
Journal of Pure and Applied Algebra 215 (2011) 1174–1197

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Monads in double categories
Thomas M. Fiore a, Nicola Gambino b,c,∗, Joachim Kock d

a Department of Mathematics and Statistics, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, MI 48128, USA
b Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, via Archirafi 34, 90123 Palermo, Italy
c School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
d Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

a r t i c l e i n f o

Article history:
Received 20 June 2010
Received in revised form 27 July 2010
Available online 3 September 2010
Communicated by J. Adámek

MSC: 18D05; 18C15

a b s t r a c t

We extend the basic concepts of Street’s formal theory of monads from the setting of
2-categories to that of double categories. In particular, we introduce the double category
Mnd(C) of monads in a double category C and define what it means for a double category
to admit the construction of free monads. Our main theorem shows that, under some mild
conditions, a double category that is a framed bicategory admits the construction of free
monads if its horizontal 2-category does. We apply this result to obtain double adjunctions
which extend the adjunction between graphs and categories and the adjunction between
polynomial endofunctors and polynomial monads.

© 2010 Elsevier B.V. All rights reserved.

Introduction

The development of the formal theory of monads, begun in [23] and continued in [15], shows that much of the
theory of monads [1] can be generalized from the setting of the 2-category Cat of small categories, functors and natural
transformations to that of a general 2-category. The generalization, which involves defining the 2-category Mnd(K) of
monads, monad maps and monad 2-cells in a 2-category K , is useful for studying homogeneously a variety of important
mathematical structures. For example, as explained in [17], categories, operads, multicategories and T -multicategories
can all be seen as monads in appropriate bicategories. However, the most natural notions of a morphism between these
mathematical structures do not appear as instances of the notion of a monadmap. For example, it is well-known that, while
categories can be viewed as monads in the bicategory of spans [2], functors are not monad maps therein.

To address this issue, we define the double category Mnd(C) of monads, horizontal monad maps, vertical monad maps
and monad squares in a double category C. Monads and horizontal monad maps in C are exactly monads and monad maps
in the horizontal 2-category of C, while the definitions of vertical monad maps and monad squares in C involve vertical
arrows of C that are not necessarily identities. This combination of horizontal and vertical arrows of C in the definition
of Mnd(C) allows us to describe mathematical structures and morphisms between them as monads and vertical monad
maps in appropriate double categories. For example, small categories and functors can be viewed as monads and vertical
monad maps in the double category of spans.

For a double category C, we define also the double category End(C) of endomorphisms, horizontal endomorphismmaps,
vertical endomorphism maps and endomorphism squares. The double categories Mnd(C) and End(C) are related by a
forgetful double functor U : Mnd(C) → End(C), mapping a monad to its underlying endomorphism. By definition, a
double category C is said to admit the construction of free monads if U has a vertical left adjoint. In view of our applications,
we consider the construction of free monads in double categories that satisfy the additional assumption of being framed
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bicategories, in the sense of [21]. Our main result shows that a framed bicategory satisfying some mild assumptions
admits the construction of free monads if its horizontal 2-category does. Here, the notion of a 2-category admitting the
construction of free monads is obtained by generalizing the characterization of the free monads in the 2-category Cat
obtained in [22, Section 6.1].

We apply the general theory to the study of two free constructions. First, we consider the construction of the free category
on a graph (relatively to a category with finite limits), which plays an important role in Joyal’s abstract treatment of Gödel’s
incompleteness theorems [18]. We show that if E is a pretopos with parametrized list objects, then the double category
of spans in E admits the construction of free monads. Secondly, we consider the construction of the free monad on a
polynomial endofunctor (relatively to a locally cartesian closed category, which is always assumed here to have a terminal
object), which contributes to the category-theoretic analysis of Martin-Löf’s types of well-founded trees, begun in [19] and
continued in [7,8]. We show that if E is a locally cartesian closed category with finite disjoint coproducts and W-types,
then the double category of polynomials in E admits the construction of free monads. Both of these results are obtained by
application of our main result, which is possible since the double categories of interest are framed bicategories. Examples of
categories E satisfying the hypotheses above abound: for example, every elementary topos with a natural numbers object
is both a pretopos with parametrized list objects and a locally cartesian closed category with finite disjoint coproducts and
W-types [19]. Thus, our theory applies in particular to the category Set of sets and functions and to categories of sheaves.

The double categories of spans and of polynomials are defined such that if we consider the vertical part of the freemonad
double adjunction, we recover exactly the adjunction between graphs and categories [16, Section II.7] and the adjunction
between polynomial endofunctors and polynomial monads [8, Section 4.6]. Hence, we both strengthen these adjointness
results and put them in a general context. Indeed, one of the original motivations for the research presented here was to
make precise the analogy between the two constructions. In both cases, the application of our main theorem simplifies a
problem regarding double categories by reducing it to a question on 2-categories. Note, however, that the combination of
horizontal and vertical arrows is exploited essentially to recover the existing results, since the free monad construction
acts on endomorphisms (which are defined using horizontal arrows) but its universal property is expressed with respect to
vertical endomorphism maps.

Some double-categorical aspects of monads have also been investigated within the theory of fc-multicategories
in [17, Chapter 5] and within the theory of framed bicategories in [21, Section 11]. However, the notion of a horizontal
monad map considered there generalizes the ring-theoretic notion of a bimodule, whereas our horizontal monad maps are
essentially the monad maps of Street [23].

Plan of the paper. Section 1 discusses monads in a 2-category, recalling some basic notions from [23] and giving a
characterization of the freemonads in a 2-category. Section 2 introduces the double categoryMnd(C) ofmonads in a double
category C and illustrates its definition with examples. Section 3 establishes some special properties of Mnd(C) under the
assumption that C is a framed bicategory. In particular, we state our main result, Theorem 3.7, and apply it to our examples.
Finally, Section 4 contains the proof of Theorem 3.7.

1. Monads in a 2-category

Preliminaries. We recall some definitions concerning endomorphisms, monads and their algebras in a 2-category. Let K
be a 2-category. An endomorphism in K is a pair (X, P) consisting of an object X and a 1-cell P : X → X . An endomorphism
map (F , φ) : (X, P) → (Y ,Q ) consists of a 1-cell F : X → Y and a 2-cell φ : QF → FP , which is not required to satisfy any
condition. An endomorphism 2-cell α : (F , φ) → (F ′, φ′) is a 2-cell α : F → F ′ making the following diagram commute:

QF
φ //

Qα

��

FP

αP

��
QF ′

φ′

// F ′P.

We write End(K) or EndK for the 2-category of endomorphisms, endomorphism maps and endomorphism 2-cells in K .
There is a 2-functor Inc : K → End(K) which sends an object X ∈ K to the identity endomorphism (X, 1X ) on X . Let us
now consider a fixed endomorphism (Y ,Q ) in K . For X ∈ K , the category Q -algX of X-indexed Q -algebras, in the sense of
Lambek, is defined by letting

Q -algX =def EndK((X, 1X ), (Y ,Q )).

Explicitly, an X-indexed Q -algebra consists of a 1-cell F : X → Y , called the underlying 1-cell of the algebra, and a 2-cell
f : QF → F , called the structure map of the algebra. Note that the structure map is not required to satisfy any conditions.
These definitions extend to a 2-functor

Q -alg(−) : K → Cat.
We write U(−) : Q -alg(−) → K(−, Y ) for the 2-natural transformations whose components are the forgetful functors
UX : Q -algX → K(X, Y ) mapping an X-indexed Q -algebra to its underlying 1-cell.



