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Abstract

Skew-monoidal categories arise when the associator and the left and right units of a monoidal category
are, in a specific way, not invertible. We prove that the closed skew-monoidal structures on the category
of right R-modules are precisely the right bialgebroids over the ring R. These skew-monoidal structures
induce quotient skew-monoidal structures on the category of R—R-bimodules and this leads to the following
generalization: Opmonoidal monads on a monoidal category correspond to skew-monoidal structures with
the same unit object which are compatible with the ordinary monoidal structure by means of a natural
distributive law. Pursuing a Theorem of Day and Street we also discuss monoidal lax comonads to describe
the comodule categories of bialgebroids beyond the flat case.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Bialgebroids [26,16,27,14] are generalizations of bialgebras to non-commutative base ring.
By replacing the commutative base ring k of a bialgebra with a non-commutative ring R the
symmetric role of the monoid and comonoid structure is lost: A bialgebroid H over R is a

. A . . .
comonoid H —— H ® H in the category gAbg of R-bimodules but a monoid H ® ge H —> H

R
in the category of R¢ := R°P? ® R-bimodules. The compatibility condition between the R¢-ring
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and the R-coring structure is too complicated to witness about something fundamental which
may motivate to search for other generalizations of bialgebras [18]. However, if we look at the
functor _®ge H on the monoidal category Abge = grAbpg instead of the object H € geAbge
itself, the condition becomes amazingly simple. As it was observed in [25] a bimodule H is a
bialgebroid precisely if - ®ge H is an opmonoidal monad [19,17].

The language of monads tells us that the modules over the bialgebroid H have to be
the objects of the Eilenberg—Moore category of the monad _®pge H. Opmonoidality is then
precisely the structure that makes the category of modules monoidal and the Eilenberg—Moore
forgetful functor strict monoidal. This gives nothing new with respect to the ‘classical’ algebraic
formalism: The Eilenberg—Moore category is the category of H-modules (H as an R®-ring).
But what are the comodules of an opmonoidal monad? The monadic language gives no hint.
Classically one knows that there is the category of comodules over the R-coring H and several
authors argued [22,6,3] that this category becomes monoidal with a strict monoidal forgetful
functor to gAbg. This comodule category, however, is not the Eilenberg—Moore category of a
monoidal comonad (unless H is flat as left R-module) which is a further asymmetry between
modules and comodules of bialgebroids. Instead of monoidal comonad there is a lax monoidal
structure given by Takeuchi’s x g-product with respect to which bialgebroids can be seen as
comonoids [12] and therefore have comodules in a natural way.

In this paper, we propose to consider a fragment of the structure of bialgebroids which lets
their modules and comodules seen symmetrically or, better to say, dually. This fragment, called
a skew-monoidal category, has left and right versions just like bialgebroids have [14]. A right-
monoidal category consists of a category M, a functor M x M %5 M, an object R € M and
comparison natural transformations

Lx(M*N) -2 (LxM)xN, M- R+M, M*R-M

satisfying the usual pentagon and triangle equations of a monoidal category without assuming,
however, invertibility of either y, n or ¢. In left-monoidal categories all comparisons go in the
opposite way and the names n and ¢ are interchanged. For a right bialgebroid H over R the
category M is the category Abg of right R-modules, R is the regular right R-module, ¢ and 1 are
essentially the counit and the source map of H, respectively, while the skew-associator y is the
Galois map or canonical map H % H— H (%H built of the multiplication and comultiplication

of H. What is not so simple to explain is the skew-monoidal product .

The advantage of looking at the skew-monoidal category M instead of the bialgebroid H is
that it encodes all information on the categories of right H-modules and of right H-comodules as
simply as the Eilenberg—Moore categories of the canonical monad 7 = R _and of the canonical
comonad Q = _* R on M. The disadvantage is that their monoidal structure is not seen. It is
hidden in the properties of the category M together with all asymmetries between modules and
comodules encoded in exactness properties of M and .

Generalizations of monoidal categories or bicategories by relaxing invertibility of the
comparison cells are not unknown in the literature. Burroni’s pseudocategory [9] has comparison
cells(LxM)«xN — Lx(M*N), M — RxM, M — M % R and Grandis’ d-lax 2-category [13]
has L« (M *N) > (L*M)* N, R« M — M and M — M x R therefore they are neither
the left- nor the right-monoidal structures of the present paper. Blute et al. introduced the notion
of context category [4] which contains, as part of the structure, precisely what we call right-
monoidal comparison cells and the 5 axioms of a right-monoidal category can also be found
among their axioms. Lax monoidal categories [15] provide another ‘unbiased’ way to generalize
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monoidal categories which also have non-invertible comparison cells but no associator in the
ordinary ‘biased’ sense. Much closer in spirit to our approach is the 2-monoidal and duoidal
categories [1,5] of Aguiar and Mahajan in spite of that they use two ordinary monoidal structures
instead of a ‘skew’ one. For example the tensor square H = R * R of the skew-monoidal unit,
which is both a T-algebra and a Q-coalgebra, is reminiscent to a bimonoid in a 2-monoidal
category although the precise connection is not clear. A direct predecessor of our skew-monoidal
product is the non-unital monoidal product * Ross Street constructs in [24] on a braided monoidal
category equipped with a tricocycloid H @ H 5 H® H. Our YR,R,R corresponds to a non-
invertible tricocycloid on the object H € rAbg in a situation where no braiding is present.

The main result of this paper is the following characterization of bialgebroids (Theorem 9.1):
The closed right-monoidal structures on Abgp with skew-monoidal unit R are precisely the
right bialgebroids over R. Similar statement holds for left-monoidal structures on gAb and left
bialgebroids. The proof of this Theorem has four ingredients: 1. By left closedness of * and by the

Eilenberg—Watts Theorem there is a natural isomorphism M @ T N S M%N.2. Right exactness
R

of T leads to a lifting of * to a skew-monoidal product s, on g Abg which admits an isomorphism
wyu.N : M@T,;N = M, N in terms of the canonical monad 7, of the #,-structure. 3. The
R

wpy, N satisfies two coherence conditions in the form of a heptagon and a tetragon equation
which turns out to be equivalent, by our Representability Theorem (Theorem 8.6), to that T
is opmonoidal, hence a bimonad on gAbg. 4. Finally, by right closedness of * this bimonad is
left adjoint, hence the bimonad of a bialgebroid by a Theorem of [25].

The Representability Theorem is valid for any category equipped with two monoidal
structures, an ordinary one ® and a skew one *, and says that * can be expressed as M x N =
M ® T N with a bimonad T precisely if the two monoidal structures are related by a tetrahedral
isomorphism LQ(M*N) — (LQM)*N. The skew-monoidal structures on a monoidal category
that can be expressed by a bimonad as above are called representable. This notion was inspired
by the fusion operator formalism of [7] since a fusion operator T(M QTN) — TM QT N is the
essential part of a skew-associator yr_pr, n. As a matter of fact, for a bimonad T the expression
M x N := M ® TN always defines a skew-monoidal product (Proposition 7.2).

Although the Representability Theorem can be dualized and skew-monoidal structures can
be constructed from monoidal comonads, this Corepresentability Theorem is not applicable to
the monoidal (lax) comonad of a bialgebroid because of the different exactness properties we
encounter. It could be applicable, however, to quantum categories [12] or to bicoalgebroids
[8,2]. In order to complete the picture with the comodules of bialgebroids we use a lax version of
the notion of comonad in Section 6, called cohypomonad in [11], and show in Theorem 10.2 that
at least in case of the skew-monoidal category of a bialgebroid this lax comonad is monoidal.
These results are not really new but a reformulation in a minimalistic language of what has been
called in [12] a comonoid in a lax monoidal category provided by the iterated Takeuchi product.

2. Skew-monoidal categories

Definition 2.1. A right-monoidal category (M, *, R, y,n, &) consists of a category M, a
functor _% _: M x M — M, an object R of M and natural transformations
YiMN:Lx(M*xN)— (LxM)*xN
nuy:M — RxM
eM MxR—> M
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subject to the following axioms: For all objects K, L, M, N

(vk.L.m * N) o yk Lsm,N © (K * YL M.N) = YK+L,M,N © YKL, MN (D
YRM,N © IMxN = Np * N 2
EM*N O YM,N.R = M * ey 3
(em* N)oyyrno(M=xny)=Mx%N “4)
eronr = R. )]

If we replace M with M°P"V the category with opposite composition and with right-
monoidal product of reversed order, we obtain again a right-monoidal category, with roles of
n and ¢ interchanged. But replacing M with either M°P or M™" what we obtain is different
from the above structure. We call it a left-monoidal category.

If y, n, & are isomorphisms we recover the notion of a monoidal category with somewhat
strange names for the associator and left and right units.

Definition 2.2. If M and N are right-monoidal categories (with structures denoted by *, R, y,
n, € in both cases) then a right-monoidal functor M — A is a triple (F, F», Fy) where F is
a functor M — N of the underlying categories, Fy is an arrow R — FR and F; is a natural
transformation Fx y : FX x FY — F(X % Y) satisfying

FyxyzoFxyszo(FXxFyz)=Fxsyzo(Fxy*FZ)oyrx Fryrz (6)
Frxo(Fo* FX)onpx = Fnx @)
Fex o Fx.ro (FX % Fo) = erx ®)

for all X,Y,Z € M. Left-monoidal functors are similar functors between left-monoidal
categories. They together will be referred to as skew-monoidal functors.

A skew-opmonoidal functor M — A is a triple (F, F 2, F 0) where F is a functor M — N/,
FYisan arrow FR — R and F? is a natural transformation FX-Y : F(X*Y) — FX % FY such
that F, Fy := F° and Fx y := F¥X define a skew-monoidal functor MOPT¢V — A/OPreV,

Example 2.3. Every right-monoidal category M has a canonical right-monoidal functor into
the strict monoidal category End M of endofunctors of M. Define L : M — End M by
L(M)N = M * N. Then the natural transformation

YM,N,_

L(M)L(N)

L(M * N)

together with the arrow id a4 SN L(R) is a right-monoidal structure on L. Unlike for monoidal
categories when this functor is a strong monoidal embedding, for general M the functor L is not
even strong right-monoidal.

Similarly, the functor R(M)N = N x M has a right-opmonoidal structure as a functor
M — End°’ M, to the category End M equipped with opposite composition as (strict)
monoidal structure.

Obviously, if both M and N are monoidal then the notions of left- and right-(op)monoidal
functors coincide and they are precisely the usual (op)monoidal functors.

Definition 2.4. If * and " are two right-monoidal structures on the same category M with the
same unit object R then a twist from the * structure to the *-structure is a natural isomorphism
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wynN:MxN = M %' N such that (idaq, w, 1g) is a right-monoidal functor from M with %’ to
M with * structure.

