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GLOSSARY OF TERMS 

Affination The process of mingling crystalline sugar with a saturates sugar solution 

with the aim of washing colored contaminants from the crystal surfaces 

 

AU Arbitrary units, most frequently used to describe wavelength specific 

absorbance relative to concentration derived using Beer’s law 

 

Brix A measure of dissolved dry solids, reported in degrees or percentage of 

dry solids, g/100g 

 

Cane Sucrose laden grass, Saccharum Officinarum 

 

Catechol o-hydroxyphenol 

 

Color ICUMSA, the measure of absorbance at 420nm of a solution at pH 7. 

 

Cuticle A film covering the surface of plants, the underside of the rind in cane. 

 

Crusher Mixed juice expressed from a milling tandem 

 

D Dextrorotatory, carbohydrate nomenclature which indicates that the 

penultimate hydroxyl of the sugar is facing right in the Fischer projection. 

This is not equivalent to the R designation given by the Cahn-Ingold-

Prelog selection rules. 

 

DAD Diode array detector, photodiode array detector (PAD), frequently a 

detection mode in HPLC 

 

Diffuser Means of expressing sucrose from cane using solid-liquid extraction with 

hot water, also describes the sort of juice expressed  

 

DRI Differential Refractive Index, frequently a detection mode in HPLC 

 

EI Electron impact, ionization method frequently used with GC-MS 

 

FTIR Fourier transform infrared spectroscopy 

 

GAC Granular activated carbon 

 

GC Gas chromatograph, Gas-Liquid Chromatograph, usually hyphenated with 

the means of detection, vis. GC-mass spectrometry, GC-MS 
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GPC Gel permeation chromatography, a technique which separates materials 

on basis of molecular weight and conformation in solution 

 

HMF 5-hydroxymethyl-2-furaldehyde 

 

HPLC High pressure liquid chromatography usually hyphenated with the means 

of detection, vis. HPLC-diode array detection, HPLC-DAD 

 

Hydroquinone p-hydroxyphenol 

 

Imbibition The practice of washing cane in a counter-current fashion during crushing 

in order to maximize extraction. Usually applied as a percentage on fiber, 

eg. Imbibition at 250% of fiber. 

 

Inversion Hydrolytic cleavage of sucrose to yield one molar equivalent each of 

glucose and fructose 

 

ICUMSA International Commission for the Uniform Methods of Sugar Analysis 

 

IV Indicator Value, Effect of pH on the observed color of a compound or 

mixture 

 

L Levorotatory (laevorotatory), carbohydrate nomenclature which 

indicates that the penultimate hydroxyl of the sugar is facing left  in the 

Fischer projection. This is not equivalent to the S designation given by the 

Cahn-Ingold-Prelog selection rules. 

 

mDTC  mixed dithiocarbamate mill biocide 

 

Mill Also milling tandem, a series of up to five three-roll mills used to squeeze 

juice, and hence sucrose from cane. 

 

MS Mass Spectrometer, a detector used to measure the fragmentation 

pattern specific to a given compound 

 

Melt  A solution of sucrose or commercial sugar 

 

Mixed Juice Diluted Juice extracted from cane via milling or diffusion; it includes 

water used for inbibition. 

 

MRP Maillard reaction product 

 

NTU Nephelometric turbidity units, standardized against colloidal formazin 
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ODS C18, Octadecylstyrene 

 

PCS-3102 A polyelectrolyte; cationic polyamine flocculant supplied by Ecolab, Inc. 

 

Pol Sucrose measured via polarimetry, g/100g 

 

PT Proton transfer, the movement of a hydrogen atom connected to a 

carbon separated not more than 1 bond away or the movement of this 

hydrogen ion as facilitated by a nucleophilic molecule present in excess. 

 

Quinone conjugated α,β or α,δ-diketone resulting from a o or p-hydroxyphenol 

 

REDOX Reduction/Oxidation couple, reaction or cycle 

 

SAC Strong Acid Cation exchange resin, usually a sulfonic acid modified 

styrene-divinylbenzene copolymer; also made from acrylic polymer. 

 

SDS-PAGE Sodium dodecyl sulfate poly acrylamide gel electrophoresis 

 

STP Standard temperature and pressure; 25 °C, 1 atm (1.01E5 Pa). 

 

Sugar sucrose, saccharose, α−D-glucopyranosyl-(1�2)-β-D-fructofuranoside 

 

RF Brix Refractometer brix, determined via prism or total internal reflectance 

 

RI Refractive index, determined using Snell’s law 

 

RP Reversed phase 

 

UV-VIS Spectroscopy measuring either absorbance or transmission of light in the 

ultraviolet through the visible wavelength continuum (190-700 nm) 
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ABSTRACT 
 

 The Louisiana cane sugar industry is moving toward a vertically integrated arrangement where raw 

sugar producers will have an interest in refining. In the sugar refining process, raw sugar is affined to remove 

~50 % of the color. The new refinery that will be built in Louisiana, however, will not include affining 

stations. To reduce costs of refining, either affining stations will need to be installed at each mill or new 

technologies that provide equivalent color reduction (~50% or ~750 IU) need to be implemented. As part of 

this dissertation a new technology for color reduction at raw sugar mills is introduced. 

 Color in raw sugar juice was assessed using chromatography, mass spectrometry, spectroscopy (UV-

VIS, FTIR) and wet chemical means. The colored materials were phenolic and conformed with the lignin-

monomer classes. It was found that this color can be removed from raw juice by applying Fe3+ and cationic 

polyacrylamide at ambient temperature and settling. The decanted juice was clarified via cold-liming. This is 

a novel, inexpensive method, which yielded clarified juice with up to 70% less color than that provided using 

the hot-liming method.  

