), vε(·, t))

+ 2
 t

0


R2

(|∂t uε + (vε · ∇uε)uε|
2
+ |∇vε|

2)2 dx dt = E(u0, v0). (4.1)

By an analysis similar to the proof of Lemmas 3.2 and 3.1, one can show that there exist
uniform positive constants R0 and ε1, and a positive time Tε = T (ε, R0, ε1) such that the problem
(1.10)–(1.12) with initial data (1.9) has a regular solution (uε, vε) ∈ Ṽ (0, Tε)×H(0, Tε) for each
fixed ε > 0, and furthermore, it holds that

sup
0≤t≤Tε


BR(x0)

|∇uε(·, t)|2 + |vε(·, t)|2 +
1

2ε2 (1 − |uε(·, t)|2)2 dx < ε1 (4.2)

for any positive R ≤ R0.
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Next, we will show that there is a constant t1 > 0, independent of ε, such that Tε ≥ t1 and the
solution (uε, vε) is bounded in Ṽ (0, t1) × H(0, t1) uniformly in ε.

First, we claim that for all t ∈ [0, min{1, Tε}]

1
2

≤ |uε(x, t)| ≤
3
2
. (4.3)

To verify (4.3), we re-scale the solution by

ũ(x, t) = uε(εx, ε2t), ṽ(x, t) = εvε(εx, ε2t), P̃(x, t) = ε2 Pε(εx, ε2t).

Then (ũ, ṽ) solves the following approximate Ericksen–Leslie system

ṽi
t + (ṽ · ∇)ṽi

− △ṽi
+ ∇xi P̃ = −∇x j (∇xi ũ

k Wpk
j
(ũ, ∇ũ)), (4.4)

∇ · ṽ = 0, (4.5)

ũi
t + (ṽ · ∇)ũi

= ∇α


Wpi

α
(ũ, ∇ũ)


− Wui (ũ, ∇ũ) + ũi (1 − |ũ|

2) (4.6)

for i = 1, 2, 3, with initial data

ṽ(x, 0) = ṽ0(x), ũ(x, 0) = ũ0(x), ∀x ∈ R2, (4.7)

where ũ0(x) = u0(εx) and ṽ0(x) = εv0(εx) satisfy
R2

e(ũ0(x), ṽ0(x)) dx =


R2

e(u0(x), v0(x)) dx .

The condition (4.2) becomes

ess sup
0≤t≤ Tε

ε2 ,x∈R2


B R

ε
(x)

|∇ũ(·, t)|2 +
1
2
(|1 − |ũ(·, t) |

2)2
+ |ṽ|

2 dx < ε1 (4.8)

for any R ∈ (0, R0]. While the basic energy identity (4.1) becomes
R2


W (ũ, ∇ũ) +

1
2
(1 − |ũ|

2)2


(·, t)dx

+

 t

0


R2

(|∂t ũ|
2
+ |∂t ũ + (ṽ · ∇)ũ|

2)(·, t)dx dt = E(u0, v0) (4.9)

for all t ∈


0, Tε

ε2


.

Without loss of generality, we assume Tε ≤ 1. Let τ be the maximal time in

0, Tε

ε2


such that

1
4

≤ |ũ(x, t)| ≤ 2. (4.10)

By (4.1) and similar arguments as for Lemma 3.2, one can derive from (4.4)–(4.6) that there
exists a uniform constant C0 such that

C0

 τ

0


R2


|∇

2ũ|
2
+ |∇ṽ|

2


dx dt

≤ −

 τ

0


R2

△ũ · ũ(1 − |ũ|
2) dx dt + C


R2

|∇u0|
2
+ |v0|

2 dx

+ C
 τ

0


R2

|∇ũ|
4
+ |ṽ|

4 dx dt. (4.11)
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Integration by parts yields

−

 τ

0


R2

△ũ · ũ(1 − |ũ|
2) dx dt

=

 τ

0


R2

|∇ũ|
2(1 − |ũ|

2) dx dt −
1
2

 τ

0


R2

|∇|ũ |
2
|
2 dxdt (4.12)

