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Abstract

Inverse limits of nilsystems in topologically dynamical systems were characterized by Host, Kra and
Maass recently. Namely, for each d ∈ N a certain generalization of the regionally proximal relation was
introduced, and for a distal minimal system it was shown that such a relation is an equivalence one, which
determines the maximal d-step nilfactor. One of the main results in this article is to show that the above
results hold for a general minimal system.

A combinatorial consequence is also deduced, which is the topological correspondence of the result
obtained by Host and Kra for positive upper Banach density subsets using ergodic methods.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

In a recent paper [23] by Host et al. the authors characterized inverse limits of nilsystems in
topologically dynamical systems, via a structure theorem for topological dynamical systems that
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is an analog of the structure theorem for measure preserving systems. The way they achieved this
is first to define a certain generalization of the regionally proximal relation for any d ∈ N and any
topologically dynamical system (X, T ), and then to show that this relation is an equivalence one
for any minimal distal system. Finally they used the ergodic method to prove that the quotient
of X under this relation is an inverse limit of d-step nilsystems which is the maximal nilfactor
of (X, T ). We note that the case d = 1 is classic, and the case d = 2 was obtained by Host and
Maass in [24].

The question if this relation is an equivalence one for general minimal systems remains open
in [23]. We aim to study this question in the current paper. To state our main results let us recall
the notion of the regionally proximal relation of order d introduced in [23] (d = 2 in [24]). Let
(X, T ) be a topologically dynamical system and let d ≥ 1 be an integer. A pair (x, y) ∈ X × X
is said to be regionally proximal of order d if for any δ > 0, there exist x ′, y′ ∈ X and a vector
n = (n1, . . . , nd) ∈ Zd such that ρ(x, x ′) < δ, ρ(y, y′) < δ, and

ρ(T n·ϵx ′, T n·ϵ y′) < δ for any ϵ ∈ {0, 1}d , ϵ ≠ (0, . . . , 0),

where n ·ϵ =
d

i=1 ϵi ni . The set of regionally proximal pairs of order d is denoted by RP[d](X),
which is called the regionally proximal relation of order d.

It is easy to see that RP[d](X) is a closed and invariant relation for all d ∈ N. When d = 1,
RP[d](X) is nothing but the classical regionally proximal relation which determines the maximal
equicontinuous factor for any minimal system.

1.2. Main results

In this article, we completely answered the question remained in [23]. Namely, we show that
for each minimal system (X, T ), RP[d](X) is a closed invariant equivalence relation which is
obtained by a deep understanding of the minimal sets in the dynamical parallelepipeds Q[d](X)

for the actions of face transformations. We also show that for a factor map π : (X, T ) −→ (Y, S)

between minimal systems, π × π(RP[d](X)) = RP[d](Y ) which is interesting itself and also
allows us to prove that X/RP[d](X) is the maximal d-step nilfactor of (X, T ) by using some
result in [23].

Note that a subset S of Z is dynamically syndetic if there is a minimal system (X, T ), x ∈ X
and an open neighborhood U of x such that S = {n ∈ Z : T n x ∈ U }. Equivalently, S ⊂ Z
is dynamically syndetic if and only if S contains {0} and 1S is a minimal point of ({0, 1}Z, σ ),
where σ is the shift map. A subset S of Zd is syndetic if there exists a finite subset F ⊂ Zd such
that S + F = Zd . In [20, Theorem 1.5] Host and Kra proved the following result. Let A ⊂ Z
with d(A) > δ > 0 and let d ∈ N, thenn = (n1, n2, . . . , nk) ∈ Zd

: d

 
ϵ∈{0,1}d

(A + ϵ · n)


≥ δ2d


is syndetic, where d(B) denotes the upper density of B ⊂ Z.

A combinatorial consequence of our results is that if S is a dynamically syndetic subset of Z,
then for each d ≥ 1,

{n = (n1, . . . , nd) ∈ Zd
: ϵ · n = n1ϵ1 + · · · + ndϵd ∈ S, ϵi ∈ {0, 1}, 1 ≤ i ≤ d}

is syndetic. In some sense this is the topological correspondence of the above result obtained by
Host and Kra for positive upper Banach density subsets using ergodic methods.



1788 S. Shao, X. Ye / Advances in Mathematics 231 (2012) 1786–1817

In [23] the authors showed that RP[d] is an equivalence relation for minimal distal systems
without using the enveloping semigroup theory explicitly. In our situation we are forced to use the
theory. The main idea of the proof is the following. First using the structure theory of a minimal
system we show that the diagonal points acting by the face transformations are minimal, and
then we prove some equivalence conditions for a pair being regionally proximal of order d. A
key lemma here is to switch from a cubic point to a face point. Combining the minimality with
the conditions we show that RP[d] is an equivalence relation for minimal systems. Finally we
show that RP[d] can be lifted up from a factor to an extension between two minimal systems,
which implies that the factor induced by RP[d] is the maximal d-step nilfactor by using some
result in [23].

We remark that the main results of the paper can be extended to abelian group actions without
difficulty.

1.3. Historic remarks

The study of the regionally proximal relation has a long history in topological dynamics. One
of the first problems in the study of topological dynamics was to characterize the equicontinuous
structure relation Seq(X) of a system (X, T ); i.e. to find the smallest closed invariant equivalence
relation R(X) on (X, T ) such that (X/R(X), T ) is equicontinuous. A natural candidate for R(X)

is the so-called regionally proximal relation RP(X) [7]. By the definition, RP(X) is closed,
invariant, and reflexive, but not necessarily transitive. The problem was then to find conditions
under which RP(X) is an equivalence relation. It turns out to be a difficult problem. Starting with
Veech [29], various authors, including MacMahon [27], Ellis–Keynes [9], came up with various
sufficient conditions for RP(X) to be an equivalence relation. For somewhat different approach,
see [2]. Note that in our case, T : X → X being homeomorphism and (X, T ) being minimal,
RP(X) is always an equivalence relation.

In the 1970s Furstenberg gave a beautiful proof of Szemerédi’s theorem via ergodic
theory [11]. It remains a question if the multiple ergodic averages

1
N

N−1
n=0

f1(T n x) . . . fd(T dn x),

converges in L2(X, µ) for f1, . . . , fd ∈ L∞(X, µ). This question was finally answered by Host
and Kra in [20]. For the later development along the line see [32,28,3,19].

In the paper by Host–Kra [20] the authors defined for each d ∈ N and each measure-
preserving transformation on the probability space (X, B, µ) a factor Zd which is characteristic
and is an inverse limit of d-step nilsystems. Those factors have many important applications.
Since topological dynamics and ergodic theory are twins, it is natural to ask how to obtain similar
factors in topological dynamics. In the pioneer paper [23] ([24] for d = 2) the authors succeeded
doing the job for minimal distal systems. So the main results in [23] and in the current paper
can be seen as the topological correspondence of the Zd factors in ergodic theory. We note that
the counterpart of the characteristic factors in topological dynamics was also studied by Glasner
[15,16]. For applications of the main results of the paper see [4,25].

1.4. Organization of the paper

In Section 2, we introduce some basic notions used in the paper. Since we will use tools from
abstract topological dynamics, we collect basic facts about them in Appendix A. In Section 3,
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main results of the paper are discussed. The three sections followed are devoted to give proofs of
main results. Notice that lots of results obtained there have their independent interest.

2. Preliminaries

In this section we introduce notions about dynamical parallelepipeds and nilsystems etc. For
more details see [20–23].

2.1. Topological dynamical systems

A transformation of a compact metric space X is a homeomorphism of X to itself. A
topological dynamical system, referred to more succinctly as just a system, is a pair (X, T ),
where X is a compact metric space and T : X → X is a transformation. We use ρ(·, ·) to denote
the metric in X . We also make use of a more general definition of a topological system. That
is, instead of just a single transformation T , we will consider a countable abelian group of
transformations. We collect basic facts about topological dynamics under general group actions
in Appendix A.

A system (X, T ) is transitive if there exists some point x ∈ X whose orbit O(x, T ) = {T n x :
n ∈ Z} is dense in X and we call such a point a transitive point. The system is minimal if the
orbit of any point is dense in X . This property is equivalent to say that X and the empty set are
the only closed invariant sets in X .

2.2. Cubes and faces

Let X be a set, let d ≥ 1 be an integer, and write [d] = {1, 2, . . . , d}. We view {0, 1}d in one
of two ways, either as a sequence ϵ = (ϵ1, . . . , ϵd) of 0’s and 1’s; or as a subset of [d]. A subset
ϵ corresponds to the sequence (ϵ1, . . . , ϵd) ∈ {0, 1}d such that i ∈ ϵ if and only if ϵi = 1 for
i ∈ [d]. For example, 0 = (0, 0, . . . , 0) ∈ {0, 1}d is the same to ∅ ⊂ [d].

If n = (n1, . . . , nd) ∈ Zd and ϵ ∈ {0, 1}d , we define

n · ϵ =
d

i=1

niϵi .

If we consider ϵ as ϵ ⊂ [d], then n · ϵ =


i∈ϵ ni .

We denote X2d
by X [d]. A point x ∈ X [d] can be written in one of two equivalent ways,

depending on the context:

x = (xϵ : ϵ ∈ {0, 1}d) = (xϵ : ϵ ⊂ [d]).

Hence x∅ = x0 is the first coordinate of x. As examples, points in X [2] are like

(x00, x10, x01, x11) = (x∅, x{1}, x{2}, x{1,2}),

and points in X [3] are like

(x000, x100, x010, x110, x001, x101, x011, x111)

= (x∅, x{1}, x{2}, x{1,2}, x{3}, x{1,3}, x{2,3}, x{1,2,3}).

For x ∈ X , we write x [d] = (x, x, . . . , x) ∈ X [d]. The diagonal of X [d] is ∆[d] = {x [d] : x ∈
X}. Usually, when d = 1, one denotes the diagonal by ∆X or ∆ instead of ∆[1].
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A point x ∈ X [d] can be decomposed as x = (x′, x′′) with x′, x′′ ∈ X [d−1], where x′ = (xϵ0 :

ϵ ∈ {0, 1}d−1) and x′′ = (xϵ1 : ϵ ∈ {0, 1}d−1). We can also isolate the first coordinate, writing
X [d]∗ = X2d

−1 and then writing a point x ∈ X [d] as x = (x∅, x∗), where x∗ = (xϵ : ϵ ≠ ∅) ∈

X [d]∗ .
Identifying {0, 1}d with the set of vertices of the Euclidean unit cube, a Euclidean isometry

of the unit cube permutes the vertices of the cube and thus the coordinates of a point x ∈ X [d].
These permutations are the Euclidean permutations of X [d]. For details see [20].

2.3. Dynamical parallelepipeds

Definition 2.1. Let (X, T ) be a topological dynamical system and let d ≥ 1 be an integer. We
define Q[d](X) to be the closure in X [d] of elements of the form

(T n·ϵx = T n1ϵ1+···+ndϵd x : ϵ = (ϵ1, . . . , ϵd) ∈ {0, 1}d),

where n = (n1, . . . , nd) ∈ Zd and x ∈ X . When there is no ambiguity, we write Q[d] instead of
Q[d](X). An element of Q[d](X) is called a (dynamical) parallelepiped of dimension d .

