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We consider traces on module categories over pivotal fusion
categories which are compatible with the module structure. It is
shown that such module traces characterise the Morita classes of
special haploid Frobenius algebras. Moreover, they are unique up
to a scale factor and they equip the dual category with a pivotal
structure. This implies that for each pivotal structure on a fusion
category over C there exists a conjugate pivotal structure defined
by the canonical module trace.
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1. Introduction

Fusion categories exhibit a rich mathematical structure, see for example [8,20]. They have im-
portant applications in 3-dimensional topological field theory [1,22], in particular in the study of
invariants of 3-manifolds [2,24], and in rational conformal field theory, see [12,19] and subsequent
work. The construction in conformal field theory initiated in [12] requires as its starting point a spe-
cial haploid Frobenius object in a modular fusion category, but it depends only on the Morita class
of that algebra. It is known [21] that Morita classes of algebras in fusion categories are described by
equivalence classes of module categories.

In this article we provide a description of the Morita classes of special haploid Frobenius algebras
in pivotal fusion categories over C in terms of module categories with module traces. A module trace
is a trace on a module category, i.e. a collection of symmetric and non-degenerate linear maps from
the endomorphism spaces of objects to C, that is compatible with the module structure. As a main
result we prove the following:

Theorem. Let C be a pivotal fusion category. The following structures are equivalent:

i) An indecomposable module category CM with module trace.
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ii) An indecomposable module category CM together with a C-balanced natural isomorphism between
Hom(n,m) and the dual space of Hom(m,n), for each pair of objects m,n ∈ M.

iii) A Morita class of a special haploid Frobenius algebra in C.

The equivalence of i) and ii) implies that module traces on indecomposable module categories are
unique up to a constant factor and equip the dual fusion category with a pivotal structure. When
applied to the particular case of C considered as a left module category over itself, we obtain the
following result.

Theorem. For each pivotal structure a on a fusion category C over C there exists a conjugate pivotal structure
a such that the right dimensions of objects with respect to a are complex conjugate to the right dimensions with
respect to a.

We show how this result is related to the existence of a natural monoidal isomorphism of the
identity and the quadruple dual functor for fusion categories from [8].

We give an explicit description of module traces in terms of a matrix equation that provides a
reduction of the problem of solving a quadratic equation for algebras (the Frobenius property) to a
linear equation for the module category. This implies in particular that the quantum dimensions of
special haploid Frobenius algebras in pivotal fusion categories are positive real numbers and shows
that all module categories over pseudo-unitary fusion categories admit a module trace. We extend the
graphical calculus for tensor categories to module categories and give a graphical description of the
Frobenius algebra obtained from a module category with module trace.

In [5] it is shown that indecomposable module categories over a fusion category C are classified
by Lagrangian algebras in the Drinfeld center Z(C). It remains to interpret our results in terms of this
classification.

A possible application of our results is to modify the construction in [12] in such a way that it
depends only on a module category with module traces over a modular fusion category and involves
no further choices. In such a construction it should be possible to incorporate module functors and
module natural transformations as well and interpret them in physical terms, see [23, Section 3], [14,
18] for a possible interpretation.

The paper is structured as follows. In Section 2 we summarise the relevant background about
fusion categories, algebra objects and module categories. In Section 3 we first develop a graphical no-
tation for module categories which gives rise to a diagrammatic description of the algebra structure of
inner hom objects. Next we introduce module traces and demonstrate in examples that the existence
of a module trace for a given module category depends on the choice of pivotal structure for the
fusion category. In Section 4 we give a description of module traces in terms of C-balanced natural
isomorphisms and prove that module traces on indecomposable module categories are unique up to
scaling. This description of module traces yields a module natural isomorphism between a module
functor and its double adjoint functor. In the application to a pivotal fusion category as a module
category over itself, this leads to the existence of conjugate pivotal structures for pivotal fusion cate-
gories. We provide a graphical derivation of a monoidal natural isomorphism of the identity functor
to the quadruple dual functor for fusion categories and show that this yields an alternative definition
of the conjugate pivotal structure. In Section 5 we demonstrate that the existence of a module trace
can be reduced to a matrix equation and discuss the example of pseudo-unitary fusion categories.
As a consequence of these results we obtain a new criterion to decide whether a pivotal structure
is spherical in terms of module categories. In Section 6 we prove that module traces characterise
equivalence classes of special haploid Frobenius algebras.

2. Preliminaries

2.1. Fusion categories and algebra objects

In this section we summarise the relevant background and fix our notation. All categories are
assumed to be abelian and moreover locally finite over C, i.e. the isomorphism classes of objects
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form a set, all Hom-spaces are finite dimensional and every object has finite length. All functors and
natural transformations are assumed to be additive.

Definition 2.1. (See [6].) A tensor category C is a monoidal category with rigidity and simple unit
1 ∈ C such that the monoidal structure is bilinear on morphisms. A finite tensor category is a tensor
category with finitely many simple objects up to isomorphism. A fusion category is a semisimple
finite tensor category.

Without loss of generality we will work with strict monoidal categories (see e.g. [1]). Rigidity
means that each object c ∈ C has a right dual c∗ with duality morphisms evc : c∗ ⊗ c → 1, coevc : 1 →
c ⊗ c∗ and a left dual ∗c with ev′

c : c ⊗ ∗c → 1 and coev′
c : 1 → ∗c ⊗ c, such that the rigidity axioms

are satisfied, see Appendix A, Eq. (A.7). Right and left duals are unique up to a unique isomorphism.
In a rigid tensor category there is a canonical natural isomorphism c � ∗(c∗) � (∗c)∗ for each object
c ∈ C and we will therefore identify these objects in the sequel.

The functor (.)∗∗ has a canonical structure of a tensor functor. A pivotal structure for C is a
monoidal natural isomorphism a : idC → (.)∗∗ . In particular, a pivotal structure allows one to define
the right trace of a morphism f ∈ End(c) as

trR
c ( f ) = evc ◦ (a∗c ⊗ f ) ◦ coev′

c ∈ End(1) � C (2.1)

and for each object c the quantum dimension trR
c (idc) = dimC(c). The left trace of a morphism is

defined analogously and a pivotal structure is called spherical if the left traces and right traces agree
for all morphisms. Throughout this paper C denotes a pivotal fusion category unless stated otherwise.
We use the well-established graphical calculus for tensor categories, see Appendix A for relevant
definitions and conventions.

2.1.1. Algebra objects
Definition 2.2. An algebra (object) in a tensor category C is an object A ∈ C together with a mul-
tiplication morphism μ : A ⊗ A → A, and a unit morphism η : 1 → A, represented by the diagrams

μ =̂ , η =̂ , (2.2)

such that the associativity and unit constraints hold:

= , = = . (2.3)

An algebra A in C is called haploid if HomC(1, A) � C as a vector space.

There is the obvious definition of morphisms of algebras. An algebra is called indecomposable if it
is not isomorphic to a direct sum of two non-trivial algebras. As we will always work with just one
algebra at a time, we omit the labels on the lines representing the algebra object. Given an algebra
in C, we can consider modules over this algebra in C.
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Definition 2.3. A right module over an algebra A in a tensor category C is an object M ∈ C together
with an action morphism

ρ : M ⊗ A → M =̂ M , (2.4)

such that the following equations hold:

M = M , M = M . (2.5)

An intertwiner between two right modules (M,ρ) and (N,χ) over A is a morphism φ : M → N in
C which satisfies

M

N

φ
=

M

N

φ

. (2.6)

There are analogous definitions for left modules. The subspace of HomC(M, N) consisting of the in-
tertwiners is denoted by HomA(M, N).

It is clear (see e.g. [21]) that for an algebra A, a right module (M,ρ) over A and an object c ∈ C,
the object c ⊗ M is also a right module over A with action morphism

idc ⊗ ρ : c ⊗ M ⊗ A → c ⊗ M, (2.7)

and that each morphism φ : c → d in C yields an intertwiner φ ⊗ idM : c ⊗ M → d ⊗ M .

Definition 2.4. (See [13].) A coalgebra (object) in a tensor category C is an object C ∈ C together with
a comultiplication morphism

� : C → C ⊗ C =̂ , (2.8)

and a counit morphism

ε : C → 1 =̂ , (2.9)

such that the coassociativity and counit constraints hold:
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= , = = . (2.10)

Definition 2.5. (See [5,13].) Let C be a tensor category.

i) A separable algebra A ∈ C is an algebra (A,μ,η) for which there exists a morphism � : A →
A ⊗ A with μ ◦ � = idA and

� ◦ μ = (μ ⊗ idA) ◦ (idA ⊗ �) = (idA ⊗ μ) ◦ (� ⊗ idA). (2.11)

ii) A Frobenius algebra in C is an algebra (A,μ,η) that is also a coalgebra with structures ε : A → 1
and � : A → A ⊗ A, such that (2.11) is satisfied.

In graphical notation relation (2.11) reads:

= = . (2.12)

Lemma 2.6. (See [5], Proposition 2.7.) Consider an algebra (A,μ,η) in a fusion category C. Then the category
ModC(A) is semisimple if and only if A is separable.

The following Frobenius algebras are particularly important in applications to conformal field the-
ory [12].

Definition 2.7. (See [13].) A Frobenius algebra A in C is called

i) special if there exist β1, βA ∈C
× such that

= β1, = βA · , (2.13)

ii) symmetric if

= . (2.14)

Condition ii) can be extended to any algebra A with a morphism ε ∈ HomC(A,1).

Lemma 2.8. (See [10].) Let A be a special symmetric Frobenius algebra in C. Then dimC(A) = β1βA 	= 0. We
can normalise ε and � such that β1 = dimC(A) and βA = 1.
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Lemma 2.9. (See [12].) If an algebra A is haploid and has dimension dimC(A) 	= 0,1 then it is symmetric for
any choice of ε ∈ HomC(A,1).

Let C be a pivotal fusion category. With the pivotal structure we will identify left and right dual
objects in the remainder of this section. The dual M∗ of a right A-module (M,ρ) inherits a canonical
left A-module structure

ρM∗ =
MM∗ M∗

. (2.15)

For a right A-module (M,ρM) and a left A-module (X,ρ X ), there is a notion of the tensor product
M ⊗A X over A, see e.g. [13]. M ⊗A X is an object in C that is defined as the cokernel of the map
(ρM ⊗ idX ) − (idM ⊗ ρ X ) : M ⊗ A ⊗ X → M ⊗ X . When A is a normalised special Frobenius algebra,
M ⊗A X is equal to the image of the following projector P : M ⊗ X → M ⊗ X :

P = M X . (2.16)

Proposition 2.10. Let A be a special haploid Frobenius algebra in a pivotal fusion category C. There is a natural
isomorphism HomA(M, N) � HomC(1, N ⊗A M∗) for M, N ∈ ModC(A).

Proof. This follows from the fact that the inner hom object of M and N is N ⊗A M∗ , see [6]. �
2.2. Module categories

In this subsection we summarise the main definitions and results concerning module categories,
see [6,21] for more details. The following definition is a restriction of the definition in [21] to
semisimple categories.