By Young’s inequality and using (4.1), (4.6) and (4.10), one can obtain τ

0


R2

|∇ũ|
2(1 − |ũ|

2) dx dt ≤ η

 τ

0


R2

(1 − |ũ|
2)2 dx dt + C

 τ

0


R2

|∇ũ|
4 dx dt

≤ η

 τ

0


R2

|∇
2u|

2 dx dt + C
 τ

0


R2

|∇ũ|
4 dx dt + C


R2

(|∇u0|
2
+ |v0|

2) dx (4.13)

for a small constant η.
Combining (4.11)–(4.13) and choosing ε1 sufficiently small in (4.2) with Lemma 2.2, we

conclude that τ

0


R2


|∇

2ũ|
2
+ |∇ṽ|

2


dx dt +

 τ

0


R2

(1 − |ũ|
2)2 dx dt

≤ C


1 +

τε2

R2


R2

e(u0, v0) dx (4.14)

for any R ≤ R0.
It follows also from Lemma 2.2, (4.8), (4.9) and (4.14) that τ

0


R2

(|∇ũ|
4
+ |ṽ|

4) dx dt ≤ C ε1


1 +

τε2

R2


E(u0, v0) (4.15)

for any R ≤ R0.
Now following the calculation for (3.25), one can derive that for any t ∈ (0, τ ),

d

dt


R2

(|∇2 ũ|
2
+ |∇ṽ|)(·, t)dx


+

a

4


R2

(|∇3ũ|
2
+ |∇

2ṽ|)(·, t)dx

≤ C


R2
(|ṽ|

2
+ |∇ũ|

2)(|∇ṽ|
2
+ |∇

2ũ|
2)(·, t)dx

+ C


R2

∇β(ũi (1 − |ũ|
2)) · ∇β △ ũi dx

+ C


R2
|∇ũ|

6 (·, t)dx . (4.16)

Note that

C


R2

∇β(ũi (1 − |ũ|
2)) · ∇β △ ũi dx

 = C


R2

△(ũi (1 − |ũ|
2)) · △ũi dx


≤ C


R2

|∇
2ũ(·, t)|2dx + C


R2

|∇ũ(·, t)|4 dx (4.17)

and

C


R2
|∇ũ(·, t)|6 dx = −C


R2

|∇ũ(·, t)|4 ũ · △ũ dx − C


∇α(|∇ũ|
4)ũ · ∇α ũ dx

≤
C

2


R2

|∇ũ(·, t)|6 dx + C


R2
|∇ũ(·, t)|2 |∇

2ũ(·, t)|dx . (4.18)
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It follows from (4.16)–(4.18) that

d

dt


R2

(|∇2ũ|
2
+ |∇ṽ|

2)(·, t)dx


+

a

4


R2

(|∇3ũ|
2
+ |∇

2ṽ|
2)(·, t)dx

≤ C


R2
(|ṽ|

2
+ |∇ũ|

2)(|∇ṽ|
2
+ |∇

2ũ|
2)dx

+ C


R2

(|∇2ũ(·, t)|2 + |∇ũ(·, t)|4)dx


.

Using the Gagliardo–Nirenberg–Sobolev inequality, one can get

C


R2
(|ṽ|

2
+ |∇ũ|

2)(|∇ṽ|
2
+ |∇

2ũ|
2)dx

≤ C


R2

(|ṽ|
4
+ |∇ũ|

4)dx

 1
2


R2
(|∇ṽ|

4
+ |∇

2ũ|
4)dx

 1
2

≤ C


R2

(|∇ṽ|
2
+ |∇

2ũ|
2)dx

 1
2


R2
(|∇2ṽ|

2
+ |∇

3ũ|
2)dx

 1
2

·


R2

(|ṽ|
4
+ |∇ũ|

4)dx

 1
2

≤
a

8


R2

(|∇2ṽ|
2
+ |∇

3ũ|
2)dx +


C


R2
(|ṽ|

4
+ |∇ũ|

4)dx


·


R2

(|∇ṽ|
2
+ |∇

2ũ|
2)dx .