It is important to note that Q[d] is invariant under the Euclidean permutations of X [d].
As examples, Q[2] is the closure in X [2] = X4 of the set

{(x, T m x, T n x, T n+m x) : x ∈ X, m, n ∈ Z}

and Q[3] is the closure in X [3] = X8 of the set

{(x, T m x, T n x, T m+n x, T px, T m+px, T n+px, T m+n+px) : x ∈ X, m, n, p ∈ Z}.

Definition 2.2. Let φ : X → Y and d ∈ N. Define φ[d] : X [d] → Y [d] by (φ[d]x)ϵ = φxϵ for
every x ∈ X [d] and every ϵ ⊂ [d].

Let (X, T ) be a system and d ≥ 1 be an integer. The diagonal transformation of X [d] is the
map T [d].

Definition 2.3. Face transformations are defined inductively as follows: Let T [0] = T , T [1]1 =

id× T . If {T [d−1]
j }

d−1
j=1 is defined already, then set

T [d]j = T [d−1]
j × T [d−1]

j , j ∈ {1, 2, . . . , d − 1},

T [d]d = id[d−1]
× T [d−1].

It is easy to see that for j ∈ [d], the face transformation T [d]j : X [d] → X [d] can be defined

by, for every x ∈ X [d] and ϵ ⊂ [d],

T [d]j x =


(T [d]j x)ϵ = T xϵ, j ∈ ϵ;

(T [d]j x)ϵ = xϵ, j ∉ ϵ.

The face group of dimension d is the group F [d](X) of transformations of X [d] spanned by the
face transformations. The parallelepiped group of dimension d is the group G[d](X) spanned by
the diagonal transformation and the face transformations. We often write F [d] and G[d] instead
of F [d](X) and G[d](X), respectively. For G[d] and F [d], we use similar notations to that used
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for X [d]: namely, an element of either of these groups is written as S = (Sϵ : ϵ ∈ {0, 1}d). In
particular, F [d] = {S ∈ G[d] : S∅ = id}.

For convenience, we denote the orbit closure of x ∈ X [d] under F [d] by F [d](x), instead of
O(x, F [d]).

It is easy to verify that Q[d] is the closure in X [d] of

{Sx [d] : S ∈ F [d], x ∈ X}.

If x is a transitive point of X , then Q[d] is the closed orbit of x [d] under the group G[d].

2.4. Nilmanifolds and nilsystems

Let G be a group. For g, h ∈ G, we write [g, h] = ghg−1h−1 for the commutator of g and
h and we write [A, B] for the subgroup spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator
subgroups G j , j ≥ 1, are defined inductively by setting G1 = G and G j+1 = [G j , G]. Let
k ≥ 1 be an integer. We say that G is k-step nilpotent if Gk+1 is the trivial subgroup.

Let G be a k-step nilpotent Lie group and Γ a discrete cocompact subgroup of G. The compact
manifold X = G/Γ is called a k-step nilmanifold. The group G acts on X by left translations
and we write this action as (g, x) → gx . The Haar measure µ of X is the unique probability
measure on X invariant under this action. Let τ ∈ G and T be the transformation x → τ x of X .
Then (X, T, µ) is called a basic k-step nilsystem. When the measure is not needed for results,
we omit it and write that (X, T ) is a basic k-step nilsystem.

We also make use of inverse limits of nilsystems and so we recall the definition of an inverse
limit of systems (restricting ourselves to the case of sequential inverse limits). If (X i , Ti )i∈N are
systems with diam(X i ) ≤ M <∞ and φi : X i+1 → X i are factor maps, the inverse limit of the
systems is defined to be the compact subset of


i∈N X i given by {(xi )i∈N : φi (xi+1) = xi , i ∈

N}, which is denoted by lim
←−
{X i }i∈N. It is a compact metric space endowed with the distance

ρ(x, y) =


i∈N 1/2i di (xi , yi ). We note that the maps {Ti } induce a transformation T on the
inverse limit.

In [23] authors characterized inverse limits of nilsystems in topological dynamics, via a
structure theorem for topological dynamical systems that is an analog of the structure theorem
for measure preserving systems [20].

Theorem 2.4 (Host–Kra–Maass [23, Theorem 1.2]). Assume that (X, T ) is a transitive
topological dynamical system and let d ≥ 2 be an integer. The following properties are
equivalent:

(1) If x, y ∈ Q[d](X) have 2d
− 1 coordinates in common, then x = y.

(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d](X), then x = y.
(3) X is an inverse limit of basic (d − 1)-step minimal nilsystems.

A transitive system satisfying either of the equivalent properties above is called a (d−1)-step
nilsystem or a system of order (d − 1).

2.5. RP[d]

For a dynamical system, the regionally proximal relation of order d, denoted by RP[d] has
been stated in the introduction. It is easy to see that RP[d] is a closed and invariant relation for
all d ∈ N. Note that

· · · ⊆ RP[d+1]
⊆ RP[d] ⊆ · · · ⊆ RP[2] ⊆ RP[1] = RP(X).
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By the definition it is easy to verify the following equivalent condition for RP[d], see [23] for
a proof.

Lemma 2.5. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Let x, y ∈ X. Then
(x, y) ∈ RP[d] if and only if there is some a∗ ∈ X [d]∗ such that (x, a∗, y, a∗) ∈ Q[d+1].

Remark 2.6. When d = 1, RP[1] is the classical regionally proximal relation. If (X, T ) is
minimal, it is easy to verify directly the following useful fact:

(x, y) ∈ RP = RP[1] ⇔ (x, x, y, x) ∈ Q[2] ⇔ (x, y, y, y) ∈ Q[2].

3. Main results

In this section we will state the main results of the paper. We remark that the main results of
the paper can be extended to abelian group actions.

3.1. F [d]-minimal sets in Q[d]

To show RP[d] is an equivalence relation we are forced to investigate the F [d]-minimal
sets in Q[d] and the equivalent conditions for RP[d]. Those are done in Theorems 3.1 and 3.4
respectively.

First recall that (Q[d], G[d]) is a minimal system, which is discussed in [23]. In our situation
we need to understand F [d]-minimal sets in Q[d]. Let (X, T ) be a system and x ∈ X . Recall that
F [d](x) = O(x, F [d]) for x ∈ X [d]. Set

Q[d][x] = {z ∈ Q[d](X) : z∅ = x}.

We can show the following theorem.

Theorem 3.1. Let (X, T ) be a minimal system and d ∈ N. Then

(1) (F [d](x [d]), F [d]) is minimal for all x ∈ X.
(2) (F [d](x [d]), F [d]) is the unique F [d]-minimal subset in Q[d][x] for all x ∈ X.

The above theorem has the following combinatorial consequence.

Corollary 3.2. Let (X, T ) be a minimal system, x ∈ X and U be an open neighborhood of x.
Put S = {n ∈ Z : T n x ∈ U }. Then for each d ≥ 1,

{(n1, . . . , nd) ∈ Zd
: n1ϵ1 + · · · + ndϵd ∈ S, ϵi ∈ {0, 1}, 1 ≤ i ≤ d}

is syndetic.

Remark 3.3. (1) To understand S better we state the following proposition whose proof is
similar to [26, Proposition 2.3]: The family of dynamically syndetic subsets is the family
generated by the sets S whose indicator functions 1S are the minimal points of ({0, 1}Z, σ )

and 0 ∈ S, where σ is the shift. Notice that a collection F of subsets of Z is a family if it is
upwards, i.e. A ∈ F and A ⊂ B imply that B ∈ F .

(2) We note that if S is a syndetic subset of Z then S − S ⊃ S1 − S1 for some dynamically
syndetic subset S1.
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3.2. RP[d] is an equivalence relation

With the help of Theorem 3.1, we can prove that RP[d] is an equivalence relation. First we
have the following equivalent conditions for RP[d].

Theorem 3.4. Let (X, T ) be a minimal system and d ∈ N. Then the following conditions are
equivalent:

(1) (x, y) ∈ RP[d];
(2) (x, y, y, . . . , y) = (x, y[d+1]

∗ ) ∈ Q[d+1];
(3) (x, y, y, . . . , y) = (x, y[d+1]

∗ ) ∈ F [d+1](x [d+1]).

Proof. (3) ⇒ (2) is obvious. (2) ⇒ (1) follows from Lemma 2.5. Hence it suffices to show
(1)⇒ (3).

Let (x, y) ∈ RP[d]. Then by Lemma 2.5 there is some a∗ ∈ X [d]∗ such that (x, a∗, y, a∗) ∈
Q[d+1]. Observe that (y, a∗) ∈ Q[d]. By Theorem 3.1-(2), there is a sequence {Fk} ⊂ F [d] such
that Fk(y, a∗)→ y[d], k →∞. Hence

Fk × Fk(x, a∗, y, a∗)→ (x, y[d]∗ , y, y[d]∗ ) = (x, y[d+1]
∗ ), k →∞.

Since Fk × Fk ∈ F [d+1] and (x, a∗, y, a∗) ∈ Q[d+1], we have that (x, y[d+1]
∗ ) ∈ Q[d+1].

By Theorem 3.1-(1), y[d+1] is F [d+1]-minimal. It follows that (x, y[d+1]
∗ ) is also F [d+1]-

minimal. Now (x, y[d+1]
∗ ) ∈ Q[d+1]

[x] is F [d+1]-minimal and by Theorem 3.1-(2), F [d+1]

(x [d+1]) is the unique F [d+1]-minimal subset in Q[d+1]
[x]. Hence we have that (x, y[d+1]

∗ ) ∈

F [d+1](x [d+1]), and the proof is completed. �

By Theorem 3.4, we have the following theorem immediately.

Theorem 3.5. Let (X, T ) be a minimal system and d ∈ N. Then RP[d](X) is an equivalence
relation.

Proof. It suffices to show the transitivity, i.e. if (x, y), (y, z) ∈ RP[d](X), then (x, z) ∈
RP[d](X). Since (x, y), (y, z) ∈ RP[d](X), by Theorem 3.4 we have

(y, x, x, . . . , x), (y, z, z, . . . , z) ∈ F [d+1](y[d+1]).

By Theorem 3.1 (F [d+1](y[d+1]), F [d+1]) is minimal, it follows that (y, z, z, . . . , z) ∈ F [d+1]

(y, x, x, . . . , x). It follows that (x, z, z, . . . , z) ∈ F [d+1](x [d+1]). By Theorem 3.4 again,
(x, z) ∈ RP[d](X). �

Remark 3.6. By Theorem 3.4 we know that in the definition of regionally proximal relation of
d , x ′ can be replaced by x . More precisely, (x, y) ∈ RP[d] if and only if for any δ > 0 there exist
y′ ∈ X and a vector n = (n1, . . . , nd) ∈ Zd such that for any nonempty ϵ ⊂ [d]

ρ(y, y′) < δ and ρ(T n·ϵx, T n·ϵ y′) < δ.

This conclusion is first given in [23] for a minimal distal system.