One can define skew-(op)monoidal natural transformations although there is nothing ‘skew’
in them, so we drop the adjective:

Definition 2.5. Let F,G : M — N be skew-monoidal functors. A monoidal natural
transformation v : F — G is a natural transformation of the underlying functors which
satisfies

vxsy © Fxy = Gx,y o (vx * vy) 9)
vg o Fy = Go. (10)

Opmonoidal transformations are similar transformations between skew-opmonoidal functors.

The right-monoidal categories together with the right-(op)monoidal functors and (op)monoidal
natural transformations form the 2-category r-MonCat (r-OpmonCat). Similar 2-categories can
be defined for left-monoidal categories.

In ordinary monoidal categories tensoring with the unit object defines rather trivial monads
and/or comonads. In the skew-monoidal setting they are more interesting.

Lemma 2.6. Let (M, x, R, y, n, ) be a right-monoidal category and define ppy = (g x M) o
YR.R.M and Sy = vy R R © (M x ng). Then

T =(Rx_pun)

Q=(-*R34 ¢)

are a monad and a comonad on M, respectively, and xy = Yr,m.R IS a (mixed) distributive
law x : TQ — QT.

Proof. Inserting M = N = R in (2), composing with ng and using naturality of n we obtain
YR.R.R © (R*xng)ong = (ng * R) ong. (11)
In a similar fashion we obtain
gro(er* R)oyr R R =€ro (Rx*¢pR) (12)
using (3). Now we can verify associativity of u,
umo (Rxuy) = (er*xM)oyrrmo (Rx*(er*M))o(R*YrRM)
= (er*xM)o((RxeR)*M)oyrRr«r,M O (R*YRR M)
2 (er M) o ((er % R) * M) o (vr.g & * M)
O YR,RxR,M © (R * YR R M)

(n
= (egp* M) o ((er * R) * M) o YR«R,R,M © YR,R,RxM

(er * M) o yr gm0 (6R * (R % M)) 0 YR R RsM
= UM O URsM

and coassociativity of &,
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O *R)ody = (ymrr*R)o((M*ng)*R)oypyrro(Mx*ng)

(YM,R.R * R) oYM Rsr,R © (M % (Ng * R)) o (M * nR)

(11)
= (YM,R,R * R) o ypm R«R,R © (M * YR R.R)

o(M % (R *nR)) o (M *1ng)

—~
—

= YM+R,R,R© YM,R,R+R © (M * (R *ng)) o (M *ng)
= YMxR,RRO (M * R)*nR)oymRrro(M*ng)
= SmxROOM.

As for the left and right unit and counit equations

UNONRsN = R* N (13)
uno(Rxny)=RxN (14)
eyvsr 08y = M % R (15)
(egy*R)odyy =M *R (16)

notice that inserting M = R in (4) we obtain (14), inserting N = R in (4) we obtain (16),
inserting M = R in (2) and composing with eg * N we obtain (13) and inserting N = R in (3)
and composing with M * ng we obtain (15).

It remains to show that x is a distributive law in the sense of the equations

(lm * R) o XRum © (R * Xm) = XM © UMxR (17)
(xm * R) o xpsr © (R*8p) = Srxm © XM (18)
XM ©NMxR = MM * R (19)
ERxM O XM = R xepy. (20)

Egs. (17) and (18) are simple consequences of the pentagon (1) while (19) and (20) follow
trivially from (2) and (3), respectively. [

The monad T and the comonad Q on the right-monoidal category M will be called the
canonical monad and the canonical comonad of M. For left monoidal categories they are
T=_%Rand Q = R x* _.

Lemma 2.7. If (F, F», Fy) is a right-monoidal functor M — N then the pair (F, ¢), where
op = Fr.p o (Fo x FM), is a monad morphism from the canonical monad T of M to the
canonical monad T on N, i.e.,

FuopT oTo =¢pouF 21
Fn=g¢onF. (22)
Dually, if (F, F?, F%) is a right-opmonoidal functor M — N then the pair (F, V), where

Uy = (FM % F%) o FM:R is a comonad morphism from the canonical comonad Q of M to
the canonical comonad Q of N.

Proof. The statement for the monad morphism can be easily shown using the definition of u
and the right-monoidal functor axioms (6)—(8). The statement for the comonad morphism is then
obtained by passing to the dual right-monoidal category M°P-*¢V, [

Remark 2.8. If we want to formulate a bialgebra-like compatibility condition between u and §
then here is a commutative diagram
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R (R % R) MR, RxR k. (R % R) * R
R*SRl TMR*R
R ((R%R)*R) (R% (R R)) %R (23)
SR,QZRI T“TZR,R
(R * R) (R % R) % R) TRREE (R+(R%R) * (R R)

where
orm N = ((LxM)xnn)oyLmno(eLx(M=+N)) : (LxR)x(M=xN)
— (L*M)*(R=*N)
and where the 2-argument § and p are defined by
k.. =VvkRrLo(Kxny) : KxL — QK *L 24)
ukL =Ex*xL)oykrr K*TL - K xL. (25)
They obey the relations
Sok,L 00k, L = (6xk *xL)odg, 1 (ex *L)odgr =K *L (26)
uk,L o uk, 7L =Mk, Lo (K*xpur)  puxro(K*n.)=K=L. (27

Although diagram (23) is reminiscent to the compatibility condition between multiplication and
comultiplication of a bialgebroid, in order to confirm this interpretation one should investigate in
which sense o is a generalized braiding, if at all.

Remark 2.9. The composite 6g o ug is built from y, n, § and identity arrows and has the same
source and target as yr g, g. But there is no sign that they would be equal. Instead,

Spomr = (UR * R) o YR R«Rr,R © (R % 8R),

that is to say xgr«g fits into diagram (23) as a second row. So coherence for skew-monoidal
categories is expected to fail in its naive form.

Remark 2.10. Using the notations (24), (25) there is an identity in any right-monoidal category:
MR*R,R © OR,RxR = VR,R,R-

More generally, we have
HWoMm,N oM, TN =YM.RN, M,N e M.

This result suggests that we should think of the skew-associator y as the Galois map of the
‘underlying’ quantum groupoid of M even if there is no such a quantum groupoid in general.

3. The motivating example: bialgebroids

Let Abg denote the category of right R-modules over the ring R. This category has no
(obvious) monoidal structure. But every R-bialgebroid defines a right-monoidal structure on Abg
as we shall see below.

Let H be a right R-bialgebroid with R°? ® R-ring and R-coring structure
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t"es" :RPQR— H (28)
A" H > HeH. 29)
R
The unit element of H is denoted by 17 and the counit H — R by /. Then H carries two left
and two right actions of R defined by
) = ht ) pr(r)(h) =" (r)h
Ja(r)(h) =s"h ) = hs" ()

forr € R, h € H. The codomain H ® H of the comultiplication A is the tensor square w.r.t.

Ry
p2 and Aq.
For right R-modules M and N we introduce
MxN = M®NQ®H) (30)

R R
where L %Z) _refers to tensoring over R with respect to the A; left action on H. The result M x N
is considerled as aright R-module w.r.t. the p; right action on H. Elements of M x N are denoted
by [m, n, h] instead of m ® (n ® h). They therefore obey the relations
(m-r,n, h] = [m,n, ht ()]
(m,n-r,h] = [m,n,s")h)
m,n, h]-r=[m,n,hs" ()]

so the following natural transformations are well-defined:

nv M — RxM, nu(m) = [18, m, 11

em : MxR—> M, e(lm,r,h]) =m - (s (r)h)
vimN ¢ Lx(M+*N)— (Lx*xM)*xN,

yean (L [m,n, gl k) = [[L,m, AV, n, gh®1.

It is easy to verify, using the bialgebroid axioms, that (Abg, %, Rg, ¥, 1, &) is a right-monoidal
category.
One can notice that the skew-associator y, which is uniquely determined by yg g g, is, up to
isomorphisms R*(R*R) = H %Z) Hand (RxR)*R=H % H, the canonical map or Galois map
2 1

H®H—>H®H, gQh—>hVe®gh®
Ry R

of H as aleft H-comodule algebra. Therefore the bialgebroid is a Hopf algebroid (or x g-Hopf

algebra) in the sense of [23] precisely when the skew-associator y is invertible.

4. E-objects

Let E = End R be the endomorphism monoid of the right-monoidal unit R. An E-object
in M is an object M together with a morphism Ay : E — M(M, M) of monoids. The
category £ of E-objects in M has arrows M — N the arrows ¢t € M (M, N) which satisfy
toiy(r) =An(r)otforallr € E.

Since the category of E-objects in Aby is the category of bimodules, g Abg, hence monoidal,
we would like to see if this category inherits a skew-monoidal structure from the one given
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on Abg. This is the first step on the path going from skew-monoidal structures on Abg to
bialgebroids.

One can define the category of E®™-E®"-bimodules in M as the category of objects equipped
with m left E-actions and n right E-actions that pairwise commute with each other. Such objects
will be called (m, n)-type E-objects.

Lemma 4.1. If K and L are left E-objects (i.e., they are (1, 0)-type) then K x L is a (2, 1)-type
E-object with

hi(r) = dg(r) % L

Ja(r) = K #2.(r)

pL) = (ex * L) o vk k.2 o (K % (% L)) o (K % np).
More generally, if K is an E-object of (m1, n1)-type and L is of (m3, no)-type then K x L is an
E-object of (m1 +mo,n; + 1 4+ np)-type.

Proof. A; and A, are obviously left actions and commute with each other. p; is natural in K € M
and L € M therefore it commutes with both 1| and X and also with any other left or right actions
the objects K or L may possess. Therefore the statement follows immediately if we prove that
the formula for p; defines a right action. Unitalness p(R) = K * L follows directly from (4). As
for multiplicativity

p1(r1) o p1(r2) = (ex * L) oyk r.L o (K * (r1 * L)) o (ex *nr)
oyk,R,L© (K * (rox L))o (K *nL)
= (ex * L) o ((ex * R) * L) 0 YK«xR,R,L © VK,R,RxL
o(K * (rp* (r1x L)) o (K * (R*nL)) o (K *nL)
Q (ex * L) o (exkxr * L) o (YK R.R * L) 0 YK RxR.L
o(K * yr.R,L) 0 (K * (r2 x (r1 * L))) o (K * ngs«) o (K *1L)
= (ex x L) o (éx«r * L) o (Y, R.R ¥ L) o (K * (r2 % R)) * L)
o Yk RxR,L © (K * (R*r1) * L))o (K *yRrR.L)
o(K * npsr) o (K % L)
2 (ex % L) o (K ¥ eg) ¥ L) o (K # (2% R)) % L) 0 Yk Rur.L
o(K * (Rx*r1)* L)) o (K *yrR,.L)o (K *ngr) o (K *nL)
D (ex * L) o (K x6g) x L) o (K # (r2 % R) % L) o YK.R¥R.,L
o(K * (Rxr1)* L))o (K x*(ng*L))o(K*nL)
= (e * L) o (K *rp) x L) o ((K % &g) * L) o yk R«R,L
o(K * (ng * L)) o (K * (r; * L)) o (K *nr)
2 (ex ¥ L)oyk.rr o (K (rror) * L) o (K %11)
= pi(r2ory).
This completes the proof. [

If we have n left E-objects and we * them in any order, so the parenthesizing is arbitrary, then
the resulting object will have n left actions of the obvious 1 % ... 1% A(r) * 1% ...x 1 type and
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less obvious right actions, n — 1 in number, each corresponding to one * sign. These actions will
be numbered from left to right as shown:
A 'Skl B iz . 'O"*_ !
A A2 An
The simplest left E-object is R. Its left action is the identity morphism £ — M(R, R). By
the above Lemma the object R * R is equipped with two left actions A1, A2 and one right action
p1- As such a (2, 1)-type object R x R is denoted by H. It is to be interpreted as the underlying
object of a quantum groupoid, at least for M = Abg.
In the next Lemma we summarize how the structure maps y, 7, € and their derivatives p and
8 behave with respect to the A and p actions.

