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Abstract
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1. Introduction

Branching problems in representation theory ask how an irreducible representation
decomposes when restricted to a subgroup (or a subalgebra).

In the category of unitary representations of a locally compact group G ′, one can describe
irreducible decompositions by means of the direct integrals of Hilbert spaces. The object of our
study is the restriction of an irreducible unitary representation π of G to its subgroup G ′, in
particular when G and G ′ are both reductive Lie groups. Then the irreducible decomposition is
unique; however, it may contain a continuous spectrum in the direct integral of Hilbert spaces.

For a reductive Lie group G, we can consider branching problems also in the category
of (g, K )-modules. If the underlying (g, K )-module πK is discretely decomposable as a
(g′, K ′)-module (see Definition 2.1), then the branching laws of the restrictions of the unitary
representation π to G ′ and the (g, K )-module πK to (g′, K ′) are essentially the same in the
following sense:

π |G ′ ≃


τ∈G ′

⊕
mπ (τ )τ (Hilbert direct sum),

πK |(g′,K ′) ≃


τ∈G ′

mπ (τ )τK ′ (algebraic direct sum),

where G ′ is the set of equivalence classes of irreducible unitary representations of G ′, and τK ′ is
the underlying (g′, K ′)-module of τ . The key ingredient here is that the natural map

Hom(g′,K ′)(τK ′ , πK ) → HomG ′,continuous(τ, π) (1.1)

is bijective, and therefore the dimensions of the spaces of homomorphisms coincide, giving the
same multiplicity mπ (τ ) in the branching laws.

It should be noted that (1.1) is not surjective in general and that the restriction of an irreducible
and unitarizable (g, K )-module πK may not be decomposed into an algebraic direct sum of
irreducible (g′, K ′)-modules. Such a phenomenon happens whenever a continuous spectrum
appears in the branching law of the restriction of the unitary representation π to G ′.

The aim of this article is to give a classification of the triples (g, g′, πK ) such that the (g, K )-
module πK is discretely decomposable as a (g′, K ′)-module in the setting where

(g, g′) is a reductive symmetric pair,

πK is Zuckerman’s derived functor module Aq(λ).

The condition for discrete decomposability does not change if we replace K and K ′ by their
finite covering groups or subgroups of finite index. Thus, we may and do assume that K is
connected and K ′

= K σ (or equivalently G ′
= Gσ ), where σ is an involution of G leaving
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K stable. Further, the condition for discrete decomposability of Aq(λ) depends on a θ -stable
parabolic subalgebra q, but is independent of the parameter λ in the good range.

Our main result is Theorem 4.1 with Tables C.1–C.4. They give a classification of the
triples (g, gσ , q) for which Aq(λ) is discretely decomposable as a (gσ , K σ )-module. The list
is described up to the conjugacy of K × K as we explain at the beginning of Section 4. We find
that quite a large part of such triples (g, gσ , q) appear as a ‘family’ containing (g, gσ , b) with b a
θ -stable Borel subalgebra. We call them discrete series type (see Tables C.1–C.3), which include
holomorphic type as a special case (see Proposition 2.15). Moreover, there are some other triples,
which we refer to as isolated type (see Table C.4).

The tensor product of two representations is an example of the restriction with respect to
symmetric pairs. Thus, a very special case of our theorem includes the classification of two
discrete series representations π1 and π2 of G ′ such that the tensor product representation π1⊗π2
decomposes discretely (see Corollary 3.2).

There exist irreducible symmetric pairs (g, gσ ) for which any non-trivial Aq(λ) is not
discretely decomposable. We give a classification of all such pairs (g, gσ ) in Theorem 4.12.

The proof is based on the criterion for the discretely decomposable restriction established
in [4–6], see Theorem 2.8, and on the classification of reductive symmetric pairs (g, g′) by
Berger [1] up to outer automorphisms of g.

2. Discretely decomposable Aq(λ) for symmetric pairs

Let G be a connected real reductive Lie group. We write g for the Lie algebra of G and gC for
its complexification. Analogous notation will be used for other Lie algebras.

Let σ be an involutive automorphism of G, and we set Gσ
:= {g ∈ G : σg = g}. Then

(G, Gσ ) forms a reductive symmetric pair. Take a Cartan involution θ of G which commutes
with σ . Then K := Gθ and K σ

= K ∩ Gσ are maximal compact subgroups of G and Gσ ,
respectively. We let θ and σ also denote the induced involutions on g and their complex linear
extensions to gC. The Cartan decompositions are denoted by g = k + p and gσ

= kσ + pσ ,
respectively.

We recall from [6] the following basic notion, which we shall apply to branching problems in
the category of (g, K )-modules.

Definition 2.1. We say that a (g, K )-module V is discretely decomposable if there exists an
increasing filtration {Vn} such that V =


∞

n=0 Vn and each Vn is of finite length as a (g, K )-
module.

Remark 2.2 (See [6, Lemma 1.3]). Suppose that V is a unitarizable (g, K )-module. Then V is
discretely decomposable if and only if V is isomorphic to the algebraic direct sum of irreducible
(g, K )-modules.

Next, let us fix some notation concerning Zuckerman’s derived functor modules Aq(λ).
Suppose q is a θ -stable parabolic subalgebra of gC. The normalizer L = NG(q) of q is a
connected reductive subgroup of G. Hence a unitary character Cλ of L is determined by its
differential λ ∈

√
−1l∗. Associated to the data (q, λ), one defines Zuckerman’s derived functor

module Aq(λ) as in [3, (5.6)]. In our normalization, Aq(0) is a unitarizable (g, K )-module with
non-zero (g, K )-cohomologies, and in particular, has the same infinitesimal character as the
trivial one-dimensional representation C of g. We note that if q = gC, then L = G and Aq(λ) is
one-dimensional.
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Take a fundamental Cartan subalgebra h of l and choose a positive root system ∆+(gC, hC)

such that the set ∆(q, hC) of roots for q contains all the positive roots, and set ∆+(lC, hC) :=

∆(lC, hC)∩∆+(gC, hC). Let u be the nilradical of q. Denote by ρ, ρl, and ρ(u) ∈ h∗

C half the sum
of roots in ∆+(gC, hC), ∆+(lC, hC), and ∆(u, hC), respectively. Let ⟨·, ·⟩ be an invariant bilinear
form on h∗

C that is positive definite on the real span of the roots. Following the terminology [3,
Definitions 0.49 and 0.52], we say for a unitary character Cλ of L , λ is in the good range
if

Re⟨λ + ρ, α⟩ > 0 α ∈ ∆(u, hC),

and in the weakly fair range if

Re⟨λ + ρ(u), α⟩ ≥ 0 α ∈ ∆(u, hC).

The K -finite Hermitian dual of the (g, K )-module Aq(λ) in the normalization here is isomorphic
to the cohomologically induced module RS

q (Cν) with S = dimC(u ∩ kC) and ν = λ + ρ(u) in
the normalization of [4]. Accordingly, the good range (resp. the weakly fair range) amounts to
the condition on ν as

Re⟨ν + ρl, α⟩ > 0 α ∈ ∆(u, hC) (resp. Re⟨ν, α⟩ ≥ 0 α ∈ ∆(u, hC)).

We pin down some basic properties of the (g, K )-module Aq(λ) ([3, Chapters VIII and IX]).

Theorem 2.3. If λ is in the weakly fair range, Aq(λ) is unitarizable or zero. If λ is in the good
range, Aq(λ) is non-zero and irreducible.

Theorem 2.4. Suppose that rank gC = rank kC. If q is a θ -stable Borel subalgebra of gC and if
λ is in the good range, then Aq(λ) is isomorphic to the underlying (g, K )-module of a discrete
series representation of G. Conversely the underlying (g, K )-module of any discrete series
representation of G is isomorphic to Aq(λ) for some θ -stable Borel subalgebra q and λ in the
good range.

The goal of this article is to give a classification of the triples (G, Gσ , q) such that the
(g, K )-module Aq(λ) is discretely decomposable as a (gσ , K σ )-module. Since the discrete
decomposability depends only on the triple (g, gσ , q) of Lie algebras and not on the Lie group
G, our classification will be given in terms of the Lie algebras.

To pursue the classification, we prepare some further basic setups:

Definition 2.5. We say the pair (g, gσ ) is an irreducible symmetric pair if one of the following
holds.

(1) g is simple.
(2) g′ is simple and g ≃ g′

⊕ g′; σ acts by switching the factors.

Let g = g′
⊕ g′ and ϕ a non-trivial automorphism of g′. Then there is also a symmetric pair

(g, gσ ) defined by the involution σ(x, y) := (ϕ(y), ϕ−1(x)) for x, y ∈ g′. For the simplicity
of the exposition, we exclude this case from the definition of irreducible pairs. This does not
lose any generality for our purpose because we have an isomorphism Aq′

1⊕q′

2
(λ1, λ2)|gσ ≃

Aq′

1⊕ϕ(q′

2)
(λ1, (ϕ

∗)−1λ2)|diag(g′) via the isomorphism gσ
≃ diag(g′), (x, ϕ−1(x)) → (x, x).

Here, q′

1, q
′

2 are parabolic subalgebras of g′

C and diag(g′) is the diagonal in g = g′
⊕g′. Therefore
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the discrete decomposability for the triple (g, gσ , q′

1 ⊕ q′

2) is equivalent to that for the triple
(g, diag(g′), q′

1 ⊕ ϕ(q′

2)). We shall treat the latter case in Section 3.
We should remark that our definition differs from the one in [1], where the pair (g, gσ ) was

called irreducible if g−σ is an irreducible gσ -module. For example, (sl(n, R), sl(m, R) ⊕ sl(n −

m, R) ⊕ R) is an irreducible pair for Definition 2.5, while it is not for the definition of [1]. Both
definitions are the same for Riemannian symmetric pairs.

Any semisimple symmetric pair is isomorphic to the direct sum of irreducible symmetric
pairs. In particular, branching problems of Aq(λ) with respect to reductive symmetric pairs
reduce to the case of irreducible symmetric pairs because any θ -stable parabolic subalgebra q
is obviously written as the direct sum of θ -stable parabolic subalgebras of each factor.

To describe θ -stable parabolic subalgebras of gC, it is convenient to use the following
convention:

Definition 2.6. We say that a parabolic subalgebra q of gC is given by a vector a ∈
√

−1k if q is
the sum of non-negative eigenspaces of ad(a).

Then q is a θ -stable parabolic subalgebra with a Levi decomposition q = lC + u, where lC and
u are the sums of zero and positive eigenspaces of ad(a), respectively. Note that any θ -stable
parabolic subalgebras are obtained in this way.

Needless to say, the defining element a of a θ -stable parabolic subalgebra q is not unique.
However, we adopt this convention in our classification (Tables C.1, C.3 and C.4) because it is
not hard to compute q and L = NG(q) from the defining element a by using the root system.

Replacing q by Ad(k)q for k ∈ K if necessary, we restrict ourselves to consider the following
setting.

Setting 2.7. (1) Suppose that (g, gσ ) is an irreducible symmetric pair and the involution σ

commutes with a Cartan involution θ . Fix a σ -stable Cartan subalgebra t = tσ + t−σ of k such
that t−σ is maximal abelian in k−σ . Choose a positive system ∆+(kC, tC) that is compatible with
some positive system of the restricted root system Σ+(kC,

√
−1t−σ ).

(2) Let q be a θ -stable parabolic subalgebra of gC. We assume that q is given by a ∆+(kC, tC)-
dominant vector a ∈

√
−1t.

Since t is σ -stable, σ acts on the complexification tC and also on the dual space t∗C, which is
denoted by the same letter σ . We note that pC and the nilradical u of q are tC-invariant subspaces.
We write ∆(pC, tC), ∆(u ∩ pC, tC) for the sets of the weights of tC in pC, u ∩ pC, respectively.
Here is a summary on equivalent conditions for discretely decomposable restrictions of Aq(λ)

with respect to reductive symmetric pairs. We shall use condition (iii) for our classification of the
triples (g, gσ , q).