3.3. RP[d] and nilfactors

A subset S ⊂ Z is thick if it contains arbitrarily long runs of positive integers, i.e. there is a
subsequence {ni } of Z such that S ⊃


∞

i=1{ni , ni + 1, . . . , ni + i}.
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Let {bi }i∈I be a finite or infinite sequence in Z. One defines

F S({bi }i∈I ) =


i∈α

bi : α is a finite non-empty subset of I


.

Note when I = [d],

F S({bi }
d
i=1) =


i∈I

biϵi : ϵ = (ϵi ) ∈ {0, 1}d \ {∅}


.

F is an IP set if it contains some F S({pi }
∞

i=1), where pi ∈ Z.

Lemma 3.7. Let (X, T ) be a system. Then for every d ∈ N, the proximal relation

P(X) ⊆ RP[d](X).

Proof. Let (x, y) ∈ P(X) and δ > 0. Set

Nδ(x, y) = {n ∈ Z : ρ(T n x, T n y) < δ}.

It is easy to check Nδ(x, y) is thick and hence an IP set. From this it follows that P(X) ⊆

RP[d](X). More precisely, set F S({pi }
∞

i=1) ⊆ Nδ(x, y), then for any d ∈ N,

ρ(T p1ϵ1+···+pdϵd x, T p1ϵ1+···+pdϵd y) < δ, ϵ = (ϵ1, . . . , ϵd) ∈ {0, 1}d , ϵ ≠ (0, . . . , 0).

That is, (x, y) ∈ RP[d] for all d ∈ N. �

The following corollary was observed in [24] for d = 2.

Corollary 3.8. Let (X, T ) be a minimal system and d ∈ N. Then (X, T ) is a weakly mixing
system if and only if RP[d] = X × X.

Proof. Since a minimal system (X, T ) is weakly mixing if and only if P(X) = RP(X) = X × X
(see [1]), so the result follows from Lemma 3.7. �

We remark that more general properties for weakly mixing systems will be shown in
Theorem 3.13 in the sequel.

Proposition 3.9. Let (X, T ) be a minimal system and d ∈ N. Then RP[d] = ∆ if and only if X
is a system of order d.

Proof. It follows from Theorems 3.4 and 2.4 directly. �

3.4. Maximal nilfactors

Note that the lifting property of RP[d] between two minimal systems is obtained in the paper.
This result is new even for minimal distal systems.

Theorem 3.10. Let π : (X, T )→ (Y, T ) be a factor map and d ∈ N. Then

(1) π × π(RP[d](X)) ⊆ RP[d](Y );
(2) if (X, T ) is minimal, then π × π(RP[d](X)) = RP[d](Y ).
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Proof. (1) It follows from the definition.
(2) It will be proved in Section 6. �

Theorem 3.11. Let π : (X, T )→ (Y, T ) be a factor map of minimal systems and d ∈ N. Then
the following conditions are equivalent:

(1) (Y, T ) is a d-step nilsystem;
(2) RP[d](X) ⊂ Rπ .

Especially the quotient of X under RP[d](X) is the maximal d-step nilfactor of X, i.e. any d-step
nilfactor of X is the factor of X/RP[d](X).

Proof. Assume that (Y, T ) is a d-step nilsystem. Then we have RP[d](Y ) = ∆Y by Proposi-
tion 3.9. Hence by Theorem 3.10-(1),

RP[d](X) ⊂ (π × π)−1(∆Y ) = Rπ .

Conversely, assume that RP[d](X) ⊂ Rπ . If (Y, T ) is not a d-step nilsystem, then by Proposi-
tion 3.9, RP[d](Y ) ≠ ∆Y . Let (y1, y2) ∈ RP[d]\∆Y . Now by Theorem 3.10, there are x1, x2 ∈ X
such that (x1, x2) ∈ RP[d](X) with (π×π)(x1, x2) = (y1, y2). Since π(x1) = y1 ≠ y2 = π(x2),
(x1, x2) ∉ Rπ . This means that RP[d](X) ⊄ Rπ , a contradiction! The proof is completed. �

Remark 3.12. In [23, Proposition 4.5] it is showed that this proposition holds for minimal distal
systems.

3.5. Weakly mixing systems

In this subsection we completely determine Q[d] and F [d](x [d]) for minimal weakly mixing
systems which helps us to understand the proof of Lemma 4.4.

Theorem 3.13. Let (X, T ) be a minimal weakly mixing system and d ≥ 1. Then

(1) (Q[d], G[d]) is minimal and Q[d] = X [d];
(2) For all x ∈ X, (F [d](x [d]), F [d]) is minimal and

F [d](x [d]) = {x} × X [d]∗ = {x} × X2d
−1.

Proof. The fact that (Q[d], G[d]) is minimal and Q[d] = X [d] is followed from (2) easily. Hence
it suffices to show (2).

We will show for any point of x ∈ X [d] with x∅ = x , we have

F [d](x) = {x} × X [d]∗ ,

which obviously implies (2). First note that it is trivial for d = 1. Now we assume that (1), and
hence (2) holds for d − 1, d ≥ 2.

Let x = (x′, x′′) ∈ Q[d]. Since (X, T ) is weakly mixing, (X [d−1], T [d−1]) is transitive (see
[10]). Let a ∈ X [d−1] be a transitive point. By the induction for d−1, Q[d−1]

= X [d−1] is G[d−1]-
minimal. Hence a ∈ O(x′′, G[d−1]) and there is some sequence Fk ∈ F [d] and w ∈ X [d−1] such
that

Fkx = Fk(x′, x′′)→ (w, a), k →∞.
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Especially (w, a) ∈ F [d](x). Note that

(T [d]d )n(w, a) = (w, (T [d−1])na) ∈ F [d](x).

We have

{w} ×O(a, T [d−1]) ⊂ F [d](x).

Since a is a transitive point of (X [d−1], T [d−1]), we have

{w} × X [d−1]
= {w} ×O(a, T [d−1]) ⊂ F [d](x). (3.1)

By the induction assumption for d − 1, w is minimal for F [d−1] action and

F [d−1](w) = O(w, F [d−1]) = {x} × X [d−1]
∗ . (3.2)

By acting the elements of F [d] on (3.1), we have

O(w, F [d−1])× X [d−1]
⊂ F [d](x). (3.3)

By (3.2) and (3.3), we have

{x} × X [d−1]
∗ × X [d−1]

= {x} × X [d]∗ ⊂ F [d](x).

This completes the proof. �

Remark 3.14. Using the so-called natural extension, it can be shown that the main results of the
paper hold for continuous surjective maps.

4. F [d]-minimal sets in Q[d]

In this section we discuss F [d]-minimal sets in Q[d] and prove Theorem 3.1-(1). First we will
discuss proximal extensions, distal extensions and weakly mixing extension one by one. They
exhibit different properties and satisfy our requests by different reasons. After that, the proof of
Theorem 3.1-(1) will be given. The proof of Theorem 3.1-(2) will be given in next section. For
notions which are not mentioned before see Appendix A.

4.1. Idea of the proof of Theorem 3.1-(1)

Before going on let us say something about the idea in the proof of Theorem 3.1-(1). By the
structure Theorem A.4, for a minimal system (X, T ), we have the following diagram.

X∞
π

−−−−→ Xφ

Y∞

In this diagram Y∞ is a strictly PI system, φ is weakly mixing and RIC, and π is proximal.
So if we want to show that (F [d](x [d]), F [d]) is minimal for all x ∈ X , it is sufficient to

show it holds for X∞. By the definition of X∞ and Y∞, it is sufficient to consider the following
cases: (1) proximal extensions; (2) distal or equicontinuous extensions; (3) RIC weakly mixing
extensions and (4) the inverse limit. Since the inverse limit is easy to handle, we need only to
focus on the three kinds of extensions.
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4.2. Properties about proximal, distal and weakly mixing extensions

In this subsection we collect some properties about proximal, distal and weakly mixing
extensions, which will be used frequently in the sequel. As in Appendix A, (X, T ) is a system
under the action of a topological group T , and E(X, T ) is its enveloping semigroup.

The following two lemmas are folk results.

Lemma 4.1. Let π : (X, T )→ (Y, T ) be a proximal extension of minimal systems. Let x ∈ X,

y = π(x) and let x1, x2, . . . , xn ∈ π−1(y). Then there is some p ∈ E(X, T ) such that

px1 = px2 = · · · = pxn = x .

Especially, when x = x1, we have that (x1, x2, . . . , xn) is proximal to (x, x, . . . , x) in (Xn, T ).

Proof. This is a direct consequence of Proposition A.3. �

Lemma 4.2. Let π : (X, T ) → (Y, T ) be a distal extension of systems. Then for any x ∈ X,
if π(x) is minimal in (Y, T ), then x is minimal in (X, T ). Especially, if (Y, T ) is semi-simple
(i.e. every point is minimal), then so is (X, T ).

Proof. Let x ∈ X and y = π(x). Since y is a minimal point, by Proposition A.2 there is some
minimal idempotent u ∈ E(X, T ) such that uy = y. Then π(ux) = uπ(x) = uy = y. Hence
ux, x ∈ π−1(y). Since (ux, x) ∈ P(X, T ) (Proposition A.3) and π is distal, we have ux = x .
That is, x is a minimal point of X by Proposition A.2. �

Now we discuss weakly mixing extensions. We need Theorem 4.3, which is a generalization
of [1, Chapter 14, Theorem 28]. Note that in [18, Theorem 2.7 and Corollary 2.9] Glasner showed
that Rn

π is transitive. So Theorem 4.3 is a slight strengthening of the results in [18]. Since its proof
needs some techniques in the enveloping semigroup theory, we leave it to Appendix A.

Theorem 4.3. Let π : (X, T )→ (Y, T ) be a RIC weakly mixing extension of minimal systems,
then for all n ≥ 1 and y ∈ Y , there exists a transitive point (x1, x2, . . . , xn) of Rn

π with
x1, x2, . . . , xn ∈ π−1(y).

Note that each RIC extension is open, and π : X → Y is open if and only if Y → 2X , y →
π−1(y) is continuous, see for instance [31]. Using Theorem 4.3 we have the following lemma,
which will be used in the sequel.

Lemma 4.4. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of minimal systems.
Then for each y ∈ Y and d ≥ 1, we have

(1)

π−1(y)

[d]
=

π−1(y)

2d

⊂ Q[d](X),
(2) for all x ∈ X [d] with x∅ = x and π [d](x) = y[d]

{x} ×

π−1(y)

[d]
∗

= {x} ×

π−1(y)

2d
−1
⊂ F [d](x).

