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Several lines of evidence support a role of the endocannabinoid (eCB) system in 
cognition and anxiety. This study explores cognitive processes and anxiety-like behaviors 
in wild type (CB1

+/+) and CB1-receptor-deficient (CB1
-/-) mice of differing ages. 

Differences were observed between CB1
+/+ and CB1

-/- mice in a Morris Water Maze 
acquisition task. Furthermore, CB1

-/- mice did not display deficits in extinction during 
reversal learning. In the Light-Dark Box and Suok tasks, the CB1

-/- mice demonstrated 
greater anxiety-like behaviors relative the CB1

+/+ mice. No differences were observed in 
the Open-Field task, suggesting that the observed behavioral differences may be related 
to anxiety rather than cognitive impairments. This study has important implications for 
neuropsychiatric disorders, including depression and post-traumatic stress disorder. 
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The role of the CB1 receptor in learning, memory, and anxiety-like behaviors. 

 The medicinal and recreational properties of Cannabis sativa have been described 

for thousands of years, dating back to the oldest known pharmacopeia, the Pên-ts’ao 

Ching (2727 B.C., reviewed in Murray, Morrison, Henquet, & Di Forti, 2007). However, 

the body’s “endocannabinoid” system, which is responsible for mediating the effects of 

both the endogenous and exogenous cannabinoids, has only been recently discovered and 

documented. The identification and characterization of Δ9-tetrahydrocannabinol (THC), 

the major psychoactive component of cannabis (Gaoni & Mechoulam, 1964), led to the 

discovery of the endogenous brain (and peripheral) cannabinoid receptors primarily 

through the advancements in understanding G-protein-coupled receptor signaling and the 

use of high-affinity radio-labeled ligands and quantitative autoradiography (reviewed in 

Howlett, 2005). Following the characterization of the pharmacology and localization of 

the receptor, the cannabinoid receptor was cloned (Matsuda, Lolait, Brownstein, Young, 

& Bonner, 1990). The cloning of this first cannabinoid receptor (CB1) led to the 

successive identification of the mechanism of action for the cannabinoids, the 

intracellular cannabinoid-mediated signaling pathways, the isolation (and biochemical 

characterization) of several endogenous ligands binding to the receptor, as well as the 

identification of a second cannabinoid receptor (CB2).  

The endocannabinoid (eCB) system consists of the two cannabinoid receptors 

(CB1 and CB2; Devane, Dysarz, Johnson, Melvin, & Howlett, 1988; Gong et al., 2006; 

Matsuda et al., 1990; Munro, Thomas, & Abu-Shaar, 1993; Onaivi et al., 2006), their 

endogenous ligands (Devane et al., 1992; Mechoulam et al., 1995; Sugiura et al., 1995), 

and several enzymes that are involved in the synthesis and degradation of the endogenous 
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cannabinoids (Cravatt et al., 1996; Stella & Piomelli, 2001). The CB1 receptor, which is 

activated by the exogenous cannabinoid THC, is likely to be one of the most abundant G 

protein-coupled receptors in the mammalian brain (Di Marzo, Bifulco, & De Petrocellis, 

2004). Advances in the understanding of the molecular functioning of this receptor 

subtype have initiated a great deal of scientific interest focusing on the elucidation of 

both the physiological and pathophysiological roles of the endocannabinoid system.  

Specifically, the CB1 receptor has been shown to play a modulatory role in certain 

types of pain conditions (Calignano, La Rana, Giuffrida, & Piomelli, 1998; Richardson, 

Aanonsen, & Hargreaves, 1998; Walker, Huang, Strangman, Tsou, & Sanudo-Pena, 

1999), appetite control (Di Marzo et al., 2001), motoric functioning (reviewed in Ameri, 

1999), and several disorders, both “psychological” and “medical,” characterized by 

cognitive and/or emotional dysregulation, such as schizophrenia, post-traumatic stress 

disorder (PTSD), stroke, and traumatic brain injury (TBI; see review Pertwee, 2006). The 

eCB system has also been shown to facilitate several forms of mnemonic processes, such 

as spatial and working memory (Lichtman, Dimen, & Martin, 1995; Nava, Carta, 

Colombo, & Gessa, 2001; Varvel, Hamm, Martin, & Lichtman, 2001), as well as memory 

consolidation (Castellano, Cabib, Palmisano, Di Marzo, & Puglisi-Allegra, 1997) and the 

extinction of mainly aversive memories (Chhatwal, Davis, Maguschak, & Ressler, 2005; 

de Oliveira Alvares, Pasqualini Genro, Diehl, Molina, & Quillfeldt, 2008; Marsicano et 

al., 2002; Varvel & Lichtman, 2002; Varvel, Wise, Niyuhire, Cravatt, & Lichtman, 

2007). 

Several converging lines of anatomical, electrophysiological, neurochemical, and 

behavioral evidence suggest a physiological role of the eCB system in the processing of 
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cognition and of anxiety. For example, the CB1 receptor and its two distinct endogenous 

ligands (i.e., anadamide and 2-arachidonoylglycerol) are widely distributed in brain 

regions related to learning, memory, and anxiety (e.g., hippocampus, amygdala; Di 

Marzo et al., 2000; Egertova & Elphick, 2000; Eggan & Lewis, 2007; Herkenham et al., 

1991; Herkenham et al., 1990; Matyas et al., 2006). Additionally, recent pharmacological 

and CB1-receptor-deficient mouse models (e.g., Bilkei-Gorzo et al., 2005; Varvel, Anum, 

& Lichtman, 2005) have demonstrated that the CB1 receptor may be responsible for 

mediating both cognitive and stress-related processes.   

Several exogenous CB1 receptor agonists have been shown to disrupt learning and 

memory processes in a variety of behavioral paradigms. Specifically, THC (Lichtman et 

al., 1995; Lichtman & Martin, 1996; Mishima et al., 2001), CP55,940 (Braida & Sala, 

2000; Lichtman et al., 1995) and WIN55,212-2 (Lichtman et al., 1995) have been shown 

to impair working memory in the eight-arm radial maze task, while THC has also been 

shown to impair performance in the T-Maze alternation task (Braida & Sala, 2000). 

Additionally, the administration of THC has resulted in acquisition, retrieval, and 

working memory deficits in the Morris Water Maze task (MWM; Da Silva & Takahashi, 

2002; Varvel et al., 2001), one of the primary apparatus used in the current research. 

Similarly, anandamide, WIN-55,212-2, and THC were all shown to induce deficits in the 

delayed non-matching-to-sample (DNMTS) task (Hampson & Deadwyler, 1999, 2000; 

Mallet & Beninger, 1998). THC and methanandamide were also shown to induce 

impairments in an object recognition task and discrimination task (Brodkin & 

Moerschbaecher, 1997; Ciccocioppo et al., 2002). The CB1 receptor antagonist 

(SR141716A) was shown to reverse the agonist-induced impairments in the above-
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mentioned studies, which provides compelling evidence that the observed cognitive 

deficits are mediated via the CB1 receptor.     

Studies involving the administration of selective CB1 receptor antagonists, as well 

as work done with the genetic CB1-receptor-knockout mouse model, provide additional 

support for the endogenous involvement of the CB1 receptor in cognitive and stress-

related processes. When administered alone, the antagonist SR141716A (SR; 0.1 – 3 

mg/kg) compound has been shown to facilitate memory in a social recognition memory 

task (Terranova et al., 1996) and the radial maze spatial memory task (Wolff & Leander, 

2003). Improvements in acquisition and consolidation have also been reported in the 

elevated T-maze (Takahashi, Pamplona, & Fernandes, 2005), which provides an animal 

model for both cognitive processes and anxiety (Carvalho-Netto & Nunes-de-Souza, 

2004). However, no differences were observed using 0.5 mg/kg of SR on the elevated T-

maze (Nava et al., 2001) or the DNMTS tasks (0.05-2 mg/kg; Hampson & Deadwyler, 

1999, 2000; Mallet & Beninger, 1998). Recently, the highly selective full CB1 receptor 

antagonist CE (1-[7-(2-Chlorophenyl)-8-(4-chlorophenyl)-2-methyl pyrazolo[1,5-a]-

[1,3,5] triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid amide benzenesulfonate) 

has also been shown to enhance memory via consolidation in the radial arm maze 

paradigm (Wise, Iredale, & Lichtman, 2008).  

In these studies the CB1-receptor-deficient mice were also able to retain memory 

for longer periods of time relative to their wild type controls in an object recognition task 

(Maccarrone et al., 2002; Reibaud et al., 1999). In the Morris Water Maze (MWM) task 

both SR (3mg/kg) treated mice and CB1-receptor-deficient mice were able to learn the 

spatial location of a hidden platform without significant difficulty (Varvel, Anum, & 
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Lichtman, 2005; Varvel & Lichtman, 2002); however, both groups of mice had 

impairment in the ability to locate the hidden platform when the location of the hidden 

platform was moved to the opposite quadrant following spatial acquisition. These latter 

results suggest that activation of the CB1 receptor may exert an endogenous influence on 

behavioral flexibility and extinction processes.  