Lemma 4.2. For E-objects L, M, N and forallr € E

ri(ryoyLmN=vLmnNoA(r) =123 (31
Aa(r) oy =nn o Ar(r) (32)
r(r)oer =¢erohri(r) (33)
AL(r)oun = pn o Ar(r) (34)
Aa(r) o un = pun o A3(r) (35)
A3(r)odp =6 o Ap(r) (36)
M(r)odp =61 o A (r). 37
For arbitrary L, M, N of M and forallr € E
pir)oyLmMN=vLmnNopi(r) i=12 (33)
p1(r)onn = Ai(r) ony (39
epop1(r) =ep oAa(r) (40)
p1(r) o un = N o pa(r) 41)
p1(r) o8 =L 0 p1(r) (42)
Un 0 p1(r) = puy o ra(r) 43)
p2(r) o8 = Aa(r) o 8. (44)

Proof. Relations involving A-s only are just naturalities of the structure maps. Those involving
p-s require some computations which, however, are left to the reader. [

Among the various multiple E-objects there are distinguished ones that behave nicely under
the s-product. For each n > 0 let M denote the category of (n, n — 1)-type of E-objects in M.
Then M™ 5 M®™ < M+ by Lemma 4.1. Clearly, MV = Eand R e MV, H € M@,
The coproduct M® = Ll=o M is then closed under * but has no unit object.

Now assume that the category M has limits and colimits. For two left E-objects L and M we
can make new E-objects from the (2, 1)-type object L « M either by forming the A-p; center or
by forming the p1-A, quotient:

Al

LM
/ LxM——~ LxM HL*M (45)
A1p1 Al rek
Pl qL.m P1A2
]_[L*M L*M—»f L*M. (46)
rek A2
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Then the A, action on L * M inherits to f APy L % M aleft E-object structure and A inherits one

to [ PI%2 I 4 M. In this way, the above end and coend define functors £ x £ — &. The identity
arrow on L % M restricts—corestricts to a natural transformation

p1r2
'9L,M =qdL.MOZILM : / L*M—)/ LxM. (47)
A1p1

Indeed, forr € E
Omor(r) =qgrmora(r)ozrm =qrmeopi(r)ozrm
=qrmorit(r)ozr My =r(r)obOL m

shows that 6;,_js belongs to £. Its naturality follows from that z and ¢ are natural.

Proposition 4.3. Let (M, *, R, y, n, €) be a right-monoidal category in which the category M
has colimits and L x _ : M — M preserves finite colimits for each L € M. Choosing a
coequalizer (46) for each pair of E-objects (L, M) and making the quotient

P1r2
L*qM::/ LxM

an E-object by means of A there is a unique right-monoidal structure (&, %4, R, y9,n?, e9)
on the category of E-objects such that the forgetful functor ¢ : £ — M together with
qr.m : Lx M — Lx,; M and the identity arrow 1g becomes a right-monoidal functor £ — M.

Proof. For (¢,q, 1g) to be a right-monoidal functor the y9, n? and &9 must obey to
commutativity of the diagrams

M,N

Lxq
Lx(MxN) ——

MxgN

q

L (Mg N) —2% L x, (M %, N)

)’L,M,Nl lyZ,M.N (48)
qrL,m*N qLxgM,N
(LxM)* N ——> (Lx;qM)* N ——— (L%, M) %4 N
M5 RxM MxR —M 5 M
R
U £t

M —— Rx; M My R —— M

The existence and uniqueness of y¢ follow from that the composite £ = gqr, g M,N © (qr.m *
N) oy, m n satisfies both £ 0 p; = £o Ay and £ 0 pp = £ 0 A3 as a consequence of (31), (38). By
the latter there is a unique factorization & = &’ o (L * gpr,n) in which &' o p; = &’ 0 2. Then y4
is obtained as the unique factorization £’ = qu’ M.N © 9L, M, N- €1 is obtained in a similar way
while n? is readily defined by the diagram as it stands.

The verification of the right-monoidal category axioms is now a routine computation. [

The dual of Proposition 4.3 is the following.

Proposition 4.4. Let (M, %, R, y, n, &) be a right-monoidal category in which the category M
has limits and _x M : M — M preserves finite limits for each M € M. Choosing an
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equalizer (45) for each pair of E-objects (L, M) and making the center

Lx; M := L+M
A1p1
an E-object by means of Ay there is a unique right-monoidal structure (£, *;, R, y*, n*, &%) on
the category of E-objects such that (¢, z, 1g) is a right-opmonoidal functor, i.e.,

L, (M, Ny~ 1 (M o5, N) 2255 1 5 (M % N)

VZM,NI ln.M,N (50)
(L. Mys. N 225 p sy« N2 (L w My« N

M—UZM——>R>1<ZM M*ZRLM

| e
M2 RsxM MxR —2 5 M

are commutative for each L, M, N € £.

Applying Lemma 2.7 to the skew-(op)monoidal functor of Propositions 4.3 and 4.4,
respectively, we obtain the following.

Corollary 4.5. Let (M, =, R, y,n, €) be a right-monoidal category with canonical monad T
and canonical comonad Q.

(1) If M has colimits and for all L € M the endofunctor L * _ preserves finite colimits then
(a) & has a right-monoidal structure with canonical monad T, = f Pr2 gy
(b) and kpr == qr,m defines a monad morphism (¢, k) from T, to T.

(ii) If M has limits and for all M € M the endofunctor _+ M preserves finite limits then
(a) & has a right-monoidal structure with canonical comonad Q% = f apr - ¥ R
(b) and ¢, == zr R defines a comonad morphism (¢, ) from Q% to Q.

As we shall see in the next section some results of this Corollary hold under weaker
hypotheses.

5. Comodules and modules

If right-monoidal categories are to be interpreted as quantum groupoids then it must have
associated categories of modules and comodules. The Eilenberg—Moore categories of the
canonical monad 7 and comonad Q are the obvious candidates, albeit apparently without
monoidal structures.

Let M€ denote the Eilenberg—Moore category of Q-comodules, also called Q-coalgebras,
for the comonad Q = (_* R, §, &). Its objects are pairs (M, Ay) where M is an object of M and
Ay : M — M x R satisfies

(Ay s R)o Ay =8y 0 Ay (52)
SMOAM =M. (53)



1706 K. Szlachdnyi / Advances in Mathematics 231 (2012) 1694—1730

The arrows M — N in M2 are defined to be the arrows r € M (M, N) such that
Ayot=({*R)o Ay. 54)
Dually, in the category Mt of T-modules the objects Vys : R x M — M are defined by the

equations
Vmuo(R*Vy)=Vyouy (55)
VM onm = M (56)

and its arrows t : M — N by
toVy =Vyo(Rx*t). 57)

Entwined modules of a skew-monoidal category can be defined as the category of triples
(M, V, A) such that (M, V) is a T-module and (M, A) is a Q-comodule which satisfy the
compatibility condition

™ — s M -2, oM

TAl TQV

XM
TOM oTM

The arrows (M, A, V) — (M', A’, V') are the arrows t € M(M, M") which are both T-module
and Q-comodule morphisms. The basic example of an entwined module is the object R « R with
action p g and coaction 8g.

Lemma 5.1. If L is a Q-comodule and N is a T-module then both L and N are left E-objects
via
AL(r)y=¢epo(L*r)oAp (58)
AN()=Vyo(rxN)ony, (59)

respectively. With respect to these actions every arrow in M2 and every arrow in Mt are
morphisms of left E-objects. This defines the faithful functors

F. M2 > &, Fy: Mr — E.

Proof. Since T-modules in M are the Q-comodules of the opposite-reversed right-monoidal
category MOP™ it suffices to show that A7 is a monoid morphism and that every r € M is a
morphism of E-objects.

a(R)=ep oA, 2L

)LL(rl) O)\L(l’z) = €L OEL«R © ((L *r]) *R) @) ((L * R) *rz) o (AL * R) OAL

(522) eroerxro ((L*r1)xr)odLoAp

= eroersROoYLRRO(L*(r1 x12)) o (L*xng)o AL
= gro(L*xegr)o(Lx(rixry))o(L*ng)oAp

= gro(Lxr))o(Lxeg)o(L*xnr)o(Lx*ry)oAp
= gro(L*x(rior))oAr

= AL(rior).



K. Szlachdnyi / Advances in Mathematics 231 (2012) 1694—-1730 1707

Ift : K — L is a Q-comodule morphism then

tolg(r)=¢po(t*xr)oAx =cpo(L*r)oApot=Apot. O

We note that for the free Q-comodules N * R ﬂ) (N % R) *= R, where N is an arbitrary
object in M, the above left E-action Ay.g reduces to the canonical N x r left action A, of the
right-monoidal product N * R of a (0, 0)-type object with a (1, 0)-type object. Dually, for free
T-modules Ag4n(r) = r * N. However, if L is a Q-comodule and M is a T-module then L * R
and R * M are type (2, 1) and the question arises how the coaction and action behave with respect
to the extra two E-actions.

Lemma 5.2. Assume M is complete. For every Q-comodule L the coaction Ay is a morphism
of left E-objects and factorizes uniquely through the center of the (2, 1)-type E-object L * R as
A7 ZL,R
L— L xR
A1P1

L xR

in €. Dually, assume M is cocomplete. Then the action Vy; of every T-module M belongs to €
and has a unique factorization

qrR.M P12 VL
RxM—» / RxM M

in & through the quotient of the (2, 1)-type E-object R x M.

Proof. We prove the statement for Q-coactions. Since every comodule L is an equalizer

AL oL
L xR

L

(L*R)*xR

Ap*R
in M (it is split by L oL xR &R (L = R) * R), the coaction Ay is a morphism of Q-
comodules from L to the free Q-comodule L * R. Therefore by Lemma 5.1 it is also a morphism
of E-objects with respect to the A, actionon L * R, i.e.,

Apoir(ry=(L%xr)oAr, rekE.