Theorem 2.8. In Setting 2.7, the following eight conditions on the triple (g, gσ , q) are
equivalent:

(i) Aq(λ) is non-zero and discretely decomposable as a (gσ , K σ )-module for some λ in the
weakly fair range.

(i′) Aq(λ) is discretely decomposable as a (gσ , K σ )-module for any λ in the weakly fair range.
(ii) R+⟨u ∩ pC⟩ ∩

√
−1(t−σ )∗ = {0}. Here, we define

R+⟨u ∩ pC⟩ :=

 
α∈∆(u∩pC,tC)

nαα : nα ∈ R≥0

 .
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(ii′) There exists b ∈
√

−1tσ such that ⟨pr+(R+⟨u ∩ pC⟩), b⟩ > 0, where pr+ :
√

−1t∗ →
√

−1(tσ )∗ is the restriction map.
(iii) σα(a) ≥ 0 whenever α ∈ ∆(pC, tC) satisfies α(a) > 0.

(iii′) σ (u ∩ pC) ⊂ q.

(iv) Let V(Aq(λ)) be the associated variety of Aq(λ) and pr+ : g∗

C → (gσ
C)∗ the restriction

map. Then pr+V(Aq(λ)) is contained in the nilpotent cone of (gσ
C)∗ for any λ in the weakly

fair range.
(v) Each K σ -type occurs in Aq(λ) with finite multiplicity for any λ in the weakly fair range.

If one of, and hence any of, these equivalent conditions holds, we say that the triple (g, gσ , q)
satisfies the discrete decomposability condition.

Proof. The equivalence of (i), (i′), (ii), (iii′), (iv), and (v) was established in [4–6]. To be more
precise, the implication (ii) ⇒ (v) was proved in [4], and an alternative proof based on micro-
local analysis was given in [5]. The opposite direction (v) ⇒ (i′) ⇒ (i) ⇒ (iv) ⇒ (iii′) ⇒

(ii) was proved in [6]. The conditions (ii′) and (iii) are just reformulations of (ii) and (iii′),
respectively. �

We end this section with a number of direct consequences of Theorem 2.8, namely, one
equivalent condition (Proposition 2.9), two sufficient conditions (Propositions 2.10 and 2.15)
and two necessary conditions (Propositions 2.16 and 2.17) for the discrete decomposability of
Aq(λ) as a (gσ , K σ )-module.

Suppose that an involution σ of G commutes with a Cartan involution θ . Then the composition
θσ becomes another involution of G. The symmetric pair (g, gθσ ) is called the associated pair
of (g, gσ ).

Since σ = θσ on t, we get from condition (iii) in Theorem 2.8 the following proposition:

Proposition 2.9. For λ in the weakly fair range, Aq(λ) is discretely decomposable as a
(gσ , K σ )-module if and only if it is discretely decomposable as a (gθσ , K θσ )-module.

The following proposition is a direct consequence of condition (ii) in Theorem 2.8:

Proposition 2.10. Let q1 and q2 be θ -stable parabolic subalgebras of gC such that q1 ⊂ q2. If
(g, gσ , q1) satisfies the discrete decomposability condition, then so does (g, gσ , q2).

Yet another easy consequence of Theorem 2.8 concerns the triples (g, gσ , q) for holomorphic
q (Definition 2.12) defined for a Hermitian Lie algebra g below:

Definition 2.11. Let g = k + p be a real non-compact simple Lie algebra. We say g is of
Hermitian type and the symmetric pair (g, k) is a Hermitian symmetric pair if the center zK
of k is one-dimensional.

If g is of Hermitian type, then pC, regarded as a K -module by the adjoint action, decomposes
into the direct sum of two irreducible submodules, say, pC = p+ + p−. Then the Riemannian
symmetric space G/K becomes a Hermitian symmetric space by choosing p− as a holomorphic
tangent space at the base point.

Definition 2.12. Suppose that g is a simple Lie algebra of Hermitian type. A θ -stable parabolic
subalgebra q of gC is said to be holomorphic (resp. anti-holomorphic) if q ⊃ p+ (resp. q ⊃ p−).
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Fig. 1. K -conjugacy classes of θ -stable parabolic subalgebras for su(2, 2).

See Table C.1 for the conditions on a defining element a for parabolic subalgebra q to be
holomorphic or anti-holomorphic.

If a θ -stable parabolic subalgebra q is holomorphic and if Aq(λ) is non-zero and irreducible (in
particular, if λ is in the good range), then Aq(λ) is a lowest weight module with respect to a Borel
subalgebra containing p+. Similarly, if q is anti-holomorphic, Aq(λ) is a highest weight module.
If q ∩ pC = p+ (resp. q ∩ pC = p−) and λ is in the good range, then Aq(λ) is the underlying
(g, K )-module of a holomorphic (resp. anti-holomorphic) discrete series representation of G.

Definition 2.13. Suppose that g is a simple Lie algebra of Hermitian type, so the center zK of
k is one-dimensional. We say a symmetric pair (g, gσ ) is of holomorphic type if zK ⊂ gσ , or
equivalently if σ induces a holomorphic involution on the Hermitian symmetric space G/K .

It follows immediately from kσ = kθσ that the pair (g, gσ ) is of holomorphic type if and only
if the associated pair (g, gθσ ) is of holomorphic type. See Table C.2 for the classification of
symmetric pairs (g, gσ ) of holomorphic type.

Example 2.14. Let g = su(2, 2) ≃ so(4, 2). Suppose we are in Setting 2.7, and use the notation
of Setting A.1 for t and ei . In particular, q is given by a = a1e1 + a2e2 + a3e3 + a4e4 with
a1 ≥ a2 and a3 ≥ a4. Fig. 1 follows the notation in [4]. It shows 18 θ -stable parabolic
subalgebras of gC, which form a complete set of representatives of q up to K -conjugacy
and the equivalence relation among the θ -stable parabolic subalgebras q1 ∼ q2 defined by a
(g, K )-isomorphism Aq1(0) ≃ Aq2(0). The correspondence is: X1 ↔ a1 > a2 > a3 > a4,

X2 ↔ a1 > a3 > a2 > a4, X3 ↔ a1 > a3 > a4 > a2, X4 ↔ a3 > a1 > a2 > a4,

X5 ↔ a3 > a1 > a4 > a2, X6 ↔ a3 > a4 > a1 > a2, Y1 ↔ a1 > a2 = a3 > a4,

Y2 ↔ a1 > a3 > a2 = a4, Y3 ↔ a1 = a3 > a2 > a4, Y4 ↔ a3 > a1 > a2 = a4,

Y5 ↔ a1 = a3 > a4 > a2, Y6 ↔ a3 > a1 = a4 > a2, Z1 ↔ a1 > a2 = a3 = a4,

Z2 ↔ a1 = a2 = a3 > a4, Z3 ↔ a3 > a1 = a2 = a4, Z4 ↔ a1 = a3 = a4 > a2,

W ↔ a1 = a3 > a2 = a4, U ↔ a1 = a2 = a3 = a4. We see that X1, . . . , X6 yield θ -stable
Borel subalgebras and X1, X6, Y1, Y6, Z1, Z2, Z3, Z4, U yield holomorphic or anti-holomorphic
parabolic subalgebras.

The following theorem can be deduced from [7, Theorem 7.4]. For the convenience of the
reader, we give an alternative proof by using the criterion Theorem 2.8(iii).
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Proposition 2.15. Suppose that a symmetric pair (g, gσ ) is of holomorphic type and a parabolic
subalgebra q of gC is holomorphic or anti-holomorphic. Then Aq(λ) is discretely decomposable
as a (gσ , K σ )-module for any λ in the weakly fair range.

Proof. Choose z ∈
√

−1zK such that ∆(p+, tC) = {α ∈ ∆(pC, tC) : α(z) > 0}. We observe
u ∩ pC ⊂ p+ if the θ -stable parabolic subalgebra q = lC + u is holomorphic. Thus, if α(a) > 0
for α ∈ ∆(pC, tC), then α ∈ ∆(p+, tC). Since σ(z) = z, the σ -action on t∗C stabilizes ∆(p+, tC).
Then σα ∈ ∆(p+, tC) and hence σα(a) ≥ 0. Thus, Theorem 2.8(iii) is satisfied. �

Conversely, Theorem 2.8 gives a simple, necessary condition on a pair (g, gσ ) such that at
least one infinite dimensional Aq(λ) is discretely decomposable as a (gσ , K σ )-module.

Proposition 2.16. Let g be a simple non-compact Lie algebra and σ an involution of g
commuting with θ . Suppose that λ is in the weakly fair range, q ≠ gC, and Aq(λ) is non-
zero. If Aq(λ) is discretely decomposable as a (gσ , K σ )-module, then tσ ≠ 0, or equivalently
kσ +

√
−1k−σ is not a split real form of kC.

Proof. Suppose tσ = 0. Then σ acts by −1 on t and hence on ∆(pC, tC). Therefore if
α(a) > 0 for some α ∈ ∆(pC, tC), then σα(a) < 0. By Theorem 2.8, Aq(λ) is not discretely
decomposable. If α(a) = 0 for all α ∈ ∆(pC, tC), then pC ⊂ q. Therefore q must coincide with
gC, which is not the case.

Finally, we note that kσ +
√

−1k−σ is a real form of kC, where σ acts as a Cartan involution.
Thus, we see from Setting 2.7(1) that tσ = 0 if and only if kσ +

√
−1k−σ is a split real form

of kC. �

The following proposition also presents a necessary condition for Aq(λ) to be discretely
decomposable, which is stronger than the one in Proposition 2.16. Let α0 be the highest weight
of the irreducible representation of kC on pC (if g is not of Hermitian) or on p+ (if g is of
Hermitian).

Proposition 2.17. Let g be a simple non-compact Lie algebra and σ an involution of g
commuting with θ . Suppose that q ≠ gC, λ is in the weakly fair range, and Aq(λ) is non-zero.
If one of the following three assumptions hold, then Aq(λ) is not discretely decomposable as a
(gσ , K σ )-module.

(1) g is not of Hermitian type and −σα0 is ∆+(kC, tC)-dominant.
(2) g is of Hermitian type, (g, gσ ) is not of holomorphic type, and −σα0 is ∆+(kC, tC)-dominant.
(3) g is of Hermitian type, (g, gσ ) is of holomorphic type, −σα0 is ∆+(kC, tC)-dominant, and q

is neither holomorphic nor anti-holomorphic.

Proof. We assume that the parabolic subalgebra q is given by a ∆+(kC, tC)-dominant vector
a.

(1) Since −σα0 is an extremal weight of ∆(pC, tC) and −σα0 is dominant, −σα0 is the
highest weight of pC and hence −σα0 = α0. If α0(a) ≤ 0, then α(a) ≤ 0 for all α ∈ ∆(pC, tC).
Hence α(a) = 0 for all α ∈ ∆(pC, tC) and then q = gC, contradicting our assumption. We
therefore have α0(a) > 0 and σα0(a) = −α0(a) < 0 so condition (iii) in Theorem 2.8 fails.