A variety of behavioral paradigms, including the elevated plus maze, the light-

dark box, and the open-field test (the latter representing two tests employed in the 

research reported here), have been used to measure endocannabinoid-mediated anxiety-

like behaviors. In the elevated plus maze, low doses of SR (0.25 – 1 mg/kg) have 

generally been shown to have no effect on anxiety-like behaviors in both rat and mouse 

models (Griebel, Stemmelin, & Scatton, 2005; Haller, Bakos, Szirmay, Ledent, & 

Freund, 2002; Patel & Hillard, 2006); however, when the SR compound was 

administered prior to a second elevated-maze trial, open arm exploration was increased, 

suggesting an anxiolytic effect (Rodgers, Haller, Halasz, & Mikics, 2003). Higher doses 

of the SR compound (up to 3 mg/kg) have been reported to be either anxiogenic 

(Arevalo, de Miguel, & Hernandez-Tristan, 2001; Navarro et al., 1997; Patel & Hillard, 

2006), anxiolytic (Haller et al., 2002), or ineffective in modifying anxiety (Griebel et al., 

2005; Rodgers et al., 2003). Mixed results utilizing the SR compound (0.3 – 3 mg/kg) 

have also been reported using the Light-Dark box test (Akinshola, Chakrabarti, & Onaivi, 

1999). Additionally, previous research has demonstrated that young (6-7 weeks) 

knockout mice lacking the CB1 receptor perform similarly to age-matched controls using 

the open-field, rotarod, and social recognition tasks, whereas older (3-5 month) mice 

lacking the CB1 receptor demonstrate significant impairments (Bilkei-Gorzo et al., 2005). 
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It is noteworthy that the SR compound has been shown partially or even totally to 

exert its actions via a non-CB1 receptor mediated mechanism (Haller et al., 2002), which 

may be contributing to some of the observed heterogeneity in findings between studies. 

Additionally, the CB1 receptor antagonist AM251 has been shown to increase anxiety in 

mice (but not rats) using the elevated plus maze test (Haller et al., 2007; Haller, Varga, 

Ledent, & Freund, 2004; Patel & Hillard, 2006; Rodgers, Evans, & Murphy, 2005). It has 

been hypothesized that the AM251 compound may be selective to the CB1 receptor, 

which would suggest that the CB1 receptors are tonically activated to promote anxiolysis 

during aversive events (i.e., events designed to assess/provoke unconditioned anxiety).                

Few studies to date have evaluated the functional consequences of the 

characteristic age-related changes that occur within the eCB system. Biochemical and 

pharmacological studies have shown that mRNA levels and CB1 receptor binding 

decrease in several brain regions of aged rats, including the basal ganglia and cerebellum 

(Berrendero et al., 1998; Romero et al., 1998). Others have shown significant increases in 

mRNA expression within the brain stems of aged mice, while the cortex appears to have 

region specific changes in receptor density (Liu, Bilkey, Darlington, & Smith, 2003; 

Wang, Liu, Harvey-White, Zimmer, & Kunos, 2003). Additionally, the levels of 

endogenous cannabinoids were modestly decreased in aged animals (Maccarrone et al., 

2002; Wang et al., 2003).  

The primary purpose of this study is to elucidate further the role of the eCB 

system in age-dependent cognitive processes and anxiety-like behaviors by comparing 

the behaviors of young (age 4-6 weeks), mature (age 4-5 month), and old (age 12-14 

month) CB1 wild type (CB1
+/+) and CB1 knockout (CB1

-/-) mice in a variety of behavioral 
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paradigms, including the Morris Water Maze, Light-Dark Box, Suok test, and the Open-

Field test. 

 Hypotheses: Based on previous research (Varvel, et al., 2005; Varvel & Lichtman, 

2002), we initially hypothesized that (1a) differences would not be evident between 

CB1
+/+ and CB1

-/- mice on the dependent variables associated with pre-acclimation, 

spatial acquisition, or the 24-hour probe trial in the MWM, and (1b) that the CB1
-/- mice 

would perseverate to the previously learned platform location during the reversal learning 

trials. However, our preliminary data suggested differences between the CB1
+/+ and CB1

-/- 

mice on the MWM task. In order to understand these differences better, we explored 

whether our observed differences in the MWM task were dependent on age. We 

hypothesized (2a) that the young (age 6 – 8 week old) CB1
+/+ and CB1

-/- mice would 

perform similarly on the observed variables, whereas (2b) a significant age-dependent 

difference would be evident between the mature (4 - 5 month old) CB1
+/+ and CB1

-/- mice. 

These hypotheses were again refined on the basis of the data described in more detail in 

the Results section.  

 In order to determine whether these differences were age dependent or genotype 

dependent, we utilized several behavioral paradigms designed to assess anxiety-like and 

motor behaviors. We hypothesized that (3) the observed differences in the MWM were 

due to an increased anxiety response in the CB1
-/- mice, and, thus, we also hypothesized 

that the CB1
-/- mice would perform poorly relative to their age-matched controls in the 

(3a) Light-Dark Box and in the (3b) the Suok test, and (3c) that any observed differences 

between the CB1
+/+ and CB1

-/- mice on the Open-Field task would represent differences in 

locomotor activity. It was expected that the null would prevail in the latter hypotheses. 
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Method 

Subjects 

Experiments were conducted on young (6 - 8 week old), mature (3 - 5 month old), 

and old (12 - 14 month old) male CB1
+/+ and CB1

-/- mice that had been backcrossed onto a 

C57BL/6 background. All mice were born in the vivarium at The University of Montana 

and were derived from a previously described line of breeding pairs (Zimmer, Zimmer, 

Hohmann, Herkenham, & Bonner, 1999). All mice weighed between 22 and 60 grams at 

the time of testing, and the mice were housed in groups of three to five mice per cage in a 

temperature-controlled (20 - 22°C) facility with a 12-hour light/dark cycle. Animals were 

allowed food and water ad libitum while housed in their home cages. Behavioral testing 

was conducted between 8:00 h and 15:00 h in order to minimize the influence of 

circadian rhythms and the hypothalamic-pituitary-adrenal (HPA) axis (Valentinuzzi, 

Menna-Barreto, & Xavier, 2004).  

Animals used in the MWM task were not utilized for other behavioral tests. 

Animals undergoing testing in the Light-Dark Box were also utilized for the Suok test, 

and these testings occurred two weeks apart, with all animals first undergoing the Light-

Dark Box paradigm. Naïve animals were used for the Open-Field test. Following testing, 

all animals were euthanized and brain tissue was collected for either electrophysiological 

or microscopy purposes.  

Materials and Procedure 

Morris Water Maze Apparatus. Young and mature mice were trained and tested in 

a large, circular, galvanized steel pool (160 cm in diameter, 62 cm high), filled with 22°C 

+/-1°C water to a height of 24 cm, to find a hidden platform (10 cm in diameter, located 
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1.5 cm below the surface of the water). In order to render the platform “hidden” or 

virtually invisible and to facilitate video tracking of the animal, white paint (ProArt 

ArtWorks Tempera Paint) was added to the pool until the water was opaque. Four 

different black and white geometric shapes were attached to the inner walls of the N, S, 

E, and W quadrants of the pool. All visual cues within the testing room remained 

constant throughout testing. 

MWM Testing Procedure. The MWM training procedure described above has 

been adapted from those previously reported (Varvel et al., 2005; Varvel & Lichtman, 

2002). In order to ensure that all mice were able to perform the swim task adequately, the 

mice were given a pre-acclimation training session (Day zero), which required each 

animal to swim for five consecutive minutes with no platform present.  For the spatial 

acquisition task, each mouse was subjected to four trials per day for eight consecutive 

days (Days one though nine; see Figure 1 for schematic of testing protocol). For each trial 

the mouse was released from a different start point (N, S, E, W) facing the wall of the 

pool, and the mouse remained in the pool until the platform was located or until 120 s had 

elapsed. If the mouse failed to reach the platform in the allotted time, the mouse was 

manually guided to the platform. Each mouse was required to remain on the platform for 

10 seconds prior to removal. Upon removal from the pool, the mouse was placed under 

an infrared light for two minutes in order to warm it before placing the animal back into 

its home cage. The platform remained in the SE quadrant for all spatial acquisition trials.  

Animals were defined as meeting “criterion’ (or adequately performing the spatial 

acquisition task) for the next phase of the experiment if they located (and remained on) 
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the hidden platform within 30 seconds on three out of four trials on either day seven or 

eight of the spatial acquisition task.   