1176 T.M. Fiore et al. / Journal of Pure and Applied Algebra 215 (2011) 1174–1197

We write Mnd(K) or MndK for the 2-category of monads, monad maps and monad 2-cells in K , as defined in [23]. As
usual, we refer to a monad by mentioning only its underlying endomorphism, leaving implicit its multiplication and unit.
With a minor abuse of notation, we write Inc : K → Mnd(K) for the 2-functor mapping an object X to the monad (X, 1X ).
If (Y ,Q ) is a monad, for every X ∈ K we may consider not only the category Q -algX of Lambek algebras for its underlying
endomorphism, but also the category Q -AlgX of X-indexed Eilenberg–Moore Q -algebras, which is defined by letting

Q -AlgX =def MndK((X, 1X ), (Y ,Q )).

Note that we write Q -algX for the category of algebras for the endomorphism and Q -AlgX for the category of Eilenberg–
Moore algebras for the monad. Explicitly, an X-indexed Eilenberg–Moore Q -algebra consists of a 1-cell F : X → Y and
a 2-cell f : QF → F satisfying the axioms

QQF
Qf //

µQ F

��

QF

f

��
QF

f
// F ,

F
ηQ F //

1F --

QF

f

��
F .

Again, these definitions extend to a 2-functor Q -Alg(−) : K → Cat and there is a 2-natural transformation U(−) :

Q -Alg(−) → K(−, Y ), with components given by the evident forgetful functors. Since (Y ,Q ) is assumed to be a monad, for
every X ∈ K the forgetful functor UX : Q -AlgX → K(X, Y ) has a left adjoint, defined by composition with Q : Y → Y .

A characterization of free monads. We generalize the characterization of the free monad on an endomorphism given
by Staton in [22, Theorem 6.1.5] from the 2-category Cat to an arbitrary 2-category K . The generalization is essentially
straightforward, but we indicate the main steps of the proof. See [1, Section 9.4] for background material on free monads
and [13] for a general account of several examples of the free monad construction.

Theorem 1.1. Let (Y ,Q ) be an endomorphism in a 2-category K . For a monad (Y ,Q ∗) and a 2-cell ιQ : Q → Q ∗, the following
conditions are equivalent.

(i) The endomorphism map (1Y , ιQ ) : (Y ,Q ∗) → (Y ,Q ) is universal, in the sense that for every monad (X, P), composition
with (1Y , ιQ ) induces an isomorphism fitting in the diagram

MndK((X, P), (Y ,Q ∗))
∼= //

((RRRRRRRRRRRRR EndK((X, P), (Y ,Q ))

vvmmmmmmmmmmmmm

K(X, Y ),

(1)

where the downward arrows are the evident forgetful functors.
(ii) The 2-cell νQ∗ : QQ ∗

→ Q ∗, defined as the composite

QQ ∗
ιQ Q∗

// Q ∗Q ∗
µQ∗

// Q ∗, (2)

equips Q ∗ with a universal Q -algebra structure, in the sense that for every X ∈ K , the functor K(X, Y ) → Q-algX defined
by mapping F : X → Y to the Q -algebra with underlying 1-cell Q ∗F and structure map the 2-cell νQ∗F : QQ ∗F → Q ∗F is
left adjoint to the forgetful functor UX : Q-algX → K(X, Y ).

Proof. To see that (i) implies (ii), consider the following diagram:

Q ∗-AlgX
∼= // Q -algX

MndK((X, 1X ), (Y ,Q ∗))

))RRRRRRRRRRRRR
∼= // EndK((X, 1X ), (Y ,Q ))

vvmmmmmmmmmmmmm

K(X, Y ),

where the bottom triangular diagram is an instance of the diagram in (1). The functor defined in (ii) is left adjoint to the
forgetful functor UX : Q -algX → K(X, Y ) since it is exactly the composite of the left adjoint K(X, Y ) → Q ∗-AlgX , which
is given by composition with Q ∗ (since Q ∗ is a monad), with the isomorphism Q ∗-AlgX → Q -algX , which is defined by
composition with ιQ .

For the proof that (ii) implies (i), we need to define an isomorphism as in (1). Given an endomorphism map (F , φ) :

(X, P) → (Y ,Q ), where φ : QF → FP , we need to define a monad map (F , φ♯) : (X, P) → (Y ,Q ∗), where φ♯
: Q ∗F → FP .
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For this, we exploit the adjointness in (ii). Note that the left adjoint to Q -algX → K(X, Y ) sends F to the Q -algebra with
underlying 1-cell Q ∗F and structure map νQ∗F : QQ ∗F → Q ∗F . Now, observe that the map

QFP
φP // FPP

FµP // FP

equips FP with a Q -algebra structure. By adjointness, the map φ♯
: Q ∗F → FP is defined as the unique Q -algebra morphism

such that the following diagram commutes:

F
ηQ∗ F

//

FηP ,,

Q ∗F

φ♯

��
FP.

Note that saying that φ♯ is a Q -algebra morphism amounts to saying that the following diagram commutes:

QQ ∗F
Qφ♯

//

νQ∗ F

��

QFP

φP

��
FPP

FµP

��
Q ∗F

φ♯

// FP.

The isomorphism is defined as the identity on 2-cells. It remains to check that what we have defined is indeed an inverse to
the functor defined by composition with (1Y , ιQ ), but the verification is essentially identical to the one given in detail in the
proof of [22, Theorem 6.1.5] and hence we omit it. �

Definition 1.2. A 2-categoryK is said to admit the construction of free monads if for every endomorphism (Y ,Q ) there exists
a monad (Y ,Q ∗) and a 2-cell ιQ : Q → Q ∗ satisfying the equivalent conditions of Theorem 1.1.

Remark 1.3. Let us point out that the universal property of the free monad (Y ,Q ∗) on an endomorphism (Y ,Q ) stated in
item (i) of Theorem 1.1 includes the assertion that for every monad (X, P) and every endomorphismmap (F , φ) : (X, P) →

(Y ,Q ), there exists a unique 2-cell φ♯
: Q ∗F → FP such that (F , φ♯) : (X, P) → (Y ,Q ∗) is a monad map and the diagram

QF
ιQ F //

φ --

Q ∗F

φ♯

��
FP

commutes. From the statement in item (ii) of Theorem 1.1, it also follows that if K is a 2-category that admits the
construction of free monads and has local coproducts, i.e. coproducts in its hom-categories, then for every F : X → Y ,
the initial algebra for the endofunctor

K(X, Y ) → K(X, Y )
(−) → F + Q (−)

has Q ∗F as its underlying object and the copair of the 2-cells ηQ∗F : F → Q ∗F and νQ∗F : QQ ∗F → Q ∗F as its structure
map.

By the bicategorical Yoneda lemma [24], every bicategory is biequivalent to a 2-category [9, Theorem 1.4]. Hence, the
remarks and the results above can be applied also to bicategories. We now introduce our two main classes of examples:
bicategories of spans and bicategories of polynomials.

Example 1.4. Let E be a category with finite limits. Recall that a span in E is a diagram of the form

F
τ

��??
??

??
?

σ

����
��

��
�

X Y ,

(3)
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and that a span morphism is a commutative diagram of the form

X F
τ //σoo

φ

��

Y

X F ′

τ ′

//
σ ′

oo Y .