As for the remaining two actions we can compute, using the expressions in Lemma 4.1 for p,
A1, that

p1(r)oAp = (e * R)o (L *xr)*x R)odp 0o AL
=(L*R)o((L*xr)*R)o(ALoR)o AL = (Ar(r) *R)o AL
=A((r)o AL
from which the unique factorization through z; r € £ follows. [
Note that in the above Lemma we avoided to use the notation #, and *, because under the
given conditions they need not be skew-monoidal products.
Theorem 5.3. If M has colimits and the endofunctor R * _ preserves coequalizers then

(i) the endofunctor M +— T,M = [ P2 R % M on & carries a unique monad structure such

that the forgetful functor ¢ : € — M together with the coequalizer T oM il ¢TyM of p1
and Ay is a monad morphism (¢, k) from T, to T;
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(ii) the functor ¢, induced by the monad morphism (¢,k) is an equivalence of the
Eilenberg—Moore categories such that

LMT

&r,

q

frql lfr (60)

8—¢)——>M

and the functor Fy : Mgy — & of Lemma 5.1 is monadic and satisfies

fq¢q =Fr, (]5.7:(1 = Fr. (61)
Proof. This Theorem follows by dualizing the next Theorem 5.4. [

Theorem 5.4. If M has limits and the endofunctor _* R preserves equalizers then

(i) the endofunctor M +— Q*M = f o1 M * R on & carries a unique comonad structure such

that the forgetful functor ¢ : € — M together with the equalizer ¢ Q*M LM> QoM of M
and p1 is a comonad morphism (¢, ¢) from Q% to Q;

(i) the functor ¢, induced by the comonad morphism (¢,) is an equivalence of the
Eilenberg—Moore categories such that FC¢, = ¢F< and the functor F, : M2 — &
of Lemma 5.1 is comonadic and satisfies

Fp, =F, oF, = F2.

Proof. This Theorem is the special case of the lax version proven in the next section. Part (i)
follows from Proposition 6.2 and part (ii) from Theorem 6.3 after noticing that left exactness of
QO implies the possibility to choose the equalizers ¢” in such a way that Q, = (Q%)" for each
n>0. O

Example 5.5. For a right R-bialgebroid H as in Section 3 the monad 7 is - ® H associated
R

H H

to the R-ring R i H and T, is ,% H associated to the R¢-ring R’ ® R "2 H. The
monad morphism «y is the canonical projection M (%) H—-M }@3 H and the fact that it induces
an equivalence between the corresponding right H-module categories can be considered as a
well-known fact in the bialgebroid literature and it is a consequence of the fact that 7 is right
exact. However, the dual statement Theorem 5.4 presents a warning that the category (Abg)? of
right comodules over the R-coring H may not be equivalent to the Eilenberg—Moore category
of the comonad Q% on gAbpg unless g H is flat, i.e., Q is left exact. This equivalence is crucial
in Tannaka duality where we want Q¢ a monoidal comonad on the bimodule category gAbg.
Without left exactness the Q¢ will not even be a comonad. What replaces Q¢ in the general case
is a lax comonad discussed in the next section.

6. The lax comonad Q

In [12, Proposition 4.2] Day and Street have characterized (left) R-bialgebroids as comonoids
in the lax monoidal category of monads on R¢ where the lax monoidal structure is given by
n-fold Takeuchi products My xr --- xg M,. Here we shall concentrate on the closely related
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but simpler structure of monoidal lax comonads on the category £ of E-objects but ignore
monoidality altogether, as we did so far for T and T, and be content with proving equivalence
of M2 with the category £Q of comodules for the lax comonad Q with the hope in mind that if
& is provided a ‘good” monoidal structure then £2 will become monoidal, too.

Let A be the category of finite ordinals and order preserving maps equipped with the strict
monoidal structure of ordinal addition +. By a lax comonad on a category £ we mean a
monoidal functor G : A°? — End € to the strict monoidal category of endofunctors on £ with
composition of functors as monoidal product. The monoidal structure of G is given by an ‘arrow’
¢t :idg — Go of End £ and a natural transformation vy, , : G,y G, — G4y satisfying 3 axioms,
as usual. If the functor G happens to be strict monoidal then the object map of G is G, = (G1)"
and we recover an ordinary comonad (G, G2—.1, Go—1) on £.

The generalization of the Eilenberg—Moore category for the lax situation goes as follows. A
comodule over a lax comonad (£, G) consists of an object M of £ and arrows o, : M — G, M
for each n > 0 such that

Groap=ay, Yf:m—n
Amtn = VmnM o Gpap oy, Ym,n >0

o) =Ly.
A comodule map (M, o) LN (N, B) is an arrow M —L5 N in € such that
M — N

anl lﬁn Vn > 0.

G,M - G,N

The category of G-comodules and their comodule maps is denoted by £ . The forgetful functor
EG > €, (M, a) — M is faithful, reflects isomorphisms but not left adjoint in general.

In order to justify the above definition of £¢ it is worth looking at its 2-categorical
interpretation. For lax comonads F on D and G on £ a morphism of lax comonads (D, F) —
(€, G) can be defined to consist of a functor U : D — £ and natural transformations

£,:UF, - G,U : D — £ naturalinn € AP

and obeying the following monoidality conditions

an Gn‘l n
UF,F, = G.UF, " 6,6, U U —— U

l I !

Emtn o

A modification 7 : (U, &) — (V,v) : (D, F) — (£, G) is a natural transformation t : U — V
satisfying

UF, —", VF,

gml lum Vm > 0.

G U -2 G,V
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With the obvious horizontal and vertical compositions the lax comonads, their morphisms and
modifications form a 2-category Lax-Cmd.

Lemma 6.1. Let 1 be the identity comonad on the terminal category 1. Then for any lax comonad
(€, G) the Eilenberg—Moore category E¢ of G-comodules can be identified with the hom-
category Lax-Cmd((1, 1), (£, G)).

Proof. A morphism of lax comonads from 1 to G is an object M of £ equipped with «;, :
M — G, M, n > 0, satisfying precisely the defining relations of a G-comodule. A modification
(M, &) — (N, B) in turn is an arrow M —> N satisfying f, ot = Gut o ap,n > 0, i.c., a
comodule map. [J

By extending Lemma 6.1 notice that a morphism (U, &) : (D, F) — (£, G) of lax comonads
induces a functor

Lax-Cmd((1, 1), (U, &)) : DF — &°
between the Eilenberg—Moore categories the object map of which is

n nD
(D,a) > (UD, UD Y% UFE,D &8 G,UD)-0).
After this preparation we can introduce the canonical lax comonad Q of a right-monoidal
category (M, *, R, y, n, ¢). For an E-object M we define Q, M by delaying the action of the
ends in (Q%)" M, i.e., by the formula

Q,,M::/ / (.(MxR)*x---xR)*R
A1P1 AnPn

where the number of R-s is n and the left and right E-actions X;, p; are labeled according to what
we said in Section 4. The result Q, M becomes a left E-object via A, which is the action on
the last R factor.

Qo is the identity functor and Qg is the endofunctor Q% of Corollary 4.5(ii). But now, without
the assumption that _x R preserves equalizers, Q¢ does not inherit a comonad structure from that
of Q. Although ¢* : Q; — Qg exists we cannot define comultiplication Q; — Q%. Instead we
can define a natural transformation 8(1) Q1 — Q.

Proposition 6.2. Let M be a right-monoidal category whose underlying category M is
complete. Let € be the category of E-objects in M, ¢ the forgetful functor & — M and define
the endofunctors Q, on & for n > 0 by the equalizers
M (M1 n)
QM —— Q"¢M S {E®", Q"¢ M}
(P15-w20n)

where { , } denotes cotensor (=power) in M. Then n — Q,, is the object map of a unique lax
comonad Q on & such that ¢ together with {¢"|n > 0} is a morphism of lax comonads Q — Q.

Proof. In order to extend Q to a functor A°? — End £ it suffices to define it on the elementary
monotone functions i + (2 — 1) + j and i + (0 — 1) + j. Naturality of ¢" determines them to
be the unique 8 : Q, — Qu41 and & : Q, — Q,_1, respectively, such that

("ol = 080" ot i=0,1,...,n—1,n>0 (62)
("ol =00 o i=0,1,....n—1,n>0. (63)
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For their existence the reader should check that the RHS satisfies the equalizing conditions of
the ¢ on the LHS as a consequence of the properties of § and ¢ given in Lemma 4.2. The form of
the RHS of these equations makes it obvious that they satisfy the usual relations that a simplicial
object in End £ should have. This proves that Q is a functor.

As for the monoidal structure v™" : Q,,Q, — Q4+, the requirement that ¢ be monoidal
leaves only one possibility,

(M o™ = Q" 0 MQ, =" 0" 0 Qui”, (64)

which exists by the equalizing properties of the RHS. Since Qp = 1¢, we can take ¢ to be the
identity natural transformation 1¢ — 1g, provided we also choose ¢° to be the identity. Then the
monoidality conditions on ¢ are built in the definition of v and ¢ and the monoidality constraints
on v and ¢ boil down to

l)l-l—m,n o Vl’an — vl,m+n o lem,n
vO,n =Qu
V™0 = Q.
The last two follow from uniqueness of v and the first can be shown by multiplying it with

Z!HmF and using (64).
Finally, we have to show naturality of v (and of ¢). That is to say, we need a proof of

Qrgov™" =v"" 0QsQq
Vf:m' - m, g:n — ninA.

It suffices to prove this for f and g being elementary functions, that is to say, to prove

m—+1,n m if s
gmn o ymn _ |V 108i Q. ifi <m
! prmatl Qndi,, ifi >m
and
m—1,n m L
gt o yman _ v 0" Qn ifi <m
i vrlo Qe ifi > m.

Multiplying the first with ”7+"*1 and the second with "7+~ they can be easily verified using
the defining relations (62) and (63). O

Theorem 6.3. The functor d; : EQ 5 M2 induced by the lax comonad morphism (¢, ¢) :
(€, Q) = (M, Q) of the above Proposition is an equivalence of categories.

