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Abstract

We show that the adjunction counits of a Fourier–Mukai transform Φ : D(X1) → D(X2) arise from
maps of the kernels of the corresponding Fourier–Mukai transforms. In a very general setting of proper
separable schemes of finite type over a field we write down these maps of kernels explicitly – facilitating
the computation of the twist (the cone of an adjunction counit) of Φ. We also give another description of
these maps, better suited to computing cones if the kernel of Φ is a pushforward from a closed subscheme
Z ⊂ X1 × X2. Moreover, we show that we can replace the condition of properness of the ambient spaces
X1 and X2 by that of Z being proper over them and still have this description apply as is. This can be used,
for instance, to compute spherical twists on non-proper varieties directly and in full generality.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The bounded derived category D(X) of coherent sheaves on a variety X had long been
recognized as a crucial invariant of X which holds a wealth of information about its geometry.
In order to work conveniently with functors between the derived categories of two varieties the
language of Fourier–Mukai transforms was developed by Mukai, Bondal and Orlov, Bridgeland
and many others. In brief, we can define a functor D(X1) → D(X2) by specifying an object
in the derived category of D(X1 × X2). A morphism between such defining objects induces
a natural transformation between the functors. In this paper we write down the adjunction
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counit of a general Fourier–Mukai transform in this language — as morphisms of defining
objects.

Let X1 and X2 be a pair of smooth projective varieties. We have the following commutative
diagram:

X1 × X2 × X1
π12

wwooooooooooo
π13

��

π23

''OOOOOOOOOOO

X1 × X2
π1

zzvvvvvvvvv
π2

''OOOOOOOOOOOOO X1 × X1

π̃1

tthhhhhhhhhhhhhhhhhhhhhh

π̃2

**VVVVVVVVVVVVVVVVVVVVVV X2 × X1

π2

wwooooooooooooo
π1

$$HHHHHHHHH

X1 X2 X1

(1.1)

Let E ∈ D(X1 × X2). The Fourier–Mukai transform from X1 to X2 with kernel E is the
functor

ΦE (−) = π2∗

E ⊗ π∗1 (−)


. (1.2)

Here and throughout the paper all the functors are derived unless mentioned otherwise. It is
well-known (e.g. [4], Lemma 1.2) that the left adjoint of ΦE is the Fourier–Mukai transform
from D(X2) to D(X1) with kernel E∨ ⊗ π !1(O X1) where π !1(O X1) = π∗2 (ωX2)[dim X2]. Denote

this adjoint by Φlad j
E . A composition of Fourier–Mukai transforms is again a Fourier–Mukai

transform ([15], Prop. 1.3). In particular, Φlad j
E ΦE is the Fourier–Mukai transform D(X1) →

D(X1) with kernel

Q = π13∗


π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)


. (1.3)

On the other hand, the identity functor Id is the Fourier–Mukai transform D(X1)→ D(X1) with
kernel O∆ = ∆∗O X1 where ∆ is the diagonal inclusion X1 ↩→ X1 × X1.

Consider now the left adjunction counit

Φlad j
E ΦE → Id . (1.4)

In general, morphisms between Fourier–Mukai kernels map neither injectively nor surjectively to
natural transformations between the Fourier–Mukai transforms. Thus there is no a priori reason
for (1.4) to come from some morphism Q → O∆. In this paper we construct explicitly a natural
choice of such morphism, working in a much greater generality of separated schemes of finite
type over a field.

The principal application is to compute, and even define, spherical twists. These are an
important class of auto-equivalences of the derived category D(X) of a variety X . They are first
examples of genuinely derived auto-equivalences, in a sense that they are neither shifts, nor come
from auto-equivalences of the underlying abelian category Coh X . In brief, a spherical twist is
an auto-equivalence of D(X) produced from a spherical object in D(X) or, more generally, a
spherical functor D(Y ) → D(X). Spherical objects were introduced by Seidel and Thomas
in [21] as mirror symmetry analogues of Lagrangian spheres on a symplectic manifold. Their
defining properties ensure that the twist by a spherical object is an auto-equivalence of D(X).
This was generalized in [2] to exact functors between triangulated categories in such a way that
Seidel–Thomas spherical objects are precisely the (Fourier–Mukai kernels of) spherical functors
D(Spec k)→ D(X), where k is the base field.
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Taking the twist of a functor is completely general and does not in itself rely on the fact that
the functor is spherical. The ideal definition would be the following:

“Definition”: Let C1 and C2 be triangulated categories. Let S be an exact functor C1 → C2
which has a right (resp. left) adjoint R (resp. L). The twist (resp. the dual co-twist) of S is the
functor TS : C2 → C2 (resp. F ′S : C1 → C1) which is the functorial cone of the adjunction counit
S R→ Id (resp. L S→ Id).

The problem with this definition is the well-known fact that cones in triangulated categories
are not functorial. The cone of a morphism between two objects is uniquely defined (up to an
isomorphism), but a cone of a morphism between two functors might not exist or might not
be unique. This is usually fixed by restricting to a setting where the cone of a morphism of
functors is well-defined, cf. [2], Section 1. One way is to consider only the functors which are
Fourier–Mukai transforms and only the natural transformations which come from morphisms of
Fourier–Mukai kernels. But then to define a twist of a Fourier–Mukai transform we need a natural
choice of the morphism of Fourier–Mukai kernels underlying the corresponding adjunction
counit, while to compute the twist we need an efficient way of computing the cone of this
morphism. This paper addresses both of these issues.

The construction of the natural morphism of Fourier–Mukai kernels underlying the adjunction
counit of a general Fourier–Mukai transform is carried out in Section 3. Thanks to the recent
advances in Grothendieck duality machinery summarized in Section 2 we can work with
separated schemes of finite type over a field and with derived categories Dqc(−) of unbounded
complexes with quasi-coherent cohomology. So let X1 and X2 be two separated schemes of finite
type, E a perfect object of D(X1 × X2) and ΦE the Fourier–Mukai transform D(X1)→ D(X2)

with kernel E . Let X2 be proper, so that the left adjoint Φlad j
E of ΦE is again a Fourier–Mukai

transform. Then the left adjunction counit Φlad j
E ΦE → Id is induced by the morphism

Q = π13∗

π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)

→ O∆ which roughly is the composition of the

following:

π13∗


The adjunction unit Id→ ∆13∗∆

∗
13 for the diagonal X1 × X2

∆13
−−→ X1 × X2 × X1


(1.5)

∆∗π1∗

The evaluation map E ⊗ E∨ → O X1×X2 on X1 × X2


(1.6)

∆∗


The adjunction counit π1∗π

!

1(O X1)→ O X1


. (1.7)

For the precise formulas see Theorem 3.1. When X1 is also proper ΦE , Φlad j
E and

(1.5)–(1.7) restrict to the full subcategories of Dqc(−) consisting of bounded complexes with
coherent cohomologies. If X2 is smooth π !1(O X1) = π∗2 (ωX2)[dim X2] as before. Theorem 3.2
give the analogous result for the right adjunction counit.

This allows us to define the twist and the dual co-twist of any Fourier–Mukai transform.
Section 4 deals with the issue of computing them. Anyone trying to compute the cone of
the decomposition (1.5)–(1.7) will find it ill-suited to the task if the support of E has high
codimension in X1 × X2. We give an example in Section 4.1 with E the structure sheaf O Z of
a complete intersection subscheme Z in X1 × X2 of codimension d > 0 which satisfies certain
transversality conditions. Then morphisms (1.5) and (1.6) both have huge cones with non-zero
cohomologies in all degrees from −d to 0. However these two cones mostly annihilate each
other and the cone of composition (1.5)–(1.6) is actually quite small. This suggests an alternative
decomposition of (1.5)–(1.6) better suited to computing cones, cf. (4.4).
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In the rest of Section 4 we make this into a general argument. The key idea is to take the
decomposition (1.5)–(1.7) obtained in Section 3 and apply to it the base change for Künneth

maps. If E is a pushforward of an object from a closed subscheme Z
ιZ
↩→ X1 × X2, then the

evaluation map E ⊗ E∨→ O X1×X2 involves the derived self-intersection of Z inside X1 × X2.
In precise terms, it involves the Künneth map (see Section 4.3 for the definition) for the fiber
square σ∆ depicted on the left in (1.8):

σ∆ :

Z

��

// Z

ιZ

��
Z

ιZ

// X1 × X2

Restriction to X1 × X2
∆13
−−→ X1 × X2 × X1

←−−−−−−−−−−−−−−−−−−−−−−−− σ :

Z ′

��

// X1 × Z

ιZ23

��
Z × X1 ιZ12

// X1 × X2 × X1

(1.8)

Thus in (1.5)–(1.6) we first restrict fiber square σ to the diagonal X1 × X2 in X1 × X2 × X1
which turns it into σ∆ and then we do the Künneth map on σ∆. Given two subschemes, the
cone of the Künneth map for the fiber square of their intersection reflects, roughly, how far this
intersection is from transverse. In σ∆ we have the self-intersection of Z in X1 × X2 which is
the opposite of transverse. This suggests first doing the Künneth map on σ , as the intersection
of Z × X1 with X1 × Z in X1 × X2 × X1 may be more transverse, and then restricting to the
diagonal Z in Z ′.

Write πZ1 for the composition Z
ιZ
↩→ X1 × X2

π1
−→ X1. In Proposition 4.4 we prove that

Künneth maps commute with arbitrary base change. Then in Theorem 4.1 we show that the
composition (1.5)–(1.7) is isomorphic to roughly the following (cf. Theorem 4.1 for precise
formulas):

π13∗ (The Künneth map for σ) (1.9)

π13∗ιZ ′∗


The adjunction unit Id→ ∆′∗∆

′∗ for the diagonal Z
∆′
−→ Z ′


(1.10)

∆∗πZ1∗ (The evaluation map for E on Z) (1.11)

∆∗


The adjunction counit πZ1∗π
!

Z1(O X1)→ O X1


. (1.12)

This is our preferred decomposition of morphism Q → O∆. Theorem 4.2 gives the analogous
statement for the right adjunction counit.

One advantage of decomposition (1.9)–(1.12) is that most of the morphisms in it can become
isomorphisms under fairly reasonable assumptions on E and Z . Indeed, while the Künneth map
for square σ∆ is never an isomorphism unless Z is the whole of X1 × X2, the Künneth map
for σ is an isomorphism whenever the intersection of Z × X1 with X1 × Z in X1 × X2 × X1
is transverse. The evaluation map for E on Z is an isomorphism whenever E is a line bundle
or any invertible object of D(Z). The adjunction counit in (1.12) is an isomorphism whenever
Z

πZ1
−−→ X1 is such that πZ1∗O Z = O X1 , e.g. Z is a blowup of X1 or a Fano fibration over it. This

allows for a number of scenarios where the twist or the dual co-twist of ΦE can be written down
fairly easily, as we demonstrate in Corollary 4.5.

Another advantage of decomposition (1.9)–(1.12) is that it moves the action away from
ambient spaces X1 × X2 × X1 and X1 × X2 to their subschemes Z ′ and Z . This allows us
to replace the assumption of X2 being proper by the assumption of Z being proper over X1 and
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X2 (see Theorem 4.1). Something to be appreciated by those who want to do spherical twists on
non-compact varieties, e.g. total spaces of cotangent bundles of projective varieties.

Finally, in Section 5 we give an example of an explicit computation using Theorem 4.1. We
consider the naive derived category transform induced by a Mukai flop. This transform is not
an equivalence — it was proved by Namikawa in [17] by direct comparison of Hom spaces. We
demonstrate how its dual co-twist can be computed quickly and efficiently by our methods.

2. Preliminaries

Let k be an algebraically closed field of characteristic 0. The level of generality we choose to
work at in the main body of this paper is that of separated schemes of finite type over k. These
assumptions are necessary for the Grothendieck duality machinery which ensures that the direct
image functor in the definition of a Fourier–Mukai transform has a right adjoint. Without them
we cannot expect a general Fourier–Mukai transform to have a right and a left adjoint.

Some of the auxiliary results we prove along the way hold in a greater generality than the
one above. We would like to think of these results as being of potential interest to others who
find themselves in an unfortunate situation of having to show a complicated diagram of derived
functors to commute. We try therefore to state these results in maximal generality they hold at.

By a ringed space we always mean a commutative ringed space. By a concentrated map of
schemes we mean a map which is quasi-compact and quasi-separated. A scheme X is said to be
concentrated if it is concentrated over Spec Z. If Y is a concentrated scheme, then a map X → Y
is concentrated if and only if X is concentrated [6, Section 1.2].

We make frequent use of a notion of a perfect map of schemes X
f
−→ Y , cf. [8, Section 4].

For maps of finite type between noetherian schemes f is perfect if and only if it is of finite
Tor-dimension, i.e. the derived functor of f ∗ is cohomologically bounded.

Given an adjoint pair of functors (F, G), by the right adjoint with respect to F of some
natural transformation F H1 → H2, we mean the natural transformation H1 → G H2 induced by
the adjunction. Similarly, by the left adjoint with respect to G of some H1 → G H2 we mean the
F H1 → H2 induced by the adjunction.

Throughout the paper we employ a variety of Greek letters to denote an assortment of natural
maps which exist between compositions of standard derived functors. These are defined at length
over the course of Sections 2.1–2.3, but for the convenience of our readers we have also compiled
a brief index:

α f

the projection formula
f∗A ⊗ B → f∗(A ⊗ f ∗B) (2.28)

β f Id→ f∗ f ∗ (2.22)

γ f f ∗ f∗→ Id (2.22)

δ f

the sheafified Grothendieck duality
f∗ R HomX (A, f ×B)→ R HomY ( f∗A, B) (2.31)

ϵ f f∗ f ×→ Id (2.30)

ζg, f f ∗g∗
∼
−→ (g ◦ f )∗ (2.18)

ηg, f (g ◦ f )∗
∼
−→ g∗ f∗ (2.17)

θA,B A −→ R HomX (R HomX (A, B) , B) (2.14)

θE E → E∨∨ (2.15)

κ f f∗A ⊗ f∗B → f∗(A ⊗ B) (2.27)
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κσ

the Künneth map
f1∗(A1)⊗ f2∗(A2)→ h∗


g∗1 (A1)⊗ g∗2 (A2)


(4.9)

λ f Id→ f × f∗ (2.30)

µσ

the base change
g∗ f∗→ f ′∗g

′∗ (2.34)

ν f f ∗(A ⊗ B)
∼
−→ f ∗(A)⊗ f ∗B (2.24)

ξ R HomX (A, B)⊗ C → R HomX (A, B ⊗ C) (2.10)

ξE E∨ ⊗ (−)
∼
−→ R HomX (E,−) (2.12)

ρ (A ⊗ B)⊗ C
∼
−→ A ⊗ (B ⊗ C) (2.7)

τ f f∗ R HomX ( f ∗A, B)
∼
−→ R HomY (A, f∗B) (2.21)

υA R Hom(A ⊗ B, C)
∼
−→ R Hom(B, R Hom(A, C)) (2.8)

χ f f ×A ⊗ f ∗B → f ×(A ⊗ B) (2.32)

2.1. Derived categories and derived functors

Let X be a scheme or a ringed space. We denote by D(O X -Mod) the unbounded derived
category of the abelian category O X -Mod. We denote by Dqc(X) (resp. D(X)) the full
subcategory of O X -Mod consisting of complexes with quasi-coherent (resp. bounded and
coherent) cohomology. We denote by Dperf(X) the full subcategory of D(X) consisting of the
objects which are locally quasi-isomorphic to a bounded complex of free O X -modules of finite
rank.

For a reference text on derived categories and derived functors we recommend [7], for the
traditional approach, and [13], for a more modern approach. One should also mention the
expositions in [10] and [19]. A key feature of the modern approach is that thanks to the results
of [20] we can now work freely with unbounded complexes. The authors of this paper adhere to
a general principle that wherever possible general results on derived functors and isomorphisms
between them should first be proved in the setting of Dqc(−), and then shown to restrict to the
usual setting of D(−) where applicable.

All the functors in this paper are assumed to be derived, unless specifically mentioned
otherwise. With two exceptions listed below we suppress all the usual R’s and L’s and use
the same notation for the derived functor as for its abelian category counterpart. Below we
summarize basic facts about the derived functors we make use of.