A 60-second probe trial (no platform available) was administered one day (Day 

nine) following completion of the spatial acquisition task. Following the 60-second probe 

trial, all mice were then subjected to a reversal acquisition task (Days 10 – 18).  For the 

reversal acquisition task, the hidden platform was moved to the NW quadrant, and each 

mouse was given four trials per day for eight consecutive days. All other reversal-training 

procedures were identical to the spatial acquisition task.  

 During the testing phase, one CB1
+/+ animal (age 6 - 8 week old) was removed 

from the MWM task on spatial acquisition day five due to an eye infection. Eight CB1
-/- 

animals (two 6 - 8 week old and six 4 - 5 month old) were also removed from the study 

within the first two days of the spatial acquisition task because these animals were near 

drowning (Table 1). Data from these animals were not included in the statistical analyses.  

 The AnyMaze automated tracking system (Stoelting Co., Wood Dale, IL) was 

used to analyze several dependent variables in addition to completion of the MWM task. 

For the pre-acclimation phase, the dependent variables included total path length 

traveled, average speed, and percent thigmotaxia (i.e., percent time spent in the peripheral 

zone of the pool; see Figure 1 for schematic of MWM paradigm). The dependent 

variables analyzed for the spatial acquisition phase included: latency to (last) escape, 

latency to first escape, average speed, total path length, percent time spent in specified 

quadrants(s), number of platform exits, and path efficiency (defined as the straight line 

distance between the start and end positions divided by the total distance traveled). The 

dependent variable “latency to first escape” was utilized in addition to “latency to (last) 



CB1 Receptor Functioning 11 

 

escape” in order to capture better the amount of time it took the animal to (first) locate 

and escape to the hidden platform, as the variable “latency to (last) escape” does not 

account for the behavior of the animals that locate, escape to, and then exit from the 

hidden platform prior to the 15 second duration required for the behavior to have been 

recorded as successfully locating the platform (i.e., latency to (last) escape). For example, 

the mature CB1
-/- mice had a tendency to locate and escape to the hidden platform, remain 

on the platform for several seconds, and then exit the platform prior to meeting the “15-

second criterion for escape”.  The variable “first latency to escape” appears to capture 

better the true time required for the mice to locate the hidden platform.  

The dependent variables of interest for the 60-second probe trial were total path 

length, number of platform crossings, and the percent time spent in the target quadrant. 

For the reversal trials, data on the number of platform crossings, the percent time spent in 

the initial training quadrant, and the latency to first enter the target platform in the new 

location (i.e., the quadrant opposite to the initial training quadrant) were analyzed.  

Light-Dark Box Task. All testing was completed in a quiet darkened room, 

illuminated with a red light. Animals were allowed to acclimate to the testing environment 

for one hour prior to testing. The light-dark box (45 x 27 x 27 cm) consisted of a lit 

compartment (~200 lux) and a dark compartment (5 lux). The box was open topped and 

lined with white plastic in one compartment and dark plastic in the other (Costall, Jones, 

Kelly, Naylor, & Tomkins, 1989; Rutkowska, Jamontt, & Gliniak, 2006). The dark 

compartment comprised two-fifths of the total area of the box. The lit and dark 

compartments were connected via a small 7.5 x 7.5 cm passageway/door. The animals 

were placed in the center of the lit compartment facing the dark compartment and allowed 
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to explore the entirety of the box for five minutes, beginning with the first entry into the 

dark compartment. The apparatus was cleaned thoroughly with 30% vol/vol ethanol 

between animals in order to remove olfactory cues (e.g., urine and/or fecal matter) from 

the surface of the apparatus. Dependent variables included the time spent in each 

compartment and the number of transitions between the compartments. 

Suok Test. The Suok apparatus consisted of a long (2 m) hollow aluminum tube (2 

cm in diameter) that was securely attached to a Plexiglas base (50 x 50 cm2) on each end. 

The aluminum rod was mounted 20 cm above the floor of the apparatus, and the rod was 

separated into 10 cm segments using lines drawn on the rod. During testing, each animal 

was placed onto the center of the rod and allowed to explore for five minutes. Following 

a “fall,” the animal was picked up and placed back onto the rod in the location (and 

correct orientation) where it fell. A cushion consisting of Styrofoam was placed 

underneath the bar throughout testing in order to avoid harm to the animals during falls. 

Dependent variables included horizontal exploration activity (average distance from the 

center [start] position, total number of line crossings, total distance traveled, average 

speed, and time spent immobile) and a vestibular/motor index (number of falls from the 

rod; Kalueff et al., 2008). All dependent variables, except total number of falls, were 

automatically calculated using the AnyMaze program. The apparatus was cleaned 

thoroughly between animals. 

Open-Field Test. The dimensions of the open-field apparatus were 80 cm long x 

60 cm wide x 60 cm high. The apparatus was divided into 48 square segments (10 cm x 

10 cm). All animals were acclimated to the testing room for one hour prior to testing. 

Upon acclimation the animal was placed into the center of the dimly lit (20-30 lux) 
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apparatus and allowed to explore for 10 minutes. Dependent variables were automatically 

recorded and calculated using the AnyMaze program and included total distance traveled, 

average speed, time spent immobile, and the number of lines crossed. The apparatus was 

thoroughly cleaned between animals.   

Statistical Analyses   

For the pre-Acclimation and the 60-second probe trials of the MWM task, as well 

as the Light-Dark Box, Suok, and Open-Field tasks, groups were compared using a Two-

Way (3 x 2) ANOVA (age x genotype). For the MWM spatial acquisition and reversal 

acquisition tasks, a Three-Way ANOVA (age x genotype x day) with repeated measures 

was used for statistical analysis; the variable “day” was the within-subjects factor. All 

graphical data represent the mean +/- the s.e.m. for each dependent variable averaged 

across trial(s) on a given day. Trial was not included as a factor.  

The moderately conservative Huyn-Feldt corrections were used when the 

sphericity assumption was violated (i.e., when the variance of the difference between 

conditions was not equal). This inequality of variances causes the F-ratio to be positively 

biased, and the Huyn-Feldt correction alters the significance value of the F-ratio by 

adjusting the degrees of freedom. Tukey post hoc analyses were used for all follow-up 

comparisons. Additionally, a chi square analysis was conducted to determine if group 

differences were evident in the ability of each genotype and age to complete the MWM 

task successfully (i.e., not having to be removed from the study). 

In order to provide additional information regarding the practical significance of 

the statistical findings, the partial Eta squared effect size (η2) and the total proportion of 

variance accounted for by the model (R2) are reported (when appropriate) for all main 
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effects and interactions. The partial Eta squared index assesses the relationship between 

the specified independent and dependent variables for the factors of interest (e.g., age, 

genotype, or the interaction) and provides a direct measure of the proportion of variance 

accounted for by each factor or by the interaction between these factors. Notably, the 

partial Eta squared value provides the amount of variability that each factor and/or 

interaction has contributed to the model as though the factor or interaction were the only 

contributing variable; thus, collectively, the partial Eta squared values are not additive 

(i.e., these values do not sum to equal the total variance, R2, that is attributed to the 

overall model; Kirk, 1996). 

Additionally, unlike traditional significance tests (e.g., ANOVAs, student t-test), 

effect size measurements are independent of sample size. According to Kirk (1996), 

partial Eta squared effect sizes can be interpreted as small (η2 > .010), medium (η2 > 

.059) or large (η2 > .138). For comparison and discussion purposes, partial Eta squared 

values were also computed from previous publications that had utilized CB1-receptor-

deficient mice in the Morris Water Maze. These effect size measures were conducted 

using the following equation: η2 = F value / (F value + degrees of freedom for the error 

term). All other statistical analyses were conducted using SPSS 16.0 Graduate Student 

Version for Mac. 

Results 

Morris Water Maze 

 The percentage of animals that successfully completed the swim task is shown in 

Table 1. A chi-square test revealed that the inability of an animal to complete the task is 

associated with the genotype and age of the animal, χ2 (3, N = 92) = 10.59, p = .014, with 
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the mature CB1
-/- mice having the highest attrition/failure rate. Follow-up post hoc 

comparisons demonstrated significant differences between the young CB1
+/+ and mature 

CB1
-/- mice, p = .012. Specifically, the mature CB1

-/- mice (27%) showed a higher 

attrition rate relative to the young CB1
+/+ mice (zero percent). 

 Pre-acclimation. During the pre-acclimation stage of the testing (see Hypothesis 

1a), a two-way ANOVA indicated a marginally significant interaction between age and 

genotype, with small effect sizes, for both distance traveled (F[1, 78] = 3.707, p = .058, 

R2 = .212, η2 = .045) and speed (F[1, 78] = 3.720, p = .057, R2 = .213, η2 = .046). This 

interaction suggests that the differences observed between the CB1
+/+ and CB1

-/-  mice are 

dependent on the age of the animal. Post hoc analyses indicated that the mature CB1
+/+ 

mice swam farther and faster than the mature CB1
-/- mice, p < .01. A significant main 

effect for age, F(1, 78) = 4.514, p = .037 (R2 = .037, η2 = .055), was also observed for 

percent thigmotaxia (defined as time spent in the periphery of the pool), with the mature 

mice spending a greater amount of time in the periphery of the pool relative to the young 

mice, regardless of the genotype of the animal. Between-subject differences were not 

observed among groups for the dependent variable “percent thigmotaxia” (Figure 3).    