(4)

We write SpanE for the bicategory of spans in E , originally defined in [2], which has the objects of E as 0-cells, spans as 1-
cells and spanmorphisms as 2-cells. It is well-known that graphs and categories in E can be identified with endomorphisms
and monads in SpanE [2,3]. For our purposes, it is convenient to recall the definition of the 2-category of linear functors
over E , which is biequivalent to the bicategory SpanE . Given a span as in (3), we define its associated linear functor to be
the composite

E/X σ∗

// E/F
τ! // E/Y ,

where σ ∗ acts by pullback along σ and τ! acts by composition with τ . In general, a functor between slices of E is said to
be linear if it is naturally isomorphic to a functor of this form. Now, recall from [8, Section 1.3] that slice categories of E
are tensored over E and that linear functors have a canonical strength. The 2-category of linear functors is then defined as
the sub-2-category of Cat having slice categories of E as 0-cells, linear functors between them as 1-cells, and strong natural
transformations as 2-cells, i.e. natural transformations compatible with the canonical strength on linear functors. Let us also
recall that a strong natural transformation between linear functors is cartesian, i.e. its naturality squares are pullbacks. By the
biequivalence, graphs in E can be thought of as linear endofunctors and categories in E can be thought of as linear monads,
i.e.monads whose underlying functor is linear and whose multiplication and unit are strong natural transformations.

Example 1.5. Let E be a locally cartesian closed category. Recall from [8, Section 1.4] that a polynomial over E is a diagram
of the form

F̄
σ

����
��

��
�

θ // F
τ

��==
==

==
=

X Y

(5)

and a cartesian morphism of polynomials is a diagram of the form

X F̄

��

//oo
_� F // Y

X F̄ ′ //oo F ′ // Y ,

where the central square is a pullback.WewritePolyE for the bicategory of polynomials overE , as defined in [8, Section 1.16],
which has the objects of E as 0-cells, polynomials as 1-cells, and cartesian morphisms of polynomials as 2-cells. Working in
the internal logic of E , for a polynomial as in (5) we may represent an element f ∈ F as an arrow

f : (xi | i ∈ I) → y,

where I =def θ−1(f ), the family (xi | i ∈ I) is defined by letting xi =def σ(i), for i ∈ I , and y =def τ(f ). Thus, we think of the set
I as the arity of the arrow f . The biequivalence between the bicategory of spans and the 2-category of linear functors extends
to a biequivalence between the bicategory of polynomials and the 2-category of polynomial functors [8, Theorem 2.17], as
we now proceed to recall. For a polynomial as in (5), the polynomial functor associated with it is defined as the composite

E/X σ∗

// E/F̄
θ∗ // E/F

τ! // E/Y ,

where θ∗ is the right adjoint to the pullback functor θ∗. A functor between slices of E is said to be polynomial if it is naturally
isomorphic to a functor of this form. Like linear functors, polynomial functors have a canonical strength and sowe can define
the 2-category of polynomial functors as the sub-2-category ofCathaving slices of E as 0-cells, polynomial functors as 1-cells
and cartesian strong natural transformations as 2-cells. The biequivalence between PolyE and the 2-category of polynomial
functors allows us to identify endomorphisms andmonads in PolyE with polynomial endofunctors and polynomial monads
on slices of E , respectively, where by a polynomial monad we mean a monad whose underlying endofunctor is polynomial
and whose multiplication and unit are cartesian strong natural transformations.

Let us also recall from [19] that a locally cartesian closed category E is said to have W-types if every polynomial
endofunctor P : E → E has an initial algebra, called the W-type of the functor. Note that a polynomial functor P : E → E
has to be represented by a diagram as in (5) in which both X and Y are the terminal object of E , and hence is completely
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determined by themap θ . The category-theoretic notion of aW-type is a counterpart of the notion of a type of well-founded
trees, originally introduced by Martin-Löf within his dependent type theory [20]. As shown in [7, Theorem 12], if E has
disjoint coproducts, the assumption of W-types is sufficient to show that, for all X ∈ E , every polynomial endofunctor
P : E/X → E/X has an initial algebra. For further material and references on polynomial functors, see [8] and its
bibliography.

Proposition 1.6 provides the horizontal part of Proposition 3.8. Item (i) in its statement refers to the notion of a pretopos
with parametrized list objects, for which we invite the reader to refer to [18].

Proposition 1.6.

(i) If E is a pretopos with parametrized list objects, the bicategory SpanE admits the construction of free monads.
(ii) If E is a locally cartesian closed category with disjoint coproducts and W-types, the bicategory PolyE admits the construction

of free monads.

Proof. We begin by proving (ii). We exploit the biequivalence between the bicategory of polynomials and the 2-category
of polynomial functors. Let Q : E/Y → E/Y be a polynomial endofunctor. We show that there is a polynomial monad
Q ∗

: E/Y → E/Y and a cartesian strong natural transformation ι : Q → Q ∗ that satisfy the universal property in item (ii)
of Theorem 1.1. By [7, Theorem 12], the assumption that E hasW-types implies that the forgetful functor U : Q -alg → E/Y
has a left adjoint. We let Q ∗

: E/Y → E/Y be the monad resulting from the adjunction. The monad Q ∗
: E/Y → E/Y is

polynomial by [8, Theorem 4.5]. If Q : E/Y → E/Y is represented by the polynomial

Q̄

����
��

��
�

θQ // Q

��>>
>>

>>
>

Y Y

(6)

then Q ∗
: E/Y → E/Y is represented by the polynomial

Q̄ ∗

����
��

��
��

θQ∗

// Q ∗

  @@
@@

@@
@@

Y Y ,

(7)

where the object Q ∗ in (7) is described in the internal logic of E as the set of well-founded trees of profile Q , i.e. trees built
up from identities and formal composites of the arrows in Q . The map θQ∗ in (7) describes the arities of the arrows in Q ∗ in
the evident way. The inclusion of the arrows in Q into those in Q ∗ is part of a diagram

Y Q̄
θQ //oo

��

_� Q

��

// Y

Y Q̄ ∗

θQ∗

//oo Q ∗ // Y ,

(8)

which represents the required cartesian strong natural transformation ι : Q → Q ∗. A direct verification shows that
the left adjoint to U : Q -alg → E/Y maps an object A to the Q -algebra with underlying object Q ∗A and structure
map νA : QQ ∗A → Q ∗A, where νQ∗ : QQ ∗

→ Q ∗ is defined as in (2). To conclude the proof of item (ii) it is sufficient
to observe that, for X ∈ E , the category Q -algX is equivalent to the category of polynomial functors F : E/X → E/Y
equipped with a cartesian strong natural transformation φ : QF → F .