Let X be a ringed space. The derived tensor product functor exists as a functor

(−)⊗ (−) : D(O X -Mod)× D(O X -Mod)→ D(O X -Mod)

and always restricts to a functor Dqc(X)× Dqc(X)→ Dqc(X) [13, Section 2.5]. For X a locally
noetherian scheme and for A ∈ Dperf(X) the functor A⊗− restricts to a functor D(X)→ D(X)

[7, Prop. II.4.3]. Similarly, for any n ∈ Z the derived tensor product functor in n variables
(−)⊗· · ·⊗(−) exists as a functor from the product of n copies of D(O X -Mod) into D(O X -Mod)

[13, Section 2.5.9].
The derived functor of the functor HomX (−,−) of taking the global Hom space between two

O X -modules exists as a functor

R HomX (−,−) : D(O X -Mod)opp
× D(O X -Mod)→ D(Γ (O X )-Mod),

see [13, Section 2.4]. We make an exception and do not suppress ‘R’ here in order to differentiate
the object R HomX (A, B) in D(Γ (O X )-Mod) from the morphism space HomD(X)(A, B).
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Similarly, the derived functor of the sheafified Hom functor Hom X (−,−) exists as a functor

R Hom X (−,−) : D(O X -Mod)opp
× D(O X -Mod)→ D(O X -Mod).

We do not suppress ‘R’ here to emphasize the relation with R HomX . If X is a locally noetherian
scheme, then for any A ∈ D(X) the functor R Hom X (A,−) restricts to a functor D+qc(X) →

Dqc(X) [7, Prop. II.3.3]. Here D+qc(X) is the subcategory of Dqc(X) consisting of complexes
with bounded below cohomology. If X is a noetherian scheme and A is perfect the functor
R Hom X (A,−) restricts to a functor Dqc(X)→ Dqc(X) and then to a functor D(X)→ D(X)

[3, Lemma 1.4.6].
Let now Y be another ringed space, and let f : X → Y be a map of ringed spaces.
The derived direct image functor exists as a functor

f∗(−) : D(O X -Mod)→ D(OY -Mod),

cf. [13, Section 3.1]. When f is a concentrated map of schemes f∗ restricts to a functor
Dqc(X)→ Dqc(Y ) [13, Prop. 3.9.2]. If X and Y are noetherian and f is proper1 then f∗ restricts
to a functor D(X)→ D(Y ) [8, Théorème 2.2.1].

The derived inverse image functor exists as a functor

f ∗(−) : D(OY -Mod)→ D(O X -Mod),

cf. [13, Section 3.1]. When f is a concentrated map of schemes f ∗ restricts to a functor
Dqc(Y )→ Dqc(X) [13, Prop. 3.9.1]. If X and Y are locally noetherian and f is perfect, then f ∗

restricts to a functor D(Y )→ D(X) [7, Prop. II4.4].

2.2. Adjunctions and dualities for derived functors

Let X be a ringed space. For any A ∈ D(O X -Mod) the functor

A ⊗ (−) : D(O X -Mod)→ D(O X -Mod)

is left adjoint to functor

R Hom X (A,−) : D(O X -Mod)→ D(O X -Mod),

cf. [13, Prop. 2.6.1].
For any A ∈ D(O X -Mod) denote by A∨ the object R Hom X (A, O X ) ∈ D(O X -Mod). There

is a natural morphism A→ A∨∨ which is an isomorphism for any A ∈ Dperf(X) [9, Prop. 7.2].
So (−)∨ restricts to a self-inverse category equivalence Dperf(X) → Dperf(X)opp giving us the
duality functor for perfect complexes.

For any A ∈ Dperf(X) there is a canonical isomorphism A∨ ⊗ (−) ≃ R Hom X (A,−), see
Section 2.3(3), so

A ⊗ (−) : D(O X -Mod)→ D(O X -Mod)

is both the left and the right adjoint of functor

A∨ ⊗ (−) : D(O X -Mod)→ D(O X -Mod).

1 In a non-noetherian world one can work with a more general notion of a quasi-proper scheme map, cf. [13,
Section 4.3].
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Let now Y be another ringed space and let f : X → Y be a map of ringed spaces. Then
functor

f ∗(−) : D(OY -Mod)→ D(O X -Mod)

is left adjoint to functor

f∗(−) : D(O X -Mod)→ D(OY -Mod),

cf. [13, Prop. 3.2.1].
Suppose now that X and Y are concentrated schemes and let f : X → Y be a scheme map.

Then the functor

f∗(−) : Dqc(X)→ Dqc(Y )

has a right adjoint which we denote as

f ×(−) : Dqc(Y )→ Dqc(X),

cf. [13, Theorem 4.1] or [18, Section 4].
To state the rest of the Grothendieck duality results in their full presently known generality we

would have to introduce a number of notions (pseudo-coherence, quasi-properness, etc.) which
are only meaningfully different from well-established ones in non-noetherian context. Since the
main bulk of this paper deals with schemes of finite type over a field, we prefer to state these
results for noetherian schemes only and refer the reader to [13, Section 4] for a more general
story.

So let X and Y be noetherian schemes and let f : X → Y be a separated scheme map
of finite type. Adjunction ( f∗, f ×) induces a natural morphism δ f : f∗ R Hom X (A, f ×B) →

R HomY ( f∗A, B), see Section 2.3(10), often referred to as the sheafified Grothendieck duality
morphism. For δ f to be an isomorphism we need f × to commute with restriction to open sets
of Y [13, Section 4.6]. When f is proper f × commutes with Tor-independent base change
for all objects in D+qc(Y ) and so δ f is an isomorphism for all A ∈ Dqc(X) and B ∈ D+qc(Y )

[13, Section 4.4]. If f is also perfect, then f × commutes with Tor-independent base change for
all of Dqc(Y ) and so δ f is an isomorphism for all A, B ∈ Dqc(Y ) [13, Theorem 4.7.4]. Moreover,

the natural map χ f : f ×(A)⊗ f ∗(B)
∼
−→ f ×(A⊗ B), cf. Section 2.3(11), is an isomorphism for

all A, B ∈ Dqc(X) [18, Section 5].
By a result of Nagata any separated map of finite type between noetherian schemes

decomposes as an open immersion followed by a proper map ([16], or [23] for a more modern
exposition). So to make (−)× commute with flat base change we can try and modify its behavior
over open immersions. Indeed, there is a unique way to paste (−)× over proper maps with (−)∗

over étale maps in a way compatible with étale base change of (−)× (see [13], Theorem 4.8.1
for more detail). The result is the pseudo-functor (−)!, Deligne’s twisted inverse image pseudo-
functor, which associates to any finite-type separated map f : X → Y of noetherian schemes a
functor f ! : D+qc(Y )→ D+qc(X) with a number of nice properties:

(1) f ! = f ×|D+qc
when f is proper and f ! = f ∗|D+qc

when f is étale.

(2) For any f functor f ! commutes with Tor-independent base change [13, Theorem 4.8.3].
(3) For perfect f functor f ! restricts to a functor D(Y )→ D(X) [3, Remark 2.1.5].
(4) There exists, as explained in [13, Section 4.9.1], for all A ∈ D+qc(X) a natural morphism

f !(OY )⊗ f ∗(A)→ f !(A). (2.1)
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If f is perfect then (2.1) is an isomorphism [13, Theorem 4.9.4] and the morphism

f ∗(A)→ R Hom X


f !(OY ), f !(A)


(2.2)

right adjoint to (2.1) with respect to f !(OY )⊗(−) is also an isomorphism [3, Lemma 2.1.10].
(5) If f is a regular immersion of codimension n, then f !(OY ) = ωX/Y [−n] where ωX/Y is the

top wedge power of the normal bundle N X/Y [7, Cor. III.7.3].
(6) If f is smooth of relative dimension n, then f !(OY ) = ωX/Y [n]where ωX/Y is the top wedge

power of the sheaf Ω1
X/Y of relative differentials [22, Theorem 3].

When f is both perfect and proper, then f ! = f ×|D+qc
and all the above properties of f ! apply

to the whole of f × : Dqc → Dqc. We do not therefore distinguish between f ! and f × when f
is perfect and proper.

If f is proper the RHS of (2.2), as a functor in A, has left adjoint f∗


f !OY ⊗ (−)

. If f

is also perfect we denote this functor by f! and the fact that (2.2) is an isomorphism implies
immediately that f! : Dqc(X) → Dqc(Y ) is the left adjoint of f ∗ : Dqc(Y ) → Dqc(X) and the
adjunction counit f! f ∗→ Id is the composition

f! f
∗(-) = f∗( f !(OY )⊗ f ∗(-))

(2.1)
−−→ f∗ f !(-)

adj. counit
−−−−−→ Id .

Finally, let X be a separated scheme of finite type over a field k and let πk : X → k
be the structure morphism. The functor R Hom X


−, π !kk


restricts to a self-inverse category

equivalence D(X) → D(X)opp, the global2 Grothendieck duality functor DX/k . For any
separated finite-type map f : X → Y between two schemes of finite-type over k, the duality
D•/k interchanges f ∗ and f ! [13, Prop. 4.10.1]. For proper f the dual of f∗ under D•/k is f∗
itself — this is precisely the sheafified Grothendieck duality isomorphism.

2.3. Standard relations between derived functors

There exists a number of well-known morphisms and isomorphisms between compositions of
the derived functors listed in Sections 2.1 and 2.2. Here we compile for the convenience of the
reader a list of such elementary relations employed throughout this paper.

For a number of these morphisms of derived functors we say below that they are compatible
with the corresponding natural morphisms for sheaves. For full detail on this the reader should
consult the reference we quote for each result, but roughly we mean the following. A natural
transformation of compositions of derived functors

R f1 ◦ · · · ◦ R fn → Rg1 ◦ · · · ◦ Rgm (2.3)

is said to be compatible with a natural transformation of compositions of the underlying abelian
category functors

f1 ◦ · · · ◦ fn → g1 ◦ · · · ◦ gm (2.4)

2 I.e. over a point. One can obtain duality theories on X relative to any separated, finite-type map πS : X → S with S
noetherian, but only after restricting to objects of D(X) perfect over S (see [8], Cor. 4.9.2 etc.). Since the objects perfect
over a point are precisely the complexes with bounded and coherent cohomologies, the global duality works for all of
D(X).
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if the following diagram commutes

Q ◦ f1 ◦ · · · ◦ fn
(2.4) //

��

Q ◦ g1 ◦ · · · ◦ gm

��
R f1 ◦ · · · ◦ R fn ◦ Q

(2.3) // Rg1 ◦ · · · ◦ Rgm ◦ Q

(2.5)

where Q denotes localization functor from each chain homotopy category to the corresponding
derived category and the vertical arrows are composed from the natural transformations Q◦ fi →

R fi ◦Q and Q ◦ gi → Rgi ◦Q that R fi and Rgi come equipped with by the definition of a right
derived functor. Compositions of left-derived functors are treated analogously.

(1) Commutativity and associativity of tensor product. Let X be a ringed space. Then for any
A, B, C ∈ D(O X -Mod) there exist unique natural isomorphisms

A ⊗ B
∼
−→ B ⊗ A (2.6)

and

ρ : (A ⊗ B)⊗ C
∼
−→ A ⊗ B ⊗ C

∼
−→ A ⊗ (B ⊗ C) (2.7)

which are functorial in A, B and C and which are compatible with the corresponding natural
isomorphisms for sheaves [13, Section 2.5.7 and Section 2.5.9].

(2) Sheafified (A ⊗ (−), R Hom(A,−)) adjunction. Let X be a ringed space. Then for any
A, B, C ∈ D(O X -Mod) there exist unique natural isomorphism

υA : R Hom X (A ⊗ B, C)
∼
−→ R Hom X (B, R Hom X (A, C)) (2.8)

compatible with the corresponding natural isomorphism for sheaves [13, Prop. 2.6.1].
Applying the derived global sections functor to (2.8) produces the adjunction

isomorphism for the pair (A ⊗−, R Hom X (A,−)). We call its counit the evaluation map
of A and denote it by

evA : A ⊗ R Hom X (A,−)→ Id . (2.9)

An important instance is the morphism A ⊗ A∨
evA
−−→ O X obtained by applying evA to O X .

(3) Perfect objects and R Hom. Let X be a ringed space. For any A, B, C ∈ D(O X -Mod)

define

ξ : R Hom X (A, B)⊗ C −→ R Hom X (A, B ⊗ C) (2.10)

to be the right adjoint with respect to A ⊗ (−) of the composition

A ⊗ (R Hom X (A, B)⊗ C)
ρ−1

−−→ (A ⊗ R Hom X (A, B))⊗ C
evA
−−→ B ⊗ C. (2.11)

If either of C or A belong to Dperf(X), then ξ is an isomorphism [3, Lemma 1.4.6]. In
particular, for any E ∈ Dperf(X) we have an isomorphism

ξE : E∨ ⊗ (−)
∼
−→ R Hom X (E,−) (2.12)

of functors D(O X -Mod)→ D(O X -Mod).
The adjunction (E ⊗−, R Hom X (E,−)) induces via ξE an adjunction (E⊗−, E∨⊗−)

whose adjunction co-unit we also denote by evE :

E ⊗ (E∨ ⊗−)
ξE
−→ E ⊗ R Hom X (E,−)

evE
−−→ Id . (2.13)
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(4) O X -reflexivity for perfect objects. Let X be a ringed space. For any A, B ∈ D(O X -Mod)

define

θA,B : A −→ R Hom X (R Hom X (A, B) , B) (2.14)

to be the right adjoint with respect to R Hom X (A, B)⊗ (−) of

A ⊗ R Hom X (A, B)
evA
−−→ B.

If B = O X the resulting morphism

θA : A→ A∨∨ (2.15)

an isomorphism for all A ∈ Dperf(X) [3, Prop 1.4.4].
Let E ∈ Dperf. The adjunction


E∨ ⊗−, E∨∨ ⊗−


induces via the isomorphism

E
θE
−→ E∨∨ an adjunction (E∨ ⊗−, E ⊗−) whose adjunction co-unit we denote by evE∨ :

E∨ ⊗ (E ⊗−)
θE
−→ E∨ ⊗ (E∨∨ ⊗−)

evE∨
−−−→ Id . (2.16)

(5) Pseudofunctoriality of direct and inverse image. Let X , Y , Z be ringed spaces and X
f
−→

Y
g
−→ Z be maps of ringed spaces. There exist unique isomorphisms

ηg, f : (g ◦ f )∗
∼
−→ g∗ f∗ of functors D(O X -Mod)→ D(O Z -Mod) (2.17)

and

ζg, f : f ∗g∗
∼
−→ (g ◦ f )∗ of functors D(O Z -Mod)→ D(O X -Mod) (2.18)

which are compatible with the corresponding natural isomorphisms for sheaves. These
isomorphisms give (−)∗ and (−)∗ the structures of a covariant and a contravariant
pseudofunctor over the category of ringed spaces [13, Section 3.6]. Specifically, for any

map X
f
−→ Y of ringed spaces we have

ηId, f = η f,Id = Id and ζId, f = ζ f,Id = Id (2.19)

and for any maps X
f
−→ Y

g
−→ Z

h
−→ W of ringed spaces the following diagrams commute

(h ◦ g ◦ f )∗
ηh◦g, f //

ηh,g◦ f

��

(h ◦ g)∗ f∗

ηh,g

��
h∗(g ◦ f )∗ h∗ηg, f

// h∗g∗ f∗

and f ∗g∗h∗
f ∗ζh,g //

ζg, f

��

f ∗(h ◦ g)∗

ζh◦g, f

��
(g ◦ f )∗h∗

ηh,g◦ f
// (h ◦ g ◦ f )∗

. (2.20)

We write ηh,g, f for the corresponding isomorphism (h ◦ g ◦ f )∗
∼
−→ h∗g∗ f∗ and ζh,g, f for

the corresponding isomorphism f ∗g∗h∗
∼
−→ (h ◦ g ◦ f )∗.

(6) Sheafified ( f ∗, f∗) adjunction. Let X, Y be ringed spaces and let X
f
−→ Y be a map of ringed

spaces. For any A ∈ D(OY -Mod) and B ∈ D(O X -Mod) there exists a unique bifunctorial
isomorphism

τ f : f∗ R Hom X ( f ∗A, B)
∼
−→ R HomY (A, f∗B) (2.21)

compatible with the corresponding natural isomorphism for sheaves [13, Prop. 3.2.3].
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Applying the derived global sections functor to (2.21) produces an adjunction
isomorphism for the pair ( f ∗, f∗). We denote its unit and counit by

β f : Id→ f∗ f ∗ and γ f : f ∗ f∗→ Id . (2.22)

The adjunction ( f ∗, f∗) is compatible with pseudofunctoriality in the following sense.