 Spatial Acquisition. Differences were observed between CB1
+/+ and CB1

-/- mice on 

the dependent variables associated with spatial acquisition in the MWM task (see 

Hypothesis 1a). A highly significant learning response occurred for all groups across 

training days for latency to (last) escape, F(5.05, 393.48) = 55.02, p < .001, η2 = .123, a 

medium-sized effect. A significant between-subjects interaction was observed between 

age and genotype, F(1, 78) = 5.22, p = .025, η2 = .063. This interaction indicates that the 

CB1
+/+ mice decreased the amount of time necessary to locate and escape to the hidden 
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platform at a faster rate relative to the CB1
-/- mice, whereas the young animals (regardless 

of genotype) also decreased the time necessary to locate and escape to the hidden 

platform at a faster rate compared to the mature mice (regardless of genotype).  

 A significant linear trend with a medium-sized effect was also observed among 

groups across training days for latency to first escape into the platform zone, F(4.99, 

389.60) = 32.60, p < .001, η2 = .077 which also suggests that the CB1
+/+ and CB1

-/- mice 

decreased the amount of time to locate and escape to the hidden platform across days. 

Distinct from the above-mentioned findings for the dependent variable, latency to (last) 

escape, no interaction was observed between the variables age and genotype for the 

variable latency to first escape. However, between-subjects differences were observed for 

genotype (F[1, 78] = 7.67, p = .007, η2 = .089), which indicates that although the trend 

for decreasing the amount of time to first escape to the hidden platform zone was similar 

between the CB1
+/+ and CB1

-/- mice, the CB1
+/+ mice first escaped to the platform more 

quickly, regardless of age. Specifically, differences were evident between the CB1
+/+ and 

CB1
-/- mice on days three and eight, p = .047 and .028, respectively (Figure 4A).  

 A significant interaction between the day of testing and genotype emerged for the 

dependent variable “speed.” In general the CB1
+/+ mice decreased in speed over time, 

whereas the CB1
-/- mice increased speed over time, F(7, 546) = 19.04, p < .001, η2 = .196, 

a large effect.  Between-subjects differences were not observed between groups for 

specific training days.  

 With respect to distance traveled, a significant linear trend was observed among 

all groups, F(6.12, 477.32) = 31.68, p < .001, η2 = .289 (a very large effect), indicating 

that all animals, regardless of age and genotype, decreased the distance traveled across 
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training days. Consistent with the speed of the groups, a significant interaction between 

the day of testing and genotype was observed (F[7, 546] = 12.57, p < .001, η2 = .139), 

indicating that the CB1
+/+ mice decreased the overall path length at a faster rate over time 

relative to the CB1
-/- mice (regardless of age). No between-subjects differences were 

observed on any particular day (Figure 4B and 4C, respectively). A significant and large 

linear trend was also observed for all groups across training days for percent thigmotaxia, 

F(4.03, 314.49) = 14.98, p < .001, η2 = .161, indicating that all groups of animals 

similarly decreased the amount of time spent in the periphery of the pool across days. 

Between-subjects differences were not observed for specific training days, suggesting all 

groups spent a similar amount of time in the periphery zone of the pool across days 

(Figure 4D).  

 A highly significant learning response was also noted among all groups across 

days for the percent time spent in the training/platform quadrant, F(4.86, 378.67) = 31.79, 

p < .001, η2 = .290 (this is a substantial effect size for this type of work), indicating that 

over time all groups of animals increased the amount of time in the training quadrant. 

Between-subjects differences were observed for the genotype variable, F(1, 78) = 12.03, 

p = .001, η2 = .134, with the CB1
+/+ mice spending more time in the training quadrant 

compared to the CB1
-/- mice, regardless of age. Specifically, the CB1

+/+ mice spent more 

time in the initial training quadrant on days one, three, six, seven, and eight, all p values 

less than .05 (Figure 5A).  

 Additionally, the number of exits from the platform zone was measured. A 

significant interaction occurred between genotype and testing day, suggesting that the 

CB1
+/+ mice decreased the number of platform exits at a faster rate across days relative to 
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the CB1
-/- mice (regardless of age; F[5.42, 422.59] = 2.26, p = .043, η2 = .028). 

Additionally, between-subjects differences were observed between young and mature 

mice, F(1,78) = 9.81, p = .002, η2 = .112. Specifically, the mature mice exited the 

platform more frequently on all observed days, and this difference reached significance 

on days five and seven, p = .001 and .045, respectively (Figure 5B; Hypothesis 2B). With 

respect to path efficiency, a significant interaction of day and genotype indicated that the 

CB1
+/+ mice had a greater increase in path efficiency over time relative to the CB1

-/- mice, 

F(6.49, 466.97) = 3.93, p = .001, η2 = .052 (Figure 5C).  Between-subject differences 

were observed CB1
+/+ and CB1

-/- animals (F[1, 72] = 10.26, p = < .01, η2 = .125), with the 

CB1+/+ animals having higher path efficiency on days five, six, seven, and eight (all p 

values < .05). 

 24-Hour Probe Trial. Significant group differences were observed between 

CB1
+/+ and CB1

-/- animals during the 24-hour probe trial (see Hypothesis 1a). 

Specifically, a two-way ANOVA revealed a significant interaction between age and 

genotype for the average distance from the target platform zone, F[1, 78] = 4.571, p = 

0.05, R2 = .124, η2 = .055. This interaction indicates that the differences noted between 

the CB1
+/+ and CB1

-/- mice are dependent on the age of the animal. Post hoc comparisons 

revealed significant differences between the mature CB1
+/+ and mature CB1

-/- mice; the 

CB1
-/- mice were on average farther from the platform zone (Figure 6; see Hypothesis 

2b).  

 A significant main effect of genotype (regardless of age) was also observed for 

the number of crossings into the target platform zone (F[1, 78] = 9.76, p < .01, R2 = .093, 

η2 = .111) during the 24-Hour Probe Trial, with the CB1
-/- mice having fewer number of 
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platform crossings. A significant main effect for the percent time spent in the target zone 

was also observed (F[1, 78] = 6.72, p = .01, R2 = .069, η2 = .079).  The CB1
-/- mice spent 

less time in the initial training quadrant relative to the CB1
+/+ mice (see also Figure 6; see 

Hypothesis 2b).  

 Reversal Probe Trial.  Differences were noted between the CB1
+/+ and CB1

-/- mice 

on the dependent variables associated with the reversal-learning task in the MWM task 

(see Hypothesis 1b). All groups of mice significantly (and linearly) decreased the number 

of entries into the initial target platform zone over time, F(3.86, 212.54) = 17.88, p < .01, 

η2 = .078. Significant between-subjects differences were observed for genotype (F [1, 55] 

= 4.13, p = 0.047, η2 = .070), regardless of age, with the CB1
+/+ mice crossing the 

platform zone a greater number of times. Specifically, the CB1
+/+ mice crossed the initial 

training platform significantly more times on days one and two, whereas the CB1
-/- mice 

crossed the platform more times on day seven (p = .005, .003, and .029, respectively; 

Figure 7A). Additionally, a significant linear trend was observed among all groups across 

training days for the percent time spent in the initial training quadrant, F(6.36, 349.56) = 

23.32, p < .01, η2 = .063, indicating that all groups of mice decreased the amount of time 

in this quadrant over time. An interaction between genotype and the day of testing was 

also observed (F[6.36, 349.56] = 7.69, p < .01, η2 = .020), indicating that the CB1
+/+ mice 

decreased the amount of time spent in the initial training quadrant at a faster rate when 

compared to the CB1
-/- mice. No significant between-subjects main effects were observed 

for age or genotype (Figure 7B). 

 A significant interaction between genotype and the day of testing was observed 

for the latency to first escape onto the reversal platform, F(6.08, 334.55) = 2.30, p = .033, 
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η2 = .007, with the CB1
+/+ mice locating and escaping to the hidden platform at a faster 

rate when compared to the CB1
-/- mice. Additionally, a significant interaction between 

age and the day of testing also emerged, F(6.08, 334.55) = 2.34, p = .031, η2 = .007. 

These findings suggest that overall the CB1
+/+ mice decrease the latency to first escape 

more quickly when compared to the CB1
-/- mice, and that the young mice (regardless of 

genotype) escape to the platform significantly faster over time relative to the mature 

mice. Between-subjects differences also emerged for the genotype variable, F(1, 55) = 

4.11, p = .047, η2 = .070, with the CB1
+/+ mice finding the platform location more 

quickly. Specifically, the CB1
+/+ mice had a significantly faster rate of latency to first 

escape on days five, six, seven, and eight compared to the CB1
-/- mice (all p values less 

than .05; Figure 7C). Notably, the effect sizes for the set of findings regarding the 

variable “latency to escape onto the reversal platform” were all very small.  