The proof of item (i) is similar, except that polynomial functors are replaced by linear functors. In this case, the assumption
of W-types can be replaced by that of parametrized list objects, which suffice to prove the existence of the left adjoint to
the forgetful functor U : Q -alg → E/Y and that the resulting monad Q ∗

: E/Y → E/Y is linear. This is because linear
endofunctors (respectively, linear monads) are just graphs (respectively, categories) internal to E , and, as shown in [18,
Proposition 7.3], the assumption of parametrized list objects guarantees the existence of the free category on a graph inE . �

If E is a locally cartesian closed pretopos withW-types, then it has list objects and these are parametrized since we are in
a cartesian closed category. Hence, such a category satisfies the hypotheses of both item (i) and item (ii) of Proposition 1.6.
In this case, the construction of the free monad for polynomial endofunctors generalizes the construction of the free monad
for linear endofunctors.
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2. Monads in a double category

Notation and preliminaries. We assume readers to be familiar with the basic concepts of the theory of double categories
(see [4] for the original reference and [6,10,11] for modern accounts) and limit ourselves to introducing some notation and
recalling some basic notions. For a double category C, we write ObjC for its class of objects, HorC for its class of horizontal
arrows, VerC for its class of vertical arrows and SqC for its class of squares. We write C0 for the category of objects and
vertical arrows and C1 for the category of horizontal arrows and squares. We allow horizontal composition to be associative
and unital up to coherent invertible squares rather than strictly. For the sake of readability, however, we shall work as if
horizontal composition were strict, as allowed by [10, Theorem 7.5]. Typically, a square will be written as follows:

X
F //

u

��
α

Y

v

��
X ′

F ′

// Y ′.

(9)

Identity squares will be written without a label, as follows:

X
F // Y

X
F

// Y ,

X

u

��

X

u

��
X ′ X ′.

For a double category C, its horizontal 2-category HC is defined as follows: the 0-cells are the objects of C, the 1-cells are
the horizontal arrows of C and the 2-cells are the squares of the form

X
F //

α

Y

X
F ′

// Y .

The notions of horizontal adjunction and vertical adjunction between double categories can be defined using the general
notion of an adjunction in a 2-category [14]. A horizontal adjunction is an adjunction in the 2-category of double categories,
double functors and horizontal natural transformations; vertical adjunctions are defined analogously, replacing horizontal
natural transformations with vertical ones [10].

Example 2.1. Let E be a category with finite limits. With a minor abuse of notation, we write SpanE also for the double
category of spans in E , which has objects of E as objects, spans as horizontal arrows, maps of E as vertical arrows and
diagrams of the form

X

u

��

F
τ //

φ

��

σoo Y

v

��
X ′ F ′

σ ′

oo
τ ′

// Y ′

as squares. Note that the horizontal bicategory of this double category is exactly the bicategory of spans in E defined in
Example 1.4.

Example 2.2. Let E be a locally cartesian closed category.With another abuse of notation, wewrite PolyE also for the double
category of polynomials over E , which has the objects of E as objects, polynomials as horizontal arrows,maps of E as vertical
arrows and diagrams of the form

X

u

��

F̄
σoo

_�
θ //

��

F
τ //

φ

��

Y

v

��
X ′ F̄ ′

σ ′

oo
θ ′

// F ′

τ ′

// Y ′,

where the central square is a pullback, as squares. The bicategory of polynomials defined in Example 1.5 is the horizontal
bicategory of this double category.
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The double categories of endomorphisms and monads. Below, we define the double category Mnd(C) of monads in a
double category C. After giving the definition, we explain how it generalizes the definition of the 2-category Mnd(K)
of monads in a 2-category K . In view of our applications, we begin by introducing the double category End(C) of
endomorphisms in a double category C.

Definition 2.3. Let C be a double category.

(i) A horizontal endomorphism is a pair (X, P) consisting of an object X and a horizontal arrow P : X → X . Sincewe consider
only horizontal endomorphisms, we refer to them simply as endomorphisms.

(ii) A horizontal endomorphism map (F , φ) : (X, P) → (Y ,Q ) consists of a horizontal arrow F : X → Y and a square

X
F //

φ

Y
Q // Y

X
P

// X
F

// Y .

(iii) A vertical endomorphism map (u, ū) : (X, P) → (X ′, P ′) consists of a vertical arrow u : X → X ′ and a square

X
P //

u

��
ū

X

u

��
X ′

P ′

// X ′.

(iv) An endomorphism square

(X, P)
(F ,φ) //

(u,ū)

��
α

(Y ,Q )

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′)

is a square

X
F //

u

��
α

Y

v

��
X ′

F ′

// Y ′

satisfying the condition

X //

φ

Y // Y

X //

��
ū

X //

��
α

Y

��
X ′ // X ′ // Y ′

=

X //

��
α

Y //

��
v̄

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′ // X ′ // Y ′.

We write End(C) for the double category of endomorphisms, horizontal endomorphism maps, vertical endomorphism
maps and endomorphism squares. We omit the straightforward verification that End(C) is indeed a double category.

Definition 2.4. Let C be a double category.

(i) A monad is an endomorphism (X, P) equipped with squares

X
P //

µP

X
P // X

X
P

// X

X

ηP

X

X
P

// X
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satisfying the associativity law

X //

µP

X // X // X

X //

µP

X // X

X // X

=

X // X //

µP

X // X

X //

µP

X // X

X // X

and the unit laws

X // X

ηP

X

X //

µP

X // X

X // X

=

X // X

X // X

=

X

ηP

X // X

X //

µP

X // X

X // X .

As before, we refer to a monad as above by mentioning only its underlying endomorphism (X, P).

(ii) A horizontal monad map (F , φ) : (X, P) → (Y ,Q ) is a horizontal endomorphism map between the underlying
endomorphisms satisfying the following conditions:

X // Y //

µQ

Y // Y

X //

φ

Y // Y

X // X // Y

=

X //

φ

Y // Y // Y

X // X //

φ

Y // Y

X //

µP

X // X // Y

X // X // Y

X // Y

ηQ

Y

X //

φ

Y // Y

X // X // Y

=

X

ηP

X // Y

X // X // Y .

(iii) A vertical monad map (u, ū) : (X, P) → (X ′, P ′) is a vertical endomorphism map between the underlying
endomorphisms satisfying the following conditions:

X //

µP

X // X

X //

��
ū

X

��
X ′ // X ′

=

X //

��
ū

X //

��
ū

X

��
X ′ //

µP′

X ′ // X ′

X ′ // X ′
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X

ηP

X

X //

��
ū

X

��
X ′ // X ′

=

X

��

X

��
X ′

ηP ′

X ′

X ′ // X ′.

(iv) A monad square is an endomorphism square between the underlying endomorphism maps.

Wewrite Mnd(C) for the double category of monads, horizontal monadmaps, vertical monadmaps andmonad squares;
again, it is straightforward to check that Mnd(C) is a double category. Before giving examples, we clarify the relationship
between our definitions and those in [23].

Remark 2.5. LetK be a 2-category and consider the double category H(K) that hasK as its horizontal 2-category and only
identity 1-cells as vertical arrows. Monads in K are the same as monads in H(K) and monad maps in K are the same as
horizontal monad maps in H(K). Finally, monad 2-cells in K are the same as monad squares in H(K) of the special form

(X, P)
(F ,φ) //

α

(Y ,Q )

(X, P)
(F ′,φ′)

// (Y ,Q ).

In particular, the horizontal 2-category of Mnd(H(K)) is the 2-category Mnd(K) of [23]. As we explain in the following
examples, the presence of non-trivial vertical arrows in a double category allows us to describe important mathematical
structures as vertical monad maps.

Example 2.6. Let E be a category with finite limits. The category GrphE of graphs and graph morphisms internal to E can
be identified with the category of endomorphisms and vertical endomorphism maps in the double category SpanE , while
the category CatE of categories and functors internal to E can be identified with the category of monads and vertical monad
maps in SpanE . We see here an example of the benefits of considering monads in a double category rather than in a 2-
category: while categories can be seen as monads in the bicategory of spans in E , functors between categories are not the
same as monad maps in that bicategory.