Let X
f
−→ Y and Y

g
−→ Z be maps of ringed spaces, then the following diagrams commute:

Id
βg //

βg◦ f ))TTTTTTTTTTTTTTTTTT g∗g∗
g∗β f // g∗ f∗ f ∗g∗

η−1
g, f ◦(g∗ f∗ζg, f )

��
(g ◦ f )∗(g ◦ f )∗

and

f ∗g∗g∗ f∗

ζg, f ◦( f ∗g∗η−1
g, f )

��

f ∗γg // f ∗ f∗
γ f // Id,

(g ◦ f )∗(g ◦ f )∗

γg◦ f

44jjjjjjjjjjjjjjjjjj

(2.23)

see [13, Section 3.6] for more details.

(7) Monoidal functor structure for inverse image. Let X, Y be ringed spaces and let X
f
−→ Y be

a map of ringed spaces. For any A, B ∈ D(OY -Mod) there exists a unique isomorphism

ν f : f ∗(A ⊗ B)
∼
−→ f ∗(A)⊗ f ∗B (2.24)

functorial in A and B which is compatible with the corresponding natural isomorphism for
sheaves [13, Prop. 3.2.4(i)]. It is worth noting that as a natural transformation of functors in
B isomorphism ν f is conjugate to τ f in sense of [14, Section IV.7].

Map ν f is compatible with the associativity of the tensor product in the following sense.

Let X
f
−→ Y be a map of ringed spaces. Then the following diagram

f ∗ ((A ⊗ B)⊗ C)

f ∗ρ
��

ν f // f ∗ (A ⊗ B)⊗ f ∗C
ν f⊗Id

// ( f ∗A ⊗ f ∗B)⊗ f ∗C

ρ

��
f ∗ (A ⊗ (B ⊗ C))

ν f
// f ∗A ⊗ f ∗ (B ⊗ C)

Id⊗ν f

// f ∗A ⊗ ( f ∗B ⊗ f ∗C)

(2.25)

commutes for any A, B, C ∈ D(OY -Mod) [13, Section 3.4].

Map ν f is compatible with pseudofunctoriality in the following sense. Let X
f
−→ Y and

Y
g
−→ Z be maps of ringed spaces. Then the following diagram commutes

f ∗g∗ (A ⊗ B)
f ∗νg //

ζg, f

��

f ∗ (g∗A ⊗ g∗B)
ν f // f ∗g∗A ⊗ f ∗g∗B

ζg, f⊗ζg, f

��
(g ◦ f )∗ (A ⊗ B)

νg◦ f
// (g ◦ f )∗A ⊗ (g ◦ f )∗B

(2.26)

for all A, B ∈ D(O Z -Mod) [13, Section 3.6].

(8) Monoidal functor structure for direct image. Let X, Y be ringed spaces and let X
f
−→ Y be

a map of ringed spaces. For any A, B ∈ D(O X -Mod) define morphism

κ f : f∗A ⊗ f∗B → f∗(A ⊗ B), (2.27)

functorial in A and B, to be the right adjoint with respect to f ∗ of the composition

f ∗( f∗A ⊗ f∗B)
ν f
−→ f ∗ f∗A ⊗ f ∗ f∗B

γ f⊗γ f
−−−−→ A ⊗ B.
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Map κ f is compatible with the associativity of the tensor product and with
pseudofunctoriality in a way analogous to map ν f [13, Section 3.4 and Section 3.6].

(9) Projection formula. Let X, Y be ringed spaces and let X
f
−→ Y be a map of ringed spaces.

For any A ∈ D(O X -Mod) and B ∈ D(OY -Mod) define the projection formula morphism

α f : f∗A ⊗ B → f∗(A ⊗ f ∗B) (2.28)

to be the right adjoint with respect to f ∗ of the composition

f ∗( f∗A ⊗ B)
ν f
−→ f ∗ f∗A ⊗ f ∗B

γ f⊗Id
−−−→ A ⊗ f ∗B.

If X and Y are concentrated schemes, then α f is an isomorphism for all A ∈ Dqc(X) and
B ∈ Dqc(Y ) [13, Prop. 3.9.4].

The projection formula is compatible with pseudofunctoriality in the following sense.

Let X
f
−→ Y and Y

g
−→ Z be maps of ringed spaces. Then the following diagram

A ⊗ g∗ f∗B
αg // g∗ (g∗A ⊗ f∗B)

g∗α f // g∗ f∗ ( f ∗g∗A ⊗ B)

g∗ f∗(ζ f,g⊗Id)≃

��
A ⊗ (g ◦ f )∗B

Id⊗η f,g ≃

OO

αg◦ f
// (g ◦ f )∗ ((g ◦ f )∗A ⊗ B)

ηg◦ f

≃ // g∗ f∗ ((g ◦ f )∗A ⊗ B)

(2.29)

commutes for any A ∈ D(O Z -Mod) and B ∈ D(O X -Mod) [13, Prop. 3.7.1].
(10) The sheafified Grothendieck duality morphism. Let X and Y be concentrated schemes and

let X
f
−→ Y be a map of schemes. Denote the unit and counit of the


f∗, f ×


adjunction by

λ f : Id→ f × f∗ and ϵ f : f∗ f ×→ Id . (2.30)

The ( f∗, f ×) adjunction is compatible with pseudofunctoriality, in the sense that the
analogues of diagrams (2.23) for δ f and λ f also commute, see [13, Cor. 4.1.2] for more
details.

Define for any A ∈ Dqc(X) and B ∈ Dqc(Y ) the sheafified Grothendieck duality
morphism

δ f : f∗ R Hom X (A, f ×B)→ R HomY ( f∗A, B) (2.31)

to be the composition

f∗ R Hom X (A, f ×B)
γ f
−→ f∗ R Hom X


f ∗ f∗A, f ×B


τ f
−→ R Hom


f∗A, f∗ f ×B

 ϵ f
−→ R Hom ( f∗A, B) .

When X and Y are noetherian and f is proper δ f is an isomorphism for all A ∈ Dqc(X)

and B ∈ D+qc(Y ) [13, Theorem. 4.4.1]. If, in addition to the above, f is perfect, δ f is an
isomorphism for all A ∈ Dqc(X) and B ∈ Dqc(X) [13, Theorem 4.7.4].

(11) Let X, Y be concentrated schemes and let X
f
−→ Y be a map of schemes. For any

A ∈ Dqc(X) and B ∈ Dqc(Y ) define morphism

χ f : f ×A ⊗ f ∗B → f ×(A ⊗ B) (2.32)

functorial in A and B to be the right adjoint with respect to f∗ of the composition

f∗( f ×A ⊗ f ∗B)
α−1

f
−−→ f∗ f ×A ⊗ B

ϵ f⊗Id
−−−→ A ⊗ B
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where α−1
f is the inverse of the projection formula isomorphism. When f is proper and

perfect χ f is an isomorphism [13, Exercise 4.7.3.4(a)].
(12) Base change. Let σ be a commutative square

X ′
g′ //

f ′

��

X

f

��
Y ′ g

// Y

(2.33)

of ringed spaces. We define the base change morphism

µσ : g∗ f∗→ f ′∗g
′∗ (2.34)

to be the right adjoint with respect to f ′∗ of the composition

f ′∗g∗ f∗
ζg, f ′
−−→ (g ◦ f ′)∗ f∗ = ( f ◦ g′)∗ f∗

ζ−1
f,g′
−−→ g′∗ f ∗ f∗

γ f
−→ g′∗

or, equivalently [13, Prop. 3.7.2], the left adjoint with respect to g∗ of the composition

f∗
βg′
−→ f∗g

′
∗g
′∗

η−1
f,g′
−−→ ( f ◦ g′)∗g

′∗
= (g ◦ f ′)∗g

′∗
ηg, f ′
−−→ g∗ f ′∗g

′∗.

This defines µσ as a morphism of functors D(O X -Mod) → D(O′Y -Mod). When σ is a
square of concentrated schemes the base change map restricts to a morphism of functors
Dqc(X)→ Dqc(Y ′).

We use σ T to denote the transposed square

X ′
f ′ //

g′

��

Y ′

g

��
X

f
// Y.

(2.35)

In particular, we denote by µσ T the base change map f ∗g∗→ f ′∗g′∗ for σ T .
If the restriction of µσ to complexes with quasi-coherent cohomology is an isomorphism,

then σ is said to be independent. A fiber-square of concentrated schemes is independent if
and only if it is Tor-independent, i.e. for any x ∈ X and y′ ∈ Y ′ such that f (x) = g(y′) =
y ∈ Y we have

Tori
OY,y

(O X,x , OY ′,y′) = 0 for all i > 0, (2.36)

cf. [13, Theorem 3.10.3]. In particular, a fiber-square of concentrated schemes is
independent if f or g are flat. Another good reference for the above material is [12,
Section 2.4], where the proofs are carried out via computations with the underlying
Fourier–Mukai kernels.

2.4. Further relations

To prove our main results in Section 3 we need three technical results which we could not find
in the literature. The first two state that the projection formula commutes with certain adjunction
units and counits of the direct image functor.
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Lemma 2.1. Let X
g
−→ Y

f
−→ Z be maps of ringed spaces. Let A ∈ D(OY -Mod) and

B ∈ D(O Z -Mod). Then the following diagram commutes:

f∗A ⊗ B
f∗βg⊗Id //

α f

��

f∗g∗g∗A ⊗ B

f∗αg◦α f

��
f∗ (A ⊗ f ∗B)

f∗βg

// f∗g∗g∗ (A ⊗ f ∗B)
f∗g∗νg

// f∗g∗ (g∗A ⊗ g∗ f ∗B) .

(2.37)

Proof. By functoriality of α f it suffices to show that the square

f∗ (A ⊗ f ∗B)

f∗βg

��

f∗(βg⊗ f ∗Id) // f∗ (g∗g∗A ⊗ f ∗B)

f∗αg

��
f∗g∗g∗ (A ⊗ f ∗B)

f∗g∗νg

// f∗g∗ (g∗A ⊗ g∗ f ∗B)

commutes. This square is the image under f∗ of the square

A ⊗ f ∗B

βg

��

βg⊗Id // g∗g∗A ⊗ f ∗B

αg

��
g∗g∗ (A ⊗ f ∗B) g∗νg

// g∗ (g∗A ⊗ g∗ f ∗B) .

(2.38)

To show that (2.38) commutes we show that its left adjoint with respect to g∗ commutes. By
definition of αg its left adjoint with respect to g∗ is (γg⊗ Id) ◦ νg . So the left adjoint with respect
to g∗ of (2.38) is

g∗ (A ⊗ f ∗B)
g∗(βg⊗Id) //

νg
,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ g∗ (g∗g∗A ⊗ f ∗B)

νg // g∗g∗g∗A ⊗ g∗ f ∗B

γg⊗Id
��

g∗A ⊗ g∗ f ∗B

and by functoriality of νg it suffices to show that the following composition is the identity
morphism:

g∗A ⊗ g∗ f ∗B
g∗βg⊗Id
−−−−−→ g∗g∗g

∗A ⊗ g∗ f ∗B
γg⊗Id
−−−→ g∗A ⊗ g∗ f ∗B.

Rewrite it as (g∗βg ◦ γg) ⊗ Id. Since βg and γg are the unit and the counit of the adjunction

(g∗, g∗), the morphism g∗A
g∗βg◦γg
−−−−−→ g∗A is the identity morphism. The result follows. �
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Lemma 2.2. Let X, Y , Z be concentrated schemes and X
g
−→ Y

f
−→ Z be scheme maps. Let

A ∈ Dqc(Y ) and B ∈ Dqc(Z). Then the following diagram commutes:

f∗g∗g×A ⊗ B
f∗ϵg⊗Id //

f∗αg◦α f

��

f∗A ⊗ B

α f

��
f∗g∗


g×A ⊗ g∗ f ∗B


f∗g∗χg

// f∗g∗g× (A ⊗ f ∗B)
f∗ϵg

// f∗ (A ⊗ f ∗B) .

(2.39)

Proof. The proof is analogous to that of Lemma 2.1. By functoriality of α f it suffices to show
that the image under f∗ of

g∗g×A ⊗ f ∗B
ϵg⊗Id

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

αg

��
g∗

g×A ⊗ g∗ f ∗B


g∗χg

// g∗g× (A ⊗ f ∗B) ϵg
// A ⊗ f ∗B

commutes. Since αg is an isomorphism, this is equivalent to the diagram

g∗g×A ⊗ f ∗B
ϵg⊗Id

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX

g∗

g×A ⊗ g∗ f ∗B

α−1
g

OO

g∗χg
// g∗g× (A ⊗ f ∗B) ϵg

// A ⊗ f ∗B

commuting. But as ϵg is the adjunction counit, the composition ϵg ◦ g∗χg is the left adjoint of
χg with respect to g×. By the definition of χg this left adjoint is precisely (ϵg ⊗ Id) ◦ α−1

g . The
result follows. �

The third result shows that for a perfect object E the adjunction co-units for E⊗(−) commute
with the associativity of the tensor product:

Lemma 2.3. Let X be a ringed space. Then for any A ∈ D(O X -Mod) and E ∈ Dper f (X) the
following diagrams commute

E ⊗

E∨ ⊗ A

 evE //

ρ−1

��

A

Id

��
E ⊗ E∨


⊗ A

evE (O X )⊗Id
// A

and


E∨ ⊗ E


⊗ A

evE (O X )⊗Id //

ρ

��

A

Id

��
E∨ ⊗ (E ⊗ A) evE∨

// A.

(2.40)

Proof. The adjunction counit E ⊗ (E∨ ⊗ A)
evE
−−→ A was defined as the composition

E ⊗ (E∨ ⊗ A)
∼

Id⊗ξE // E ⊗ R Hom(E, A)
evE // A .

Therefore its right adjoint with respect to E ⊗ (−) is isomorphism ξE . But isomorphism ξE was
defined to be the right adjoint with respect to E ⊗ (−) of the composition

E ⊗

E∨ ⊗ A

 ρ−1

−−→

E ⊗ E∨


⊗ A

evE (O X )⊗Id
−−−−−−−→ A.



R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115 2085

Therefore the left diagram commutes.

For the right diagram, recall that by its definition the adjunction co-unit E∨⊗(E⊗A)
evE∨
−−−→ Id

is

E∨ ⊗ (E ⊗ A)
∼

(Id⊗θE )⊗Id // E∨ ⊗ (E∨∨ ⊗ A)
evE∨ // A .

Since the left diagram commutes and ρ is functorial, we can rewrite the composition above as

E∨ ⊗ (E ⊗ A)
ρ−1

//

E∨ ⊗ E


⊗ A

∼

θE //

E∨ ⊗ E∨∨


⊗ A

evE∨ (O X ) // A .

To show that the right diagram commutes it now remains only to show that

E∨ ⊗ E
∼

Id⊗θE // E∨ ⊗ E∨∨
evE∨ (O X ) // O X

is the map E∨ ⊗ E
evE (O X )
−−−−−→ O X . The right adjoint of the composition above with respect to

E∨ ⊗ (−) is just the map E
θE
−→ E∨∨. But θE was defined as the right adjoint with respect to

E∨ ⊗ (−) of E∨ ⊗ E
evE (O X )
−−−−−→ O X . The claim follows. �

Define a morphism

evE : E∨ ⊗ E ⊗ (−) −→ Id (2.41)

to be the composition

E∨ ⊗ E ⊗ (−)
ρ
−→
∼

(E∨ ⊗ E)⊗ (−)
evE (O X )⊗Id
−−−−−−−→ Id .

By Lemma 2.3 the canonical isomorphisms identifying E∨ ⊗ E ⊗ − with E∨ ⊗ (E ⊗−) and
E ⊗


E∨ ⊗−


identify (2.41) with the adjunction counits for the adjunctions (E∨⊗−, E ⊗−)

and (E ⊗ −, E∨ ⊗ −), respectively. We thus abuse notation by speaking of (2.41) as “the
adjunction counit” for these two adjunctions.