This, together with (4.18), shows that

d

dt


R2

(|∇2ũ|
2
+ |∇ṽ|

2)(·, t)dx +
a

8


R2

(|∇3ũ|
2
+ |∇

2ṽ|)(·, t)dx

≤


C


R2
(|ṽ|

4
+ |∇ũ|

4)(·, t)dx


R2

(|∇2ũ|
2
+ |∇ṽ|

2)(·, t)dx + h(t) (4.19)

with

h(t) = C


R2
(|∇2ũ|

2
+ |∇ũ|

4)(·, t)dx . (4.20)

It then follows from (4.14), (4.15), (4.19)–(4.20), and Gronwall’s inequality that for all t ∈

(0, τ ),
R2

(|∇2ũ|
2
+ |∇ṽ|

2)(·, t)dx ≤ eC
 t

0


R2 (|ṽ|

4
+|∇ũ|

4)(·,l)dx dl
·


R2

(|∇2u0|
2
+ |∇v0|

2)dx

+

 t

0
eC

 t
s


R2 (|∇ũ|

4
+|ṽ|

4)(·,l)dx dl
· h(s) ds

≤ e
Cε1


1+

τε2

R2


E(u0,v0)


∥u0∥

2
H2 + ∥v0∥

2
H1 +

 t

0
h(s)ds


≤


∥u0∥

2
H2 + ∥v0∥

2
H1 + C


1 +

τε2

R2


E(u0, v0)


e

Cε1


1+

τε2

R2


E(u0,v0)

. (4.21)
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Suppose that there is a x1 ∈ R2 such that |ũ(x1, t)| < 1/2


or |ũ(x1, t)| > 3
2


with some

t ∈ [0, τ ]. It follows from (4.21) that ũ is C
1
8 -continuous uniformly in (x, t). Then, there is a

constant C4 so that for x ∈ B1/4C4(x1) with 1
4C4

<
R0
ε

, we have

(1 − |ũ(x, t)|2)2
≥

1
2
.

Then
1
2


B 1

4C4

(x1)

(1 − |ũ(x, t)|2)2 dx ≥
1
8
|B 1

4C4
(0)| > ε1

which contradicts (4.8) for a sufficiently small ε1. This shows that our claim (4.3) holds for all

t ∈


0, Tε

ε


.

Finally, we show that (uε, vε) is bounded in Ṽ (0, min{Tε, 1}) × H(0, min{Tε, 1}) uniformly
for any positive ε < 4C4 R0.

For any t ≤ min(1, Tε), it follows from (4.14) and (4.15) that t

0


R2

(|∇2 uε|
2
+ |∇vε

|
2)(x, t)dx dt +

1

4ε4

 t

0


R2

(1 − |uε|
2)2 dx dt

≤ C


1 +

t

R2


E(u0, v0), (4.22) t

0


R2

(|∇uε|
4
+ |vε|

4)(x, t)dx dt ≤ C ε1


1 +

t

R2


E(u0, v0). (4.23)

Let ϕ be the cut-off function as in the proof of Lemma 3.3. Then by an analysis similar to the
ones in (3.14)–(3.17) and using (4.22) and (4.23), one can get

R2
e(uε(·, t), vε(·, t))ϕ2 dx +

 t

0


R2


|∇vε|

2
+

1
2
|∂t uε + vε · ∇uε|

2


ϕ2 dx dt

≤


R2

e(u0, v0)ϕ
2 dx + C

t
1
2

R


1 +

t

R2

 1
2

E(u0, v0)

+

 t

0


R2

1

2ε2 (1 − |uε|
2)2

|vε · ∇(φ2)|dx dt. (4.24)

On the other hand, t

0


R2

1

2ε2 (1 − |uε|
2)2

|vε · ∇(ϕ2)| dx dt

≤ C

 t

0


R2

1

4ε4 (1 − |uε|
2)4 dx dt

 1
2
 t

0


R2

|vε|
2

R2 dx dt

 1
2

≤ C
t

1
2

R


R2

1

4ε4 (1 − |uε|
2)2 dx dt

 1
2

(E(u0, v0))
1
2

≤ C
t

1
2

R


1 +

t

R2

 1
2

E(u0, v0) (4.25)

where one has used (4.1) and (4.22).
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Hence,
BR(x0)

eε(uε(x, t), vε(x, t)) dx ≤


BR R(x0)

e(u0, v0)dx

+ C
t

1
2

R


1 +

t

R2

 1
2

E(u0, v0) (4.26)

for any R ≤ R0. First, choose R1 > 0 so that
B2R1 (x0)

e(u0, v0)dx <
ε1

2
(4.27)

for all x0 ∈ R2. Then, set

t1 = min


R1,
ε1 R1

4C(ε1 + E(u0, v0))
.