Light-Dark Box 

 A two-way ANOVA for the time spent in the lit compartment indicated a 

significant effect of age (F[2, 43] = 19.62, p < .001, R2 = .642, η2 = .477, a very large 

effect size) and genotype (F[1, 43] = 51.98, p < .001, R2 = .642, η2 = .547, also a very 

large effect), but no significant interaction was observed between these variables (F[2, 

43] = 0.19, p = .831, η2 = .009). This main effect indicates that the time spent in the lit 

compartment was decreased across the lifespan of the animal, regardless of genotype, and 

the CB1
-/- mice spent less time in the lit compartment compared to the CB1

+/+ mice, 

regardless of age. Post-hoc analyses using a one-way ANOVA indicated that the older 

mice (regardless of genotype) spent significantly less time in the lit compartment relative 

to the amount of time spent in the dark compartment. Specifically, Tukey post analyses 
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indicated that the mature and old CB1
+/+ mice spent less time in the lit compartment 

relative to the young CB1
+/+ mice, and the old CB1

-/- mice spent less time in this 

compartment relative the mature and young CB1-/- mice. Tukey post hoc analyses for the 

significant main effect for genotype indicated that the time spent in the lit compartment 

was significantly higher in young, mature, and old CB1
+/+ mice relative to the age-

matched CB1
-/- mice  (all p values less than .001; Figure 8A; see Hypothesis 3a).  

 A significant main effect for genotype, F(1, 43) = 46.38, p < .001, R2 = .513, η2 = 

.519, was also noted for the number of crossings into the lit compartment, with the CB1
-/- 

mice making fewer crossings into the lit compartment. The effect size for this dependent 

variable was also very large. No significant effect was observed for either age (F[2, 43] = 

2.34, p = .123, η2 = .093) or the interaction between age and genotype, F(2, 43 = 2.21, p 

= .122, η2 = .093), indicating that the number of crossings into the lit compartment was 

not dependent on the age of the animal or the interaction between the age and genotype of 

the animal. Post hoc analyses using a one-way ANOVA and follow-up Tukey 

comparisons indicated that the mature and old CB1
-/- mice had significantly fewer 

crossings into the lit compartment relative to the age-matched CB1
+/+ mice (all p values 

less than .001; Figure 8B; see Hypothesis 3a).  

Suok Test.  

 A two-way ANOVA revealed a significant interaction between age and genotype 

for the average distance from the center zone, F(2, 42) = 4.89, p = .012, R2 = .437, η2 = 

.189, a large effect. This interaction demonstrates that the differences observed between 

the specific age groups (i.e., young, mature, and old mice) are dependent on the genotype 

of the animal, with the mature and old CB1
-/- mice having a shorter average distance from 
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the center zone, an age effect not observed for the CB1
+/+ mice (see Figure 9A). A 

significant main effect was also obtained for both age (F[2, 42] = 7.22, p < .01, η2 = 

.256) and genotype (F[1, 42] = 17.23, p < .01, η2 = .291), with the mature and old mice 

(regardless of genotype) and the CB1
-/- mice (regardless of age) having a higher average 

distance from the center zone compared to the young and CB1
+/+ mice, respectively. The 

magnitudes of the effect sizes for these findings were very large. Post hoc analyses for 

the main effect of age indicated that the mature and old CB1
-/- mice had a significantly 

smaller average distance from the center of the Suok apparatus relative to the young CB1
-

/- mice, p is less than .01 for both comparisons. Age-dependent differences were not 

evident for the CB1
+/+ mice. With respect to the main effect of genotype, the mature and 

old CB1
-/- mice had a significantly smaller average distance from the center of the 

apparatus relative to their age-matched controls (p < .01 for both variables; Figure 9A; 

see Hypothesis 3b). 

 Significant main effects for genotype, with large effect sizes, were uncovered for 

both distance traveled (F[1, 42] = 14.19, p < .01; R2 = .203, η2 = .253, Figure 9B) and 

average speed in the Suok apparatus (F[1, 42] = 12.38, p < .01, R2 = .169, η2 = .228; data 

are not shown in Figure 9), with the CB1
+/+ mice traveling both farther and faster than the 

CB1
-/- mice. However, follow-up post-hoc analyses did not reveal group differences 

between the age-matched CB1
+/+ and CB1

-/- mice for the genotype variable (see 

Hypothesis 3b).  

 Additionally, a large main effect for genotype was obtained for the amount of 

time the animal was immobile during the task (F[1, 42] = 11.51, p < .01, R2 = .164, η2 = 

.215, Figure 9C); on average the CB1
-/- mice spent more time immobile relative to the 
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CB1
+/+ mice. Between-subjects differences were not observed between age-matched 

controls, indicating that, on average, the CB1
-/- mice spend more time immobile, 

regardless of age. A significant main effect for genotype was also obtained for the 

number of falls from the Suok apparatus, F(1, 42) = 4.18, p = .047, R2 = .126, η2 = .119, 

with the CB1
-/- animals having a greater number of falls. Significant between-subjects 

differences were not observed between the age-matched CB1
+/+ and CB1

-/- mice. This 

suggests that the differences observed between the CB1
+/+ and CB1

-/- mice are not 

dependent on age (Figure 9D; see Hypothesis 3b).  

Open-Field Test. A two-way ANOVA revealed significant and large main effects for 

both age (F[2, 48] = 11.059, p < 0.01, R2 = .339, η2 = .315) and genotype (F[1, 48] = 

8.359, p < 0.01, R2 = .339, η2 = .148) on the total distance traveled in the open-field test, 

indicating an age-dependent decrease in the total path length traveled (regardless of 

genotype). The CB1
-/- mice also have a lower total path length compared to the CB1

+/+ 

mice (regardless of age). Similar results were obtained for both age (F[2, 48] = 11.00, p < 

0.01, R2 = .337, η2 = .314) and genotype (F[1, 48] = 8.36, p < 0.01, R2 = .337, η2 = .148) 

for the average speed of the animals, with an apparent age-dependent lower magnitude of 

average speed, regardless of genotype, and the CB1
-/- mice having a lower average speed 

compared to the CB1
+/+ mice. A significant and large main effect for age and genotype 

was also observed for the total number of line crossings (F[2, 48] = 10.09, p < 0.01, R2 = 

.333, η2 = .296 and F[1, 48] = 8.629, p < 0.01, R2 = .333, η2 = .152 respectively), as well 

as the total time spent immobile (F[2, 48] = 14.40, p < 0.01, R2 = .40, η2 = .375 and F[1, 

48] = 9.59, p < 0.01, R2 = .40, η2 = .167 respectively). These results further indicate age-

dependent lower numbers of lines crossed and an age-dependent rise in the total time 
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spent immobile among the young, mature, and old mice (regardless of genotype); the 

CB1
-/- mice also had fewer line crossings and spent more time immobile compared to the 

CB1
+/+ mice.  

 A one-way ANOVA for the two factors of interest (age and genotype) revealed no 

differences between the age-matched CB1
+/+ and CB1

-/- mice on any of the Open-Field 

test dependent variables (i.e., total path length, average speed, number of line crossings, 

time spent immobile; see Hypothesis 3c). Within each genotype, the only significant 

difference observed between groups occurred within the CB1
+/+ mice. Specifically, the 

young CB1
+/+ mice had a significantly longer path length, higher average speed, and 

greater number of line crossings, as well as less time immobile compared to the old 

CB1
+/+ mice (all p values < 0.01, Figure 10).  

Discussion  

 The present study uses complimentary approaches to elucidate the role of the CB1 

receptor in learning, memory, and anxiety-like behaviors. In the experiments described a 

number of phenotype differences emerged between the CB1
+/+ and CB1

-/- mice. To our 

knowledge, this is the first study to evaluate the role of the CB1 receptor in mice of 

differing ages using the MWM. However, Varvel and colleagues (2002, 2005) have 

studied the behavior of three to five month old CB1
+/+ and CB1

-/- mice in the MWM, and 

others (e.g., Bilkei-Gorzo et al, 2005) have utilized behavioral paradigms similar to those 

reported in the current study to evaluate the age-dependent role of the CB1 receptor in 

cognitive decline. When appropriate, our results will be compared to these findings.  

Using the Morris Water Maze task, differences emerged during the pre-

acclimation phase between CB1
+/+ and CB1

-/- mice that were dependent on the age of the 
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animal. These findings indicate that the mature CB1
+/+ mice swam faster and farther than 

the age-matched controls. The effect sizes were modest to moderate for these factors. The 

partial Eta squared values were .045 and .046, which means that the interaction between 

age and genotype accounted for 4.5% and 4.6% of the overall variability in the measured 

variables, respectively. Previous studies have not published findings regarding total 

distance traveled and average speed during the pre-acclimation phase, so it is not possible 

to compare the size of the effects found here with those in previous work. 