3. Adjunction morphisms for Fourier–Mukai transforms

3.1. Compact case

Let X1 and X2 be a pair of separable schemes of finite type over an algebraically closed field
k of characteristic 0 with X2 proper. We have the following commutative diagram

X1 × X2 × X1
π12

wwooooooooooo
π13

��

π23

''OOOOOOOOOOO

X1 × X2
π1

zzvvvvvvvvv
π2

''OOOOOOOOOOOOO X1 × X1

π̃1

tthhhhhhhhhhhhhhhhhhhhhh

π̃2

**VVVVVVVVVVVVVVVVVVVVVV X2 × X1

π2

wwooooooooooooo
π1

$$HHHHHHHHH

X1 X2 X1

(3.1)

All the morphisms in it are separated and of finite-type. They are also flat, and therefore perfect.
Moreover, morphisms π1 and π13 are proper.
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Definition 3.1. Let E be a perfect object of D(X1× X2). The Fourier–Mukai transform ΦE
from X1 to X2 with kernel E is the functor Dqc(X1)→ Dqc(X2) given by

ΦE (−) = π2∗

E ⊗ π∗1 (−)


.

By the adjunctions described in Section 2.2 functor ΦE has both left and right adjoints. The
left adjoint Φlad j

E is isomorphic to the Fourier–Mukai transform from X2 to X1 with kernel

E∨⊗π !1(O X1). The composition Φlad j
E ΦE is then isomorphic [15, Prop 1.3] to the Fourier–Mukai

transform from X1 to X1 with kernel

Q = π13∗


π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)


.

Let now ∆ denote the diagonal inclusion X1 ↩→ X1× X1 and, by abuse of notation, let it also
denote the induced inclusion X1 × X2 ↩→ X1 × X2 × X1, so that there is the following fiber
square:

X1 × X2
� � ∆ //

π1

��

X1 × X2 × X1

π13

��
X1

� �

∆
// X1 × X1

(3.2)

The identity functor Id is isomorphic to the Fourier–Mukai transform from X1 to X1 with kernel
∆∗O X1 . We now state the main result of this section:

Theorem 3.1. Let X1 and X2 be two separable schemes of finite type over k with X2 proper. Let
E be a perfect object of D(X1 × X2) and ΦE be a Fourier–Mukai transform from Dqc(X1) to
Dqc(X2) defined by E.

The adjunction counit γE : Φ
lad j
E ΦE → Id is isomorphic to the morphism of Fourier–Mukai

transforms Dqc(X1)→ Dqc(X1) induced by the following morphism of their kernels:

Q = π13∗


π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)


π13∗β∆
−−−−→ π13∗∆∗∆∗


π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)


(3.3)

π13∗∆∗∆∗

π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)

≃ ∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


(3.4)

∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


∆∗π1∗evE
−−−−−−→ ∆∗π1∗


π !1(O X1)


(3.5)

∆∗π1∗π
!

1(O X1)
∆∗ϵπ1
−−−→ ∆∗O X1 (3.6)

where (3.4) is composed of isomorphism ν∆ : ∆∗ (−⊗−)
∼
−→ ∆∗ (−) ⊗ ∆∗ (−) and of

pseudofunctoriality isomorphisms corresponding to the identities π13 ◦ ∆ = ∆ ◦ π1 and
π12 ◦∆ = π23 ◦∆ = Id.

We first need the following crucial lemma:
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Lemma 3.2. Let σ be the fiber square

X1 × X2 × X1
π12 //

π23

��

X1 × X2

π2

��
X1 × X2 π2

// X2.

(3.7)

Then the following diagram of functors commutes:

π∗2 π2∗

µσ ≃

��

γπ2 // Id

≃ ηπ23,∆◦ζ
−1
π12,∆

��
π23∗π

∗

12 π23∗β∆

// π23∗∆∗∆∗π∗12.

(3.8)

Proof. It suffices to show that the right adjoints with respect to π∗2 of the composition

π∗2 π2∗
µ
−→ π23∗π

∗

12
π23∗β∆
−−−−→ π23∗∆∗∆∗π∗12 (3.9)

and of the composition

π∗2 π2∗
γπ2
−−→ Id

ηπ23,∆◦ζ
−1
π12,∆

−−−−−−−−→ π23∗∆∗∆∗π∗12 (3.10)

coincide. By the definition of morphism µσ the right adjoint with respect to π∗2 of (3.9) is

π2∗
π2∗βπ12
−−−−→ π2∗π12∗π

∗

12

ηπ2,π23◦η
−1
π2,π12

−−−−−−−−−→ π2∗π23∗π
∗

12
π2∗π23∗β∆
−−−−−−→ π2∗π23∗∆∗∆∗π∗12

which by functoriality of ηπ2,π23 ◦ η−1
π2,π12

is the same as

π2∗
π2∗βπ12
−−−−→ π2∗π12∗π

∗

12

π2∗π12∗β∆
−−−−−−→ π2∗π12∗∆∗∆∗π∗12

ηπ2,π23◦η
−1
π2,π12

−−−−−−−−−→ π2∗π23∗∆∗∆∗π∗12. (3.11)

By pseudofunctoriality of the direct image, cf. (2.20), the morphism of functors

π2∗π12∗∆∗
ηπ2,π23◦η

−1
π2,π12

−−−−−−−−−→ π2∗π23∗∆∗

is the same as the morphism of functors

π2∗π12∗∆∗
π2∗ (ηπ23,∆◦η

−1
π12,∆)

−−−−−−−−−−−→ π2∗π23∗∆∗

and we can therefore rewrite (3.11) as

π2∗


Id

βπ12
−−→ π12∗π

∗

12
π12∗β∆
−−−−→ π12∗∆∗∆∗π∗12

ηπ23,∆◦η
−1
π12,π∆

−−−−−−−−−→ π23∗∆∗∆∗π∗12


. (3.12)
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By the compatibility of β with pseudofunctoriality as per diagram (2.23) we can
rewrite (3.12) as

π2∗


Id

βπ12◦∆
−−−−→ (π12 ◦∆)∗(π12 ◦∆)∗

ηπ12,∆◦ζ
−1
π12,∆

−−−−−−−−→ π12∗∆∗∆∗π∗12

ηπ23,∆◦η
−1
π12,∆

−−−−−−−−→ π23∗∆∗∆∗π∗12


.

Cancelling out η−1
π12,∆

◦ ηπ12,∆ and noting that βπ12◦∆ = Id since π12 ◦∆ = Id yields

π2∗


Id

ηπ23,∆◦ζ
−1
π12,∆

−−−−−−−−→ π23∗∆∗∆∗π∗12


which is clearly the right adjoint of (3.10) with respect to π∗2 . The result follows. �

Proof of Theorem 3.1. Set

Q′ = π∗23


π !1 O X1 ⊗ E∨


⊗ π∗12 E

so that Q = π13∗Q′. Since π12 ◦∆ = π23 ◦∆ = Id we have a natural isomorphism

∆∗Q′
ν∆
−→ ∆∗π∗23


π !1 O X1 ⊗ E∨


⊗∆∗π∗12 E

ζπ23,∆⊗ζπ12,∆
−−−−−−−−→ π !1 O X1 ⊗ E∨ ⊗ E . (3.13)

We therefore define a morphism

∆∗Q′
(3.13)
−−−→ π !1 O X1 ⊗ E∨ ⊗ E

evE
−−→ π !1 O X1 . (3.14)

Let us write the morphism of functors induced by the morphism Q
(3.3)–(3.6)
−−−−−−→ ∆∗O X1 of

FM-kernels as:

π̃2∗

π13∗Q

′
⊗ π̃∗1 (−)

 β∆
−→ π̃2∗


π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)


(3.15)

π̃2∗

π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)

 η∆,π1◦η
−1
π13,∆

−−−−−−−−→ π̃2∗

∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)


(3.16)

π̃2∗

∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)

 (3.14)
−−−→ π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)


(3.17)

π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)
 ϵπ1
−−→ π̃2∗


∆∗O X1 ⊗ π̃∗1 (−)


. (3.18)

On the other hand, ΦE is the composition of functors π∗1 , E⊗(−) and π2∗. Each of these functors
has a left adjoint, these adjoints are π1∗(π

!

1 O X1 ⊗−), E∨⊗ (−) and π∗2 , respectively. Therefore,

the adjunction counit Φlad j
E ΦE → Id is the composition of the three corresponding adjunction

counits:

π1∗


π !1 O X1 ⊗ E∨ ⊗ π∗2 π2∗


E ⊗ π∗1 (−)

 γπ2
−−→ π1∗


π !1 O X1 ⊗ E∨ ⊗ E ⊗ π∗1 (−)


(3.19)

π1∗


π !1 O X1 ⊗ E∨ ⊗ E ⊗ π∗1 (−)


evE
−−→ π1∗


π !1 O X1 ⊗ π∗1 (−)


(3.20)

π1∗


π !1 O X1 ⊗ π∗1 (−)

 ϵπ1◦χπ1
−−−−→ Id . (3.21)
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The claim of the theorem is that the composition (3.19)–(3.21) is isomorphic to the composition
(3.15)–(3.18).

Let us clarify some terminology. We say that two morphisms of functors f → g and f ′→ g′

are isomorphic if there exist connecting isomorphisms f
∼
−→ f ′ and g

∼
−→ g′ such that the

diagram

f //

∼

��

g

∼

��
f ′ // g′

(3.22)

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors
between two given categories. In particular, it is transitive.

If we further have a morphism of functors g → h which is isomorphic to a morphism of
functors g′′ → h′′ then f → g → h is isomorphic to f ′ → g′

∼
−→ g′′ → h′′, where

the connecting isomorphism g′
∼
−→ g′′ is the composition of the inverse of the connecting

isomorphism g
∼
−→ g′ with the connecting isomorphism g

∼
−→ g′′.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)–(3.21)
by isomorphic ones until we obtain (3.15)–(3.18). However, every time we replace a composant
by an isomorphic one, we introduce a new connecting isomorphism. In the end we have to
compose a long chain of these isomorphisms (each composed of natural isomorphisms detailed
in Section 2.3) and simplify the result. It is a mechanical exercise in pseudofunctoriality of direct
and inverse image and the associativity of tensor product. To present it in full detail would be
very tedious, the end result being always obvious from the start. This had long been lamented in
the literature, cf. [7, Section II.6]. To keep the focus on the substance of a proof we only state
the final result of each such computation of a connecting isomorphism, unless something non-
trivial is involved. For our most meticulous readers (and our most inquisitive referees) we have
included in the Appendix an unabbreviated proof, where all such computations are carried out in
full detail.

We begin with morphism (3.19). By Lemma 3.2 it is isomorphic to

π1∗


E∨ ⊗ π !1 O X1 ⊗ π23∗π

∗

12


E ⊗ π∗1 (−)


β∆

−−−−−→ π1∗


E∨ ⊗ π !1 O X1 ⊗ π23∗∆∗∆∗π∗12


E ⊗ π∗1 (−)


. (3.23)

By Lemma 2.1 morphism (3.23) is further isomorphic to

π1∗π23∗

Q′ ⊗ π∗12π

∗

1 (−)
 ν∆◦β∆
−−−−−−−→ π1∗π23∗∆∗


∆∗Q′ ⊗∆∗π∗12π

∗

1 (−)

. (3.24)

Finally, since π1 ◦π23 = π̃2 ◦π13 and π1 ◦π12 = π̃1 ◦π13, see diagram (3.1), the corresponding
pseudofunctoriality isomorphisms imply that (3.24) is isomorphic to

π̃2∗π13∗

Q′ ⊗ π∗13π̃

∗

1 (−)
 ν∆◦β∆
−−−−→ π̃2∗π13∗∆∗


∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)

. (3.25)

We proceed to morphism (3.20) which is induced by the adjunction counit π !1 O X1⊗E∨⊗E →
π !1 O X1 . By its definition morphism (3.14) is isomorphic to this adjunction counit, and so (3.20)
is isomorphic to

π1∗

∆∗Q′ ⊗ π∗1 (−)

 (3.14)
−−−−−−−→ π1∗


π !1(O X1)⊗ π∗1 (−)


. (3.26)
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As π̃2 ◦∆ = π̃1 ◦∆ = Id by pseudofunctoriality (3.26) is isomorphic to

π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)

 (3.14)
−−−→ π̃2∗∆∗π1∗


π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)


. (3.27)

Finally, the same pseudofunctoriality isomorphisms imply that (3.21) is isomorphic to

π̃2∗∆∗π1∗


π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)

 ϵπ1◦χπ1
−−−−→ π̃2∗∆∗∆∗π̃∗1 (−) . (3.28)

We have now shown that (3.19)–(3.21) are isomorphic to (3.25), (3.27) and (3.28),
respectively. Next, we compute the connecting isomorphisms. The isomorphism connecting
(3.25)–(3.27) works out to be the pseudofunctoriality isomorphism

π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)


η∆,π1◦η
−1
π13,∆

−−−−−−−−→ π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)


(3.29)

and the isomorphism connecting (3.27)–(3.28) works out to be the identity.

We can now conclude that the adjunction counit Φlad j
E ΦE → Id, being the composition of

(3.19)–(3.21), is isomorphic to the composition of (3.25), (3.29), (3.27) and (3.28). The claim of
the theorem then follows from the fact that the following diagram commutes:

π̃2∗

π13∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(3.15)

��

π̃2∗π13∗

Q′ ⊗ π∗13π̃

∗

1 (−)


(3.25)

��
π̃2∗


π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(3.16)

��

π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)


(3.29)

��
π̃2∗


∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(3.17)

��

π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)


(3.27)

��
π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)
 ∼ //

(3.18)

��

π̃2∗∆∗π1∗

π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)


(3.28)

��
π̃2∗


∆∗O X1 ⊗ π̃∗1 (−)

 ∼ // π̃2∗∆∗∆∗π̃∗1 (−)

(3.30)

where the horizontal isomorphisms are all due to the projection formula. To see that diagram
(3.30) indeed commutes, observe that its topmost square commutes by Lemma 2.1, the middle
two commute by functoriality and the lowermost square commutes by Lemma 2.2. �

An identical proof yields an analogous result for the right adjunction counit:

Theorem 3.2. Let X1 and X2 be two separable schemes of finite type over k with X2 proper. Let
E be a perfect object of D(X1 × X2) and ΨE be a Fourier–Mukai transform from Dqc(X2) to
Dqc(X1) defined by E.
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The adjunction counit γ ′E : ΨEΨ radj
E → Id is isomorphic to the morphism of Fourier–Mukai

transforms Dqc(X1)→ Dqc(X1) induced by the following morphism of objects of D(X1× X1):

Q̃ = π13∗


π∗12 E∨ ⊗ π∗23 E ⊗ π∗12π

!

1(O X1)


π13∗β∆
−−−−→ π13∗∆∗∆∗


π∗12 E∨ ⊗ π∗23 E ⊗ π∗12π

!

1(O X1)


(3.31)

π13∗∆∗∆∗

π∗12 E∨ ⊗ π∗23 E ⊗ π∗12π

!

1(O X1)

≃ ∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


(3.32)

∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


∆∗π1∗evE
−−−−−−→ ∆∗π1∗


π !1(O X1)


(3.33)

∆∗π1∗π
!

1(O X1)
∆∗ϵπ1
−−−→ ∆∗O X1 (3.34)

where (3.32) is composed of isomorphism ν∆ : ∆∗ (−⊗−)
∼
−→ ∆∗ (−) ⊗ ∆∗ (−) and of

pseudofunctoriality isomorphisms corresponding to the identities π13 ◦ ∆ = ∆ ◦ π1 and
π12 ◦∆ = π23 ◦∆ = Id.

3.2. Non-compact case

In practice, one often has to deal with cases when neither X1 nor X2 are proper. A common
way to deal with such situations is to restrict to the full subcategories of objects with proper
support. However, with a bit of care it is still possible to work in full generality.

So let X1 and X2 be any two separable schemes of finite type over k, not necessarily proper,
and let E be a perfect object of D(X1 × X2). We want to write down the left adjoint Φlad j

E of
ΦE = π2∗


E ⊗ π∗1 (−)


, but since π1 is not necessarily a proper morphism, the left adjoint to

π∗1 does not necessarily exist.

To construct Φlad j
E , we compactify X2 — that is, we choose an open immersion j : X2 ↩→ X̄2

with X̄2 proper over k, cf. [16], or [23] for a more modern exposition. We shall abuse the notation
by using j to also denote immersions X1× X2 → X1× X̄2 and X1× X2× X1 → X1× X̄2× X1
where it causes no confusion. For any such compactified product space we shall denote by π̄i
and π̄i j projections onto corresponding factors. Also, write Ē for j∗E .