(2) Similarly to the proof of case (1), −σα0 must be the highest weight of p+ and hence
−σα0 = α0. Let α′

0 be the highest weight of p−. Then −σα′

0 is dominant and hence −σα′

0 = α′

0.
If α0(a) ≤ 0 and α′

0(a) ≤ 0, then α(a) ≤ 0 for all α ∈ ∆(pC, tC). This implies q = gC,
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contradicting our assumption. Hence we must have α0(a) > 0 or α′

0(a) > 0. If α0(a) > 0, then
σα0(a) < 0 so condition (iii) in Theorem 2.8 fails. Similarly for the case α′

0(a) > 0.
(3) Similarly to the proof of case (1), σα0 is the lowest weight of p+. If α0(a) ≤ 0, then

α(a) ≤ 0 for all α ∈ ∆(p+, tC). This implies that q is anti-holomorphic, contradicting our
assumption. In the same way, σα0(a) ≥ 0 implies that q is holomorphic, a contradiction.
Therefore α0(a) > 0 and σα0(a) < 0 so condition (iii) in Theorem 2.8 fails. �

The key assumption of Proposition 2.17 is that −σα0 is dominant. In order to give a simple
criterion to verify this, we consider the Satake diagram of the reductive Lie algebra kσ +

√
−1k−σ ,

which is a real form of kC (see [2, Chapter X] for the Satake diagram). Each vertex is associated
to a simple root of ∆+(kC, tC). Then we add a vertex ⋆, indicating the highest weight α0(∈ t∗C)

of pC or p+. We connect this new vertex to the vertex associated to αi if ⟨α0, αi ⟩ > 0. We can
immediately tell whether −σα0 is dominant from this diagram:

Proposition 2.18. −σα0 is ∆+(kC, tC)-dominant if and only if no black circle is connected to
the new vertex ⋆.

Proof. Write ∆+
= ∆+(kC, tC) for simplicity. Suppose that the vertex ⋆ is connected to the

black circle associated to a simple root αi . Then ⟨−σα0, αi ⟩ = −⟨α0, σαi ⟩ = −⟨α0, αi ⟩ < 0
and hence −σα0 is not ∆+-dominant.

Conversely, assume that there is no black circle connected to the vertex ⋆. Suppose that
α ∈ −σ∆+. Then −σα ∈ ∆+ and hence ⟨−σα0, α⟩ = ⟨α0, −σα⟩ ≥ 0. Suppose that α ∈

∆+
\ −σ∆+. Since ∆+ is compatible with a positive restricted root system Σ+(kC,

√
−1t−σ ),

it follows that σα = α and α can be written as a linear sum of roots associated to black circles.
Our assumption implies that α0 is orthogonal to any roots associated to black circles and hence
orthogonal to α. Thus, ⟨−σα0, α⟩ ≥ 0 for all α ∈ ∆+. �

Owing to Proposition 2.18, we can classify all the pairs (g, gσ ) such that −σα0 is ∆+(kC, tC)-
dominant and tσ ≠ 0. See Appendix B for the list of the diagrams for all such pairs.

3. Discretely decomposable tensor product

The tensor product of two representations is a special case of the restriction with respect
to a symmetric pair, namely, it is regarded as the restriction of an outer tensor product
representation of the direct sum g = g′

⊕ g′, when restricted to the subalgebra gσ
:= diag(g′).

In this section we discuss when the tensor product of (g′, K ′)-modules Aq′

1
(λ1) ⊗ Aq′

2
(λ2)

decomposes discretely. This is a branching problem of the (g, K )-module Aq(λ) with respect
to (gσ , K σ ) := (diag(g′), diag(K ′)), where K = K ′

× K ′, q = q′

1 ⊕ q′

2 and λ = (λ1, λ2).

Theorem 3.1. Let g′ be a non-compact simple Lie algebra. Let q′

1 and q′

2 be θ -stable parabolic
subalgebras of g′

C, not equal to g′

C. Then the following three conditions on q′

1 and q′

2 are
equivalent.

(i) The tensor product Aq′

1
(λ1)⊗Aq′

2
(λ2) is non-zero and discretely decomposable as a (g′, K ′)-

module for some λ1 and λ2 in the weakly fair range.
(i′) The tensor product Aq′

1
(λ1) ⊗ Aq′

2
(λ2) is discretely decomposable as a (g′, K ′)-module for

any λ1 and λ2 in the weakly fair range.
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(ii) g′ is of Hermitian type and both q′

1 and q′

2 are simultaneously holomorphic or anti-
holomorphic.

Proof. Let t′ be a Cartan subalgebra of k′. Fix a positive system ∆+(k′C, t′C). Suppose that q′

1
and q′

2 are given by a1 ∈
√

−1t′ and a2 ∈
√

−1t′, respectively. We set g = g′
⊕ g′, k = k′ ⊕ k′,

t = t′ ⊕ t′, and q = q′

1 ⊕ q′

2. Then t is a Cartan subalgebra of k and q is a θ -stable parabolic
subalgebra of gC. We define the involution σ of g as σ(x, y) := (y, x) for x, y ∈ g′. Let
∆+(kC, tC) be the union of ∆+(k′C, t′C) in the first factor and −∆+(k′C, t′C) in the second factor,
so the condition of Setting 2.7(1) is satisfied. We assume that the defining element a = (a1, a2) of
q is ∆+(kC, tC)-dominant. This means that a1 and −a2 are ∆+(k′C, t′C)-dominant. Then condition
(iii) in Theorem 2.8 amounts to that

(i′′) α(a2) ≥ 0 whenever α ∈ ∆(p′

C, t′C) satisfies α(a1) > 0.

(i
′′

) implies that α(a1) ≥ 0 whenever α ∈ ∆(p′

C, t′C) satisfies α(a2) > 0.

By Theorem 2.8, it suffices to prove that (i′′) is equivalent to (ii).

(ii) ⇒ (i′′): This is similar to Proposition 2.15. Suppose that (g′, k′) is a Hermitian symmetric
pair. We assume q′

1 and q′

2 are holomorphic with respect to p′

C = p′
+ + p′

−. If α ∈ ∆(p′

C, t′C)

satisfies α(a1) > 0, then α ∈ ∆(p′
+, t′C). Since ∆(p′

+, t′C) ⊂ ∆(q′

2, tC), it follows that α(a2) ≥ 0
and hence (i

′′

) holds. The same argument works when q′

1 and q′

2 are anti-holomorphic.

(i′′) ⇒ (ii): Suppose that (g′, k′) is not a Hermitian symmetric pair. This means that k′C
is semisimple and acts irreducibly on p′

C by the adjoint action. Let us show α0(a1) > 0 and
α0(a2) < 0 if α0 ∈ ∆(p′

C, t′C) is the highest weight of p′

C with respect to ∆+(k′C, t′C). First we
observe that α0(a1) ≥ 0 because a1 is dominant and k′C is semisimple. If α0(a1) = 0, then we
would have p′

C ⊂ q′

1, which would result in q′

1 = g′

C, contradicting our assumption. Therefore
α0(a1) > 0. In the same way, we have α0(a2) < 0. Hence (i

′′

) fails.

Suppose now that (g′, k′) is a Hermitian symmetric pair and fix a decomposition p′

C =

p′
+ + p′

−. We assume that (i′′) holds. Let α0 ∈ ∆(p′
+, t′C) be the highest weight of p′

+ with
respect to ∆+(k′C, t′C). Since ∆(p′

+, t′C) = −∆(p′
−, t′C), we see that −α0 is the lowest weight

of p′
−.

Now we assume that q′

1 is not anti-holomorphic, namely p′
− ⊄ q′

1. Then α0(a1) > 0 because
p′
− ⊄ q′

1 and α0 is the highest weight. Then (i
′′

) implies that α0(a2) ≥ 0. Since −a2 is
dominant, α(−a2) ≤ α0(−a2) ≤ 0 for every α ∈ ∆(p′

+, t′C). Therefore q′

2 is holomorphic. In
particular, q′

2 is not anti-holomorphic, which in turn implies that q′

1 is holomorphic by the same
argument.

Likewise, if we assume that q′

1 is not holomorphic, we see that q′

1 and q′

2 are anti-
holomorphic. �

In view of Theorems 2.4 and 3.1, we can tell when the tensor product of two discrete series
representations decomposes discretely.

Corollary 3.2. Suppose that V1 and V2 are the underlying (g′, K ′)-modules of discrete series
representations. Then V1 ⊗ V2 is discretely decomposable as a (g′, K ′)-module if and only if they
are simultaneously holomorphic (or anti-holomorphic) discrete series representations.
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4. Classification of discretely decomposable Aq(λ)

The classification of the triples (g, gσ , q) goes as follows. The tensor product case was treated
in Section 3. Consider the case where g is simple. We fix a simple Lie algebra g with a Cartan
involution θ . Suppose that (g, gσ1 , q1) and (g, gσ2 , q2) are triples such that Ad(k)σ1Ad(k−1) =

σ2 and Ad(k′)q1 = q2 for k, k′
∈ K . Then there is an isomorphism Aq1(λ1)|gσ1 ≃ Aq2(λ2)|gσ2

via the isomorphism Ad(k) : gσ1 → gσ2 if Ad∗(k′)λ1 = λ2. In this sense the branching problems
with respect to (g, gσ1 , q1) and (g, gσ2 , q2) are equivalent. Thus, we will classify the triples
(g, gσ , q) with the discrete decomposability condition up to the adjoint action Ad(K ) × Ad(K ).
Here, σ is an involution commuting with θ and q is a θ -stable parabolic subalgebra of gC.

Retain the notation and the assumption in Setting 2.7. In particular, the parabolic subalgebra
q is given by a ∆+(kC, tC)-dominant vector a ∈

√
−1t. The classification of (g, gσ , q) with the

discrete decomposability condition is given as conditions on the coordinates ai of a.

Theorem 4.1. Let (g, gσ ) be an irreducible symmetric pair such that σ commutes with θ and let
q be a θ -stable parabolic subalgebra of gC, not equal to gC. Suppose that λ is in the weakly fair
range and that Aq(λ) is non-zero. Then Aq(λ) is discretely decomposable as a (gσ , K σ )-module
if and only if one of the following conditions on the triple (g, gσ , q) holds.

(1) g is compact.
(2) σ = θ .
(3) g = g′

⊕ g′ and q = q′

1 ⊕ q′

2. Further, g′ is of Hermitian type and both of the para-
bolic subalgebras q′

1 and q′

2 of g′

C are holomorphic, or they are anti-holomorphic (see
Table C.1 for holomorphic and anti-holomorphic parabolic subalgebras).

(4) The symmetric pair (g, gσ ) is of holomorphic type (see Table C.2 for the classification) and
the parabolic subalgebra q is either holomorphic or anti-holomorphic.

(5) The triple (g, gσ , q) is isomorphic to one of those listed in Table C.3 or in Table C.4, where
the parabolic subalgebra q is given by the conditions on a.

In Tables C.1, C.3 and C.4, we have assumed that the defining element a of q is dominant with
respect to ∆+(kC, tC) (see Appendix A for concrete conditions on the coordinates of a) and list
only additional conditions for the discrete decomposability.

Proof. If g is compact, namely, if g is isomorphic to the Lie algebra of a compact Lie group, then
the discrete decomposability follows obviously.

We divide irreducible symmetric pairs (g, gσ ) into the following four cases.

Case 1. In the tensor product case, a necessary and sufficient condition for the discrete
decomposability was obtained in Theorem 3.1.

In the rest of the proof, we assume that g is non-compact and simple.

Case 2. Suppose that tσ = 0 or the assumption (1) or (2) in Proposition 2.17 is satisfied for a
symmetric pair (g, gσ ). Then it follows from Propositions 2.16 and 2.17 that the triple (g, gσ , q)
does not satisfy the discrete decomposability condition for any θ -stable parabolic subalgebra q
other than gC.

Case 3. Suppose that assumption (3) in Proposition 2.17 is satisfied for a symmetric pair (g, gσ ).
Then the triple (g, gσ , q) satisfies the discrete decomposability condition if and only if q is
holomorphic or anti-holomorphic.
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We can verify which irreducible pairs (g, gσ ) belong to Case 2 or Case 3. The condition
tσ = 0 holds if and only if kσ +

√
−1k−σ is a split real form of kC, so it is easily verified. The

case tσ ≠ 0 is less easy. We give a list of all the pairs (g, gσ ) such that −σα0 is ∆+(kC, tC)-
dominant and tσ ≠ 0 in Appendix B. The verification of the dominancy of −σα0 is reduced
to a simple combinatorial problem by using the Satake diagram as we noted at the end of
Section 2.