Proof. The idea of the proof is similar to Theorem 3.13. When d = 1, for any (x, x ′) ∈ X [1] =
X × X , F [1](x, x ′) = O


(x, x ′), id× T


= {x} × X and Q[1](X) = X × X . Hence the

results hold obviously. Now we show the case d = 2. Let x = (x1, x2, x3, x4) ∈ X [2] with
π [2](x1, x2, x3, x4) = y[2]. By Theorem 4.3, there is a transitive point (a, b) of (Rπ , T × T )
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with π(a) = π(b) = y. Since (X, T ) is minimal, there is some sequence {ni } ⊂ Z such that
T ni x3 → a, i → ∞. Without loss of generality, assume that T ni x4 → x ′4, i → ∞ for some
x ′4 ∈ X . Since π(a) = y, π(x ′4) = y too. So

(id× id× T × T )ni (x1, x2, x3, x4)→ (x1, x2, a, x ′4), i →∞. (4.1)

Since (X, T ) is minimal, there is some sequence {mi } ⊂ Z such that T mi x ′4 → b, i → ∞.
Without loss of generality, assume that T mi x2 → x ′2, i →∞ for some x ′2 ∈ X . Since π(b) = y,
π(x ′2) = y too. So

(id× T × id× T )mi (x1, x2, a, x ′4)→ (x1, x ′2, a, b), i →∞. (4.2)

Hence by (4.1) and (4.2),

(x1, x ′2, a, b) ∈ F [2](x). (4.3)

Thus for all n ∈ Z,

(x1, x ′2, T na, T nb) = (id× id× T × T )n(x1, x ′2, a, b) ∈ F [2](x).

Since (a, b) is a transitive point of (Rπ , T × T ), it follows that

{x1} × {x
′

2} × π−1(y)× π−1(y) ⊂ {x1} × {x
′

2} × Rπ ⊂ F [2](x). (4.4)

Now we show that

{x1} × π−1(y)× π−1(y)× π−1(y) = {x1} × (π−1(y))3
⊂ F [2](x). (4.5)

For any z ∈ π−1(y), there is a sequence ki ⊂ Z such that T ki x ′2 → z, i → ∞. Thus
T ki y = T ki π(x ′2) = π(T ki x ′2) → π(z) = y, i → ∞. Since π is open, we have T ki π−1(y) =

π−1(T ki y)→ π−1(y), i →∞ in the Hausdorff metric. Thus

{x1} × {z} × π−1(y)2
⊂ ∪

∞

i=1(id× T × id× T )ki ({x1} × {x ′2} × π−1(y)2) ⊂ F [2](x).

Since z is arbitrary, we have (4.5). Similarly, we have

π−1(y)

4
⊂ Q[2](X) and we are done for

d = 2.
Now assume we have (1) and (2) for d−1 already, and show the case for d. Let x ∈ X [d] with

x∅ = x and π [d](x) = y[d].

Let x = (x′, x′′). Since π is weakly mixing, (R2d−1

π , T [d−1]) is transitive. By Theorem 4.3

there is a ∈ R2d−1

π which is a transitive point of (R2d−1

π , T [d−1]) and π [d−1](a) = y[d−1]. Without
loss of generality, we may assume that a∅ = x ′′

∅
(i.e. the first coordinate of a is equal to that of

x′′), otherwise we may use the face transformation id[d−1]
×T [d−1] to find some point in F [d](x)

satisfying this property.
By the induction assumption for d − 1,

a ∈ {x ′′
∅
} ×


π−1(y)

2d−1
−1
⊂ F [d−1](x′′).

Hence there is some sequence Fk ∈ F [d−1] and w ∈ X [d−1] such that

Fk × Fk(x) = Fk × Fk(x′, x′′)→ (w, a), k →∞.
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Especially (w, a) ∈ F [d](x). Since π [d](x) = y[d] and π [d−1](a) = y[d−1], it is easy to verify
that π [d−1](w) = y[d−1] and w∅ = x . Note that

(T [d]d )n(w, a) = (w, (T [d−1])na) ∈ F [d](x).

We have

{w} ×O(a, T [d−1]) ⊂ F [d](x).

And so

{w} ×

π−1(y)

2d−1

⊂ {w} × R2d−1

π = {w} ×O(a, T [d−1]) ⊂ F [d](x). (4.6)

By the induction assumption for d − 1, for w we have

{x} ×

π−1(y)

2d−1
−1
⊂ F [d−1](w). (4.7)

Hence for all z ∈ {x} ×

π−1(y)

2d−1
−1

, there is some sequence {Hk} ⊂ F [d−1] such that

Hkw→ z, k →∞. Since π is open, similar to the proof of (4.5), we have that Hk

π−1(y)

2d−1

→

π−1(y)

2d−1

, k →∞. Hence

Hk × Hk

{w} ×


π−1(y)

2d−1
→ {z} ×


π−1(y)

2d−1

, k →∞.

Since Hk × Hk ∈ F [d] and z ∈ {x} ×

π−1(y)

2d−1
−1

is arbitrary, it follows from (4.6) that

{x} ×

π−1(y)

2d−1
−1
×


π−1(y)

2d−1

= {x} ×

π−1(y)

2d
−1
⊂ F [d](x).

Now by this fact it is easy to get

π−1(y)

[d]
=

π−1(y)

2d

⊂ Q[d](X). So (1) and (2) hold for
the case d . This completes the proof. �

In fact with a small modification of the above proof one can show that R2d

π ⊂ Q[d](X). We

do not know if {x} × R2d
−1

π ⊂ F [d](x).

4.3. Proof of Theorem 3.1-(1)

A subset S ⊆ Z is a central set if there exists a system (X, T ), a point x ∈ X and a minimal
point y ∈ X proximal to x , and a neighborhood Uy of y such that N (x, Uy) ⊂ S, where
N (x, Uy) = {n ∈ Z : T n x ∈ Uy}. It is known that any central set is an IP-set [12, Proposition
8.10].

Proposition 4.5. Let π : (X, T ) → (Y, T ) be a proximal extension of minimal systems and
d ∈ N. If (F [d](y[d]), F [d]) is minimal for all y ∈ Y , then (F [d](x [d]), F [d]) is minimal for all
x ∈ X.

Proof. It is sufficient to show that for any x ∈ F [d](x [d]), we have x [d] ∈ F [d](x). Let y = π(x).
Then by the assumption (F [d](y[d]), F [d]) is minimal. Note that π [d] : (F [d](x [d]), F [d]) →
(F [d](y[d]), F [d]) is a factor map. Especially there is some y ∈ F [d](y[d]) such that π [d](x) = y.
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Since y ∈ F [d](y[d]) and (F [d](y[d]), F [d]) is minimal, there is some sequence Fk ∈ F [d]
such that

Fky→ y[d], k →∞.

Without loss of generality, we may assume that

Fkx→ z, k →∞. (4.8)

Then π [d](z) = limk π [d](Fkx) = limk Fky = y[d]. That is,

zϵ ∈ π−1(y), ∀ϵ ∈ {0, 1}d .

Since π is proximal, by Lemma 4.1 there is some p ∈ E(X, T ) such that

pzϵ = px = x, ∀ϵ ∈ {0, 1}d .

That is, pz = x [d] = px [d], i.e. z is proximal to x [d] under the action of T [d]. Since x [d] is
T [d]-minimal, for any neighborhood U of x [d],

NT [d](z, U) = {n ∈ Z : (T [d])nz ∈ U}

is a central set and hence contains some IP set F S({pi }
∞

i=1). Particularly,

F S({pi }
d
i=1) ⊆ NT [d](z, U).

This means for all ϵ ∈ {0, 1}d \ {0},

(T [d])p·ϵz ∈ U,

where p = (p1, p2, . . . , pd) ∈ Zd . Especially,

(T p·ϵzϵ)ϵ∈{0,1}d ∈ U.

In other words, we have

(T [d]1 )p1(T [d]2 )p2 . . . (T [d]d )pd z ∈ U.

Since U is arbitrary, we have that x [d] ∈ F [d](z). Combining with (4.8), we have

x [d] ∈ F [d](x).

Thus (F [d](x [d]), F [d]) is minimal. This completes the proof. �

Proposition 4.6. Let π : (X, T )→ (Y, T ) be a distal extension of minimal systems and d ∈ N.
If (F [d](y[d]), F [d]) is minimal for all y ∈ Y , then (F [d](x [d]), F [d]) is minimal for all x ∈ X.

Proof. It follows from Lemma 4.2, since it is easy to check that π [d] : (F [d](x [d]), F [d]) →
(F [d](y[d]), F [d]) is a distal extension. �

Proposition 4.7. Let π : (X, T )→ (Y, T ) be a RIC weakly mixing extension of minimal systems
and d ∈ N. If (F [d](y[d]), F [d]) is minimal for all y ∈ Y , then (F [d](x [d]), F [d]) is minimal for
all x ∈ X.

Proof. It is sufficient to show that for any x ∈ F [d](x [d]), we have x [d] ∈ F [d](x). Let y = π(x).
Then by the assumption (F [d](y[d]), F [d]) is minimal. Note that π [d] : (F [d](x [d]), F [d]) →
(F [d](y[d]), F [d]) is a factor map. Let y ∈ F [d](y[d]) such that π [d](x) = y.
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Since y ∈ F [d](y[d]) and (F [d](y[d]), F [d]) is minimal, there is some sequence Fk ∈ F [d]
such that

Fky→ y[d], k →∞.

Without loss of generality, we may assume that

Fkx→ z, k →∞. (4.9)

Then π [d](z) = limk π [d](Fkx) = limk Fky = y[d]. By Lemma 4.4

x [d] ∈ {x} ×

π−1(y)

2d
−1
⊂ F [d](z).

Together with (4.9), we have x [d] ∈ F [d](x). This completes the proof. �

Proof of Theorem 3.1-(1). By the structure Theorem A.4, we have the following diagram,
where Y∞ is a strictly PI-system, φ is RIC weakly mixing extension and π is proximal.

X∞
π

−−−−→ Xφ

Y∞
Since the inverse limit of minimal systems is minimal, it follows from Propositions 4.5 and

4.6 that the result holds for Y∞. By Proposition 4.7 it also holds for X∞. Since the factor of a
minimal system is always minimal, it is easy to see that we have the theorem for X . �

4.4. Minimality of (Q[d], G[d])

We will need the following theorem mentioned in [23], where no proof is included. We give a
proof (due to Glasner–Ellis) here for completeness. Note one can also prove this result using the
method in the previous subsection.

Proposition 4.8. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Let A be a T [d]-
minimal subset of X [d] and set N = O(A, F [d]) = cl


{S A : S ∈ F [d]}


. Then (N , G[d]) is a

minimal system, and F [d]-minimal points are dense in N.

Proof. The proof is similar to the one in [17]. Let E = E(N , G[d]) be the enveloping semigroup
of (N , G[d]). Let πϵ : N → X be the projection of N on the ϵ-th component, ϵ ∈ {0, 1}d . We
consider the action of the group G[d] on the ϵ-th component via the representation T [d] → T and

T [d]j →


T, j ∈ ϵ;

id, j ∉ ϵ.

With respect to this action of G[d] on X the map πϵ is a factor map πϵ : (N , G[d])→ (X, G[d]).
Let π∗ϵ : E(N , G[d]) → E(X, G[d]) be the corresponding homomorphism of enveloping semi-
groups. Notice that for this action of G[d] on X clearly E(X, G[d]) = E(X, T ) as subsets of X X .