Definition 2.11. A left C-module category M is a semisimple C-linear abelian category M, together
with a bifunctor 
 : C×M→ M and natural isomorphisms

ωc,d,m : (c ⊗ d) 
 m → c 
 (d 
 m), lM : 1 
 m → m, (2.17)

for all c,d ∈ C, m ∈ M, such that the module constraints are fulfilled: The diagrams

1 In the proof [12, Corollary 3.10] the assumption dimC(A) 	= 0 is implicitly present. We thank I. Runkel for this information.
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((c ⊗ d) ⊗ e) 
 m

= ωc⊗d,e,m

(c ⊗ (d ⊗ e)) 
 m

ωc,d⊗e,m

(c ⊗ d) 
 (e 
 m)

ωc,d,e
m

c 
 ((d ⊗ e) 
 m)
idc
ωd,e,m

c 
 (d 
 (e 
 m)),

(2.18)

and

(c ⊗ 1) 
 m
ωc,1,m

idc
m

c 
 (1 
 m)

idc
lm

c 
 m

(2.19)

commute for all objects c,d, e ∈ C and m ∈ M. To emphasise that M is a left C-module category we
denote it CM. There is an analogous definition of a right C-module category MC with a bifunctor
� : MC ⊗ C →MC satisfying analogous constraints.

For a left C-module category CM, the opposite category Mop is a right C-module category M
op
C

with action

m �op c = c∗ 
 m. (2.20)

Definition 2.12. (See [21].)

i) Let CM and CN be C-module categories. A C-module functor F : CM → CN is a functor F to-
gether with natural isomorphisms fc,m : F (c 
 m) → c 
 F (m), such that the usual pentagon and
triangle diagrams commute, see [21]. We sometimes write (F , f ) for a module functor and call
f a left module constraint for F . Module functors between right C-module categories are defined
analogously.

ii) Let (F , f ) : CM → CN and (G, g) : CM → CN be module functors. A module natural transforma-
tion η : F → G is a natural transformation for which the diagrams

F (c 
 m)
η(c
m)

fc,m

G(c 
 m)

gc,m

c 
 F (m)
idc
η(m)

c 
 G(m),

(2.21)

commute for all possible objects. The category of module functors from CM to CN and module
natural transformations between them is denoted by FunC (CM,CN).

It is easy to see that the adjoint functor of a module functor is again a module functor. The module
functor constraint is uniquely determined by the requirement that the evaluation and coevaluation of
the adjunction are module natural transformations. Two module categories CM and CN over C are
called equivalent if there exist module functors (F , f ) : CM→ CN and (G, g) : CN → CM and module
natural isomorphisms F ◦ G → id

C
N and G ◦ F → id

C
M . The 2-category of left module categories over

C, module functors and module natural transformations between them is called Mod(C).
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There is an obvious notion of a submodule category and of a direct sum of module categories.
A module category is called indecomposable if it is not equivalent to a direct sum of two non-trivial
module categories, and it is called irreducible if it has no non-trivial submodule categories. It is shown
in [21, Lemma 1] that a module category M over C is indecomposable if and only if it is irreducible
and that in this case there are finitely many isomorphism classes of simple objects in M. In particular,
there exists a complement for every submodule category.

The category of modules over a separable algebra A ∈ C is a C-module category by Eq. (2.7). It is
indecomposable if and only if the algebra is indecomposable [21, Remark 5]. The following theorem
leads to the notion of Morita equivalence of fusion categories.

Theorem 2.13. (See [8,20].) Let CM be an indecomposable left C-module category. The category of C-module
functors FunC (CM,CM) is a fusion category with monoidal structure given by composition of functors and
duality by the adjunction of module functors.

FunC (CM,CM) is called the category dual to C with respect to CM. In particular, all module
natural isomorphisms from the identity functor of an indecomposable module category to itself are
multiples of the identity.

Definition 2.14. (See [17].) Suppose MC is a right C-module category, CN a left C-module category
and A and additive category.

i) A functor F :M×N → A is called C-balanced if it is equipped with natural isomorphisms fm,c,n :
F (m � c,n) → F (m, c 
 n) for all objects c ∈ C, m ∈ M and n ∈ N, such that the pentagons

F (m � (c ⊗ d),n)

fm,c⊗d,n

F ((m � c) � d,n)

fm�c,d,n

F (m, (c ⊗ d) 
 n)

F (m � c,d 
 n)
fm,c,d
n

F (m, c 
 (d 
 n)),

(2.22)

commute for all possible objects. The unlabelled lines are the isomorphisms obtained from the
module constraints of M and N, respectively. The natural isomorphism f is called balancing
constraint.

ii) Let F , G : M × N → A be two C-balanced functors with balancing constraints f and g , respec-
tively. A C-balanced natural transformation η : F → G is a natural transformation, such that the
diagrams

F (m � c,n)
η(m�c,n)

fm,c,n

G(m � c,n)

gm,c,n

F (m, c 
 n)
η(m,c
n)

G(m, c 
 n)

(2.23)

commute for all possible objects.
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3. Module traces

In this section we introduce a graphical calculus for module categories and derive a graphical
description of the algebra morphism of the inner hom objects. In the second subsection we introduce
module traces and discuss their basic properties and some examples.

3.1. Graphical calculus for module categories

We extend the graphical calculus for tensor categories (see Appendix A) to module categories. We
represent objects, morphisms and the action on a module category CM as follows:

m =̂ m , g : m → n =̂
n

g

m

, c 
 m =̂ mc . (3.1)

Any module category is equivalent to a strict module category, see [16, Theorem 1.3.8]. This implies
that the graphical notation for module categories has properties analogous to the graphical notation
for tensor categories: Once parentheses and actions of unit objects are specified for the incoming and
outgoing objects, each diagram unambiguously represents a morphism in M.

We briefly summarise the definition of the inner hom object from [21]. Let M be a left C-module
category. An inner hom object C〈m,n〉M ∈ C for m,n ∈ M is an object in C with a natural isomor-
phism

α : HomM(c 
 m,n) � HomC

(
c,C〈m,n〉M)

, (3.2)

for all c ∈ C and m,n ∈ M. We write C〈.,.〉 when the relevant module category M is clear from the
context. Inner hom objects always exist, are unique up to a unique isomorphism and determine a
bifunctor C〈.,.〉M : M×Mop → C. In the following we will speak of “the inner hom object”. The inner
hom bifunctor is compatible with the module structure [21]:

C〈m, c 
 n〉 � c ⊗ C〈m,n〉, and C〈c 
 m,n〉 � C〈m,n〉 ⊗ c∗. (3.3)

The inner hom object is represented by the following diagram:

C〈m,n〉 =̂ mn , (3.4)

and the isomorphism (3.2) reads:

α :

n

mc
∼→

n

c

m

. (3.5)
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This can be visualised by flipping the string representing m and zipping it with the n-string. For a
morphism g : n → ñ, the morphism C〈m, g〉 : C〈m,n〉 → C〈m, ñ〉 is given by the diagram

g
mn

ñ

. (3.6)

Each morphism h : m → m̃ defines a morphism C〈h,n〉 : C〈m̃,n〉 → C〈m,n〉 that is depicted as

h∗

m

n m̃
. (3.7)

The symbol h∗ indicates that the functor C〈.,.〉 is contravariant in the first argument.

Remark 3.1. In the case of C considered as a left module category over itself, the inner hom object of
c,d ∈ C is given by C〈c,d〉 = d ⊗ c∗ . For a morphism h : c → c̃ indeed C〈h,d〉 = idd ⊗ h∗ . The notation
h∗ therefore is consistent.

The naturality of α : HomM(c 
 m,n) � HomC(c,C〈m,n〉) manifests itself in the graphical calculus
as follows:

i) α is natural with respect to m:

α :
c

m

n

m̃
h

�→
c

m
n

m̃
h∗

=
c

m

n

m̃

α(h)

. (3.8)

ii) α is natural with respect to n:

α :
c m

n

ñ

g

f �→
c

m
n

ñ

g

α( f ) =
c

mñ

α(g ◦ f ) . (3.9)

iii) α is natural with respect to c:
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α :

c
m

n

γ

f
d �→

c

mn

α( f )

γ
d =

c

mn

α
(

f ◦ (γ 
 m)
) . (3.10)

Lemma 3.2. The natural isomorphism α from Eq. (3.2) is compatible with the module structure. For all mor-
phisms γ : x → y in C and all f ∈ Hom(c 
 m,n),

cx

y

γ f

n

m
α�→

n

cx

y

γ α( f )

m

. (3.11)

Proof. It suffices to proof the statement for y = x and γ = idx . The general case then follows di-
rectly from the naturality of α. First recall that the canonical isomorphism C〈m, c 
 n〉 � c ⊗C〈m,n〉 is
constructed as follows. Consider for x, c ∈ C and m,n ∈M the square:

Hom(x 
 (c 
 m),n)
�

�

Hom(c 
 m, ∗x 
 n)

α

Hom((x ⊗ c) 
 m,n)

α

Hom(c,C〈m, ∗x 
 n〉)
�

Hom(x ⊗ c,C〈m,n〉) �
Hom(c, ∗x ⊗ C〈m,n〉).

(3.12)

The horizontal isomorphisms are induced by the duality in C, while the unlabelled vertical iso-
morphism on the right is the natural isomorphism C〈m, ∗x 
 n〉 � ∗x ⊗ C〈m,n〉 from Eq. (3.3). This
isomorphism is defined by the requirement that the square commutes. As it is constructed from nat-
ural isomorphisms which we suppress in the graphical notation, we will suppress this isomorphism
as well in the sequel. It follows from the commutativity of the previous diagram, that the diagram

Hom(x 
 (c 
 m), x 
 n)
�

α

Hom((x∗ ⊗ x ⊗ c) 
 m,n)

α

Hom(x ⊗ c, x ⊗ C〈m,n〉) Hom(x∗ ⊗ x ⊗ c,C〈m,n〉)�

(3.13)

commutes. If we choose idx ⊗ f ∈ Hom(x
 (c 
m), x
n) with f ∈ Hom(c 
m,n) in the left upper space,
the commutativity of the diagram implies α(idx ⊗ f ) = idx ⊗ α( f ). �

We will now develop a graphical representation for the internal multiplication and show that it
equips C〈m,m〉 with the structure of an algebra. The internal evaluation morphism evn,m : C〈n,m〉 

n → m (see [21, Section 3.2]) is given by:
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evn,m = α−1(id
C〈n,m〉) =̂ n

m

. (3.14)

This notation is compatible with the notation for α since by flipping the n-string we obtain the
identity string C〈n,m〉. The internal multiplication μm,n,k : C〈n,k〉⊗C〈m,n〉 → C〈m,k〉 and the internal
unit ηm : 1 → C〈m,m〉 are given by

μm,n,k = α

⎛
⎜⎜⎜⎜⎜⎜⎝

m

n

k

⎞
⎟⎟⎟⎟⎟⎟⎠

=̂
k m

n
, ηm = α

⎛
⎜⎜⎜⎜⎜⎝ m

⎞
⎟⎟⎟⎟⎟⎠ =̂ mm . (3.15)

Lemma 3.3. For all morphisms f ∈ Hom(c 
 m,C〈n,k〉 
 n),

α(evn,k ◦ f ) = μm,n,k ◦ α( f ), i.e. (3.16)

k

n

c
f

m
α�→

m

α( f )
c

n
k

. (3.17)

Proof. The identity

g

l

s

d

=
l

s

d
α(g)

, (3.18)

for all g ∈ Hom(d 
 l, s) follows from applying α to both sides and using the naturality of α. Applying
this identity to f with s = C〈n,k〉 
 n yields

k

n

c
f

m

=

m

n

c
α( f )

k

. (3.19)

Applying α to the right hand side of this equation and using its naturality proves the claim. �
The following theorem plays an important role in the theory of fusion categories since it combines

the theory of module categories with the theory of algebras.
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Theorem 3.4. (See [21].) For all non-zero objects m,n in a C-module category CM, C〈m,m〉 is an algebra
object in C and C〈m,n〉 is a right C〈m,m〉-module. The functor M � n �→ C〈m,n〉 ∈ ModC(C〈m,m〉) yields an
equivalence of C-module categories provided CM is indecomposable.