Proof. q§ is the lift of the faithful ¢ along the Eilenberg—Moore forgetful functors,

gQ_¢3__>MQ

l l
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therefore it is faithful, too. For an arrow ¢ € MQ(<;3(M ,o), ¢3(N , B)) we have

n

oM 2 pQuM —s QreM

! b
oN 2 QN S grgn

therefore by Lemma 5.1 t+ = ¢t for aunique t € £(M, N). This allows to insert the arrow ¢pQ,, T
in the middle of the diagram so that the right square is commutative. But ¢y, being monic implies
commutativity of the left square, so t lifts to an arrow in EQUM, a), (N, B)). This proves that 43
is full. Finally we show that qAb is eso, in fact surjective on objects. Let (M, o) € M<. Then by
Lemma 5.2 there is an (M, Q) € £Q such that

n

¢&n A M -1
M—¢QM— "M )| =a,=0"""ao0...0aoca

i.e., such that ¢ ( 1,&) = (M, o). Thus diseso. O

Remark 6.4. There is a lift of the distributive law x : TQ — QT of Lemma 2.6 to a lax
distributive law Y, : T,Q, — Q,T, provided we consider T', Q, T, and Q, as endofunctors on
the category M ® of (2,1)-type E-objects, which is the category of R°P ® R-R°P ® R-bimodules
in case M = Abg. Of course, M has to have limits and colimits and R * _ has to preserve
coequalizers in order for 7, to be a monad and « a monad morphism. More precisely, T, on
M@ is defined as T, on MW = € by considering M € M@ as a (1, 1)-type E-object in & via
o1 and As and Q,, on M@ is defined as Q, on M1 by considering M € M aga (1, 1)-type
E-object in £ via A1 and p1. Let x" := Q" 'y o0---0 Ox0" 2 o xQ" ! and consider the
diagram

KQn

TQn Tan
T¢m w7
TqC N
n \‘
TQn Tan Qan
S
x™ h (S

one A

Q’VIT QTLTq

in which x Q" is a coequalizer which defines #" and ¢"T, is an equalizer which defines ¥".
Then one obtains the distributive laws

Qnﬂq © wan ° qun = I//n ° Man
Y on?Qu = Qun?

Y o T8 = 8T, o Y

1//”_1 o quln = E?Tq oy
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as a consequence of (17), (19), (18) and (20), respectively. While the last two express only
naturality of v, the first two contain the monad data (7, u?, n?). The difference disappears,
however, if we introduce the lax monad T as a cosimplicial object A — End M@ by

T, = Tqm, m=>0
Tivontj = TyndT), i,j=0
Tita-0+j = T,;eqTJ, i,j=0.
Then the lax distributive law becomes deceptively simple, just a natural transformation

v

TQ QT : Ax A%® — End M®@.

Note that TQ and QT are not the composite of two functors as in 7 Q BN QT, rather the

T
monoidal product on their common target category: A x A°P i(g End M@ x End M® —

End M® . All information on the compatibility of " with u?, n4, 87, e seems to be
comprised in the naturality of ¥™" in m € A and n € A°. However, ™" also satisfies
some ‘monoidality’ relations in m and n separately which are automatic in this example and
which ought to belong to the axioms of a lax distributive law for general lax monad T and lax
comonad Q.

In the rest of the paper we study the problem of how and when (ordinary) monoidal structures
on the category £ of E-objects will lead to monoidality of the Eilenberg—Moore categories £Q
or &7, with a strong monoidal forgetful functor to £.

7. Bi(co)monad induced structures

In Section 3 we have seen how right R-bialgebroids induce right-monoidal structures on the
category Abp of right R-modules. Since bialgebroids correspond to bimonads, i.e., opmonoidal
monads, on £ = gAbp [25], it is natural to look for generalizations that produce right-monoidal
categories from bimonads.

Let (£,8, R, a, l_l,r) be a monoidal category. Then a bimonad, more precisely a ®-
bimonad, (O, w, t) consists of an endofunctor O on £ together with an opmonoidal structure
OMN - OM ® N) - OM ® ON, 0° : OR — R and natural transformations w :
OO0 — O and: : £ — O satisfying the monad axioms (not involving the ®-structure) and
the opmonoidality axioms

aor.om.on 0 (OL ® OMNyo oL-MON — (0LM @ ON) o OL®M-N 5 0ay yrn (65)

(0°® ON)o ORN o 01! =15}, (66)
roy o (OM @ 0% 0 OMR = Ory, (67)
(wy @ wy) 0 0MON o 0OMN = OMN 6 e (68)
0%0wg =0 00" (69)
OMN o yen = v ® iy (70)

0%0.r = R. (71)
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We have written them using only a, 17! and r but never their inverses. This admits to speak
about opmonoidal monads in right-monoidal categories. Such right-opmonoidal monads are
not really new, they are just the monads in the 2-category r-OpmonCat. Indeed, relations
(65)—(67) say exactly that O is a 1-cell and relations (68)—(71) say that w and ¢ are 2-cells of this
2-category.

The so-called fusion operator [7] associated to a bimonad (O, w,t) is the natural
transformation

hyn = (OM @ wy) o OMON . O(M® ON) - OM ® ON. (72)

Given a fusion operator we can recover the opmonoidal structure by
OMN = hpy v o OM @ 1y). (73)

The next result is essentially [7, Proposition 2.6] of Bruguieres et al. although some of the output
is turned into input. But the main difference is the observation that the statement is valid also
when ® is a skew-monoidal product.

Proposition 7.1. Let (£, ®, R, a, | r) be a right-monoidal category and (O, w, t) be a monad
on E. Then opmonoidal structures on O, i.e., OMN 00 satisfying (65)—(71), are in bijection
with data consisting of a natural transformation hyy y : O(M @ ON) — OM ® ON and the
same OV satisfying the following relations:

(OM @ wn) o hy,on =hy,n o O(M Q wy) (74)
(he.m ® ON)ohrgom,n o Oar om.onN © O(L ® hy N)

=apr,om,0onN° (OL®hy n)ohr mgon (75)
hy,notmgon =tm @ ON (76)
(0°® ON) o hg y o Olph =1} cwy (77)
rou o (OM ® 0% ohy g = Orpy 0 O(M ® 0°) (78)
(o ® ON)ohom,N © Ohy N = hp N © WMg0N (79)
0%0ig =R. (80)

The bijection is given by Egs. (72) and (73).

Proof. Assume that an opmonoidal structure O™V, 00 is given and h is defined by (72). Then
(74) can be shown using associativity of the monad multiplication w,

(OM @ wn) o hy.on = (OM ® wy) o (OM @ wox) o OMO'N
= (OM ® wy) 0 (OM ® Owy) o OM-O°N
= (OM Q@ wy) 0o OMON 6 O(M @ wy)
=hpynyo OMQwy).

The proof of the associativity law (75) is a bit longer:



K. Szlachdnyi / Advances in Mathematics 231 (2012) 1694—-1730 1715

(hp,Mm ® ON)ohrgom,n © Oar om,on © O(L @ hy N)
= (OL® wy) ® ON) 0 (07" ® ON) o (O(L ® OM) ® wy)
00*®OMON 6 Oar op.on © O(L ® (OM @ wy)) o O(L ® OM-ON)
= (OL ® wy) ® wy) o (OL ® 0’°M) ® Owy) o (04 M @ O°N)
00LEOM-ON & 0a; 44 ooy 0 O(L ® OMON)

65
D (0L ® wm) @ wy) 0 ((OL ® 0*M) ® Own) oap; p2a 05x

o(OL ® OOM,OZN) 0 QL:OM®O’N | O(L ® OM:ON)y
=aor,0m0N° (OL® (wy ® wn)) 0 (OL ® (0°M ® Owy))

o(OL ® OOM,OZN) o (OL ® 00M-ONy o L.O(MEON)
=aopr,om,0oN° (OL® (OM ® wy))

o(OL ® [(wy ® won) 0 0NN 5 0 0M:ON]) o o1 OMEON)

(68)
= aor,0M,0N ©(OL ® hpy n)ohr mgoN-

As for the remaining relations we proceed as follows:

hyn o tmgon = (OM®@wy) o OMON o iyeoy
70
T (OM@wn) o (tn ®on) = tm ® ON,
(0°® ON)ohg y o Ol,}, = (R®wy) o (0°® O*N) o OOV 6 01,
66 _ _
@ (Rewy) ol L, =15k ooy,
romo(OM Q0% ohyr = royo(OM® 0% o(OM ® wg) o OM:OR
@ romo(OM® 0% o0 (OM®00°% o0 0MOR
= roy o (OM® 0% o OMRo oM ® 0°
D Ory o 0M® 0°
and finally (79) follows from (68) easily.

Now assume that a fusion operator 4 is given, together with O°, and define O™V by (73).
First, (70) follows easily from (76). Then associativity relation (65) can be shown by means of
(75) and (70):

apr.omonNn°(OL® OM,N) o OL-M®N
=aopL,om,oN°(OLQ®hy n)o(OL® O(M ®tn))ohr mgn © O(L ® tygn)

=aoL,oM,0N°(OL®hy n)ohr megon c O(L® O(M ®tyn)) o O(L ® tyen)

(75)
= (hp,m ® ON)ohrgom,n © OaL . om on

cO(L ®@hy,n)o O(L® OM ®iy))o O(L ® tyen)
70
@ (hp,m ® ON)ohpgom,n © Oar om,on © O(L @ (ty ® ty))

= (M ®ON)o(O(L®ty)® ON)ohrgu,n o O((L @ M) ®ty) o Oar m,n
= (OL’M ® ON) o 0L®M’N oOar m.N-
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Eq. (66) is a simple consequence of (77) if we compose the latter with Oty. Similarly, (67)
follows from (78) and (80). For proving (68) we need relation (79) and the calculation

(om ® wn) o hom,.on © O(OM ® ton) 0 Ohyy 0 OF(M & ty)
= (wy ® ON) o hopy.n o Ohpy o OH(M @ ty)

(79)
= hyn o wugon o O (M ® 1y)

=hy Nno OM @ iyN)otygN = OM’N O LM®N -
Finally, (69) is the consequence of (77) and (78),

0%cwp = rtroly' 0 0%cwr=rro(R® 0% oly) owr

D 0 (0°® 0% o0hggoOlgk=0%r0r0(OR® 0% ohp o Ol

D 096 0rg o O(R® 0% 0 0I5}, = 0° 0 Org 0 015 0 00"
= 000"
This finishes the proof that O is opmonoidal.
It remains to verify that (72) and (73) define a bijection between fusion operators and
opmonoidal structures. While the composite mapping O™ + hy y > OM-V is the identity

for whatever OM-V | the composite 1y y = OM-N > hy, n becomes the identity after using
74). O

Proposition 7.2. Let (O, w, 1) be a bimonad on the (right-)monoidal category (£, ®, R, a, 1-1,r).
Then there is a right-monoidal structure on £ given by

MON=M®ON (81)
yemn =aL. omono (L ®(OMQwy)) o (L@ OMON) (82)
v =15k, otm (83)
ey =ryo(M® 0°). (84)

The unit 1-! of the ®-structure gives rise to a monad morphism lai\, :ON - TN from O to
the canonical monad T = R O _ of the O-structure.