Let now u ∈ E(N , T [d]) be any minimal idempotent in the enveloping semigroup of
(N , T [d]). Choose v a minimal idempotent in the closed left ideal E(N , G[d])u. Then vu = v.
Set for each ϵ ∈ {0, 1}d , uϵ = π∗ϵ u and vϵ = π∗ϵ v. We want to show that also uv = u. Note
that as an element of E(N , G[d]) is determined by its projections, thus it suffices to show that for
each ϵ ∈ {0, 1}d , uϵvϵ = uϵ .
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Since for each ϵ ∈ {0, 1}d the map π∗ϵ is a semigroup homomorphism, we have vϵuϵ = vϵ as
vu = v. In particular we deduce that vϵ is an element of the minimal left ideal of E(X, T ) which
contains uϵ . In turn this implies

uϵvϵ = uϵvϵuϵ = uϵ;

and it follows that indeed uv = u. Thus u is an element of the minimal left ideal of E(N , G[d])
which contains v, and therefore u is a minimal idempotent of E(N , G[d]).

Now let x be an arbitrary point in A and let u ∈ E(N , T [d]) be a minimal idempotent
with ux = x . By the above argument, u is also a minimal idempotent of E(N , G[d]), whence
N = O(A, F [d]) = O(x, G[d]) is G[d]-minimal.

Finally, we show F [d]-minimal points are dense in N . Let B ⊆ N be an F [d]-minimal subset.
Then O(B, T [d]) =


{(T [d])n B : n ∈ Z} is a G[d]-invariant subset of N . Since (N , G[d]) is

minimal, O(B, T [d]) is dense in N . Note that every point in O(B, T [d]) is F [d]-minimal, hence
the proof is completed. �

Setting A = ∆[d] we have the following.

Corollary 4.9. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. Then (Q[d], G[d]) is
a minimal system, and F [d]-minimal points are dense in Q[d].

5. Proof of Theorem 3.1-(2)

In this section we prove Theorem 3.1-(2). That is, we show that (F [d](x [d]), F [d]) is the
unique F [d]-minimal subset in Q[d][x] for all x ∈ X .

5.1. A useful lemma

The following lemma is a key step to show the uniqueness of minimal sets in Q[d][x] for
x ∈ X . Unlike the case when (X, T ) is minimal distal, we need to use the enveloping semigroup
theory.

Lemma 5.1. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. If (x [d−1], w) ∈

Q[d](X) for some w ∈ X [d−1] and it is F [d]-minimal, then

(x [d−1], w) ∈ F [d](x [d]).

Proof. Since (x [d−1], w) ∈ Q[d](X) and (Q[d], G[d]) is a minimal system by Corollary 4.9,
(x [d−1], w) is in the G[d]-orbit closure of x [d], i.e. there are sequences {nk}k, {n1

k}k, . . . , {n
d
k }k ⊆

Z such that

(T [d]d )nk (T [d]1 )n1
k . . . (T [d]d−1)

nd−1
k (T [d])nd

k (x [d−1], x [d−1])→ (x [d−1], w), k →∞.

Let

ak = (T [d−1]
1 )n1

k . . . (T [d−1]
d−1 )nd−1

k (T [d−1])nd
k (x [d−1]),

then the above limit can be rewritten as

(T [d]d )nk (ak, ak) = (id[d−1]
× T [d−1])nk (ak, ak)→ (x [d−1], w), k →∞. (5.1)
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Let

π1 : (X [d], F [d])→ (X [d−1], F [d]), (x′, x′′) → x′,

π2 : (X [d], F [d])→ (X [d−1], F [d]), (x′, x′′) → x′′,

be projections to the first 2d−1 coordinates and last 2d−1 coordinates respectively. For π1 we
consider the action of the group F [d] on X [d−1] via the representation T [d]i → T [d−1]

i for

1 ≤ i ≤ d − 1 and T [d]d → id[d−1]. For π2 we consider the action of the group F [d] on X [d−1]

via the representation T [d]i → T [d−1]
i for 1 ≤ i ≤ d − 1 and T [d]d → T [d−1].

Denote the corresponding semigroup homomorphisms of enveloping semigroups by

π∗1 : E(X [d], F [d])→ E(X [d−1], F [d]), π∗2 : E(X [d], F [d])→ E(X [d−1], F [d]).

Notice that for this action of F [d] on X [d−1] clearly

π∗1 (E(X [d], F [d])) = E(X [d−1], F [d−1]) and π∗2 (E(X [d], F [d])) = E(X [d−1], G[d−1])

as subsets of (X [d−1])X [d−1]
. Thus for any p ∈ E(X [d], F [d]) and x ∈ X [d], we have

px = p(x′, x′′) = (π∗1 (p)x′, π∗2 (p)x′′).

Now fix a minimal left ideal L of E(X [d], F [d]). By (5.1), ak → x [d−1], k → ∞. Since
(Q[d−1](X), G[d−1]) is minimal, there exists pk ∈ L such that ak = π∗2 (pk)x [d−1]. Without loss
of generality, we assume that pk → p ∈ L. Then

π∗2 (pk)x [d−1]
= ak → x [d−1] and π∗2 (pk)x [d−1]

→ π∗2 (p)x [d−1].

Hence

π∗2 (p)x [d−1]
= x [d−1]. (5.2)

Since L is a minimal left ideal and p ∈ L, by Proposition A.1 there exists a minimal idempo-
tent v ∈ J (L) such that vp = p. Then we have

π∗2 (v)x [d−1]
= π∗2 (v)π∗2 (p)x [d−1]

= π∗2 (vp)x [d−1]
= π∗2 (p)x [d−1]

= x [d−1].

Let

F = G(F [d−1](x [d−1]), x [d−1]) = {α ∈ vL : π∗2 (α)x [d−1]
= x [d−1]

}

be the Ellis group. Then F is a subgroup of the group vL. By (5.2), we have that p ∈ F .
Since F is a group and p ∈ F , we have

pFx [d] = Fx [d] ⊂ π−1
2 (x [d−1]). (5.3)

Since vx [d] ∈ Fx [d], there is some x0 ∈ Fx [d] such that vx [d] = px0. Set xk = pkx0. Then

xk = pkx0 → px0 = vx [d] = (π∗1 (v)x [d−1], x [d−1]), k →∞,

and

π2(xk) = π2(pkx0) = π∗2 (pk)x [d−1]
= ak → x [d−1], k →∞.

Let xk = (bk, ak) ∈ F [d](x [d]). Then limk bk = π∗1 (v)x [d−1].
By (5.1), we have (T [d−1])nk ak → w, k →∞. Hence

(id[d−1]
× T [d−1])nk (bk, ak) = (bk, (T [d−1])nk ak)→ (π∗1 (v)x [d−1], w), k →∞. (5.4)
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Since id[d−1]
× T [d−1]

= T [d]d ∈ F [d] and (bk, ak) ∈ F [d](x [d]), we have

(π∗1 (v)x [d−1], w) ∈ F [d](x [d]). (5.5)

Since (x [d−1], w) is F [d] minimal by assumption, by Proposition A.2 there is some minimal
idempotent u ∈ J (L) such that

u(x [d−1], w) = (π∗1 (u)x [d−1], π∗2 (u)w) = (x [d−1], w).

Since u, v ∈ L are minimal idempotents in the same minimal left ideal L, we have uv = u by
Proposition A.1. Thus

u(π∗1 (v)x [d−1], w) = (π∗1 (u)π∗1 (v)x [d−1], π∗2 (u)w)

= (π∗1 (uv)x [d−1], w) = (π∗1 (u)x [d−1], w) = (x [d−1], w).

By (5.5), we have

(x [d−1], w) ∈ F [d](x [d]).

The proof is completed. �

5.2. Proof of Theorem 3.1-(2)

Let (X, T ) be a system and x ∈ X . Recall

Q[d][x] = {z ∈ Q[d](X) : z∅ = x}.

With the help of Lemma 5.1 we have the following.

Proposition 5.2. Let (X, T ) be a minimal system and let d ≥ 1 be an integer. If x ∈ Q[d][x],
then

x [d] ∈ F [d](x).

Especially, (F [d](x [d]), F [d]) is the unique F [d]-minimal subset in Q[d][x].

Proof. It is sufficient to show the following claim:

S(d): If x ∈ Q[d][x], then there exists a sequence Fk ∈ F [d] such that Fk(x)→ x [d].
The case S(1) is trivial. To make the idea clear, we show the case d = 2. Let (x, a, b, c) ∈

Q[2](X). We may assume that (x, a, b, c) is F [2]-minimal, or we replace it by some F [2]-minimal
point in its F [2] orbit closure. Since (X, T ) is minimal, there is a sequence {nk} ⊂ Z such that
T nk a→ x . Without loss of generality we assume T nk c→ c′. Then we have

(T [2]1 )nk (x, a, b, c) = (id× T × id× T )nk (x, a, b, c)→ (x, x, b, c′), k →∞.

Since (x, a, b, c) is F [2]-minimal, (x, x, b, c′) is also F [2]-minimal. By Lemma 5.1,
(x, x, b, c′) ∈ F [2](x [2]). Together with id×T × id×T = T [2]1 ∈ F [2] and the minimality of the

system (F [2](x [2]), F [2]) (Theorem 3.1-(1)), it is easy to see there exists a sequence Fk ∈ F [2]
such that Fk(x, a, b, c)→ x [2]. Hence we have S(2).

Now we assume S(d) holds for d ≥ 1. Let x ∈ Q[d+1]
[x]. We may assume that x is

F [d+1]-minimal, or we replace it by some F [d+1]-minimal point in its F [d+1]-orbit closure. Let
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x = (x′, x′′), where x′, x′′ ∈ X [d]. Then x′ ∈ Q[d][x]. By S(d), there is a sequence Fk ∈ F [d]
such that Fkx′→ x [d]. Without loss of generality, we assume that Fkx′′→ w, k →∞. Then

(Fk × Fk)x = (Fk × Fk)(x′, x′′)→ (x [d], w) ∈ Q[d+1](X), k →∞.

Since Fk × Fk ∈ F [d+1] and x is F [d+1]-minimal, (x [d], w) is also F [d+1]-minimal. By
Lemma 5.1, (x [d], w) ∈ F [d+1](x [d+1]). Since (F [d+1](x [d+1]), F [d+1]) is minimal by Theo-
rem 3.1-(1), we have x [d+1] is in the F [d+1]-orbit closure of x. Hence we have S(d + 1), and the
proof of claim is completed.

Since x [d] ∈ F [d](x) for all x ∈ Q[d][x] and (F [d](x [d]), F [d]) is minimal, it is easy to
see that (F [d](x [d]), F [d]) intersects all F [d]-minimal sets in Q[d][x] and hence it is the unique
F [d]-minimal set in Q[d][x]. The proof is completed. �

6. Lifting RP[d] from factors to extensions

In this section, first we give some equivalent conditions for RP[d], and give the proof of
Theorem 3.10-(2), i.e. lifting RP[d] from factors to extensions.

6.1. Equivalent conditions for RP[d]

In this subsection we collect some equivalent conditions for RP[d].