We will revisit parts of the proof of this statement with the graphical calculus.

Proposition 3.5.

i) The internal evaluation morphism is a module morphism:

k

m
n

=

m

n

k

. (3.20)

ii) The internal multiplication is associative:

l

k m

n = l

k m

n

. (3.21)

iii) For all non-zero m ∈ M, C〈m,m〉 is canonically an algebra object.

Proof. The first relation follows from applying α to both diagrams. Both diagrams obtained in this
way represent the multiplication morphism. Since α is an isomorphism, the preimages have to agree
as well.

To show the second part, first note that the expression on the left hand side of Eq. (3.21) is α
applied to

l

k

m

n . (3.22)

Part i) implies

l

k

m

n =
l

n

k

m

. (3.23)
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Now apply α to the diagram on the right. In the upper part of the diagram this results in the mor-
phism idC〈l,k〉 ⊗μm,n,l due to Lemma 3.2. With Lemma 3.3 we conclude that α applied to this diagram
yields the right hand side of Eq. (3.21). The statement follows since α is an isomorphism. To show
the last part we only have to prove the compatibility of the internal multiplication and the internal
unit. This is a direct computation in the diagrammatic calculus. �
3.2. Module traces on module categories over pivotal fusion categories

We are now ready to define the notion of a module trace. As an example we discuss module
categories over G-graded vector spaces. This illustrates that the existence of a module trace on a
given module category distinguishes different pivotal structures.

For each module category M over a pivotal category C there is a linear map

trCc,m : EndM(c 
 m) → EndM(m), f �→ (
ev′

c 
 idm
) ◦ (a∗c 
 f ) ◦ (coevc 
 idm), (3.24)

which we call partial trace. Whenever this is unambiguous we omit the labels of trC . The graphical
representation of this map is

trC

⎛
⎜⎜⎜⎜⎜⎝

c

c

m

m

⎞
⎟⎟⎟⎟⎟⎠ =

c

c

m

m

. (3.25)

As a direct consequence of the definition of a module functor we obtain:

Lemma 3.6. Let F : CM→ CN be a C-module functor. For all f ∈ EndM(c 
 m), trC(F ( f )) = F (trC( f )).

With the map trC we can define module traces.

Definition 3.7. Let M be a module category over a pivotal fusion category C. A trace Θ on M is a
collection of linear maps

Θm : EndM(m) →C for all m ∈M, (3.26)

such that the following properties are satisfied:

i) Θ is symmetric: for all f ∈ HomM(m,n) and g ∈ HomM(n,m),

Θm(g ◦ f ) = Θn( f ◦ g). (3.27)

ii) Θ is non-degenerate: the pairing

HomM(m,n) × HomM(n,m) →C, ( f , g) �→ Θm(g ◦ f ) (3.28)

is non-degenerate for all m,n ∈M.
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If furthermore

iii) Θ is C-compatible: for all c ∈ C, m ∈M,

Θc
m = Θm ◦ trC, (3.29)

then Θ is called a C-module trace or module trace if the category C is clear from the context. We
sometimes write (MC,ΘM) for a module category with module trace.

The notion of a trace on a linear category is well-known and a category with a trace is also called
a Calabi–Yau category, see e.g. [4, Section 2].

Remark 3.8.

i) The notion of a module trace is a generalisation of the trace on a pivotal fusion category. Indeed,
consider C as a left module category over itself. The right trace trR : EndC(c) → C induces a
canonical module trace on C. The right trace is symmetric and the compatibility of the duality
with the tensor product yields Eq. (3.29). For the non-degeneracy, note that the argument in
the proof of [24, Lemma II.4.2.3] can be extended to the case of pivotal fusion categories, see
also Lemma 5.1. The semisimplicity of C is crucial at this point and for this reason we restrict
attention to fusion categories and do not consider more general tensor categories.

ii) For any given trace Θ on M and non-zero number z ∈ C the linear maps z · Θm define another
trace denoted z · Θ . If Θ is a module trace then z · Θ is again a module trace. We will show in
Section 4.1 that module traces are unique up to such rescalings.

We introduce a graphical notation for module traces:

Θm( f ) =̂
m

n

f . (3.30)

The symmetry and C-compatibility of Θ then read

n

f
m

g
m

=

n
f

g

m

n

,
c

c

m

m

=
c

c

m

m

. (3.31)

Given a trace Θ on a category M, we define the dimensions of objects m ∈M with respect to Θ as

dimΘ(m) = Θm(idm). (3.32)

The dimensions depend only on the isomorphism classes of objects:
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Lemma 3.9.

i) If two objects m,n ∈ M are isomorphic then dimΘ(m) = dimΘ(n).
ii) Θ is compatible with direct sums. For all f ∈ EndM(m), g ∈ EndM(n), we have Θm⊕n( f ⊕ g) = Θm( f )+

Θn(g). In particular, dimΘ(m ⊕ n) = dimΘ(m) + dimΘ(n).

iii)

dimΘ(c 
 m) = dimC(c) · dimΘ(m). (3.33)

Proof. For the first part choose an isomorphism f : m → n. The symmetry of Θ implies

dimΘ(m) = Θm(idm) = Θm
(

f −1 ◦ f
) = Θn

(
f ◦ f −1) = Θn(idn) = dimΘ(n). (3.34)

The second part follows directly from the linearity of Θ . The third part is a consequence of the C-
compatibility of Θ . �
3.2.1. Direct sums and equivalences of module categories with module trace

We show that the notion of a module trace is well-behaved with respect to decomposition of
module categories and investigate the structure of the module categories with C-module trace in the
2-category Mod(C) of C-module categories, module functors and module natural transformations.

Definition 3.10. Let ModΘ(C) be the full sub 2-category of Mod(C) which has C-module categories
(MC,ΘM) endowed with a C-module trace ΘM as objects. A module functor F : CM→ CN is called
an isometric module functor if ΘN(F ( f )) = ΘM( f ) for all f ∈ EndM(m) and all m ∈M. Two module
categories in ModΘ(C) are called isometrically equivalent if there exists an equivalence of module
categories consisting of isometric module functors between them.

Note that an isometric module functor is faithful due to the non-degeneracy of the module traces.
The subcategory ModΘ(C) is well-behaved in the following sense.

Proposition 3.11.

i) Let (CM,ΘM) be an object in ModΘ(C) and let CN be a module category with an equivalence F : CN →
CM of module categories. Then there exists a C-module trace on CN such that F is an isometric equiva-
lence.

ii) The direct sum of two module categories with module traces possesses a canonical module trace.
iii) A submodule category of a module category with module trace inherits a canonical module trace.
iv) Each object in ModΘ(C) is isometrically equivalent to a direct sum of indecomposable objects.

Proof. To show the first part, define the linear maps ΘN( f ) = ΘM(F ( f )) for all f ∈ EndN(n).
Lemma 3.6 implies that this defines a module trace for N and that F is isometric by construction. For
the second part consider an object m ⊕ n ∈ CM⊕ CN. Since EndM⊕N(m ⊕ n) = EndM(m) ⊕ EndN(n),
we can define a linear map (ΘM ⊕ ΘN)m⊕n : EndM⊕N(m ⊕ n) → C as the sum ΘM

m ⊕ ΘN
n . It is

easy to see that this defines a C-module trace. Now consider a submodule category of a module cat-
egory with module trace. As we can choose a complement of the submodule category, the restriction
of a module trace to a submodule category is non-degenerate and hence a module trace. The last
statement is a consequence of the first and second statement. �
3.2.2. Examples

We denote by Vect the fusion category of finite dimensional C-vector spaces. A semisimple
abelian category over C is a module category over Vect with module structure V ⊗C m defined by
V ⊗C HomM(m,n) � HomM(V ⊗C m,n) for V ∈ Vect and m,n ∈M.
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Lemma 3.12. A trace on a semisimple category M is also a Vect-module trace on M.

Proof. We show that condition (3.29) is satisfied. As EndM(V ⊗C m) � End(V ) ⊗ End(m), it is suffi-
cient to show that

ΘV ⊗Cm(α ⊗C f ) = tr(α)Θm( f ) (3.35)

for all V ∈ Vect, α ∈ End(V ) and f ∈ End(m). Here tr is the usual trace on Vect that coincides with
the right trace on Vect considered as a fusion category. Eq. (3.35) follows from a direct calculation in
a basis for V . �
Example 3.13. Let G be a finite group and ω ∈ C3(G,C×) a normalised cocycle. This data defines
a fusion category VectωG with simple objects labelled by elements of G , see [6] and [21] for more
details. The pivotal structures on G are in bijection with the characters κ ∈ Hom(G,C×). Indecompos-
able module categories M(H,Ψ ) over VectωG are obtained from subgroups H ⊂ G with ω|H = 1 and
cocycles Ψ ∈ C2(H,C×). The simple objects of M(H,Ψ ) are labelled by elements in the right cosets
[g] ∈ H\G . The action of a simple object x ∈ VectωG is given by x 
 [g] = [xg], with module constraint
twisted by Ψ .

A module category M(H,Ψ ) over the pivotal fusion category (VectωG , κ) possesses a module trace if
and only if κ |H = 1. This can be seen as follows: Suppose Θ is a module trace on M(H,Ψ ) normalised
by Θ([e]) = 1. Then Eq. (3.33) implies Θ([gx]) = κ(g) · Θ([x]), in particular Θ([g]) = κ(g). So κ is
well-defined on H\G , which is the case if and only if κ |H = 1. Conversely, if κ |H = 1 it is easy to see
that κ yields a module trace for M(H,Ψ ). In particular, there exists a module trace for all module
categories over VectG when the pivotal structure κ ≡ 1 is chosen.