Case 4. The classification of the triples (g, gσ , q) with the discrete decomposability condition
for the remaining symmetric pairs (g, gσ ) is more delicate. For this, we apply the criterion
Theorem 2.8(iii). This criterion reduces to simple computations for only the pair (k, kσ ) and
the set of weights ∆(pC, tC). We then carry out the computation in a case-by-case way.

To be more precise, we classify the K -conjugacy classes of symmetric pairs (g, gσ ), building
on Berger’s classification of symmetric pairs [1]. We postpone this until Section 5.

In Setting 2.7, we gave a symmetric pair (g, gσ ), followed by the choice of a Cartan subalgebra
t of k and a positive system ∆+(kC, tC) that satisfy the compatibility condition with respect to
σ and finally we set a θ -stable parabolic subalgebra q given by a ∆+(kC, tC)-dominant vector
a ∈

√
−1t. In the following, however, we do this in a different order. We fix t and ∆+(kC, tC)

before σ is given. This does not lose the generality because all the pairs (t,∆+(kC, tC)) are K -
conjugate (recall that we treat σ and q up to K × K -conjugacy). Then choose σ that satisfies the
conditions in Setting 2.7(1) with respect to (t,∆+(kC, tC)). Each K -conjugacy class of θ -stable
parabolic subalgebras of gC has a unique representative q which is given by a dominant vector
a ∈

√
−1t.

Let g be a non-compact simple Lie algebra. Choose coordinates ei of tC and write the
defining element a of q as a =


ai ei (see Appendix A). Fix a positive system ∆+(kC, tC).

We assume that a is ∆+(kC, tC)-dominant. For a given K -conjugacy class of symmetric pairs
(g, gσ ), we choose a representative σ that satisfies the conditions in Setting 2.7(1). We describe
the restriction of σ to t and then the σ -action on the set of weights ∆(pC, tC). Now the condition
Theorem 2.8(iii) amounts to conditions on the coordinates ai .

We illustrate computations in the following two examples. Other cases are verified
similarly. �

Example 4.2. Let (g, gσ ) = (su(m, n), su(m, k) ⊕ su(n − k) ⊕ u(1)) for k, n − k ≥ 1. We fix
t, {ϵi }, and {ei } as in Setting A.1. Choose σ that satisfies the conditions in Setting 2.7(1), so the
restriction of σ to tC can be written as σ(ei ) = eσ(i) for 1 ≤ i ≤ m + n, where

σ(i) = i for 1 ≤ i ≤ m,

σ (m + j) = m + n − j + 1 for 1 ≤ j ≤ min{k, n − k} or max{k, n − k} < j ≤ n,

σ (m + j) = m + j for min{k, n − k} < j ≤ max{k, n − k}.

Suppose that q is given by a dominant vector a = a1e1 + · · · + am+nem+n ∈
√

−1t, namely

a1 ≥ · · · ≥ am and am+1 ≥ · · · ≥ am+n as in Setting A.1. If the condition (iii) in Theorem 2.8 is
satisfied, then ai − am+n > 0 implies ai − am+1 ≥ 0 for 1 ≤ i ≤ m. As a consequence, we see
that the triple (su(m, n), su(m, k) ⊕ su(n − k) ⊕ u(1), q) satisfies the discrete decomposability
condition if and only if

(1) am+n ≥ a1,
(2) there exists an integer 1 ≤ l ≤ m − 1 such that a1 ≥ · · · ≥ al ≥ am+1 ≥ · · · ≥ am+n ≥

al+1 ≥ · · · ≥ am , or
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(3) am ≥ am+1.

These triples are listed in Table C.3.

Example 4.3. Let (g, gσ ) = (f4(−20), so(8, 1)). Here, the exceptional Lie algebra f4(−20) is a
real form of fC4 with real rank one. We fix t, {ϵi }, and {ei } as in Setting A.12. Choose σ that
satisfies the conditions in Setting 2.7(1), so the restriction of σ to tC can be written as

σe1 = −e1,

σei = ei for 2 ≤ i ≤ 4.

Suppose that q is given by a = a1e1 + · · · + a4e4 ∈
√

−1t, namely a1 ≥ · · · ≥ a4 ≥ 0 as in
Setting A.12. If the condition (iii) in Theorem 2.8 is satisfied, then 1

2 (ϵ1 + ϵ2 − ϵ3 − ϵ4)(a) ≤ 0
or 1

2 (−ϵ1 + ϵ2 − ϵ3 − ϵ4)(a) ≥ 0. The former implies a1 = a2 = a3 = a4 and the latter
implies a1 = a2 ≥ a3 = a4 = 0. Hence the triple (f4(−20), so(8, 1), q) satisfies the discrete
decomposability condition if and only if (a1, a2, a3, a4) = (s, s, s, s) or (s, s, 0, 0) for s ≥ 0.
These triples are listed in Table C.4.

From our classification result, we see that:

Corollary 4.4. In the setting of Theorem 4.1, suppose that q is a Borel subalgebra of
gC. If Aq(λ) is discretely decomposable as a (gσ , K σ )-module, then σ = θ or rank gC =

rank kC. In particular, Aq(λ) is isomorphic to the underlying (g, K )-module of a discrete series
representation in the latter case as far as λ is in the good range.

Remark 4.5. The triples (g, gσ , q) in Table C.3 have the following property: there exists
a θ -stable Borel subalgebra b contained in q such that (g, gσ , b) also satisfies the
discrete decomposability condition. This is also the case for (1)–(4) in Theorem 4.1. Then
Proposition 2.10 implies that every θ -stable parabolic subalgebra containing b satisfies the
discrete decomposability condition. We call such triples (g, gσ , q) discrete series type. The triples
in Table C.3 together with (1)–(4) in Theorem 4.1 give all triples of discrete series type.

Remark 4.6. The remaining case is (5) in Theorem 4.1 for Table C.4. We call triples (g, gσ , q)
in Table C.4 isolated type. For generic m, n and k, discrete series type and isolated type are
exclusive. However, for particular m, n or k there may be overlaps (see Remark 4.7(6), (7)).

Remark 4.7. We did not intend to write cases (1)–(5) in Theorem 4.1 in an exclusive way. Also
there are some overlaps among the tables. What follows from (2)–(5) below shows overlaps
between cases (4) and (5) in Theorem 4.1. (6) and (7) discuss some overlaps between Tables C.3
and C.4.

(1) Table C.2 includes the case σ = θ with g Hermitian.
(2) The symmetric pair (su(m, n), su(m, k) ⊕ su(n − k) ⊕ u(1)) in Table C.3 is of holomorphic

type and the parabolic subalgebra q is holomorphic (anti-holomorphic) if am ≥ am+1
(am+n ≥ a1).

(3) The symmetric pairs (so(2m, 2n), so(2m, k)⊕so(2n−k)) and (so(2m, 2n+1), so(2m, k)⊕

so(2n − k + 1)) in Table C.3 are of holomorphic type if m = 1 and q is holomorphic or anti-
holomorphic if m = 1, |a1| ≥ |a2|.
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(4) The symmetric pair (so(2m, 2n), u(m, n)) in Table C.3 is of holomorphic type if m = 1 or
n = 1 and the parabolic subalgebra q is holomorphic or anti-holomorphic if m = 1, a = a1e1
or n = 1, a = am+1em+1.

(5) The symmetric pairs (so∗(2n), so∗(2n −2)⊕ so(2)) and (so∗(2n), u(n −1, 1)) in Table C.4
are of holomorphic type and the parabolic subalgebra q is holomorphic or anti-holomorphic
if k = 1 or n − 1.

(6) The triple (so(2m, 2n), u(m, n), q) for m = 2 and a = a1e1 in Table C.4 is also listed in
Table C.3.

(7) The triple (su(2m, 2n), sp(m, n), q) for m = 1 and (a1, a2; a3, . . . , a2n+2) = (s, 0; t, 0,

. . . , 0)(s ≥ t), (0, −s; 0, . . . , 0, −t)(s ≥ t), (s, −t; 0, . . . , 0)(s, t ≥ 0) mod I2n+2 in
Table C.4 are also listed in Table C.3.

(8) There are also coincidences of Lie algebras with small rank such as sp(2, R) ≃ so(2, 3),
so(2, 4) ≃ su(2, 2), so(3, 3) ≃ sl(4, R), and so∗(6) ≃ su(1, 3).

Remark 4.8. Our classification of the triples (g, gσ , q) is carried out up to K × K -conjugacy
as we noted in the beginning of this section. In some cases, there exist more than one K -
conjugacy classes of (g, gσ ) for a given Lie algebra isomorphism class of gσ . To save space,
we did not distinguish between some different K -conjugacy classes in the tables if the discrete
decomposability conditions with respect to them are the same. For given Lie algebras g and g′,
we define S , T and φ as we shall explain in (5.1). The elements of S correspond to the K -
conjugacy classes of involutions σ of g such that θσ = σθ and gσ is isomorphic to g′. The
discrete decomposability condition only depends on their images in T by φ.

(1) Let g = so∗(8) and g′
= so∗(2) ⊕ so∗(6) ≃ u(1, 3). There are two K -conjugacy classes of

involutions σ such that θσ = σθ and gσ is isomorphic to g′, and one is the associated pair of
the other. We list the two pairs (so∗(8), so∗(2) ⊕ so∗(6)) and (so∗(8), u(1, 3)) in Table C.2,
which are not K -conjugate to each other. This is case (1) in Proposition 5.1.

(2) Let g = su(m, n). Among two types of symmetric pairs (su(m, n), su(m, k) ⊕ su(n −

k) ⊕ u(1)) and (su(m, n), su(m − k) ⊕ su(k, n) ⊕ u(1)), we list only the former type in
Tables C.3 and C.4 because the latter type can be treated by interchanging m and n. Similarly
for g = so(m, n) or g = sp(m, n).

(3) Let g = so(2m, 2n) and g′
= u(m, n). Consider K -conjugacy classes of involutions σ such

that θσ = σθ and gσ is isomorphic to g′. Then gθσ is also isomorphic to g′.

If both m and n are odd, then |Im φ| = 1 and |S| = 2. This is case (1) in Proposition 5.1.

If m is even and n is odd, then |Im φ| = 2 and |S| = 2. For every σ , case (3) in
Proposition 5.1 occurs. The same holds if m is odd and n is even.

If both m and n are even, then |Im φ| = 4 and |S| = 4. For every σ , case (3) in
Proposition 5.1 occurs.

It turns out that the discrete decomposability condition depends on the K -conjugacy
classes of σ only if m = 2 (or n = 2). For m = 2 and n ≠ 2, we write in Table C.3
as

gσ
= u(2, n)1 if σ(e1) = −e2,

gσ
= u(2, n)2 if σ(e1) = e2,
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(if m = 2 and n = 2k (k > 1), there are four K -conjugacy classes, so we group them two
and two). For m = n = 2, we write in Table C.3 as

gσ
= u(2, 2)11 if σ(e1) = −e2 and σ(e3) = −e4,

gσ
= u(2, 2)12 if σ(e1) = −e2 and σ(e3) = e4,

gσ
= u(2, 2)21 if σ(e1) = e2 and σ(e3) = −e4,

gσ
= u(2, 2)22 if σ(e1) = e2 and σ(e3) = e4.

Let g be a simple non-compact Lie algebra and σ(≠ θ) an involution commuting with θ .
We illustrate by examples how to obtain all θ -stable parabolic subalgebras q of gC such that
(g, gσ , q) satisfy the discrete decomposability condition.