Proof. By Proposition 7.1 the monad O is supplied with a fusion operator /. Since the associator
y is essentially given by the fusion operator, the pentagon equation (1) for the ® product is a
consequence of (75) and of the pentagon equation for ®,
(vk,L,m © N) o Yk, Lom,N © (K O yL,m,N)
= (ak.0L.oM ® ON) o (K ® h M) ® ON) o ak oLgom).oN © (K @ hLgom.n)
o(K ® Oar,om,on) o (K ® O(L ® hm,N))
= (ak,oL,om ® ON)oak 0Lg&OM,ON
o(K®[(he,m ® ON) o hrgom,n © Oar om,on © OL ® hy,n)])

(75)
= (ag,oL,oM ® ON)oag orgom,on © (K ®aoL,om,0N)

o(K®(OL®hyn))o(K®hL mgonN)
=aKxO0L,0M,0N ©aK,0L,0M0N © (K @ (OL ® hy n)) o (K @ h mgoN)
= YKOL,M,N © YK,L,MON-
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The unit-triangle (2) for © follows from (76) and from the unit triangle for ®,

YRM,N ©IMoN = aR,0M,0N © (R® hy,n) o (R ® tygon) © 1;,,1®0N

(76) _
= ag,omon©° (R® (tyy ® ON)) o 1M1®0N

= (R®u)®ON)o(ly ® ON) =iy ON.
The counit-triangle (3) for ® follows from the counit triangle for ® and from (78),
EMON © VM.N.R = Tmgon © (M ® ON) ® 0%) oay,on.0r © (M ® hy g)
= (M®ron)o (M ®(ON®0%)o(M®hy,r)
D (M@ 0ry)o(M®O(N®0%) =M 0 éy.
The mixed triangle (4) can be shown using (77) and then the analogous triangle for ®:
(Em ON)oym,rN 0o (M OnN)
= (o (M® 0" ® ON)oay,or0n © (M @ hg.n) o (M® Ol 0 Ouy)
= (ry ® ON) oy g.on o (M ® (0" ® ON))

oM ®hgn)o(M® Ol,\) o (M® Ouy)

Dty ® ON) 0 an.r.on© (M IGy) o (M®awy) o (M Oy)

=(ry ® ON)oay gono(M ®15§V) =MQON.
Finally, (5) for © follows from (71) and from the analogous axiom for ®,
érofr =TRo (R® 0% o (R®ip)oly! =rgoly' =R.

This finishes the proof that ® is a right-monoidal structure. The natural transformation 15}\,

(together with the identity functor on £) is a monad morphism O — T if it satisfies the following
two conditions:

fin ol k0 Olgy =1y 0wy (85)
v =1y 0 tu. (86)
The LHS of the first can be written as
(R ® ON) 0 R RN ©lg(rgon) © Olgy
=g ® ON)o (R® 0°) ® ON) oag,or.on o (R®hg.N)
o(R® Olgp) ol )

77 _ _
(:) rg® ON)OaR,R’ON O(R®10}V)O(R®Q)N) ol !

O2N
= 15}\, o wN
which is the RHS. The second condition is just the definition (83) of 7, so 15}\/ is a monad
morphism as claimed. U

Definition 7.3. The right-monoidal structures twist isomorphic (see Definition 2.4) to ones
arising from a bimonad w.r.t. some ordinary monoidal structure ® as in Proposition 7.2 are
called ®-representable or representable by a ®-bimonad.
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Passing to the reversed right-monoidal structures one obtains the notion of representability of
left-monoidal categories by opmonoidal monads. Up to twist-isomorphism they are given by
MON=0OMQ®N
YLMN =801 oy © (0 ® OM)@N)o (074 @ N)
Ny = raﬁw oly
gy =1y 0 (0°® M).
Passing to the opposite category opmonoidal monads become monoidal comonads and we

obtain the notion of corepresentability.

Definition 7.4. A right-monoidal category (M, %, R, y, n, €) is corepresentable by a monoidal
comonad (C, Cy, Co, A, €) in a (left-) monoidal structure (M, ®, R, a~lr 1 1) when it is
twist-isomorphic to the following right-monoidal structure:

MON=NQCM

YL =N ®CucL) o (N®(CM @ Ap) oay'cy cr

v = (M ® Cp) oy}

& M — €pm O lC M-
It is left to the reader to write up what corepresentability means for left-monoidal categories.
8. The representability theorem

We wish to study the situation of a category £ endowed with two right-monoidal structures
(E,%, R,y,n,¢e) and (£,Q, R, a, -1 r) with a common unit object R. Later the second
structure will be assumed to be an ordinary monoidal structure, this explains the notation, but
for a good while the unit l;,ll : M — R ® M is not assumed to be invertible, neither are ar _ps v
and rjs. We shall briefly refer to them as the x-structure and the ®-structure.

In order to relate this situation to that of earlier sections one may think £ as the category of
left E-objects in Abg, i.e., £ is the bimodule category gAbg with ® the tensor product (%. Then

* is the quotient %, of a right-monoidal structure on Aby as it was described in Proposition 4.3.

Definition 8.1. A tetrahedral homomorphism from the *-structure to the ®-structure is a natural
transformation

ttmun: LOM*N) — (LQM)=*N

satisfying the following axioms:

(ag, LM * N) otk Lom N o (K ®1tL M N) = IKQL M,N © QK L, MxN (87)
(tk.L.m * N) otk psm.N © (K ® YL .M. N) = YK®L.M.N © IK,L.MxN (88)
iR oy =1 N (89)
EMoN Ot NR =M R ey. (90

A tetrahedral isomorphism is a tetrahedral homomorphism ¢ for which
wy N =@y *N)otyrn : MITN - M %x N 91

is a natural isomorphism where 7' = R * _.
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Axioms (87) and (88) are pentagons on the string of symbols K Q LM +«N and KQL*xM*N,
respectively. Axioms (89) and (90) are analogous to the unit and counit axioms (2) and (3). The
analogue of (4) is void since we have no distinguished arrow M ® N — M * N to put on the
right hand side, except the one on the left hand side.

The above axioms for ¢ can be recognized to be a fragment of the Cockett—Seely axioms for
‘linearly distributive categories’ [10] although we do not assume either * or ® to be monoidal
structures. Our terminology “tetrahedral” refers to the early 90s when Ocneanu used a tetrahedral
calculus to formulate his ‘double-triangle algebras’ [20,21].

Lemma 8.2. For t a tetrahedral isomorphism from a x-structure to a ®-structure we have the
following results.

wgnolpy =TN (92)

-1
IL,M,N = WLeM,N ©aL,M,TN © (L ® wy, ) (93)

(wp,m * N)owrgrm.noarL,tm,TN o (L ® w;zlw,zv) o (L ® YR,M,N)

= YL,M,N © WL MxN (94)
emowy r=Tryo(MQeR). 95)

Proof. Setting M = R in (89) and multiplying it with rg * N we obtain wg y o l;}v =
(rg*N)o (l;] * N) the RHS of which is the identity by axiom (5) for the ®-structure. This
proves (92).

Set (K,L,M,N) = (L, M, R, N) in the pentagon (87), multiply it with ry g * N and use
(3) for the ®. Then we obtain

(L®ry)*«N)otr mgr.N o (L ®tyM R.N) = WLoM,N ©AL M. TN-

Using naturality of ¢ the LHS becomes 71 y n o (L ® wy,n) from which (93) follows
immediately.

Setting (K, L, M, N) = (L, R, M, N) in (88) and then multiplying it with (rp * M) x N we
obtain

(we,m *N)otrtmno(L®YRMN)=YLMNOWL M«N-

Inserting here the expression (93) we obtain the heptagon (94).

Setting N = R in (90), multiplying it with rj; and then using naturality of ¢ on the LHS leads
to (95). O

Proposition 8.3. Given right-monoidal structures @ and * on the same category and with same
unit object R Egs. (91) and (93) provide a bijection between

tetrahedral isomorphisms tp, y N :LQ (M *N) - (LQ M) x N
and natural isomorphisms wy n * M @ TN S MxN satisfying (94) and (95).

Proof. Given a tetrahedral isomorphism ¢ the natural isomorphism w defined by (91) satisfies
(94) and (95) by Lemma 8.2.



1720 K. Szlachdnyi / Advances in Mathematics 231 (2012) 1694—1730

Assume w is a natural isomorphism satisfying (94) and (95) and define the natural
transformation ¢ by (93). Then the pentagon (87) is a simple consequence of the pentagon for a
(and invertibility of w). But in order to prove the other pentagon (88) we need its special case
(94). The LHS of (88) can be written as

LHS = (wgerL,m*N)o(ag L, rm*N)o (K ® wz’]M) * N)
OWKQ(LxM),N © K, L+M, TN © (K ® leM’N) o (K ®yLMmN)
= (wgerL,m *N)owrkererm,N o @k, L.7Mm @ TN) cag oM, TN

o(K @ Wigzy n) 0 (K ® 'y N))o (K ®yLmn)

2 (koL * N) o wikenorm.n © @x..ri ® TN) 0 ag Lorm.rn

(K ®@aLru.rn) o (K ® (L ®wpy ) o (K®(L®yrun)) oK @wL )
= (wkeLM *N) o WEKQL)RTM,N © AKQL,TM,TN © AK,L,TMRTN

o(K ® (L®wriy y)) o (K ® (L ®yryN) o (K ®wy hyun)
= (wkeL.m *N)owkeLerm.y ©akeLru.rN o (K ® L) ® wyy, v)

o((K®L)®yrmnN)oak L. T(mxN) © (K ® wquM*N)

94) 1
= YK®L,M,N © WK®L,M+N ©AK,L,T(MxN) © (K & wy 1. )

which is exactly the RHS. In order to prove (89) insert L = R in the definition (93) of r and
multiply it with I} .
IR, M,N © lX,,l*N = WR@M,N ©aR,M,TN © l;/Il®TN ° wJT/II,N
= wragm.n o () @ TN)owy,'y =1 =« N
where we used (2) for ®. Axiom (90) in turn can be proven by using (95) and (3) for ®:

-1
EM®N ©IM,N.R = EM®N © WM®N,R ©aMN,TR© (M ® wy )

95) _
= ryen o (M @N)®er)oaynTro(M® wN}R)

= rygnoay NrRO(M (N ®eg)o wz?/,lR)

_ 95
= M [rN o (N ® ¢eR) owN}R] (:) MQepn.

This finishes the proof that 7 is a tetrahedral homomorphism. That it is also a tetrahedral
isomorphism will be a consequence of that the composite map w + ¢t — w is the identity.
Indeed, it maps w to

-1
(ry * N) owyer,N ©am,rTN © (M @ wp y)

=wyno @y ®TN)oay r TN O (M®l;]lv)

= WM,N
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by (92) and by the (4) axiom for ®. That t — w > ¢ is also the identity has been already proven
in Lemma 8.2 when we verified (93). [

Note that in case of tetrahedral isomorphisms axiom (89) is redundant, it follows from
(87) alone. Indeed, in Lemma 8.2 (93) was a consequence of only (87) and in the proof of
Proposition 8.3 we derived axiom (89) using only (93).