Using modeled juice, it was found that protein, dihydroxybenzoic or propenoic acids, carboxylic acid 

salts, and Fe3+ were required for color removal. The optimum quantities of each component conformed 

with the average composition of cane juice.  

It was hypothesized that the phenolics were oxidized by the iron, engaging in a REDOX cycle which 

led to oligomerization. Stoichiometry indicated a degree of polymerization of ~8. Oligomerization ceased at 

this length which appeared sufficient to facilitate cross-linking and/or capping of the protein. The 

aggregates of iron, lignol(s) and protein were insoluble and precipitated. 

The method was tested at pilot-scale using a 151 L (40 gal.) settling clarifier which was operated in 

pulsed and continuous (7.6 L/min, ~2 gpm) modes. The method scaled well and the product juice exhibited 

50-60% less color than a cold-limed control when Fe3+ was applied in quantities ranging from 100-200 

µg/mL. Cationic flocculants increased the settling rates. 
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CHAPTER 1. INTRODUCTION 

 “With heroic determination, then,  speed the plow; bear in mind that to go ahead without ever 

taking the difficulties into account, and by that means to succeed when others dare not undertake, is 

emphatically the AMERICAN SYSTEM.” 

--Pierre Rost’s address to the LCSA noted as minutes in Debow’s Review (DeBow 1847) and quoted by 

Heitmann (1983a). 

1.1. A Brief History of Sugar Technology 

According to Indian history, the cane sugar industry dates to approximately 400 B.C. It was 

noted (Stillman, 1924a) that in approximately 77 A.D.: 

“Arabia too produces saccharon (sugar), but that of India is the most esteemed. This substance is a kind 

of honey which collects in reeds, white like gum, and brittle to the teeth.” 

The oldest reference found by this author which clearly deals with the processing of cane, is a 

treatise from the tenth century by Isaac Judaeus (Stillman, 1924b) regarding diet called, “Dieta”. From 

there it was quoted: 

 “Zucarum or zucara is made from certain canes and reeds which grow in swamps near the Nile, 

and it is the juice of these canes called sweet cane (cana mellis) from which is made zucarum by boiling, 

just as salt is made from water. For the ground canes are first placed in a cauldron and cooked with a 

slow fire until it (the juice) is thickened, and first there is seen to pass off from the whole mass [a 

portion] in foam, and afterwards the thicker and better residue sinks to the bottom, and what is light 

and foamy remains above and is porous and less sweet and does not crackle between the teeth when 

masticated, but disappears quickly. But the good is the opposite (econverso), for the good, placed in 

round vessels in the sun, is made hard and white.” 

From this were derived the processes now known as crushing, defecation (clarification), 

evaporation, and, even though the product was likely “loaf sugar”, crystallization.  
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These processes, passed along through Europe, eventually found their way to Louisiana. From Stillman’s 

accord, it is not surprising that cane would be fruitful in the swamps that, at the time, constituted much 

of the Louisiana territory.  

Going back at least as far as 1753 (Sitterson, 1953), the cane processing industry relied on 

animal power, including mule, ox and horse. The animals were coupled to vertical or horizontal mills, as 

in figure 1.1, which would be used to grind whole-stalk cane. This practice persisted through 1830 when 

animal power was rapidly supplanted by steam engines. In 1828, 128 out of 691 (18.5 %) mills in 

Louisiana were powered using steam. (Heitman, 1983b). By 1848, 408 of 762 (53.5 %) mills had 

converted to steam power (Heitman, 1983c). The industry was growing at an astonishing rate of (based 

on 20 years) 3.5 mills per year. 

 

Figure 1.1. An ox-driven Egyptian horizontal sugar cane mill (Deere, 1949a). 

During this time, the practice of open-kettle boiling, which was referred to by Judaeus persisted. 

The French evolution of this technology had been brought to the new-world in the form of a multiple-

kettle boiling scheme.  
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Using this scheme, called a “battery”, “equipage” or “kettle-train” (Heitman 1983), the juice expressed 

from the cane was clarified or “defecated”, concentrated to syrup, and seeded or “struck”.  These 

functions, which are discrete unit-processes in the modern cane sugar manufacturing industry, were, 

albeit with less efficiency, conducted across this kettle-train beginning with the first and largest kettle 

which was called the “grande”. This operation can be seen in figure 1.2. 

 

 Figure 1.2. The equipage or kettle train (Deere, 1950). 

 Heated directly with fire fueled using cord wood, the grande could hold between 300-500 

gallons of juice. This juice was brought close to boiling and a defecating agent was added.  

Then, as it is today, lime (CaO) was the clarifying agent of choice. The lime would cause a frothy scum 

(not unlike that mentioned by Judaeus) to float in the grande.  

In this kettle, and for subsequent steps, the frothy material was removed (“brushing off”) and 

the juice, was transferred manually (“skipping out”), by means of a ladle, into the next kettle in the train. 
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When moving from the beginning, the next (second) kettle to be encountered was called the flambaeu. 

So named because it was heated directly by flame, the juice was brought to boil in the flambaeu 

and considerable thickening of the juice took place. The contents of this kettle were ladled into a third 

kettle, which depending upon the mill, would constitute the third of a four or five kettle system. In the 

case of the former, the kettle was referred to as the “sirop” and is where the juice was evaporated to a 

thick syrup. In the case of the latter, the kettle was called the “proper clear” because it was here that 

the syrup was sufficiently pure as to be nearly transparent. In this case, the contents of the kettle would 

be less concentrated, and would be ladled into a “sirop kettle” for further evaporation. In either case, 

the content of the sirop kettle was transferred into the final kettle, which was between 70-100 gallons in 

size and was referred to as the “batterie”. 