We have the following commutative diagram:

X1 × X̄2

π̄2 %%LLLLLLLLLLL
π̄1

{{wwwwwwwww
X1 × X2

π2

&&MMMMMMMMMM
? _

joo

X1 X̄2 X2.? _

j
oo

(3.35)

Lemma 3.3. Let E ∈ Dper f (X1 × X2). There is an isomorphism of functors Dqc(X1) →

Dqc(X̄2)

ΦĒ
∼
−→ j∗ΦE . (3.36)

Its left adjoint with respect to j∗ is an isomorphism of functors Dqc(X1)→ Dqc(X2)

j∗ΦĒ
∼
−→ ΦE . (3.37)
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Proof. For the first claim, we set (3.36) to be

ΦĒ = π̄2∗


j∗E ⊗ π̄∗1 (−)


α j
−→ π̄2∗ j∗


E ⊗ j∗π̄∗1 (−)

 η j,π2◦η
−1
π̄2, j◦ζπ̄1, j

−−−−−−−−−−→ j∗π2∗

E ⊗ π∗1 (−)


= j∗ΦE .

For the second claim: (3.37) is the composition of the image of (3.36) under j∗ with the
adjunction counit γ j : j∗ j∗ΦE → ΦE . And γ j is an isomorphism since j is an open immersion
[5, Prop. 9.4.2]. �

We now need the following key lemma:

Lemma 3.4. Let X be a concentrated scheme and let U
j
−→ X be an open immersion. Let D j

qc(X)

be the full subcategory of Dqc(X) formed by the images of the objects of Dqc(U ) under j∗. Let

D j (X) and D j
per f (X) be the full subcategories of D j

qc(X) consisting of complexes with bounded
and coherent cohomology and of perfect complexes. Then:

(1) Functors j∗ and j∗ restrict to mutually inverse equivalences between D j
qc(X) and Dqc(U ).

(2) For any A ∈ Dqc(X) functors A ⊗ (−) and R Hom X (A,−) restrict to functors D j
qc(X)→

D j
qc(X) and are identified by j∗ with j∗A ⊗ (−) and R HomU ( j∗A,−).

(3) Let X ′
f
−→ X be a concentrated map and consider the following base change diagram:

σ :

U ′
j ′ //

g

��

X ′

f
��

U
j // X

(3.38)

The functors f∗ and f ∗ restrict to functors between D j ′
qc(X ′) and D j

qc(X) and are identified
by the equivalences j∗ and j ′∗ with functors g∗ and g∗.

(4) Let X be noetherian. The equivalence j∗ identifies D j (X) and D j
per f (X) with Dcls(U ) and

Dcls
per f (U ), the full subcategories of D(U ) and Dper f (U ) consisting of objects whose support

is closed in X.
(5) Let X be noetherian. For any A ∈ D+qc(X) functor R Hom X (−, A) restricts to a functor

D j (X)→ D j
qc(X) and the equivalence j∗ identifies it with R HomU (−, j∗A).

Proof. Since j is an open immersion, the adjunction co-unit j∗ j∗
γ j
−→ Id is an isomorphism. It

follows that j∗ is fully faithful, so its restriction to a functor Dqc(U )→ D j (X) is tautologically
an equivalence. It also follows that j∗ is the inverse equivalence to j∗. This settles claim (1).

For claim (2), it follows from the projection formula isomorphism

A ⊗ j∗(−)
α j
−→ j∗( j∗A ⊗−)

that A ⊗ (−) restricts to a functor D j (X)→ D j (X) and that this restriction is identified by j∗

with

j∗A ⊗ (−) : Dqc(U )→ Dqc(U ).

The assertion for the functor R Hom X (A,−) follows similarly from the sheafified adjunction
isomorphism

j∗R HomU


j∗A,−
 τ j
−→ R Hom X (A, j∗(−)) .
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The claim (3) follows in the same way from the pseudo-functoriality isomorphism

f∗ j ′∗
η j,g◦η

−1
f, j ′

−−−−−→ j∗g∗ and the flat base change isomorphism f ∗ j∗
µσ
−→ j ′∗g

∗.
For claim (4), first note that j is an open immersion of noetherian schemes and thus perfect.

Now let A be any object of D j (X) and let B = j∗A so that A = j∗B. Since j is perfect, B lies
in D(U ). We have SuppU B = (SuppX A)∩U and we need to check that this set is closed in X .
Since A ∈ D(X), we know that SuppX A is closed in X and any point p ∈ X lies in SuppX A if
and only if ι∗p A ≠ 0, where ιp is the inclusion map. On the other hand, for any p ∈ X \U we have
ι∗p A = ι∗p j∗B = 0 by the base change formula. Hence SuppX A ⊂ U , so SuppU B = SuppX A
and hence closed in X . We conclude that B ∈ Dcls(U ) as required.

Conversely, let B ∈ Dcls(U ) and let A = j∗B. Since B ∈ D(U ) we can find a fat enough

closed subscheme Z
k
−→ U with the underlying set SuppU B to ensure that B ≃ k∗C for some

C ∈ D(Z). Since SuppU B is closed in X , the composite map Z
j◦k
−−→ X is a closed immersion.

We conclude that A = j∗B ≃ j∗k∗C ≃ ( j ◦ k)∗C lies in D(X), as required.
We have now shown that j∗ identifies D j (X) with Dcls(U ). Finally, any inverse image functor

takes perfect complexes to perfect complexes [9, Cor. 4.19.1], therefore j∗ takes D j
per f (X) to

Dcls
per f (U ). Conversely, let A be a perfect object in Dcls(U ), then it is, in particular, of finite

Tor-dimension. As j is perfect, j∗A is also of finite Tor-dimension [8, Cor. 3.7.2]. Since we
already know that j∗A ∈ D(X), we conclude that j∗A is perfect. Thus j∗ identifies D j

per f (X)

with Dcls
per f (U ). This settles claim (4).

For claim (5), take any B ∈ D j (X). Then, as before, we can find a closed immersion Z
k
−→ U

and an object C ∈ D(Z) such that B = ( j ◦ k)∗C . We then have a functorial isomorphism

R Hom X (( j ◦ k)∗C, A)
η j,k◦δ j◦k
−−−−−→ j∗k∗R Hom Z


C, ( j ◦ k)!A


which shows that functor R Hom X (−, A) restricts to a functor D j (X)→ D j

qc(X). Finally, this
restriction is identified by j∗ with R HomU (−, j∗A) because j is an open immersion and hence
the natural morphism

j∗ R Hom X (B, A)→ R Hom X


j∗B, j∗A


is an isomorphism [3, Lemma 2.1.7]. �

Corollary 3.5. The Fourier–Mukai transform

ΦE : Dqc(X1)→ Dqc(X2)

has a left adjoint Φlad j
E , and this adjoint is isomorphic to the Fourier–Mukai transform

ΨE∨⊗π !1(O X1 ) : Dqc(X2)→ Dqc(X1).

If SuppX1×X2
E is proper over X1 and X2, then ΦE and Φlad j

E restrict to functors between
D(X1) and D(X2).

Proof. We only prove the first claim, as the assertion about the restriction to D(X1) and D(X2)

is standard. By Lemma 3.3 functor ΦĒ is isomorphic to j∗ΦE . Hence it restricts to a functor

Dqc(X1)→ D j
qc(X̄2). Thus, by the same lemma, ΦE is isomorphic to the composition

Dqc(X1)
ΦĒ
−−→ D j

qc(X̄2)
j∗
−→ Dqc(X2).



2094 R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115

By Lemma 3.4(1) the functor D j
qc(X̄2)

j∗
−→ Dqc(X2) is an equivalence whose inverse is the

functor j∗. Therefore ΦE has a left adjoint Φlad j
E isomorphic to Φlad j

Ē
j∗, that is to

π̄1∗


Ē∨ ⊗ π̄ !1(O X1)⊗ π̄∗2 j∗(−)


.

By Lemma 3.4(2)–(5) this is further isomorphic to

π̄1∗ j∗


E∨ ⊗ j∗π̄ !1(O X1)⊗ π∗2 (−)


.

Since π1 = π̄1 ◦ j , the claim now follows by the pseudofunctoriality of (−)∗ and (−)!. �

The isomorphism ΦĒ
(3.36)
−−−→ j∗ΦE of functors induces the unique isomorphism

Φlad j
Ē

∼
−→ Φlad j

E j∗ (3.39)

of their left adjoints Dqc(X̄2)→ Dqc(X1) which makes the diagram

Φlad j
Ē

ΦĒ

∼(3.39)◦(3.36)

��

γĒ

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

Φlad j
E j∗ j∗ΦE

∼

γ j
// Φlad j

E ΦE γE
// Id

(3.40)

of functors Dqc(X1) → Dqc(X1) commute. Therefore the adjunction co-unit Φlad j
E ΦE

γE
−→ Id

is isomorphic to the adjunction co-unit Φlad j
Ē

ΦĒ

γĒ
−→ Id. The standard Fourier–Mukai kernel of

Φlad j
Ē

ΦĒ is

Q̄ = π̄13∗


π̄∗12 Ē ⊗ π̄∗23 Ē∨ ⊗ π̄∗23π̄

!

1(O X1)


and Theorem 3.1 supplies us with the morphism Q̄ → ∆∗O X1 which induces Φlad j
Ē

ΦĒ

γĒ
−→ Id.

We obtain:

Proposition 3.6. The adjunction counit γE : Φ
lad j
E ΦE → Id is isomorphic to the morphism

of Fourier–Mukai transforms Dqc(X1) → Dqc(X1) induced by the morphism Q̄ → ∆∗O X1

of Theorem 3.1.

As a non-essential aside, the standard Fourier–Mukai kernel of Φlad j
E ΦE itself is

Q = π13∗


π∗12 E ⊗ π∗23 E∨ ⊗ π∗23π

!

1(O X1)


.

The functors Φlad j
E ΦE and Φlad j

Ē
ΦĒ are isomorphic, but it does not a priori mean that Q and Q̄

are isomorphic. However, it is easy to check that they are — we leave the details as an exercise
for the reader.

4. An alternative description for the pushforward kernels

Whenever E is direct image of an object from the derived category of some subscheme of
X1 × X2 the decomposition of the morphism Q → O∆ given in Theorem 3.1 is usually very



R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115 2095

poorly suited for computing cones. We first illustrate this in Section 4.1 with an example where
E is the structure sheaf of a global complete intersection subscheme and so everything can be
worked out explicitly using Koszul-type resolutions. For a general closed subscheme of X1× X2
such a resolution does not exist and a different approach is needed. But with an insight obtained
from Section 4.1 we set up some general machinery in Sections 4.2 and 4.3 which we then apply
in Section 4.4 to obtain a better description of the morphism Q → O∆ for E being a pushforward
from an arbitrary closed subscheme.

4.1. The global complete intersection example

Let X1 and X2 be a pair of smooth varieties over k with X2 proper. Let N be a vector bundle
of rank d on X1 × X2 and let s be a regular global section of N . Let Z be the zero-locus of s in
X1 × X2, it is a closed subscheme of codimension d and normal bundle N |Z . Let Z × X1 and
X1 × Z be Tor-independent in X1 × X2 × X1, i.e. the derived tensor product O Z×X1 ⊗O X1×Z
is O Z ′ where Z ′ = (Z × X1) ∩ (X1 × Z). We can rewrite the first two morphisms in the
decomposition of Theorem 3.1 for E = O Z as the images under π13∗


−⊗ π∗23π

!

2 O X1


of the

following morphism in Dqc(X1 × X2 × X1):

π∗12 O Z ⊗ π∗23 O∨Z
β∆
−→ ∆∗


O Z ⊗O∨Z

 ∆∗evO Z
−−−−−→ ∆∗O X1×X2 . (4.1)

Note that by the flat base change for the twisted inverse image pseudofunctor (see Section 2.2)
the object π !1 O X1 is just the shifted line bundle π∗2 ωX2 [dim X2].

The structure sheaf O Z has a global Koszul resolution on X1 × X2

∧
d N∨→ ∧d−1 N∨→ · · · → N∨→ O X1×X2 (4.2)

whose differential maps are defined in the usual way by valuations at s. In particular, they all
vanish along Z . Dualizing the Koszul complex, we see immediately that O∨Z is isomorphic to
O Z ⊗∧

d N [−d] in D(X1 × X2).
We have π−1

12 (Z) = Z × X1 and π−1
23 (Z) = X1 × Z . So π∗12 O Z ≃ OZ×X1 , while

π∗23 O∨Z = O X1×Z ⊗ π∗23(∧
d N )[−d]. Thus π∗12 O Z ⊗ π∗23 O∨Z , the first term in (4.1), equals

O Z×X1 ⊗O X1×Z ⊗ π∗23


∧

d N

[−d]. By assumption Z × X1 and X1 × Z are Tor-independent,

and π∗23 ∧
d N [−d] is a line bundle, so we conclude that the first term in (4.1) equals

(π∗23 ∧
d N )|Z ′ [−d].

On the other hand, ∆∗


O Z ⊗O∨Z

, the second term in (4.1), is isomorphic to the image under

∆∗ of the restriction of the dual of the complex (4.2) to Z . Since all the differentials vanish along
Z , this equals

∆∗


O Z
0
−→ N |Z

0
−→ · · ·

0
−→ ∧

d N |Z

=

d
i=0

∧
i N |∆(Z)[−i], (4.3)

where ∆(Z) is the image of Z under X1 × X2
∆
−→ X1 × X2 × X1.

Thus the decomposition (4.1) is not practical from the point of view of computing
cones. Its first map goes from (π∗23 ∧

d N )|Z ′ [−d], a single sheaf sitting in the degree d , tod
i=0 ∧

i N |∆(Z)[−i], a huge complex with non-zero cohomologies in all degrees from 0 to d .
Its second map goes from this huge complex to O∆(X1×X2), a single sheaf sitting in the degree 0.
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We get two huge cones with non-zero cohomologies in all degrees from 0 to d which almost
entirely annihilate each other when we take the cone of the map between them.

In the rest of this section we prove, in a much more general setting, that there exists a more
economical decomposition than (4.1). Applied to the case at hand, our result will tell us that the
decomposition (4.1) filters through the summand ∧d N |∆(Z)[−d] of

d
i=0 ∧

i N |∆(Z)[−i], and
can be written simply as:

(π∗23 ∧
d N )|Z ′ [−d]

Z ′→∆(Z)
−−−−−−→ ∧

d N |∆(Z)[−d]

≃ ∆∗O∨Z
∆∗


O X1×X2→O Z

∨
−−−−−−−−−−−−→ ∆∗O X1×X2 . (4.4)

The cones of these two maps are small compared to those in (4.1) and easy to compute.

4.2. A decomposition of the evaluation map

Let Y
f
−→ X be a map of concentrated schemes.

Proposition 4.1. For any E ∈ D(OY -Mod) the following diagram commutes

f∗E ⊗ R Hom ( f∗E, O X )

ev f∗E

""DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD f∗E ⊗ f∗ R Hom

E, f ×O X


.

κ f

��

Id⊗δ foo

f∗

E ⊗ R Hom


E, f ×O X


evE

��
f∗ f ×O X

ϵ f

��
O X

(4.5)

Proof. Let us show that the right adjoint of (4.5) with respect to f∗E⊗(−) commutes. The result

in [13, Prop. 3.2.4(ii)] tells what is the right adjoint of f∗E ⊗ f∗(−)
κ f
−→ f∗(E ⊗−) with respect

to f∗E ⊗ (−). It follows immediately that the right adjoint of

f∗E ⊗ f∗ R Hom (E,−)
κ f
−→ f∗ (E ⊗ R Hom (E,−))

evE
−−→ f∗ (−)

with respect to f∗E ⊗ (−) is

f∗ R Hom (E,−)
γ f
−→ f∗ R Hom


f ∗ f∗E,−

 τ f
−→ R Hom ( f∗E, f∗−) .

Therefore the right adjoint of the composition ϵ f ◦ evE ◦κ f in (4.5) is

f∗ R Hom

E, f ×O X

 γ f
−→ f∗ R Hom


f ∗ f∗E, f ×O X


τ f
−→ R Hom


f∗E, f∗ f ×O X

 ϵ f
−→ R Hom ( f∗E, O X ) .

