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Abstract

We show that if a set A is computable from every superlow 1-random set, then A is strongly jump-
traceable. Together with a result of Greenberg and Nies [Noam Greenberg, André Nies, Benign cost
functions and lowness properties, J. Symbolic Logic 76 (1) (2011) 289–312], this theorem shows that the
computably enumerable (c.e.) strongly jump-traceable sets are exactly the c.e. sets computable from every
superlow 1-random set.

We also prove the analogous result for superhighness: a c.e. set is strongly jump-traceable if and only if
it is computable from every superhigh 1-random set.

Finally, we show that for each cost function c with the limit condition there is a 1-random 10
2 set Y

such that every c.e. set A 6T Y obeys c. To do so, we connect cost function strength and the strength
of randomness notions. Together with a theorem of Greenberg and Nies (ibd.), this result gives a full
correspondence between obedience of cost functions and being computable from 10

2 1-random sets.
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1. Background and motivation

There are two aspects to the information content of sets of natural numbers. In terms of
computational complexity, a set of numbers is considered to code a lot of information if it is
useful as an oracle for relative computation. In terms of effective randomness, difficulty to detect
patterns in the set marks it as complicated, or random. The interaction between these two aspects
of complexity is the focus of much current research in computability theory.

Although earlier research naturally gravitated toward the complex, recent findings have shown
rich structure in the region of the simple. Properties of sets that indicate being uncomplicated
are called lowness properties. They have proved to be essential in the understanding of random
sets, and of the connections between computability and randomness along the entire spectrum of
complexity.

A lowness property that is central to this study is that of K -triviality. A series of results by
Downey, Hirschfeldt, Nies, and Stephan (see [18,31]) developed penetrating techniques for the
study of several classes of low sets. These results have established the coincidence of several
such notions, three of the important ones being: K -triviality (being far from random), lowness
for randomness (not being able to detect new patterns in random sets), and being computable
from a relatively random oracle. (Here, “random” means Martin-Löf random, or 1-random, as
defined in Section 2.3.) This coincidence established the robustness of this class. Further results
have demonstrated its usefulness and importance to the field; see, for example, [11].

The diverse characterizations of the K -trivial sets, and the techniques used to study them,
have led to three paradigms for understanding lowness of a set A of natural numbers, introduced
by Nies [34,35].

1. Being weak as an oracle. This paradigm means that A is not very useful as an oracle for
Turing machines. This is the oldest way of thinking about lowness. For instance, A is of hyper-
immune free degree if it does not compute fast growing functions: each function computed by
A is dominated by a computable function. Some formal instances of the paradigm are expressed
through A′, the halting set relative to A. For instance, the traditional notion, simply called “low”,
states that A′ is as simple as possible in the Turing degrees. The newer notion of superlowness
states that A′ is as simple as possible in the truth-table degrees.

2. Being computed by many oracles. Traditionally, there were no interesting answers to the
question “how many sets compute A?”; the answer is always “uncountably many”—indeed
continuum many—but unless A is computable (in which case every set computes A), the
collection of sets computing A has measure 0. Recently, more detailed answers have proved
to be insightful, in particular in conjunction with answers to the question “what kinds of sets
compute A?” For example, as noted above, A is K -trivial if and only if A is computed by some
set that is 1-random relative to A, in which case the class of oracles computing A is large in an
effective sense relative to A.

3. Being inert. Shoenfield’s limit lemma states that a set A is computable from the halting set ∅
′ if

and only if it has a computable approximation. (We let10
2 denote the collection of such sets.) The

inertness paradigm says that a 10
2 set A is close to computable if it is computably approximable

with a small number of changes. For formal instances of the inertness paradigm, we use so-called
cost functions. They measure the total number of changes of a 10

2 set, and especially that of a
computably enumerable set. Most examples of cost functions are based on randomness-related
concepts. (Precise definitions of all of these concepts will be given below. For more background
on these paradigms see [36].)
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The K -trivial sets exemplify these paradigms. Every K -trivial set is superlow; as mentioned
above, a set is K -trivial if and only if it is computable by a set that is 1-random relative to it; a set
is K -trivial if and only if it has an approximation that obeys a canonical cost function cK defined
below.

There are two ways to give mathematical definitions of lowness properties: combinatorial and
analytic. Combinatorial lowness properties, such as (traditional) lowness and superlowness, are
defined by discrete tools and by traditional computability. Analytic lowness properties are defined
via measure, either directly or coded by prefix-free Kolmogorov complexity, or via some type of
effectively given real number. Even though the central notion of K -triviality implies some com-
binatorial lowness properties (such as superlowness), it is only known to be equivalent to analytic
notions. In other words, currently, K -triviality has only analytic characterizations. The search for
a combinatorial characterization of the K -trivial sets is considered an intriguing open problem.

Traceability is a combinatorial tool that is used to define several lowness properties.
Among these notions, strong jump-traceability, defined by Figueira, Nies and Stephan [13],
was proposed (see [27]) as a natural candidate for the desired combinatorial characterization
of K -triviality. This conjecture was refuted by Cholak, Downey and Greenberg [4]; further
work [1] refuted another possible characterization, in terms of the rate of growth of the traces.
However, Cholak, Downey, and Greenberg did show that for computably enumerable (c.e.) sets,
strong jump-traceability at least implies K -triviality, making strong jump-traceability the first
known combinatorial notion to imply K -triviality. They further showed that in conjunction with
computable enumerability, strong jump-traceability has some appealing structure (it induces an
ideal in the Turing degrees). These results prompted interest in strong jump-traceability in its
own right.

Strong jump-traceability falls under the first lowness paradigm discussed above. since it
is related to weakness of the jump. In [16], Nies and Greenberg showed that strong jump-
traceability can be characterized using cost-function approximations, thus giving it also a
characterization within the third paradigm. They used this result to show that every strongly
jump-traceable c.e. set is computed by many random oracles, a lowness property belonging to the
second paradigm. Along the way, they showed that strong jump-traceability is useful in settling
problems in other areas of computability, unrelated to randomness.

In the current paper, in a reverse turn of events, we show that strong jump-traceability can in
fact be defined analytically, using lowness properties of the second paradigm. This result shows
the robustness of strong jump-traceability. The heart of the paper, guided by the second paradigm
for lowness, is the investigation of the oracular power of random sets relative to c.e. sets. In other
words, the question under consideration is: which c.e. sets are computable from which random
sets?

Two important early results are seminal. Chaitin [3] showed that there is a complete 1-random
set, that is, a 1-random set that is Turing above the halting set ∅

′. Hence, every c.e. set is
computable from a 1-random set. This result was later extended by Gács [14] and Kučera [24],
who showed that every set is computable from a 1-random set. The focus thus turned to
incomplete 1-random sets, that is, 1-random sets that do not compute ∅

′. Here, Kučera’s basic
result [25] is that every 1-random 10

2 set is Turing above a noncomputable c.e. set.
The evidence that being computable from an incomplete 1-random set is a lowness property

came much later. In [18], Hirschfeldt, Nies and Stephan showed that if Y is an incomplete 1-
random set, and A is a c.e. set computable from Y , then in fact Y is 1-random relative to A, and
A is K -trivial. It is still open whether every K -trivial set is computable from some incomplete
1-random set.
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There are two ways to extend Kučera’s result, both following the second paradigm for
lowness. One is to investigate which c.e. sets are computable by many incomplete sets. Relevant
here is the extension of Kučera’s result by Hirschfeldt and Miller (see [34, Theorem 5.3.15]),
who showed that if C is a Σ 0

3 null class, then there is a noncomputable c.e. set computed by all 1-
random elements of C. In the current paper, we show, for several classes C of sets, that the strongly
jump-traceable c.e. sets are precisely the c.e. sets that are computable from all 1-random elements
of C. We do this for the classes consisting of the ω-c.e. sets, the superlow sets, and the superhigh
sets. (These and other computability theoretic concepts mentioned in this introduction will be
defined below.) These results give characterizations of c.e. strong jump-traceability according
to the second lowness paradigm. They are simpler than the characterization according to this
paradigm of the K -trivial sets as those sets A that are computable from a set that is 1-random
relative to A; for strong jump-traceability, we do not need to relativize randomness.

Another direction for extending Kučera’s result is to keep our focus on a single random set
and the c.e. sets that it computes. A first attempt would be to consider a 10

2 1-random set Y as
“strong” if all c.e. sets computable from Y share some strong lowness property. In early 2009
Greenberg proved [15] that there is a 10

2 1-random set Y such that every c.e. set computable
from Y is strongly jump-traceable. This result contrasts with the fact, observed in [16], that no
ω-c.e. 1-random set has this property.

The next logical step is to relate the “lowness strength” of a random set with its degree of
randomness. Up to now we have only mentioned the standard notion of randomness, due to
Martin-Löf. We can investigate what happens if we require a higher level of randomness, that
is, if the statistical tests for measuring randomness are made more stringent. The Hirschfeldt-
Miller theorem serves as a limiting result, as it implies that a 1-random set is weakly 2-random
(defined in Section 2.3) if and only if it is not Turing above any noncomputable c.e. set. Hence
we are driven to notions of randomness that are stronger than Martin-Löf’s but still compatible
with being 10

2. The natural notion that arises in this context is that of Demuth randomness [6].
Demuth tests generalize Martin-Löf tests (Gm)m∈ω in that one can change the m-th component
(a Σ 0

1 class of measure at most 2−m) a computably bounded number of times. A set Z fails a
Demuth test if Z is in infinitely many final versions of the Gm . In this direction, in mid-2009
Kučera and Nies [23] extended Greenberg’s result by showing that every c.e. set computable
from a Demuth random set is strongly jump-traceable.

In the current paper, we extend the result of Kučera and Nies [23] to give a fundamental con-
nection between the second and third lowness paradigms discussed above. We extend the notion
of benign cost functions, used by Greenberg and Nies to characterize strong jump-traceability,
and show the relationship between the strength of generalized benign cost functions and being
computable from sets of corresponding degree of randomness, as measured by generalizations
of Demuth randomness. Translating Kučera’s result to the language of cost functions, Greenberg
and Nies have shown that being computable from a 1-random 10

2 set can be forced by obedi-
ence to a corresponding cost function. A variant of a classic result of Ershov implies that the
strength of every reasonable cost function can be gauged by some form of generalized benignity.
Putting all of these results together, we get a full correspondence between the second and third
paradigms for lowness properties: obedience to cost functions is equivalent to being computable
from random 10

2 sets. For the first time we get an abstract equivalence between paradigms along
a wide array of cases, rather than just one witnessed by particular examples.

One question that we have not completely answered is how reliant our results are on the
sets investigated being computably enumerable. Several of our implications do not use this
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hypothesis, but we have not eliminated it completely. There are some preliminary results in this
direction. Downey and Greenberg recently managed to eliminate the assumption of computable
enumerability from one of the results from [4], showing that every strongly jump-traceable set
is K -trivial. They conjecture that, like K -triviality, the concept of strong jump-traceability is
inherently computably enumerable, that is, that the ideal of strongly jump-traceable degrees is
generated by its c.e. elements. If true, this conjecture would imply that almost all of our results
carry over to the general, non-c.e. case.

2. Overview

We give more technical detail on the ideas discussed above, and survey the results of the paper.
We also provide some basic definitions, and fix notation. We assume familiarity with standard
computability-theoretic notions and notation.

2.1. Traceability

We begin by defining a notion that is central to this paper. An order function is a
nondecreasing, unbounded computable function h such that h(0) > 0. A trace for a partial
function ψ :ω → ω is a uniformly c.e. sequence ⟨Tx ⟩ of finite sets such that ψ(x) ∈ Tx for all
x ∈ dom ψ . A trace ⟨Tx ⟩ is bounded by an order function h if |Tx | 6 h(x) for all x .

Let h be an order function. A set A is h-jump-traceable if every partial function that is partial
computable in A has a trace that is bounded by h. A set A is called jump-traceable if it is
h-jump-traceable for some order function h. A set A is called strongly jump-traceable if it is
h-jump-traceable for every order function h.

For every set A there is a universal partial A-computable function, which we denote by J A.
(We fix A′

= dom J A.) As this universality is witnessed by effective coding, it follows that
a set A is jump-traceable if and only if J A has a trace that is bounded by some order function.
Similarly, a set A is strongly jump-traceable if and only if for every order function h, the function
J A has a trace that is bounded by h.

The class of jump-traceable sets is much larger than the class of strongly jump-traceable sets.
There is a perfect class of jump-traceable sets [32], but every strongly jump-traceable set is 10

2,
and indeed K -trivial [8].

2.2. Strong reducibilities, ω-c.e. sets, and superlowness

A computable approximation to a set A ∈ 2ω is a uniformly computable sequence ⟨As⟩s<ω
such that for every n, we have As(n) = A(n) for almost all s. Associated with every computable
approximation ⟨As⟩ is the mind-change function n → #{s: As+1(n) ≠ As(n)}. A set A is ω-c.e.
if it has some computable approximation whose associated mind-change function is bounded by
a computable function.

Let A and B be sets. Recall that A 6wtt B if there is a Turing reduction of A to B with a
computable bound on the use of this reduction, and that A 6tt B if and only if A is B’s image
under a total computable map from 2ω to itself.

The following are equivalent for a set A ∈ 2ω:

(1) A 6wtt ∅
′;

(2) A 6tt ∅
′;

(3) A is ω-c.e.

A set A is superlow [2,28] if A′ is ω-c.e., or equivalently, if every set that is c.e. relative to
A is ω-c.e. This formulation points to the fact that this notion does not depend on the choice
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of enumeration of partial computable functions and hence of universal machine. It also shows
immediately that every superlow set is ω-c.e.

Nies [32] showed that jump-traceability and superlowness coincide on the c.e. sets, but do
not imply each other on the ω-c.e. sets. (For one direction, by the superlow basis theorem,
further discussed in Section 2.8, there is a superlow 1-random set. On the other hand, no jump-
traceable, or even c.e. traceable, set can be diagonally non-computable, while each 1-random set
is diagonally non-computable. See [9] or [34] for definitions of these concepts.)

By analogy with the traditional notions of highness and lowness, we define a set A to be
superhigh [28] if ∅

′′ 6wtt A′, or equivalently, if ∅
′′ 6tt A′. This notion too can be characterized in

terms of approximations; we discuss this fact in Section 3.

2.3. Measure and randomness

We let λ denote the usual product (“fair coin”) measure on 2ω. A (statistical) test is a sequence
⟨Gn⟩n<ω of effective (c.e.) open subclasses of 2ω such that λGn 6 2−n for all n. A set Z
passes a test ⟨Gn⟩ if Z ∉ Gn for almost all n. (The idea is that ⟨Gn⟩ determines a null class
lim Gn =


n<ω


m>n Gm consisting of the sets that fail the test.)

A test ⟨Gn⟩ is a Martin-Löf test if the sequence ⟨Gn⟩ is uniformly c.e., that is, if there is a
computable function f such that f (n) is a c.e. index for Gn for all n. A set Z is called Martin-Löf
random, or 1-random, if it passes every Martin-Löf test. There is a universal Martin-Löf test; in
other words, there is a Martin-Löf test ⟨Gn⟩ such that lim Gn is the collection of sets that are not
1-random.

These notions can be relativized in the usual computability-theoretic manner, to yield, for
instance, the notion of 1-randomness relative to a given set.

For more on algorithmic randomness, see [9,11,34].

2.4. Characterizations of strong jump-traceability and diamond classes

The main results of this paper are the characterizations of c.e. strong jump-traceability, along
the lines of the second paradigm for lowness discussed in the introduction. In Section 4, we give
the main argument that establishes the following.

Theorem 2.1. If a set A is computable from every superlow 1-random set, then A is strongly
jump-traceable.

Here we do not assume that A is c.e. We elaborate on the proof of Theorem 2.1 in Section 2.8
below.

In [16], it is proved that every c.e. strongly jump-traceable set is computable from all ω-c.e.
1-random sets. Since every superlow set is ω-c.e., this result, together with Theorem 2.1, gives
us two characterizations of c.e. strong jump-traceability. In the following let A be a c.e. set.