In the batterie kettle, the syrup was evaporated to very high concentration and, when the 

conditions were “right” this vessel was “struck” to initiate the crystallization of the sugar. It was not 

made clear whether this strike was the result of intentional addition of sugar “seed” or the result of 

spontaneous nucleation, a phenomenon referred to by trade as “false graining”. The acknowledgement 

of the conditions proper for this to occur were not monitored with analytical tests or any kind and relied 

upon the experience of the sugar boiler. For example, from document 62 from the U.S. Congress in 

1831, quoted by Heitmann (1983d): 

“It was eye alone that was to determine the ripeness of cane, and it was the eye and touch 

alone that were to determine the point at which the syrup was sufficiently boiled to granulate, 

experience and individual judgement [sic] were alone relied on, and we will know how variable, and how 

little faith can generally be placed in either.” 

Regardless of the method used in the strike, this material or “massecuite” which now contains 

growing sugar crystals was transferred into barrels. From these barrels would slowly drain the mother 

liquor or “molasses”. Much molasses remained in the sugar and decreased its value.  
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Nevertheless, the scale and production continued to increase. During this period (1822-1843), barring 

disastrous events (hurricanes, etc.) in 1835, 1839 and 1843, the amount of raw sugar produced 

(Bouchereau, 1917 cited by Heitmann, 1983e) increased from 13,392 to 71,878 long tons (2,240 lb or 

1016.06 kg) per year. 

The technology of sugar production remained more-or-less consistent from the tenth to the 

nineteenth century (900-1000 years, a millennium). The advent of the steam engine, and the increased 

reliance of the sugar industry upon it (appx. 1928-1938) led to the technology which would be used to 

revolutionize the industry for the first time since the casting of a boiling kettle. Norbert Rillieux invented 

the multiple effect evaporator. 

Despite being, perhaps, the most significant contribution to sugar processing technology (some 

would argue this point over the vacuum pan, which will be discussed later), the multiple-effect 

evaporator system was not, at once, accepted.  Designed to use steam to generate both the heat and 

vacuum needed to evaporate juice to yield syrup, the multiple-effect evaporator consists of several 

stages also known and “bodies” or “effects”. As the juice is concentrated it is transferred to the next 

effect which is heated by the vapor from the effect which precedes it. Because the system is “closed”, 

the cooler effect will thermodynamically be under greater vacuum. 

  The major benefits of this system include lower color syrup with less loss of sugar to inversion 

(discussed later) and greatly improved steam economy.  A diagram of a multiple effect evaporator is 

given in figure 1.3. 

At the time (1831-1835), Rillieux was forced to abort a trial (orchestrated at his own expense) 

because the apparatus was “in the way”. It was, according to Heitmann, 1983 quoting DeBow, 1849, 

who recorded a letter from McCulloch regarding the progress of Rillieux’s project, whereby it was 

“…deemed absurd that the cane juice of Louisiana could be boiled by steam.” 
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Figure 1.3. Diagram of a triple-effect evaporator train. 

In the meanwhile, the 1830’s marked the entry of the “vacuum-pan” to the Louisiana sugar 

processing industry. Patented far earlier, in 1813, by Howard, this piece of equipment that allowed use 

of steam and vacuum for the boiling of the cane syrup at lower temperature.  

Essentially a sealed kettle with steam heating tubes, the “pan” granted the boiler a greater 

degree of control (it would not overheat like fired kettles and temperature is under nearly instantaneous 

control) while removing water at a greater rate and at a lower temperature. The increased throughput 

(and energy efficiency) minimized losses of sugar due to inversion (a process described in detail, later) to 

produce a superior sugar with significantly less color. 

“With the exception of the vacuum pan, attempted improvements in the sugar making process 

initiated during the 1830’s usually ended in frustration and failure.” (Heitman, 1983f). 

Nevertheless, with sugar bringing in 5 cents/lb*, the 1840’s were marked with a much greater drive to 

accept and implement new technologies. With the promise of producing larger amounts of higher 

quality sugar from their canes, many of the producers at the time were able to sheath their biases with 

the promise of wealth.  
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The 1950’s marked perhaps the last major technological innovation that brought the sugar 

processing industry to where it is today. A furnace designed to burn bagasse (the fibrous material 

remaining after the saccharine juice has been expressed from the cane) was patented by Alfred Stillman 

(Heitmann, 1983g) in 1955. This equipment facilitates the suspension firing of wet (~50 g/100g 

moisture) materials, such as bagasse, to provide the steam needed to run the factory. In this way, much 

of the energy needed for processing was rolled into the price of the cane (which already included 

transport).  

Today, the bagasse furnace provides nearly all of the operational energy for a cane process. This 

eliminates the overhead for fuel which can consume 2/3 of the profit margin of approximately $0.21 /lb 

on refined sugar. Because 1/3 of the bagasse is usually leftover from a fully powered mill (at 10,000 tons 

cane/day this is ~476 tons of fiber**), the closed-cycle system of the sugar mill represents the greatest 

possible return for a Biorefinery enterprise based upon bagasse feedstock (or vertically integrated 

refining process). 

* 1.08 USD in 2008 calculated using an inflation index of 21.688 (Austin Genealogical Society, 2003). 
**10,000 tons cane/d (9090.9 mt/d) * 0.14 (g/100 g/fiber on cane) = 1,400 tons fiber/d (1272.72 mt/d) * 

2/3 (fraction typically burned/d) = 924 tons/d (840 mt/d); 1,400 tons fiber – 924 tons burnt = 476 tons 

residual fiber/d (432.72 mt/d). 

 

1.2. Research Objectives 

 The goal of the sugar industry is to extract sucrose from cane (Saccharum Officinarum) in such a 

way as to produce a consumer grade product with both very high purity and very low color (VLC).  