By definition this is just the sheafified Grothendieck duality morphism

f∗ R Hom

E, f ×O X

 δ f
−→ R Hom ( f∗E, O X ) .
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So is clearly the right adjoint of the composition ev f∗E ◦

Id⊗δ f


in (4.5). The claim

follows. �

4.3. Künneth maps and the base change

Let Y
f
−→ X be a map of concentrated schemes. Morphism κ f : f∗(−)⊗ f∗(−)→ f∗ (−⊗−)

can be interpreted as the Künneth map of the commutative square:

Y

Id
��

Id // Y

f
��

Y
f

// X

(4.6)

We recall the basics on the Künneth map, cf. [13, Section 3.10]:

Definition 4.2. Let

σ :

Z

g1

��

g2 // Y2

f2

��
Y1 f1

// X

(4.7)

be a commutative square of concentrated schemes. Setting h = f1 ◦ g1 = f2 ◦ g2 define the
Künneth map to be the bifunctorial morphism

κσ : f1∗(A1)⊗ f2∗(A2)→ h∗

g∗1(A1)⊗ g∗2(A2)


Ai ∈ D(Yi ) (4.8)

which is the composition

f1∗(A1)⊗ f2∗(A2)
βh
−→ h∗h

∗ ( f1∗(A1)⊗ f2∗(A2))

νh
−→ h∗


h∗ f1∗(A1)⊗ h∗ f2∗(A2)

 ζ−1
f1,g1
⊗ζ−1

f2,g2
−−−−−−−−→

h∗

g∗1 f ∗1 f1∗(A1)⊗ g∗2 f ∗2 f2∗(A2)

 γ f1⊗γ f2
−−−−−→ h∗


g∗1(A1)⊗ g∗2(A2)


(4.9)

with βh being the adjunction unit IdX → h∗h∗ and γ fi being the adjunction counits f ∗i fi∗ →

IdYi .

A commutative square is called Künneth-independent if its Künneth map is a bifunctorial
isomorphism. For fiber squares of concentrated schemes this notion of independence is
equivalent to several others:

Proposition 4.3 ([13], Theorem 3.10.3). Let

σ :

Z = Y1 ×X Y2

g1

��

g2 // Y2

f2

��
Y1 f1

// X

(4.10)

be a fiber square of concentrated schemes, then the following are equivalent:
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(1) σ is independent, i.e. the base change map µσ : f ∗1 f2∗→ g1∗g∗2 is a functorial isomorphism.

(2) σ is Künneth-independent.

(3) σ is Tor-independent, i.e. for any pair of points y1 ∈ Y1 and y2 ∈ Y2 with f1(y1) = f2(y2) =

x ∈ X we have

Tori
O X,x


OY1,y1 , OY2,y2


= 0 for all i > 0. (4.11)

What we saw in Section 4.1 is a special case of a very general base change statement for
Künneth maps:

Proposition 4.4. Let

σ :

Z

g1

��

g2 // Y2

f2

��
Y1 f1

// X

(4.12)

be a commutative square of concentrated schemes and set h = f1 ◦g1 = f2 ◦g2. Let u : X ′→ X
be any morphism and let σ ′ be the fiber product of σ with X ′ over X, that is the outer square
(Z ′, Y ′1, Y ′2, X ′) in the commutative diagram

Z ′

g′1

��

g′2 //

u

��?
??

??
??

? Y ′2

f ′2

��

u

����
��

��
��

Z

g1

��

g2 // Y2

f2

��
Y1 f1

// X

Y ′1 f ′1

//
u

??��������
X ′

u

__????????

(4.13)

where Y ′i = Yi ×X, fi ,u X ′, Z ′ = Z ×X,h,u X ′ = Z ×Yi ,gi ,u Y ′i and the four squares between σ ′

and σ are the corresponding fiber squares. Let also h′ = f ′1 ◦ g′1 = f ′2 ◦ g′2. Finally, to unburden
the notation, write

• η f1 for the pseudofunctoriality isomorphism f1∗u∗
ηu, f ′1
◦η−1

f1,u
−−−−−−→ u∗ f ′1∗.

• ζ f1 for the pseudofunctoriality isomorphism u∗ f ∗1

ζ−1
u, f ′1
◦ζ f1,u

−−−−−−→ f ′∗1 u∗

• µ f1 for the base change map u∗ f1∗→ f ′1∗u
∗ of the corresponding fiber square.

and analogously for f2, g1, g2 and h.
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Then for any objects A1 ∈ D(Y1) and A2 ∈ D(Y2):

(1) The following diagram commutes in D(X ′):

u∗ ( f1∗(A1)⊗ f2∗(A2))
u∗κσ //


µ f1⊗µ f2


◦νu

��

u∗h∗

g∗1(A1)⊗ g∗2(A2)


h′∗((ζg1⊗ζg2)◦νu)◦µh

��
f ′1∗(u

∗A1)⊗ f ′2∗(u
∗A2) κσ ′

// h′∗

g′∗1 (u∗A1)⊗ g′∗2 (u∗A2)

 (4.14)

(2) The following diagram commutes in D(X):

f1∗(A1)⊗ f2∗(A2)
κσ //

βu

��

h∗

g∗1(A1)⊗ g∗2(A2)


h∗βu

��
u∗u∗( f1∗(A1)⊗ f2∗(A2))

u∗


µ f1⊗µ f2


◦νu


��

h∗u∗u∗

g∗1(A1)⊗ g∗2(A2)


u∗h′∗((ζg1⊗ζg2)◦νu)◦ηh

��
u∗( f ′1∗(u

∗A1)⊗ f ′2∗(u
∗A2)) u∗κσ ′

// u∗h′∗

g′∗1 (u∗A1)⊗ g′∗2 (u∗A2)


(4.15)

Proof. By definition, the right adjoint of the base change map u∗h∗
µh
−→ h′∗u

∗ with respect to u∗

is the composition h∗
h∗βu
−−→ h∗u∗u∗

ηh
−→ u∗h′∗u

∗. It follows that the diagram (4.15) is the right
adjoint of the diagram (4.14) with respect to u∗, so we only need to prove that (4.15) commutes.

Let B
m
−→ h∗u∗C be any morphism between some B ∈ D(X) and some C ∈ D(Z ′). Let

l be the left adjoint u∗h∗B → C of m with respect to h∗u∗. By compatibility of the inverse
image/direct image adjunction with pseudofunctoriality, the left adjoint with respect to u∗h′∗ of

the composition B
m
−→ h∗u∗C

ηh
−→ u∗h′∗C is the composition h′∗u∗B

ζ−1
h
−−→ u∗h∗B

l
−→ C . Hence

the left adjoint with respect to u∗h′∗ of the upper-right half

f1∗A1 ⊗ f2∗A2
κσ
−→ h∗


g∗1 A1 ⊗ g∗2 A2

 νu◦h∗βu
−−−−→ h∗u∗


u∗g∗1 A1 ⊗ u∗g∗2 A2


ηh◦h∗u∗


ζg1⊗ζg2


−−−−−−−−−−→ u∗h

′
∗


g′∗1 u∗A1 ⊗ g′∗2 u∗A2


of (4.15) is the composition of h′∗u∗ ( f1∗A1 ⊗ f2∗A2)

ζ−1
h
−−→ u∗h∗ ( f1∗A1 ⊗ f2∗A2) with the left

adjoint of

f1∗A1 ⊗ f2∗A2
κσ
−→ h∗


g∗1 A1 ⊗ g∗2 A2

 νu◦h∗βu
−−−−→ h∗u∗


u∗g∗1 A1 ⊗ u∗g∗2 A2


h∗u∗


ζg1⊗ζg2


−−−−−−−−→ h∗u∗


g′∗1 u∗A1 ⊗ g′∗2 u∗A2


with respect to h∗u∗. Making use of the definition of κσ in (4.9), this adjoint works out to be

u∗h∗


i

fi Ai


νu◦


i u∗ζ−1

fi ,gi


◦u∗νh

−−−−−−−−−−−−−→


i

u∗g∗i f ∗i fi∗Ai


i u∗g∗i γ fi
−−−−−−→


i

u∗g∗i Ai


i ζgi
−−−−→


i

g′∗i u∗Ai .
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Composing with h′∗u∗ ( f1∗A1 ⊗ f2∗A2)
η−1

h
−−→ u∗h∗ ( f1∗A1 ⊗ f2∗A2) and simplifying we see

that the left adjoint of (4.15) with respect to u∗h′∗ is

h′∗u∗


i

fi∗Ai

 
i ζ−1

f ′i ,g′i


◦νh′◦h

′∗νu

−−−−−−−−−−−−−→


i

g′∗i f ′∗i u∗ fi∗Ai


i g′∗i ζ−1

fi
−−−−−−→


i

g′∗i u∗ f ∗i fi∗Ai


i g′∗i u∗γ fi
−−−−−−−→


i

g′∗i u∗Ai .

Similarly, the left adjoint of the lower-left half

f1∗A1 ⊗ f2∗A2
βu
−→ u∗u

∗ ( f1∗A1 ⊗ f2∗A2)
u∗


i µ fi


◦u∗νu

−−−−−−−−−−→ u∗


f ′1∗u
∗A1 ⊗ f ′2∗u

∗A2


u∗κσ ′

−−−→ u∗h
′
∗


g′∗1 u∗A1 ⊗ g′∗2 u∗A2


of (4.15) with respect to u∗h′∗ works out as

h′∗u∗


i

fi∗Ai

 
i ζ−1

f ′i ,g′i


◦νh′◦h

′∗νu

−−−−−−−−−−−−−→


i

g′∗i f ′∗i u∗ fi∗Ai


i g′∗i f ′∗i µ fi
−−−−−−−−→


i

g′∗i f ′∗i f ′i∗u
∗Ai

⊗i g′∗i γ f ′i
−−−−−→


i

g′∗i u∗Ai .

It therefore suffices to show that the following diagram commutes for i = 1, 2 and for all
Ai ∈ D(Yi )

f ′∗i u∗ fi∗Ai

g′∗i ζ−1
fi //

f ′∗i µ fi
��

u∗ f ∗i fi∗Ai

u∗γ fi

��
f ′∗i f ′i∗u

∗Ai γ f ′i

// u∗Ai .

(4.16)

By definition of µ fi in (2.34) the right adjoint with respect to f ′∗i of f ′∗i u∗ fi∗

ζ−1
fi
−−→

u∗ f ∗i fi∗
u∗γ fi
−−−→ u∗ is precisely u∗ fi∗

µ fi
−−→ f ′i∗u

∗. So the right adjoint with respect to f ′∗i of
(4.16) is the diagram

u∗ fi∗Ai
µ fi

%%KKKKKKKKK
µ fi

��
f ′i∗u
∗Ai

Id
// f ′i∗u

∗Ai

which clearly commutes. �

4.4. The adjunction counits for the pushforward Fourier–Mukai kernels

We can now apply the generalities of the previous two sections to obtain an alternative
decomposition to that in Theorem 3.1 of the morphism of Fourier–Mukai kernels which induces
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the canonical adjunction morphism Φlad j
E ΦE → Id in case where E is a pushforward of an object

on some Z ↩→ X1 × X2.

Let X1 and X2 be a pair of separable schemes of finite type over k. Let Z
ιZ
−→ X1 × X2

be a closed immersion proper over both X1 and X2. Denote by πZ1 the composition Z
ιZ
−→

X1 × X2
π1
−→ X1. Consider the following fiber squares:

σ12 :

Z × X1
ιZ12 //

πZ12

��

X1 × X2 × X1

π12

��
Z ιZ

// X1 × X2

and σ23 :

X1 × Z
ιZ23 //

πZ23

��

X1 × X2 × X1

π23

��
Z ιZ

// X1 × X2.

Then Z ′ = (Z × X1) ∩ (X1 × Z)
ιZ ′
−→ X1 × X2 × X1 fits into the fiber square

σ :

Z ′
ιZ ′

''OOOOOOOOOOOOO

ι′12

��

ι′23 // X1 × Z

ιZ23

��
Z × X1 ιZ12

// X1 × X2 × X1.

(4.17)

Let σ∆ denote the square obtained from (4.17) by base change X1 × X2
∆
−→ X1 × X2 × X1:

Z

Id

��

Id //

∆

##GGGGGGGGG Z

ιZ

��

∆

wwnnnnnnnnnnnnn

Z ′

ιZ ′ ''OOOOOOOOOOOOO

ι′12

��

ι′23 // X1 × Z

GFED@ABCσZ23ιZ23

��
Z × X1 ιZ12

// X1 × X2 × X1

Z ιZ
//

∆

;;xxxxxxxxx
GFED@ABCσZ12

X1 × X2

∆

ggOOOOOOOOOOO

(4.18)

Observe that:

• Composition Z
∆
−→ Z ′

ιZ ′
−→ X1 × X1 × X1 equals Z

πZ1
−−→ X1

∆
−→ X1 × X1.

• Compositions Z
∆
−→ Z ′

ι′12
−→ Z × X1

πZ12
−−→ Z and Z

∆
−→ Z × X1

πZ12
−−→ Z are the identity map.

• Compositions Z
∆
−→ Z ′

ι′23
−→ X1× Z

πZ23
−−→ Z and Z

∆
−→ X1× Z

πZ23
−−→ Z are the identity map.

Theorem 4.1. Let EZ ∈ D(Z) be such that E = ιZ∗(EZ ) is perfect in D(X1 × X2). Let
ΦE be the Fourier–Mukai transform D(X1) → D(X2) with kernel E. The adjunction counit
Φlad j

E ΦE → IdX1 is isomorphic to the morphism of Fourier–Mukai transforms induced by the



2102 R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115

composition:

Q Z = π13∗

ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1(O X1)


π13∗κσ

��
π13∗ιZ ′∗


ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1(O X1)


π13∗ιZ ′∗β∆

��
π13∗ιZ ′∗∆∗∆∗


ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1(O X1)


≃ ∆∗πZ1∗


ζπZ12,ι′12,∆⊗ζπZ23,ι′23,∆


◦ν∆


◦η∆,πZ1◦η

−1
π13,ιZ ′ ,∆��

∆∗πZ1∗

EZ ⊗ R Hom


EZ , π !Z1(O X1)


∆∗πZ1∗


evEZ


��

∆∗πZ1∗π
!

Z1(O X1)

∆∗ϵπZ1
��

∆∗O X1

(4.19)

Proof. Assume first that X2 is proper. By Theorem 3.1 the adjunction counit Φlad j
E ΦE → IdX1 is

induced by the morphism of Fourier–Mukai kernels which we reproduce here for the convenience
of our readers:

π13∗


π∗12 E ⊗ π∗23


E∨ ⊗ π !1(O X1)


β∆
−→ π13∗∆∗∆∗


π∗12 E ⊗ π∗23


E∨ ⊗ π !1(O X1)


(4.20)

π13∗∆∗∆∗

π∗12 E ⊗ π∗23


E∨ ⊗ π !1(O X1)


≃ ∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


(4.21)

∆∗π1∗


E ⊗ E∨ ⊗ π !1(O X1)


∆∗π1∗(evE⊗Id)
−−−−−−−−−→ ∆∗π1∗


π !1(O X1)


(4.22)

∆∗π1∗


π !1(O X1)

 ∆∗ϵπ1
−−−→ ∆∗O X1 . (4.23)

where the connecting isomorphism (4.21) is ∆∗π1∗


ζπ12,∆ ⊗ ζπ23,∆

◦ ν∆


◦ η∆,π1 ◦ η−1

π13,∆
.

We have E = ιZ∗EZ and

E∨ ⊗ π !1 O X1 = (ιZ∗EZ )∨ ⊗ π !1 O X1

(2.10)
−−−→ R Hom


ιZ∗EZ , π !1 O X1


δ−1
ιZ
−−→ ιZ∗R Hom


EZ , π !Z1 O X1


. (4.24)

Using the isomorphisms π∗12ιZ∗

µ
σ T

12
−−→ ιZ12∗π

∗

Z12 and π∗23ιZ∗

µ
σ T

23
−−→ ιZ23∗π

∗

Z23 and functoriality
of β∆, we see that (4.20) is isomorphic to
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π13∗

ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1 O X1


π13∗β∆

��
π13∗∆∗∆∗


ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1 O X1


.

(4.25)

By Proposition 4.1 it also follows that (4.22)–(4.23) is isomorphic to the composition

∆∗π1∗

ιZ∗EZ ⊗ ιZ∗R Hom


EZ , π !Z1 O X1


∆∗π1∗κσ∆

��
∆∗π1∗ιZ∗


EZ ⊗ R Hom


EZ , π !Z1 O X1


∆∗π1∗ιZ∗evEZ

��
∆∗π1∗ιZ∗ι

!