Characterization Ia. A is strongly jump-traceable ⇔ A is computable from every ω-c.e.
1-random set.

Characterization Ib. A is strongly jump-traceable ⇔ A is computable from every superlow
1-random set.

For the next characterization of strong jump-traceability, we impose a condition of complexity
on the oracle, as opposed to the previous characterizations, where we imposed conditions of
simplicity.



2258 N. Greenberg et al. / Advances in Mathematics 231 (2012) 2252–2293

Characterization II. A is strongly jump-traceable ⇔ A is computable from every superhigh
1-random set.

We remark that in [22] it was already shown that some K -trivial c.e. set is not computable from
all superhigh 1-random sets. The result appeared first in the conference paper [33] in extended
abstract form. Characterization II is proved in Sections 5 and 6.

A set is LR-hard if ∅
′ is LR-reducible to it (see [9] or [34] for a definition of LR-reducibility).

The implication from left to right of Characterization II improves a result from [16], that every
c.e., strongly jump-traceable set is computable from every LR-hard 1-random set; Simpson [39]
showed that every LR-hard set is superhigh. It was already noted in [16] that the collection of
c.e. sets that are computable from all LR-hard 1-random sets strictly contains the strongly jump-
traceable ones; it is still open whether this collection coincides with the collection of c.e. K -trivial
sets.

We note that in Characterization Ib, we cannot replace superlowness by lowness, because
the only sets that are computable in all 1-random low sets are the computable sets. This fact
can be deduced from a variant of the low basis theorem that allows for upper-cone avoidance
(see [34, Theorem 1.8.39]). Likewise, in Characterization II, we cannot replace superhighness
by highness: the 1-random, high sets Ω and Ω∅

′

form a minimal pair, so the only sets that are
computable from all 1-random high sets are the computable sets. (Here Ω is Chaitin’s well-
known example of a 1-random set, and Ω∅

′

is its relativization to the halting problem.)
The proofs of the implications of strong jump-traceability (Theorem 2.1 and the right-to-left

direction of Characterization II) are of technical interest, as they use a variant of Nies’ golden
run method that is not, in advance, bounded in depth. This method was developed to show that
each K -trivial set is low for K (see [31,34]; for a definition of the concept of lowness for K ,
see [9] or [34]). Some nonuniformity seems to be a key for such an argument (for example,
one cannot effectively obtain a constant witnessing lowness for K from a K -triviality constant;
see [9] or [34] for a discussion of this result). This nonuniformity is amplified in the current
constructions.

The following notation will be useful as shorthand. For a class of sets C, let C� denote the
collection of c.e. sets that are computable from all 1-random sets in C. The Hirschfeldt-Miller
theorem already mentioned in the introduction states that if C is a null Σ 0

3 class, then C� contains
a noncomputable (indeed, promptly simple) set. It extends Kučera’s classic result that every 10

2
1-random set computes a noncomputable c.e. set, because the singleton {Y } is Π 0

2 for any10
2 set

Y . For more background on the diamond operator, see [34, Section 8.5] or [16].
The characterizations above can be written as the equalities

(ω-c.e.)� = Superlow�
= Superhigh�

= SJTc.e.,

where SJTc.e. is the collection of c.e., strongly jump-traceable sets.
We note that every class of the form C� induces an ideal in the c.e. Turing degrees. Hence any

of the equalities with SJTc.e. above implies the result from [4] that the strongly jump-traceable
sets are closed under join.

2.5. On the assumption of computable enumerability

As mentioned in the introduction, the assumption that the sets in question are computably
enumerable is not used in all of our characterizations. For example, Theorem 2.1 above does not
rely on such an assumption.



N. Greenberg et al. / Advances in Mathematics 231 (2012) 2252–2293 2259

(1) We do not know yet how to make good use of strong jump-traceability of a set that is not
c.e.; for example, we know only that c.e. strongly jump-traceable sets obey all benign cost
functions (see below). Thus, in showing that a c.e. strongly jump-traceable set is computable
from all superlow and superhigh 1-random sets we make essential use of computable
enumerability.

(2) On the other hand, showing that sets that are computable from many 1-random oracles are
strongly jump-traceable, or obey certain cost functions, does not seem to make essential use
of the sets being c.e. In all of these examples, the property we use is that the set is superlow
and jump-traceable.

The path from computable enumerability to superlowness and jump-traceability passes
through the following fundamental facts, which follow from results in [18,31].

Fact 2.2. Suppose that a set A is computable from a set that is 1-random relative to A. (We call
such a set a base for 1-randomness.) Then A is superlow and jump-traceable.

Proof. By Hirschfeldt, Nies and Stephan [18], A is K -trivial. By Nies [31], A is superlow and
jump-traceable. �

The following appears in [18].

Fact 2.3. If A is a c.e. set, Y is an incomplete 1-random set, and A 6T Y , then Y is 1-random
relative to A, so A is a base for 1-randomness.

Combining these results, we have the following.

Corollary 2.4. Every c.e. set that is computable from an incomplete 1-random set is superlow
and jump-traceable.

2.6. Cost functions

The third paradigm for lowness states that a 10
2 set A is close to being computable if it has

a computable approximation that changes little. Cost functions are the tools that are used to
measure this amount of change. For background on cost functions, see [34, Section 5.3], [16],
or [38].

A cost function is a computable function c(x, s) that takes non-negative rational values.
We say that c is monotone if c is nonincreasing in the first variable and nondecreasing in the
second variable. If c(x, s) is a monotone cost function, then x → lims c(x, s) = sups c(x, s) is
nonincreasing. A cost function c satisfies the limit condition if lims c(x, s) is finite for all x and

lim
x→∞

sup
s

c(x, s) = 0,

or equivalently, for all ε > 0, for almost all x , we have c(x, s) < ε for all s.
Given a computable approximation ⟨As⟩ of a set A and a cost function c, the total cost of the

approximation according to c is the quantity
s

c(x, s) [[x < s is least such that As−1(x) ≠ As(x)]]. (1)

We say that a computable approximation ⟨As⟩ obeys a cost function c if the total cost of
⟨As⟩ according to c is finite. The intuitive meaning is that the total amount of changes (as
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measured by c) is small. We say that a 10
2 set obeys a cost function c if A has some computable

approximation that obeys c.
The basic result regarding cost functions is that every cost function that satisfies the limit

condition is obeyed by some noncomputable (indeed, promptly simple) c.e. set. This result
has its roots in constructions of Kučera and Terwijn [26], and Downey, Hirschfeldt, Nies and
Stephan [10]. The standard example for a cost function is cK(x, s) =

s
i=x+1 2−Ks (i) (where K

is prefix-free Kolmogorov complexity and Ks its stage s approximation). Nies [31] characterizes
the K -trivial sets along the lines of the third lowness paradigm: a set is K -trivial if and only if it
obeys cK.

Greenberg and Nies [16] provided a similar result for the c.e. strongly jump-traceable sets.
They introduced a special class of cost functions c with the limit condition: in an effective sense
sups c(v, s) converges quickly to 0 as v → ∞.

Definition 2.5. A monotonic cost function c is called benign if there is a computable function
g: Q+

→ ω with the following property: if 0 = v0 < · · · < vn and c(vi , vi+1) > q for
each i < n, then n 6 g(q).

The main result of Greenberg and Nies [16] is that a c.e. set is strongly jump-traceable if and
only if it obeys every benign cost function. We will apply the harder left-to-right implication
several times. We will also improve the right-to-left direction in Corollary 2.8 by discarding the
hypothesis that the set is c.e.

2.7. Equivalence of the second and third lowness paradigms for 10
2 sets

As our last main result we show that a particular realization of the second lowness paradigm,
being computable from a sufficiently random set, is in a sense equivalent to the third paradigm.
One direction was already obtained by Greenberg and Nies [16]. They defined, for any
computable approximation ⟨Ys⟩ of a 10

2 set Y , a cost function cY , which satisfies the limit
condition, such that if Y is 1-random, then every c.e. set that obeys cY is computable from Y . This
construction is essentially a translation of Kučera’s classic argument from [25] into the language
of cost functions.

Thus, an appropriate cost function forces computability from a given 1-random 10
2 set; if

Y is also ω-c.e., then cY is benign. (Greenberg and Nies then used their characterization of
strong jump-traceability in terms of obedience to benign cost functions to obtain their result that
SJTc.e. ⊆ (ω-c.e.)�, that is, the left-to-right part of Characterization Ia discussed in Section 2.4.)

Our last result provides a converse for c.e. sets.

Theorem 2.6. For each cost function c with the limit condition, there is a 1-random 10
2 set Y

such that each c.e. set A 6T Y obeys c.

Demuth randomness is a notion stronger than 1-randomness that is still compatible with being
10

2. The mth component of a test can be replaced a computably bounded number of times. In the
proof of Theorem 2.6, we gauge how well-behaved the cost function c is by associating with it a
computable well-ordering R. The level of randomness we need to impose on Y in order to obtain
the result is given by a further strengthening of Demuth randomness, where the mth component
of a test can be changed finitely many times while “counting down” along the well-ordering ω·R.
The details, along with the formal definition of Demuth randomness and its strengthenings, are
deferred to Section 7.
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Theorem 2.6 is related to Characterization Ia, and to Greenberg’s result [15] that there is
a 1-random 10

2 set Y such that every c.e. set computable from Y is strongly jump-traceable.
As mentioned in the introduction, no ω-c.e. 1-random set Y can have this property. That is,
Characterizations Ia and Ib cannot be replaced by analogous ones involving a single ω-c.e., or
superlow, 1-random set, or indeed finitely many such sets. This fact can be argued in two ways.
In [16] it is shown that no single benign cost function can force strong jump-traceability, whereas
as we already stated, if Y is ω-c.e, then cY is benign. Alternatively, we can cite work by Ng [29],
who showed that the index set of SJTc.e. is Π 0

4 complete. On the other hand, for any 10
2 set Y ,

the index set {e | We 6T Y } is Σ 0
4 .

However, Characterization Ia does imply the following.

Proposition 2.7. There is a monotone cost function c that satisfies the limit condition, such that
every set that obeys c is strongly jump-traceable.

Proposition 2.7 and Theorem 2.6 together yield a new proof of Greenberg’s result [15].

Proof of Proposition 2.7. The class of ω-c.e. sets is Σ 0
3 . Thus, the proof of the result of

Hirschfeldt and Miller in [34, Theorem 5.3.15] provides a cost function c with the limit condition
such that every set A obeying c is Turing below each 1-random ω-c.e. set. By Theorem 2.1, every
such set A is strongly jump-traceable. It is easily verified that c is monotone. �

As a corollary to Theorem 2.1, we now improve one direction of the result of Greenberg and
Nies [16] stated after Definition 2.5, by discarding the hypothesis that the set is c.e.

Corollary 2.8. Suppose a 10
2 set A obeys all benign cost functions. Then A is strongly jump-

traceable.

Proof. For each ω-c.e. random set Y , the set A obeys the benign cost function cY defined in [16].
Hence A 6T Y . By Theorem 2.1 this fact implies that A is strongly jump-traceable. �

2.8. Extensions to general Π 0
1 classes

Recall that a Π 0
1 class is the complement of an effectively open (that is, c.e.) subclass of 2ω;

equivalently, it is the collection of paths through a computable subtree of 2<ω. We make extensive
use of the fact that there are Π 0

1 classes all of whose elements are 1-random. This fact follows
from the existence of a universal Martin-Löf test.1 The collection of 1-random sets is in fact a
union of Π 0

1 classes. We remark that a Π 0
1 class consisting only of 1-random elements cannot be

null.
The fundamental result regarding Π 0

1 classes is the Jockusch-Soare superlow basis
theorem [20], which states that every nonempty Π 0

1 class contains a superlow element.
The proof of the implication from right to left in Characterization Ib does not make special

use of randomness. We will actually prove the following in Section 4.

Theorem 2.9. Let P be a nonempty Π 0
1 class, and suppose that A is a jump-traceable set

computable from every superlow member of P . Then A is strongly jump-traceable.

1 A specific example is the class consisting of sets X such that K (X �n) > n − 1 for all n; here K denotes prefix-free
Kolmogorov complexity.



2262 N. Greenberg et al. / Advances in Mathematics 231 (2012) 2252–2293

Theorem 2.1, and hence Characterizations Ia and Ib in Section 2.4, follow from Theorem 2.9
with the aid of the following observation, by applying Theorem 2.9 to any Π 0

1 class that consists
only of 1-random sets.

Proposition 2.10. A set that is computable from every superlow 1-random set is jump-traceable.

Proof. By the superlow basis theorem, and the fact that there is a Π 0
1 class containing only

1-random sets, there is a superlow 1-random set Z . Splitting Z into two halves we can write
Z = X ⊕ Y . By van Lambalgen’s Theorem [42], both X and Y are 1-random; indeed, they
are relatively 1-random: X is 1-random relative to Y , and Y is 1-random relative to X . Since
X, Y 6T Z , both X and Y are superlow.

By the assumption on A, we have A 6T X, Y . Since Y is 1-random relative to X , and A 6T X ,
we get that Y is 1-random relative to A. Since also A 6T Y , Fact 2.2 implies that A is jump-
traceable. �

A further corollary of Theorem 2.9 characterizes strong jump-traceability of a c.e. set in terms
of PA-completeness. (Here a set is PA-complete if it computes a completion of Peano arithmetic,
or equivalently, if it computes a member of any nonempty Π 0

1 class.) Every PA-complete set
computes a 1-random set, and every ω-c.e. PA-complete set computes an ω-c.e. 1-random set.2

Corollary 2.11. A c.e. set is strongly jump-traceable if and only if it is computable from every
superlow (equivalently, ω-c.e.) PA-complete set.

Remark 2.12. For the reverse problem—characterizing the class of sets that are reducible to
superlow sets that are PA complete or 1-random—there is a difference between PA completeness
and 1-randomness. Indeed, every superlow set is computable from some superlow, PA complete
set: there is a Π 0

1 class P that contains only PA-complete sets (say the class of {0, 1}-valued,
diagonally noncomputable functions). By a partial relativization of the superlow basis theorem
in [34, Exercise 1.8.41], if A is superlow, then there is some Z ∈ P such that (A ⊕ Z)′ 6tt A′.
Now, the class of PA-complete sets is upward closed in the Turing degrees, hence A ⊕ Z is PA-
complete, is superlow, and computes A. So, in short, the class of sets that are computable from
PA-complete, superlow sets is exactly the class of superlow sets.

As mentioned earlier, this assertion is not true if we replace PA-completeness by 1-
randomness; if A is a c.e. set that is computable in some superlow (indeed, incomplete) 1-random
set, then A is K -trivial [18], and not every superlow set is K -trivial.

For many Π 0
1 classes P , any set computable in all superlow members of P must in fact be

computable. For instance, it is not hard to show that there is a Π 0
1 class P without computable

members such that any distinct Y, Z ∈ P form a minimal pair. On the other hand, there are Π 0
1

classes P that do not consist only of 1-random sets or PA-complete sets, such that the class of
sets that are computable in all superlow elements of P is exactly the class of strongly jump-
traceable c.e. sets SJTc.e.. Consider, for example, the notion of complex sets from [21]. A set
Z is complex if there is some order function h such that C(Z �n) > h(n) for all n (here C

2 There is a Medvedev complete Π 0
1 class P containing a set in every PA-complete degree. There is a Π 0

1 class Q
containing only random sets. Since Q is Medvedev reducible to P , for every X ∈ P there is some Z ∈ Q such that
Z 6tt X . This is because a Turing functional Φ: P → Q can be extended to a functional that is total on all sets, and thus
a truth-table functional. If X ∈ P is ω-c.e., then X 6tt ∅

′, and so for all Z 6tt X we have Z 6tt ∅
′, i.e. Z is ω-c.e. For

background on Medvedev reducibility, see [40].
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denotes plain Kolmogorov complexity). It was shown in [21] that a set is complex if and only
if there is some diagonally noncomputable function f that is weak-truth-table reducible to A.
In [38], techniques from [16] are elaborated to show that every c.e., strongly jump-traceable set
is computable in any ω-c.e. complex set. Hence if h is a sufficiently slow-growing order function,
then the class Ph of sets Z such that C(Z �n) > h(n) for all n is a nonempty Π 0

1 class with the
desired property.