Example 4.9. Let (g, gσ ) = (so(4, 2), u(2, 1)). Fix a Cartan subalgebra t of k = so(4) ⊕ so(2),
a positive system ∆+(kC, tC), and a basis of tC as in Setting A.2. We use the letters a′

i , e′

i instead
of ai , ei in Setting A.2. Suppose that gσ

= u(2, 1)1 in the notation of Remark 4.8. We assume q
is given by a ∆+(kC, tC)-dominant vector a = a′

1e′

1 +a′

2e′

2 +a′

3e′

3 as in Setting 2.7(2). According
to Table C.2, the pair (g, gσ ) is of holomorphic type. Hence all holomorphic or anti-holomorphic
parabolic subalgebras q satisfy the discrete decomposability condition. According to Table C.1, q
is holomorphic or anti-holomorphic if and only if |a′

3| ≥ a′

1. The pair (so(4, 2), u(2, 1)1) is listed
in Table C.3. This says that q satisfies the discrete decomposability condition if −a′

2 ≥ |a′

3|.
The pair (so(4, 2), u(2, 1)) is also listed in Table C.4. This says that q satisfies the discrete
decomposability condition if a = a′

1e′

1 or a = a′

3e′

3. We also have an isomorphism

(so(4, 2), u(2, 1)) ≃ (su(2, 2), su(2, 1) ⊕ su(1) ⊕ u(1)).

Regard t as a Cartan subalgebra of su(2, 2) and define ai and ei as in Setting A.1. Then we have

a′

1 =
1
2
(a1 − a2 + a3 − a4), a′

2 =
1
2
(−a1 + a2 + a3 − a4),

a′

3 =
1
2
(a1 + a2 − a3 − a4).

The pair (su(2, 2), su(2, 1) ⊕ su(1) ⊕ u(1)) is listed in Table C.3 and Table C.4. However,
it turns out that no parabolic subalgebra other than that obtained in the previous argument
satisfies the discrete decomposability condition. As a consequence, a parabolic subalgebra q
satisfies the discrete decomposability condition if and only if q is given by a for |a′

3| ≥

a′

1 or −a′

2 ≥ |a′

3| under the assumptions in Settings 2.7 and A.2. They correspond to
X1, X3, X6, Y1, Y2, Y5, Y6, Z1, Z2, Z3, Z4, W , or U . In all cases, the triples (g, gσ , q) are of
discrete series type (Fig. 2).

Example 4.10. Let (g, gσ ) = (su(2, 2), sp(1, 1)). Fix a Cartan subalgebra t of k = su(2) ⊕

su(2) ⊕ u(1), a positive system ∆+(kC, tC), and ei as in Setting A.1. We assume q is given
by ∆+(kC, tC)-dominant vector a = a1e1 + a2e2 + a3e3 + a4e4 as in Setting 2.7(2). The pair
(su(2, 2), sp(1, 1)) is listed in Table C.3. This says that q satisfies the discrete decomposability
condition if a1 ≥ a3 ≥ a4 ≥ a2 or a3 ≥ a1 ≥ a2 ≥ a4. The pair (su(2, 2), sp(1, 1)) is also listed
in Table C.4 and we have an isomorphism

(su(2, 2), sp(1, 1)) ≃ (so(4, 2), so(4, 1)).

It turns out that q satisfies the discrete decomposability condition if and only if a1 ≥ a3 ≥ a4 ≥

a2 or a3 ≥ a1 ≥ a2 ≥ a4 under the assumptions in Settings 2.7 and A.1. They correspond to
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Fig. 2. s0(4, 2) ↓ u(2, 1).

Fig. 3. su(2, 2) ↓ sp(1, 1).

X3, X4, Y2, Y3, Y4, Y5, Z1, Z2, Z3, Z4, W , or U . In all cases, the triples (g, gσ , q) are of discrete
series type (Fig. 3).

We see from our classification that, in most cases, the center of L = NG(q) is contained in K
if Aq(λ) is discretely decomposable as a (gσ , K σ )-module. We classify the cases where L has a
split center, or equivalently λ can be non-zero on l ∩ p.

Corollary 4.11. Let (g, gσ ) be an irreducible symmetric pair such that σ ≠ θ . Suppose that
Aq(λ) is non-zero and discretely decomposable as a (gσ , K σ )-module with λ in the weakly fair
range. Then L has a split center if and only if

(g, gσ , l) = (sl(2n, C), sp(n, C), sl(2n − 1, C) ⊕ C),

(sl(2n, C), su∗(2n), sl(2n − 1, C) ⊕ C),

(so(2n, C), so(2n − 1, C), sl(n, C) ⊕ C), or

(so(2n, C), so(2n − 1, 1), sl(n, C) ⊕ C).
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Proof. If rank gC = rank kC, then a fundamental Cartan subalgebra h of l is contained in k. In
this case, the center of L is contained in K .

Suppose that rank gC > rank kC. Then Theorem 4.1 implies that the pair (g, gσ ) is iso-
morphic to (so(2m + 1, 2n + 1), so(2m + 1, k) ⊕ so(2n − k + 1)), (sl(2n, C), sp(n, C)),
(sl(2n, C), su∗(2n)), (so(2n, C), so(2n − 1, C)), or (so(2n, C), so(2n − 1, 1)).

Let (g, gσ ) = (so(2m + 1, 2n + 1), so(2m + 1, k) ⊕ so(2n − k + 1)). By Theorem 4.1, we
may assume that q is given by a with am+1 = · · · = am+n = 0 (see Table C.4). Then l is a
direct sum of so(2l − 1, 2n + 1)(l ≥ 1) and compact factors. Hence the center of L is contained
in K .

For the remaining four pairs (g, gσ ), we have l = sl(2n − 1, C) ⊕ C if g = sl(2n, C) and
l = sl(n, C) ⊕ C if g = so(2n, C) (see Table C.4). Therefore L has a split center in these
cases.

As another consequence of Theorem 4.1, we get all the pairs (g, gσ ) which do not have
discretely decomposable restrictions Aq(λ)|gσ . We use the notation of [2, Chapter X] for
exceptional Lie algebras.

Theorem 4.12. Let (g, gσ ) be an irreducible symmetric pair such that g is non-compact and that
σ (≠ θ) commutes with θ . The following two conditions on the pair (g, gσ ) are equivalent.

(i) There is no θ -stable parabolic subalgebra q (≠ gC) such that the triple (g, gσ , q) satisfies
the discrete decomposability condition (see Theorem 2.8).

(ii) One of the following cases occurs.
(1) g ≃ g′

⊕ g′ with g′ not of Hermitian type.
(2) The simple Lie algebra g is isomorphic to sl(n, R)(n ≥ 5), so(1, n), su∗(2n), sl(2n +

1, C), so(2n + 1, C), sp(n, C), g2(2), e6(6), e6(−26), e7(7), e8(8), gC
2 , fC4 , eC

6 , eC
7 , or eC

8 .

(3) kσ +
√

−1k−σ is a split real form of kC.
(4) The pair (g, gσ ) is isomorphic to one of those listed in Table C.5.

5. K -conjugacy classes of reductive symmetric pairs

In [1], irreducible symmetric pairs (g, gσ ) are classified up to outer automorphisms of g. For
our purpose, we need its refinement. To classify the K -conjugacy classes of (g, gσ ), we have to
tell whether or not two symmetric pairs (g, gσ1) and (g, gσ2) are K -conjugate to each other when
gσ1 is isomorphic to gσ2 by an outer automorphism of g.

For this, we fix a reductive Lie algebra g′ with a Cartan decomposition g′
= k′ +p′. Denote by

S ≡ S(g, g′) the set of K -conjugacy classes of involutions σ of g such that σ commutes with θ

and that there is an isomorphism ϕ : gσ ∼
−→ g′ of Lie algebras with ϕ(kσ ) = k′. Similarly, denote

by T ≡ T (k, k′) the set of K -conjugacy classes of involutions σ of k such that kσ is isomorphic to
k′. We allow the case where σ is the identity in the definition of T . Then the restriction σ → σ |k

induces a map:

φ : S → T . (5.1)

The aim of this section is to classify the set S . This is carried out by studying T and φ.
First let us study T ≡ T (k, k′). There is a one-to-one correspondence between T and the set

of K -conjugacy classes of real forms kσ +
√

−1k−σ of kC such that kσ ≃ k′. Therefore the
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elements of T correspond to the Satake diagrams of real forms k0 of kC such that a maximal
compact subalgebra of k0 is isomorphic to k′. For a simple compact Lie algebra k, we see from
the list of Satake diagrams ([2, Chapter X]) that

|T | = 3 if (k, k′) ≃ (so(8), u(4)) ≃ (so(8), so(2) ⊕ so(6)),

(so(8), so(7)),

(so(8), so(3) ⊕ so(5)),

|T | = 2 if (k, k′) ≃ (so(4n), u(2n)) (n ≥ 3),

and |T | ≤ 1 if otherwise. For k not simple, there may exist outer automorphisms which
interchange simple factors. In such a case, the cardinality of T may also be greater than one.

Second we study the map φ.

Proposition 5.1. Let x ∈ T . Suppose that the fiber φ−1(x) is non-empty. Choose an involution
σ of g which represents an element of φ−1(x). Then one of the following three cases
occurs.

(1) |φ−1(x)| = 2 and {σ, θσ } is a complete set of representatives of φ−1(x). In particular, gσ

and gθσ are isomorphic as Lie algebras, but they are not K -conjugate to each other.
(2) |φ−1(x)| = 1 and gσ is not isomorphic to gθσ as a Lie algebra.
(3) |φ−1(x)| = 1 and gσ is K -conjugate to gθσ .

Let y1, y2 ∈ φ−1(x). We can choose two involutions σ1 and σ2 of g which represent y1 and y2,
respectively, such that kσ1 = kσ2 . Therefore, the proof of Proposition 5.1 reduces to the following
lemma.

Lemma 5.2. Let σ1 and σ2 be involutions of a simple Lie algebra g that commute with a Cartan
involution θ . If kσ1 = kσ2 , then σ1 is K -conjugate to σ2 or σ1 = θσ2.

Proof of the Lemma 5.2. Since σ1 = σ2 on k, the composition τ = σ1σ2 is an automorphism
of g that is the identity map on k. Then the restriction τ |p : p → p is an isomorphism of ad(k)-
modules.

Suppose that g is not of Hermitian type. Then pC is a simple k-module. Hence τ acts on p as
a scalar. Because τ = 1 on k and [p, p] = k, we have τ = 1 or −1 on p. Therefore σ1 = σ2 or
σ1 = θσ2.

Suppose that g is of Hermitian type. Then pC decomposes as a k-module: pC = p+ + p−.
We extend τ to a complex linear automorphism of gC and use the same letter. Since p+ and
p− are non-isomorphic simple k-modules, there are constants c+, c− ∈ C such that τ = c+ on
p+ and τ = c− on p−. In light that [p+, p−] = k and τ = 1 on k, we have c+c− = 1. We
write p+ for the complex conjugate of p+ with respect to the real form g. Since p+ = p− and τ

commutes with the complex conjugates, we have c+ = c−. Let z ∈ zK be a non-zero element of
the center of k. Then we can write τ = Ad(exp(t z)) for t ∈ R. Since σ1τ = σ2 is an involution,
it follows that τ−1

= σ1τσ1 = Ad(exp(tσ1z)). If the symmetric pair (g, gσ1) is of holomorphic
type, then σ1z = z and hence τ = τ−1. Therefore, c+ = 1 or −1 and it follows that σ1 = σ2 or
σ1 = σ2θ . If the symmetric pair (g, gσ1) is not of holomorphic type, then σ1z = −z. In this case,
Ad(exp(−t z/2))σ1Ad(exp(t z/2)) = σ2, so σ1 is K -conjugate to σ2.