Zπ !1(O X1)

∆∗π1∗ϵιZ
��

∆∗π1∗π
!

1(O X1)

∆∗ϵπ1
��

∆∗(O X1).

(4.26)

The connecting isomorphism from (4.25) to (4.26) works out to be

π13∗∆∗∆∗

ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1 O X1


≃


µσZ12⊗µσZ23


◦ν∆

��
π13∗∆∗


ιZ∗∆∗π∗Z12 EZ ⊗ ιZ∗∆∗π∗Z23R Hom


EZ , π !Z1 O X1


≃ ∆∗π1∗


ιZ∗ζπZ12,∆⊗ιZ∗ζπZ23,∆


◦η∆,π1◦η

−1
π13,∆

��
∆∗π1∗


ιZ∗EZ ⊗ ιZ∗R Hom


EZ , π !Z1 O X1


.

(4.27)

By functoriality the bottom isomorphism of (4.27) commutes with the top morphism of (4.26),
so we conclude that (4.20)–(4.23) is isomorphic to the composition of

π13∗

ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1 O X1


π13∗β∆

��
π13∗∆∗∆∗


ιZ12∗π

∗

Z12 EZ ⊗ ιZ23∗π
∗

Z23R Hom

EZ , π !Z1 O X1


≃ π13∗∆∗((µZ12⊗µZ23)◦ν∆)

��
π13∗∆∗


ιZ∗∆∗π∗Z12 EZ ⊗ ιZ∗∆∗π∗Z23R Hom


EZ , π !Z1 O X1


π13∗∆∗κσ∆

��
π13∗∆∗ιZ∗


∆∗π∗Z12 EZ ⊗∆∗π∗Z23R Hom


EZ , π !Z1 O X1



(4.28)



2104 R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115

with

π13∗∆∗ιZ∗

∆∗π∗Z12 EZ ⊗∆∗π∗Z23R Hom


EZ , π !Z1 O X1


≃ ∆∗π1∗


ζπZ12,∆⊗ζπZ23,∆


◦η∆,π1◦η

−1
π13,∆

��
∆∗π1∗ιZ∗


EZ ⊗ R Hom


EZ , π !Z1 O X1


∆∗π1∗ιZ∗evEZ

��
∆∗π1∗ιZ∗ι

!

Zπ !1(O X1)

∆∗π1∗ϵιZ
��

∆∗π1∗π
!

1(O X1).

∆∗ϵπ1
��

∆∗O X1 .

(4.29)

The claim of the theorem follows by applying the base change for Künneth maps of
Proposition 4.4(2) to (4.28) and noting that as πZ1 = π1 ◦ ιZ so by compatibility of the ( f∗, f ×)

adjunction with pseudo-functoriality, counits π1∗ϵιZ and ϵπ1 at the bottom of (4.29) compose to
give ϵπZ1 .

Suppose now X2 is not proper. Then, following Section 3.2, we compactify X2 by choosing
an open immersion j : X2 → X̄2 with X̄2 proper. Similar to the conventions in Section 3.2, we
use j to also denote all the compactification maps induced by j : X2 → X̄2 and we put a bar
over various objects and morphisms to denote their compactified versions. E.g. we denote the

inclusion Z
ιZ
−→ X1 × X2

j
−→ X1 × X̄2 by ῑZ . By the argument above the compactified version

of the composition (4.19) gives a morphism Q̄ Z → ∆O X1
which induces the compactified

adjunction counit Φlad j
Ē

ΦĒ → IdX1 . By the results of Section 3.2 the compactified and the
uncompactified adjunction counits are naturally isomorphic, therefore to prove the claim of
the theorem it suffices to exhibit an isomorphism Q̄ Z

∼
−→ Q Z which composed with the

uncompactified (4.19) gives the compactified (4.19).
All the morphisms in (4.19) except for the first one are independent of the ambient space

X2. To be more precise, we have π̄13 ◦ ῑZ ′ = π̄13 ◦ j ◦ ιZ ′ = π13 ◦ ιZ ′ , and hence the
compactified versions of last four morphisms in (4.19) are isomorphic to the uncompactified ones
via pseudofunctoriality isomorphisms. It therefore suffices to find an isomorphism Q̄ Z

∼
−→ Q Z

that would make the following diagram commute:

Q
π13∗κσ // π13∗ιZ ′∗


ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1 O X1



Q̄

∼

OO

π̄13∗κσ̄

// π̄13∗ ῑZ ′∗

ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1 O X1


.

≃ ηπ13,ιZ ′
◦η−1

π̄13,ῑZ ′

OO

(4.30)

But π13∗ ≃ π̄13∗ j∗ and square σ is obtained from square σ̄ by the base change j : X1 × X2 ×

X1 → X1 × X̄2 × X1. So the desired statement is precisely the base change for Künneth maps
of Proposition 4.4. �
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We have similarly:

Theorem 4.2. Under the assumptions of Theorem 4.1 let ΨE : D(X2) → D(X1) be the
Fourier–Mukai transform with kernel E. The adjunction counit ΨEΨ radj

E → Id is isomorphic
to the morphism of Fourier–Mukai transforms induced by the composition:

Q′Z = π13∗

ιZ12∗π

∗

Z12R Hom

EZ , π !Z1 O X1


⊗ ιZ23∗π

∗

Z23 EZ


π13∗κσ

��
π13∗ιZ ′∗


π∗Z12R Hom


EZ , π !Z1 O X1


⊗ π∗Z23 EZ


π13∗ιZ ′∗β∆

��
π13∗ιZ ′∗∆∗∆∗


π∗Z12R Hom


EZ , π !Z1 O X1


⊗ π∗Z23 E∨Z


≃ ∆∗πZ1∗


ζπZ12,ι′12,∆⊗ζπZ23,ι′23,∆


◦ν∆


◦η∆,πZ1◦η

−1
π13,ιZ ′ ,∆��

∆∗πZ1∗

R Hom


EZ , π !Z1 O X1


⊗ EZ


∆∗πZ1∗evEZ

��
∆∗πZ1∗π

!

Z1(O X1)

∆∗ϵπZ1
��

∆∗O X1 .

(4.31)

One of the main advantages of the alternative decompositions offered by Theorems 4.1 and
4.2 is that most of the morphisms in them can become isomorphisms under fairly reasonable
assumptions on Z , X1 and X2. We can then write down twists of ΦE and ΨE fairly easily, for
example:

Corollary 4.5. Let X1 and X2 be separable schemes of finite type over a field k. Let Z
ιZ
−→

X1× X2 be a regular closed immersion proper over X1 and X2. Suppose πZ1∗O Z = O X1 where

πZ1 is the composition Z
ιZ
−→ X1 × X2

π1
−→ X1. Suppose also that Z × X1 and X1 × Z are

Tor-independent inside X1 × X2 × X1 and denote by Z ′ their intersection. Denote by ιZ ′ the
inclusion Z ′ ↩→ X1 × X2 × X1.

Then the Fourier–Mukai kernel of the dual co-twist of ΦO Z : D(X1) → D(X2) is
π13∗ιZ ′∗ (L⊗ I∆′ [1]) where I∆′ is the ideal sheaf of the diagonal Z in Z ′ and L is the pullback
of π !Z1(O X1) via X1 × Z to Z ′.

Proof. The Fourier–Mukai kernel of the dual co-twist of ΦE is the cone of the morphism of
kernels underlying Φlad j

E ΦE → Id. Applying Theorem 4.1, we note that under the assumptions
of this corollary, all the morphisms in (4.19) become isomorphisms with the exception of

π13∗ιZ ′∗

ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1 O X1


π13∗ιZ ′∗β∆

��
π13∗ιZ ′∗∆∗∆∗


ι′∗12π

∗

Z12 EZ ⊗ ι′∗23π
∗

Z23R Hom

EZ , π !Z1 O X1


.
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Since EZ = O Z the above simplifies to the direct image under π13∗ιZ ′∗ of

ι′∗23π
∗

Z23π
!

Z1(O X1)
β∆
−→ ∆∗∆∗


ι′∗23π

∗

Z23π
!

Z1(O X1)


.

Write L for ι′∗23π
∗

Z23π
!

Z1(O X1). By Lemma 2.1 (with f = Id) the morphism L β∆
−→ ∆∗∆∗L is

isomorphic to L ⊗ (O Z ′ → ∆∗∆∗O Z ′). Since O Z ′
β∆
−→ ∆∗∆∗O Z ′ is just the sheaf restriction

O Z ′ → ∆∗O Z , its cone is I∆′ [1] and the claim follows. �

5. An example

Let us give a concrete example of using the results of Section 4. For this example we
choose the naive derived category transform induced by the Mukai flop. This transform is not an
equivalence — it was proved by Namikawa in [17] by direct comparison of Hom spaces. Below
we use Corollary 4.5 to compute the kernel which defines its dual co-twist as the Fourier–Mukai
transform. We stress that the value of this section lies not in the answer itself, but in demonstrating
how the methods of the paper apply to obtain it. However, the reader may observe that the kernel
we obtain is a line bundle supported on the zero-section of the product. We shall demonstrate
in [1] that this is the reason for the braiding which occurs between natural spherical twists in the
derived categories of the cotangent bundles of complete flag varieties (see [11], Section 4).

Let V be a 3-dimensional vector space and let X1 be the scheme T ∗P(V ), that is the total space
of the cotangent bundle of P(V ). Similarly, let X2 be the scheme T ∗P(V∨). These schemes admit
the following description:

X1 =

 0 ⊂ U1

α
||

⊂ V

α
zz


:=


U1 ⊂ V, α ∈ End(V ) dim U1 = 1, α(V ) ⊆ U1, α(U1) = 0


X2 =

 0 ⊂ U2

α
||

⊂ V

α
zz


:=


U2 ⊂ V, α ∈ End(V ) dim U2 = 2, α(V ) ⊆ U2, α(U2) = 0


.

We also have a variety

Z =

0 ⊂ U1 ⊂ U2 ⊂

α

ww
V

α
ww


with natural “forgetful” maps φk : Z → Xk which forget one of the subspaces. Each map φk is
isomorphic to the blow-up of the zero section carved out by α = 0 in Xk . Both blowups have the
same exceptional divisor F ⊂ Z which is carved out by α = 0:

F = {0 ⊂ U1 ⊂ U2 ⊂ V } .

The resulting birational transformation X1 99K X2 which transforms the zero-section P(V ) ↩→

X1 into the zero-section P(V∨) ↩→ X2 is a local model of a four-dimensional Mukai flop. Note
that maps φk are proper and, since each map φk is a blowup of Xk , we have φk∗O Z = O Xk .
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Let Φ be the functor φ2∗φ
∗

1 from D(X1) to D(X2) and let us compute its dual co-twist. The
functor Φ is a Fourier–Mukai transform with the kernel ιZ ∗O Z , where ιZ = φ1 × φ2 : Z →
X1 × X2. We have:

X1 × X2 × X1 =

0 ⊂ U1, U2, U ′1

α1,α2,α
′

1

zz
⊂ V

α1,α2,α
′

1tt


Z × X1 =


0 ⊂ U1 ⊂ U2

α1=α2

ww
⊂ V

α1=α2
vv

, 0 ⊂ U ′1

α′1
||

⊂ V

α′1xx



X1 × Z =


0 ⊂ U1

α1
||

⊂ V

α1
zz

, 0 ⊂ U ′1 ⊂ U2

α2=α′1

ww
⊂ V

α2=α′1
vv


.

It follows that Z ′ = (Z × X1) ∩ (X1 × Z) ⊂ X1 × X2 × X1 can be described as

Z ′ =


0 ⊂ U1, U ′1 ⊂ U2

α

vv
⊂ V

α
tt

α(V ) ⊆ U1 ∩U ′1


.

Observe that for any point of Z ′ we have U1 = U ′1 or α = 0 (or both). Therefore Z ′ consists
of two irreducible components: the diagonal ∆Z and the zero section

P =

0 ⊂ U1, U ′1 ⊂ U2 ⊂ V


.

The intersection ∆Z ∩ P considered as a subvariety of ∆Z is the exceptional divisor F of the

blowups Z
φi
−→ X i described above. On the other hand, let P

φ13
−−→ P(V )×P(V ) be the map which

forgets the subspace U2. It is the blowup of the diagonal of P(V ) × P(V ) and its exceptional
divisor in P is carved out by U1 = U ′1, i.e. it is F = ∆Z ∩ P again.

By Corollary 4.5 the dual co-twist of Φ is the Fourier–Mukai transform X1 → X1 with kernel

K = π13∗ιZ ′∗ (L⊗ I∆[1]) ∈ D(X1 × X1).

Here ιZ ′ is the inclusion Z ′ ↩→ X1 × X2 × X1, I∆ is the ideal sheaf of ∆Z in Z ′ and L is the
pullback of φ!1(O X1) to Z ′ via X1 × Z .

Since Z
φ1
−→ X1 is the blow-up of the zero-section P(V ) ↩→ X1 whose codimension is 2, we

know that φ!1(O X1) is the line bundle O Z (F) where F is the exceptional divisor of the blow-up.
On the other hand, pulling back along the projection

Z → P(V )× P(V∨)

induces an isomorphism

Pic Z ≃ Pic P(V )× Pic P(V∨).

A simple calculation shows that O Z (F) is the pullback of OP(V )×P(V∨)(−1,−1). Similarly

Pic Z ′ ≃ Pic P(V )× Pic P(V∨)× Pic P(V )

and L, being the pullback to Z ′ of φ!1(O X1) via X1 × Z , is then the pullback of
OP(V )×P(V∨)×P(V )(0,−1,−1).



2108 R. Anno, T. Logvinenko / Advances in Mathematics 231 (2012) 2069–2115

Since Z ′ has two irreducible components ∆Z and P , we have I∆ ≃ ιP∗O P (−∆Z ∩ P)

where ιP is the inclusion P ↩→ Z ′. We therefore have K ≃ π13∗ιZ ′∗ιP∗

ι∗P L⊗O P (−F)[1]


.

A simple computation shows that O P (−F) is the pullback of OP(V )×P(V∨)×P(V )(−1, 1,−1) and
therefore ι∗P L ⊗ O P (−F) is the pullback of OP(V )×P(V∨)×P(V )(−1, 0,−2). We conclude that
K ≃ π13∗ιZ ′∗ιP∗φ

∗

13


OP(V )×P(V )(−1,−2)[1]


.

Now observe that the following diagram commutes

P
ιP //

φ13

��

Z ′
ιZ ′ // X1 × X2 × X1

π13

��
P(V )× P(V )

ι0
// X1 × X1

where ι0 is the zero-section inclusion of P(V )× P(V ) into X1 × X1. We conclude that

K ≃ ι0∗φ13∗φ
∗

13


OP(V )×P(V )(−1,−2)[1]


≃ ι0∗


OP(V )×P(V )(−1,−2)[1]


.
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Appendix. The unabridged proof of Theorem 3.1

Here we give a complete version of the proof of Theorem 3.1. It contains explicit computations
of all the connecting isomorphisms which we left out of the version in the main body of the
paper so as to emphasize the meaningful part of the proof. The version below is for referees
and others who relish seeing how the monoidal structure of the inverse image functor commutes
with pseudofunctoriality and with the associativity of tensor product. Lasciate ogne speranza, voi
ch’intrate.

Proof. Set

Q′ = π∗23


π !1 O X1 ⊗ E∨


⊗ π∗12 E

so that Q = π13∗Q′. Since π12 ◦∆ = π23 ◦∆ = Id we have a natural isomorphism

∆∗Q′
ν∆

−−−−−→ ∆∗π∗23


π !1 O X1 ⊗ E∨


⊗∆∗π∗12 E

ζπ23,∆⊗ζπ12,∆
−−−−−−−−→


π !1 O X1 ⊗ E∨


⊗ E . (A.1)

We therefore define a morphism

∆∗Q′
(A.1)
−−−→


π !1 O X1 ⊗ E∨


⊗ E

E⊗(E∨⊗(−))→Id
−−−−−−−−−−−→ π !1 O X1 . (A.2)
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In these terms, the morphism of FM-transforms D(X) → D(X) induced by Q
(3.3)–(3.6)
−−−−−−→

∆O X is:

π̃2∗

π13∗Q

′
⊗ π̃∗1 (−)

 Id→∆∗∆∗
−−−−−−→ π̃2∗


π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)


(A.3)

π̃2∗

π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)

 η∆,π1◦η
−1
π13,∆

−−−−−−−−→ π̃2∗

∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)


(A.4)

π̃2∗

∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)

 (A.2)
−−−→ π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)


(A.5)

π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)
 π1∗π

!