Louisiana currently produces a raw-grade sugar (~800-2500 ICUMSA color units, IU) which is sold to a 

refiner who produces a refined product with a color of 15-50 IU (www.buysugarnow.com).  

This arrangement is currently in a state of flux as global competition encourages the raw producers and 

the refineries to cooperate and combine (Brady, 2005). 

 The profit achievable from sugar is a balance between the quality of the raw material and the 

cost of the fuel required to refine it. Refineries use natural gas to power their operations.  
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The white sugar premium is approximately 6.6 cents (Todd, 1997) per kg but, the cost of natural gas can 

offset this by as much as 39% (www.wtrg.com). Because the fuel used to process raw sugar is integrated 

with the price of the cane, and the direct production of white sugar can lead to the recovery of 

approximately ~ 8% of additional sugar (Fechter, 2001), the industry can reap both savings and 

increased profit on the refinery-end.  

 The goal of this work was to conceptualize and implement a method to enable a raw sugar mill 

to manufacture a sugar with 50 % less color without the use of affination. 

  The use of iron was described in a patent (Madsen, 1984) to improve the clarification of juice 

from sugar beets. It made use of a hybrid decolorization/clarification method which is superficially 

similar to the work presented here. Iron salts were used to effect clarification and decolorization when 

used in tandem with ultrafiltration (UF), peroxide, sulfitation or conventional liming procedures. The 

description involves the use of ferric chloride as a chelant/oxidant. The agent served to create floc which 

was removed via ultrafiltration, then followed by hot-liming (Madsen, 1984).   

 Described in this work is the development and implementation of a process whereby ferric iron 

is used, in conjunction with a cationic flocculant and followed by conventional cold-liming protocol 

(without incubation of the juice at ambient temperature) to effect clarification/decolorization without 

the use of carbon, resin or ultrafiltration. 
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CHAPTER 2. LITERATURE REVIEW 

2.1. Sucrose and Other Relevant Carbohydrates 

 Sucrose (α-D-glucopyranosyl-(1�2)-β-D-fructofuranose), glucose and fructose are the three 

primary simple carbohydrates found in sugarcane juice (Saccharum Officinarum). The behavior of these 

carbohydrates relative to any treatment is of critical consequence to the success of any process 

designed to use sugarcane juice as feedstock. The work described in this dissertation requires a 

fundamental knowledge of the chemistry of carbohydrates. A mini-review of fundamental and relevant 

properties of carbohydrates is given in Appendix A. Likewise, a review of “Inversion”, a specific reaction 

whereby the disaccharide sucrose is hydrolyzed to the reducing sugars (monosaccharides), D-glucose 

and D-fructose, is detailed in Appendix B.   

2.2. The Composition of Cane Juice 

 Cane juice is a complex mixture containing large amounts of non-carbohydrates. In order to 

properly understand of any treatment involving this juice, the overall composition must first be defined. 

Sugarcane juices and the products created during sucrose extraction are complicated mixtures 

composed of various natural products and their products of reaction. The plant composition varies 

throughout the growing season, from season-to-season, with the weather (Legendre, et al, 2007), and, 

of course, between varieties. In Louisiana, one variety, LCP 85-384 was predominant over the time 

frame of this research. The newer varieties, L 99-226 and L 99-233 are replacing this strain because they 

have sturdier stalks, produce denser stands and have higher sucrose yields (Bogren, 2006).The 

composition of juice, all else being equal, can vary depending on the methods employed for extraction. 

Expression of juice from cane is conducted either by milling or by diffusion.  10 of 11 operating sugar 

factories in La. are using milling tandems. Two diffusers are in use and only one mill uses the technology 

exclusively. 
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 The milling process is a counter-current or “compound” process which involves grinding of the 

cane in a series of mills, called a ”tandem”, with added water (imbibition). The amount of imbibition 

water depends upon the fiber content of the cane and contributes to the final quantity of juice. The 

quantity of imbibition water should be applied in the range of 250-280 % fiber in cane (Rein, 2007) and it 

is balanced to achieve the highest possible extraction from the cane while using the least amount of 

water.  A typical five-roll milling tandem with compound imbibition is given in figure 2.1 with extraction 

figures provided by Rein (2007).

 

Figure 2.1. A five-roll milling tandem achieving 95.8% extraction.  

 

The diffuser involves moving a bed of chopped cane through a tunnel with a series of 10-18 cells 

beneath. Hot water, usually 85°C, is sprayed onto the cane bed fed at 300 tons/h which can be 50-60 m 

in length and ~10 m thick. As the bed moves, the water and juice percolates though the bed and collects 

in the cell beneath. The contents of each cell are re-heated and pumped onto the cane over the 

preceding cells. The final bagasse exiting the diffuser is de-watered using a conventional mill.  

In either case, the ash (salt content), approximated by conductivity, is surprisingly consistent at 

4.4±1.3. The “true” purity (sucrose, g.100g-1/brix, g.100g-1 * 100) is also relatively consistent. Purities 

averaged  87.3±2.0 %. The other major components are given in table 2.1, below. 
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Table 2.1: Average composition of cane and juices obtained in La. From 2004-2005. (Polanco, et al., 

2006). 

 

Year/ 

Extractor: 

Pol* in 

Juice, 

g/100g: 

Sucrose** 

in 

Juice, 

g/100g: 

Reducing*** 

sugar, 

g/100g: 

Color, 

IU: 

pH: Gum† 

mg/kg: 

2004       

Mill 11.5 ±0.2 12.0±2.9 4.6±3.7 12200±2400 5.5±1.0 2050±2530 

Diffuser 11.3±0.2 11.8±3.9 4.9±3.9 13500±2800 5.2±0.4 1140±1810 

2005       

Mill 11.8±0.4 12.3±2.1 5.1±1.7 11000±2300 6.1±1.2 1200±2210 

Diffuser 11.4±0.2 11.9±2.5 5.5±1.7 12200±2800 5.5±0.5 670±1160 

± indicates the range of values acquired from weekly sampling over a 90 d season. 