(4.28)

Then for t ≤ t1,
BR(x0)

eε(uε(x, t), vε(x, t))dx < ε1

for all x0 ∈ R2 and R ≤ R1. Consequently, we have shown that there is a uniform t1 ≤ min{Tε, 1}

such that (uε, vε) is bounded in Ṽ (0, t1) × H(0, t1) with t1 independent of ε. Letting ε → 0, we
can prove the local existence of solution (u, v) ∈ V (0, t1) × H(0, t1) with initial data (1.9). �

Now we complete the proof of Theorem 2.

Proof. By Theorem 4, there is a local solution (u, v) ∈ V (0, t1) × H(0, t1) of (1.5)–(1.7) in
R2

× [0, t1] with initial conditions (1.9) for some t1 > 0. By Lemmas 3.4 and 3.5, the solution
can be extended in [0, T1) for a maximal times T1 such that at T1, there is at least a singular point
x1

i ∈ R2 such that

lim sup
t↗T1


BR(x1

i )

e(u, v)(·, t) dx ≥ ε0

for any R ≤ R0 for some R0 > 0 and ε0 > 0. It is easy to see the solution (u, v) ∈ V × H
is regular for all t ∈ (0, T1). Then there exists a sequence of {tn} such that the sequence
(u(tn), v(tn)) converges weakly to (u(T1), v(T1)) in H1(R2

; S2) × L2(R2
; R3) satisfying

R2
e(u(T1), v(T1)) dx ≤


R2

e(u0, v0) dx − ε0, div v(T1) = 0.

Using the energy identity, there is a finite number of singular times {Tl}
L
l=1 in Theorem 2. �

5. Appendix: The liquid crystal flow and regularity issue

In this section, we formulate the liquid crystal heat flow and discuss C1,α-regularity issues for
solutions of the liquid crystal flow (1.4) and the system (1.5)–(1.7).

The liquid crystal equilibrium system in a form of vectors and tensors was derived by Hardt
et al. in [15] using the Lagrange multiplier method, but we need a precise form of (1.3) in
coordinates.
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Let φ be a smooth functional in C∞

0 (Ω , R3). We consider a variation

ut (x) =
u + tφ

|u(x) + tφ(x)|
=

u + tφ

(1 + 2tu · φ + t2φ2)1/2

and compute

dut

dt
= φ −

(u + tφ)(u · φ + t |φ|
2)

(1 + 2tu · φ + t2φ2)1/2 .

To derive the Euler–Lagrange equations, we compute

d

dt


Ω

W (ut , ∇ut ) dx


t=0

= 0.

This implies
Ω


Wu j

du j
t

dt
+ Wpi

α

d∇αui
t

dt


t=0

dx = 0,

where Wpi
α
(u, p) =

∂W
∂pi

α
and Wui =

∂W
∂ui . Note

dui
t

dt


t=0

= φi
− ui (u · φ),

d∇αui
t

dt


t=0

= ∇αφi
− ∇αui (u · φ) − ui

∇α(u · φ).

We conclude that
Ω

Wu j (u, ∇u)

φ j

− u j (u · φ)


+ Wpi
α
(u, ∇u)


∇αφi

− ∇αui (u · φ) − ui
∇α(u · φ)


dx = 0 (5.1)

for any φ ∈ C∞

0 (Ω , R3). Therefore, u ∈ H1(Ω , S2) is said to be a weak solution to the liquid
crystal system if u satisfies

−∇α


Wpi

α
(u, ∇u) − ukui Wpk

α
(u, ∇u)


+ Wui (u, ∇u)

− Wuk (u, ∇u)ukui
− Wpk

α
(u, ∇u)∇αukui

− Wpk
α
(u, ∇u)uk

∇αui
= 0

in the sense of distribution. Note |u|
2

= 1, then ui
∇ui

= 0. This system is the exact form
of (1.3).

Then, the liquid crystal flow can be formulated as in (1.4), i.e.,

∂ui

∂t
= ∇α


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


− Wui (u, ∇u)

+ Wuk (u, ∇u)ukui
+ Wpk

α
(u, ∇u)∇αukui

+ Vpk
α
(u, ∇u)uk

∇αui .