Proposition 6.1. Let (X, T ) be a minimal system and d ∈ N. Then the following conditions are
equivalent:

(1) (x, y) ∈ RP[d];
(2) (x, y, y, . . . , y) = (x, y[d+1]

∗ ) ∈ F [d+1](x [d+1]);

(3) (x, x [d]∗ , y, x [d]∗ ) ∈ F [d+1](x [d+1]).

Proof. By Theorem 3.4, we have (1) ⇔ (2). By Lemma 2.5 we have (3) ⇒ (1). Now show
(2)⇒ (3).

If (2) holds, then (x, y, y, . . . , y) = (x, y[d+1]
∗ ) ∈ F [d+1](x [d+1]) and (x, y) ∈ RP[d].

Since (x, y) ∈ RP[d] ⊂ RP[d−1], (x, y[d]∗ ) ∈ F [d](x [d]). By Theorem 3.1, (F [d](x [d]), F [d])
is minimal. So there is some sequence Fk ∈ F [d] such that Fk(x, y[d]∗ )→ x [d], k →∞. Then

Fk × Fk(x, y[d]∗ , y, y[d]∗ )→ (x, x [d]∗ , y, x [d]∗ ), k →∞.

Thus we have (3), and the proof is completed. �

Lemma 6.2. Let (X, T ) be a minimal system. Then (x, y) ∈ RP[d](X) if and only if (x, x, . . . ,

x, y) ∈ Q[d+1].

Proof. If (x, y) ∈ RP[d], then by Proposition 6.1, we have (x, x [d]∗ , y, x [d]∗ ) = (x [d], y, x [d]∗ ) ∈

Q[d+1]. Since Q[d+1] is invariant under the Euclidean permutation of X [d+1], we have
(x, x, . . . , x, y) ∈ Q[d+1].

Conversely, assume that (x, x, . . . , x, y) ∈ Q[d+1]. Since Q[d+1] is invariant under the Eu-
clidean permutation of X [d+1], we have (x, x [d]∗ , y, x [d]∗ ) ∈ Q[d+1]. This means that (x, y) ∈

RP[d] by Lemma 2.5. �
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6.2. Lifting RP[d] from factors to extensions

In this section we will show Theorem 3.10-(2). First we need a lemma.

Lemma 6.3. Let π : (X, T )→ (Y, T ) be an extension of minimal systems. If (y1, y2) ∈ P(Y, T )

and x1 ∈ π−1(y1) then there exists x2 ∈ π−1(y2) such that (x1, x2) ∈ P(X, T ).

Proof. Since (y1, y2) ∈ P(Y, T ), by Proposition A.3 there is a minimal idempotent u ∈ E(X, T )

such that uy1 = uy2 = y2. Let x2 = ux1, then π(x2) = uy1 = y2. By Proposition A.3
(x1, x2) ∈ P(X, T ) and π × π(x1, x2) = (y1, y2). �

Theorem 6.4. Let π : (X, T ) → (Y, T ) be an extension of minimal systems. If (y1, y2) ∈

RP[d](Y ), then there is (x1, x2) ∈ RP[d](X) such that

π × π(x1, x2) = (y1, y2).

Proof. First we claim that it is sufficient to show the result when (y1, y2) is a minimal point of
(Y × Y, T × T ). As a matter of fact, by Proposition A.3 there is a minimal point (y′1, y′2) ∈
O((y1, y2), T × T ) such that (y′1, y′2) is proximal to (y1, y2). Now (y′1, y′2) is minimal and
(y′1, y′2) ∈ RP[d](Y ). If we have the claim already, then there is (x ′1, x ′2) ∈ RP[d](X) with
π × π(x ′1, x ′2) = (y′1, y′2). Since (y1, y′1), (y2, y′2) ∈ P(Y, T ), then by Lemma 6.3 there are
x1, x2 ∈ X with π × π(x1, x2) = (y1, y2) such that (x ′1, x1), (x ′2, x2) ∈ P(X, T ). This implies
that (x1, x2) ∈ RP[d](X) by Theorem 3.5. Hence we have the result for the general case.

So we may assume that (y1, y2) is a minimal point of (Y × Y, T × T ). Since the case d = 2
illustrates the idea of the proof better, we start from d = 2 (see Fig. 2). For the case d = 1, see
Fig. 1.

Let (y1, y2) ∈ RP[2](Y ), then by Proposition 6.1,

(y[2]1 , y2, (y[2]1 )∗) = (y1, y1, y1, y1, y2, y1, y1, y1) ∈ F [3](y[3]1 ).

So there is some sequence Fk ∈ F [3] such that

Fk y[3]1 → (y[2]1 , y2, (y[2]1 )∗), k →∞.

Take a point x1 ∈ π−1(y1). Without loss of generality, we may assume that

Fk x [3]1 → x = (x000, x100, x010, x110, x001, x101, x011, x111), k →∞.

Then x∅ = x000 = x1 and π [3](x) = (y[2]1 , y2, (y[2]1 )∗). Obviously, x ∈ F [3](x [3]1 ).
By Proposition 5.2, there is some sequence F1

k ∈ F [2] such that

F1
k (x000, x100, x010, x110)→ x [2]1 = (x1, x1, x1, x1), k →∞.

We may assume that

F1
k (x001, x101, x011, x111)→ (x001, x ′101, x ′011, x ′111), k →∞.

Note that π [2](x001, x101, x011, x111) = π [2](x001, x ′101, x ′011, x ′111) = (y2, (y[2]1 )∗). Since F1
k ×

F1
k is an element of the group generated by T [3]1 and T [3]2 which is in F [3], one has that

(x1, x1, x1, x1, x001, x ′101, x ′011, x ′111) ∈ F [3](x [3]1 ).
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Fig. 1. The case d = 1.

Fig. 2. The case d = 2.

By Proposition 5.2, there is some sequence F2
k ∈ F [2] such that

F2
k (x1, x1, x001, x ′101)→ x [2]1 = (x1, x1, x1, x1), k →∞.

We may assume that

F2
k (x1, x1, x ′011, x ′111)→ (x1, x1, x ′′011, x ′′111), k →∞.
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Let π [2](x1, x1, x ′′011, x ′′111) = (y1, y1, y3, y1) for some y3 ∈ Y . It is easy to see that (y3, y1)

∈ O((y1, y2), T × T ). Let F2
k = (g1

k , g2
k , g3

k , g4
k ). Since (g1

k , g2
k , g1

k , g2
k , g3

k , g4
k , g3

k , g4
k ) is an

element of the group generated by T [3]1 and T [3]3 which is in F [3], one has that

(x1, x1, x1, x1, x1, x1, x ′′011, x ′′111) ∈ F [3](x [3]1 ).

Again by Proposition 5.2, there is some sequence F3
k ∈ F [2] such that

F3
k (x1, x1, x1, x ′′011)→ x [2]1 = (x1, x1, x1, x1), k →∞.

We may assume that

F3
k (x1, x1, x1, x ′′111)→ (x1, x1, x1, x ′′′111), k →∞.

Let π [2](x1, x1, x1, x ′′′111) = (y1, y1, y1, y4) for some y4 ∈ Y . The it is easy to see that (y1, y4) ∈

O((y3, y1), T × T ), and hence (y1, y4) ∈ O((y1, y2), T × T ). Let F3
k = ( f 1

k , f 2
k , f 3

k , f 4
k ). Then

( f 1
k , f 1

k , f 2
k , f 2

k , f 3
k , f 3

k , f 4
k , f 4

k ) is an element of the group generated by T [3]2 and T [3]3 which is
in F [3], and one has that

(x1, x1, x1, x1, x1, x1, x1, x ′′′111) ∈ F [3](x [3]1 ).

By Lemma 6.2, (x1, x ′′′111) ∈ RP[d](X).
Since (y1, y2) is T × T -minimal, there is some {nk} ⊂ Z such that (T × T )nk (y1, y4) →

(y1, y2), k →∞. Without loss of generality, we assume that

(T × T )nk (x1, x ′′′111)→ (z1, z2), k →∞.

Since RP[d](X) is closed and invariant, we have

(z1, z2) ∈ O((x1, x ′′′111), T × T ) ⊂ RP[d](X).

And

π × π(z1, z2) = lim
k

(T × T )nk (π(x1), π(x ′′′111)) = lim
k

(T × T )nk (y1, y4) = (y1, y2).

This ends the proof of the case d = 2.
The idea of the proof in the general case is the following. For a point x ∈ F [d+1](x1) we

apply face transformations Fk
1 such that the first 2d -coordinates of x1 = lim Fk

1 x will be x [d]1 .
Then apply face transformations Fk

2 such that the first 2d
+ 2d−1-coordinates of x2 = lim Fk

2 x1

will be (x [d]1 , x [d−1]
1 ). Repeating this process we get a point ((x [d+1]

1 )∗, x2) ∈ F [d+1](x1) which
implies that (x1, x2) ∈ RP[d](X). Then we use the same idea used in the proof when d = 1, 2 to
trace back to find (z1, z2). Here are the details.

Let (y1, y2) ∈ RP[d](Y ), then by Proposition 6.1, (y[d]1 , y2, (y[d]1 )∗) ∈ F [d+1](y[d+1]
1 ). So

there is some sequence Fk ∈ F [d+1] such that

Fk y[d+1]
1 → (y[d]1 , y2, (y[d]1 )∗), k →∞.

Take a point x1 ∈ π−1(y1). Without loss of generality, we may assume that

Fk x [d+1]
1 → x, k →∞. (6.1)

Then x∅ = x1 and π [d+1](x) = (y[d]1 , y2, (y[d]1 )∗).
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Let xI = (xϵ : ϵ(d+1) = 0) ∈ X [d] and xII = (xϵ : ϵ(d+1) = 1) ∈ X [d]. Then x = (xI, xII).
Note that

π [d](xI) = π [d](x [d]1 ) = y[d]1 , and π [d](xII) = (y2, (y[d]1 )∗).

By Proposition 5.2, there is some sequence F1
k ∈ F [d] such that

F1
k (xI)→ x [d]1 , k →∞.

We may assume that

F1
k (xII)→ xII

′, k →∞.

Note that π [d](xII) = π [d](x′II) = (y2, (y[d]1 )∗).
Let F1

k = (Sk
ϵ′
: ϵ′ ∈ {0, 1}d) and H1

k = (Sk
ϵ : ϵ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ϵ : ϵ ∈ {0, 1}d+1, ϵ(d + 1) = 0) = (Sk

ϵ : ϵ ∈ {0, 1}d+1, ϵ(d + 1) = 1) = F1
k .

Then

H1
k (x) = F1

k × F1
k (xI, xII)→ (x [d]1 , xII

′) , x1
∈ F [d+1](x [d+1]

1 ), k →∞.

Let y1
= π [d+1](x1). It is easy to see that x1

ϵ = x1 if ϵ(d+1) = 0. For y1, y1
{d+1} = y1

00...01 = y2

and y1
ϵ = y1 for all ϵ ≠ {d + 1}.