When gσ is isomorphic to gθσ as a Lie algebra, we use a case-by-case analysis to tell whether
σ and θσ are K -conjugate and we conclude that:
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Proposition 5.3. For a symmetric pair (g, g′) with g simple, Proposition 5.1(1) occurs if and
only if (g, g′) is isomorphic to (so(4m + 2, 4n + 2), u(2m + 1, 2n + 1)).
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Appendix A. Setup for θ -stable parabolic subalgebras

In this appendix we fix a positive system ∆+(kC, tC) with respect to a Cartan subalgebra tC
of kC and present the set of weights ∆(pC, tC) for each simple Lie algebra g. We also write down
the conditions for a ∈

√
−1t to be ∆+(kC, tC)-dominant in terms of the coordinates ai , which

are used in Tables C.1, C.3 and C.4.
In what follows, we do not include g that has no non-trivial triple (g, gσ , q) satisfying the

discrete decomposability condition (see Theorem 4.12(2)). We will define ϵi ∈ t∗C and ei ∈ tC. If
g is not equal to su(m, n), sl(2n, C), e6(2), or e7(−25), then {ϵi } is a basis of t∗C and {ei } is a dual
basis of {ϵi }.

Setting A.1. Let g = su(m, n). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi − ϵ j }1≤i< j≤m ∪ {ϵm+i − ϵm+ j }1≤i< j≤n,

∆(pC, tC) = {±(ϵi − ϵm+ j )}1≤i≤m, 1≤ j≤n .

Define e1, . . . , em+n ∈ tC such that (ϵi − ϵ j )(ek) = δik − δ jk and then e1 + · · ·+ em+n = 0. The
dominant condition on a = a1e1+· · ·+am+nem+n ∈

√
−1t amounts to that a1 ≥ a2 ≥ · · · ≥ am

and am+1 ≥ am+2 ≥ · · · ≥ am+n .

Setting A.2. Let g = so(2m, 2n). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤m ∪ {ϵm+i ± ϵm+ j }1≤i< j≤n,

∆(pC, tC) = {±ϵi ± ϵm+ j }1≤i≤m, 1≤ j≤n .

Denote by e1, . . . , em+n ∈ tC the dual basis of ϵ1, . . . , ϵm+n . The dominant condition on
a = a1e1 + · · · + am+nem+n ∈

√
−1t amounts to that a1 ≥ · · · ≥ am−1 ≥ |am | and am+1 ≥

· · · ≥ am+n−1 ≥ |am+n|.

Setting A.3. Let g = so(2m, 2n + 1). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤m ∪ {ϵm+i ± ϵm+ j }1≤i< j≤n ∪ {ϵm+i }1≤i≤n,

∆(pC, tC) = {±ϵi ± ϵm+ j }1≤i≤m, 1≤ j≤n ∪ {±ϵi }1≤i≤m .

Denote by e1, . . . , em+n ∈ tC the dual basis of ϵ1, . . . , ϵm+n . The dominant condition on
a = a1e1 + · · · + am+nem+n ∈

√
−1t amounts to that a1 ≥ · · · ≥ am−1 ≥ |am | and

am+1 ≥ · · · ≥ am+n ≥ 0.
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Setting A.4. Let g = so(2m + 1, 2n). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤m ∪ {ϵm+i ± ϵm+ j }1≤i< j≤n ∪ {ϵi }1≤i≤m,

∆(pC, tC) = {±ϵi ± ϵm+ j }1≤i≤m, 1≤ j≤n ∪ {±ϵm+i }1≤i≤n .

Denote by e1, . . . , em+n ∈ tC the dual basis of ϵ1, . . . , ϵm+n . The dominant condition on
a = a1e1 + · · · + am+nem+n ∈

√
−1t amounts to that a1 ≥ · · · ≥ am ≥ 0 and am+1 ≥

· · · ≥ am+n−1 ≥ |am+n|.

Setting A.5. Let g = so(2m + 1, 2n + 1). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤m ∪ {ϵm+i ± ϵm+ j }1≤i< j≤n ∪ {ϵi }1≤i≤m ∪ {ϵm+i }1≤i≤n,

∆(pC, tC) = {±ϵi ± ϵm+ j }1≤i≤m, 1≤ j≤n ∪ {±ϵi }1≤i≤m ∪ {±ϵm+i }1≤i≤n ∪ {0}.

Denote by e1, . . . , em+n ∈ tC the dual basis of ϵ1, . . . , ϵm+n . The dominant condition on
a = a1e1 + · · · + am+nem+n ∈

√
−1t amounts to that a1 ≥ · · · ≥ am ≥ 0 and am+1 ≥

· · · ≥ am+n ≥ 0.

Setting A.6. Let g = sp(m, n). Choose ϵ1, . . . , ϵm+n ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤m ∪ {ϵm+i ± ϵm+ j }1≤i< j≤n ∪ {2ϵi }1≤i≤m ∪ {2ϵm+i }1≤i≤n,

∆(pC, tC) = {±ϵi ± ϵm+ j }1≤i≤m, 1≤ j≤n .

Denote by e1, . . . , em+n ∈ tC the dual basis of ϵ1, . . . , ϵm+n . The dominant condition on
a = a1e1 + · · · + am+nem+n ∈

√
−1t amounts to that a1 ≥ · · · ≥ am ≥ 0 and am+1 ≥

· · · ≥ am+n ≥ 0.

Setting A.7. Let g = so∗(2n). Choose ϵ1, . . . , ϵn ∈ t∗C such that

∆+(kC, tC) = {ϵi − ϵ j }1≤i< j≤n,

∆(pC, tC) = {±(ϵi + ϵ j )}1≤i< j≤n .

Denote by e1, . . . , en ∈ tC the dual basis of ϵ1, . . . , ϵn . The dominant condition on a =

a1e1 + · · · + anen ∈
√

−1t amounts to that a1 ≥ · · · ≥ an .

Setting A.8. Let g = sp(n, R). Choose ϵ1, . . . , ϵn ∈ t∗C such that

∆+(kC, tC) = {ϵi − ϵ j }1≤i< j≤n,

∆(pC, tC) = {±2ϵi }1≤i≤n ∪ {±(ϵi + ϵ j )}1≤i< j≤n .
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Denote by e1, . . . , en ∈ tC the dual basis of ϵ1, . . . , ϵn . The dominant condition on a =

a1e1 + · · · + anen ∈
√

−1t amounts to that a1 ≥ · · · ≥ an .

Setting A.9. Let g = sl(2n, C). Choose ϵ1, . . . , ϵ2n ∈ t∗C such that

∆+(kC, tC) = {ϵi − ϵ j }1≤i< j≤2n,

∆(pC, tC) = {±(ϵi − ϵ j )}1≤i< j≤2n ∪ {0}.

Define e1, . . . , e2n ∈ tC such that (ϵi − ϵ j )(ek) = δik − δ jk and then e1 + · · · + e2n = 0. The
dominant condition on a = a1e1 + · · · + a2ne2n ∈

√
−1t amounts to that a1 ≥ · · · ≥ a2n .

Setting A.10. Let g = so(2n, C). Choose ϵ1, . . . , ϵn ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤n,

∆(pC, tC) = {±ϵi ± ϵ j }1≤i< j≤n ∪ {0}.

Denote by e1, . . . , en ∈ tC the dual basis of ϵ1, . . . , ϵn . The dominant condition on a =

a1e1 + · · · + anen ∈
√

−1t amounts to that a1 ≥ · · · ≥ an−1 ≥ |an|.

For real exceptional Lie algebras, we follow the notation of [2, Chapter X].

Setting A.11. Let g = f4(4)(≡ f1
4) so that kC = sp(3, C) ⊕ sl(2, C). Choose ϵ1, ϵ2, ϵ3, ϵ4 ∈ t∗C

such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤3 ∪ {2ϵi }1≤i≤3 ∪ {2ϵ4},

∆(pC, tC) = {±ϵ1 ± ϵ2 ± ϵ3 ± ϵ4} ∪ {±ϵi ± ϵ4}1≤i≤3.

Denote by e1, e2, e3, e4 ∈ tC the dual basis of ϵ1, ϵ2, ϵ3, ϵ4. The dominant condition on
a = a1e1 + a2e2 + a3e3 + a4e4 ∈

√
−1t amounts to that a1 ≥ a2 ≥ a3 ≥ 0 and a4 ≥ 0.

Setting A.12. Let g = f4(−20)(≡ f2
4) so that kC = so(9, C). Choose ϵ1, ϵ2, ϵ3, ϵ4 ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤4 ∪ {ϵi }1≤i≤4,

∆(pC, tC) =


1
2
(±ϵ1 ± ϵ2 ± ϵ3 ± ϵ4)


.

Denote by e1, e2, e3, e4 ∈ tC the dual basis of ϵ1, ϵ2, ϵ3, ϵ4. The dominant condition on
a = a1e1 + · · · + a4e4 ∈

√
−1t amounts to that a1 ≥ a2 ≥ a3 ≥ a4 ≥ 0.

Setting A.13. Let g = e6(2)(≡ e2
6) so that kC = sl(6, C)⊕sl(2, C). Choose ϵ1, . . . , ϵ7 ∈ t∗C such

that

∆+(kC, tC) = {ϵi − ϵ j }1≤i< j≤6 ∪ {2ϵ7},

∆(pC, tC) =


1
2


6

i=1

(−1)k(i)ϵi


± ϵ7 : k(i) ∈ {0, 1}, k(1) + · · · + k(6) = 3


.

Define e1, . . . , e7 ∈ tC such that (ϵi − ϵ j )(ek) = δik − δ jk , ϵ7(e7) = 1, and (ϵi − ϵ j )(e7) =

ϵ7(ek) = 0 for 1 ≤ i, j, k ≤ 6. Then e1 + · · · + e6 = 0. The dominant condition on
a = a1e1 + · · · + a7e7 ∈

√
−1t amounts to that a1 ≥ · · · ≥ a6 and a7 ≥ 0.
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Setting A.14. Let g = e6(−14)(≡ e3
6) so that kC = so(10, C) ⊕ C. Choose ϵ1, . . . , ϵ6 ∈ t∗C such

that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤5,

∆(pC, tC) =


1
2


6

i=1

(−1)k(i)ϵi


: k(1) + · · · + k(6) odd


.

Denote by e1, . . . , e6 ∈ tC the dual basis of ϵ1, . . . , ϵ6. The dominant condition on a =

a1e1 + · · · + a6e6 ∈
√

−1t amounts to that a1 ≥ · · · ≥ a4 ≥ |a5|.

Setting A.15. Let g = e7(−5)(≡ e2
7) so that kC = so(12, C) ⊕ sl(2, C). Choose ϵ1, . . . , ϵ7 ∈ t∗C

such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤i< j≤6 ∪ {2ϵ7},

∆(pC, tC) =


1
2


6

i=1

(−1)k(i)ϵi


± ϵ7 : k(1) + · · · + k(6) odd


.

Denote by e1, . . . , e7 ∈ tC the dual basis of ϵ1, . . . , ϵ7. The dominant condition on a =

a1e1 + · · · + a7e7 ∈
√

−1t amounts to that a1 ≥ · · · ≥ a5 ≥ |a6| and a7 ≥ 0.

Setting A.16. Let g = e7(−25)(≡ e3
7) so that kC = eC

6 ⊕ C. Choose ϵ1, . . . , ϵ8 ∈ t∗C such that

∆+(kC, tC) = {ϵi ± ϵ j }1≤ j<i≤5

∪


1
2


ϵ8 − ϵ7 − ϵ6 +

5
i=1

(−1)k(i)ϵi


: k(1) + · · · + k(5) even


,

∆(pC, tC) = {±ϵ6 ± ϵi }1≤i≤5 ∪ {±(ϵ8 − ϵ7)}

∪


±

1
2


ϵ8 − ϵ7 + ϵ6 +

5
i=1

(−1)k(i)ϵi


: k(1) + · · · + k(5) odd


.