Replacing superlowness by superhighness does not yield a theorem analogous to Theorem 2.9.
The reason is that in proving the left-to-right direction of Characterization II, we use the fact
that Π 0

1 classes of 1-random sets are not null, which allows for Kučera coding into these
classes. Not all Π 0

1 classes admit such coding. However, Medvedev complete classes, such as the
class of complete extensions of Peano arithmetic, or of {0, 1}-valued diagonally noncomputable
functions, do admit such coding; indeed coding into these classes is easier than into classes of
1-random sets, because the coding locations can be obtained effectively, essentially by Gödel’s
incompleteness theorem. Hence, a simpler form of the argument in Section 6 would yield the
following.

Theorem 2.13. Every c.e. set that is computable from every superhigh PA-complete set is
strongly jump-traceable.

Note that this theorem, and the right-to-left direction of Characterization II, can also be viewed
as characterizations of the limits of upper-cone avoidance in “codable” Π 0

1 classes in the context
of coding. We discuss this idea in Section 6.

3. Restrained approximations

Recall that Corollary 2.4 allows us, in the proof of the right-to-left directions of our
characterizations, to replace the assumption that the set A is c.e. by the assumption that it is
superlow and jump-traceable. In this section, on the way to proving these directions in Sections 4
and 6, we comment on this property of the set A. We show how this property is exploited to obtain
useful approximations for functions that are partial computable in A.

Note that if we assume that A is c.e., then the condition of jump-traceability of Theorem 2.9
is guaranteed by the coincidence result in [32], that a c.e. set is superlow if and only if it is
jump-traceable.

We remark that this coincidence extends to the n-c.e. sets by a result of Ng [30]. It is not hard
to build a 2-c.e. jump-traceable (and hence superlow) set that is not Turing below a c.e. jump-
traceable set. This fact shows that the class of superlow and jump-traceable degrees is in an
essential sense larger than the class of superlow c.e. degrees, and thereby motivates the extension
of some of our results to this case.

3.1. Bounded limit-recursive functions

Before we begin, we need to partially relativize the characterization of ω-c.e. functions
mentioned in Section 2.2. This relativization will be of use in one direction of Theorem 3.5
below, and later when we discuss superhighness in Sections 5 and 6.

The following definition, due to Cole and Simpson [5], is only a partial relativization of the
notion of ω-c.e.-ness, because the bound on the number of mind changes remains computable.
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Definition 3.1. Let X be a set. A function f :ω → ω is bounded limit-recursive in X (we write
f ∈ BLR(X)) if there is an X -computable approximation ⟨ fs⟩ to f such that the associated
mind-change function n → #{s: fs+1(n) ≠ fs(n)} is bounded by a computable function.

Thus a function is ω-c.e. if and only if it is in BLR(∅). The following result, [5, Theorem 6.4],
generalizes the characterization of ω-c.e. sets. Note that it holds only for sets, not for functions
in general.

Fact 3.2. Let X ⊆ ω. The following are equivalent for a set A ⊆ ω:

(1) A 6tt X ′;
(2) A 6wtt X ′;
(3) A ∈ BLR(X).

Hence a set X is superhigh if and only if ∅
′′

∈ BLR(X).
The next fact, [5, Corollary 6.15], characterizes the conjunction of superlowness and jump-

traceability.

Fact 3.3. A set X is superlow and jump-traceable if and only if BLR(X) = BLR(∅), that is, if
and only if every function that is in BLR(X) is ω-c.e.

3.2. Functionals

We define a partial computable functional to be a partial computable function Γ : 2<ω ×ω →

ω such that for all x < ω, the domain of Γ (−, x) is an antichain of 2<ω (in other words,
this domain is prefix-free). The idea is that the functional is the collection of minimal oracle
computations of an oracle Turing machine. For any A ∈ 26ω and x < ω, we let Γ A(x) = y if
there is some initial segment τ of A such that Γ (τ, x) = y. Then Γ A is an A-partial computable
function, and every A-partial computable function is of the form Γ A for some partial computable
functional Γ . We write Γ A(x)↓ if x ∈ dom Γ A; otherwise we write Γ A(x)↑. The use of a
computation Γ A(x) = y is the length of the unique initial segment τ of A such that Γ (τ, x) = y.

If ⟨As⟩ is a computable approximation to a 10
2 set A, and ⟨Γs⟩ is an effective enumeration of

(the graph of) a partial computable functional, then we let Γ A
[s] = Γ As

s . Note that Γs is a finite
set, and so dom Γ A

[s] is computable, rather than just c.e. By convention, if Γs(τ, x) = y then
|τ |, x, y < s.

3.3. Existence of restrained approximations

Let ⟨As⟩ be a computable approximation to a 10
2 set A, and let ⟨Γs⟩ be an enumeration

of a partial computable functional. We say that ⟨As,Γs⟩ is an approximation to the A-partial
computable function Γ A.

Suppose that Γ A(x)↓ [s]; let u be the use of that computation. We say that this computation
is destroyed at stage s + 1 if As+1 �u ≠ As �u .

Definition 3.4. An approximation ⟨As,Γs⟩ to an A-partial computable function is a restrained
A-approximation if there is some computable function g such that for all x , the number g(x)
bounds the number of stages s such that a computation Γ A(x)↓ [s] is destroyed at stage s + 1.

Theorem 3.5. The following are equivalent for a set A ∈ 2ω:
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(1) A is both superlow and jump-traceable.
(2) Every A-partial computable function has a restrained A-approximation.

Proof. The easier implication is (2) ⇒ (1). Let C be a set that is c.e. in A. There is an A-partial
computable function θ such that C = dom θ . Let ⟨As,Γs⟩ be a restrained A-approximation to θ ,
witnessed by a computable function g. Let Cs(x) = 1 if Γ A(x)↓ [s]; otherwise let Cs(x) = 0.
Then ⟨Cs⟩ and g show that C is ω-c.e. Hence A is superlow.

Let θ be A-partial computable. Let ⟨As,Γs⟩ be a restrained A-approximation to θ , witnessed
by a computable function g. Let

Tx =


Γ A(x)[s]: s < ω & Γ A(x)↓ [s]


.

Then |Tx | 6 g(x)+ 1 for every x , and θ(x) = Γ A(x) ∈ Tx for all x ∈ dom θ .
Hence every A-partial computable function has a trace bounded by some computable function.

As discussed in Section 2.1, A is jump-traceable.
We now turn to the proof of the converse implication (1) ⇒ (2). Let A be a superlow, jump-

traceable set, and let θ be an A-partial computable function. Let Γ be a Turing functional such
that Γ A

= θ .
For x ∈ dom θ , let f (x) = A �u , where u > 0 is the use of the computation Γ A(x); for all

x ∉ dom θ , let f (x) be the empty string. Then f ∈ BLR(A): indeed, dom θ is A-c.e., and so we
can approximate f computably in A, changing our mind only once for x ∈ dom θ , and not at all
for x ∉ dom θ .

By Fact 3.3, f is ω-c.e. Let ⟨ fs⟩ be a computable approximation to f , with a mind-change
function that is bounded by some computable function g. Let xs 6 s be the largest x such that

∀y, z 6 x [ fs(y) ⊆ fs(z) or fs(z) ⊆ fs(y)],

and let σs =


y6xs
fs(y). Then lims xs = ∞ and for each n, for almost all s we have A �n ⊆ σs .

Let As(y) = σs(y) for y < |σs | and As(y) = 0 otherwise. Then ⟨As⟩ is a computable
approximation to A.

Let ⟨Γs⟩ be some computable enumeration of the Turing functional Γ . Now define an
enumeration ⟨Γs⟩ of a partial computable functional Γ ⊆ Γ as follows: at stage s, if the axiom
(σ, x) → y is already in Γs , enumerate that axiom into Γs if x 6 xs and σ ⊆ fs(x). Then
Γ A

= θ . To show that ⟨As,Γs⟩ is a restrained approximation, note that if Γ A(x)↓ [s] with use
u, and that computation is destroyed at stage s + 1, then u 6 | fs(x)|, and fs(y) ≠ fs+1(y) for
some y 6 x . So the number of times this event can happen is bounded by


y6x g(y). �

4. SJTc.e. coincides with Superlow�

In this section we prove Theorem 2.9. As explained above, together with the results in [16],
this theorem provides Characterizations Ia and Ib (discussed in Section 2.4) of the strongly jump-
traceable c.e. sets. We first fix some notation.

4.1. Notation for classes of sets

For a finite binary string σ ∈ 2<ω, we let [σ ] denote the sub-basic clopen subclass of 2ω

consisting of all infinite binary strings that extend σ . If W is a c.e. subset of 2<ω, then we let
[W ]

≺
=


σ∈W [σ ] be the effectively open subset of 2ω determined by W . (A clopen class [C]

≺

is determined by a finite set of strings C .)
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A Π 0
1 class is the complement of some effectively open subclass of 2ω. A Π 0

1 index for a Π 0
1

class P is a c.e. index for a c.e. set W ⊆ 2<ω such that P = 2ω \ [W ]
≺.

A Π 0
1 class P admits an approximation P =


t Pt , where ⟨Pt ⟩ is a computable sequence of

clopen subsets of 2ω. Namely, we let Pt = 2ω \ [Ws]
≺, where ⟨Ws⟩ is an effective enumeration

of the c.e. set W such that P = 2ω \ [W ]
≺. (Alternatively, we can fix a computable tree T ⊆ 2<ω

such that P is the collection of paths through T , and let Pt be the union of [σ ] where σ ∈ T has
length t .) Given a Π 0

1 index for P , we can effectively obtain the approximation ⟨Pt ⟩.
We use the compactness of 2ω in an essential way: if P is an empty Π 0

1 class, then there is
some t such that Pt is empty.

4.2. Discussion of the proof of Theorem 2.9

Let A be a jump-traceable set that is computable from every superlow member of a nonempty
Π 0

1 class P . As mentioned earlier, by the superlow basis theorem, A is superlow. By Theorem 3.5,
every A-partial computable function has a restrained A-approximation.

We will show that for every order function h, every A-partial computable function has a trace
bounded by x → 2h(x). This fact suffices for the strong jump-traceability of A since h can be
an arbitrary order function. For the rest of this section, fix an order function h, and fix an A-
partial computable function θ . Let ⟨As,Γs⟩ be a restrained A-approximation for θ , witnessed by
a computable function g (as in Definition 3.4).

The strategy for obtaining a trace for θ is to try, and fail, to construct a superlow set Z ∈ P
such that A 
T Z . Let ⟨Φe⟩ be an effective enumeration of all Turing functionals. For each e, we
attempt to meet the requirement A ≠ Φe(Z). Overall, the construction consists of a recursive
calling of strategies (or procedures); the strategy Re which attempts to meet the eth requirement
A ≠ Φe(Z) is located at the eth level of the structure of all called strategies.

We recall the proof of the Jockusch-Soare superlow basis theorem [20]. A superlow element
of a given nonempty Π 0

1 class Q is obtained by recursively defining a sequence of decreasing
subclasses of Q, each deciding the next element of the jump. Given Q, we let Q⟨0⟩ = Q, and

Q⟨n + 1⟩ =


Q⟨n⟩, if n ∈ X ′ for all X ∈ Q⟨n⟩

X ∈ Q⟨n⟩: n ∉ X ′


otherwise.

Then


n Q⟨n⟩ is a singleton {Z} where Z is superlow. To see this, we approximate the sequence
⟨Q⟨n⟩⟩. For a finite binary string α ∈ 2<ω, recursively define a subclass Q⟨α⟩ of Q as follows:
let Q⟨⟩ = Q; given Q⟨α⟩, let Q⟨α1⟩ = Q⟨α⟩, and let Q⟨α0⟩ =


X ∈ Q⟨α⟩: |α| ∉ X ′


. At stage

s of an effective construction, we define αs ∈ 2<ω to be the leftmost binary string α of length s
such that (Q⟨α⟩)s is nonempty. If s < t , then (Q⟨α⟩)s ⊇ (Q⟨α⟩)t for all α, so αt does not lie to
the (lexicographic) left of αs . Hence the total number of stages s such that αs �n ≠ αs+1 �n is at
most 2n .

Cone avoidance, that is, meeting the requirements A ≠ Φe(Z), can also be obtained in a
similar fashion (“forcing with Π 0

1 classes”): we intersect the given class with one of the classes
Re,τ = {X : Φe(X) ⊉ τ } for some finite initial segment τ of A. Thus we attempt to intersperse
these classes with classes as above for the superlowness of Z . The assumption on A implies that
this attempt will fail. The failure is due to the fact that at some level e, all attempts to diagonalize
Φe(A) away from an initial segment of A yield empty Π 0

1 classes. This fact gives us a method
for confirming “believable” computations Γ A(x)↓ [s], and hence building a trace for θ .

The combinatorial content of the construction is showing how to effectively approximate this
final outcome, as in the computable approximation of the forcing proof of the superlow basis
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theorem. We need to show that if the attempts to build a trace fail, that is, if all the requirements
are met, then the set Z constructed is indeed superlow.

Fix a level e. For each x , a strategy Se
x is responsible for confirming computations Γ A(x)↓ [s].

Say such a computation appears, with some use u. The strategy Se
x tests whether As �u is really an

initial segment of A by attempting to meet the e-th requirement by intersecting the current class
with the class Re,As �u . The strategy then waits for the resulting intersection to become empty;
if A moves in the meantime, the computation Γ A(x)[s] is destroyed and no harm is done. As
long as the class is not empty, it seems like the e-th requirement is met, and so a new strategy
for meeting the (e + 1)-st requirement is called in the meantime, starting a new superlow basis
construction within that Π 0

1 class. If the resulting class turns out to be empty, As �u is confirmed
and the computation Γ A(x)[s] traced.

To show that the construction succeeds, we then argue for a contradiction and assume that at
all levels e, some strategy Se

x succeeds in meeting the e-th requirement. The key, as mentioned,
is to ensure that the resulting set Z is superlow, even though the superlowness strategies are
distributed over all the levels of the construction. Premature changes in A may cause difficulties
here. Say a strategy Se

x calls a procedure Re+1 while trying to certify a computation Γ A(x)[s];
this run of Re+1 may then be cancelled due to an A change that destroys that computation. This
cancellation may in turn change our approximation to Z ′. To put a computable bound on the
number of times such an event can occur, we use the fact that ⟨As,Γs⟩ is restrained.

4.3. Golden pairs

Say that the construction above succeeds at a level e. The following definition captures the
relevant properties of the final Π 0

1 class Q that is passed to the successful run of Re, and of the
associated Turing functional Φe. We again use the notation ⟨Q⟨n⟩⟩ to denote the sequence of Π 0

1
classes obtained in the proof of the superlow basis theorem.

Definition 4.1. A pair Q,Φ, consisting of a nonempty Π 0
1 class and a Turing functional, is a

golden pair for Γ and h if for almost all x such that Γ A(x)↓, with some use u, for all X ∈ Q⟨h(x)⟩
we have Φ(X) ⊇ A �u .

The proof that θ has a trace bounded by 2h is split into two separate propositions. The first
verifies that golden pairs indeed yield traces.

Proposition 4.2. If there is a golden pair for Γ and h, then θ = Γ A has a trace ⟨Vx ⟩ such that
|Vx | 6 2h(x) for each x.

The second proposition asserts the existence of a golden pair.

Proposition 4.3. If A is computable from every superlow member of P , then there are a Π 0
1

class Q ⊆ P and a functional Φ such that Q,Φ is a golden pair for Γ and h.