Example 3.14. Let C be a fusion category. Recall the construction of a pivotal fusion category C̃ from
[8, Remark 3.1]: The simple objects of C̃ are pairs (c, fc), where c ∈ C is a simple object and fc : c →
c∗∗ is an isomorphism such that f ∗∗

c fc = gc , where g is the canonical monoidal natural isomorphism
idC → (.)∗∗∗∗ defined in [8]. With (c, fc) ∈ C̃, also (c,− fc) ∈ C̃. C̃ has a canonical pivotal structure

such that dimC̃(c, fc) = ev′
c∗∗ ◦ ( fc ⊗ idc∗ ) ◦ coevc =: tr( fc). The monoidal structure of C̃ is induced by

the monoidal structure of C and the forgetful functor U : C̃ → C is a monoidal functor. Hence C is
a left C̃-module category. This module category does not admit a module trace when C̃ is equipped
with the canonical pivotal structure: Assume that Θ is a module trace and let (c, fc) ∈ C̃ and d ∈ C

be simple objects. Then

tr( fc)dimΘ(d) = dimΘ
(
(c, fc) 
 d

) = dimΘ(c ⊗ d)

= dimΘ
(
(c,− fc) 
 d

) = −tr( fc)dimΘ(d), (3.36)

which is a contradiction, since as we will explain in Section 5, dimΘ(d) 	= 0.
However, a pivotal structure a for C induces a different pivotal structure for C̃ with quantum

dimensions dim(C̃,a)(c, fc) = dimC(c) and it is easy to see that the right trace with respect to a
defines a C̃-module trace for the module category C.

These examples motivate the following definition.

Definition 3.15. Let C be a fusion category with pivotal structure a and CM a module category. The
pair (a,CM) is called matched if there exists a C-module trace on CM. A pivotal structure for C that
is matched with all module categories over C is called flexible.



G. Schaumann / Journal of Algebra 379 (2013) 382–425 399
In Proposition 5.8 we will show that a pseudo-unitary C admits a flexible pivotal structure that is
also spherical. It has been conjectured in [8] that all fusion categories admit a pivotal structure. The
theory of module traces raises the following refinements of this question.

– Given a fusion category C and an indecomposable module category CM, is there a pivotal struc-
ture a on C, such that the pair (a,CM) is matched?

– Does every (modular) fusion categories exhibit a flexible pivotal structure and is it unique?
– Is every flexible pivotal structure spherical?

4. Module traces and dual Hom-spaces

4.1. Uniqueness of module traces

In this subsection we show that module traces are unique up to scaling. First we examine traces
on abelian categories and give an equivalent characterisation of traces in terms of certain natural
isomorphisms. In the next step we show that analogous results hold for module traces.

We denote by V ′ the dual vector space of a C-vector space V .

Proposition 4.1. Let M be an additive category enriched over Vect. The following structures on M are in
one-to-one correspondence.

i) A trace on M.
ii) A natural isomorphism η : HomM(m,n) → HomM(n,m)′ .

Proof. Let Θ be a trace on M. The non-degenerate pairing HomM(m,n) × HomM(n,m) → C defines
isomorphisms ηm,n : HomM(m,n) � HomM(n,m)′ . We have to show that these isomorphisms are nat-
ural, i.e. that for χ : n → ñ the diagram

Hom(m,n)
ηm,n

Hom(m,χ)

Hom(n,m)′

Hom(χ,m)′

Hom(m, ñ)
ηm,ñ

Hom(ñ,m)′

(4.1)

commutes. Let f ∈ Hom(m,n) and g ∈ Hom(ñ,m). Hom(m,χ) is the linear map that sends f to χ ◦ f .
In the following we denote this map by χ . We compute

(
ηm,ñ ◦ Hom(m,χ)

)
( f )(g) = Θm

(
g ◦ (χ ◦ f )

)
= Θm

(
(g ◦ χ) ◦ f

) = (
Hom(χ,m)′ ◦ ηm,n

)
( f )(g). (4.2)

This shows the commutativity of the diagram (4.1). The proof for naturality in m is analogous.
On the other hand, a natural isomorphism ηm,n : HomM(m,n) → HomM(n,m)′ induces a linear

map Θm : HomM(m,m) → C by Θm( f ) = ηm,m(idm)( f ). For α ∈ Hom(m,n) and β ∈ Hom(n,m), the
naturality of η implies

Θm(β ◦ α) = ηm,m(idm)(β ◦ α) = ηm,n(α)(β) = ηn,n(α ◦ β) = Θn(α ◦ β). (4.3)

This proves the symmetry of Θ and, as the map ηm,n is an isomorphism, also the non-degeneracy. �
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We will now generalise this proposition to C-module traces. Let CM be a C-left module category.
The functors

Mop ×M→ Vect, m × n �→ HomM(m,n) and

Mop ×M→ Vect, m × n �→ HomM(n,m)′ (4.4)

are canonically C-balanced (see Definition 2.14). The balancing constraint for the first functor is the
natural isomorphism

HomM(m, c 
 n) � HomM

(
c∗ 
 m,n

) = HomM

(
m�opc,n

)
, (4.5)

that is available in any tensor category. In contrast, the balancing constraint for the second functor,

HomM(c 
 n,m)′ = HomM

(
n, ∗c 
 m

)′

� HomM

(
n,m�op(∗∗c

))′ � HomM

(
n,m�opc

)′
, (4.6)

involves the pivotal structure of C in the last isomorphism.

Theorem 4.2. Let CM be a left module category over a pivotal fusion category C. The following structures on
M are in canonical one-to-one correspondence.

i) A C-module trace on M.
ii) A C-balanced natural isomorphism η : HomM(m,n) → HomM(n,m)′ .

Proof. We have to show that the isomorphisms ηm,n : HomM(m,n) → HomM(n,m)′ from Proposi-
tion 4.1 are C-balanced if and only if Θ is C-compatible. Consider morphisms f ∈ Hom(m, c 
 n) and
g ∈ Hom(c 
n,m). Denote by f̂ ∈ Hom(c∗ 
m,n) and ĝ ∈ Hom(n, c∗ 
m) the morphisms obtained from
f and g under the balancing isomorphisms (4.5) and (4.6), respectively. A direct computation shows
that the C-balancing property of ηm,n is equivalent to the condition

Θm(g ◦ f ) = Θc∗
m(ĝ ◦ f̂ ), (4.7)

for all possible f and g . Due to the symmetry of Θ , Θc∗
m(ĝ ◦ f̂ ) = Θn(trC( f ◦ g)), and we conclude
that Eq. (4.7) is equivalent to the C-compatibility of Θ . Thus the statement is proven. �

This implies in particular that for each pivotal fusion category C there is a natural C-balanced
isomorphism

ηC : Hom(x, y) → Hom(y, x)′, (4.8)

induced by the right trace.
In the sequel we will need the following extension of the usual Yoneda lemma.

Lemma 4.3. Let F , G : CM→ CN be module functors. The set of C-module natural transformations F → G is
in canonical bijection with the set of C-balanced natural transformations of the two C-balanced functors:
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N
op
C × CM � n × m �→ HomN

(
n, F (m)

) ∈ Vect, and

N
op
C × CM � n × m �→ HomN

(
n, G(m)

) ∈ Vect. (4.9)

A C-balanced natural transformation η̂ : HomN(n, F (m)) → HomN(n, G(m)) is mapped to the unique C-
module natural transformation η : F → G with η̂( f ) = η(m)◦ f for all f ∈ HomN(n, F (m)). For three module
functors F , G, K : CM → CN, the C-module natural transformation F → K corresponding to a composition
Hom(n, F (m)) → Hom(n, G(m)) → Hom(n, K (m)) of C-balanced natural isomorphisms is equal to the com-
position of the corresponding C-module natural transformations.

Proof. The usual Yoneda lemma shows that a transformation η̂ : HomN(n, F (m)) → HomN(n, G(m))

that is natural in both arguments can be identified with a natural transformation η : F → G . Consider
the following diagram.

Hom(n, F (c 
 m))
η(c
m)

�

Hom(n, G(c 
 m))

�

Hom(n, c 
 F (m))
c
η(m)

�

Hom(n, c 
 G(m))

�

Hom(c∗ 
 n, F (m))
η(m)

Hom(c∗ 
 n, G(m)).

(4.10)

The vertical isomorphisms provide the C-balancing structure of the functor Hom(n, F (m)). It is easy
to see that these isomorphisms satisfy the pentagon constraint. An analogous consideration holds for
Hom(n, G(m)).

The lower rectangle in (4.10) commutes for any natural transformation η. The outer diagram com-
mutes if and only if the upper rectangle commutes. The former commutes if and only if η is a
C-module natural transformation, while commutativity of the latter is precisely the condition on η
to define a C-balanced natural isomorphism HomN(n, F (m)) → HomN(n, G(m)). The statement about
the composition follows directly from the corresponding property of the Yoneda lemma. �

The next result shows that module traces are essentially unique. Consequently the existence of a
module trace is a property of a module category over a pivotal fusion category rather than a structure
on a module category.

Proposition 4.4. Let (CM,Θ) be an indecomposable module category over C with module trace. For any other
module trace Θ̃ on CM there is a z ∈ C

× such that Θ̃ = z · Θ .

Proof. Let Θ and Θ̃ be two module traces on CM. According to Theorem 4.2 they correspond
to C-balanced natural isomorphisms η, η̃ : Hom(m,n) → Hom(n,m)′ , respectively. Hence the vertical
composition η−1 · η̃ : Hom(m,n) → Hom(m,n) of the natural isomorphisms is a C-balanced natural iso-
morphism. According to Lemma 4.3 there is a unique C-module natural isomorphism Z : idM → idM
such that

η−1 · η̃( f ) = Z(n) ◦ f for all f ∈ Hom(m,n). (4.11)

Theorem 2.13 implies that there is a non-zero complex number z such that Z( f ) = z · f for all mor-
phisms f in M. Thus η̃( f ) = z · η( f ) and so Θ̃ = z · Θ . �
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4.2. The double adjoints of module functors

In this subsection we construct natural module isomorphisms between module functors of module
categories with C-module traces and their double adjoint module functors. These isomorphisms are
compatible with the composition of functors and if the module category is indecomposable they
define a pivotal structure for the dual fusion category. Recall that the left and right adjoint functors
of a module functor F : CM → CN, F l and F r , have a canonical structure of module functors. Note
that in our convention the left adjoint functor F l is a right dual object to F in the tensor category of
functors and natural transformations.

Theorem 4.5. Consider CM,CN ∈ ModΘ(C). For all module functors F : CM → CN there is a canonical

module natural isomorphism aF : F → F ll to the double left adjoint module functor of F .

i) The natural isomorphisms aF are natural with respect to module natural transformations, i.e. for any
module functor G : CM → CN and any module natural transformation ρ : F → G, the diagram

F
aF

ρ

F ll

ρll

G
aG

Gll

(4.12)

commutes.
ii) For all module functors F : CM→ CN and K : CN → CE,

aK F = aK ◦ aF : K ◦ F → (K ◦ F )ll. (4.13)

In particular, these isomorphisms equip the dual category C∗
M = FunC (M,M) with a pivotal structure that is

invariant under rescaling of the module trace of CM.