Define e1, . . . , e8 ∈ tC such that ϵi (e j ) = δi j for 1 ≤ i ≤ 6, 1 ≤ j ≤ 8 and that (ϵ8 − ϵ7)(ei ) =

δi8 − δi7 for 1 ≤ i ≤ 8. Then e8 + e7 = 0. The dominant condition on a = a1e1 + · · · + a8e8 ∈
√

−1t amounts to that a5 ≥ · · · ≥ a2 ≥ |a1| and a8 − a7 − a6 − a5 − a4 − a3 − a2 + a1 ≥ 0.

Setting A.17. Let g = e8(−24)(≡ e2
8) so that kC = eC

7 ⊕ sl(2, C). Choose ϵ1, . . . , ϵ8 ∈ t∗C such
that

∆+(kC, tC) = {ϵi ± ϵ j }1≤ j<i≤6 ∪ {ϵ8 ± ϵ7}

∪


1
2


ϵ8 − ϵ7 +

6
i=1

(−1)k(i)ϵi


: k(1) + · · · + k(6) odd


,

∆(pC, tC) = {±ϵ7 ± ϵi }1≤i≤6 ∪ {±ϵ8 ± ϵi }1≤i≤6

∪


±

1
2


ϵ8 + ϵ7 +

6
i=1

(−1)k(i)ϵi


: k(1) + · · · + k(6) even


.

Denote by e1, . . . , e8 ∈ tC the dual basis of ϵ1, . . . , ϵ8. The dominant condition on a =

a1e1 +· · ·+a8e8 ∈
√

−1t amounts to that a6 ≥ · · · ≥ a2 ≥ |a1| and a8 −a7 −a6 −a5 −a4 −a3 −

a2 + a1 ≥ 0.
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Appendix B. List of symmetric pairs satisfying the assumption of Proposition 2.17

In this appendix we assume that g is a non-compact simple Lie algebra and classify all the
irreducible symmetric pairs (g, gσ ) satisfying the following two conditions:

(1) −σα0 is dominant with respect to ∆+(kC, tC),
(2) tσ ≠ 0,

where α0 is the highest weight of pC with respect to ∆+(kC, tC) (if g is not of Hermitian
type) or that of p+ (if g is of Hermitian type). Condition (1) is the key assumption in
Proposition 2.17. Recall we have assumed that ∆+(kC, tC) and σ satisfy the compatibility
condition of Setting 2.7(1). If tσ = 0, then we can apply Proposition 2.16 and we see there is
no parabolic subalgebra other than gC satisfying the discrete decomposability condition. To save
space, we do not list the pairs (g, gσ ) with tσ = 0 because we can easily verify the condition
tσ = 0, which is equivalent to that kσ +

√
−1k−σ is a split real form of kC.

In view of Proposition 2.18, the classification of such pairs (g, gσ ) is carried out by using
diagrams. We thus write the Satake diagram of kσ +

√
−1k−σ and add a vertex ⋆, which is

associated to the weight α0 as explained in the paragraph before Proposition 2.18.
In Appendix B.1, we list all the pairs satisfying Assumption (1) or (2) in Proposition 2.17

and tσ ≠ 0. For these pairs, no parabolic subalgebra other than gC satisfies the discrete
decomposability condition. In Appendix B.2, we list all the pairs satisfying Assumption (3)
of Proposition 2.17 and tσ ≠ 0. By Propositions 2.15 and 2.17, the triple (g, gσ , q) satisfies
the discrete decomposability condition if and only if q is holomorphic or anti-holomorphic
(Definition 2.12).

In what follows, it is convenient to use the following symbol:

p :=

 p

• • • •   (p ≥ 0)

◦ (p = −1).

We note that the diagram for (g, gσ ) is the same as that for the associated pair (g, gθσ ).

B.1. Case of non-holomorphic symmetric pairs

B.1.1

m, n − m ≥ 1, |n − 2m| ≥ 2

(g, gσ ) = (sl(n, R), sl(m, R) ⊕ sl(n − m, R) ⊕ R)

(g, gθσ ) = (sl(n, R), so(m, n − m)).

Case: n even

⋆ ◦___ ◦ ◦ • • •

•
22

22
2

•�����

Case: n odd

⋆ ◦___ ◦ ◦ • • • •+3
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B.1.2

n ≥ 2

(g, gσ ) = (su(n, n), sl(n, C) ⊕ R)

◦ ◦ ◦ ⋆___ ◦___ ◦ ◦gg 77gg 77ii 55

B.1.3

m, n − m ≥ 1

(g, gσ ) = (su∗(2n), su∗(2m) ⊕ su∗(2n − 2m) ⊕ R)

(g, gθσ ) = (su∗(2n), sp(m, n − m))

• ◦

⋆
�
�
� • ◦ • • • •ks

B.1.4

k, l, m − k, n − l ≥ 1, max{|m − 2k|, |n − 2l|} ≥ 2

(g, gσ ) = (so(m, n), so(k, l) ⊕ so(m − k, n − l)).

Case: m, n even
•

•
22

22
2

•

�����

• ◦ ◦ ⋆___ ◦___ ◦ • •

•
22

22
2

•�����

Case: m + n odd
•

•
22

22
2

•

�����

• ◦ ◦ ⋆___ ◦___ ◦ • • •+3

Case: m, n odd

• •ks • ◦ ◦ ⋆___ ◦___ ◦ • • •+3

B.1.5

n ≥ 3

(g, gσ ) = (so(n, n), so(n, C))

(g, gθσ ) = (so(n, n), gl(n, R)).
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Case: n even

⋆

◦
3

3
3

◦�
�

�

◦ ◦

◦
HHH

H

◦vvvv

◦ ◦

◦vvvv

◦
HHH

H

��

WW

��

WW

��

WW

��

XX

��
SS

Case: n odd

⋆

◦
?

?

◦�
�

◦ ◦ ◦+3

◦ ◦ ◦+3

��

[[

��

[[

��

[[

��

[[

B.1.6

n ≥ 2

(g, gσ ) = (so∗(4n), su∗(2n) ⊕ R)

• ◦

⋆
�
�
� • ◦ •

B.1.7

n ≥ 1

(g, gσ ) = (sp(n, n), sp(n, C))

(g, gθσ ) = (sp(n, n), su∗(2n) ⊕ R)

⋆

◦
?

?

◦�
�

◦ ◦ ◦ks

◦ ◦ ◦ks

��

[[

��

[[

��

[[

��

[[

B.1.8

m, n − m ≥ 1

(g, gσ ) = (sl(n, C), sl(m, C) ⊕ sl(n − m, C) ⊕ C)

(g, gθσ ) = (sl(n, C), su(m, n − m))
q

◦ ◦ p ◦ ◦

⋆

P P P P P P P P P

nnnnnnnnn

ee 99gg 77
  

p =

n − 2m − 1 if m < n − m
2m − n − 1 if m > n − m
−1 if m = n − m

q =

m if m < n − m
n − m if m > n − m
m − 1 if m = n − m.
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B.1.9

m, 2n − m ≥ 2, |2n − 2m| ≥ 2

(g, gσ ) = (so(2n, C), so(m, C) ⊕ so(2n − m, C))

(g, gθσ ) = (so(2n, C), so(m, 2n − m))

◦ ◦

⋆
�
�
� ◦ • •

•
22

22
2

•�����

B.1.10

m, 2n − m + 1 ≥ 2, |2n − 2m + 1| ≥ 2

(g, gσ ) = (so(2n + 1, C), so(m, C) ⊕ so(2n − m + 1, C))

(g, gθσ ) = (so(2n + 1, C), so(m, 2n − m + 1))

◦ ◦

⋆
�
�
� ◦ • • •+3

B.1.11

n ≥ 4

(g, gσ ) = (so(2n, C), gl(n, C))

(g, gθσ ) = (so(2n, C), so∗(2n)).

Case: n even

• ◦

⋆
�
�
� • ◦ • ◦

•
22

22
2

◦�����

Case: n odd

• ◦

⋆
�
�
� • ◦ •

◦
22

22
2

◦�����

��

VV

B.1.12

(g, gσ ) = (e6(6), so(5, 5) ⊕ R)

(g, gθσ ) = (e6(6), sp(2, 2))

• ◦ • ◦ks ⋆___
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B.1.13

(g, gσ ) = (e6(2), su(3, 3) ⊕ sl(2, R))

◦ ◦ ◦ ◦ ◦

⋆�
�
�

◦�
�
�

ff 88ff 88

B.1.14

(g, gσ ) = (e6(−26), so(1, 9) ⊕ R)

(g, gθσ ) = (e6(−26), f4(−20))

• • •+3 ◦ ⋆___

B.1.15

(g, gσ ) = (e7(7), so(6, 6) ⊕ sl(2, R))

(g, gθσ ) = (e7(7), su(4, 4))

◦ ◦ ◦ ◦ ◦ ◦ ◦

⋆�
�
�

ff 88ff 88ff 88

B.1.16

(g, gσ ) = (e7(7), su
∗(8))

(g, gθσ ) = (e7(7), e6(6) ⊕ R)

• ◦ • ◦ • ◦ •

⋆�
�
�

B.1.17

(g, gσ ) = (e7(−5), so
∗(12) ⊕ sl(2, R))

• ◦ • ◦

◦�����

•
22

22
2

⋆___ ◦___
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B.1.18

(g, gσ ) = (e7(−25), e6(−26) ⊕ R)

◦ • • • ◦

•

⋆___

B.1.19

(g, gσ ) = (e8(8), so
∗(16))

(g, gθσ ) = (e8(8), e7(7) ⊕ sl(2, R))

• ◦ • ◦ • ◦

•
22

22
2

◦�����

⋆___

B.1.20

(g, gσ ) = (e8(−24), e7(−25) ⊕ sl(2, R))

◦ • •

•

• ◦ ◦ ⋆___ ◦___

B.1.21

(g, gσ ) = (eC
6 , sl(6, C) ⊕ sl(2, C))

(g, gθσ ) = (eC
6 , e6(2))

◦ ◦ ◦ ◦ ◦

◦

⋆�
�
�

ff 88ff 88

B.1.22

(g, gσ ) = (eC
6 , so(10, C) ⊕ C)

(g, gθσ ) = (eC
6 , e6(−14))

◦ • • • ◦

◦

⋆�
�
�

ff 88
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B.1.23

(g, gσ ) = (eC
7 , so(12, C) ⊕ sl(2, C))

(g, gθσ ) = (eC
7 , e7(−5))

⋆ ◦___ ◦ ◦ • ◦ •

•

B.1.24

(g, gσ ) = (eC
7 , eC

6 ⊕ C)

(g, gθσ ) = (eC
7 , e7(−25))

⋆ ◦___ • • • ◦ ◦

•

B.1.25

(g, gσ ) = (eC
8 , eC

7 ⊕ sl(2, C))

(g, gθσ ) = (eC
8 , e8(−24))

◦ • •

•

• ◦ ◦ ◦ ⋆___

B.2. Case of holomorphic symmetric pairs

B.2.1

k, l, m − k, n − l ≥ 1

(g, gσ ) = (su(m, n), su(k, l) ⊕ su(m − k, n − l) ⊕ u(1))
q s

◦ ◦ p ◦ ◦ ⋆_ _ _ff 88ff 88 ◦___ ◦ r ◦ ◦ff 88ff 88
     

p =


m − 2k − 1 if k < m − k

2k − m − 1 if k > m − k

−1 if k = m − k

q =


k if k < m − k

m − k if k > m − k

k − 1 if k = m − k

r =


n − 2l − 1 if l < n − l

2l − n − 1 if l > n − l

−1 if l = n − l

s =


l if l < n − l

n − l if l > n − l

l − 1 if l = n − l.
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B.2.2

n ≥ 2

(g, gσ ) = (su(n, n), so∗(2n))

(g, gθσ ) = (su(n, n), sp(n, R))

◦ ◦ ⋆___ ◦___ ◦ii 55ii 55

B.2.3

m, 2n − m + 1 ≥ 1

(g, gσ ) = (so(2, 2n + 1), so(2, m) ⊕ so(2n − m + 1))

⋆ ◦___ ◦ • • •+3

B.2.4

m, 2n − m ≥ 1

(g, gσ ) = (so(2, 2n), so(2, m) ⊕ so(2n − m))

⋆ ◦___ ◦ • •

•
22

22
2

•�����

B.2.5

m, n − m ≥ 2

(g, gσ ) = (so∗(2n), u(m, n − m))

(g, gθσ ) = (so∗(2n), so∗(2m) ⊕ so∗(2n − 2m)).