*sucrose via polarimetry 

** sucrose via HPLC vs. external standards 

***sum of glucose and fructose via HPLC vs. external standards 

† sum of starch via precipitation/colorimetry and dextran via antibody method. 

 

It is assumed, for the purpose of this work and unless otherwise stated, that cane has a gross 

composition of, based upon whole cane, brix, 14 %( purity, 87 %); fiber, 14 %; ash, 4% and other, 72%. 

This does not add up to 100% because the fiber measurement, as it is measured, also includes the ash 

(Madsen, 2003).  

 “Brix” refers to the g/100g of sample which is determined as refractive dry solid. The 

constituents of brix are sucrose, 12 g/100g and reducing sugar, 5.0 g/100g. The glucose/fructose ratio is, 

on average, 1.03. These values were corroborated by an independent laboratory (Iqbal, et al., 2000). 

 “Ash” is primarily composed of salts of Na1+, NH4
1+, K1+, Mg2+ and Ca2+ with (mostly) Cl-, SO4

2-, 

CO3
2, SiOx and PO4

3+. The normal ranges, which were, within error, equivalent for both diffuser and mill 

juices are given in table 2.2. 

Table 2.2. Mono and di-valent cations in cane juice (Polanco, et al., 2006) 

 

 Mill 2004 Diffuser 2004 

Cation: mg/kg*: mg/kg*: 

Na 389 291 

K 8112 9470 

Mg 2036 2167 

Ca 2898 2572 

*Determined via HPLC/ECD. 
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 “Other” refers mostly to water with the balance consisting of nitrogenous bases, plant pigments, 

polyphenols, “gums” (starch, dextran, indigenous cane polysaccharides), carboxylic acids and cellulose. 

Significant quantities of amino acids and amides are found in juice. The concentrations of each are given 

by Meade and Chen (1977) and are presented in Table 2.3. 

Table 2.3. Amino acid constituents of cane juice and protein isolate.  

 

Compound: Free, % DS: Protein, % DS. 

Asparagine 0.71 n/a 

Glutamine 0.19 n/a 

Aspartic acid 0.11 0.06 

Glutamic acid 0.05 0.08 

Alanine 0.06 0.05 

Valine 0.03 0.04 

g-aminobutyric acid 0.03 0.03 

Threonine 0.02 0.04 

Isoleucine 0.01 0.03 

Glycine <0.01 0.04 

Leucine Trace 0.03 

Lysine Trace 0.04 

Serine Trace 0.03 

Arginine Trace 0.02 

Phenylalanine Trace 0.02 

Tyrosine Trace 0.02 

Histidine Trace 0.01 

Proline Trace 0.01 

Total Protein Trace 0.49 

 

Commercial cane juice is a mixture of juices expressed from both the stalks and the “cane leaf 

material” (CLM). CLM contains a much larger quantity of pigmented materials than the stalks, and juices 

expressed from it reflect this (Gil and Saska, 2005). The ratio of leafy materials to stalks entering the mill 

are unknown, but have increased since the State of Louisiana instituted greater control over field 

burning (Legendre, 2001). A break-down of the composition of “phenolic” materials found in in stalks, 

CLM and product sugars are given in table 2.4. 

The bulk of phenolic materials seem to be monomers derived from lignin and flavonoids.The 

phenolic compounds found in sugarcane juice remain throughout the production of both raw and 

refined sugars. 
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Table 2.4. Phenolics, by compartment, in cane and sugar (Farber, et al, 1971; Godshall, et al, 1988 cited 

in Meade and Chen, 1977). 

 

CLM Juice Raw Sugar Refined Sugar 

Coniferin Caffeic acid Chlorogenic acid 

Coumarin Quinic Acid p-coumaric acid 

3,4-dihydroxybenzaldehyde Kaempferol Ferulic acid 

3,4-dihydroxybenzoic acid Syringic acid Sinapic acid 

Esculin Umbelliferone  

4-hydroxybenzaldehyde   

4-hydroxybenzoic acid   

Vanillin   

Vanillic acid   

Rutin   

Quercetin   

 

Chlorogenic acid found in refined sugar likely correlates with caffeic and quinic acids observed in the raw 

sugar. This is likely an artifact of the analytical techniques as chlorogenic acid is the quinic acid ester of 

caffeic acid, not vice-versa. It should also be noted that chlorogenic acid is difficult to detect in juice 

because it is labile to both hydrolysis and oxidation. This makes it unlikely that it would survive the sugar 

production process to end up in raw sugar. This is reflected by the fact that it is quinic acid which is 

found in the raw sugar.  

2.3. Clarification 

“As most sugar produced by simple clarification is sold as raw sugar, which is subsequently 

refined, no great value should be attached to a clear, sparkling juice” (Payne, 1953). 

At present, there is still no premium value ascribed to raw sugar of especially low color. A 

cooperative refinery may offer a premium value for VLC (very low color) sugar if it saves them money. 

VLC has the potential to increase profit on the refining end by decreasing expenses associated with the 

use of natural gas for fuel. In such a case, great attention will likely be paid to the process of clarifying 

cane juice because as it can be expected that good clarification will lead to a product with less color. 

2.3.1. Defecation 

Very few words used in the sugar industry will raise the occasional eyebrow more than 

“defecate”.   
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A verb by definition, the archaic term used in much of the early literature, describes the action of 

removing “impurities, as in a chemical solution” or to “clarify” (www.dictionary.com) the mixture.  