Example 2.7. Let E be a locally cartesian closed category with finite disjoint coproducts and W-types. We write PolyEndE

for the category of endomorphisms and vertical endomorphism maps in the double category PolyE and write PolyMndE

for the category of monads and vertical monad maps in PolyE . If M : E → E is the free monoid monad in E (which exists
by the assumptions on E ), then there is a double category PolyEndE/M whose objects are endomorphisms with a vertical
endomorphism map to M . This is the double category of M-spans in the sense of [3,17], while PolyMndE is the double
category ofmulticategories. The freemonad on an endofunctor overM is the freemulticategory on anM-span. Furthermore,
the vertical maps in PolyMndE are the multifunctors, and hence we see again the benefits of considering monads in the
double categories rather than just in 2-categories. Further variations are possible: with a polynomial monad T in the place
ofM we get the same result for T -spans and T -multicategories, and in the particular case where T is the identity monad, we
are back to just plain categories in E .

The function sending a monad (X, P) to its underlying object X extends to a double functor Und : Mnd(C) → C and
the function mapping an object X ∈ C to the identity monad (X, 1X ) extends to a double functor Inc : C → Mnd(C). It is
easy to check that Inc is a horizontal right adjoint to Und, essentially as in the 2-categorical formal theory of monads [23,
Theorem 1]. The question of whenC admits the construction of Eilenberg–Moore objects, that is, of when the double functor
Inc has a horizontal right adjoint, will be treated in a sequel to this paper. Here, instead, we focus on the construction of free
monads.

Free monads in a double category. We write U : Mnd(C) → End(C) for the forgetful double functor mapping a monad to
its underlying endomorphism.

Definition 2.8. A double category C is said to admit the construction of free monads if U : Mnd(C) → End(C) has a vertical
left adjoint.

Remark 2.9. We nowmake explicit what it means for a double category C to admit the construction of free monads. By an
analogue of the characterization of ordinary adjunctions in terms of universal arrows [16, Theorem IV.2], giving a vertical
left adjoint to U amounts to giving the following data in (i)–(iv) satisfying the functoriality condition in (∗).

(i) For every endomorphism (X, P), a monad (X∗, P∗).
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(ii) For every endomorphism (X, P), a universal vertical endomorphism map

(ιX , ιP) : (X, P) → (X∗, P∗).

Universalitymeans that for each vertical endomorphismmap (u, ū): (X, P) → (X ′, P ′), where (X ′, P ′) is amonad, there
exists a unique vertical monad map (u♯, ū♯) : (X∗, P∗) → (X ′, P ′) such that

X
P //

u

��
ū

X

u

��
X ′

P ′

// X ′

=

X
P //

ιX

��
ιP

X

ιX

��
X∗ //

u♯

��
ū♯

X∗

u♯

��
X ′

P ′

// X ′.

(iii) For every horizontal endomorphism map (F , φ): (X, P) → (Y ,Q ), a horizontal monad map (F∗, φ∗): (X∗, P∗) →

(Y ∗,Q ∗).
(iv) For every horizontal endomorphism map (F , φ) : (X, P) → (Y ,Q ), a universal endomorphism square

(X, P)
(F ,φ) //

(ιX ,ιP )

��
ι(F ,φ)

(Y ,Q )

(ιY ,ιQ )

��
(X∗, P∗)

(F∗,φ∗)

// (Y ∗,Q ∗).

Universality means that for every endomorphism square

(X, P)
(F ,φ) //

(u,ū)

��
α

(Y ,Q )

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′),

(10)

where (X ′, P ′), (Y ′,Q ′) are monads and (F , φ′) : (X ′, P ′) → (Y ′,Q ′) is a horizontal monad map, there exists a unique
monad square

(X∗, P∗)
(F∗,φ∗) //

(u♯,ū♯)

��
α♯

(Y ∗,Q ∗)

(v♯,v̄♯)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′)

such that

(X, P)
(F ,φ) //

(u,ū)

��
α

(Y ,Q )

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′)

=

(X, P)
(F ,φ) //

(ιX ,ιP )

��

ι(F ,φ)

(Y ,Q )

(ιY ,ιQ )

��
(X∗, P∗) //

(u♯,ū♯)

��
α♯

(Y ∗,Q ∗)

(v♯,v̄♯)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′).

(∗) The assignments in (i) and (iii) give a functor

(−)∗ :

ObjEnd(C),HorEnd(C)


→


ObjMnd(C),HorMnd(C)


and the assignments in (ii) and (iv) give a functor

ι :

ObjEnd(C),HorEnd(C)


→


VerEnd(C), SqEnd(C)


.

Note that the data and the universality in (ii) actually follow from the data and the universality in (iv) by taking (F , φ) to be
the horizontal identity on an endomorphism (X, P).
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A necessary condition for U : Mnd(C) → End(C) to have a vertical left adjoint is that its vertical part

U0 : Mnd(C)0 → End(C)0 (11)

has a left adjoint. Indeed, this is preciselywhat items (i) and (ii) of Remark 2.9 amount to. Here, End(C)0 denotes the category
of endomorphisms and vertical endomorphism maps and Mnd(C)0 denotes the category of monads and vertical monad
maps.

Example 2.10. Let E be a categorywith finite limits. The functor in (11) for the double category SpanE is the forgetful functor
U0 : CatE → GrphE mapping a category in E to its underlying graph.

Example 2.11. Let E be a locally cartesian closed category. The functor in (11) for the double category PolyE is the forgetful
functor U0 : PolyMndE → PolyEndE mapping a polynomial monad to its underlying endofunctor.

3. Monads in a framed bicategory

We now proceed to establish some properties of the double category Mnd(C) under the assumption that C is a framed
bicategory, leading to our main theorem (Theorem 3.7 below), which provides conditions for C to admit the construction of
free monads. We begin by recalling from [21] the definition of a framed bicategory and some useful facts.

Framed bicategories. For a double category C, the functor

(∂0, ∂1) : C1 → C0 × C0,

mapping a horizontal arrow F : X → Y to (X, Y ) and a square as in (9) to (u, v) : (X, Y ) → (X ′, Y ′), is a Grothendieck
fibration if and only if it is a Grothendieck opfibration [21, Theorem 4.1]. When these conditions hold, the double category C
is said to be a framed bicategory [21, Definition 4.2]. As explained in [21, Example 4.4] and [8, Proposition 3.6], the double
categories SpanE and PolyE are framed bicategories.

Lemma 3.1 (Shulman). IfC is a framed bicategory, for every vertical arrow u: X → X ′ there exist horizontal arrows u! : X → X ′

and u∗
: X ′

→ X together with squares

X
u! //

u

��
αu

X ′

X ′ X ′

X ′
u∗

//

βu

X

u

��
X ′ X ′

X

u

��
γu

X

X ′

u∗

// X

X

δu

X

u

��
X u!

// X ′

satisfying the equalities

X

δu

X

u

��
X

u

��

//

αu

X ′

X ′ X ′

=

X

u

��

X

u

��
X ′ X ′

=

X

u

��
γu

X

X ′ //

βu

X

u

��
X ′ X ′,

X

δu

X //

��
αu

X ′

X // X ′ X ′

=

X
u! // X ′

X u!