Proof of Proposition 4.2. Let Q,Φ be a golden pair for Γ and h. We let the Π 0
1 class Q⟨n⟩[s]

be the stage s approximation to Q⟨n⟩. It is defined inductively like Q⟨n⟩, but assessed with
the information present at stage s. That is, if Φσ

e (e)↓ for each σ such that [σ ] ⊆ (Q⟨n⟩[s])s
(that is, n ∈ X ′ for all X ⊃ σ ), then we let Q⟨n + 1⟩[s] = Q⟨n⟩[s]; otherwise, we let
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Q⟨n + 1⟩[s] =


X ∈ Q⟨n⟩[s]: n ∉ X ′

. As mentioned above, for every n, there are at most

2n many Π 0
1 classes that are ever chosen to be Q⟨n⟩[s].3

We enumerate a number y into a set Vx at stage s if at that stage we discover that there
is a binary sequence τ such that Γs(τ, x) = y and such that Φ(X) extends τ for every
X ∈ (Q⟨h(x)⟩[s])s (which means that for all strings σ of length s such that [σ ] ⊆ (Q⟨h(x)⟩[s])s ,
we have Φ(σ ) ⊇ τ ).

It suffices to show that some finite variant of ⟨Vx ⟩ is a trace for θ that is bounded by 2h .
The sequence ⟨Vx ⟩ is uniformly c.e. For any version of Q⟨h(x)⟩[s], at most one number y gets
enumerated into Vx , so |Vx | is bounded by the number 2h(x) of possible choices for Q⟨h(x)⟩[s].
Finally, for almost all x ∈ dom θ , for large enough s, for every X ∈ Q⟨h(x)⟩[s] = Q⟨h(x)⟩
we have Φ(X) ⊇ τ = A �u , where u is the use of the computation Γ A(x). Then θ(x) ∈ Vx for
almost all x ∈ dom θ . �

4.4. A golden pair exists

The heart of the proof of Theorem 2.9 is the proof of Proposition 4.3: that under the
assumptions on A and P , a golden pair exists for A and h. As already mentioned in the
introduction, the mechanism is a nonuniform argument in the spirit of the golden run method
from [31], except that the procedure-calling structure now has unbounded depth.

The argument was sketched already in our discussion leading to the Definition 4.1 of golden
pairs. For every e, a procedure Re, provided with some Π 0

1 subclass P e of P as input, attempts
to show that P e,Φe is a golden pair for A and h. For each x < ω, if Γ A(x)↓ with use u, then a
subprocedure Se

x wants to either give permanent control to the next level e + 1, or show that the
golden pair condition holds at x for Q = P e: for all X ∈ P e

⟨h(x)⟩ we have Φe(X) ⊇ A �u .

The procedures and the construction
A typical procedure calling structure at any stage of the construction is

R0
→ S0

y → · · · → Re
→ Se

x → Re+1
→ · · · .

The instructions for our procedures are simple.

Procedure Re. This procedure runs with input P e (a Π 0
1 class) and a parameter n < ω. While

Re is running, every number x such that h(x) > n is marked as either fresh or confirmed. At the
inception of Re, all numbers x such that h(x) > n are marked as fresh.

If Re has control at some stage s, and there is some x that is fresh at stage s and such that
Γ A(x)↓ [s] with use u < s, then for the least such x , we call a subprocedure Se

x with input
τ = As �u .

Procedure Se
x . A run of this procedure is provided with a string τ—an initial segment of the

current state of A—that witnesses that Γ A(x)↓ [s]. It acts as follows.

(a) Start a run of Re+1, with the input

P e+1
=


X ∈ P e

⟨h(x)⟩: Φe(X) ⊉ τ

,

and parameter h(x).

3 Again, recall that for a Π 0
1 class Q, we let Qs be the clopen set which consists of the elements which have not been

removed from Q by stage s, according to a canonical enumeration of Π 0
1 classes. On the other hand, by Q⟨n⟩[s] we

mean the Π 0
1 class which is chosen to be Q⟨n⟩ at stage s; at a later stage t , Q⟨n⟩[t] may be an entirely different Π 0

1
class.
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As long as we do not see that for every X ∈ P e
⟨h(x)⟩ we have Φe(X) ⊇ τ , that is, as

long as P e+1 appears to be nonempty (and so Se
x has not yet succeeded), we halt all activity

for Re and let the run of Re+1 take its course.
(b) If we see that P e+1 is empty, we cancel the run of Re+1 (and any of its subprocedures), and

return control to Re, marking x as confirmed.

A run of Se
x started at a stage s with input τ = As �u believes that P e

⟨h(x)⟩[s] = P e
⟨h(x)⟩

(and indeed that P e
⟨h(x)⟩[s] = P e

⟨h(x)⟩[t] for all t > s), and that τ ⊂ A. If either of these
beliefs is incorrect, then we let t be the least stage at which we discover this incorrectness: either
τ ⊄ At , or P e

⟨h(x)⟩[t] ≠ P e
⟨h(x)⟩[t − 1]. If Se

x is still running at stage t , then we immediately
cancel it (along with the run of Re+1 it called and all of its subprocedures), and return control to
Re. If Se

x has already returned control to Re, then we re-mark x as fresh at stage t .
The entire construction is started by calling R0 with input P 0

= P and parameter 0.

Verification
We show that there is some e such that P e,Φe is a golden pair for Γ and h (for some stable

version of P e). A golden run is a run of a procedure Re that is never cancelled, such that every
subprocedure Se

x that is called by that run eventually returns or is cancelled.

Claim 4.4. If there is a golden run of Re with input Q, then Q,Φe is a golden pair for Γ and h.

Proof. Suppose the golden run of Re is called with parameter n. Note that its input Q is the final
version of P e. Since h is an order function, for almost all x we have h(x) > n.

We show that for every x , only finitely many runs of Se
x are ever called. Let x < ω be such that

h(x) > n. If x ∉ dom θ , then since ⟨As,Γs⟩ is a restrained approximation, we have Γ A(x)↓ [s]
for only finitely many stages s. Thus, in this case, there is a stage after which no run of Se

x is
called.

Suppose that x ∈ dom θ . Let u be the use of the computation Γ A(x). For sufficiently late s
we have As �u ⊂ A and Q⟨h(x)⟩[t] = Q⟨h(x)⟩[s] for all t > s. If a run of Se

x is called at such
a late stage s, then it will never be cancelled. When it returns, x will be marked confirmed, and
never re-marked fresh; hence no later run of Se

x will ever be called.
A similar argument shows that if x ∈ dom θ and h(x) > n, then a run of Se

x will indeed be
called and never cancelled: We can wait for a stage s that is late enough so that the conditions
above hold and, in addition, Γs(As �u, x) = θ(x) and no run Se

y for any y < x is ever called after
stage s. If x is marked fresh at such a stage s, then a run of Se

x will be called and never cancelled.
Since the run of Re is golden, such a run will return, and x will be marked confirmed and never
re-marked fresh.

Let x ∈ dom θ be such that h(x) > n. Let s be the stage at which the last run of Se
x is called.

As we just argued, this run is not cancelled; it returns at some stage t > s, and x is confirmed at
all stages after t . We thus have Q⟨h(x)⟩ = Q⟨h(x)⟩[s], and As �u ⊂ A, where u is the use of the
computation Γ A(x). At stage t we witness the fact that Φe(X) ⊇ As �u for all X ∈ Q⟨h(x)⟩.

Thus Q,Φe is a golden pair as required. �

It remains to show that there is a golden run of some Re. We first need to do some counting,
to establish a computable bound N (x) on the number of times a procedure Se

x (for any e) is
called. We then argue as follows. Suppose there is no golden run, so every run of every Re is
either eventually cancelled, or calls some run of Se

x that is never cancelled but never returns. By
induction on e we can see that for every e, there is a run of Re that is never cancelled, with a final
version of P e. The sequence of Π 0

1 classes P 0,P 1, . . . is nested, and so its intersection


e P e
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is nonempty. Let Z ∈


e P e. We will show that we can use approximations to the trees P e to
computably approximate Z ′, and that we can use our computable bounds on the number of times
procedures can be called to ensure a computable bound on the number of changes. Hence Z is
superlow. By our hypothesis on A, there will be some e such that Φe(Z) = A. Consider the run
of Se

x that is never cancelled nor returns, which defines the last version of P e+1. It defines

P e+1
=


X ∈ P e

⟨h(x)⟩: Φe(X) ⊉ τ

,

where τ ⊂ A (since Se
x is never cancelled). But this definition contradicts the fact that Z ∈ P e+1.

We now give the details of this argument. Recall that g(x) is the computable function from
Definition 3.4 bounding how often a computation Γ A(x) can be destroyed.

Claim 4.5. For each e and x, every run of Re calls at most g(x)+ 2h(x) many runs of Se
x .

Proof. Suppose that at stage s, a run of Se
x is cancelled while the run of Re that called it is not

cancelled. Let P e be the input of this run of Re, and let τ be the input of Se
x .

One of the following possibilities holds:

(a) P e
⟨h(x)⟩[s] ≠ P e

⟨h(x)⟩[s − 1]; or
(b) τ ⊂ As−1 but τ ⊄ As .

The first possibility occurs fewer than 2h(x) many times. The second, by the fact that ⟨As,Γs⟩

is a restrained approximation for θ , occurs at most g(x) many times. �

Claim 4.6. There is a computable bound N (x) on the number of times a procedure Se
x is called

for any e.

Proof. We calculate, by recursion on e and x , a bound M(e, x) on the number of times any
run of Re calls a run of Se

x . We use Claim 4.5. Since there is only one run of R0, we can let
M(0, x) = g(x)+ 2h(x). For e > 0 we let M(e, x) be the product of g(x)+ 2h(x) with a bound
on the number of runs of Re that are called by some Se−1

y with parameter h(y) < h(x).
Since h(y) < h(x) implies y < x , the number of runs of Re with a parameter less than h(x)

is bounded by
y<x

M(e − 1, y).

This completes the recursive definition of M . Now, by induction on e, the parameter of any run
of Re is at least e. So we can let N (x) =


e<h(x) M(e, x). �

Now suppose for a contradiction that there is no golden run. So every run of every Re is
either eventually cancelled, or calls some run of Se

x that is never cancelled but never returns. As
mentioned above, by induction on e we can see that for every e, there is a run of Re that is never
cancelled, with a final version of P e.

The sequence of Π 0
1 classes P 0,P 1, . . . is nested, and so its intersection


e P e is nonempty.

Let Z ∈


e P e.

Claim 4.7. Z is superlow.

Proof. Let n > 0, and let e be the least number such that the permanent run of Re is started with
a parameter greater than n. As mentioned during the proof of Claim 4.6, the parameter of any
run of Re is at least e, so such an e exists.
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Whether n ∈ Z ′ depends only on P e−1
⟨n + 1⟩. So we can approximate an answer to the

question of whether n ∈ Z ′ by tracking, at a stage s, the definition of P d
⟨n + 1⟩ at that stage,

where d is the greatest number such that the current (at stage s) run of Rd was started with a
parameter h(x) 6 n.

The current version of P d
⟨n + 1⟩ can change because we call the procedure Se

x for some
h(x) 6 n. Otherwise, it can change due to the approximation feature of the proof of the superlow
basis theorem (see the proof of Proposition 4.2). Thus the number of changes is bounded by

2n+1


h(x)6n

N (x),

which is a computable bound. Thus the above procedure gives an ω-c.e. approximation
to Z ′. �

By the assumption on A, we have A 6T Z . Hence there is some e such that Φe(Z) = A.
Consider the run of Se

x that is never cancelled nor returns, which defines the last version of P e+1.
It defines

P e+1
=


X ∈ P e

⟨h(x)⟩: Φe(X) ⊉ τ

,

where τ ⊂ A. As already explained above, this definition contradicts the fact that Z ∈ P e+1.
This completes the proof of Proposition 4.3 and so of Theorem 2.9.

Remark 4.8. To show that A is strongly jump-traceable, it is sufficient to show that for every
order function h, a universal A-partial computable function θ has a trace bounded by h. The
reader may wonder why we bother with every A-partial computable function, rather than just a
universal one. Let J be a partial computable functional such that for all sets X , the function J X

is a universal X -partial computable function. Even though θ = J A is universal, the restrained
A-approximation for θ gives a partial computable functional Γ such that Γ A

= θ , but for other
sets X it will not be the case that Γ X is universal for X -partial computable functions. In the
proof, it is the approximation Γ A

[s] that we use, not J A
[s], so we might as well work with a

general function, rather than just a universal one.

5. SJTc.e. is contained in Superhigh�

In this section, we provide the left-to-right direction of Characterization II (see Section 2.4) of
the strongly jump-traceable c.e. sets: every c.e., strongly jump-traceable set is computable from
every superhigh 1-random set.

In fact, we prove a slightly stronger result, Theorem 5.1, by replacing the class of superhigh
sets by a larger null Σ 0

3 class H, introduced by Simpson [39], which is related to PA-
completeness. We actually show that every strongly jump-traceable c.e. set is in H�.

To define H, recall that a function f is diagonally non-computable (d.n.c.) relative to Y if
for all x ∈ dom J Y , we have f (x) ≠ J Y (x). (Recall also that J denotes a partial computable
functional such that for every set Y , the function J Y is a universal Y -partial computable function.)

Let P be the Π 0
1 (∅

′) class of {0, 1}-valued functions that are d.n.c. relative to ∅
′. By a result

of Jockusch [19] relativized to ∅
′, the class

Z : ∃ f 6T Z ⊕ ∅
′

[ f ∈ P]
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is null. The class GL1 = {Z : Z ′
≡T Z ⊕ ∅

′
} contains every 2-random and hence is conull (see,

for instance, [9]). Thus, the following class is also null:

H =


Z : ∃ f 6tt Z ′
[ f ∈ P]


.

This class contains Superhigh because ∅
′′ truth-table computes a function that is d.n.c. relative

to ∅
′.

Since H is Σ 0
3 and null, we already know, by the result of Hirschfeldt and Miller mentioned

in the introduction, that the class H� contains a noncomputable set. We now strengthen this fact.

Theorem 5.1. Every c.e., strongly jump-traceable set is in H�, that is, is computable from
every 1-random set in H.

Fix a truth-table reduction1. We will define a benign cost function c such that for each set A,
and each 1-random set Z ,

1(Z ′) is {0, 1}-valued d.n.c. relative to ∅
′ and A obeys c ⇒ A 6T Z .

Theorem 5.1 then follows from the result from [16], that every c.e., strongly jump-traceable set
obeys every benign cost function.

5.1. Discussion

We first explain in intuitive terms how to obtain the cost function c. The overall strategy has
roots in the proof in [4] that every c.e., strongly jump-traceable set is not ML-cuppable (see [9]
or [34] for a definition of this concept), and in the proof in [16] that every c.e., strongly jump-
traceable set is computable from every LR-hard 1-random set.

Suppose that we are given a c.e. set A, and we wish to show that A 6T Z for all 1-random sets
Z such that 1(Z ′) ∈ P . We implicitly devise a Turing functional that reduces A to such sets Z .
Since there are uncountably many such sets Z , and they are not all definable in any way, we have
to work with finite initial segment of such Z—equivalently, with clopen classes of such Z . We
can describe our strategy as a two-pronged attack. First, we require evidence that some clopen
class C consists of sets Z such that 1(Z ′) ∈ P . If we find such evidence, at some stage s, then
we decide that the sets in C compute some initial segment of As . Second, if we later discover
that this computation is incorrect because A has changed, and if it still seems like the sets in C
satisfy 1(Z ′) ∈ P , then we try to make these sets non-1-random. In terms of the Kolmogorov
complexity definition of 1-randomness, essentially what we do is give initial segments of sets in
C short descriptions; the technical device we actually use is a Solovay test G, which we describe
below. (A Solovay test is a c.e. collection of clopen sets C0,C1, . . . such that the total weight

i λCi is finite. It is easy to check that if a set X is 1-random and S is a Solovay test, then X
can be in only finitely many elements of S ; see [9] or [34] for a proof.) Viewed backwards, this
derandomization allows us to correct the functional. The cost function c is defined by tracking
our beliefs and thus “pricing” the changes in the set A according to the amount of correction that
would be required, were A to change.