Next, we will prove that a Hölder continuous solution of (1.4) belongs to C1,α for some α

with 0 < α < 1. For any point z0 = (x0, t0) ∈ Ω × [0, R) and any number R > 0, we use
standard notations:

B(x0, R) = {x ∈ R3
: |x − x0| < R}, Q(z0, R) = B(x0, R) × (t0 − R2, t0),

SR(z0) = B(x0, R) × {t0 − R2
} ∩ ∂ B(x0, R) × (t0 − R2, t0).
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Proposition 5.1. Let Ω be a domain in R3 with smooth boundary ∂Ω . Let u be a weak solution
of (1.4) and Hölder continuous in Ω × [0, T ). Then, ∇u is (locally) Hölder continuous with the
same exponent in Ω × [0, T ).

Proof. Assume that u(x, t) is Hölder continuous with exponent β, 0 < β < 1. Let (x0, t0) ∈

Ω × (0, T ) with Q4R0(z0) ⊂ Ω × (0, T ) for some R0 > 0. Note u(x0, t0) = e ∈ S2. After a
rotation, we can assume that e = (0, 0, 1).

It follows from |u| = 1 and Cauchy’s inequality that

|u3
|
2
|∇u3

|
2

≤ (1 − |u3
|
2)|∇u|

2
≤ 2|u − u(x0, t0)||∇u|

2. (5.2)

Denote

p̃ = (p j
α)3×2.

Using the structure of W (u, p), we can write

W p̃(u, ∇u) = W̃ p̃(u, ∇u1, ∇u2) + f (u, ∇u3),

where | f (u, ∇u3)| ≤ C |∇u3
|.

Let ṽ = (v1, v2) be the solution of the Cauchy–Dirichlet problem

vi
t = ∇α


W p̃i

α
(e, ∇v1, ∇v2)


in Q R(z0) (5.3)

vi
= ui on SR(z0).

for i = 1, 2. Since (5.3) is a parabolic system with constant coefficients, it follows from
Proposition 1.2 of [14] that for all ρ ≤ R ≤ R0

Qρ

|∇ṽ|
2 dz ≤ C

 ρ

R

5


Q R

|∇ṽ|
2 dz

and 
Qρ

|∇ṽ − (∇ṽ)ρ |
2 dz ≤ C

 ρ

R

7


Q R

|∇ṽ − (∇ṽ)R |
2 dz.

Set w̃ = ũ − ṽ. Then for all ρ < R, we have
Qρ

|∇u|
2 dz ≤ C

 ρ

R

5


Q R

|∇u|
2 dz + C


Q R

|∇w̃|
2 dz + C


Q R

|∇u3
|
2 dz (5.4)

and 
Qρ

|∇u − (∇u)ρ |
2 dz ≤ C

 ρ

R

7


Q R

|∇u − (∇u)R |
2 dz

+ C


Q R

|∇w̃|
2 dz + C


Q R

|∇u3
|
2 dz. (5.5)

Note that u is β-Hölder continuous in Ω × [0, T ) and u(x0, t0) = (0, 0, 1).
Although there is no maximum principle for the parabolic system (5.3) with constant

coefficients, Giaquinta–Struwe in [14, p. 445] obtained that

sup
Q R

|v − u(x0, t0)| ≤ C sup
Q R

|u − u(x0, t0)|
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with a constant C independent of R and u. This implies

|w̃| ≤ |u − u(x0, t0)| + |v − u(x0, t0)| ≤ C Rβ . (5.6)

Multiplying the difference between (5.3) and (1.4) by w̃i (i = 1, 2) and integrating over Q R lead
to 

BR

|w̃|
2(·, t0) dx +


Q R

2
i=1

∇αw̃i W p̃i
α
(e, ∇w̃) dx

≤


Q R

2
i=1

|∇αw̃i
| |W̃ p̃i

α
(e, ∇ṽ) − W̃ p̃i

α
(u, ∇ũ)| dx + C


Q R

|∇u3
∥ ∇w̃| dx

+


Q R

2
i=1

3
k=1

∇αw̃i ui uk Vpk
α
(u, ∇u) + C


Q R

|w̃||∇u|
2 dx . (5.7)

Since u is β-Hölder continuous and u(x0, t0) = (0, 0, 1), we have |ui
| ≤ C Rβ for i = 1, 2.