Having a natural isomorphism w as in Proposition 8.3 we can define what looks like an
opmonoidal structure for the canonical monad 7', namely

TN = wiy yovemunoTwyyoT(M®@ny) : TMM®N) > TMQTN  (96)
T :=¢xr : TR > R. 97)

In order to prove that they make the monad (T, u, n) opmonoidal, we use the technology of
fusion operators. In contrast to Section 7, however, we need & to be expressed in terms of w.
Comparing (96) with (72) the conjecture is that

hun =wry yovRmNoTwyy : TMM®TN) > TM TN (98)
is a fusion operator.
Lemma 8.4. Let the natural isomorphism w satisfy (94) and (95). Then (98), together with

T = ¢g, is a fusion operator for the monad (T, w,n), ie., it satisfies Egs. (74)—(80) with
0,w,t,0° replaced by T, i, n, 70 respectively.

Proof. First we prove (75) by unpacking it by means of (98) and then using (94) twice:
(hpMm ®TN)ohrgrm,noTar,Tmrn o T(L®hy N)
=Wz y ®TN) o (YrLm ®TN) o (Twrm @ TN) o Wyl o) v

oyr.LeTM.N © Twrorm.n © TaL ryrn o T(L ® wry )
ol (L®YrMN)oT(LRTwym, N)

= (w}i’M ®TN)o w;z*M,N o (VRr,L,M * N) 0 YR, L+M,N
ol [(wr,m * N) owrgrm,N ©aL,TM,TN

0(L®wTMN) (L®yrmn)o(L®Twy )l

(94) _
= (wTL u®TN)o wTi*M,N o(WrR,L,Mm * N)oyr LsmN o TyL MmN

oTwr mxn o T(L® Twpy,n)

(1) _
(wy TL m®TN)o wTi*M,N OVYIL,M.N
oyRr,L,MxN © Twp pen 0o T(L ® Twyy n)

-1 -1
=Wrrorm.n © Wrp y ¥ N)oyr, MmN o WrL m«N © h mxn o T(L ® Twy,N)

94)
= arprmurno(TL® wTM Mo (TL®yrmN)oh msnoT(L® Twy N)

=arptmTN o (TL®hy n)ohL MeTN-
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Egs. (76)—(78) can be shown as follows:
hpm,N o NMMeTN = w;zlw,zv oyr.M,N o Twy N oNMeTN

= w;}w’N O YR,M,N © IM«N © WM,N

= wY_"lll/I,N oM *xN)owy N =nm ®TN.

(T°@TN)ohgyoTlyy = (g ®TN)owrp yovrrNo©TwgyoTlry
9)  _
= wi'yo(er* N)oyrr.N

92) 1

= lTN O MUN.

rrmo(TMTY) ohyr = rrymo(TM®eg)o w;}v[,R oYRM.ROTwy R

95)
=" ermoYrRMROoTWy R

3
@ TeyyoTwy R

D TryoTM@TY).
In order to prove (74) we need some preparation.
wyNno M un) = wyno(@y ®TN)oayrrno (M wE’lN)
o(M ® (¢g * N)) o (M ® YR.R.N)
= wyNo(@M ®TN)o(M®er) @ TN)oay TR TN
oM® w},le,N) o (M ® yRr.R,N)

95
@ wy N o (Ey ®TN)o(wy,r @TN)

oay TRTN © (M ® w;,le,N) o (M ® Yr,R,N)

%4 —1
= wpm, N © (eM®TN)o Wyrr N © YM,R,N © WM, TN

= (em* N)oym,RN © WM, TN
= M,NOWMTN 99)
where in the first line we inserted an identity arrow in the form of the ®-version of axiom (4),
using also (92), and in the last line we used the notation of (25). It follows that
TM@un)ohyrn = (TMQpuy)o w7_"111/I,TN oyrRM, TN © Twy TN

99 1 T
= Wrp N ©UTMN OVRMTN O LT WM TN

a
= wrzlw,zv o(erm * N)o (YrRm.R * N)

o¥R,M+R,N © TymrN o Twy TN

@ ! T T
= Wry NOVYRMNO Ly N O LWy TN

©9) _
= szlw,N oyrmNoTwy noT(M Q un)

= hunoT(M® puy) (100)
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which is relation (74). While (80) obviously follows from (5) the proof of (79) needs some
work:
(M @ TN)ohyrynoThy N

~1 -1 2
=Wum@TN)owr,,, oYrRTMN O Twrm N o Twry yoTYRMN 0T Wh N

—1 2
=wry n© (um*N)oyrru,NoTyrm N o T wy,N

@ 2
= Wy n © (R * M) % N) 0 YR«R M,N © YRR, MxN © T WM N

-1 2
=Wy N ©YRMN © UMsN © T Wy N =hy N o umern. U

Proposition 8.5. Given a monoidal structure @ and a right-monoidal structure * on the same
category and with the same unit object R the existence of a natural isomorphism wy N :
M Q@ (R* N) — M = N satisfying Egs. (94) and (95) implies that the formulas (96), (97) define
a ®-opmonoidal structure for the canonical monad T = (R * _, 4, ) of the x-structure.

Proof. This is an immediate consequence of Lemma 8.4 and Proposition 7.1. I

Theorem 8.6. Let (£, ®, R, a, | r) be a monoidal category. Then for a right-monoidal
structure x on € with unit object R the following conditions are equivalent:

(1) The x-structure is Q-representable (by a @-bimonad) in the sense of Definition 7.3.

(1) There exists a natural isomorphism wy ny : M ® (R N) — M x N satisfying the heptagon
(94) and the tetragon (95).

(iii) There exists a tetrahedral isomorphismty y n @ L @ (M * N) :>(L ® M) % N.

Proof. Equivalence of (ii) and (iii) has been shown in Proposition 8.3. Assume (i). This means
that there exist a bimonad (O, w, t) w.r.t. the ®-structure and a skew-twist vy vy : M O N —
M x N where © is the skew-monoidal structure induced by O in the sense of Proposition 7.2.
Therefore v satisfies the relations

vrsM,N © (WL, M ® ON) oy m.N = VYL, M,N © VL, msN © (L ® Ovpy N) (101)
VRN ONN =N (102)
é‘M = &M OUM,R (103)

where y, 1, & are the expressions (82), (83), (84). We claim that the composite

1
M®vp MRloy MmN

M® (RON) MON -

wy Ny =|MQTN MxN | (104)

is a natural isomorphism satisfying (94) and (95). With the notation uy := lpy o UE,IN the left
hand side of (94) can be transformed to the right hand side as follows.
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VLM N O (WL M ® ON)o (L®upy) ® ON)o (LQTM) Quy)oar 7M. TN
oL ® (TM ®uy")) o (L®vry v)o(L®yrmN)
= VLxM.,N © (UL M ®ON)oag omono (L uy & ON))
O(L®UTMN)0(L®VRMN)

101
(_)UL*MNO(ULM®0N)03L OM oNo(L® (o ® ON))o (L ® Yr.M.N)

o(L ® (R® Ovyy' ) o (L ® vilyy,n)

(82)
= vrsm,N © (VL. ® ON)oag om,on o (L ® 10M®0N)

o(L® (R® (OM @ wy))) o (L ® (R® 0MON))
o(L ® (R® Ovy' ) o (L ®vgly,n)

= vpmn 0 (Wm ® ON)oag omon o (L ® (OM @ wy)) o (L@ OMON)
o(L ® Ovy' v) o (L ® upsn)

=vrsm,n o (VLM ® ON)oyr yno (L ® OU,TZN) o (L @ um«N)

(101)
=" YL,M,N oV MxN © (L ® up«N)

= YL,M,N © WL MxN -
In order to prove (95) we compute its left hand side

103
8M0wM,R(:) O(M®MR)—8M0(I‘M®0R)03MRORO(M®URR)

= I‘M08M®R03MR0RO(M®U ®)

= I‘MOI’M®R0((M®R)®0)OaMRORO(M®v r)
ry o (M ®rg) o (M@(R@oo»o(M@vR,R)

= ryo(M®EéR)o (M®v ®)

2 ryo(M®eg)

and arrive to the expression on the right hand side. This proves the implication (i)=>(ii).

Now assume (ii). Then we know by Proposition 8.5 that 7" is a bimonad, so by Proposition 7.2
that M © N .= M ® TN is a right-monoidal product. Therefore ®-representability of the -
structure would follow immediately if we could show that wyy y : M O N — M x Nisa
twist.

Wram, N o (wp My @ TN) oy MmN
=wramyo(wLy ®TN)oapryry o (L®(TM® uy)) o (L@ TMTN)

©8)
= (wLM*N)OwL®TMN03L TM,TN

o(L® wTM,N) o(L®yYrmN)o(LQTwy N)
)
= yL,m,NowL mxN © (L ® Twy n)

proves the hexagon relation (101) for w. The following simple computations yield the remaining
relations:

. (83) 92)
WRNON = wRNolTNOT)N =N

8MowMR—I'MO(M®8R)—I’MO(M®T0)(84)

So, w is indeed a twist and this finishes the proof of the implication (ii))=-(i). U
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9. Closed skew-monoidal categories

A skew-monoidal category (M, *, R, y, n, &) is called left (right) closed if the endofunctor
_% N (resp. N  _) has a right adjoint hom’ (N, _) (resp. hom’ (N, _)) for all object N € M. It is
called closed if it is both left closed and right closed.

Theorem 9.1. Let R be a ring. Then closed right-monoidal structures (Abg, %, R, y, n, €) on the
category of right R-modules, with unit object being the right-regular R-module, are precisely the
right bialgebroids over R.

Proof. In Section 3 we have shown how bialgebroids over R give rise to right-monoidal
structures on Abg. The definition of the right-monoidal product (30) makes it obvious that it
is closed.

Let * be a closed right-monoidal structure on Abg. Since Abg is cocomplete and _* N is left
adjoint, by the Eilenberg—Watts Theorem there is an isomorphism

VN M®TN>MxN
R

natural in M for each N where ® stands for the action on the monoidal category gAbg on Abg.

R
(Note that the left R-module structure of TN = R * N is defined by the endomorphism ring of
the right-regular module R, i.e., by A1 in the notation of Section 4.) Without loss of generality
we may assume that v also satisfies the normalization

VRN =lrN (105)

for each N. (Otherwise compose it with (M (17 n OUI;,lN))') Then considering N +— (_N) as the
object map of a functor Abg — End Abg the vy y becomes natural in N, too. Now substituting
v for w in the heptagon (94) with L = R we obtain an identity due to (105). Similarly, (95) with
w = v and M = R is an identity. Therefore, using that R is a generator, it follows that both (94)
and (95) are identities for all values of their arguments L, M and N.