Proof. According to Theorem 4.2 we can identify the module traces with C-balanced natural iso-
morphisms ηM : Hom(m,m̃) → Hom(m̃,m)′ and ηN : Hom(n, ñ) → Hom(ñ,n)′ . Consider the following
sequence of natural C-balanced isomorphisms:

HomN

(
n, F (m)

) � HomM

(
F l(n),m

) ηM

� HomM

(
m, F l(n)

)′

� HomN

(
F ll(m),n

)′
(
ηN

)−1

� HomN

(
n, F ll(m)

)
. (4.14)

According to Lemma 4.3, the composition defines a C-module natural isomorphism aF : F → F ll .
For the first part we have to show that the diagram
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Hom(n, Fm)

�

Hom(n,ρm)

aF

Hom(n, Gm)

�

aG

Hom(F ln,m)

ηM

Hom(ρln,m)
Hom(Gln,m)

ηM

Hom(m, F ln)′

�

Hom(m,ρln)′
Hom(m, Gln)′

�

Hom(F llm,n)′

(ηN)−1

Hom(ρllm,n)′
Hom(Gllm,n)′

(ηN)−1

Hom(n, F llm)
Hom(n,ρllm)

Hom(n, Gllm)

(4.15)

commutes. All subdiagrams commute either by naturality of ηM and ηN , by definition of the adjoint
of ρ , or by definition of aF and aG . Hence the whole diagram commutes.

For the second part we identify (K F )l = F l K l . It is enough to prove that the following diagram
commutes:

Hom(e, K Fm)

�
aK F

KaF

Hom(F l K le,m)

ηM

Hom(e, K ll F llm)

Hom(m, F l K le)′

�

Hom(K ll F llm, e)′

(ηE)−1

Hom(F llm, K le)′

(ηN)−1

�

Hom(K le, F llm)

�

Hom(e, K F llm).

aK F ll

(4.16)

The upper triangle and the lower subdiagram commute due to the definition of aK F and aK , re-
spectively. It remains to show that the subdiagram on the left commutes. It is easy to see that this
subdiagram can be rewritten as
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Hom(e, K Fm)
�

Hom(e,KaF m)

Hom(K le, Fm)

Hom(K le,aF m)

Hom(e, K F llm)
�

Hom(K le, F llm).

(4.17)

The commutativity of the diagram (4.17) follows from the naturality of the adjunction and thus
the second part is proven. From part i) and ii) it is clear that the isomorphisms aF equip
C∗
M = FunC (M,M) � F with a pivotal structure. As the construction of aF involves the map

ηM : HomM(m,m̃) � HomM(m̃,m)′ composed with its inverse, a constant scale factor cancels out. �
Corollary 4.6. Let CM ∈ ModΘ(C). Consider M as a C∗

M-left module category and equip C∗
M with the induced

pivotal structure from Theorem 4.5. Then the C-module trace on M is also a C∗
M-module trace.

Proof. See Section 2.2 for the structures of the category C∗
M = FunC (M,M). The action of a F ∈ C∗

M
on CM is given by the application of the functor F . By Theorem 4.2 it is sufficient to show that
the C-balanced natural isomorphism η : Hom(m,m̃) � Hom(m̃,m)′ is also C∗

M-balanced. The induced
pivotal structure provides a natural isomorphism ar

F : F r → F l for a functor F ∈ C∗
M . We have to show

that the diagram

Hom(m, Fn)
η

�

Hom(Fn,m)′

�

Hom(n, F rm)′

(ar
F )−1

Hom(F lm,n)
η

Hom(n, F lm)′

(4.18)

commutes for all m,n ∈ M and F ∈ C∗
M . The arrows pointing downwards are the C-balancing natural

isomorphism for Hom(m,n) and Hom(n,m)′ , that are defined by the adjunction and the pivotal struc-
ture according to Eq. (4.5) and (4.6), respectively. The natural isomorphism aF is defined by Eq. (4.14)
in precisely such a way that the diagram commutes. Hence the statement follows. �
4.3. Conjugation of pivotal structures

When we restrict the considerations of the previous subsection to the case of C as a left module
category over itself, Theorem 4.5 provides a conjugation operation on the set of pivotal structures of a
fusion category C. We show how this conjugation can be obtained alternatively from a canonical nat-
ural monoidal isomorphism g : idC → (.)∗∗∗∗ that exists for all fusion categories C. To avoid confusion
we do not suppress the pivotal structures in the graphical calculations of this subsection.

Theorem 4.7. Let C be a fusion category with pivotal structure a : idC → (.)∗∗ .

i) There exists a pivotal structure a : idC → (.)∗∗ for C with (a∗∗x)
−1 : x → ∗∗x defined by
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d

c∗

c

∗∗x

x

c
∗c

a∗c (a∗∗x)
−1

f

g

= c

d

∗x

∗∗x

x

f

g

d∗

a∗d

∗d

d

, (4.19)

for all f ∈ Hom(c,d ⊗ x) and g ∈ Hom(d ⊗ ∗∗x, c).
ii) The dimension of an object x with respect to the pivotal structure a is equal to the dimension of ∗x with

respect to a.
iii) a = a if and only if a is spherical.
iv) a = a.

Proof. It is well-known (see e.g. [8]) that FunC (C,C) is canonically equivalent to Crev as a fusion
category. Crev is the category C with reversed tensor product. The module functors CC → CC can
be identified with the functors (.) ⊗ x of right tensoring with objects x ∈ C. The left adjoint functor
to (.) ⊗ x is (.) ⊗ ∗x. To show i) we introduce the following graphical notation for the isomorphism
ηC : Hom(c,d) → Hom(d, c)′:

d

c

f
ηC

�→
d

c
f

d
∗d

d∗

a∗d . (4.20)

Once the ellipse is replaced by a morphism h ∈ Hom(d, c), the diagram represents the number
ηC( f )(h). The chain of isomorphisms (4.14) reads now in graphical terms:

d

c

f

x

�→
d

c

f

x

∗x ηC

�→

d

c

f

x

∗xa∗d

d
∗d

d∗

�→ c

d

∗x

∗∗x

x
fd∗

a∗d

∗d

d

(
ηC

)−1

�→
d

c

f
x
(a∗∗x)

−1

∗∗x

. (4.21)
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Inserting once more the definition of ηC , we conclude that Eq. (4.14) yields Eq. (4.19). Hence Theo-
rem 4.5 implies the first part.

The second statement follows by restricting the first statement to the case d = ∗x, c = 1, f = coev′
x

and g = ev′∗x . Recall that we defined the dimensions in a pivotal category as the right trace of the
identity morphism.

Now consider the case a = a. The second part implies dimC(c) = dimC(∗c) for all c ∈ C and it
follows that a is spherical (see [20]). Conversely, suppose that a is spherical. Then

d

c∗

c

∗∗x

x

c
∗c

a∗c a−1∗∗x

f

g

=
a∗d

a−1∗∗x

c

d ∗∗x

x

f

g
x

ax

x∗∗

d

= c

d

∗x

∗∗x

x

f

g

d∗

a∗d

∗d

d

, (4.22)

where we used that a is spherical in the last step. So a = a by Eq. (4.19). For part iv) we have to show
that

d

c∗

c

∗∗x

x

c
∗c

a∗c a−1∗∗x

f

g

= c

d

∗x

∗∗x

x

f

g

d∗

a∗d

∗d

d

. (4.23)

With the symmetry of the right trace we calculate

d

c∗

c

∗∗x

x

c
∗c

a∗c a−1∗∗x

f

g

=

(a∗∗d)
−1

a∗∗∗x
c

d ∗∗x

x

f

g

∗∗x

d

a∗d

∗∗∗x

∗x

= c

d

∗x

∗∗x

x

f

g

d∗

a∗d

∗d

d

, (4.24)

where in the last step we used Eq. (4.19) with the morphism g in (4.19) set to id∗∗x . This proves the
theorem. �
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We call the pivotal structure a the conjugate pivotal structure of a. In the example of G-graded
vector spaces, see (3.13), where a pivotal structure is a group homomorphism κ : G → C, the conju-
gate pivotal structure is indeed given by the complex conjugate of κ .

It is instructive to consider the existence of conjugate pivotal structures also from another per-
spective. In [8] it is shown that for every fusion category there exists a monoidal natural isomorphism
g : id → (.)∗∗∗∗ . We provide a simple description of such an isomorphism using dual Hom-spaces and
show that the conjugate of a pivotal structure can be constructed with this isomorphism. We remark
that in [3] another graphical proof of the existence of such a natural isomorphism g is given with a
different approach to pivotal structures.

Proposition 4.8. Let C be a fusion category.

i) The map

φc : Hom(c,1) → Hom(1, c)′, φ( f )(h) = h ◦ f ∈C (4.25)

for c ∈ C, f ∈ Hom(1, c) and h ∈ Hom(c,1) is a natural isomorphism.
ii) The following chain of isomorphisms

Hom
(
x, ∗∗c

) � Hom
(∗c ⊗ x,1

) φ� Hom
(
1, ∗c ⊗ x

)′ � Hom(c, x)′

� Hom
(
1, x ⊗ c∗)′ φ−1

� Hom
(
x ⊗ c∗,1

) � Hom
(
x, c∗∗) (4.26)

is natural in c, x ∈ C and defines a monoidal natural isomorphism gc : ∗∗c → c∗∗ .
iii) gc : ∗∗c → c∗∗ is defined uniquely by the requirement that for all f ∈ Hom(x, ∗∗c) and h ∈ Hom(c, x):

x

h

∗∗c

c

∗c

f

=
h

∗∗c

c

c∗∗

f

gc

c∗x . (4.27)

Proof. The naturality of φ in part i) is clear. φ is an isomorphism due to the semisimplicity of C. For
part ii), the naturality of the isomorphisms in x and c is a consequence of part i) and the naturality
of the duality. Hence the isomorphism gc is well-defined by the Yoneda lemma. We introduce the
graphical notation

f

c (4.28)

for φc( f ) ∈ Hom(1, c)′ . If the unlabelled ellipse is replaced by a morphism h ∈ Hom(1, c), this ex-
pression represents the number φc( f )(h). Now the chain of isomorphisms (4.26) reads in graphical
terms
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∗∗c

x

f �→
∗∗c

∗c
x

f
φ�→

∗∗c

x
f

∗c �→

∗∗c

x
f

∗c

c

�→

�→

∗∗c

x
f

∗c

c∗
c

φ−1

�→ c∗x

f̃

�→ c∗x

f̃

c∗∗ =
∗∗c

x

f

gc
c∗∗

, (4.29)

where f̃ is defined by

c∗x

f̃

=

∗∗c

x
f

∗c

c∗
c

. (4.30)

Applying the rigidity of C it follows that

∗∗c

x
f

∗c

c∗
c

=
∗∗c

x

f

gc

c∗∗

c∗
. (4.31)

Applying once more the rigidity of C, Eq. (4.31) implies expression (4.26). For the compatibility of g
with the monoidal structure we calculate

x
f

∗∗c
gc

c∗∗

∗∗d

d∗∗

cd
h

gd

= x
f

∗∗c
gc

c∗∗
∗∗d

cd
h

= x

f
∗∗c∗∗d

cd
h

= x
f

∗∗c
gd⊗c
c∗∗

∗∗d

d∗∗

cd
h

, (4.32)
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where we first used the graphical expression (4.27) for gd , then for gc and finally for gc⊗d . Since
this equality holds for all morphisms h ∈ Hom(c ⊗ d, x) and f ∈ Hom(x, ∗∗d ⊗ ∗∗c), we conclude that
gd⊗c = gd ⊗ gc from the uniqueness statement in part iii). �
Remark 4.9.2 In [7, Theorem 7.3], a canonical monoidal isomorphism δ : (.)∗∗ � ∗∗(.) is defined by
tr(φ ◦ δ−1

c ) = tr(φ∗) for all isomorphisms φ : c∗∗ � c for a simple object c in a fusion category. We
show that δ−1

c coincides with gc as defined by Proposition 4.8. Let φ : c∗∗ � c be an isomorphism for
a simple object c. Then

tr(φ ◦ gc) =
∗∗c

gc
c∗∗

c
φ

=
c

gc

c∗∗

∗∗c

∗∗φ Prop. 4.8 iii)=
c

∗∗c

∗∗φ =
c∗

c∗∗∗
φ∗ = tr

(
φ∗) (4.33)

shows that our definition of g coincides with the definition in [7]. The advantage of our definition is
that it is defined directly for all objects and not just for simple objects.