The combinatorial heart of the argument is the exact designation of when we believe that a
clopen class C consists of sets Z such that1(Z ′) ∈ P . This is the basic tension: on the one hand,
if indeed 1(Z ′) ∈ P , then we need to ensure that we believe this fact for infinitely many initial
segments of Z . On the other hand, we cannot run wild and issue too many short descriptions: the
total weight of those descriptions has to be finite. In other words, by derandomizing strings, we
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may ask for corrections in the functional, but this right is limited—we cannot ask for too much.
If we believe too many strings, the total weight of the Solovay test will not be finite.

To decide whether to believe a clopen class C, we define a function α6T ∅
′, by giving it a

computable approximation ⟨αs⟩. We believe C at stage s if the stage s approximation to 1(Z ′)

for sets Z ∈ C differs from αs on designated locations (or really, from the coding of α in J∅
′

at
that stage). By designating a large number of such locations, we can “keep ahead of the game”
by changing αs if it appears that we believe clopen classes that are too large (in the sense of
measure). This prophylactic approach is really the main point of the argument.

5.2. The proof of Theorem 5.1

We now give the details. Let (Ie) be the sequence of consecutive intervals of ω of length e+1.
Thus min Ie = e(e + 1)/2. As mentioned, we define a function α, partial computable in ∅

′

(which will actually be total). By universality of J∅
′

, and by the recursion theorem, we are given
a computable function p that reduces α to J∅

′

: for all x , α(x) ≃ J∅
′

(p(x)).
Let s < ω. To define αs , we first let Ce,s be the clopen set of oracles Z such that1(Z ′) agreed

with 1 − α on Ie at some stage t after the last change of α �Ie
. That is, let

Ce,s = {Z : ∃t v6t6s∀x ∈ Ie [1 − αt (x) = 1(Z ′
t , p(x))]}, (2)

where v 6 s is greatest such that v = 0 or αv � Ie ≠ αv−1 � Ie. Here Z ′
t is the (finite) set of

elements which have been enumerated into Z ′ by stage t of an enumeration of Z ′ with oracle Z .
For each e < s, if λCe,s−1 6 2−e+1 let αs � Ie = αs−1 � Ie. Otherwise, change α � Ie: define
αs � Ie in such a way that λCe,s 6 2−e.

Claim 5.2. α(x) = lims αs(x) exists for each x.

Proof of the Claim. We rely on a measure theoretic fact first used in a related context (see
[34, Exercise 1.9.15]). Suppose n ∈ ω and we are given measurable classes Bi for 1 6 i 6 N ,
and λBi > 2−e where e ∈ ω. If k ∈ ω is such that N > 2ek, then there is a set F ⊆ {1, . . . , N }

such that |F | = k + 1 and


i∈F Bi ≠ ∅. Beyond proving the claim, this fact will later yield a
computable bound in x on the number of changes of αs(x).

Suppose that v1 < · · · < vN are consecutive stages at which α � Ie changes. Note that for
each i < n, the measure λCe increases by at least 2−e from stage vi to vi+1. Therefore λBi > 2−e

for each i 6 N , where

Bi = {Z : Z ′
vi+1

�k ≠ Z ′
vi

�k},

and k = use 1(max p(Ie)). Note that the intersection of any k + 1 many of the Bi is empty.
Thus N 6 2ek by the measure theoretic fact mentioned above. �

In fact, we have a computable bound g on the number of changes of α � Ie, given by
g(e) = 2euse 1(max p(Ie)).

We define a cost function c by c(x, s) = 2−x for each x > s; if x < s, and e 6 x is least such
that e = x or αs � Ie ≠ αs−1 � Ie, let

c(x, s) = max(c(x, s − 1), 2−e).

To show that c is benign, suppose that 0 = v0 < v1 < · · · < vn and c(vi , vi+1) > 2−e for
each i < n. Then αs � Ie ≠ αs−1 � Ie for some s such that vi < s 6 vi+1. Hence n 6 g(e).
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To complete the proof of Theorem 5.1, let A be a c.e. set that is strongly jump-traceable. By
Greenberg and Nies [16], there is a computable enumeration ⟨As⟩s∈ω of A that obeys c.

The rest of the argument actually works for a computable approximation ⟨As⟩s∈ω to a 10
2

set A. We build a Solovay test G as follows: when At−1(x) ≠ At (x), we put Ce,t defined in (2)
into G where e is largest such that α � Ie has been stable from x to t . Then 2−e 6 c(x, t). Since
λCe,t 6 2−e+1 6 2c(x, t) and the computable approximation of A obeys c, the set G is indeed a
Solovay test.

Choose s0 such that σ ⊈ Z for each [σ ] enumerated into G after stage s0. To show A 6T Z ,
given an input y > s0, using Z as an oracle, compute s > y such that 1 − αs(x) = 1(Z ′

s; x) for
each x < y. Then we claim that As(y) = A(y). Assume not, so that At (y) ≠ At−1(y) for some
t > s, and let e 6 y be largest such that α � Ie has been stable from y to t . Then by stage s > y
the set Z is in Ce,s ⊆ Ce,t , so we put Z into G at stage t , which is a contradiction.

6. Superhigh� is contained in SJTc.e.

In this section, we prove the right-to-left direction of Characterization II of the strongly jump-
traceable c.e. sets: every c.e. set that is computable from every superhigh 1-random set is strongly
jump-traceable.

As in Section 5, we prove a somewhat stronger result. For any set G ⊆ ω, we replace the class
of superhigh sets by the class

CG = {Y : G 6tt Y ′
}.

This class is a subclass of the superhigh sets if ∅
′′ 6T G. No matter what G is, we show that every

set in (CG)
� is strongly jump-traceable.

6.1. The path from computable enumerability to superlowness and jump-traceability

Fix G ⊆ ω. We want to prove that every c.e. set A that is computable from every 1-random
set in CG is strongly jump-traceable. As mentioned in Section 2.5, the assumption on A that we
actually use, rather than A being c.e., is that A is superlow and jump-traceable.

Theorem 6.1. Let A be a superlow, jump-traceable set, let G ⊆ ω, and suppose that for any 1-
random set Z such that G 6tt Z ′ we have A 6T Z. Then A is strongly jump-traceable.

In order to replace c.e. by superlow and jump-traceable, we need the following lemma.

Lemma 6.2. Let G ⊆ ω. If A is a c.e. set that is computable from every 1-random set Z such
that G 6tt Z ′, then A is superlow and jump-traceable.

Lemma 6.2 follows from Corollary 2.4 and the following consequence of Kjos-Hanssen and
Nies [22, Theorem 3.5].

Theorem 6.3. For any G ⊆ ω there is an incomplete 1-random set Z such that G 6tt Z ′.

As a gentle introduction to Theorem 6.1, we include a proof of Theorem 6.3. It turns out that
the proof of Theorem 6.1 is closely related to our proof of Theorem 6.3, in a fashion even stronger
than the way the proof of Theorem 2.9 relates to the proof of the superlow basis theorem. For
the proof of Theorem 6.3, we start with a Π 0

1 class S consisting of 1-random sets, enumerate a
set A, and use a generalized version of Kučera coding to build some Z ∈ S that codes G, in the
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sense that G 6tt Z ′, but that avoids A, in the sense that A 
T Z . The proof of Theorem 6.1 is a
reversal, of sorts, of the same situation, in which A is given, but we try to construct such a set
Z ∈ S nonetheless. Our failure to avoid A is then translated, as was done in Section 4, into a
golden pair, and so into an enumeration of a trace for the given A-partial computable function.
In this way, the proof of Theorem 6.3 serves as a blueprint for the proof of Theorem 6.1. Also,
in some sense, this argument shows that strong jump-traceability is exactly the level at which the
power of upper-cone avoidance in conjunction with coding fails in “codable” Π 0

1 classes such
as classes of 1-random sets or Medvedev complete classes (i.e., Π 0

1 classes that have the highest
possible degree in the Medvedev lattice of mass problems).

We remark that for G = ∅
′′, which is the case we are interested in to prove the right-to-

left direction of Characterization II, Theorem 6.3 can be proved by a 1-random pseudo-jump
inversion technique, to obtain a 10

2 1-random set Z . See [34, Theorem 6.3.14].

6.2. Kučera coding

We start with a review of Kučera coding into Π 0
1 classes of 1-random sets. For a string

τ and a class B ⊆ 2ω, let B | τ = {X ∈ 2ω: τ X ∈ B}. If B is a measurable class, then
λ(B | τ) = 2|τ |λ(B ∩ [τ ]).

Recall that a string τ ∈ 2<ω is called extendible in a Π 0
1 class P if P ∩ [τ ] is nonempty, or

equivalently, if P | τ is nonempty. If P has positive measure, this notion can be strengthened:
for any r < ω, we say that τ ∈ 2<ω is r -extendible in P if λ(P | τ) > 2−r .

Let P be a Π 0
1 class of positive measure, and let r < ω be sufficiently large so that λP > 2−r .

We define an embedding of the full binary tree into subclasses of P of positive measure defined
as the intersections of P with basic clopen classes. That is, for every finite binary string α we
define a string kucr (P, α) such that:

• if α ⊂ β, then kucr (P, α) ⊂ kucr (P, β); if α ⊥ β, then kucr (P, α) ⊥ kucr (P, β);
• for all α ∈ 2<ω, the string kucr (P, α) is r + |α|-extendible in P .

We define kucr (P, α) by recursion on α, based on the following lemma.

Lemma 6.4 (Kučera; see also [34, Lemma 3.3.1]). Suppose that P is a Π 0
1 class, l < ω, and

τ ∈ 2<ω is l-extendible in P . Then there are at least two strings σ ⊃ τ of length |τ | + l + 1 that
are l + 1-extendible in P .

We let kucr (P,∅) be the leftmost string τ of length r that is r -extendible in P . If kucr (P, α)
has been defined, then we let kucr (P, α0) be the leftmost extension of kucr (P, α) of length
|kucr (P, α)| + r + |α| + 1 that is r + |α| + 1-extendible in P , and let kucr (P, α1) be the
rightmost such extension.

For all α, the length of kucr (P, α) is

r + |α|r +


|α|

2


− 1.

We define

ℓ(n, r) = r(n + 1)+

n

2


− 1;

so |kucr (P, α)| = ℓ(|α|, r) for all α. The point is that the map α → kucr (P, α) is not
computable, but ℓ is.
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This simple version of Kučera coding is sufficient to prove the Kučera-Gács Theorem, that
every set is computable from a 1-random set. For, let P be a Π 0

1 class consisting of 1-random
sets. We know that λP > 0, so fix some r such that λP > 2−r . Let G ∈ 2ω and let

Z =


n

kucr (P,G �n).

The reason for G 6T Z is that we can effectively determine, given Z �ℓ(n,r) = kucr (P,G �n),
whether Z �ℓ(n+1,r) is the leftmost or the rightmost extension of Z �ℓ(n,r) of its length that is
r + n + 1-extendible in P , because the set of l-extendible strings is co-c.e., uniformly in l.

This last argument points to an effective approximation to the coding strings. Recall the
descending approximation ⟨Pt ⟩ to P by clopen sets (from Section 4.1). Of course, λPt > λP
for all t , so if λP > 2−r , then for all t and all α, the string kucr (Pt , α) is defined, and indeed
effectively obtained, uniformly in α and t (and in r ). In fact, ⟨kucr (Pt , α)⟩t<ω is a computable
approximation, with a computably bounded number of changes, to the function α → kucr (P, α).
For, if kucr (Pt , α) is stable along an interval of stages, then in this interval we see at most
2ℓ(|α|+1,r)−ℓ(|α|,r) many changes in kucr (Pt , α0) (and the same holds for kucr (P, α1)), again
because the set of r + |α| + 1-extendible extensions of kucr (Pt , α) of length ℓ(|α| + 1, r) is
(uniformly) co-c.e. Inductively, we obtain the following.

Lemma 6.5. For any α, the number of stages t such that

kucr (Pt+1, α) ≠ kucr (Pt , α)

is bounded by 2ℓ(|α|,r).

6.3. Lower bound functions

If we want to combine coding with Friedberg-Muchnik style diagonalization, one Π 0
1 class

is not sufficient: we need to pass to Π 0
1 subclasses that avoid computations that currently look

correct. To use Kučera coding on each of these classes, we need, effectively in the index of a
class, a positive lower bound on its measure. The lower bound function is the map giving this
lower bound.

In the proofs of both Theorems 6.3 and 6.1, we begin with a Π 0
1 class S of 1-random sets and

enumerate a c.e. set V ; from each v ∈ V we effectively compute an index for a Π 0
1 subclass P(v)

of S . A lower bound function for ⟨P(v)
⟩v∈V is a (total) computable function q such that for all

v ∈ V , if P(v) is nonempty, then λP(v) > 2−q(v).

Lemma 6.6. Let S be a Π 0
1 class of 1-random sets. Any effective list ⟨P(v)

⟩v∈V of Π 0
1 subclasses

of S has a lower bound function. Moreover, a computable index for the function can be computed
effectively from an index for the enumeration ⟨P(v)

⟩.

Proof. This result is best proved using a basic result on prefix-free Kolmogorov complexity: By
the Kraft-Chaitin Theorem (see for instance [34, Theorem 2.2.17]), there is a coding constant c0
such that λP(v) 6 2−K (v)−c0 → P(v)

= ∅ (see [34, Exercise 3.3.3 and its solution]). Fix d ∈ ω

such that K (v) 6 2 log v + d . Let q(v) = 2 log v + c0 + d . The constant c0 can be obtained
effectively from the enumeration ⟨P(v)

⟩ because the Kraft-Chaitin Theorem is uniform. �

Hence, by the recursion theorem, we may assume that a lower bound function for the classes
enumerated during the construction is known to us during the construction; we fix such a
function q .
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Since the descending, clopen, effective approximation ⟨Pt ⟩ to a Π 0
1 class P is obtained

effectively from a canonical index for P , we get such an approximation ⟨P(v)
t ⟩ uniformly for all

v ∈ V . We may assume that for all v ∈ V and t < ω, if λP(v)
t < 2−q(v), then P(v)

t is empty. To
omit an index, for all v ∈ V such that P(v) is nonempty, we let kuc(P(v), α) = kucq(v)(P(v), α),

and similarly, kuc(P(v)
t , α) = kucq(v)(P(v)

t , α), which is defined if and only if P(v)
t is nonempty,

a condition that is effectively detectable. The map (v, t, α) → kuc(P(v)
t , α) is computable on its

domain, which is itself computable.

6.4. Proof of Theorem 6.3

We start with a Π 0
1 class of 1-random sets S ; this class has positive measure. We enumerate a

c.e. set A, against which we try to diagonalize. For coding, we approximate coding strings σγ by
giving their stage s versions σγ,s . For diagonalization, we approximate Π 0

1 classes Sγ , subclasses
of S , such that for all γ and all Z ∈ Sγ , we have Φ|γ |(Z) ≠ A. For compatibility of coding and
diagonalization, we ensure that for all γ we have Sγ ⊂ [σγ ], and that for both j < 2, the string
σγ j is extendible in Sγ .

At stage s we define Sγ,s , an approximation to Sγ . As mentioned above, we will enumerate
a c.e. set V . Each class Sγ,s will be of the form P(v) for some v ∈ V . If Sγ,s−1 = P(v), and at
stage s we decide not to change this class, that is, we decide that Sγ,s = Sγ,s−1, then of course
we have Sγ,s = P(v) for the same v. If we decide to pick a new class, so that Sγ,s ≠ Sγ,s−1,
then we enumerate a new element u into V at stage s, and define Sγ,s = P(u). The number u
will equal ⟨γ, k⟩, where k is the number of previous versions of Sγ,t , and we identify 2<ω with
ω in a natural way.

Note the multiplicity of the subscript s: Sγ,s is a Π 0
1 class; the clopen class that is its stage s

approximation will be denoted by (Sγ,s)s .