During the pre-acclimation phase the overall measure of thigmotaxia 

demonstrated that, on average, the mature mice spent more time in the periphery of the 

pool relative to the young mice. The factor age alone accounted for 5.5% of the overall 

variability in thigmotaxia (a medium effect). No detectable differences were found 

between genotypes. Similar to these results, Varvel and Lichtman (2002) did not report 

significant differences in percent thigmotaxia between three to five month old CB1
+/+ and 

CB1
-/- mice. However, the authors did report that 20% of the CB1

-/- mice had to be 

rescued in order to prevent drowning, and about one-half of the CB1
-/- mice stopped 

swimming and floated for the last several minutes. These latter results are comparable to 

our findings, where 24% of the mature (age three to five month old) CB1
-/- mice had to be 

removed from the current study to prevent drowning. Taken together, these results may 

indicate overall differences that emerge in global functioning in the pool between the 

mature CB1
+/+ and CB1

-/- mice at the onset of the MWM task.   

During the spatial acquisition phase, latency to (last) escape appeared to be 

dependent on the age and genotype of the animal, as the young mice (regardless of 

genotype) acquired the task at a similar rate, whereas the mature CB1
-/- mice had 
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difficulty acquiring the task relative to the mature CB1
+/+ mice. A moderate effect size 

was noted, with the interaction between age and genotype accounting for 6.3% of the 

total variance in acquisition. Notably, an interaction between genotype and day was also 

observed for the number of exits from the platform zone, with the CB1
+/+ mice decreasing 

the number of exits at a faster rate over time relative to the CB1
-/- mice. The effect of this 

interaction was small (η2 = .028); however, these latter findings may also be involved 

with the increased time required for the CB1
-/- mice to complete the “latency to (last) 

escape” task, which could exacerbate the difference between groups. For these reasons 

we chose to analyze latency to first escape in addition to the latency to last escape.   

The results regarding latency to (last) escape contrast with findings published by 

Varvel and colleagues (2002, 2005), who report near identical escape latencies between 

three to five month old CB1
+/+ and CB1

-/- mice, with the effect size being extremely small  

(η2 < .001; Varvel and Lichtman, 2002). Effect size computations could not be conducted 

for the number of exits from the platform zone for the above-mentioned studies because 

the authors did not report findings for this variable. A main effect of age or an interaction 

involving the factor age was not detected for other dependent variables of interest for the 

spatial acquisition phase; but, rather, several main effects of genotype were observed.  

The CB1
+/+ mice in the present study (regardless of age) decreased the latency to 

first escape and path length to target at a faster rate compared to the CB1
-/- mice. The 

effect size for latency to first escape was moderate to large, whereas the effect size for 

total path length was large, with these variables accounting for 8.9% and 13.9% of the 

total variance, respectively. Additionally, in the current study, the CB1
+/+ mice decreased 

their overall average speed during the acquisition trials, whereas the CB1
-/- mice increased 
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their speed across days. The effect size for the variable “speed” was large, accounting for 

19.6% of the variance. The CB1
+/+ mice also demonstrated a greater increase in path 

efficiency over time relative to the CB1
-/- mice, with the CB1

+/+ mice having a greater path 

efficiency on days five, six, seven, and eight. The interaction between genotype and day 

accounted for 5.2% of the total variance in path efficiency, while the between-subject 

differences accounted for 12.5% of the variance.  

Previous studies have not published findings regarding the variables “latency to 

first escape” or “path efficiency,” making it difficult to compare the size of the effects 

found in our study to those found in other reports. Unlike the findings for the current 

study, Varvel and Lichtman (2002) reported no differences between three to five month 

old CB1
+/+ and CB1

-/- mice for either total path length or average swim speed, with 

extremely small effect sizes for both dependent variables (η2 < .001).  

The findings in the current work regarding spatial acquisition in the MWM differ 

from those in the past literature in terms of statistical significance and the magnitude of 

the observed effects for a variety of dependent variables (Varvel & Lichtman, 2002; 

Varvel et al., 2005). These results also contradicted our own initial hypotheses that 

predicted no detectable differences between CB1
+/+ and CB1

-/- mice (the null) during 

either the pre-acclimation or spatial acquisition phase. Partial Eta squared magnitudes in 

the current study indicate that the differences noted between the current and past 

literature are not merely dependent on the larger sample size in the present work, but 

rather that the observed differences between the CB1
+/+ and CB1

-/- mice may suggest that 

the endocannabinoid system is tonically active in spatial memory acquisition under 

specific circumstances.  
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 To our knowledge this study is also the first to assess the role of the CB1 receptor 

during a 60-second probe trial following the acquisition phase of testing. An age-

dependent difference emerged during the 24-hour probe trial, demonstrating that the 

mature CB1
-/- mice were on average farther from the platform zone, with the interaction 

between age and genotype accounting for 5.5% of the total variance. A significant main 

effect for genotype (regardless of age) was noted for the number of platform crossings 

and the percent time spent in the training quadrant, with the CB1
-/- mice having fewer 

platform crossings and spending less time in the initial training quadrant. Genotype 

accounted for 11.1% and 7.9% of the total variance for the number of platform crossings 

and percent time spent in the training quadrant, respectively. These results support the 

initial hypotheses of an age-dependent difference in the ability of the CB1
-/- mice to learn 

a spatial acquisition task; however, given the differences for genotype (regardless of age) 

during the spatial acquisition task in the current study and previous reports (Varvel & 

Lichtman, 2002; Varvel et al., 2005) demonstrating no effect of genotype during spatial 

acquisition utilizing a similar aged mouse (three to five months old), the role of the 

endocannabinoid system in facilitating spatial learning seem less clear.  

In order to evaluate behavioral flexibility and extinction processes, the current 

study also analyzed the behavior of a subset of animals that met criterion for having 

successfully learned the location of the platform during the spatial acquisition trials (i.e., 

animals that had reached the platform zone in less than 30 seconds on either days seven 

or eight) on the reversal-learning task. The results for the reversal-learning paradigm 

suggest that the CB1
+/+ mice (regardless of age) crossed the platform zone significantly 

more times on days one and two, spent less time in the initial training quadrant over time, 
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and learned the location of the “new” platform location at a greater rate compared to the 

CB1
-/- mice: these difference were significant on days five, six, seven, and eight. The 

effect sizes for these variables indicate that the factor “genotype” has a moderate effect 

for the number of entries into the initial platform zone, with only a small effect on both 

the time spent in the initial training quadrant and the latency to escape to the new 

platform location. Genotype accounts for 7%, 2% and .7% of the total variance in these 

models, respectively.  

Although this study is the first, to our knowledge, to assess reversal learning for 

eight consecutive days following a spatial acquisition and 60-second probe trial, our 

findings appear to differ from previous reports evaluating extinction learning in the 

MWM. Varvel and Lichtman (2002) presented CB1
+/+ and CB1

-/- mice with seven 

acquisition training sessions consisting of fours trials per session. Following the 

acquisition phase, mice were subjected to a reversal test of four trials (one session). The 

CB1
-/- mice demonstrated greater escape latencies, higher path lengths, and a greater 

number of entries into the previous learned platform location relative to the CB1
+/+ mice, 

which the authors interpreted as a deficit in extinction learning. The previous effect size 

indices for these variables indicate that the factor “genotype” has a moderate effect on 

both escape latency (η2 = .05) and path length (η2 = .049), with a small effect for the 

number of entries into the previous platform location (η2 = .033). Although the design of 

the current study differs in terms of a number of variables (e.g., the number of acquisition 

sessions, the number of reversal sessions), it is clear that the findings in the current study 

do not support the earlier premise that the CB1
-/- mice perseverate to the previously 

learned platform location.  
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In a follow-up study, Varvel and colleagues (2005) evaluated CB1
+/+ and CB1

-/- 

mice, as well as CB1
+/+ mice treated with the CB1 antagonist SR141716A using either a 

massed or spaced extinction protocol. Specifically, the mice were trained to locate a 

hidden platform, the platform was then removed, and the mice were subjected to either a 

massed (i.e., five consecutive sessions consisting of four 120-second trials) or a spaced (a 

single one-minute trial every two to four weeks) extinction protocol. No differences were 

found between SR141716A-treated and vehicle-treated mice or between the CB1
+/+ and 

CB1
-/- mice when the massed extinction protocol was utilized; however, differences were 

observed for the spaced extinction protocol. Specifically, the SR141716A-treated and 

CB1
-/- mice had impaired extinction learning, with both groups of mice having greater 

escape latencies (η2 = .069 and η2 = .057, respectively), and the CB1
-/- mice having a 

greater path length to target ((η2 = .023) when compared to vehicle-treated and CB1
+/+ 

mice, respectively.  