Applying Young’s inequality and (5.2) yields
Q R

|∇w̃|
2 dz ≤ C Rβ


Q R

|∇u|
2 dz. (5.8)

It follows that for all ρ < R,
Qρ

|∇u|
2 dz ≤ C

 ρ

R

5


Q R

|∇u|
2 dz + C Rβ


Q R

|∇u|
2 dz. (5.9)

We claim the following Cacciopoli’s inequality
Q(z0,R)

|∇u|
2 dz ≤ C

1

R2


Q(z0,2R)

|u − u2R |
2 dz ≤ C R3+2β . (5.10)

for any z0 ∈ Ω × (0, ∞) and R ≤ R0, where u2R is the average of u in Q2R(x0, t0).
Next, we prove this claim. Let ξ be a cut-off function in C∞

0 (B2R(x0)) with 0 ≤ ξ ≤ 1,
ξ ≡ 1 in BR(x0) and |∇ξ | ≤

C
R . Let τ ∈ C∞(R, R) be a function that depends only on t with

0 ≤ τ ≤ 1, τ ≡ 1 on [t0 − R2, t0] and τ ≡ 0 on (−∞, t0 − 4R2) and |∂tτ | ≤ C/R2.
Testing (1.4) with φ = (ui

−ui
2R)ξ2τ 2 I(−∞,t0) for i = 1, 2, where I(−∞,t0) is the characteristic

function of (−∞, t0), we have
B2R(x0)

|u(·, t0) − u2R |
2ξ2τ 2(t0) dx +


Q2R(z0)

2
i, j=1

W
pi
α p j

β

∇αui
∇αu jξ2τ 2 dz

≤ 2


Q2R(z0)


Wpi

α
(u, ∇u) − ukui Vpk

α
(u, ∇u)


∇αξ(ui

− ui
2R)ξτ 2 dz

+ C


Q2R(z0)

|∇u|
2
|u − u2R |ξ2τ 2 dz + 2


Q2R(z0)

|u − u2R |
2ξ2τ∂tτ dz

+


Q2R(z0)

ukui Vpk
α
(u, ∇u) ∇α(ui

− ui
2R)ξ2τ 2 dz + C


Q2R(z0)

|∇u3
|
2ξ2τ 2 dz.

Since u is β-Hölder continuous and u(x0, t0) = (0, 0, 1), u(x, t)−u2R can be chosen sufficiently
small when R0 is small and |u1

| + |u2
| is also small. We need to deal with the last term above.
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However, due to (5.2), the term |∇u3
|
2 can be handled easily. Thus, by Young’s inequality, the

claim (5.10) follows.
Using (5.9) and (5.10), a standard iteration (cf. [10, Chapter III, Lemma 2.1]) yields that for

all ρ ≤ R0, one has
Qρ

|∇u|
2 dz ≤ Cρ3+3β , (5.11)

where C depends on R0. An iteration by (5.9) and (5.10) yields that for any σ < 1,
Qρ

|∇u|
2 dz ≤ Cρ3+2σ .

Using (5.2) and (5.8) yields
Qρ

|∇u − (∇u)ρ |
2 dz ≤ C

 ρ

R

7


Q R

|∇u − (∇u)R |
2 dz + C Rβ


Q R

|∇u|
2 dz

≤ C
 ρ

R

7


Q R

|∇u − (∇u)R |
2 dz + C R3+2σ+β .

Choose σ sufficiently close to 1 so that 2σ + β > 2. Then, for all ρ ≤
R
2 , we have

Qρ

|∇u − (∇u)ρ |
2 dz ≤ Cρ5+2σ1

for some σ1 with 0 < σ1 < 1. This implies ∇u ∈ C1,σ1
loc and then ∇u ∈ C1,β (cf [14]). �

Proposition 5.2. Let (u, v) be a weak solution of (1.5)–(1.7) in R2
× [0, T ] and assume that u

is Hölder continuous in R2
× [0, T ). Let τ be any positive constant. For t ∈ [τ, T ], we have

R2
|∇

2u(x, t)|2 + |∇v(x, t)|2 dx ≤ C τ−1(1 + T R−2).

Then, (u, v) is smooth in R2
× (0, T ).