Construction
At stage s, we define Sγ,s and σγ,s by recursion on γ . Starting with γ = ∅, we let σ∅,s = ∅.
Now suppose that σγ,s is defined. If γ ≠ ∅, let γ−

= γ �|γ |−1 be γ with the last bit chopped
off. By induction, Sγ−,s is already defined. If γ = ∅, let Sγ−,s = S .

There are three possibilities.

(1) If s = 0, or if s > 0 but σγ,s ≠ σγ,s−1, then we pick a new value for Sγ,s . Let v be the new
index for Sγ,s , which we enumerate into V .

We let

Sγ,s =


Z ∈ Sγ−,s ∩ [σγ,s]: ¬ (Φ|γ |(Z , v)↓= 0)

.

(2) If s > 0 and σγ,s = σγ,s−1, but (Sγ,s−1)s is empty, then let Sγ,s = Sγ−,s ∩ [σγ,s].
(3) Otherwise, let Sγ,s = Sγ,s−1.

After Sγ,s is defined, for both j < 2, we let σγ j,s = kuc(Sγ,s, ⟨ j⟩).

Verification

Claim 6.7. For all γ , both σγ,s and Sγ,s stabilize to final values σγ and Sγ . The approximations
are both ω-c.e.

Proof. By induction on γ . We always have σ∅,0 = ∅.
Let γ be any string, and suppose that in an interval [t0, t1] of stages, the value of σγ,s is

constant. Then Sγ,s is changed at most once between stages t0 and t1.
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Suppose now that in an interval [t0, t1] of stages, the class Sγ,s is not redefined. Let v ∈ V
be the number such that Sγ,s = P(v) for all s ∈ [t0, t1]. Let j < 2. By Lemma 6.5, in stages
between t0 and t1, the value of σγ j,s changes at most 2ℓ(1,q(v)) many times.

Hence both σγ,s and Sγ,s reach a limit. To see that the number of changes is bounded
computably in γ , we again argue by recursion on γ . If Sγ,s changes at most m many times,
then we recall that the V -indices for Sγ are (γ, 0), (γ, 1), . . . , and so for both j < 2, the number
of times σγ j,s changes is bounded by

k6m

2ℓ(1,q(⟨γ,k⟩)),

which is computable. �

It is clear from the instructions that for all γ , we have Sγ ⊂ Sγ− and Sγ ⊂ [σγ ].

Claim 6.8. For all γ , we have Sγ− ∩ [σγ ] ≠ ∅.

Proof. By induction on γ . For γ = ∅ the claim follows from σ∅ = ∅ and S ≠ ∅.
Suppose that Sγ− ∩ [σγ ] ≠ ∅. Let j < 2. We show that Sγ ∩ [σγ j ] ≠ ∅.
First, we see that Sγ ≠ ∅, which follows from the instructions. Let s0 be the stage at which

σγ,s stabilizes. At stage s0, we pick a new value for Sγ . If at a later stage s1 we discover that Sγ,s0

is empty, then we switch to the final value Sγ = Sγ− ∩ [σγ ], which by induction is nonempty.
Otherwise, Sγ = Sγ,s0 is nonempty.

Now that we know that Sγ is nonempty, we know that each Kučera string kuc(Sγ , α) is
extendible in Sγ , in particular σγ j = kuc(Sγ , ⟨ j⟩). �

Now define a c.e. set A as follows: at a stage s > 0, if σγ,s = σγ,s−1 but (Sγ,s−1)s = ∅ (that
is, case (2) of the construction holds for γ at stage s), then enumerate the V -index of Sγ,s−1 (that
is, the number v ∈ V such that Sγ,s−1 = P(v)) into A.

Claim 6.9. For all γ and all Z ∈ Sγ , we have Φ|γ |(Z) ≠ A.

Proof. Fix γ , and let s0 be the stage at which σγ stabilizes. Let v be the V -index of Sγ,s0 .
If there are no changes in Sγ,s after stage s0, that is, if Sγ = Sγ,s0 , then v ∉ A, and by the

definition of Sγ,s0 , for no Z ∈ Sγ do we have Φ|γ |(Z , v) = 0.
Otherwise, at some stage s1 > s0 we redefine Sγ,s1 = Sγ− ∩ [σγ ], and there are no further

changes in Sγ . But this redefinition is done only because at stage s1 we discover that Sγ,s0 = ∅.
By the definition of Sγ,s0 , we thus have Φ|γ |(Z , v) = 0 for all Z ∈ Sγ . But in this case,
v ∈ A. �

Let G ∈ 2ω. Define Z =


n σG �n . If n 6 m < ω then by Claim 6.8,

∅ ≠ SG �m ∩

σG �m+1


⊆ SG �n ∩


σG �m+1


,

so by compactness, Z ∈ SG �n for all n. By Claim 6.9, A 
T Z , so Z is incomplete.

Claim 6.10. G 6tt Z ′.

Proof. By Fact 3.2 (due to Cole and Simpson), it is equivalent to show that G ∈ BLR(Z).
To construct a stage s-approximation to G, note that if γ and δ are incomparable strings, then

σγ,s and σδ,s are also incomparable. Hence

Gs =

 
γ : σγ,s ⊂ Z
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is well-defined (it may be finite). It is (uniformly) Z -computable, because for all γ and s, we
have |σγ,s | > |γ |.

Let x < ω. By Claim 6.7, there is a computable bound on the number of stages at which any
of the strings σγ,s for any string γ of length x + 1 may change. The approximation Gs(x) may
change only at such stages. Hence ⟨Gs⟩ witnesses that G ∈ BLR(Z). �

6.5. Discussion of the proof of Theorem 6.1

The rest of this section is dedicated to the proof of Theorem 6.1. Fix G ∈ 2ω. We assume
that A is a superlow and jump-traceable set, computable from every 1-random set Z such that
G 6tt Z ′. As in Section 4, fix an order function h, and an A-partial computable function θ .
By Theorem 3.5, we can fix a restrained A-approximation ⟨As,Γs⟩ to θ , witnessed by a
computable function g.

As discussed above, this proof will follow the idea of the proof of Theorem 2.9, but mirroring
the proof of Theorem 6.3. Thus we again begin with a nonempty Π 0

1 class S that contains only
1-random sets. We will adapt the definition of a golden pair to the current setting; such a pair
will arise from a failure to construct some Z ∈ S that both codes G and does not compute A.
Again we will approximate strings σγ that are extendible in S and serve as coding strings, and
again we will make the approximation ⟨σγ,s⟩s∈ω an ω-c.e. one. As in the proof of Theorem 2.9,
subclasses in which we attempt to diagonalize against A will be tied to computations Γ A(x)[s]
that are under a process of verification.

The fact that the proof of the superlow basis theorem is linear in nature, but the proof of the
coding Theorem 6.3 is not, makes the structure of runs of procedures more complicated in the
current proof. Rather than having a linear structure, we now have an (infinitely branching) tree
of runs of procedures at any given stage. Thus, while before we had at most one procedure of
each type per level e, now many of them run in parallel. When a procedure Re is called, an
initial segment η ⊂ G will have been coded into Z ′ already. So we now have versions Re,η for
various strings η. A subprocedure Se

x has to live with the coding into Z ′ of a further string of
length h(x). Thus, we have versions Se,ηα

x for each α of length h(x). During the construction,
this feature leads to some extra cancellations, as we need to be able to replace a run Se,ηβ

y by
Se,ηα

x for α ⊂ β. In the definition of golden pairs we will fix an η and refer only to runs Se,ηα
x

where ηα ⊆ G.
For coding, we again work with an effective list P(v) of subclasses of S that we enumerate.

Every class we define will be on this list. We mostly leave this as an implicit part of the
construction.

6.6. Golden pairs

Definition 6.11. A pair Q,Φ, consisting of a nonempty Π 0
1 class Q = P(v) and a Turing

functional Φ, is a golden pair for Γ , h, and G, with parameter η ⊂ G, if for almost all x such
that Γ A(x)↓, with use u, for the α of length h(x) such that ηα ⊂ G, if X ∈ Q ∩ [kuc(Q, α)],
then Φ(X) ⊇ A �u .

Proposition 6.12. If there is a golden pair for Γ , h, and G, with parameter η ⊂ G, then θ = Γ A

has a c.e. trace ⟨Vx ⟩x∈ω such that |Vx | 6 2h2(x) for all x.
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Proof. Let Q = P(v) and Φ be such a golden pair. At stage s we enumerate a number y into
Vx if there is a string α of length h(x) such that at that stage we discover that there is a binary
sequence τ for which Γs(τ, x) = y and Φ(X) extends τ for every X ∈ Qs ∩ [kuc(Qs, α)].

To establish the bound on |Vx |, let n = h(x). By Lemma 6.5, for all strings α of length n,
the string kuc(Q, α) changes at most 2ℓ(n,q(v)) many times. We have ℓ(n, q(v)) 6 (3/4)n2 for
almost all n. Taking the union over all strings α of length n, we obtain |Vx | 6 2n2ℓ(n,q(v)), which
is bounded by 2n2

for almost all n.
To establish tracing, if x ∈ dom θ , let α be of length h(x) such that ηα ⊆ G. Let tx be so

large that kuc(Q, α) = kuc(Qs, α) for all s > tx . Since Q,Φ is golden, for almost all x and for
large enough s > tx , we can see that for every X ∈ Q ∩ kuc(Q, α) we have Φ(X) ⊇ τ = A �u ,
where u is the use of Γ A(x). Thus θ(x) ∈ Vx for almost all x in the domain of θ . Mending the
sequence on finitely many inputs yields a trace as required. �

Thus, the rest of the proof is devoted to showing that a golden pair exists.

Proposition 6.13. There is a Π 0
1 class Q ⊆ S and a Turing functional Φ such that Q,Φ is a

golden pair for Γ , h, and G.

6.7. The procedures and the construction

The procedure calling structure is now

Se,ηα′

x ′
// . . .

Re,η

<<yyyyyyyyy

!!CC
CC

CC
CC

// Se,ηα
x

// Re+1,ηα

<<yyyyyyyyyyy

!!DD
DD

DD
DD

DD
D

// . . .

Se,ηα
′′

x ′′
// . . .

At each stage, for each level e and each string η such that Re,η is running, the strings α such
that some Sηαx is running and has not returned form a prefix-free set.

Procedure Re,η. This procedure runs with input P e,η (again, a Π 0
1 class of the form P(v) for

some v ∈ V ), and a parameter n. During its run, for every string α of length greater than n and
every x such that |α| = h(x), the pair (α, x) is marked either fresh or confirmed. Initially, all
such pairs are fresh. A string α such that |α| > n requires attention at stage s if there is some x
such that |α| = h(x) and such that:

– no procedure Se,ηβ
y is currently running for any y < x and β ⊆ α;

– Γ A(x)↓ [s]; and
– (α, x) is currently fresh.

For any string α that requires attention at stage s and is minimal among such strings under
the prefix relation (that is, no proper initial segment of α also requires attention), we choose x to
be the least number that witnesses that α requires attention, and call a run of the procedure Se,ηα

x
with input As �u , where u is the use of the computation Γ A(x)[s]. We also cancel any run of any
procedure Se,ην

y where y > x and α ⊆ ν. This concludes the instructions for Re,η.
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For P = P(v) and a string α let

P⟨α⟩ = P ∩ [kuc(P, α)].

We also let Ps⟨α⟩ = Ps ∩ [kuc(Ps, α)] at stage s.

Procedure Se,ηα
x . This procedure is provided with a string τ ⊂ As such that Γs(τ, x)↓, and acts

as follows.

(a) Start a run of Re+1,γ , where γ = ηα, with input

P e+1,γ
=


X ∈ P e,η

⟨α⟩: Φe(X) ⊉ τ


(3)

and parameter h(x). If this is the i th run of a procedure of this type Se,ηα
x (i > 1), enumerate

v = ⟨e, x, i⟩ into V and let P(v)
= P e+1,γ .

(b) If at some stage P e+1,γ becomes empty, cancel the run of Re+1,γ and return, marking (α, x)
as confirmed.

As before, a run of Se,ηα
x with input τ believes that τ ⊂ A and that the current version of

P e,η
⟨α⟩ is correct. Thus, suppose that Se,ηα

x is called (with input τ ) at stage s, and t > s is the
least stage at which either τ ⊄ At or kuc(P e,η

t , α) ≠ kuc(P e,η
s , α). If the same run of Se,ηα

x is
still running at stage t , then it is immediately cancelled (together with all of its subprocedures);
otherwise, (α, x) is re-marked as fresh.

This concludes the instructions for Se,ηα
x .

The construction is started by calling R0,∅ with input P(0)
= S . (Recall that S is a nonempty

Π 0
1 class containing only 1-random sets, defined at the beginning of this proof.)

6.8. Verification

We show that there is an e and η ⊂ G such that P e,η,Φe is a golden pair for Γ , h, and
G for the final version of P e,η. First we do the necessary counting of how often procedures
can be called. We begin with the analog of Claim 4.5. The situation is more complicated here
because the number of cancellations of a run Sηαx depends on the length of the coding string
kuc(P e,η, α), and hence on the lower bound on the measure of the Π 0

1 class this runs works in.
Recall the computable function q from Lemma 6.6.

Claim 6.14. There is a computable function B(x, r) such that a run Re,η, with input P e,η
=

P(v), calls at most B(x, q(v)) many runs of any Se,ηα
x .

Proof. Fix x < ω and a string α of length h(x). Any call of Se,ηα
x by the run of Re,η beyond the

first one is done because a previous run was cancelled, or because a later change caused (α, x) to
be re-marked as fresh. This situation can have one of three causes:

(i) the previous run of Se,ηα
x had input τ , and later we saw that τ ⊄ At ;

(ii) kuc(P e,η
s , α) has changed;

(iii) some run Se,ηβ
y was started, where y < x and β ⊆ α.

The number of times (i) occurs is bounded by g(x); recall that g witnesses that ⟨As,Γs⟩ is
a restrained approximation. The number of times (ii) can occur is bounded by 2ℓ(|α|,q(v)), by
Lemma 6.5. Let B(0, r) = 1 + g(0) + 2ℓ(h(0),r), and for x > 0, let B(x, r) = 1 + g(x) +

2ℓ(h(x),r) +


y<x
B(y, r). Then B(x, q(v)) bounds the number of calls of Se,ηα

x by the single

run of Re,η. Summing over all strings α of length h(x), we see that B(x) = 2h(x)B(x, r) is a
bound as required. �
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We proceed to a fact similar to Claim 4.6.

Claim 6.15. (1) There is a computable bound M(e, x) on the number of calls of any procedure
of the form Se,γ

x .
(2) There is a computable bound r(e, x) on the V -index of any class of the form P e+1,γ that is

called by a procedure Se,γ
x . Hence, with the aid of the function q, we get a computable lower

bound on the measure of all such classes.

Proof. Both parts are computed simultaneously by recursion on e.
(2) for e, x follows from (1) for the same pair e, x . The i th call of any Se,γ

x provides its
run Re+1,γ with input P e+1,γ

= P(v), where v = ⟨e, x, i⟩. Thus we can let r(e, x) =

maxi6M(e,x)⟨e, x, i⟩.
For e = 0, there is a single run of R0,∅ that is never cancelled, with input P 0,∅

= P(0). So
M(0, x) = B(x, q(0)) is an upper bound as desired.

Now assume that e > 0 and that (1) and (2) have been computed for all pairs (e′, x ′) that
lexicographically precede the pair (e, x). By Claim 6.14, we may let M(e, x) be the product of

(i) a bound on the number of runs of Re,η that are called by some Se−1,η
y with parameter

h(y) < h(x), and
(ii) a bound on the number of times a single run Re,η can call Se,γ

x .