It seems plausible that this monoidal natural isomorphism id → (.)∗∗∗∗ coincides also with the
isomorphisms defined in [8] and [3] but it remains to show that they are indeed equal.

The following proposition clarifies the relation between g and the conjugate of a pivotal structure.

Proposition 4.10. Let C be a fusion category with pivotal structure a : id → (.)∗∗ .

i) a and its conjugate a combine to g, i.e. ac · a∗∗c = ac · a∗∗c = gc : ∗∗c → c∗∗ .
ii) a is spherical if and only if ac · a∗∗c = gc .

Proof. For all f : c → ∗∗c,

∗∗c

f

c∗∗

c

c∗
a∗∗c

c
ac

= ∗c

c

∗∗c

f , (4.34)

by Eq. (4.19). This implies ac · a∗∗c = gc with condition (4.27). The other equation follows directly
from the naturality of a. For the second part note that the first part implies ac = gc · a−1∗∗c . Now the
statement follows directly from Theorem 4.7, iii). The statement can also be derived directly from the
graphical expression (4.27). �

2 We are grateful to the referee for bringing [7] to our attention.
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5. The existence problem as an eigenvalue equation

The aim of this section is to formulate the existence of a module trace as an eigenvalue problem.
In particular this allows one to show that all module categories over pseudo-unitary fusion categories
equipped with the canonical spherical structure admit a module trace.

5.1. The dimension matrix of a module category

We show how a trace on a semisimple category is characterised by the dimensions of simple ob-
jects using the trace in Vect. For a module trace on a module category over C we derive an analogous
formula with the trace in Vect replaced by the right trace in C. As a consequence we obtain that the
existence of a module trace on CM implies dimC(C〈m,m〉) > 0 for all simple m ∈ M. In the last part
we apply the considerations to spherical fusion categories and show that a pivotal structure for C

is spherical if and only if there is a module category CM over C with a module trace such that all
dimensions in M are real.

Consider general traces on a semisimple category M with a finite set of representatives mi , i ∈
I for the isomorphism classes of simple objects. The following lemma is well-known, see e.g. [24,
Lemma II.4.2.3].

Lemma 5.1. A collection of linear maps Θm : EndM(m) → C that satisfies the symmetry property of
Definition 3.7 i) is non-degenerate and hence a trace on M if and only if Θ(idmi ) 	= 0 for all i ∈ I .

Proposition 5.2. For every trace Θ on M, (dimΘ(mi))i∈I is an |I|-tuple of non-zero numbers. Conversely,
given such a tuple di ∈C

× , i ∈ I ,

Θm( f ) =
∑
i∈I

tr
(
Hom(mi, f )

)
di, (5.1)

for f ∈ Hom(m,m) defines a trace on M. Here tr(Hom(mi, f )) denotes the usual trace on Vect of the linear
map Hom(mi, f ) : Hom(mi,m) → Hom(mi,m).

These two maps yield a bijection between the set of traces on M and the set of |I|-tuples of non-zero
numbers.

Proof. Suppose that M is equipped with a trace Θ . Then di = dimΘ(mi) 	= 0 due to Lemma 5.1. We
have to show that for all f ∈ End(m) formula (5.1) holds. The semisimplicity of M ensures that the
functor

M � m �→
⊕

i

HomM(mi,m) ⊗C mi (5.2)

is naturally isomorphic to the identity functor on M. This implies

Θm( f ) = Θ⊕
i Hom(mi ,m)⊗Cmi

(⊕
i

Hom(mi, f ) ⊗C mi

)

=
∑
i∈I

ΘHom(mi ,m)⊗Cmi

(
Hom(mi, f ) ⊗C mi

)
=

∑
i∈I

tr
(
Hom(mi, f )

)
di, (5.3)

where we used Lemma 3.12 in the last step.
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For the converse we have to show that given a set of non-zero di ∈ C for i ∈ I , formula (5.1) defines
a trace on M. The symmetry follows directly from the cyclic property of tr. The non-degeneracy
follows from Lemma 5.1. �

Now we discuss C-module traces. First we need a technical result. Choose representatives cu , u ∈ U
for the isomorphism classes of simple objects of C. See e.g. [15] for a review of the definition of the
Deligne product � of additive categories.

Lemma 5.3. The following functors M→ C�M are naturally isomorphic.

m �→
⊕
u∈U

cu � ∗cu 
 m, and

m �→
⊕
i∈I

C〈mi,m〉 � mi . (5.4)

Proof. The objects
⊕

u∈U cu � ∗cu ∈ C�C and
⊕

i∈I mi �mi ∈Mop �M are independent of the choice
of representatives of simple objects in the sense that the objects obtained from any two choices of
simple objects are canonically isomorphic, see [1, Section 2.4]. This shows that the two maps yield
well-defined functors. Now let c � m̃ ∈ C � M. Using the semisimplicity of C and M we obtain the
following chain of natural isomorphisms:

HomC�M

(
c � m̃,

⊕
u

cu � ∗cu 
 m

)
�

⊕
u

HomC(c, cu) ⊗ HomM

(
m̃, ∗cu 
 m

)
�

⊕
u

HomC(c, cu) ⊗ HomC

(
cu,C〈m̃,m〉)

� HomC

(
c,C〈m̃,m〉) � Hom(c 
 m̃,m)

� HomM

(
m̃, ∗c 
 m

)
�

⊕
i

HomM

(
mi,

∗c 
 m
) ⊗ HomM(m̃,mi)

�
⊕

i

HomC

(
c,C〈mi,m〉) ⊗ HomM(m̃,mi)

� HomC�M

(
c � m̃,

⊕
i

C〈mi,m〉 � mi

)
. (5.5)

Now apply the Yoneda lemma to obtain a natural isomorphism between the two functors. �
The following result provides an alternative characterisation of module traces. Recall from [8] that

for a pivotal fusion category dim(C) = ∑
u∈U |dimC(cu)|2 	= 0.

Proposition 5.4. Let CM be a C-module category. If Θ is a C-module trace on M, the dimension vector

di = dimΘ(mi) for i ∈ I consists of non-zero numbers di and is a (right) eigenvector of the matrix (Q )i j =
dimC(C〈m j,mi〉) with eigenvalue dim(C). If a tuple of non-zero numbers di for i ∈ I is an eigenvector of
(Q )i j with eigenvalue dim(C), then the collection of linear maps

Θm( f ) = 1

dim(C)

∑
i∈I

trR(
C〈mi, f 〉)di, (5.6)

for f ∈ End(m) and m ∈M defines a C-module trace on M. These two constructions are mutually inverse.
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Proof. Let Θ be C-module trace on M. Lemma 5.3 implies that the object
⊕

u(cu ⊗ ∗cu) 
 m is iso-
morphic to

⊕
i C〈mi,m〉 
 mi in M. Hence,

dim(C) · dk = dimC

(⊕
u

(
cu ⊗ ∗cu

)) · dimΘ(mk)

= dimΘ

(⊕
u

(
cu ⊗ ∗cu

)

 mk

) = dimΘ

(⊕
i

C〈mi,mk〉 
 mi

)

=
∑
i∈I

dimC
(
C〈mi,mk〉

)
di . (5.7)

In the sequel we will refer to the matrix Q = (Q ij) as the dimension matrix and to the vector d = (di)

as the dimension vector. Eq. (5.7) shows that the dimension vector is a right eigenvalue of the dimen-
sion matrix with eigenvalue dim(C). As another consequence of Lemma 5.3 we obtain the identity

Θ

(⊕
u

(
cu ⊗ ∗cu

) 
 f

)
= Θ

(⊕
i

C〈mi, f 〉 
 mi

)
, (5.8)

for all f ∈ End(m). This implies formula (5.6) with di = dimΘ(mi).
Now suppose we are given an eigenvector d of the dimension matrix with eigenvalue dim(C)

whose components do not vanish. Then define a linear map Θm : End(m) → C by the formula (5.6).
The symmetry of Θ follows from the cyclic property of the right trace trR of C. Since Θmi (idmi ) =

1
dim(C)

∑
j Q i jd j = di 	= 0, we conclude with Lemma 5.1 that Θ is a trace on M. For the C-

compatibility we have to show that for all f ∈ End(c 
 m),

∑
i∈I

trR(
C〈mi, f 〉)di =

∑
i∈I

trR(
C

〈
mi, trC( f )

〉)
di . (5.9)

Since C〈mi, .〉 : CM → CC is a module functor, Lemma 3.6 implies that trC(C〈mi, f 〉) = C〈mi, trC( f )〉.
Now the statement follows from trR(C〈mi, f 〉) = trR ◦ trC(C〈mi, f 〉). �

Note that formula (5.6) is a generalisation of formula (5.1).

Remark 5.5. The proof of Proposition 5.4 shows that for any set of numbers di , i ∈ I , formula (5.6)
defines a collection of linear maps that satisfy the symmetry and C-compatibility condition of Defini-
tion 3.7. The non-degeneracy condition is fulfilled if and only if

∑
j Q i jd j 	= 0 for all i ∈ I .

Next we discuss some properties of the dimension matrix for a module category CM that not
necessarily possesses a module trace. Let

M j
u,i = dimC

(
HomM(cu 
 mi,m j)

)
(5.10)

be the multiplicity matrix of the action of cu ∈ C on M.