Let x1
I = (xϵ : ϵ ∈ {0, 1}d+1, ϵ(d) = 0) ∈ X [d] and x1

II = (xϵ : ϵ ∈ {0, 1}d+1, ϵ(d) = 1) ∈

X [d]. By Proposition 5.2, there is some sequence F2
k ∈ F [d] such that

F2
k (x1

I )→ x [d]1 , F2
k (x1

II)→ x1
II
′
, k →∞

and π [d](x1
II
′
) = (y[d−1]

1 , y3, (y[d−1]
1 )∗) for some y3 ∈ Y .

Let F2
k = (Sk

ϵ′
: ϵ′ ∈ {0, 1}d) and H2

k = (Sk
ϵ : ϵ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ϵ : ϵ ∈ {0, 1}d+1, ϵ(d) = 0) = (Sk

ϵ : ϵ ∈ {0, 1}d+1, ϵ(d) = 1) = F2
k .

Then

H2
k (x1)→ x2

∈ F [d+1](x [d+1]
1 ), k →∞.

Consider y2
= π [d+1](x2). Then H2

k (y1) → y2, k → ∞. From this one has that (y3, y1) ∈

O((y1, y2), T × T ). By the definition of x2, y2, it is easy to see that x2
ϵ = x1 if ϵ(d + 1) = 0 or

ϵ(d) = 0; y2
{d,d+1} = y2

00...011 = y3 and y2
ϵ = y1 for all ϵ ≠ {d, d + 1}.

Now assume that we have xj
∈ F [d+1](x [d+1]

1 ) for 1 ≤ j ≤ d with π [d+1](xj) = yj such that

x j
ϵ = x1 if there exists some k with d− j+2 ≤ k ≤ d+1 such that ϵ(k) = 0; y j

{d− j+2,...,d,d+1} =

y j+1 and y j
ϵ = y1 for all ϵ ≠ {d − j + 2, . . . , d, d + 1}, and (y j+1, y1) ∈ O((y1, y j ), T × T ).

Let xj
I = (xϵ : ϵ ∈ {0, 1}d+1, ϵ(d − j + 1) = 0) ∈ X [d] and xj

II = (xϵ : ϵ ∈ {0, 1}d− j+1,

ϵ(d − j + 1) = 1) ∈ X [d]. By Proposition 5.2, there is some sequence F j+1
k ∈ F [d] such that

F j+1
k (xj

I)→ x [d]1 , F j+1
k (xj

II)→ xj
II
′

, k →∞.

Let F j+1
k = (Sk

ϵ′
: ϵ′ ∈ {0, 1}d) and H j+1

k = (Sk
ϵ : ϵ ∈ {0, 1}d+1) ∈ F [d+1] such that

(Sk
ϵ : ϵ ∈ {0, 1}d+1, ϵ(d − j + 1)= 0)= (Sk

ϵ : ϵ ∈ {0, 1}d+1, ϵ(d − j + 1)= 1)= F j+1
k .



1810 S. Shao, X. Ye / Advances in Mathematics 231 (2012) 1786–1817

Then

H j+1
k (xj)→ xj+1

∈ F [d+1](x [d+1]
1 ), k →∞.

It is easy to see that x j+1
ϵ = x1 if there exists some k with d − j + 1 ≤ k ≤ d + 1 such that

ϵ(k) = 0.
Let yj+1

= π [d+1](xj+1). Then y j+1
ϵ = y1 for all ϵ ≠ {d − j + 1, d − j + 2, . . . , d + 1}, and

denote y j
{d− j+1,d− j+2,...,d+1} = y j+2. Note that H2

k (yj) → yj+1, k → ∞. From this one has

that (y j+2, y1) ∈ O((y1, y j+1), T × T ).
Inductively we get x1, . . . , xd+1 and y1, . . . , yd+1 such that for all 1 ≤ j ≤ d + 1xj

∈

F [d+1](x [d+1]
1 ) with π [d+1](xj) = yj. And x j

ϵ = x1 if there exists some k with d − j + 2 ≤ k ≤

d+1 such that ϵ(k) = 0; y j
{d− j+2,...,d,d+1} = y j+1 and y j

ϵ = y1 for all ϵ ≠ {d− j+2, . . . , d, d+

1}, and (y j+1, y1) ∈ O((y1, y j ), T × T ).
For xd+1, we have that xd+1

ϵ = x1 if there exists some k with 1 ≤ k ≤ d + 1 such that
ϵ(k) = 0. That means there is some x2 ∈ X such that

xd+1
= (x1, x1, . . . , x1, x2) ∈ F [d+1](x [d+1]

1 ).

By Lemma 6.2, (x1, x2) ∈ RP[d](X). Note that π(x2) = yd+2.
Since (y j+1, y1) ∈ O((y1, y j ), T × T ) for all 1 ≤ j ≤ d + 1, we have (yd+2, y1) ∈

O((y1, y2), T × T ) or (y1, yd+2) ∈ O((y1, y2), T × T ). Without loss of generality, we assume
that (y1, yd+2) ∈ O((y1, y2), T × T ). Since (y1, y2) is T × T -minimal, there is some {nk} ⊂ Z
such that (T × T )nk (y1, yd+2)→ (y1, y2), k →∞. Without loss of generality, we assume that

(T × T )nk (x1, x2)→ (z1, z2), k →∞.

Since RP[d](X) is closed and invariant, we have

(z1, z2) ∈ O((x1, x2), T × T ) ⊂ RP[d](X).

And

π × π(z1, z2) = lim
k

(T × T )nk (π(x1), π(x2)) = lim
k

(T × T )nk (y1, yd+2) = (y1, y2).

The proof is completed. �
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Appendix A. Basic facts about abstract topological dynamics

In Appendix A we recall some basic definitions and results in abstract topological systems,
which are used in the article. For more details, see [1,5,14,17,30,31].
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A.1. Topological transformation groups

A topological dynamical systems is a triple X = (X, T ,Π ), where X is a compact T2 space,
T is a T2 topological group and Π : T × X → X is a continuous map such that Π (e, x) = x
and Π (s,Π (t, x)) = Π (st, x). We shall fix T and suppress the action symbol. In lots of papers,
X is also called a topological transformation group or a flow. Usually we omit Π and denote a
system by (X, T ).

Let (X, T ) be a system and x ∈ X , then O(x, T ) denotes the orbit of x , which is also denoted
by T x . A subset A ⊆ X is called invariant if ta ⊆ A for all a ∈ A and t ∈ T . When Y ⊆ X is a
closed and T -invariant subset of the system (X, T ) we say that the system (Y, T ) is a subsystem
of (X, T ). If (X, T ) and (Y, T ) are two dynamical systems their product system is the system
(X × Y, T ), where t (x, y) = (t x, t y).

A system (X, T ) is called minimal if X contains no proper closed invariant subsets. (X, T ) is
called transitive if every invariant open subset of X is dense. An example of an transitive system
is a point-transitive system, which is a system with a dense orbit. It is easy to verify that a system
is minimal iff every orbit is dense. The system (X, T ) is weakly mixing if the product system
(X × X, T ) is transitive.

A homomorphism (or extension) of systems π : (X, T ) → (Y, T ) is a continuous onto map
of the phase spaces such that π(t x) = tπ(x) for all t ∈ T , x ∈ X . In this case one says that
(Y, T ) is a factor of (X, T ) and also that (X, T ) is an extension of (Y, T ). Define

Rπ = {(x1, x2) : π(x1) = π(x2)},

then Y = X/Rπ . For n ≥ 2, define

Rn
π = {(x1, x2, . . . , xn) ∈ Xn

: π(x1) = π(x2) = · · · = π(xn)},

and let R1
π = X .

A.2. Enveloping semigroups

Given a system (X, T ) its enveloping semigroup or Ellis semigroup E(X, T ) is defined as
the closure of the set {t : t ∈ T } in X X (with its compact, usually non-metrizable, pointwise
convergence topology). For an enveloping semigroup, E → E : p → pq and p → tp is
continuous for all q ∈ E and t ∈ T . Note that (X X , T ) is a system and (E(X, T ), T ) is its
subsystem.

Let (X, T ), (Y, T ) be systems and π : X → Y be an extension. Then there is a unique con-
tinuous semigroup homomorphism π∗ : E(X, T ) → E(Y, T ) such that π(px) = π∗(p)π(x)

for all x ∈ X, p ∈ E(X, T ). When there is no confusion, we usually regard the enveloping
semigroup of X as acting on Y : pπ(x) = π(px) for x ∈ X and p ∈ E(X, T ).

A.3. Idempotents and ideals

For a semigroup the element u with u2
= u is called an idempotent. Ellis–Numakura Theorem

says that for any enveloping semigroup E the set J (E) of idempotents of E is not empty [5]. A
non-empty subset I ⊂ E is a left ideal (resp. right ideal) if it E I ⊆ I (resp. I E ⊆ I ). A minimal
left ideal is the left ideal that does not contain any proper left ideal of E . Obviously every left
ideal is a semigroup and every left ideal contains some minimal left ideal.
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An idempotent u ∈ J (E) is minimal if v ∈ J (E) and vu = v implies uv = u. The following
results are well-known [6,13]: let L be a left ideal of enveloping semigroup E and u ∈ J (E).
Then there is some idempotent v in Lu such that uv = v and vu = v; an idempotent is minimal
if and only if it is contained in some minimal left ideal.

Minimal left ideals have very rich algebraic properties. For example, we have the following
proposition.

Proposition A.1. Let I be a minimal left ideal, then

(1) I =


u∈J (I ) uI is its partition and every u I is a group with identity u ∈ J (I ).
(2) For all u, v ∈ J (I ), one has that uv = u and vu = v.

A useful result about minimal point is as follows:

Proposition A.2. Let I be a minimal left ideal. A point x ∈ X is minimal if and only if ux = x
for some u ∈ I .

A.4. Universal point transitive system and universal minimal system

For fixed T , there exists a universal point-transitive system ST = (ST , T ) such that T can
densely and equivariantly be embedded in ST . The multiplication on T can be extended to a
multiplication on ST , then ST is a closed semigroup with continuous right translations. The
universal minimal system M = (M, T ) is isomorphic to any minimal left ideal in ST and M is
a closed semigroup with continuous right translations. Hence J = J (M) of idempotents in M
is nonempty. Moreover, {vM : v ∈ J } is a partition of M and every vM is a group with unit
element v. Sometimes if there are chances of being confused then we will use MT instead of M.

The sets ST and M act on X as semigroups and ST x = T x , while for a minimal system
(X, T ) we have Mx = T x = X for every x ∈ X . A necessary and sufficient condition for x to
be minimal is that ux = x for some u ∈ J .

A.5. All kinds of extensions

Two points x1 and x2 are called proximal iff

T (x1, x2) ∩∆X ≠ ∅.

Let U X be the unique uniform structure of X , then

P = P(X, T ) =


T α : α ∈ U X


is the collection of proximal pairs in X , the proximal relation.

Proposition A.3. Let (X, T ) be a system. Then

(1) x1, x2 are proximal in (X, T ) iff px1 = px2 for some p ∈ E(X, T ).
(2) If x ∈ X and u is an idempotent in E(X, T ), then (x, ux) ∈ P.
(3) If x ∈ X, then there is an minimal point x ′ ∈ O(x, T ) such that (x, x ′) ∈ P.
(4) If (X, T ) is minimal, then (x, y) ∈ P if and only if there is some minimal idempotent u ∈ E

(X, T ) such that y = ux.