 From this comes the modern convention wherein is described the act of defecating sugarcane 

juice to yield a clarified product. Today, the unit process is referred to as clarification, and with the 

exception of quoted work, shall be used henceforward.   

The various unit processes found in a modern sugar mill are derived from the various kettles 

used in the early “equipage”. Of these, the addition of lime and conditions prevailing in the “proper 

clear” leads to modern clarification technologies. 

2.3.2. Colloids 

Cane juice is a mixture containing a dispersion of particles with a wide range of sizes. These 

particles were referred to as “dispersoids” by Von Wiemarn, et al., in 1908 who subdivided them by size 

(Payne, 1953).  

Table 2.5. Designation of particle size  

Coarse dispersion or suspension Diameter >0.1 µm 

Colloidal solutions 0.1-0.001 µm 

Molecular or ionic dispersoids <0.001 µm 

 

 Barring large solids (rocks, bagacillo, fibers, cigarette-butts, etc.), which can be removed by 

filtration though a fine screen or loose-packed glass wool, cane juice contains particles with diameters 

up to 6 µm (Bennet, 1957a). The density of these particles ranges between 2.5E8 and 1.2E9 

particles/mL. The quantity of total dispersed solids amounts to approximately 0.25 g/100g.  

According to Bennett, cane juice can be categorized as a “dilute suspension” where 85 % of the particles 

have diameters of approximately 2 µm (Trinidad, variety B37172). 

 The particles were subdivided by Bennett into three main classes which differ by composition. 

The bulk 50-75 % of the total particulates, are waxy and composed mainly of a mixture of ceryl esters 

(large linear alcohols, Koonce and Brown, 1944) and long chain fatty acids (cane wax).  



 

 

15 

 

These particles appear to be present as discrete granules in the cane, as removal of the cuticle (and 

hence, rind) prior to milling did not significantly decrease the detected quantity (Bennet 1957b).  

Type-2 particles are derived from organelles which are released when the plant cells are 

disrupted during milling. They include chloroplasts and polysaccharide granules (starch); these are 

referred to by Bennett as “plastids”. It was noted by Payne the quantity of polysaccharide present (most 

likely referring to dextran, Madsen and Day 2005) can increase as a consequence of microbial 

depredation. Type-3 particles correspond with suspended silicacious particles which are related to field 

soil and clay. These particles usually range in size between 4-6 µm. It is noteworthy that, in Louisiana, in 

particular, a large amount of field soil often enters the mill. In some cases, cane may contain >22 g/100g 

of soil (Madsen, et al. 2003). Most of this will end up in the juice as a consequence of diffusion or 

milling. This is especially true since  the practice of washing the cane prior to milling has largely been 

discontinued since it was noted that it  led to microbial infestation (Day and Kampen, 2003), corrosion 

due to increased levels of organic acids and loss of sucrose, both inverted and/or consumed (Endres, 

2003). 

2.3.3. Goals of Clarification 

The goal of clarification is to remove the coarse and colloidal materials without losing sugar to 

either microbial or chemical effects.  

 Microbial losses result from direct consumption of sucrose by microorganisms including bacteria 

(e.g. Leuconostoc sp., Eggleston, 2006) and fungi (e.g. Saccharomyces sp., Saska, 2002) which will invert 

the sucrose and then consume the resulting reducing sugars,  producing acids (primarily lactic and 

acetic), polymers (dextran, levan, etc.) and ethanol.  

 The acidic metabolites lead to chemical inversion, which is more pronounced at higher 

temperatures and increases with time. Inversion is discussed in detail in Appendix B. Additionally, the 

acidic products can lead to severe (and costly) corrosion of mild steel.  
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This is especially so for volatile products, such as ethanoic or butanoic acids, which end up in evaporator 

condensate and can cause corrosion of the return lines. 

Ideally, there should be an increase in juice purity resulting from the removal of non-sugar 

impurities with very little increase in color, if any. The following criteria for clarification were condensed 

from the five points given by Payne (1953). The brief notes which follow were added by this author. 

1.  The clarification should be as complete as possible, clear juice should result--the overall 

measures of success are the reduction of color and turbidity whilst increasing purity. 

 

2. The mud should settle as quickly as possible—the more quickly the juice is processed, the less 

time there is for the sugar it contains to be destroyed. 

 

3. The mud should settle into the densest possible pack to minimize volume—a greater quantity of 

mud tends to indicate a greater amount of removed impurity, but exceeding the filtration 

capacity can shut down a factory.  

 
2.3.4. Clarification Agents 

 The use of lime as a clarification agent and pH adjustment chemical predominates in industrial 

practice, because it is cheap (~$15 US/short ton, Watson and Little, 2002) and the technology is well 

known and reliable. It was noted by Bennett (1957) that the efficacy of hydrolyzable metal compounds 

increases with increasing oxidation number. For example, Th4+ and Al3+ are more effective than Ca2+, 

which requires approximately 200 mM (1.56 g/dL as Ca(OH)2, 1.20 as CaO) before eliciting an 

isoelectronic (charge balance on the particles is zero) condition causing the dispersoids to coagulate. 

This is why, in order to make sure that a sufficient quantity of Ca2+ is present, Ca(OH)2 is often applied at 

5.00 g/dL (3.2 times the minimum quantity). By the same token, the amount of K+ required to elicit a 

similar effect exceeds that which will saturate water at STP (standard temperature and pressure).  

Regardless, lime is the cheapest, and it is minimally toxic (and is not radioactive), so it remains the 

coagulant of choice for food related operations. Other clarification agents have been tested, including 

some 622 materials listed by Spencer and Meade in 1948. Because this reference is difficult to find, and 

the tables were not carried into the subsequent editions, they are included as Appendix C. 
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Adjunct processes (Rein, 2007) such as sulfitation (treatment/bleaching with SO2), 

phosphatation (H3PO4, coupled with flotation of scum, frequently used with syrup) and carbonatation 

(neutralization of the lime with carbonic acid (H2O + CO2�H2CO3)) are not practiced in the United 

States for the manufacture of raw sugar from cane (carbonatation is standard when processing beets). 