// X ′

and

X ′ //

βu

X

��
γu

X

X ′ X ′ // X

=

X ′
u∗

// X

X ′

u∗

// X .

Proof. See [21, Theorem 4.1]. �

Lemma 3.1 can be expressed equivalently by saying that every vertical arrow u in C has an orthogonal companion u! and
an orthogonal adjoint u∗ in the terminology of [11].



1186 T.M. Fiore et al. / Journal of Pure and Applied Algebra 215 (2011) 1174–1197

Lemma 3.2 (Shulman). Let C be a framed bicategory. Let u : X → X ′ be a vertical arrow in C. If we define

X

ηu

X

X u!

// X ′

u∗

// X

=def

X

δu

X

��
γu

X

X u!

// X ′

u∗

// X

and

X ′
u∗

//

εu

X
u! // X ′

X ′ X ′

=def

X ′
u∗

//

βu

X
u! //

��
αu

X ′

X ′ X ′ X ′,

then the following versions of the triangle identities hold:

X ′
u∗

// X

ηu

X X

X ′ //

εu

X // X ′ // X

X ′ X ′

u∗

// X

=

X ′
u∗

// X

X ′

u∗

// X,

X

ηu

X
u! // X ′

X // X ′ //

εu

X // X

X u!

// X X

=

X
u! // X ′

X u!

// X ′.

Proof. See [21, Proposition 5.3]. �

Monads in framed bicategories. Let C be a double category. We have the diagram

Mnd(C)0
U0 //

∂M $$IIIIIIIII End(C)0

∂E{{vvv
vv

vv
vv

C0,

(12)

where ∂E and ∂M send an endomorphism and a monad, respectively, to their underlying object and U0 is the vertical part of
the forgetful double functor U of Definition 2.8.

Proposition 3.3. If C is a framed bicategory, the functors

∂E : End(C)0 → C0, ∂M :Mnd(C)0 → C0

are Grothendieck fibrations and the functor U0:Mnd(C)0 → End(C)0 is a fibered functor relatively to these fibrations.

Proof. Writing ∆ : C0 → C0 × C0 for the diagonal functor, the functor ∂E fits into the pullback diagram

End(C)0 //

∂E

��

C1

(∂0,∂1)

��
C0

∆

// C0 × C0.

We then have that ∂E is a Grothendieck fibration since it is a pullback of (∂0, ∂1), which is a Grothendieck fibration by the
hypothesis that C is a framed bicategory. Using Lemmas 3.1 and 3.2, we can define explicitly a base change operation for the
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Grothendieck fibration ∂E , as follows. Let u : X → X ′ be a map in C0 and (X ′, P ′) an endomorphism in C. The base change
of (X ′, P ′) along u is defined to be the endomorphism (X, P), where P : X → X is the composite

X
u! // X ′

P ′

// X ′
u∗

// X .

The required cartesian morphism from (X, P) to (X ′, P ′) in End(C)0 (i.e. the cartesian lift of u) is given by the vertical
endomorphism map (u, ū) : (X, P) → (X ′, P ′), where ū is the square

X
u! //

u

��
αu

X ′
P ′

// X ′
u∗

//

βu

X

u

��
X ′ X ′

P ′

// X ′ X ′.

The verification of the required universal property is straightforward.
To show that ∂M is a Grothendieck fibration, we first observe that if (X ′, P ′) is a monad, then (X, P) inherits a monad

structure: its multiplication is the square

X
u! // X ′

P ′

// X ′
u∗

//

εu

X
u! // X ′

P ′

// X ′
u∗

// X

X // X ′

P ′

//

µ

X ′ X ′

P ′

// X ′ // X

X u!

// X ′

P ′

// X ′

u∗

// X

and its unit is the square

X

ηu

X X X

X
u! // X ′

η

X ′
u∗

// X

X u!

// X ′

P ′

// X ′

u∗

// X .

Themonad axioms are easily verified. Now it only remains to verify that the cartesian lift (u, ū) is a vertical monadmap and
that it is cartesian for ∂M . This verification is straightforward, using Lemmas 3.1 and 3.2. This also shows that U0 is fibered
as claimed. �

Lemma 3.4. Let (X, P) and (X ′, P ′) be endomorphisms in a framed bicategory C. There is a bijection between vertical
endomorphism maps (u, ū) : (X, P) → (X ′, P ′) and horizontal endomorphism maps of the form (u∗, φ) : (X ′, P ′) → (X, P),
which restricts to a bijection between vertical monad maps and horizontal monad maps when (X, P) and (X ′, P ′) are monads.

Proof. For a vertical endomorphism map (u, ū) : (X, P) → (X ′, P ′), define the horizontal endomorphism map (u∗, φu) :

(X ′, P ′) → (X, P) by letting φu be the square

X ′
u∗

//

φu

X
P // X

X ′

P ′

// X ′

u∗

// X

=def

X ′
u∗

//

βu

X
P //

��
ū

X

��
γu

X

X ′ X ′

P ′

// X ′

u∗

// X .
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In the other direction, given a horizontal endomorphismmap (u∗, φ): (X ′, P ′) → (X, P), define the vertical endomorphism
map (u, ūφ) : (X, P) → (X ′, P ′) by letting ūφ be the square

X
P //

u

��
ūφ

X

u

��
X ′

P ′

// X ′

=def

X

u

��
γu

X
P // X

X ′ //

φ

X // X

X ′ // X ′ //

βu

X

u

��
X ′

P ′

// X ′ X ′.

Using Lemma 3.1, it is possible to show that these functions are mutually inverse, that (u∗, φu) is a horizontal monad map
if (u, ū) is a vertical monad map, and that (u, ūφ) is a vertical monad map if (u∗, φ) is a horizontal monad map. �

Let us point out that the bijection defined in the proof of Lemma 3.4 is an example of a cofolding in the sense
of [5, Definition 3.16].

Freemonads in a framed bicategory. We now consider the construction of freemonads in a framed bicategory C. Since the
functor U0 in (12) is fibered, a sufficient condition for it to have a left adjoint is that each of its fibers has a left adjoint. In this
case, the free monad on an endomorphism (X, P) has the form (X, P∗) and the component of the unit (ιX , ιP) : (X, P) →

(X, P∗) is a vertical endomorphism map of the form (1X , ιP) : (X, P) → (X, P∗), where ιP is a square of the form

X
P //

ιP

X

X
P∗

// X .

The universal property in the fiber asserts that for every endomorphism square of the form

X
P //

α

X

X
P ′

// X,

where (X, P ′) is a monad, there exists a unique monad square of the form

X
P∗

//

α♯

X

X
P ′

// X

such that

X
P //

α

X

X
P ′

// X

=

X
P //

ιP

X

X //

α♯

X

X
P ′

// X .

The universal property in the fiber implies a more general universal property, with respect to general monads (and not just
monads with X as underlying object) and general vertical endomorphism maps (and not just the special ones considered
above), as in item (ii) of Remark 2.9. Note, however, that the left adjoint to U0 constructed from the left adjoints to its fibers
need not be a fibered left adjoint, since the so-called Beck–Chevalley conditions are not necessarily satisfied [12, Section 1.8].
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Example 3.5. Let us consider the framed bicategory SpanE associated with a category E with finite limits. The diagram
in (12) becomes

CatE
U0 //

∂M !!CC
CC

CC
CC

GrphE

∂E||yyyyyyyy

E,

where ∂E sends a graph to its object of vertices and ∂M sends a small category to its object of objects. Since SpanE is a framed
bicategory, the preceding remarks reduce to the familiar fact that the free category on a graph has the object of vertices of
the graph as its object of objects.