1→Id
−−−−−−→ π̃2∗


∆∗O X1 ⊗ π̃∗1 (−)


. (A.6)

On the other hand, ΦE is the composition of functors π∗1 , E⊗(−) and π2∗. Each of these functors
has a left adjoint, these adjoints are π1∗(π

!

1 O X1 ⊗−), E∨⊗ (−) and π∗2 , respectively. Therefore,

the adjunction counit Φlad j
E ΦE → Id is the composition of the three corresponding adjunction

counits:

π1∗


π !1 O X1 ⊗


E∨ ⊗ π∗2 π2∗


E ⊗ π∗1 (−)


π∗2 π2∗→Id
−−−−−−→ π1∗


π !1 O X1 ⊗


E∨ ⊗


E ⊗ π∗1 (−)


(A.7)

π1∗


π !1 O X1 ⊗


E∨ ⊗


E ⊗ π∗1 (−)

 E∨⊗(E⊗(−))→Id
−−−−−−−−−−→ π1∗


π !1 O X1 ⊗ π∗1 (−)


(A.8)

π1∗


π !1 O X1 ⊗ π∗1 (−)


→ Id . (A.9)

The claim of the theorem is that the composition (A.7)–(A.9) is isomorphic to the composition
(A.3)–(A.6)

Let us clarify some terminology. We say that two morphisms of functors f → g and f ′→ g′

are isomorphic if there exist connecting isomorphisms f
∼
−→ f ′ and g

∼
−→ g′ such that the

diagram

f //

∼

��

g

∼

��
f ′ // g′

(A.10)

commutes. Clearly it is an equivalence relation on the set of all morphisms between all functors
between two given categories. In particular, it is transitive.

If we further have a morphism of functors g → h which is isomorphic to a morphism of
functors g′′ → h′′ then f → g → h is isomorphic to f ′ → g′

∼
−→ g′′ → h′′, where

the connecting isomorphism g′
∼
−→ g′′ is the composition of the inverse of the connecting

isomorphism g
∼
−→ g′ with the connecting isomorphism g

∼
−→ g′′.

Our strategy therefore is to consecutively replace the morphisms which compose (3.19)–(3.21)
by isomorphic ones until we obtain (3.15)–(3.18).
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Observe that the following diagram, whose vertical arrows are all isomorphisms, commutes:

π1∗

π !1 O X1 ⊗


E∨ ⊗ π∗2 π2∗


E ⊗ π∗1 (−)

 (A.7) //

ρ−1

��

π1∗

π !1 O X1 ⊗


E∨ ⊗


E ⊗ π∗1 (−)


ρ−1

��
π1∗


E∨ ⊗ π !1 O X1


⊗ π∗2 π2∗


E ⊗ π∗1 (−)


µ

��

Id⊗(π∗2 π2∗→Id) // π1∗


E∨ ⊗ π !1 O X1


⊗

E ⊗ π∗1 (−)


Id⊗


ηπ23 ,∆◦ζ

−1
π12 ,∆


��

π1∗


E∨ ⊗ π !1 O X1


⊗ π23∗π

∗

12


E ⊗ π∗1 (−)

 β∆ //

απ23

��

π1∗


E∨ ⊗ π !1 O X1


⊗ π23∗∆∗∆

∗π∗12


E ⊗ π∗1 (−)


ν−1
∆
◦α∆◦απ23

��
π1∗π23∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12


E ⊗ π∗1 (−)

 β∆ //

ρ−1
◦

Id⊗νπ12


��

π1∗π23∗∆∗∆
∗

π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12


E ⊗ π∗1 (−)


ρ−1
◦

Id⊗νπ12


��

π1∗π23∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗ π∗12π

∗

1 (−)
 β∆ //

Id

��

π1∗π23∗∆∗∆
∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗ π∗12π

∗

1 (−)


ν∆

��
π1∗π23∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗ π∗12π

∗

1 (−)
 ν∆◦β∆ // π1∗π23∗∆∗


∆∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗∆∗π∗12π

∗

1 (−)

.

(A.11)

The first square in it commutes by functoriality of ρ−1, the second commutes by Lemma 3.2,
the third commutes by Lemma 2.1, the fourth commutes by functoriality of β∆ and the fifth
commutes tautologically.

We now want to simplify the connecting isomorphism in the right column of (A.11). By
compatibility of the projection formula with pseudofunctoriality (see diagram (2.29)) we have
an equality

α∆ ◦ απ23 ◦

Id⊗ηπ23,∆


=


ζ−1
π23,∆

⊗ Id

◦ ηπ23,∆ ◦


απ23◦∆


of two morphisms

E∨ ⊗ π !1 O X1


⊗∆∗π∗12


E ⊗ π∗1 (−)


−→ π23∗∆∗


∆∗π∗23


E∨ ⊗ π !1 O X1


⊗∆∗π∗12


E ⊗ π∗1 (−)


.

Since π23 ◦ ∆ = Id, we have απ23◦∆ = Id. It follows that the right-hand column of (A.11)
equals to

π1∗


π !1 O X1

⊗


E∨ ⊗


E ⊗ π∗1 (−)



ρ−1

��
π1∗


E∨ ⊗ π !1 O X1


⊗


E ⊗ π∗1 (−)




ζ
−1
π23,∆⊗ζ

−1
π12,∆


◦ηπ23,∆

��
π1∗π23∗∆∗


∆∗π∗23


E∨ ⊗ π !1 O X1


⊗∆∗π∗12


E ⊗ π∗1 (−)


ν∆◦ρ

−1
◦


Id⊗νπ12


◦ν
−1
∆

��
π1∗π23∗∆∗


∆∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗∆∗π∗12π∗1 (−)


.

(A.12)
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Note that ν−1
∆ and Id⊗νπ12 commute by functoriality. Note further, that by the compatibility of

the map ν∆ with the associativity of the tensor product (see diagram (2.25)) we have an equality

ν∆ ◦ ρ−1
◦ ν−1

∆ =


ν−1
∆ ⊗ Id


◦ ρ−1

◦ (Id⊗ν∆)

of two morphisms

∆∗π∗23


E∨ ⊗ π !1 O X1


⊗∆∗


π∗12 E ⊗ π∗12π

∗

1 (−)


−→ ∆∗

π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗∆∗π∗12π

∗

1 (−) .

It follows that composition (A.12) equals to

π1∗


π !1 O X1

⊗


E∨ ⊗


E ⊗ π∗1 (−)



ρ−1

��
π1∗


E∨ ⊗ π !1 O X1


⊗


E ⊗ π∗1 (−)




ζ
−1
π23,∆⊗


ν∆◦νπ12 ◦ζ

−1
π12,∆


◦ηπ23,∆

��
π1∗π23∗∆∗


∆∗π∗23


E∨ ⊗ π !1 O X1


⊗


∆∗π∗12 E ⊗∆∗π∗12π∗1 (−)



ν
−1
∆ ⊗Id


◦ρ−1

��
π1∗π23∗∆∗


∆∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗∆∗π∗12π∗1 (−)


.

(A.13)

By compatibility of ν with pseudofunctoriality (see diagram (2.26)) we have an equality

ν∆ ◦ νπ12 ◦ ζ−1
π12,∆

= νπ12◦∆ ◦


ζ−1
π12,∆

⊗ ζ−1
π12,∆


of morphisms

E ⊗ π∗1 (−) −→ ∆∗π∗12 E ⊗∆∗π∗12π
∗

1 (−).

Since π12 ◦∆ = Id we further have νπ12◦∆ = Id. Therefore
ζ−1
π23,∆

⊗


ν∆ ◦ νπ12 ◦ ζ−1

π12,∆


◦ ηπ23,∆ =


ζ−1
π23,∆

⊗


ζ−1
π12,∆

⊗ ζ−1
π12,∆


◦ ηπ23,∆

in (A.13). Finally, by functoriality of ρ and of ηπ23,∆ we have

ρ−1
◦


ζ−1
π23,∆

⊗


ζ−1
π12,∆

⊗ ζ−1
π12,∆


◦ ηπ23,∆

=


ζ−1
π23,∆

⊗ ζ−1
π12,∆


⊗ ζ−1

π12,∆


◦ ηπ23,∆ ◦ ρ−1.
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We conclude that (A.13) equals to

π1∗


π !1 O X1

⊗


E∨ ⊗


E ⊗ π∗1 (−)



ρ−1
◦ρ−1

��
π1∗


E∨ ⊗ π !1 O X1


⊗ E


⊗ π∗1 (−)




ν
−1
∆ ◦


ζ
−1
π23,∆⊗ζ

−1
π12,∆


⊗ζ
−1
π12,∆


◦ηπ23,∆

��
π1∗π23∗∆∗


∆∗


π∗23


E∨ ⊗ π !1 O X1


⊗ π∗12 E


⊗∆∗π∗12π∗1 (−)


.

(A.14)

Recall now that we write Q′ for π∗23


E∨ ⊗ π !1 O X1


⊗π∗12 E and note that ν−1

∆ ◦


ζ−1
π23,∆

⊗ ζ−1
π12,∆


in (A.14) is precisely the inverse of isomorphism (A.1). So what we have shown above is that
(A.7) is isomorphic to

π1∗π23∗

Q′ ⊗ π∗12π

∗

1 (−)
 ν∆◦β∆
−−−−→ π1∗π23∗∆∗


∆∗Q′ ⊗∆∗π∗12π

∗

1 (−)


(A.15)

with the connecting isomorphism on the RHS being

π1∗


π !1 O X1 ⊗


E∨ ⊗


E ⊗ π∗1 (−)



(A.1)−1

⊗ζ−1
π12,∆


◦ηπ23,∆◦ρ

−1
◦ρ−1

−−−−−−−−−−−−−−−−−−−−−−→ π1∗π23∗∆∗

∆∗Q′ ⊗∆∗π∗12π

∗

1 (−)

.

As π1 ◦ π23 = π̃2 ◦ π13 and π1 ◦ π12 = π̃1 ◦ π13 (see diagram (3.1)) we have the following
commutative square

π1∗π23∗

Q′ ⊗ π∗12π

∗

1 (−)
 (A.15) //


Id⊗


ζ−1
π̃1 ,π13

◦ζπ1 ,π12


◦ηπ̃2 ,π13

◦η−1
π1 ,π23

��

π1∗π23∗∆∗

∆∗Q′ ⊗∆∗π∗12π

∗

1 (−)



Id⊗


ζ−1
π̃1 ,π13

◦ζπ1 ,π12


◦ηπ̃2 ,π13

◦η−1
π1 ,π23

��
π̃2∗π13∗


Q′ ⊗ π∗13π̃

∗

1 (−)


ν∆◦β∆

// π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)

.

We finally conclude that (A.7) is isomorphic to

π̃2∗π13∗

Q′ ⊗ π∗13π̃

∗

1 (−)
 ν∆◦β∆
−−−−→ π̃2∗π13∗∆∗


∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)


(A.16)

with the connecting isomorphism on the RHS being

π1∗


π !1 O X1 ⊗


E∨ ⊗


E ⊗ π∗1 (−)



(A.1)−1

⊗ζ−1
π̃1,π13,∆


◦ηπ̃2,π13,∆◦ρ

−1
◦ρ−1

−−−−−−−−−−−−−−−−−−−−−−−−−→ π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)

. (A.17)

Here we have used the fact that by pseudofunctoriality relations (2.19) and (2.20) we have

ηπ̃2,π13 ◦ η−1
π1,π23

◦ ηπ23,∆ = ηπ̃2,π13 ◦ ηπ1◦π23,∆ = ηπ̃2,π13 ◦ ηπ̃2◦π13,∆ = ηπ̃2,π13,∆

and similarly ζ−1
π̃1,π13

◦ ζπ1,π12 ◦ ζ−1
π12,∆

= ζ−1
π̃1,π13,∆

.
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Next, we note that the following diagram commutes:

π1∗


π !1 O X1

⊗


E∨ ⊗


E ⊗ π∗1 (−)

 (A.8) //

ρ−1
◦ρ−1

��

π1∗


π !1 O X1

⊗ π∗1 (−)


Id

��
π1∗


π !1 O X1

⊗ E∨

⊗ E


⊗ π∗1 (−)

 
(−)⊗E∨


⊗E→Id //

(A.1)−1
⊗Id

��

π1∗


π !1 O X1

⊗ π∗1 (−)


Id

��
π1∗


∆∗Q′ ⊗ π∗1 (−)

 (A.2) //


Id⊗ζ
−1
π̃1,∆


◦ηπ̃2,∆

��

π1∗


π !1 O X1

⊗ π∗1 (−)



Id⊗ζ
−1
π̃1,∆


◦ηπ̃2,∆

��
π̃2∗∆∗π1∗


∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)

 (A.2) // π̃2∗∆∗π1∗


π !1 O X1

⊗ π∗1 ∆∗π̃∗1 (−)


.

(A.18)

Here the top square commutes by Lemma 2.3, the second square commutes by the definition of
map (A.2) and the third square commutes by the functoriality. Therefore (A.8) is isomorphic to

π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)

 (A.2)
−−−→ π̃2∗∆∗π1∗


π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)


. (A.19)

And finally, the following square

π1∗


π !1 O X1

⊗ π∗1 (−)



Id⊗ζ
−1
π̃1,∆


◦ηπ̃2,∆

��

(A.9) // Id

ζ
−1
π̃1,∆

◦ηπ̃2,∆

��
π̃2∗∆∗π1∗


π !1 O X1

⊗ π∗1 ∆∗π̃
∗
1 (−)

 π1∗


π !1 O X1

⊗π∗1 (−)

→Id

// π̃2∗∆∗∆
∗π̃∗1 (−)

(A.20)

commutes by functoriality. Therefore (A.9) is isomorphic to

π̃2∗∆∗π1∗


π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)

 π1∗


π !1 O X1⊗π∗1 (−)


→Id

−−−−−−−−−−−−−−−→ π̃2∗∆∗∆∗π̃∗1 (−) . (A.21)

We now compute the connecting isomorphisms. Composing the inverse of (A.17), the
isomorphism in the right column of (A.11), with the isomorphism in the left column of (A.18)
we obtain

π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)



Id⊗


ζ−1
π̃1,∆◦ζπ̃1,π13,∆


◦ηπ̃2,∆η−1

π̃2,π13,∆
−−−−−−−−−−−−−−−−−−−−−−−−−→ π̃2∗∆∗π1∗


∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)


and by pseudofunctoriality relations (2.19) and (2.20) this is equal to

π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)



Id⊗


ζ−1
∆,π1
◦ζπ13,∆


◦η∆,π1◦η

−1
π13,∆

−−−−−−−−−−−−−−−−−−−−−→ π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)


. (A.22)

On the other hand, the composition of the inverse of the isomorphism in the right column of
(A.18) with the isomorphism in the left column of (A.20) is clearly Id.

We can now conclude that the adjunction counit Φlad j
E ΦE → Id, being the composition of

(A.7)–(A.9), is isomorphic to the composition of (A.16), (A.22), (A.19) and (A.21). The claim
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of the theorem then follows from the fact that the following diagram commutes:

π̃2∗

π13∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(A.3)

��

π̃2∗π13∗

Q′ ⊗ π∗13π̃

∗

1 (−)


(A.16)

��
π̃2∗


π13∗∆∗∆∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(A.4)

��

π̃2∗π13∗∆∗

∆∗Q′ ⊗∆∗π∗13π̃

∗

1 (−)


(A.22)

��
π̃2∗


∆∗π1∗∆∗Q′ ⊗ π̃∗1 (−)

 ∼ //

(A.5)

��

π̃2∗∆∗π1∗

∆∗Q′ ⊗ π∗1 ∆∗π̃∗1 (−)


(A.19)

��
π̃2∗


∆∗π1∗π

!

1 O X1 ⊗ π̃∗1 (−)
 ∼ //

(A.6)

��

π̃2∗∆∗π1∗

π !1 O X1 ⊗ π∗1 ∆∗π̃∗1 (−)


(A.21)

��
π̃2∗


∆∗O X1 ⊗ π̃∗1 (−)

 ∼ // π̃2∗∆∗∆∗π̃∗1 (−)

(A.23)

where the horizontal isomorphisms are all due to the projection formula. To see that diagram
(A.23) indeed commutes, observe that its topmost square commutes by Lemma 2.1, the middle
two commute by functoriality and the lowermost square commutes by Lemma 2.2. �
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