Methods such as these are used widely elsewhere, in places such as India and Brazil, but because they 

are not currently in use in the U.S. they will not be discussed in detail here. 

2.3.4.1. Lime 

The first reaction involved with lime clarification is given below. 

  

 This is an oversimplification. The mechanism, at present is a nearly incomprehensible admixture 

of both chemical and physical phenomena. Chemically, the states of “calcium phosphate” which can 

simultaneously exist are complex, and led to a series of reactions, some of which were summarized by 

Greenwood, et al. (2007) in the following series of equations. He also noted that the hydrolyzed tetra 

calcium phosphate, Ca4(OH)2(PO4) may also form. 

 

 Physically, there are non-chemical effects which can occur, for example, the following empirical 

set of equations (Holt, 1925): 

 

The first equation yielding monobasic calcium phosphate is fast, and proceeds almost to completion 

before the second reaction takes place at significant rate.  
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The monobasic product, however, is a sticky gel and adheres to the reacting particle hindering access 

and physically limiting the rate of reaction that yields the final product. 

For the aforementioned reasons, the reaction between Ca(OH)2 and H3PO4 is quite slow, taking 

approximately 10 hr to reach equilibrium (Holt, et al., 1925). It follows then, because the retention time 

of clarified juice rarely exceeds 1 hr, that equilibrium will never be practically be reached during the 

course of sugar manufacture.  

The “calcium phosphate” so formed is a colloidal suspension of miniscule particles ranging from 

1-1000 nm in size (IUPAC, 2001). These particles, when charged, will electrostatically repel one-another 

unless the electrical double layer surrounding them is minimized by neutralizing the charge. Once 

neutral, van der Waals forces (Whayman, 1975) will cause the particles to aggregate, yielding larger 

structures. This phenomenon is referred to as coagulation. The application of an electrical field gradient 

to neutralize charge has been used to increase coagulation (Freeland, et al, 1979; Kampen, 2000) in 

clarified cane juices. 

  Below is a description of one of three prevailing models which have arisen to explain 

coagulation/flocculation phenomena.  This model is referred to as the “charge neutralization” model 

(Dentel, 1988), and is illustrated in figure 2.2.  

 

Figure 2.2. Neutralization of electrostatic repulsion via either a change in pH or an applied electrical field 

leads to coagulation of charged colloidal particles. 



 

 

19 

 

The converse is also true. If excess coagulant is added, the charge can re-establish, that is, if all 

of the particles represented in figure 2.2 carry a net positive charge, they will repel one-another. This 

will disrupt the coagulum leading to a re-dispersion of the particles. This is why coagulant dosage is 

critical, and must be maintained within a narrow window which, under many circumstances, is near the 

isoelectronic point of the particle or macromolecule. 

The macromolecules in question, in cane juice, are primarily proteins categorized within the 

albuminoid class (Ball, et al, 1943). Proteins are amphiphilic, exhibiting both hydrophilic and 

hydrophobic interactions. The extent of hydrophobicity of a protein depends upon both the net charge 

and the conformation of the molecule. The point of zero net charge is referred to as the isoelectronic 

point. When this condition is reached, the protein will transition from solution, becoming colloidal. The 

hydrodynamic radius of the polymer increases with temperature. This is demonstrated with BSA in 

figure 2.3 (Waldmann, 2005). This effect is attributed to the disruption of the quaternary α2β2 structure 

of the BSA as it denaturesThis effect is not observed with monomeric proteins, such as lysozyme, where 

the rh/T is parabolic rather than sigmoidal. 

The other coagulation models are “bridging” (Schmitt, et al, 1998) and “charge-patch” (Wu, 

2007) models. In the bridging model, the insoluble, swollen, protein molecules act as an “adhesive” 

which string the coagula together. For an excellent treatise on the bridging mechanism of flocculation, 

see Fellow and Doherty (2006). The charge-patch model functions on the assumption that the charge 

may not be equally distributed upon the surface of a particle. This model provides that charged domains 

or “patches” exist which will serve as points where charge neutralization or bridging might occur. 

Although the isoelectronic point of a protein can be readily measured, and is usually between 

pH 3.0-5.5 (Chaiyasut and Tsuda, 2001), the presence of sugar tends to stabilize proteins in solution. In 

the presence of sucrose, the coagulation of protein becomes less dependent upon isoelectronic point.  
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The presence of sucrose increases the temperature required to denature a given protein (Christ, et al, 

2006) and this effect is expected to extend to similar effects caused by addition of acid or base. The 

observed stabilization increases with the sucrose concentration until the effect of low water activity 

becomes pronounced.  

 

Figure 2.3. Increase in hydrodynamic radius of isoelectronic BSA with increasing temperature 

(Waldmann, 2005). Note that the minimum size is ~3.5 nm = 0.0035 µm. 

 

Cane juice contains approximately 200 mg/mL of phosphate (Mahadevaiah et al, 2007). Because 

the tendency of sugarcane proteins to coagulate (and the juice to clarify) is predicated on the presence 

of phosphate (Paine et al, 1928), phosphoric acid may be added to sugarcane juice improve clarification. 

Lime also serves to precipitate compounds which are not especially soluble when alkaline. This 

can include free-base proteins. These particles can be attracted to and aggregated with the coagulum. A 

slightly alkaline pH (7.1-7.2) helps protect the sucrose from damage (inversion) as it is rapidly heated to 

over 100 °C in the next step. 
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After lime addition, the juice is rapidly heated to greater than 100°C (104-110 °C is common). 