Example 3.6. Let us consider the framed bicategory PolyE associated with a locally cartesian closed category E with finite
disjoint coproducts. For PolyE , the diagram in (12) amounts to

PolyMndE

U0 //

∂M $$IIIIIIIII
PolyEndE

∂Ezzvvvvvvvvv

E .

In this case, the remarks above amount to the fact, exploited in the proof of [8, Corollary 4.7], that to prove the universal
property of the free monad on a polynomial endofunctor with respect to maps in PolyEndE , it is sufficient to check it with
respect to a special class of them.

Theorem 3.7, which is our main result, gives sufficient conditions for a framed bicategory to admit the construction of
free monads, facilitating the verification of this property in our examples. Recall that, for a double category C, we write C0
for its category of objects and vertical arrows and C1 for its category of horizontal arrows and squares.
Theorem 3.7. Let C be a framed bicategory such that the category C1 has equalizers and the source and target functors
∂0, ∂1 : C1 → C0 preserve them. If the horizontal 2-category of C has local coproducts and admits the construction of free
monads, then C admits the construction of free monads.

The proof of Theorem 3.7 is given in Section 4. Here, instead, we apply it to our two running examples.
Proposition 3.8.
(i) If E is a pretopos with parametrized list objects, the double category SpanE admits the construction of free monads.
(ii) If E is a locally cartesian closed category with disjoint coproducts and W-types, the double category PolyE admits the

construction of free monads.

Proof. For both (i) and (ii), we apply Theorem 3.7. For (i), the hypotheses on equalizers are verified because in this case
the category C1 is a category of internal presheaves, in which equalizers exist and are computed pointwise. For (ii), the
hypotheses on equalizers are also satisfied, since pullbacks preserve equalizers. For both items, the existence of freemonads
in the horizontal 2-categories is established in Proposition 1.6. �

4. Proof of the main theorem

Let C be a double category satisfying the hypotheses of Theorem 3.7. We use the characterization of free monads in a
2-category given in Theorem 1.1 to exhibit the data listed in Remark 2.9. For items (i) and (ii) of Remark 2.9, let (X, P) be an
endomorphism. By the existence of free monads in HC, we have a monad (X, P∗) and a square

X
P //

ιP

X

X
P∗

// X

satisfying the equivalent conditions in items (i) and (ii) of Theorem 1.1 inHC. We then obtain a vertical endomorphismmap
(1X , ιP) : (X, P) → (X, P∗). We need to show that (1X , ιP) enjoys the required universal property. For this, let us consider a
vertical endomorphism map (u, ū) : (X, P) → (X ′, P ′), where (X ′, P ′) is a monad. Here, ū is a square of the form

X
P //

u

��
ū

X

u

��
X ′

P ′

// X ′.
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By the cofolding bijection defined in the proof of Lemma 3.4, we have a horizontal endomorphismmap (u∗, φu) : (X ′, P ′) →

(X, P), where φu is a square of the form

X ′
u∗

//

φu

X
P // X

X ′

P ′

// X ′

u∗

// X .

By the universal property in item (i) of Theorem 1.1 for (X, P∗), there exists a unique square

X ′
u∗

//

φ
♯
u

X
P∗

// X

X ′

P ′

// X ′

u∗

// X

such that (u∗, φ
♯
u) : (X ′, P ′) → (X, P∗) is a horizontal monad map and

X ′
u∗

//

φu

X
P // X

X ′

P ′

// X ′

u∗

// X

=

X ′
u∗

// X
P //

ιP

X

X ′ //

φ
♯
u

X // X

X ′

P ′

// X ′

u∗

// X .

Using again the cofolding bijection of Lemma 3.4, we obtain the vertical monad morphism (u, ū♯) : (X, P∗) → (X ′, P ′) that
factors (u, ū) through (1X , ιP), as required. By the definition of the bijection and Theorem 1.1, the square ū♯ satisfies the
equations

X

ηP∗

X

X //

u

��
ū♯

X

u

��
X ′

P ′

// X ′

=

X

u

��

X

u

��
X ′

ηP ′

X ′

X ′

P ′

// X ′

(13)

and

X
P∗

//

νP∗

X
P // X

X //

��
ū♯

X

��
X ′

P ′

// Y

=

X
P∗

//

��
ū♯

X
P //

��
ū

X

��
X ′ //

µP ′

X ′ // X ′

X ′

P ′

// X ′,

(14)

where the square νP∗ is defined by

X
P∗

//

νP∗

X
P // X

X
P∗

// X

=def

X
P∗

// X
P //

ιP

X

X //

µP∗

X // X

X
P∗

// X .
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For item (iii) of Remark 2.9, let (F , φ) : (X, P) → (Y ,Q ) be a horizontal endomorphism map. Exploiting the universal
property in item (i) of Theorem 1.1 for (Y ,Q ∗), we define

X
F //

φ∗

Y
Q∗

// Y

X
P∗

// X
F

// X

to be the unique square such that (F , φ∗) : (X, P∗) → (Y ,Q ∗) is a horizontal monad map and

X
F //

φ

Y
Q // Y

X //

ιP

X // Y

X
P∗

// X
F

// Y

=

X
F // Y

Q //

ιQ

Y

X //

φ∗

Y // Y

X
P∗

// X
F

// X .

(15)

Observe that, by the fact that (F , φ∗) is a horizontal monad map, we have that

X
F // Y

ηQ∗

Y

X //

φ∗

Y // Y

X
P∗

// X
F

// Y

=

X

ηP∗

X
F // Y

X
P∗

// X
F

// Y

(16)

and

X
F // Y

νQ∗

Q∗

// Y
Q // Y

X //

φ∗

Y // Y

X
P∗

// X
F

// Y

=

X
F // Y

φ∗

Q∗

// Y
Q // Y

X // X // Y

φ

// Y

X //

νP∗

X // X // Y

X
P∗

// X
F

// Y .

(17)

In particular, (17) holds by the definitions of νP∗ and νQ∗ , the first axiom for a horizontal monad map and (15). For item (iv)
of Remark 2.9, the required universal endomorphism square needs to have the form

(X, P)
(F ,φ) //

(1X ,ιP )

��
ι(F ,φ)

(Y ,Q )

(1Y ,ιQ )

��
(X, P∗)

(F ,φ∗)

// (Y ,Q ∗).

Therefore, ι(F ,φ) has to be a square in C of the form

X
F //

ι(F ,φ)

Y

X
F

// Y
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and satisfy the equation

X
F //

φ

Y
Q // Y

X //

ιP

X //

ι(F ,φ)

Y

X
P∗

// X
F

// Y

=

X
F //

ι(F ,φ)

Y
Q //

ιQ

Y

X //

φ∗

Y // Y

X
P∗

// X
F

// Y .