Varvel and colleague’s (2005) results are consistent with previous findings that 

suggest the endocannabinoid system is involved in extinction processes within the 

MWM; however, this study illustrates that the endocannabinoid system may only 

facilitate extinction processes under specific circumstances. The authors initially 

hypothesize that the observed discrepancies between the extinction paradigms may have 

been related to an increase in the amount of stress experienced by the animals. 

Specifically, the massed extinction protocol is likely to be more stressful than the spaced 

extinction paradigm. The increase in stress associated with the massed extinction 

paradigm may have interfered with endocannabinoid-mediated extinction learning.  
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Notably, the design of the reversal-learning paradigm used in the current study 

resembles the massed extinction protocol discussed above. It is possible that the animals 

undergoing the reversal-learning paradigm in the current study experienced increased 

levels of stress as a result of the 24-hour probe trial and the reversal-learning session that 

began immediately following the probe test. This protocol could have led to an increase 

in the level of stress, which may have contributed to the CB1
-/- mice having fewer 

perseverative behaviors during the reversal-learning trials relative to other studies. 

However, this hypothesis is unlikely given the findings of the 24-hour probe trial, where 

the CB1
-/- mice were farther from the platform zone, with fewer crossings into the 

platform zone, and spending less time in the initial training quadrant.     

 The observed discrepancies between our results and those previously published 

were unexpected. Given the above-mentioned findings on spatial acquisition and 

extinction learning, as well as the extensive body of literature that illustrates enhanced 

memory performance in CB1
-/- mice on a variety of behavioral paradigms, including 

object recognition (Reibaud et al., 1999; Maccarone et al., 2002), active avoidance 

(Martin, Ledent, Parmentier, Maldonado, & Valverde, 2002), and partner recognition 

(Bilkei-Gorzo et al., 2005), it is likely that the genotype-specific deficits observed in the 

current study are related to an additional CB1-receptor-dependent mechanism, such as an 

age-dependent or anxiety-like response, rather than deficits in pure learning and/or 

memory processes.  

Consistent with this hypothesis, Bilkei-Gorzo et al (2005) demonstrated that 

memory enhancement in CB1
-/- mice is indeed dependent on age, something that provided 

the rationale for operationalizing the levels of the independent variable “age” in the 
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current study. Specifically, young CB1
-/- mice (age 6 – 8 week) demonstrate enhanced or 

similar performance on an operant-learning paradigm, the partner-recognition and rotorod 

tasks, as well as the open-field task, while mature (age 3 - 5 month) and old (age 14 – 17 

month) CB1
-/- mice perform poorly relative to their age-matched controls. Regarding an 

anxiety-like response, the MWM is designed to assess spatial memory in rodents; 

however, due to the aversive nature of being placed into water, it can be assumed that the 

water maze also evokes a certain degree of stress.   

 Upon exposure to an aversive (or novel) stimulus, the hypothalamic-pituitary-

adrenal axis (HPA) is activated, a response that is consistent across species; this region 

contains a dense population of corticosterone-releasing hormone (CRH) neurons within 

the paraventricular nucleus (PVN) of the hypothalamus. Upon activation the CRH 

neurosecretory cells release CRH, which subsequently releases adrenocorticotropic 

hormone (ACTH) into the portal blood stream from the pituitary gland. The release of 

ACTH leads to an increase in secreted glucocorticoids (and other steroids) from the 

adrenal glands, which allow the organism to mobilize resources in order to contend with 

the perceived threat (Herman, Tasker, Ziegler, & Cullinan, 2002; Herman et al, 2003). 

Both in vitro and in vivo studies suggest that the eCB system regulates the activation of 

this stress circuit.  

Patel and colleagues (2004) have postulated a “gatekeeper theory” for how the 

eCB system modulates this stress circuitry. According to this hypothesis high levels of 

endogenous cannabinoids are present within the PVN during non-aversive events, 

resulting in an inhibition of glutamatergic excitatory inputs into the HPA axis. During an 

aversive event, the levels of endogenous cannabinoids rapidly decline via an 
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undetermined mechanism, and the HPA axis is activated by disinhibition of the 

glutamatergic inputs (Patel, Roelke, Rademacher, Cullinan, & Hillard, 2004). Similarly, 

CB1
+/+ mice receiving a cannabinoid-receptor antagonist (e.g., SR141716A) and CB1-

receptor-deficient mice would be expected to present with an exaggerated activation of 

the HPA axis and an increased stress response. Consistent with this hypothesis, a CB1-

receptor antagonist has been shown to induce a dose-dependent HPA axis response in 

non-stressed animals (Manzaneres, Corchero, & Fuentes, 1999; Patel et al., 2004; Wade, 

Degroot, & Nomikos 2006).      

In order to assess the age-dependent effects of the CB1 receptor on anxiety-like 

behaviors as a possible mechanism mediating the observed spatial deficits in the MWM, 

we utilized the Light-Dark Box and Suok tasks. The Light-Dark Box results 

demonstrated that the time spent in the lit compartment was lower across the 

developmental lifespan (regardless of genotype) for both the CB1
+/+ and CB1

-/- mice, with 

age accounting for 47.7% of the observed variance. Differences between age-matched 

CB1
+/+ and CB1

-/- mice were striking in all age groups for this variable, as were the 

differences between the mature and old age-matched mice for the number of crossings 

into the lit compartment. The effect size indices for “genotype” were remarkably large for 

both the time spent in the lit compartment and number of crossings into the lit region, 

accounting for 54.7% and 51.9% of the variance in the dependent variable.  These 

findings are in stark contrast to findings published by Maccarone and colleagues (2002), 

who report a mild decrement in anxiety-like behaviors in four-month-old CB1
-/- relative 

to age-matched CB1
+/+ controls (η2 = .119).  However, the authors of this study utilized 
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mice that were backcrossed onto an albino CD1 mouse strain, whereas our mice are 

backcrossed onto the C57BL6 strain, which could account for the observed differences. 

In the Suok task, the CB1
-/- mice spent more time near the center (start position) of 

the apparatus (η2 = .291), traveled less distance (η2 = .253), spent more time immobile 

(η2 = .215) and had significantly more falls from the apparatus (η2 = .119) compared to 

the CB1
+/+ mice, something that might either be related to either an increased anxiety-like 

response or impaired motor/balance difficulties. The partial Eta squared values for these 

dependent variables were all moderate to large; the factor genotype accounts for a 

considerable amount of the variance within the model. To our knowledge, previous 

studies have not utilized the Suok task to evaluate the role of the CB1 receptor in anxiety-

like behaviors; thus it is not possible to compare the sizes of the effects found here with 

those in previous work. 

In contrast to the Light-Dark Box results, the findings from the Suok task did not 

appear to be dependent on age. However, for all of the observed dependent variables (i.e., 

average distance from the center [start] position, distance traveled, time immobile, 

number of falls), there was a noticeable trend (albeit non-significant) with a large effect 

for age-dependent differences, with the mature and old mice traveling less distance from 

the center (start) position, displaying an overall shorter average distance traveled, and 

spending more time immobile, with the mature mice also demonstrating a greater number 

of falls relative to the young and old mice.  

Our results suggest that the CB1
-/- mice exhibit more anxiety-like behaviors 

relative to the CB1
+/+ mice. In order to validate these findings further and to assess 

horizontal motor differences between CB1
+/+ and CB1

-/- mice, we utilized the Open-Field 
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test, as this behavioral paradigm has commonly been used to assess exploratory motor 

behavior in mice (Sousa, Almeida, & Wotjak, 2006). No differences were observed 

between the age-matched CB1
+/+ and CB1

-/- mice on any of the dependent variables of 

interest (e.g., total distance traveled, average speed, number of line crossings), which 

further supports the hypothesis that the observed behavioral effects in the MWM, Light-

Dark Box, and Suok tasks may be related to anxiety-like behaviors, rather than more pure 

learning and memory processes or motor/coordination difficulties in the CB1
-/- mice. 

These findings are similar to other reports that demonstrate no difference in horizontal 

behaviors (i.e., distance traveled) between age-matched CB1
+/+ and CB1

-/- mice under 

similar conditions (Bilkei-Gorzo et al., 2005). However, the results of the Open-Field test 

do not necessarily rule out possible deficits in skilled movement, or “clumsiness,” that 

may be underlying the observed genotype-specific differences noted in the Suok task. 

Additionally, the current study did not covary out the activity of the animal (e.g., 

horizontal behaviors) within the Light-Dark Box, due to the limitations of the current data 

acquisition equipment; however, future research should consider this as an additional 

analysis. 

Additional evidence to support the above-mentioned anxiety-based hypothesis 

comes from data evaluating the role of the eCB system in long-term potentiation (LTP). 