Proposition 5.6. Let CM be a C-module category. The dimension matrix Q satisfies:

i) Q ij = ∑
u∈U dimC(cu)Mi

u, j .

ii) Q 2 = dim(C) · Q .
iii) Q is hermitian.
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Proof. The multiplicity of each object cu in C〈m j,mi〉 is

dimC

(
Hom

(
cu,C〈m j,mi〉

)) = dimC

(
Hom(cu 
 m j,mi)

) = Mi
u, j. (5.11)

This shows part i). For the second claim we first compute

⊕
j∈I

C〈m j,mi〉 ⊗ C〈mk,m j〉 =
⊕
j∈ j

C

〈
mk,C〈m j,mi〉 
 m j

〉

� C

〈
mk,

⊕
u∈U

(
cu ⊗ ∗cu

) 
 m j

〉

�
⊕
u∈U

(
cu ⊗ ∗cu

) ⊗ C〈mk,m j〉, (5.12)

where we used Lemma 5.3 in the second step. Now the statement follows after applying dimΘ to both
sides of this equation. For the third statement we show that the objects C〈mi,m j〉 and C〈m j,mi〉∗ are
isomorphic in C. We compute the multiplicity of a c ∈ C in C〈m j,mi〉∗ by using that Hom(m,n) �
Hom(n,m) as vector spaces. The following isomorphisms are isomorphisms of vector spaces:

Hom
(
c,C〈m j,mi〉∗

) � Hom
(
C〈m j,mi〉, ∗c

) � Hom
(∗c,C〈m j,mi〉

)
� Hom

(∗c 
 m j,mi
) � Hom

(
mi,

∗c 
 m j
)

� Hom(c 
 mi,m j) = Hom
(
c,C〈mi,m j〉

)
. (5.13)

As the multiplicities of all simple objects agree, we conclude that there exists an isomorphism

C〈mi,m j〉 → C〈m j,mi〉∗ in C. With dimC(c∗) = dimC(c) for all objects c ∈ C from [8, Proposition 2.9],
it follows that

dimΘ
(
C〈mi,m j〉

) = dimΘ
(
C〈m j,mi〉∗

) = dimΘ
(
C〈m j,mi〉

)
. � (5.14)

Proposition 5.7. A module category CM has a module trace if and only if the dimension matrix Q is of rank 1

with only non-zero entries. In particular is dimC(C〈m,m〉) > 0 for all simple objects m ∈ M.

Proof. It follows directly from Proposition 5.6, that the only possible (right and left) eigenvalues of
Q are dim(C) and 0. Suppose M has a module trace and d is the corresponding eigenvector of Q
with all entries non-zero. Let d̃ be an eigenvector of Q with eigenvalue dim(C). There always exists
a linear combination d + λd̃ with all entries non-zero. Hence d̃ must be proportional to d. This shows
that Q has rank 1.

Now suppose Q ij = d jdi with non-zero numbers di . Then
∑

i didi = dim(C) by Proposition 5.6 ii).
Hence di yields a module trace. This proofs also the last statement since dimC(C〈mi,mi〉) = didi . �

As an example we discuss pseudo-unitary fusion categories. Recall from [8] the definition of
the Frobenius–Perron dimensions of objects in a fusion category. A pseudo-unitary fusion category
possesses a canonical spherical structure such that the dimension of all objects are equal to the
Frobenius–Perron dimensions. In [8] and [9] Frobenius–Perron dimensions of simple objects in mod-
ule categories are defined and studied. The following statement shows that for module categories
over pseudo-unitary fusion categories our definition of module trace reduces to the Frobenius–Perron
dimension of [9, Remark 2.3].
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Proposition 5.8. Let C be a pseudo-unitary fusion category and let CM be a module category over C. The
Frobenius–Perron dimensions of simple objects in M provide a module trace for M and thus is the canonical
spherical structure of C flexible.

Proof. According to [9], there exists a Frobenius–Perron eigenvector (di)i∈I of M, that is defined by
d j > 0 for all j ∈ I and:

∑
u∈U

M j
u,id j = dimC(cu)di . (5.15)

If we multiply this equation with dimC(cu), sum over u ∈ U and use that the pivotal structure is
spherical, we see that (di) is an eigenvector of Q ij with eigenvalue dim(C) and hence defines a
module trace according to Proposition 5.4. �
5.2. Module traces on module categories over spherical fusion categories

Next we discuss the relation of module traces and spherical structure.

Proposition 5.9. Let C be spherical, M a left C-module category with module trace Θ . There exists a z ∈ C

such that the dimensions of objects in M with respect to the module trace z · Θ are real.

Proof. If C is spherical all dimensions of C are real. Hence Q is a real symmetric matrix which can
be diagonalised by a real matrix. It follows that the entries of all eigenvectors of Q are real. �

The next result provides a criterion to determine whether a given pivotal structure is spherical.

Proposition 5.10. Let CM be a module category with module trace Θ .

i) The dimension vector di = dimΘ(mi) is a left eigenvector of the dimension matrix with eigenvalue C =∑
u∈K dim(cu)2 , i.e.

∑
j d j Q ji = C · di .

ii) The number C = ∑
u∈K dim(cu)2 is equal to dim(C) if and only if the pivotal structure is spherical, and it

is equal to 0 otherwise.
iii) A pivotal structure for C is spherical if and only if there exists a module category CM with module trace

such that all dimensions of objects in M are real.
iv) Let C be spherical and assume that CM has a module trace. Then the induced pivotal structure for the dual

category C∗
M from Theorem 4.5 is spherical.

Proof. The C-compatibility of Θ implies

∑
i

Mi
u, jdi = dimΘ(cu 
 m j) = dimC(cu) · d j. (5.16)

Multiplying this equation with dimC(cu) and summing over u ∈ U yields:

C · d j =
∑

i∈I,u∈U

dimC(cu)Mi
u, jdi

=
∑
i∈I

dimC
(
C〈m j,mi〉

)
di, (5.17)

where we used Proposition 5.6, i). This proves the first statement. For the module category CC,

Eq. (5.17) implies C · dimC(c j) = C · dimC(c∗
j ). It is shown in [20] that C is spherical if and only if
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dimC(c∗
u) = dimC(cu). Hence the second statement follows. To prove part iii), let CM be a module cat-

egory with module trace Θ and di = dimΘ(mi) ∈R for all simple mi ∈ M. According to Proposition 5.7
we can assume, using the freedom to rescale Θ , that

∑
i d2

i = dim(C) and therefore Q ij = did j . From
part i) it follows that C = dim(C) and hence part ii) implies that the pivotal structure is spherical.
The converse is clear since the module category CC has real dimensions if a is spherical. The last
statement is a consequence of part iii) together with Proposition 5.9 and Corollary 4.6. �
Remark 5.11. It is shown in [20, Theorem 5.16] by different methods that an indecomposable module
category CM over a spherical category C provides a spherical structure for the category FunC (M,M).
The relation to our construction remains to be investigated.

6. Frobenius algebras

In this section we show that module traces are directly related to Frobenius algebras. This is done
by exploring the graphical calculus for module categories with module traces and constructing a
natural isomorphism β that is the reflected analogue of the α in Section 3.1. This operation equips
the inner hom objects with the structure of a Frobenius algebra. We also prove the converse, namely
that the module category formed by the modules over a special haploid Frobenius algebra has a
module trace.

To emphasise the role of the C-compatibility of a module trace we first discuss traces on a module
category CM. We saw in Section 4.1 that a module category with a trace that is not necessarily C-
compatible equips CM with a natural isomorphism ηM : HomM(m,n) → HomM(n,m)′ . Recall that the
pivotal structure of C also yields a trace and a natural isomorphism ηC : HomC(c,d) → HomC(d, c)′ ,
see Eq. (4.8).

Proposition 6.1. Let CM be a C-module category equipped with a trace Θ . Then there exists a natural isomor-
phism

β : Hom(n, c 
 m) → Hom
(
C〈m,n〉, c

)
, (6.1)

which is specified uniquely by the requirement

trR(
β( f ) ◦ α(g)

) = Θc
m( f ◦ g), (6.2)

for all g ∈ Hom(c 
 m,n) and with f ∈ Hom(n, c 
 m).

Proof. Condition (6.2) is equivalent to defining β as the following composition of natural isomor-
phisms:

Hom(n, c 
 m)
ηM

� Hom(c 
 m,n)′

� Hom
(
c,C〈m,n〉)′

(
ηC

)−1

� Hom
(
C〈m,n〉, c

)
. (6.3)

This follows directly from the identity ηM(a)(b) = Θn(a ◦ b) for a ∈ Hom(m,n) and b ∈ Hom(n,m). �
The graphical representation of β is

β =̂
c

n

m

→
n m

c

, (6.4)
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i.e. β allows one to flip strings representing objects in the module category upwards. Eq. (6.2) reads
in graphical terms:

α(g)

mn

c

β( f )

=

m

n

c

mc

g

f

. (6.5)

The properties of β are analogous to the properties of α from Section 3.1 provided that Θ is a module
trace.

Proposition 6.2. Let CM be a module category with module trace. Then the map β : Hom(n, c 
 m) →
Hom(C〈m,n〉, c) is compatible with the module structure: For all morphisms γ : x → y in C and all f ∈
Hom(n, c 
 m),

β(γ 
 f ) = γ ⊗ β( f ). (6.6)

Proof. By Proposition 6.1, β(γ 
 f ) is uniquely determined by the requirement

α(g)

C〈n,m〉

c

β(γ 
 f )

x

y

= n

mc

mc

g

f

x

y
γ

y

, (6.7)

for all g ∈ Hom(y 
 (c 
 m), x 
 n). From the C-compatibility of Θ and Eq. (6.2) one obtains that the
second expression is given by

n

mc

mc

g

f

x

γ

y

=
α(g)

C〈n,m〉

c

β( f )

x

y

γ

. (6.8)

The uniqueness result of Proposition 6.1 implies that β(γ 
 f ) = γ ⊗ β( f ). �
Consider a module category CM with module trace. We construct a coalgebra structure for C〈m,m〉

for m ∈ M in analogy to the construction of the algebra structure of C〈m,m〉 in Section 3.1. First we
define the internal coevaluation coevn,m : m → C〈n,m〉 
 n as
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coevn,m = β−1(id
C〈n,m〉) =̂

n

m

. (6.9)

Hence coevn,m is characterised uniquely by the property that for all f ∈ Hom(C〈n,m〉 
 n,m):

m

f

nC〈n,m〉

n

= α( f )
m n

. (6.10)

Next we define the internal comultiplication �m,n,k : C〈m,k〉 → C〈n,k〉 ⊗ C〈m,n〉 by

k m

n

= β

⎛
⎜⎜⎜⎜⎜⎜⎝

m

n

k

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6.11)

and the internal counit ε : C〈m,m〉 → 1 as

ε = β

⎛
⎜⎜⎜⎜⎜⎝ m

⎞
⎟⎟⎟⎟⎟⎠ =̂ mm . (6.12)

Lemma 6.3. For all morphisms f ∈ Hom(C〈n,k〉 
 n, c 
 m),

k

n

c
f

m

β�→
m

β( f )
c

n
k

. (6.13)

Proof. The proof is analogous to the proof of Lemma 3.3. �
Proposition 6.4. Let CM be a module category with module trace. For any object m ∈ M, the internal hom
C〈m,m〉 is canonically a coalgebra object.