Both bounds are obtained by the fact that every run of some Re,η that calls some Se,γ
x is in

turn called by a run of Se,η
y for some y such that h(y) < h(x), as Re,η’s parameter is h(y). Since

h is monotone, y < x .
Hence a bound (i) for the number of such runs Re,η is given by


y<x M(e − 1, y), and by

Claim 6.14, a bound for (ii) is maxy<x maxv<r(e−1,y) B (x, q(v)). �

We say that a run of Re,η is a golden run if η ⊂ G, the run is never cancelled, and every
subprocedure Se,ηα

x with ηα ⊂ G that is called by that run eventually returns or is cancelled.

Claim 6.16. If there is a golden run of Re,η with input (the final version of) P e,η, then P e,η,Φe
is a golden pair for Γ , h, and G, in the sense of Definition 6.11, with parameter η.

Proof. Let n be the parameter of this golden run. For almost all x we have h(x) > n. To show
the golden pair condition for such an x , suppose that Γ A(x) converges. Suppose ηα ⊆ G where
|α| = h(x). Choose s0 so large that Γ A(x) and kuc(P e,η, α) are stable from stage s0 on, and
(by Claim 6.15 and the hypothesis that the run of Re,η is golden) all runs Se,ηβ

y for y < x have
returned or are cancelled. Following the instructions for Re,η, we may now start a run Se,ηα

x
(even if some Se,ην

y where y > x and α ⊆ ν is running and must be cancelled), and this run is
not cancelled. Since this final run of Se,ηα

x returns, the Π 0
1 class in (3) becomes empty. Hence the

golden pair condition for x holds of P e,η,Φe. �

Claim 6.17. Suppose that there is no golden run. Then for every e, there is some γ ⊂ G such
that there is a run of Re,γ that is never cancelled.

Proof. By induction on e. For e = 0 we have γ = ∅. Assume the claim holds for e, witnessed
by some γ ⊂ G. Since the run of Re,γ that is never cancelled is not golden, there is some α such
that ηα ⊂ G and such that there is a call of Se,ηα

x for some x that is never cancelled but never
returns. Then Se,ηα

x calls a run of Re+1,ηα that is never cancelled. �
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It remains to show that there is a golden run. For this we use the hypothesis that A is
computable from every 1-random set Z such that G 6tt Z ′. We define the coding strings σγ
for γ ∈ 2<ω. Let σ∅,s = ∅.

(1) If ση,s has been defined and procedure Re,η is running at stage s with input P , then for all
α ≠ ∅ such that no procedure Se,ηβ is running for any β ( α, let σηα,s = kuc(P, α).

(2) If α is maximal under the prefix relation so that σηα,s is now defined, it must be the case that
Se,ηα

x is currently running (for some x) and has called a run of Re+1,ηα . This situation puts
us back in case (1) with η replaced by ηα, and the recursive definition can continue.

We verify that γ ⊂ δ implies σγ,s ⊂ σδ,s for each s and |δ| 6 s. The fact to verify is that
if some Re,η is running at stage s with input P e,η, and Se,ηα

x is also running at this stage and
provides to Re+1,ηα the input P e+1,ηα , then kuc(P e,η

s , α) ⊆ kuc(P e+1,ηα
s ,∅). The reason this

fact holds is that we define P e+1,ηα as a subclass of P e,η
∩[ρ], where ρ = kuc(P e,η

s , α). We may
of course assume that this containment holds also for the clopen approximations to these classes
at stage s, that is, that P e+1,ηα

s ⊆ P e,η
s ∩ [ρ]. Now the desired extension ρ ⊆ kuc(P e+1,ηα

s ,∅)
holds because of measure considerations. Let v be the V -index of P e+1,ηα . Then by definition,
kuc(P e+1,ηα,∅) has length q(v). From P e+1,ηα

⊂ [ρ] we conclude that λP e+1,ηα 6 2−|σ |. But
we also know that λP e+1,ηα > 2−q(v). Hence q(v) > |σ |. Since P e+1,ηα

s ⊂ [ρ], we conclude
that indeed ρ ⊆ kuc(P e+1,ηα

s ,∅).

Claim 6.18. For every γ , the number of stages s such that σγ,s+1 ≠ σγ,s is finite, and in fact is
computably bounded in γ (and hence in |γ |).

Proof. We can have σγ,s+1 ≠ σγ,s for two reasons.

(i) A run of Se,η
x is called for some η ⊆ γ .

(ii) A string kuc(P, α) involved in the definition of σγ,s changes from stage s to stage s + 1.

For any run of Se,η
x for η ⊆ γ we must have e, h(x) 6 |γ |, so a computable bound on the number

of changes of type (i) is given by Claim 6.15(1).
If a string kuc(P, α) is involved in the definition of σγ,s , then we must have P = P e,η for

some e 6 |γ | and ηα ⊆ γ . Assuming that e > 0, this run of Re,η was called by some Se,η
x

where again h(x) 6 |γ |. By Claim 6.15(2), P = P(v), where v 6 r(e − 1, y) for some y < x .
Thus, effectively in γ , we get a bound on q(v) for the V -index v of P , and so with the aid of
Lemma 6.5 (and again Claim 6.15(1)), a bound on the number of times a change as in (ii) may
happen. �

For all γ , let σγ = lims σγ,s . Let Z =

γ≺G σγ . By a proof identical to the proof of

Claim 6.10, G 6tt Z ′. By the assumption on A, we have A 6T Z . Hence Φe(Z) = A for some e.
Assume for a contradiction that there is no golden run. By Claim 6.17, there is a run of Re,η,

for some η ⊂ G, that is never cancelled. Since this run is not golden, there is some α such that
ηα ⊂ G and such that there is a run of Se,ηα

x for some x , called by Re,η, that is never cancelled
and never returns. This run defines

P e+1,ηα
=


X ∈ P e,η

⟨α⟩: Φe(X) ⊉ τ

,

where P e,η is the input of Re,η. These classes are never altered, as Se,ηα
x is never cancelled, so

we have τ ⊂ A. Since the run of Se,ηα
x never return, the class P e+1,ηα is nonempty.

Claim 6.19. Z ∈ P e+1,ηα .
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Proof. Since Se,ηα
x is never cancelled, after its inception, no run Se,ηβ

y for any β ( α is ever
called by Re,η. Hence σηα = kuc(P e,η, α).

Let e′ > e + 1. By Claim 6.17, there is some string γ ⊂ G for which there is a run of Re′,γ

that is never cancelled. We have |γ | > e′. Then σγ is extendible in P e′,γ and P e′,γ
⊆ P e+1,ηα .

The result follows by compactness. �

We now get the desired contradiction, since Φe(X) ≠ A for all X ∈ P e+1,ηα . This completes
the proof of Proposition 6.13 and hence of Theorem 6.1.

7. Demuth random sets and cost functions

Consider the situation that A 6T Y where A is c.e. and Y is a 1-random10
2 set. In this section,

we develop the connection between the strength of cost functions A can obey and the degree of
randomness of Y . This analysis will yield a proof of Theorem 2.6.

We gauge the degree of randomness of Y via the notion of Demuth randomness and its
variants. Recall from the first section the idea behind Demuth randomness. Tests are generalized
in that one can change the m-th component for a computably bounded number of times. We
will introduce stronger randomness notions, but still compatible with being 10

2, by relaxing the
condition that the number of changes be computably bounded. Instead, each time there is a
change to the current version of the m-th component, we count down along a computable well-
ordering R.

7.1. R-approximations

We begin with some intuitive background. Ershov [12] introduced a theory of a-c.e. functions
for an ordinal notation a (see [41] for a recent survey). The following simpler variant suffices for
our purposes. We replace the ordinal notations by arbitrary computable well-orders. Let g(n, s)
be a computable approximation to a function f . Suppose that the number of mind changes at n
is bounded by h(n) where h is a computable function. We can think of the situation as follows:
an “approximator” promises to give us a computable approximation to f . The approximator
also has to give us evidence that the approximation will indeed stabilize on every input. Thus,
for every n, at stage 0 the approximator puts a marker labelled n on the number h(n) in the
standard ordering < of the natural numbers. Each time the approximator wants to change its
approximation to f (n), that is, at a stage s such that g(n, s) ≠ g(n, s − 1), the approximator
needs to move the nth marker at least one number to the left, that is, decrease its value in the
ordering <. Since this ordering is a well-ordering of the natural numbers, this process ensures
the stabilization of the approximation g(n, s). The effectiveness of the entire setup is also due
to the fact that < is a computable well-ordering, and that the moves of the markers are given
effectively. The notion of an R-approximation is identical, except that we replace < by some
other computable well-ordering of the natural numbers.

For the rest of the section, we assume that every computable well-ordering R we mention is
infinite; indeed we assume that its field is ω.

Definition 7.1. Let R = (ω,<R) be a computable well-ordering. An R-approximation is a
computable function

g = ⟨g0, g1⟩:ω × ω → ω × ω
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such that for each x and each s > 0,

g(x, s) ≠ g(x, s − 1) → g1(x, s)<R g1(x, s − 1).

In this case, g0 is a computable approximation to a total 10
2 function f . We say that g is an

R-approximation to f . A 10
2 function f is called R-c.e. if it has an R-approximation.

Lemma 7.2. Let R be a computable well-ordering. Every ω-c.e. function is R-c.e.

Sketch of proof. If S and R are computable well-orderings, and S is computably embeddable
into R, then every S-c.e. set is R-c.e., because the effective embedding of S into R can be used
to translate any S-approximation to an R-approximation.

Now, since we assume that R is infinite, we can effectively embed (ω,<) into R by recursively
choosing bigger and bigger elements in the sense of <R . If the order-type of R is not a limit
ordinal, then we first fix a limit point of R, and then build our embedding entirely below that
limit point. �

The following lemma is related to Ershov’s result that each 10
2 function is a-c.e. for some

notation a of ω2 (see [41, Theorem 4.3]). In our simpler setting, a well-ordering of type ω
suffices.

Lemma 7.3. For each computable approximation g0:ω × ω → ω to a 10
2 function f , there is

a computable well-ordering R of order type ω and a computable function g1:ω × ω → ω such
that ⟨g0, g1⟩ is an R-approximation to f .

Proof. It suffices to define a computable well-ordering R with an infinite computable field
V ⊆ ω × ω. Let

V = ω × {0} ∪ {⟨x, s⟩: s > 0 & g0(x, s) ≠ g0(x, s − 1)}.

For ⟨x, s⟩, ⟨y, t⟩ ∈ V , we declare that ⟨x, s⟩<R⟨y, t⟩ if x < y, or x = y and s > t . Then R is
of order type ω because g0 is a computable approximation. Let g1(x, u) = ⟨x, s⟩ where s 6 u is
largest such that ⟨x, s⟩ ∈ V . Then ⟨g0, g1⟩ is an R-approximation to f . �

Later on we will need the following fact.

Lemma 7.4. For every computable well-ordering R, there is a uniformly ∅
′-computable listing

⟨ f e
⟩ of all R-c.e. functions.

Proof. Define a partial R-approximation to be a partial computable function ψ =

⟨ψ0, ψ1⟩:ω2
→ ω2 such that dom ψ is closed downward in both variables, and such that for

all n and s > 0, if (n, s) ∈ dom ψ and ψ(n, s) ≠ ψ(n, s − 1) then ψ1(n, s)<R ψ1(n, s − 1).
There is an effective listing ⟨ψe

⟩ of all partial R-approximations.
Write ψe(n, t)↓ [s] to denote that (n, t) ∈ dom ψe and that this fact is discovered after

s steps of computation of some universal machine. We may assume that dom ψe
[s] is closed

downward in both variables. Given e, n, and s, let t be greatest such that ψe(n, t)↓ [s], and let
ge(n, s) = ψ0(n, t). If there is no such t , then let ge(n, s) = 0.

Now ⟨ge
⟩ is a uniformly computable sequence of functions, and the function f e defined

by letting f e(n) = lims ge(n, s) is total for all e, so ⟨ f e
⟩ is uniformly ∅

′-computable. If ψe

is not total, then dom ψe is finite, whence f e(n) = 0 for almost all n. If ψe is total then
f e(n) = lims ψ0(n, s) for all n. �
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7.2. R-Demuth random sets

Definition 7.5. Let R = (ω,<R) be a computable well-ordering. An R-Demuth test is a
sequence of c.e. open sets (Lm)m∈ω such that ∀m λLm 6 2−m , and there is a function f with an
R-approximation such that Lm = [W f (m)]

≺. A set Z passes the test if Z ∉ Lm for almost all m.
We say that Z is R-Demuth random if Z passes each R-Demuth test.

Thus, a set is Demuth random if and only if it is (ω,<)-Demuth random. By Lemma 7.2, for
every computable well-ordering R, every R-Demuth random set is Demuth random.

Proposition 7.6. For every computable well-ordering R, there is a 10
2 set Y that is R-Demuth

random.

The proof of Proposition 7.6 is a variant of the construction of a 10
2 Demuth random set;

see [34, Theorem 3.6.25]. The proof is divided into two parts. There is no universal R-Demuth
test, but nevertheless, we first show that there is a “special” test ⟨Gn⟩ such that every set passing
this test is R-Demuth random. Then we show that there is a 10

2 set that passes this special test.
In the following we write He for [We]

≺.

Definition 7.7. A special test is a sequence of c.e. open sets ⟨Gm⟩m∈ω such that λGm 6 2−2m−1

for each m, and there is a function g 6T ∅
′ such that Gm = Hg(m). Z passes the test if Z ∉ Gm

for almost all m.

Lemma 7.8. Let R = (ω,<R) be a computable well-ordering. There is a special test ⟨Gn⟩ such
that every set that passes ⟨Gn⟩ is R-Demuth random.

Proof. A set Z is R-Demuth random iff for each R-Demuth test (Um)m∈ω, Z passes the R-
Demuth tests (U2m)m∈ω and (U2m+1)m∈ω. Thus it suffices to build a special test (Gm)m∈ω that
emulates all R-Demuth tests (Sn)n∈ω such that λSn 6 2−2n for each n. The idea is now to
put together all R-Demuth tests of this kind. This construction does not result in a universal R-
Demuth test because the enumeration of all R-Demuth tests cannot be done effectively. However,
it can be done effectively relative to a ∅

′ oracle, thus yielding a special test.
The following definition will also be useful later. Given an effectively open class W = [W ]

≺

(for some c.e. set W ) and a positive rational number ε, we can (uniformly in a c.e. index for W
and ε) obtain a c.e. index for an effectively open class, which we denote by W(6ε), such that

(a) W(6ε)
⊆ W ;

(b) λW(6ε) 6 ε;
(c) if λW 6 ε, then W(6ε)

= W .

The idea is simply to copy W , but prevent the enumeration of any string into W(6ε) that would
make the measure go beyond ε.

By Lemma 7.4, there is a uniformly ∅
′-computable listing ⟨ f e

⟩ of the R-c.e. functions. Thus,
there is a function q 6T ∅

′ such that q(e, n) = f e(n) for each e, n. Now let q 6T ∅
′ be a function

such that

Hq(e,n) = H(62−2n)q(e,n)
and let

Gm =


e<m

Hq(e,e+m+1).
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Then λGm 6


e<m 2−2(e+m+1) 6 2−2m−1. If Z passes the special test ⟨Gn⟩ then it passes each
R-Demuth test. �

The proof of Proposition 7.6 is completed with the following lemma.

Lemma 7.9. If ⟨Gn⟩ is a special test, then some 10
2 set Z passes ⟨Gn⟩.

Proof. This lemma is Claim 2 of the proof of [34, Theorem 3.6.25]. We give a sketch for
completeness. For n < ω, let Ln =


m6n Gm .

Recall (from Section 6) that for a class W and a string τ , we let W | τ = {X : τ X ∈ W}. If W
is measurable then λ(W | τ) = 2|τ |λ(W ∩ [τ ]). Note that λ(W | τ) is the average of λ(W | τ0)
and λ(W | τ1).

With oracle ∅
′, we recursively build a set Z such that

λ(Ln | Z �n) 6 1 − 2−n−1

for all n. This inequality holds for n = 0 since L0 = G0 and λG0 6 1/2. If Z �n has been
defined and the inequality holds, then ∅

′ can determine a 1-bit extension Z �n+1 of Z �n such that
λ(Ln | Z �n+1) 6 1 − 2−n−1.