In brief, LTP of synaptic transmission is the leading contemporary experimental 

paradigm for understanding the molecular mechanisms underlying learning and memory 

(Malenka and Nicoll, 1999). Consistent with the behavioral studies that employ either the 

CB1 receptor antagonists (e.g., SR141716A) or the CB1-receptor-deficient mouse model, 

hippocampal slice preparations from CB1
-/- mice (11-month old) have shown an enhanced 
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LTP response (Bohme, Laville, Ledent, Parmentier, & Imperato, 2000). Consistently, 

hippocampal slices that have been treated with an exogenous CB1-receptor agonist have 

been shown to have a decreased LTP response (Davies, Pertwee, & Riedel, 2002), 

something that is consistent with the observed behavioral decrements in agonist-treated 

animals. To date, very few studies have evaluated the age-dependent and/or stress-related 

differences in LTP in CB1
+/+ and CB1

-/- mice (Bohme, et al., 2000; Maccarone et al., 

2002).  

Preliminary age-dependent studies focusing on the LTP response from our 

laboratory are currently underway. The initial results of these studies suggest that LTP is 

enhanced in CB1
-/- mice, and that this phenomenon may be occurring in an age-dependent 

manner. Specifically, these initial data suggest no difference in LTP between young (age 

3 -5 week old) CB1
+/+ and CB1

-/- mice, but the mature (age 4 – 5 month old) and old (age 

12 – 14 month old) CB1
-/- animals appear to have an enhanced LTP response relative to 

their age-matched controls. If these results prove to be accurate, our LTP experiments 

would suggest that learning and memory processes would be likely to be enhanced by the 

loss of CB1-receptor signaling in mature animals. As stated above, our MWM behavioral 

data suggest deficits in learning and memory processes in the CB1
-/- mice relative to the 

CB1
+/+ mice, which is contradictory to other reports that demonstrate either no difference 

or enhanced learning and memory in the CB1
-/- mice in a variety of behavioral paradigms.  

The results of the present study suggest that the observed spatial learning deficits 

observed in the CB1
-/- mice are related to the anxiogenic effects of the loss of eCB 

signaling. In order to validate the anxiety-like behaviors observed in this study, we plan 

to utilize a chronic-restraint-stress paradigm. This restraint-stress paradigm will be used 



CB1 Receptor Functioning 37 

 

to determine how age interacts with anxiety-like behaviors using a variety of behavioral 

paradigms and electrophysiological techniques. Additionally, further research needs to be 

conducted in order to evaluate the changes in neuronal type and density, as well as 

alterations in the cytoskeletal and synaptic architecture, that may be underlying the 

observed differences.  

The findings of the current study have several clinical implications. An inability 

to adapt to chronic stress has been associated with the development of several 

neuropsychiatric disorders, including major depression and post-traumatic stress disorder 

(PTSD; Korte, Koolhaas, Wingfield, & McEwan 2005). Gorzalka and colleagues (2008) 

have recently hypothesized that depression may result from a compromised 

endocannabinoid signaling system which does not allow the individual to adapt 

effectively to his/her chronic life stressors. Recently, it has been demonstrated that 

individuals who have been diagnosed with major depressive disorder have significantly 

lower levels of plasma 2-AG, which is an endogenous cannabinoid, compared to matched 

control subjects (Hill et al, 2006; Hill et al, 2008), indicating that the facilitation of the 

eCB system may have antidepressant-like effects.  

Additionally, if the lack of endocannabinoid signaling is indeed associated with 

impairments in the extinction of aversive memories, and if the findings that demonstrate 

mutant CB1-receptor-deficient mice have difficulties “forgetting” traumatic/aversive 

memories are accurate, then CB1
-/- mice may prove to be a useful model of PTSD (Fride, 

Suris, Weidenfeld, & Mechoulam, 2005). Consistent with this observation, a recent study 

reported that the synthetic CB1 receptor agonist, nabilone, significantly reduced the 

number and intensity of nightmares, night sweats, and daytime flashbacks in patients 
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diagnosed with PTSD (Fraser, 2009). Moreover, the anti-obesity drug rimonabant (i.e., 

SR141716A), a CB1-receptor antagonist, has been removed recently from FDA-approved 

drug trials due to the high number of patients reporting increased symptoms of anxiety 

and depression relative to individuals receiving the placebo drug (Pi-Sunyer, et al., 2006; 

van Gaal et al., 2005). The endocannabinoid system may ultimately provide a therapeutic 

target for facilitating adaptive stress responses, which may have implications in the 

treatment of a variety of clinical disorders.  
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Table 1 

Sample size (n) for behavioral paradigms and percentage of subjects completing the 

MWM task. 

 

Behavioral Paradigm(s) 
 

Subjects MWM        
(n) 

Completed MWM 
task (%) 

Light-Dark Box 
(n) 

Suok Test 
(n) 

Open-Field 
(n) 

CB1+/+      
Young 23 100 8 8 9 
Mature 20 95 9 8 9 

Old 0 N/A 8 8 9 
CB1-/-      

Young 22 90.9 8 8 9 
Mature 25 76 8 8 9 

Old 0 N/A 8 8 9 
      
Total 90 90.5 49 48 54 

 



CB1 Receptor Functioning 53 

 

Figure Captions 

Figure 1. Summary of the MWM protocol. 

 

Figure 2. Schematic or the MWM and testing room. 

 

 Figure 3. Pre-acclimation phase of the MWM task in young (4 -6 week) and mature (4 – 

5 month) CB1
+/+ and CB1

-/- mice. Data represent the mean +/- s.e.m. for (A) total distance 

traveled, (B) average speed, and (C) percent thigmotaxia. Significant age-matched 

differences are denoted as (**; p < .01). 

 

Figure 4. Spatial acquisition phase in young (4 – 6 week) and mature (4 – 5 month) 

CB1
+/+ and CB1

-/- mice for days one through eight. Data points represent the mean +/- 

s.e.m. averaged across trials per day for (A) latency to first entry into the training 

platform, (B) total distance traveled, (C) average speed, and (D) percent thigmotaxia. (*) 

represents a significant main effect of genotype (p < .05).  

 

Figure 5. Spatial acquisition phase in young (4 -6 week) and mature (4 – 5 month) CB1
+/+ 

and CB1
-/- mice for days one through eight. Data points represent the mean +/- s.e.m. 

averaged across trials per day for (A) percent time spent in the training quadrant, (B) the 

number of exits from the platform zone, and (C) path efficiency. (*) represents a 

significant main effect of genotype, and (#) represents a significant main effect of age 

(both at the p < .05 level of significance). 
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Figure 6. 24-Hour Probe in young and mature CB1
+/+ and CB1

-/- mice. Data points 

represent the mean +/- s.e.m. per day for (A) the average distance from the platform zone, 

(B) the number of platform zone crossings, and (C) the percent time spent in the training 

quadrant. Significant differences between age-matched CB1
+/+ and CB1

-/- mice are 

denoted with an (*) and represent a p level of less than .05. 

 

Figure 7. Reversal acquisition in CB1
+/+ and CB1

-/- mice for days one through eight. Data 

points represent the mean +/- s.e.m. averaged across trials per day for (A) number of 

entries in the initial training platform zone, (B) percent time in the initial training 

quadrant, and (C) the latency to first escape to the reversal platform. (*) represents a 

significance level of p < .05, whereas (**) represents significance at the p < .01 level.  

 

Figure 8. Effects of age and genotype on anxiety-like behaviors in the Light-Dark Box. 

Data points represent the mean +/- s.e.m. for (A) time spent in the lit compartment and 

(B) the number of crossings into the lit compartment. Significant difference between age-

matched CB1
+/+ and CB1

-/- mice are denoted with an (**, p < .01), whereas age-dependent 

differences (within each genotype) are denoted with a (#, p < .01).  

 

Figure 9. Effects of age and genotype on exploratory and anxiety-like behaviors in the 

Suok task. Data points represent the mean +/- s.e.m. for (A) the average distance from the 

center (start point) of that apparatus, (B) total distance traveled, (C) time spent immobile, 

and (D) the number of falls. Significant age-matched differences between genotypes are 

denoted with an (**, p < .01). 
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Figure 10. Exploratory and locomotor activity of CB1
+/+ and CB1-/- mice in the open-field 

apparatus. Data points represent the mean +/- s.e.m. for (A) total path length, (B) average 

speed, (C) number of line crossings, and (D) the total time spent immobile. Significant 

age-dependent differences (within each genotype) are denoted with a (#, p < .01). 
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Figure 1. Summary of the MWM protocol 
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Figure 2. Schematic of the MWM and testing room 
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 Figure 3. Pre-acclimation phase of the MWM task   
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Figure 4. Spatial acquisition phase of the MWM task 
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Figure 5. Spatial acquisition phase of the MWM task, continued  
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Figure 6. 24-hour probe trial of the MWM task 
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Figure 7. Reversal-learning phase of the MWM task 
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Figure 8. Light-Dark Box  
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Figure 9. Suok Task  
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Figure 10. Open-Field task 
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