Proof. The proof is analogous to the proof of Proposition 3.5. �
It remains to prove one more compatibility condition of α and β before we can show that C〈m,m〉

is a Frobenius algebra.
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Lemma 6.5. Consider the morphism coevn,k ◦ evl,k : C〈l,k〉 
 l → C〈n,k〉 
 n. By applying α and β to this
morphism we obtain the internal comultiplication and internal multiplication, respectively. In graphical terms:

α

⎛
⎜⎜⎜⎜⎜⎜⎝ k

n

l

⎞
⎟⎟⎟⎟⎟⎟⎠

= k l

n

, (6.14)

and

β

⎛
⎜⎜⎜⎜⎜⎜⎝ k

n

l

⎞
⎟⎟⎟⎟⎟⎟⎠

=
k

l

n
. (6.15)

Proof. Define Ψ = coevn,k ◦ evl,k . First we compute β(Ψ ) using Eq. (6.2). For all f ∈ Hom(C〈n,k〉) 

n,C〈l,k〉 
 l),

α( f )
k

β(�)

n

l nk
=

f

l

k n

k

n

=
α( f )

k n

l nk
, (6.16)

where the last step involved Eq. (6.10) and Lemma 3.3. This proves that β(Ψ ) is equal to the internal
multiplication.

Next we calculate for all g ∈ Hom(C〈n,k〉 
 n,C〈l,k〉 
 l),

α(�)
k

β(g)

n

l

lk
=

l

k

n
g

k ll

=

k

β(g)

n

l

lk
, (6.17)

where in the last step we used the definition of evl,k and Lemma 6.3. Since the trace on C is non-
degenerate and β an isomorphism, we conclude that α(Ψ ) is equal to the internal multiplication. �
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Theorem 6.6. Let C be a pivotal category and let M be a C-module category with module trace. For all non-
zero m ∈ M, C〈m,m〉 is a Frobenius algebra in C. If m is a simple object then C〈m,m〉 is a special haploid
symmetric Frobenius algebra with dimC(C〈m,m〉) > 0.

Proof. We show that the relations from Definition 2.5 are satisfied. Define the following morphisms
for k, l,n, r ∈ M:

f1 =

r

k nl

, f2 =

r

k

n

l

, (6.18)

f3 =

r

l
k

n

, f4 =
r

l

k

n

. (6.19)

Lemma 6.5, the compatibility of β and the module action according to Proposition 6.2 and the asso-
ciativity of the internal multiplication together imply

β( f1) = β( f3), hence f1 = f3. (6.20)

Similarly, as a consequence of Lemma 3.2, the coassociativity of the internal comultiplication and
Lemma 6.5, we obtain

α( f2) = α( f4), hence f2 = f4. (6.21)

It follows that α( f1) = α( f3), or in graphical terms

r

l

k n =

r

k

nl

, (6.22)

where we again used compatibility of α and the module structure as well as Lemma 6.5. Similarly we
conclude that β( f2) = β( f4). Together with Lemma 6.5 and Proposition 6.2 this implies
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r

l

k n =

r

k

n

l

. (6.23)

If we restrict attention to the case where all objects are equal to m, we see that C〈m,m〉 satis-
fies the relations (2.12) defining a Frobenius algebra. Let now m ∈ M be simple. Then the identity
Hom(1,C〈m,m〉) � Hom(m,m) � C implies that C〈m,m〉 is haploid. Recall that ηm and εm denote
the internal unit and counit, respectively. Eq. (6.2) shows that εm ◦ ηm = Θm(idm) 	= 0. Also by the
symmetry of Θ and by Eq. (6.10),

nm =

n

m

n

= m n = dimC
(
C〈n,m〉). (6.24)

As m is simple, this implies

evn,m ◦ coevn,m = dimC(C〈n,m〉)
dimΘ(m)

· idm. (6.25)

Furthermore, combining Lemma 6.5 and Lemma 3.3, we obtain

α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ n

m

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
n mm . (6.26)

Together with Eq. (6.24) this implies

μm,n,m ◦ �m,n,m = dimC(C〈n,m〉)
dimΘ(m)

· id
C〈m,m〉. (6.27)

By setting m = n we find that C〈m,m〉 is a special haploid Frobenius algebra, since by Proposi-
tion 5.7, dimC(C〈m,m〉) > 0. Due to Lemma 2.9, C〈m,m〉 is also a symmetric algebra. �

We will now prove the converse of Theorem 6.6. For this we require the following result. An
analogous statement has been proven in [11, Lemma 2.6] in a slightly different setting.
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Lemma 6.7. Let A be a normalised special haploid Frobenius algebra in a pivotal fusion category C. Then
dimC(M) 	= 0 for all simple modules M ∈ ModC(A).

Proof. The proof is a modification of the proof that all dimensions of simple objects in a pivotal fusion
category are non-zero, see [1, Lemma 2.4.1]. We use the pivotal structure to identify left and right dual
objects. First note that by Lemma 2.9, A is symmetric and for a symmetric Frobenius algebra,

= . (6.28)

This follows from the fact that the left hand side is the inverse of the morphism on the left of
Eq. (2.14), while the right hand side is the inverse morphism of the right hand side of (2.14), hence
both have to agree.

Let (M,ρ) be a simple A-module. Proposition 2.10 implies C= HomA(M, M) � HomC(1, M ⊗A M∗).
It is sufficient to show that there are non-zero maps coevA

M : 1 → M ⊗A M∗ and evA
M : M ⊗A M∗ for

which the diagram

1
coevM

coevA
M

M ⊗ M∗ P

evM

M ⊗A M∗

evA
M

1

(6.29)

commutes. The semisimplicity of C then implies that the composition evM ◦ coevM is non-zero. We
obtain evA

M from the universal property of the cokernel by observing that evM ◦ (ρ ⊗ idM∗ ) = evM ◦
(idM ⊗ ρM∗ ) as morphisms M ⊗ A ⊗ M∗ → 1. Here ρM∗ is defined by (2.15). For coevA

M we have to
show that P ◦ coevM 	= 0, where P is the projector (2.16). We compute

P ◦ coevM =̂ M M∗ = M M∗ (6.30)

= M M∗ (6.28)= M M∗ = M M∗

(6.31)
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(2.13)= M M∗ = M M∗ = coevM . (6.32)

This proves the statement. �
Proposition 6.8. Let A be a special haploid Frobenius algebra in C. Then the C-module category of right A-
modules, ModC(A), has a module trace induced by the trace on C. In particular, A satisfies dimC(A) > 0.

Proof. The symmetry and C-compatibility follow from the properties of the trace trC in C. We only
have to show that the induced pairing on the Hom-spaces of ModC(A) is non-degenerate. According to
Lemma 5.1 it is sufficient to show that all simple modules m over A have dimC(m) 	= 0. This follows
from Lemma 6.7.

Consider the quantum dimension of A. Since A is haploid it is a simple module over itself. The
inner hom object of ModC(A) is given by the tensor product over A, hence C〈A, A〉 = A ⊗A A = A,
see e.g. [13] for the last equality. The statement now follows from Proposition 5.7. �

We have established the correspondence between module traces and Frobenius algebras. If CM is
a module category with module trace, the dimensions of simple objects in general change under the
equivalence CM � n �→ C〈m,n〉 ∈ ModC(C〈m,m〉) with m ∈ M a simple object. The following lemma
allows one to calculate the relevant scaling factor.

Lemma 6.9. Let CM be a module category with module trace. Let m,n ∈ M be simple objects. Then

dimC
(
C〈m,n〉) = dimC(C〈m,m〉)

dimΘ(m)
· dimΘ(n). (6.33)

Under the equivalence CM� ModC(C〈m,m〉) the dimensions of simple objects are scaled by dimC(C〈m,m〉)
dimΘ(m)

.

Proof. Set di = dimΘ(mi). From Proposition 5.7, we obtain

Q ij = did j dim(C)∑
k |dk|2 . (6.34)

This implies

dimC
(
C〈m j,mi〉

) = di · |d j|2 dim(C)

d j
∑

k |dk|2

= di · dimC(C〈m j,m j〉)
d j

, (6.35)

where we again used Eq. (6.34) in the last step. Setting m = m j and n = mi then proves the claim. �
Finally we interpret our result using the notion of Morita equivalence of algebras (see [21]). Two

algebras A, B ∈ C are called Morita equivalent if the categories ModC(A) and ModC(B) are equivalent
as module categories.
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Theorem 6.10. Every separable indecomposable algebra A in a fusion category with a flexible pivotal structure
is Morita equivalent to a special haploid symmetric Frobenius algebra.

Proof. By definition of a flexible pivotal structure, the module category ModC(A) possesses a module
trace. By Theorem 6.6, this module category is equivalent to the module category corresponding to a
special haploid Frobenius algebra. �

Together with Proposition 5.8 this implies the following:

Corollary 6.11. If an indecomposable algebra A in a pseudo-unitary fusion category C is separable, then it is
Morita equivalent to a special haploid symmetric Frobenius algebra.
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Appendix A. Graphical calculus for tensor categories

We summarise the graphical calculus for tensor categories, see e.g. [1]. The symbol =̂ is used to
indicate that a certain diagrammatic expression represents an algebraic expression. Objects in C and
the tensor product are represented by the following diagrams.

c =̂ c , c ⊗ d =̂ d c . (A.1)

Morphisms are represented by labelled boxes, and we do not distinguish objects from their unit mor-
phisms. All diagrams are read from top to bottom. The composition is given by vertical connection of
boxes.

f : c → d =̂

d

f

c

, g ◦ f =̂ d

f
c

g
b

=
c

b

g ◦ f . (A.2)

An empty box represents a Hom-vector space:

Hom(c,d) =̂

d

c

. (A.3)
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The tensor product of two morphisms f : c → d and g : a → b is depicted as follows:

f ⊗ g =̂

b

g

a

d

f

c

. (A.4)

The interchange law f ⊗ g = ( f ⊗ ida)(idd ⊗ g) = (idc ⊗ g)( f ⊗ idb) has the following graphical expres-
sion:

b

g

a

d

f

c

=

b

g

a

d

f
c

=
b

g
a

d

f

c
. (A.5)

The graphical notation suppresses the unit object and the associativity constraint in C. Due to Mac
Lane’s coherence theorem for monoidal categories, a graphical expression uniquely defines a mor-
phisms in C once parentheses and unit objects are specified for the incoming and outgoing objects.
The evaluation and coevaluation morphisms for the right duals are depicted as follows:

evc =̂ cc∗ , coevc =̂
c∗c

, (A.6)

and the rigidity axioms read:

cc∗c = c ,
c∗c∗ c = c∗ . (A.7)

The graphical notation for left duals is analogous. If C is a pivotal category, we will often suppress the
pivotal isomorphism and identify right duals and left duals, so the left evaluation reads

c c∗ =̂ c

∗c

c∗
∗ac

. (A.8)

The right dual of a morphism f : c → d is defined by:

c

c∗
fd∗

d

. (A.9)
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The left dual of a morphism is defined analogously using the left duality, and the map

c

x

d
�→

c

∗c x

d
(A.10)

yields an isomorphism Hom(c ⊗ d, x) → Hom(d, ∗c ⊗ x).
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