Proof. By the Sobolev embedding theorem, we have
B1(x0)

|∇u(x, t)|p
+ |v(x, t)|p dx ≤ C

for any p > 1 and for x0 ∈ R2 and t > τ . By an analysis similar to the one in Lemma 2.4, we
can show that u is Hölder continuous in R2

× [τ, T ].
To get the higher order regularity, we rewrite (1.7) as

ui
t − ∇α


Wpi

α
(u, ∇u)


= −ukui

∇α


Vpk

α
(u, ∇u)


− (v · ∇)ui

+ B̃(u, ∇u), (5.12)

where B̃(u, ∇u) is given by

B̃(u, ∇u) = −Wui (u, ∇u) + Wuk (u, ∇u)ukui
+ Wpk

α
(u, ∇u)∇αukui

+ Vpk
α
(u, ∇u)uk

∇αui
− ∇α


ukui


Vpk

α
(u, ∇u).

Since W (u, p) is quadratic and convex in p, we can write

Wpi
α
(u, ∇u) = ai j

αβ(u)∇αu j .
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Since u is uniformly Hölder continuous, the left-hand term of (5.12) is a parabolic operator. Let
ξ(x) be a cut-off function in BR(x0) and let τ ∈ C∞(R, R) be a function that depends only on t

with 0 ≤ τ ≤ 1, τ ≡ 1 on

t0 −

1
4 R2, t0


and τ ≡ 0 on (−∞, t0 − R2) and |∂tτ | ≤ C/R2. Set

φ = τξ . Multiplying (5.12) by φ, we have

(uφ)i
t − ∇α


ai j
αβ(u)∇α(u jφ)


− uiφt

= −ukui
∇α


Vpk

α
(u, ∇u)


φ − [(v · ∇)ui

+ B̃(u, ∇u)]φ. (5.13)

By the assumption, we have

(v · ∇)u ∈ L p(Q R(x0)), |∇u|
2

∈ L p(Q R(x0)) ∀p > 1

But the first term on the right hand side of (5.13) which is not a ‘good’ term, needs more analysis.
Using the fact that |u| = 1, we have

u3
∇

2
αβu3

= −(∇βu · ∇u + u1
∇

2
αβu1

+ u2
∇

2
αβu2), u3u3

t = −(u1u1
t + u2u2

t ).

Without loss of generality, we regard the solution in R3. By a rotation, we assume

u(x0, t0) = (0, 0, 1).

Since u is Hölder continuous, there exists a small R such that

|u(x, t) − u(x0, t0)| ≤ ε

for a sufficiently small constant ε > 0. Therefore

|∇
2u3

| ≤ C |∇u|
2
+ 2ε(|∇2u1

| + |∇
2u2

|)

Apply the classical L p-estimate of parabolic systems (c.f. [8,22]) to (5.13) for i = 1, 2, we
have

∥ũtφ∥L p(Q R(x0)) + ∥∇
2(ũφ)∥L p(Q R(x0)) ≤ C∥φ∇

2u3
∥L p + Cε∥φ∇

2u∥L p(Q R(x0))

+ C(∥u∥L2p(Q R(x0))
+ ∥v∥L2p(Q R(x0))

+ 1),

where ũ = (u1, u2). Choosing ε sufficiently small, we obtain the following.

∥utφ∥L p(Q R(x0)) + ∥∇
2(uφ)∥L p(Q R(x0)) ≤ C.

To estimate v in (1.5), it follows from Hölder’s inequality that
R2×[τ,T ]

|(v · ∇)v|
p dx ≤


R2×[τ,T ]

|∇v|
4 dx dt

p/4 
R2×[τ,T ]

|v|
4

4−p dx dt

 4−p
4

for any p with 3 < p < 4. By the L p-estimate of Stoke’s operator (e.g. [32]), vt and ∇
2v are in

L p for 3 < p < 4. This implies that v is Hölder continuous.
Differentiating in xl in (5.12), we have

(∇xl u
i )t − ∇α


ai j
αβ(u)∇α(∇xl u

j )


= −ukui
∇α


Vpk

α
(u, ∇∇xl u)


+ v#∇

2u + ∇v#∇u + ∇u#∇
2u.

By applying the L p-theory, a similar argument yields that ∇u is uniformly continuous. Then, a
standard bootstrap method implies that (u, v) are smooth. �
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