(18)

We define ι(F ,φ) to be the identity square on F , so (18) above is verified by (15). To verify the universal property, we need to
show that for an endomorphism square

(X, P)
(F ,φ) //

(u,ū)

��
α

(Y ,Q )

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′),

there exists a unique monad square

(X, P∗)
(F ,φ∗) //

(u,ū♯)

��
α♯

(Y ,Q ∗)

(v,v̄♯)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′)

satisfying

(X, P)
(F ,φ) //

(u,ū)

��
α

(Y ,Q )

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′)

=

(X, P)
(F ,φ) //

(1X ,ιP )

��
ι(F ,φ)

(Y ,Q )

(1Y ,ιQ )

��
(X, P∗) //

(u,ū♯)

��
α♯

(Y ,Q ∗)

(v,v̄♯)

��
(X ′, P ′)

(F ′,φ′)

// (Y ′,Q ′).

(19)

First of all, observe that α is a square in C of the form

X
F //

u

��
α

Y

v

��
X ′

F ′

// Y ′

which satisfies the compatibility condition

X
F //

φ

Y
Q // Y

X //

��
ū

X

��

//

α

Y

��
X ′

P ′

// X ′

F ′

// Y ′

=

X
F //

��
α

Y
Q //

v̄

��

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(20)
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The required monad square α♯ has to be a square in C of the form

X
F //

u

��
α♯

Y

v

��
X ′

F ′

// Y ′

satisfying the compatibility condition

X
F //

φ∗

Y
Q∗

// Y

X //

��
ū♯

X

��

//

α♯

Y

��
X ′

P ′

// X ′

F ′

// Y ′

=

X
F //

��
α♯

Y
Q∗

//

v̄♯

��

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(21)

We define α♯
=def α, so Eq. (19) holds trivially, since ι(F ,φ) is the identity.

To complete the verification of the universal property of ι(F ,φ), it only remains to show that Eq. (21) holds. The idea is to
consider the sub-horizontal arrow E of Q ∗F for which (21) and show that E must be isomorphic to Q ∗F . More precisely, let
us define the horizontal arrow E : X → Y via the following equalizer in the category C1 of horizontal arrows and squares:

E // θ // Q ∗F
(ū♯,α) φ∗

//

φ′ (α,v̄♯)

// F ′P ′. (22)

Since the vertical boundaries of the squares in (21) are equal, the assumption that the source and target functors ∂0, ∂1 :

C1 → C0 preserve equalizers implies that E is indeed a horizontal arrow from X to Y and that θ has vertical boundaries
given by identity morphisms. The commutativity of the equalizer diagram in (22) can be expressed as the equation

X
E //

θ

Y

X //

φ∗

Y // Y

X //

��
ū♯

X

��

//

α

Y

��
X ′

P ′

// X ′

F ′

// Y ′

=

X
E //

θ

Y

X //

��
α

Y

��

//

v̄♯

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(23)

To prove Eq. (21) we show that θ : E → Q ∗F is an isomorphism. For this, we exploit the fact (observed in Remark 1.3) that
Q ∗F : X → Y is the initial algebra for the endofunctor

HC(X, Y ) −→ HC(X, Y ) (24)
(−) −→ F + Q (−),

whereHC(X, Y ) denotes the hom-category of horizontal arrows from X to Y of the horizontal 2-categoryHC of C. Note that
herewe are using our assumption thatHC has local coproducts. By the initiality ofQ ∗F , in order to show that θ : E → Q ∗F is
an isomorphism, it is sufficient to show that E admits an algebra structure for the endofunctor in (24). The required algebra
structure is given by the copair (λ, ρ) : F + QE → E, where λ : F → E and ρ : QE → E are determined, via the universal
property of the equalizer E, by the commutative diagrams

F
ηQ∗ F

// Q ∗F
(ū♯,α) φ∗

//

φ′ (α,v♯)

// F ′P ′ (25)
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and

QE
Q θ // QQ ∗F

νQ∗ F
// Q ∗F

(ū♯,α) φ∗

//

φ′ (α,v♯)

// F ′P ′, (26)

respectively. It remains to show that the diagrams in (25) and (26) commute. The commutativity of (25) amounts to the
equation

X
F // Y

ηQ∗

Y

X //

φ∗

Y // Y

X //

��
ū♯

X

��

//

α

Y

��
X ′

P ′

// X ′

F ′

// Y ′

=

X
F // Y

ηQ∗

Y

X //

��
α

Y //

v̄♯

��

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(27)

Starting from the left-hand side of Eq. (27), we apply Eq. (16) in the top two rows and get

X

ηP∗

X
F // Y

X //

��
ū♯

X //

��
α

Y

��
X ′

P ′

// X ′

F ′

// Y ′.

Then, Eq. (13) gives us

X

��

X
F //

��
α

Y

��
X ′

ηP′

X ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(28)

Considering now the right-hand side of Eq. (27), an application of the analogue of Eq. (13) for v̄♯ gives us

X
F //

��
α

Y

��

Y

��
X ′ // Y ′

ηQ ′

Y ′

X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.
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An application of the second axiom for a horizontal monadmap for (F ′, φ′) then gives us exactly (28), as required. It remains
to show the commutativity of the diagram in (26), which amounts to the equation

P0
E //

θ

Y
Q // Y

X // Y //

νQ∗

Y // Y

X //

φ∗

Y // Y

X //

��
ū♯

X

��

//

α

Y

��
X ′

P ′

// X ′

F ′

// Y ′

=

X
E //

θ

Y
Q // Y

X // Y //

νQ∗

Y // Y

X //

��
α

Y //

v̄♯

��

Y

��
X ′ //

φ′

Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

(29)

Starting from the left-hand side of Eq. (29), we use Eq. (17) in the second and third row to get

X
E //

θ

Y
Q // Y

X // Y

φ∗

// Y // Y

X // X // Y

φ

// Y

X // X

νP∗

// X // Y

X

ū♯

��

// X

α

��

// Y

��
X ′

P ′

// X ′

F ′

// Y ′.

We then use Eq. (14) in the bottom two rows and obtain

X
E //

θ

Y
Q // Y

X // Y

φ∗

// Y // Y

X // X // X

φ

// Y

X

ū♯

��

// X

ū
��

// X

α

��

// Y

��
X ′

µP ′

// X ′ // X ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.
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We apply Eq. (20), which is the assumption that α is an endomorphism square, in the third and the fourth row, so as to get

X
E //

θ

Y
Q // Y

X // Y

φ∗

// Y // Y

X

ū♯

��

// X

α

��

// Y

v̄

��

// Y

��
X ′ // X ′

φ′

// Y ′ // Y ′

X ′

µP′

// X ′ // X ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.

We now apply Eq. (23) in the top three rows and we obtain

X
E //

θ

Y
Q // Y

X

α

��

// Y

��
v̄♯

// Y

v̄

��

// Y

��
X ′

φ′

// Y ′ // Y ′ // Y ′

X ′ // X ′

φ′

// Y ′ // Y ′

X ′

µP′

// X ′ // X ′ // Y ′

X ′

P ′

// Y ′

F ′

// Y ′.

We use the first axiom for a horizontal monad map (see item (ii) of Definition 2.4) for (F ′, φ′) in the bottom three rows so
as to get

X
E //

θ

Y
Q // Y

X

α

��

// Y

��
v̄♯

// Y

v̄

��

// Y

��
X ′ // Y ′

µQ ′

// Y ′ // Y ′

X ′

φ′

// Y ′ // Y ′

X ′

P ′

// X ′

F ′

// Y ′.
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We obtain exactly this diagram also by applying the analogue of Eq. (14) for v̄♯ to the second and third row of the right-hand
side of Eq. (29). This concludes the proof of Theorem 3.7. �
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