Next we want to construct a w for the quotient right-monoidal structure *, (see
Proposition 4.3) on the monoidal category g Abg. There is a unique w such that for all M, N €
rADR

MTN Y M«N
R
M%QRNJ lqM’N (106)
MT,N —2% M, N
R

since gy, N 1s a coequalizer. wyy, y is invertible since M ® _ preserves coequalizers. Now use
R

(48), (49) to show that the heptagon (94) and tetragon (95) for v and * implies the heptagon
and tetragon for w and *,. Then by Theorem 8.6 T, is a bimonad on gAbg. Thus we could
conclude by [25, Theorem 4.5] that 7 is the bimonad of a bialgebroid if we knew that Ty is left
adjoint. Using that * is also right closed the Eilenberg—Watts Theorem provides an isomorphism

M+xNZ=NQM *R);hence TN = N ® H where H = R * R. The quotient
Ry

Ry
p1r2 PIAN
TqN:/ TNE/ (IN®QH) = NQH
Ry R¢
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amalgamates the left R-action on N with the right R-action p; on H which, together with ®

amounts to taking tensor product over R = R°P ® R by considering N as right R¢-module and
H as left R°-module via (' ® r) - h = p1(r) o A2(r)(h). As such, T, is left adjoint. [

Combining the above result with Mitchell’s Theorem on the characterization of module
categories we can obtain a characterization of skew-monoidal categories of bialgebroids without
explicit reference to the base ring.

Corollary 9.2. A right monoidal category (M, x, R, y, n, €) is equivalent to the right-monoidal
category of a right-bialgebroid iff

(1) M is cocomplete abelian,
(ii) * preserves colimits in both arguments
(iii) and R is a small projective generator.

10. Monoidal (lax) comonads

In this last section, we discuss two results that lead to monoidality of the canonical lax
comonad of a skew-monoidal category.

10.1. The corepresentability theorem

We would like to characterize the skew-monoidal categories that can be “corepresented” in
the sense of Definition 7.4 by a monoidal comonad. For that purpose we dualize the construction
of Section 8.

Let (£, %, R) be a right-monoidal category, the dual (£°P, %°P_ R) of which is representable by
an opmonoidal monad in the right-monoidal category (£°P, ®, R). This means precisely that the
original *-structure is corepresentable by a monoidal comonad w.r.t the left-monoidal structure
®. So we can speak about tetrahedral homomorphisms ¢ as natural transformations

ttunN C N¥x(LQM) — L (NxM)
satisfying the pentagons
-1 -1
(K®1,mN)otk,LeomNo (N *xag, ) =2ag; vy OIKQLMN
(K ® yN,m,L) otk MxL N © (N %tk [ M) = IK L N«M © YN.M,KSL
and the triangles
Insm otr N = N *1y
IMN.RONMeN =M @ 1N .

(We have written ¢ exactly for what it was in Section 8, without even permuting indices,
now using the opposite composition and opposite skew-monoidal product.) Such a ¢ is then a
tetrahedral isomorphism if

wyN =t rno(N*ry) i NxM— M®QON

is a natural isomorphism.
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Dualizing Proposition 8.3 we obtain that 7 is a tetrahedral isomorphism if and only if w
satisfies the following heptagon and tetragon equations:

wr Nam o YNmL = (L@ yNmR) o (L@ wyy, y)
OaZ,lQM,QN owrgom,N © (N *wr,m) (107)

wi,r 0Ny = (M ®1g) oty (108)
The fusion operators can be defined as the composite natural transformation
hyn = QUuNOYNMROWgy y : QM ® QN — QM ® ON).

This allows to write up the would-be monoidal structure for the canonical comonad Q =
(_* R, §, ) as follows

OuN =0MRen)ohyn : OM Q@ ON — QM QN) (109)
Qo=nr : R — OR. (110)

Then by dualizing Theorem 8.6 we obtain the following corepresentability theorem:

Theorem 10.1. Let € be a category equipped with a right-monoidal structure x and a monoidal
structure @ with a common unit object R. Then the following statements are equivalent.

(i) * is ®-corepresentable, i.e., there is a ®-monoidal comonad C and a twist-isomorphism
M*NS>NQ®CM of right monoidal structures.
(i1) There is a natural isomorphism wy y : N « M S MQ® QN satisfying the heptagon and
tetragon equations (107) and (108) where Q is the canonical comonad of the x-structure.
(iii) There is a tetrahedral isomorphismty, yy n : N * (L@ M) - L ® (N x M).

One may try to apply this corepresentation theorem to a situation dual to that of Section 9,
e.g., by considering categories of right comodules of a coalgebra and coclosed skew-monoidal
structures on them. Unfortunately this dualization seems to require more than what is known, to
the present author, about bicoalgebroids [8,2].

10.2. Monoidality of the lax comonad on gMpg

If £ is a monoidal category then monoidality of the lax comonad Q : A°? — End £ means the
structure on Q that allows its factorization through the faithful functor End® £ <> End £ which
forgets monoidality of monoidal endofunctors and their monoidal natural transformations. If £ is
the category of E-objects of a complete right-monoidal category M and Q is the lax comonad on
& constructed in Section 6 then one would like to find conditions on a monoidal structure ® on
& which implies monoidality of Q. For the monad T, the existence of tetrahedral isomorphism
between ® and %, on & implied its opmonoidality. Unfortunately we do not know analogous
conditions that would imply monoidality of Q. However, if £ is the category g Abg of bimodules
over a ring R and Q is the lax comonad of a right R-bialgebroid one expects that monoidality of
Q follows without any additional conditions.

As the proof of [12, Proposition 4.2] indicates, in order to construct the monoidal structure of
Q, it is not sufficient to work within gAbg, it has to be embedded into a monoidal bicategory
of bimodules. The basic idea of the proof of the next Theorem is that of the above mentioned
construction of [12] although some differences in the conventions may disguise it.
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Theorem 10.2. For a commutative ring k and a k-algebra R let (Mg, *, R, y, n, &) be a closed
right-monoidal structure on the category of right R-modules. Then the lax comonad Q on gMpg

defined in Proposition 6.2 is monoidal and the Eilenberg—Moore category RM% has a unique

monoidal structure such that the forgetful functor RM(R) — rMg is strict monoidal.

Proof. Let £(m, n) be the category of R,,-R,,-bimodules where R, := R® (R°° ® R)®"~D and
® denotes tensor product over k. Tensor product over R, is denoted by O for any n.

Let H denote R * R as an R°°? ® R-bimodule. Since H is a monoid in the category of R°? ® R-
bimodules, tensoring with H (n times) defines monoidal functors H” : £(1,1) - E(n+1,n+1)
given recursively by HHM := M and "M = H""'M ® H ifn > 0.

Let P € £(1, 2) be the k-module R ® R equipped with (R ® R°? ® R)-R-bimodule structure

e re m) - xQy) - r = rlxr’ R rayr3.
We shall also need the n-th iterate of P

Pp=P and P, =(P®QR, pDOP,_1€&l,n+1), n>1.

Since _* N is left adjoint for each N € Mg, there is an isomorphism M x N SMm Q(R * N),
R

natural in M, where the left R-module structure of R * N is given by A;. Setting N = R we
obtain QM SMQH=HMOP and iterating Q"M SH'MOP,.
R

Using that P,0_ : £(1,1) — &E(1,n + 1) has a right adjoint, the object map of the lax
comonad Q can be given by the functors
P,, 0" M) = Homg

M — Q,M = Hompg P, H'MOP,).

n+l( n+l(

The counit of this hom—tensor adjunction, i.e., the evaluation ev” : P, ] Homg, aPe, ) — 4
allows us to define (Qy) . n by the following commutative diagram (in which the associators for
O are suppressed and ev’y, is written instead of eV’ ,, p, for brevity)

(10 eviy)o(evy, O1)

P,0Q,MOQ,N WM O N O P,
1D<Q,1>M,Nl l(H")M’NDI (111)
ViyoN n
P,0Q,(MON) H'(MON)O P,

The unit (Q,)o : R — Qy R, in turn, is defined by the unit of H" via the diagram

P,OR —— R, 0P,

ID(Qn)ol l(H”)oDl (112)

P,0Q,R —*5 H'ROP,

That (Q,)m.~ and (Q,)o make Q, a monoidal functor is now a simple consequence of
monoidality of the functor H".
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Next we have to show that Qs is a monoidal natural transformation for all f : m — nin A.
For f =i+ (2 — 1) + (n — 1 — i) this means showing commutativity of the diagrams

QMOQ,N &M% q,mON) R ¥, QR
SZMEI(S;Nl ls;(MDN) H ls;’l
Qut+1)Mm, (Qn+1)
QuuMOQ, N —25 Qi (MON) R 2% QuiiR

To make a long story short, we already know by Theorem 9.1 that H is a right R-bialgebroid
A
therefore the factorization of the comultiplication A¥ : H — H x H <> H ® H through
R

the Takeuchi product is an algebra map AIXLI . Commutativity of the above two diagrams follows
precisely from multiplicativity and unitality of A?. Similar observation for the counit leads
to monoidality of 8;. This defines the required factorization of the functor Q : A®? —
End £(1, 1) through the category End® £(1, 1) of monoidal endofunctors and monoidal natural
transformations.

It remains to show that the monoidal structure of Q, namely v and ¢, consists also of monoidal
natural transformations. For ¢ there is nothing to prove since it can be chosen to be the identity
as we have seen in the proof of Proposition 6.2. For v this is the commutativity of the diagrams

Q,Q.M1Q,, QN —— Q,,Q,(MIN) R —— Q,QR
NNy Vi V’"’"Nl lvm’"(M ON) H J,VW,HR (1 13)
QunMUOQunN —— Qpuy(MON) R —— QuuR

Since Py, = (P, ® (R°° ® R)™) O P, we obtain the following multiplicativity rule for the
evaluation:

lEIev'énM
Pm+n|:|QanM I Hm(PnDQnM)DPm
IEIUX,',’"l le evl, O1 (114)
eVm-HI

Pryn O Qin+nM E N H"™" MO Poin
Using (111) and (114) one can show that
Vi o (Putn DV ) © (Prctn 0 (QuQu) it )
= evn;ﬂ_]n[v o(Pyyn U (Qm+n)M,N) o (Ppind VT,]’n O v%,n)

from which the first diagram in (113) follows by adjunction. As for the second diagram one
utilizes the fact that H"*" = H"H" in diagram (112) to obtain

evi " o(10 (Qm+n)o) = (H™ evi O1) o (H"(10(Qn)o) I1)
o(10ev) o (1010(Qm)o)
from which the statement can be obtained by rewriting the RHS using (114). This finishes

the proof of monoidality of the lax comonad. The way the Eilenberg—Moore forgetful functor
becomes strict monoidal is standard and needs no explanation. [
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