Since Ln+1 = Ln∪Gn+1 and λ(Gn+1) 6 2−2n−3, we have λ(Gn+1 | Z �n+1) 6 2n+12−2n−3
=

2−n−2. Thus λ(Ln+1 | Z �n+1) 6 1 − 2−n−2.
To finish we show that Z ∉ Gn for all n. If Z ∈ Gn then Z ∈ Ln , so there is some m > n such

that [Z �m] ⊆ Ln since Ln is open; but Ln ⊆ Lm , and [Z �m] ⊈ Lm . �

Let Rω be the computable well-ordering of type |R|
ω obtained from R in the canonical way.

Suppose ⟨Gn⟩ is the special test obtained in Lemma 7.8. Analyzing the proofs of the foregoing
lemmas shows that the R-Demuth random set Z we build is Rω-c.e.

7.3. R-benignity

Given a monotone cost function c, we define a computable function q, s → wc(q, s) where q
is a non-negative rational and s ∈ ω. Let wc(q, 0) = 0. For s > 0 let

wc(q, s) =


s if c(wc(q, s − 1), s) > q
wc(q, s − 1) otherwise.

(4)

We now count the number of times wc(q, s) changes. Clearly, c satisfies the limit condition
limx sups c(x, s) = 0 if and only if wc(q, s) changes only finitely often for each q, and c is
benign in the sense of Definition 2.5 if and only if this number of changes is in fact computably
bounded in q. We use R-approximations to get a hold on cost functions that satisfy the limit
condition but are not necessarily benign.

Definition 7.10. Let R be a computable well-ordering. A monotone cost function c is R-benign
if there is a computable function f :ω2

→ ω such that ⟨wc, f ⟩ is an R-approximation.

That is, we not only require that the function q → lims wc(q, s) be R-c.e., we actually require
that the canonical approximation wc(q, s) be the first component of an R-approximation. By the
monotonicity of c, it is sufficient to replace all rational numbers q by a computable sequence
of rational numbers ⟨qn⟩ descending to 0. Clearly, a cost function is benign if and only if it is
(ω,<)-benign. From Lemma 7.3 we have that a monotone cost function c satisfies the limit
condition if and only if there is some computable well-ordering R such that c is R-benign.



2288 N. Greenberg et al. / Advances in Mathematics 231 (2012) 2252–2293

7.4. Main result of this section

Recall that the product A · B of two linear orderings A and B is the linear ordering obtained by
replacing every point in B by a copy of A. In other words, it is the right-lexicographic ordering
on A × B.

Theorem 7.11. Let R be a computable well-ordering, and let c be an R-benign cost function.
Let Y be any ω · R-Demuth random set. Then every c.e. set A that is computable from Y obeys c.

Before proving Theorem 7.11, we show how it implies Theorem 2.6.

Proof of Theorem 2.6. Let c be a monotone cost function that satisfies the limit condition.
By Lemma 7.3, there is some computable well-ordering R such that c is R-benign. By
Proposition 7.6, there is some 10

2 set Y that is ω · R-Demuth random. By Theorem 7.11, every
c.e. set computable from Y obeys c. �

Proof of Theorem 7.11. We define the numbers wc(q, s) by (4) and use the shorthand

v(m, s) = wc(2−2m, s).

Note that v(m) = lims v(m, s) exists for each m by the hypothesis on c. Furthermore, we may
assume that the function λm · v(m) is unbounded; otherwise, every c.e. set obeys c.

Let Φ be a Turing functional such that A = ΦY for some ω · R-Demuth random set Y . To
ensure that A obeys c we want to restrict the changes of A �v(m,s). To do so we define an ω · R-
Demuth test based on the following: let Lm[s] go through all the c.e. open sets

{Z : As �v(m,s) ⊆ ΦZ
}.

That is, as long as both v(m, s) and As �v(m,s) remain unchanged we have the same version of
Lm , but when one of them changes, so does Lm . The idea is that the measure of the final version
of Lm has to exceed 2−m for almost all m, otherwise Y would fail the ω · R-Demuth test obtained
by stopping the enumeration of Lm when its measure attempts to exceed that bound. To see that
⟨Lm⟩ indeed has an ω · R-computable approximation, we observe that every v(m, s)-change is
accompanied by a downward step in R, and that between such changes, i.e. while v(m, s) is
constant, there can be only v(m, s) many changes to As �v(m,s), as A is c.e.

For the formal details, fix a computable function h0 such that [Wh0(m,s)]
≺

= Lm[s] for each s.

Claim 1. One can extend h0 to an ω · R-approximation ⟨h0, h1⟩.

By the hypothesis that c is R-benign, there is a computable function f :ω × ω → ω such that
⟨v, f ⟩ is an R-approximation. The idea is now to follow this R-approximation if v(m, s) changes,
and use the first components of the pairs in ω · R to count the changes of A �v(m,s) while v(m, s)
is stable. For the formal details, we define the computable function h1 by

h1(m, s) = ⟨l, f (m, s)⟩,

where the counter l ∈ ω is initialized at v(m, s) when v(m, s) ≠ v(m, s − 1). Subsequently,
each time A �v(m,s) changes while v(m, s) remains at this value, we decrease this counter. This
completes the proof of Claim 1.

Recall from the proof of Proposition 7.6 that for a c.e. open set W and a positive rational ε,
we let W(6ε) denote a uniformly obtained c.e. open set contained in W that equals W if the
measure of W does not exceed ε.
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Let Hm[s] = (Lm[s])(62−m ). Let Hm denote the final version of Hm[s]. Then, by Claim 1,
⟨Hm⟩m∈ω is an ω · R-Demuth test.

By the hypothesis on Y , there is m∗ such that Y ∉ Hm for each m > m∗. Then, since
A �v(m) ⊆ ΦY , we have λLm > 2−m for each m > m∗: otherwise Y would enter Hm .

It remains to obtain a computable enumeration ⟨As⟩s∈ω of A obeying c. We first define an
infinite computable sequence of stages: let s0 = m∗, and

si+1 = µs > si ∀m [m∗ 6 m 6 si → λLm,s[s] > 2−m
].

Let

g(i) = max{v(m, si ): m∗ 6 m 6 si }.

Now, consider a stage s such that si 6 s < si+1. Given x , since the function λm · v(m) is
unbounded, there is a least positive j > i such that g( j − 1) > x . LetAs(x) = As j+2(x).

Claim 2. The computable enumeration ⟨As⟩s∈ω obeys c.

We have to show that the total cost of changes for this enumeration, as defined in (1) in
Section 2.6, is finite. Suppose that at a stage s, the number x is least such that As−1(x) ≠ As(x).
Then s = s j for some j such that g( j − 1) > x . So, we can choose a least ms = m < s j such
that x < v(m, s). We may assume that x > v(m∗

+ 1). Then m > m∗ and v(m − 1, s) 6 x .
Recall that v(m − 1, s) = wc(2−2m+2). Then, by definition and the monotonicity of c we have
c(x, s) < 2−2m+2.

Since g( j − 1) > x , we have As j+1(x) ≠ As j+2(x), so all the versions Lm[s] for s > s j+1 are
disjoint from Lm[s j+1]. Then, since λLm[s j+1] > 2−m , a situation as above for a particular value
m can occur at most 2m many times. (That is, there are at most 2m stages s such that ms = m.)
Thus, the total cost of changes at numbers x > v(m∗

+ 1) for this computable enumeration of A
is bounded by


m 2m2−2m+2

= 8. �

When R is reasonably nice, we can replace ω · R by R itself in Theorem 7.11, so getting a
more pleasing correspondence between benignity of the cost function c and the Demuthness of
the random set Y . Suppose that R is a computable well-ordering obtained from a notation for a
limit ordinal. In fact, what we use is that: (1) the order-type of R is a limit ordinal; (2) the set of
limit points of R is computable; (3) the successor function on R is computable. We explain how
to modify the proof of Theorem 7.11 to see that if c is R-benign, Y is R-Demuth random and
A 6T Y is c.e., then A obeys c.

The sequence ⟨Lm⟩ is defined precisely as in the proof of Theorem 7.11, and so the only
change is to Claim 1; we need to show that ⟨Lm[s]⟩ can be extended to an R-computable
approximation, rather than merely an ω · R-one. Recall that before, we only used the fact that
while v(m, s) is constant, As �v(m,s) can only change v(m, s)many times. But the function taking
i to the i th version of v(m, s) is not computable. Nonetheless, we can bound the number of
changes computably. That is, letting ui (m) be the i th version of v(m, s), we construct a total
computable function p(m, i) such that for all m and i such that ui (m) is defined, p(m, i) bounds
the number of stages s at which v(m, s) = ui (m) and As+1 �ui (m) ≠ As �ui (m).

To get the function p, define an A-partial computable function ψ by letting ψ A(m, i)↓= A �v
if v = ui (m). So ψ(m, i)↓ only if ui (m) is defined, that is, if there are at least i many versions
of ui (m). Now A is computable from the Demuth random set Y , which is Turing incomplete
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(see [34, Theorem 3.6.26]), and as mentioned above often, this means that A is K -trivial and so
both superlow and jump-traceable. Theorem 3.5 states that ψ has a restrained A-approximation
⟨Γs, As⟩. We can take the bound for this approximation to be the function p, as long as we require
that if Γ A(m, i)↓= σ [s] then v(m, s) > ui (m) and that σ = As �ui (m). We use the enumeration
⟨As⟩ in the construction.

Now given p, we give an R-indexing h1 for the approximation ⟨Lm[s]⟩ as follows. Suppose
that at a stage s we get a new value for v(m, s), which is ui (m) (actually s = v(m, s)). Using the
function f so that ⟨v, f ⟩ is an R-approximation, we find a limit point γ in R and n < ω so that
f (m, s) = γ + n (addition in R). We then let

h1(m, s) = γ + n + p(i,m)+ p(i + 1,m)+ · · · + p(i + n,m),

again with addition in R. Then, as long as v(m, s) does not change, we move down one step at a
time whenever A �ui (m) changes. The function p gives us enough room so that h1 is as required.

Remark 7.12. Suppose that the computable well-ordering R is not of limit order-type, say of
order type α+ n, where n is finite and α is limit, and let S be a computable well-ordering of type
α obtained from R in a natural way. Let c be an R-benign monotone cost function, as witnessed
by the R-approximation ⟨wc, f ⟩. Suppose that for each ε > 0, there are a non-negative rational
q < ε and an s such that f (q, s) is in the “n part” of R. Then it is not hard to check that c is
in fact benign. Otherwise, we can adjust f to obtain an S-approximation. Thus, every R-benign
monotone cost function is in fact S-benign.

So, if R is a computable well-ordering such that there are R-benign cost functions that are not
S-benign for any computable proper initial segment S of R, then R has limit order-type.

In particular, the analysis above applies to R = (ω,<). It follows that each c.e. set A Turing
below a Demuth random set obeys every benign cost function. As mentioned in the first section
of the paper, Kučera and Nies [23] had previously obtained the equivalent result that such a set A
is strongly jump-traceable.

Remark 7.13. By further adapting the techniques above to plain Demuth tests, we may obtain a
new proof of the harder right-to-left direction of Characterization Ia for the case of a c.e. set A:
if A is below each ω-c.e. 1-random set, then A obeys each benign cost function c (and hence A
is strongly jump-traceable).

Firstly, given A and c, define the computable functions p and f as above. Let r(m) =

p(m, f (m, 0)) · f (m, 0). The proof of Lemma 7.8 shows that there is a Demuth test ⟨Gn⟩ (taking
the role of the special test there) such that each set passing ⟨Gn⟩ passes each Demuth test ⟨Hm⟩

with at most r(m) many changes to versions of the m-th component. Secondly, since ⟨Gn⟩ is
now a Demuth test, by the proof of Lemma 7.9 there is an ω-c.e. set Y passing it. Finally, by
hypothesis, A = Φ(Y ) for some Turing functional Φ. Define the Demuth test ⟨Hm⟩ as in the
proof of Theorem 7.11. Then the number of times a version Hm[s] changes is bounded by r(m),
so Y passes this Demuth test. Now the proof of Theorem 7.11 shows that A obeys c.

7.5. Recent developments

Some developments relevant to the paper have occurred since its original submission in
October 2010.

Superlowness and superhighness are Demuth test compatible. Nies [37] defined a class C ⊆ 2ω

to be Demuth test-compatible if each Demuth test is passed by a member of C. If C is Demuth
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test compatible, then so is C ∩ MLR. In [37, Theorem 4.4] he shows that superlowness and
superhighness are Demuth test compatible, using some of the methods from our proofs of
Theorems 2.9 and 6.1, respectively. By the same argument as in Remark 7.13 above, this yields
new proofs that a c.e. set that is Turing below each superlow [superhigh] ML-random set is
strongly jump traceable.

Weak Demuth randomness. A set Z is called weakly Demuth random if it weakly passes each
Demuth test ⟨Gn⟩, in the sense that Z ∉ Gn for some n. Clearly, no ω-c.e. (and hence no superlow)
set is weakly Demuth random. Kučera and Nies [23, Corollary 3.6] have shown that no superhigh
set is weakly Demuth random by adapting the method in our proof of Theorem 5.1. Thus, the
following simultaneously generalizes the two facts that a c.e. strongly jump traceable set is below
all superlow, and all superhigh ML-random sets.

Proposition 7.14. Every c.e. strongly jump traceable set A is below each ML-random set Y that
is not weakly Demuth random.

Sketch of proof. It is not hard to see that weak Demuth tests are equivalent in strength to Π 0
2

null classes of the form


x Vx , where Vx is effectively open uniformly in x , Vx ⊇ Vx+1, and
the cost function c(x, s) = λVx,s is benign. Thus Y ∈


Vx for such a sequence ⟨Vx ⟩. Since A

obeys the corresponding benign cost function c by Greenberg and Nies [16], we have A 6T Y by
the proof of the Hirschfeldt-Miller theorem in [34]. �

The restriction to c.e. sets. Diamondstone, Greenberg and Turetsky [7] have recently shown that
every strongly jump-traceable set is computable from a c.e. one. This means that several results
concerning c.e. strongly jump-traceable sets can be extended to all strongly jump-traceable sets.
In particular, Characterizations Ia and Ib, and Proposition 7.14 now hold for all sets: a set A is
strongly jump-traceable if and only if it is computable from all ω-c.e. random sets if and only if it
is computable from all superlow random sets if and only if it is computable from all random sets
which are not weakly Demuth random. As far as Characterization II is concerned, we now know
that every strongly jump-traceable set is computable from every superhigh random set, but for
the converse, we need to know that every set which is computable from every superhigh random
set is superlow and jump-traceable; this is still open.

More on Demuth randomness. Finally, Greenberg and Turetsky [17] have shown the converse to
the Kučera-Nies result from [23], namely that every strongly jump-traceable set is computable
from a Demuth random set. Putting these results together, we obtain yet another characterization
of strong jump-traceability inside the c.e. sets using randomness and Turing reducibility: a c.e. set
is strongly jump-traceable if and only if it is computable from some Demuth random set.
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[18] Denis R. Hirschfeldt, André Nies, Frank Stephan, Using random sets as oracles, J. Lond. Math. Soc. (2) 75 (3)

(2007) 610–622.
[19] Carl G. Jockusch Jr., Degrees of functions with no fixed points, in: Logic, Methodology and Philosophy of Science,

VIII (Moscow, 1987), in: Stud. Logic Found. Math., vol. 126, North-Holland, Amsterdam, 1989, pp. 191–201.
[20] Carl G. Jockusch Jr., Robert I. Soare, Π 0

1 classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972)
33–56.

[21] Bjørn Kjos-Hanssen, Wolfgang Merkle, Frank Stephan, Kolmogorov complexity and the recursion theorem,
in: Symposium on Theoretical Aspects of Computer Science 2006, in: LNCS, vol. 3884, Springer, 2006,
pp. 149–161.
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