The extension π : (X, T )→ (Y, T ) is called proximal iff Rπ ⊆ P iff Pπ =

{T α∩Rπ : α ∈

U X } = Rπ . π is distal if Pπ = ∆X . An extension π : X → Y of systems is called equicontinuous



S. Shao, X. Ye / Advances in Mathematics 231 (2012) 1786–1817 1813

or almost periodic if for every α ∈ U X there is β ∈ U X such that T α∩Rπ ⊆ β. In the metric case
an equicontinuous extension is also called an isometric extension. The extension π is a weakly
mixing extension when (Rπ , T ) as a subsystem of the product system (X × X, T ) is transitive.

A.6. Vietoris topology and circle operation

Let 2X be the collection of nonempty closed subsets of X endowed with the Vietoris topology.
Note that a base for the Vietoris topology on 2X is formed by the sets

⟨U1, U2, . . . , Un⟩ = {A ∈ 2X
: A ⊆

n
i=1

Ui and A ∩Ui ≠ ∅ for every i},

where Ui is open in X . Then (2X , T ) defined by t A = {ta : a ∈ A} is a system again, and ST
acts on 2X too. To avoid ambiguity we denote the action of ST on 2X by the circle operation as
follows. Let p ∈ ST and D ∈ 2X , then define p ◦ D = lim2X ti D for any net {ti }i in T with
ti → p. Moreover

p ◦ D = {x ∈ X : there are di ∈ D with x = lim
i

ti di }

for any net ti → p in ST . We always have pD ⊆ p ◦ D.

A.7. Ellis group

The group of automorphisms of (M, T ), G = Aut(M, T ) can be identified with any one of
the groups uM (u ∈ J ) as follows: with α ∈ uM we associate the automorphism α̂ : (M, T )→

(M, T ) given by right multiplication α̂(p) = pα, p ∈M. The group G plays a central role in the
algebraic theory. It carries a natural T1 compact topology, called by Ellis the τ -topology, which
is weaker than the relative topology induced on G = uM as a subset of M.

It is convenient to fix a minimal left ideal M in ST and an idempotent u ∈ M. As explained
above we identify G with uM and for any subset A ⊆ G, τ -topology is determined by

clτ A = u(u ◦ A) = G ∩ (u ◦ A).

Also in this way we can consider the “action” of G on every system (X, T ) via the action of ST
on X. With every minimal system (X, T ) and a point x0 ∈ u X = {x ∈ X : ux = x} we associate
a τ -closed subgroup

G(X, x0) = {α ∈ G : αx0 = x0}

the Ellis group of the pointed system (X, x0).
For a homomorphism π : X → Y with π(x0) = y0 we have

G(X, x0) ⊆ G(Y, y0).

It is easy to see that uπ−1(y0) = G(Y, y0)x0.
For a τ -closed subgroup F of G the derived group H(F) = F ′ is given by

H(F) = F ′ =


clτ O : O is a τ -open neighborhood of u in F

.

H(F) is a τ -closed normal subgroup of F and it is characterized as the smallest τ -closed
subgroup H of F such that F/H is a compact Hausdorff topological group.
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A.8. Structure of minimal systems

Let π : (X, T ) → (Y, T ) be a homomorphism of minimal systems with x0 ∈ X and y0 =

π(x0) ∈ Y . We say that π is a RIC (relatively incontractible) extension if for every y = py0 ∈ Y ,
p an element of M,

π−1(y) = p ◦ uπ−1(y0) = p ◦ Fx0,

where F = G(Y, y0). One can show that the extension π : X → Y is RIC if and only if it is
open and for every n ≥ 1 the minimal points are dense in the relation Rn

π . Note that every distal
extension is RIC. It then follows that every distal extension is open.

We say that a minimal system (X, T ) is a strictly PI system if there is an ordinal η (which is
countable when X is metrizable) and a family of systems {(Wι, wι)}ι≤η such that (i) W0 is the
trivial system, (ii) for every ι < η there exists a homomorphism φι : Wι+1 → Wι which is either
proximal or equicontinuous (isometric when X is metrizable), (iii) for a limit ordinal ν ≤ η the
system Wν is the inverse limit of the systems {Wι}ι<ν , and (iv) Wη = X . We say that (X, T ) is a
PI-system if there exists a strictly PI system X̃ and a proximal homomorphism θ : X̃ → X .

We have the structure theorem for minimal systems, which we will state in its relative form
(Ellis–Glasner–Shapiro [8], Veech [30], and Glasner [14]).

Theorem A.4 (Structure Theorem for Minimal Systems). Given a homomorphism π : X → Y
of minimal dynamical system, there exists an ordinal η (countable when X is metrizable) and a
canonically defined commutative diagram (the canonical PI-Tower)

X

π

��

X0
θ∗0oo

π0

��

σ1

  @@
@@

@@
@@

X1
θ∗1oo

π1

��

··· Xν

πν

��

σν+1

!!DD
DD

DD
DD

Xν+1

πν+1

��

θ∗
ν+1oo ··· Xη = X∞

π∞

��
Y Y0

θ0

oo Z1ρ1
oo Y1

θ1

oo ··· Yν Zν+1ρν+1
oo Yν+1

θν+1

oo ··· Yη = Y∞

where for each ν ≤ η, πν is RIC, ρν is isometric, θν, θ
∗
ν are proximal and π∞ is RIC and

weakly mixing of all orders. For a limit ordinal ν, Xν, Yν, πν etc. are the inverse limits (or
joins) of X ι, Yι, πι etc. for ι < ν. Thus X∞ is a proximal extension of X and a RIC weakly
mixing extension of the strictly PI-system Y∞. The homomorphism π∞ is an isomorphism (so
that X∞ = Y∞) if and only if X is a PI-system.

Appendix B. Proof of Theorem 4.3

First we need the so-called Ellis trick in [14]. Refer to [14, Lemma X.6.1] for the proof.
See [18] for more discussions about weakly mixing extensions. Recall that M is the universal
minimal set.

Lemma B.1 (Ellis Trick). Let F be τ closed subgroup of G acting on M by right multiplication,
M× F →M, (p, α) → pα.

(1) there is a minimal idempotent ω ∈ J (M) ∩ F such that ωF is F-minimal.
(2) if V is a open subset of wF, then intτ clτ (V ∩ wF) ≠ ∅.
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Lemma B.2. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of minimal systems
and u ∈ J (M) be a minimal idempotent. Let x ∈ u X, y = π(x). Then for all n ≥ 2, any
nonempty open subset U of uπ−1(y) and any transitive point x ′ = (x ′1, . . . , x ′n−1) ∈ Rn−1

π with

π(x ′j ) = y, j = 1, . . . , n − 1, we have T ({x ′} ×U ) = Rn
π .

Proof. Note that we have H(F)A = F , where F = G(Y, y), A = G(X, x), since π is weakly
mixing.

Claim.

{ux ′} × π−1(y) ⊂ T ({x ′} ×U ).

Proof of the Claim. Set V = {p ∈ F : px ∈ U }. Then V is a nonempty open set of F and by
Ellis trick we have V = intτ clτ (V ∩ F) ≠ ∅. By the definition of H(F), there exists α ∈ F such
that αH(F) ⊆ clτV .

Since F = AH(F) = H(F)A, we have

T ({x ′} ×U ) ⊇ u ◦ ({x ′} ×U ) ⊇ u ◦ ({x ′} × V x)

⊇ {ux ′} × u(u ◦ V )x ⊇ {ux ′} × u(u ◦ (V ∩ F))x

= {ux ′} × clτ (V ∩ F)x ⊇ {ux ′} × clτV x

⊇ {ux ′} × αH(F)x = {ux ′} × αH(F)Ax

= {ux ′} × αFx = {ux ′} × Fx .

Since π is RIC, we have u ◦ Fx = π−1(y). Hence

T ({x ′} ×U ) ⊇ u ◦ ({ux ′} × Fx) = {ux ′} × π−1(y).

This ends the proof of the claim. �
Now it is easy to see that T ({x ′} ×U ) = Rn

π . Let (x1, x2) ∈ Rn
π , where x1 ∈ Rn−1

π .
Since x ′ is a transitive point of Rn−1

π , there exists a p ∈ ST such that px ′ = x1. Then x2 ∈

π−1(py) = p ◦ π−1(y). Thus

(x1, x2) ∈ {px ′} × p ◦ π−1(y) ⊆ T ({ux ′} × π−1(y)) ⊆ T ({x ′} ×U ).

Thus we have Rn
π = T ({x ′} ×U ). �

Theorem B.3. Let π : (X, T ) → (Y, T ) be a RIC weakly mixing extension of minimal metric
systems and y ∈ Y . Then for all n ≥ 1, there exists a transitive point (x1, x2, . . . , xn) of Rn

π with
x1, x2, . . . , xn ∈ π−1(y).

Proof. It is obvious for the case when n = 1, since R1
π = X . Now assume it is true for n − 1

(n ≥ 2). Fix a transitive point x ′ = (x1, x2, . . . , xn−1) ∈ Rn−1
π with x1, x2, . . . , xn−1 ∈ π−1(y).

Assume that y ∈ uY for some minimal idempotent u ∈ J (M).
For each ϵ > 0, define

Vϵ = {x ∈ uπ−1(y) : T (x ′, x) is ϵ-dense in Rn
π }.

It is easy to verify that Vϵ is open. Now we show that Vϵ is dense in uπ−1(y). For any

Λ ⊆ Xn, z ∈ Xn, δ > 0, Λ
δ
∼ z is defined by ρ(z, z′) < δ,∀z′ ∈ Λ.

Now let {z1, z2, . . . , zn} be an ϵ-net of Rn
π , i.e. for each z ∈ Rn

π there is some z j ( j ∈

{1, 2, . . . , n}) such that ρ(z, z j ) < ϵ. Let U be an open subset of wπ−1(y). By Lemma B.2,
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T ({x ′} ×U ) = Rn
π . So there are some open subset U1 ⊇ U and t1 ∈ T such that t1({x ′}×U1)

ϵ
∼

z1. Again, by Lemma B.2, T ({x ′} ×U1) = Rn
π . So there are an open subset U2 ⊇ U1 and t2 ∈ T

such that t2({x ′} × U2)
ϵ
∼ z2. Inductively, we have a sequence U1 ⊇ U2 ⊇ · · · ⊇ Un (relatively

open) and t1, . . . , tn ∈ T such that t j ({x ′}×Un)
ϵ
∼ z j ,∀ j ∈ {1, 2, . . . , n}. Hence Un ⊆ Vϵ . This

means that Vϵ is dense in uπ−1(y).
Let Γ =


∞

n=1 V1/n . Then Γ is a residual set of uπ−1(y), and for all x ∈ Γ , we have T (x ′, x)

= Rn
π . In particular, there exists a transitive point (x1, x2, . . . , xn) of Rn

π with x1, x2, . . . , xn ∈

π−1(y). The proof is completed. �
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