Case: n ≥ 5

q

◦ ◦ ◦ p ◦ ◦ ◦

⋆

�
�
�

gg 77hh 66ff 88
  

p =


n − 2m − 1 if m < n − m
2m − n − 1 if m > n − m
−1 if m = n − m

q =


m if m < n − m
n − m if m > n − m
m − 1 if m = n − m.

Case: m = 2, n = 4

◦ ◦ ◦

⋆�
�
�

ff 88
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B.2.6

m, n − m ≥ 1

(g, gσ ) = (sp(n, R), u(m, n − m))

(g, gθσ ) = (sp(n, R), sp(m, R) ⊕ sp(n − m, R))

q

⋆ ◦___ ◦ p ◦ ◦ff 88ff 88
  

p =

n − 2m − 1 if m < n − m
2m − n − 1 if m > n − m
−1 if m = n − m

q =

m if m < n − m
n − m if m > n − m
m − 1 if m = n − m.

B.2.7

(g, gσ ) = (e6(−14), su(4, 2) ⊕ su(2))

◦ ◦ ◦

◦�����

◦
22

22
2

⋆___VV

��

B.2.8

(g, gσ ) = (e6(−14), so
∗(10) ⊕ so(2))

(g, gθσ ) = (e6(−14), su(5, 1) ⊕ sl(2, R))

• ◦ •

◦�����

◦
22

22
2

⋆___VV

��

B.2.9

(g, gσ ) = (e7(−25), e6(−14) ⊕ so(2))

(g, gθσ ) = (e7(−25), so(2, 10) ⊕ sl(2, R))

◦ • • •

◦

◦ ⋆___ff 88
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B.2.10

(g, gσ ) = (e7(−25), su(6, 2))

(g, gθσ ) = (e7(−25), so
∗(12) ⊕ su(2))

◦ ◦ ◦ ◦

◦

◦ ⋆___ff 88ff 88

Appendix C. Tables

See Tables C.1–C.5.

Table C.1
Holomorphic parabolic subalgebras.

g a = a1e1 + a2e2 + · · ·

Holomorphic Anti-holomorphic

su(m, n) am ≥ am+1 am+n ≥ a1
so(2, 2n) a1 ≥ a2 −a1 ≥ a2
so(2, 2n + 1) a1 ≥ a2 −a1 ≥ a2
so∗(2n) an−1 + an ≥ 0 a1 + a2 ≤ 0
sp(n, R) an ≥ 0 a1 ≤ 0
e6(−14) a6 ≥ a1 + a2 + a3 + a4 + a5 −a6 ≥ a1 + a2 + a3 + a4 − a5
e7(−25) a6 ≥ a5 a8 ≤ a7

See Appendix A for the notation of a and the dominant condition.

Table C.2
Symmetric pairs of holomorphic type.

g gσ

su(m, n) m ≠ n su(k, l) ⊕ su(m − k, n − l) ⊕ u(1)

su(n, n) su(k, l) ⊕ su(n − k, n − l) ⊕ u(1)

so∗(2n)

sp(n, R)

so(2, 2n) so(2, k) ⊕ so(2n − k)

u(1, n)

so(2, 2n + 1) so(2, k) ⊕ so(2n − k + 1)

so∗(2n) u(m, n − m)

so∗(2m) ⊕ so∗(2n − 2m)

sp(n, R) u(m, n − m)

sp(m, R) ⊕ sp(n − m, R)

(continued on next page)
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Table C.2 (continued)

g gσ

e6(−14) so(10) ⊕ so(2)

so(2, 8) ⊕ so(2)

su(4, 2) ⊕ su(2)

so∗(10) ⊕ so(2)

su(5, 1) ⊕ sl(2, R)

e7(−25) e6(−78) ⊕ so(2)

e6(−14) ⊕ so(2)

so(2, 10) ⊕ sl(2, R)

su(6, 2)

so∗(12) ⊕ su(2)

Table C.3
(g, gσ , q) of discrete series type.

g gσ a = a1e1 + a2e2 + · · ·

su(m, n) su(m, k) ⊕ su(n − k) ⊕ u(1) am+n ≥ a1,
al ≥ am+1 and am+n ≥ al+1(1 ≤ ∃l ≤ m − 1),
or am ≥ am+1

su(2, 2n) sp(1, n) a1 ≥ a3 and a2n+2 ≥ a2
n ≠ 1

su(2, 2) sp(1, 1) a1 ≥ a3 ≥ a4 ≥ a2
or a3 ≥ a1 ≥ a2 ≥ a4

so(2m, 2n) so(2m, k) ⊕ so(2n − k) |am | ≥ |am+1|

so(2m, 2n + 1) so(2m, k) ⊕ so(2n − k + 1) |am | ≥ am+1

so(4, 2n) u(2, n)1 −a2 ≥ |a3|

n ≠ 2 u(2, n)2 a2 ≥ |a3|

so(4, 4) u(2, 2)11 −a2 ≥ a3 or −a4 ≥ a1
u(2, 2)12 −a2 ≥ a3 or a4 ≥ a1
u(2, 2)21 a2 ≥ a3 or −a4 ≥ a1
u(2, 2)22 a2 ≥ a3 or a4 ≥ a1

sp(m, n) sp(m, k) ⊕ sp(n − k) am ≥ am+1

f4(4) sp(2, 1) ⊕ su(2) a1 + a2 + a3 ≤ a4
so(5, 4) a1 + a2 + a3 ≤ a4

e6(2) so(6, 4) ⊕ so(2) a1 + a2 + a3 − a4 − a5 − a6 ≤ 2a7
su(4, 2) ⊕ su(2) a1 + a2 + a3 − a4 − a5 − a6 ≤ 2a7
sp(3, 1) a1 + a2 + a3 − a4 − a5 − a6 ≤ 2a7
f4(4) a1 + a2 + a3 − a4 − a5 − a6 ≤ 2a7

e7(−5) so(8, 4) ⊕ su(2) a1 + a2 + a3 + a4 + a5 − a6 ≤ 2a7
su(6, 2) a1 + a2 + a3 + a4 + a5 − a6 ≤ 2a7
e6(2) ⊕ so(2) a1 + a2 + a3 + a4 + a5 − a6 ≤ 2a7

e8(−24) so(12, 4) a7 ≥ a6
e7(−5) ⊕ su(2) a7 ≥ a6

See Appendix A for the notation of a and the dominant condition.
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Table C.4
(g, gσ , q) of isolated type.

g gσ a = a1e1 + a2e2 + · · ·

su(2m, 2n) sp(m, n) (a1, . . . , a2m ; a2m+1, . . . , a2m+2n)

= (s, 0, . . . , 0; t, 0, . . . , 0), mod I2m+2n(s, t ≥ 0)

(0, . . . , 0, −s; 0, . . . , 0, −t), mod I2m+2n(s, t ≥ 0)

(s, 0, . . . , 0, −t; 0, . . . , 0) mod I2m+2n(s, t ≥ 0)

or (0, . . . , 0; s, 0, . . . , 0, −t)mod I2m+2n(s, t ≥ 0)

so(2m + 1, 2n) so(2m + 1, k) ⊕ so(2n − k) am+1 = · · · = am+n = 0

so(2m + 1, 2n + 1) so(2m + 1, k) ⊕ so(2n − k + 1) am+1 = · · · = am+n = 0

so(2m, 2n) u(m, n) (a1, . . . , am ; am+1, . . . , am+n)

= (s, 0, . . . , 0; 0, . . . , 0)

or (0, . . . , 0; s, 0, . . . , 0)

so∗(2n) so∗(2n − 2) ⊕ so(2) (a1, . . . , an) = (s, . . . , s  
k

, −s, . . . ,−s)

(1 ≤ ∃k ≤ n − 1)

u(n − 1, 1) (a1, . . . , an) = (s, . . . , s  
k

, −s, . . . ,−s)

(1 ≤ ∃k ≤ n − 1)

sp(m, n) sp(k, l) ⊕ sp(m − k, n − l) (a1, . . . , am ; am+1, . . . , am+n)

k, l, m − k, n − l ≥ 1 = (s, 0, . . . , 0; 0, . . . , 0)

or (0, . . . , 0; s, 0, . . . , 0)

sp(m, k) ⊕ sp(n − k) (a1, . . . , am ; am+1, . . . , am+n)

= (0, . . . , 0; s, 0, . . . , 0),

al−1 ≥ am+1 and al = am+2 = 0 (2 ≤ ∃l ≤ m)

sl(2n, C) sp(n, C) (a1, . . . , a2n) = (s, 0, . . . , 0) mod I2n
or (0, . . . , 0, s) mod I2n

su∗(2n) (a1, . . . , a2n) = (s, 0, . . . , 0) mod I2n
or (0, . . . , 0, s) mod I2n

so(2n, C) so(2n − 1, C) (a1, . . . , an) = (s, . . . , s)
so(2n − 1, 1) (a1, . . . , an) = (s, . . . , s)

f4(−20) so(8, 1) (a1, a2, a3, a4) = (s, s, s, s) or (s, s, 0, 0)

e6(2) so∗(10) ⊕ so(2) (a1, . . . , a7) = (s, s, s, s, t, t, 0),

or (s, s, t, t, t, t, 0)

e6(−14) so(2, 8) ⊕ so(2) (a1, . . . , a6) = (s, s, s, s, s, s),
or (s, s, s, s, −s, −s)

e6(−14) f4(−20) (a1, . . . , a6) = (s, s, 0, 0, 0, 0),

or (s, s, s, s, t, t)

e7(−5) e6(−14) ⊕ so(2) (a1, . . . , a7) = (s, s, s, s, s, s, 0)

s, t ∈ R, In = (1, . . . , 1  
n

)

See Appendix A for the notation of a and the dominant condition.
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Table C.5
no Aq(λ) is discretely decomposable, case (4) of Theorem 4.12.

g gσ

su(n, n) sl(n, C) ⊕ R n ≥ 1

so(m, n) so(k, l) ⊕ so(m − k, n − l) k, l, m − k, n − l ≥ 1

so(n, n) so(n, C) n ≥ 3
gl(n, R) n ≥ 3

so∗(4n) su∗(2n) ⊕ R n ≥ 2

sp(n, n) sp(n, C) n ≥ 1
su∗(2n) ⊕ R n ≥ 1

sp(2n, R) sp(n, C) n ≥ 2

sl(2n, C) sl(m, C) ⊕ sl(2n − m, C) ⊕ C m, 2n − m ≥ 1
su(m, 2n − m) m, 2n − m ≥ 1

so(2n, C) so(m, C) ⊕ so(2n − m, C) m, 2n − m ≥ 2
so(m, 2n − m) m, 2n − m ≥ 2
gl(n, C) n ≥ 3
so∗(2n) n ≥ 3

e6(2) su(3, 3) ⊕ sl(2, R)

e7(−5) so∗(12) ⊕ sl(2, R)

e7(−25) e6(−26) ⊕ R

e8(−24) e7(−25) ⊕ sl(2, R)
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