The superheated juice is flashed to atmospheric pressure (760 Torr, 1.01E5 Pa)The juice, now somewhat 

more concentrated (by flashing) has undergone some profound changes. 

Superheating the juice denatures protein in the juice. At 0.5 g/100g (Chen and Meade, 1977), 

this is a significant amount of material. In fact, in the Deming process (anon, 1899) heat alone, via 

injection of steam directly into juice is frequently successful, and once found wide use. Once denatured, 

the protein is no longer soluble and precipitates from solution. These large particles will attract the 

coagulum to create macro-structures known as “flocs”, presumably via the bridging mechanism. To 

speed the settling rate of these flocs, and additional charged polymer is added. 

The polyelectrolyte, usually an anionic polyacrylamide (see Magnafloc LT-340) is added after the 

flash. A contact time of a few seconds is all that is needed for the polyelectrolyte to form macro-flocs 

which settle rapidly after the juice is admitted into a settling clarifier. It is likely that the protein in the 

milk or blood added in the Colonies process (McGinnis, 1982) served a similar purpose. After some 

period of time, the clarified juice separates from the compact floc, which is commonly referred to as 

“mud”. 

The application of lime as a clarifying agent has been tried using a variety of methods (Honig, 

1953, specifically Payne, J.H.). These include: 

1. Cold Liming 

2. Hot Liming 

3. Fractional Liming 

4. Fractional Liming and Double Heating 

5. Compound Clarification 

6. Saccharate Liming 

 

 Currently, only cold, hot or saccharate liming processes are used in industrial practice; they will be 

described in greater detail. 

   “Milk of lime” is a slurry of Ca(OH)2 in saturated aqueous solution (0.12 g/100g of water at 25 

°C).  
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Well mixed (via continuous circulation) milk of lime contains 2.5-7.5 g/100g (5 g/100g, by convention) of 

added “CaO” (5 g CaO = 6.59 g/100g Ca(OH)2 at 0.089 mol/dL). For information regarding the origins of 

lime, see Appendix D. 

The solubility of Ca(OH)2 decreases when temperature is increased. The plot given by Myerson 

(1990) for the solubility of Ca(OH)2 in aqueous solution at increasing temperature indicates that the ∆c/T 

for 0 to 100 °C is ~ -0.000137 g/L. These numbers do not agree with those of Watkins (1983) who 

published a table, which when plotted appears as seen in figure 2.4 and gives a ∆c/T for 0 to 100 °C of -

1.14 g/L with 1.65 g dissolving in 1L at 20 °C. This value agrees exactly with the figures given by Cheney 

Lime Co. (1.65 g/L at 20°C, Cheney Lime). From this, in water, at a given temperature, the number of 

grams of Ca(OH)2 which will dissolve in water is given by the following linear equation: 

                         Eqn. 2.1 
g = -0.011T + 1.862  

 
Where: 

     g= Ca(OH)2, grams 

     T = °C 

 

 The presence of sucrose, via complexation of Ca2+ with the carbohydrate diol structures, significantly 

increases the solubility of Ca(OH)2, presumably through the formation of “tricalcium sucrate” (or 

saccharate). The complexes are likely linear short chain polymer-like aggregates of at least two sucrose 

units and Ca(OH)2 (Pannetier et al, 2001). Saccharate of lime” is jargon used by the sugar industry and 

does not describe the “calcium saccharate” of trade which is the Ca2+ salt of D-glucaric acid. Sucrose can 

be recovered from the tricalcium complex by treatment with CO2 (carbonitation, Pigman, 1957). The 

rule-of-thumb given by Honig (1953) is that a 10 g/100g solution of sucrose will dissolve 1.5 g/100g of 

Ca(OH)2. This amounts to a 12.5 fold increase in solubility when all else is equal. The behavior of Ca(OH)2 

solubility in solutions containing sucrose is given in figure 2.5. The solubility increases until the sucrose 

concentration exceeds ~34 g/100g, after which, the solubility drops parabolically (Musa, 2005). 

 



 

 

Figure 2.4. Solubility of Ca(OH)2 in water at increasin

Figure 2.5. Solubility of Ca(OH)2 

In the simplest of terms, a cold lime procedure involves adjusting  juice pH  to 7.2

1953) using milk of lime, incubating for ~20 min and then rapidly heating to 100
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in water at increasing temperature (Watkins, 1983). 

2 in solutions containing Sucrose (Honig, 1953 citing Seidell, 1940).

In the simplest of terms, a cold lime procedure involves adjusting  juice pH  to 7.2

1953) using milk of lime, incubating for ~20 min and then rapidly heating to 100-102 °C prior to settling. 

 

 

in solutions containing Sucrose (Honig, 1953 citing Seidell, 1940). 

In the simplest of terms, a cold lime procedure involves adjusting  juice pH  to 7.2-8.6 (Payne, 

102 °C prior to settling. 
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Hot liming involves first heating the juice to flash then adding milk of lime to pH 7.6-8.0. This seemingly 

trivial order of operations can have profound consequences, both good and bad, and neither method is 

without disadvantages. The superiority of either method is the subject of considerable debate.  On one-

hand, cold and intermediate liming procedures are known to provide better clarification while yielding a 

product of lower color. On the other, the hot-lime regime requires less lime. This has the two-fold 

benefit encompassing both lower chemical costs and less build-up of scale on heat transfer surfaces 

(which improves the overall factory energy balance). 

It was recently noted by Zossi, et al (2009) that ~50% of the color of raw juice can be removed 

by hot-liming at bench-scale. She noted that equivalent results are usually not seen at industrial scale.  

It appears that bench-scale tests are not necessarily reliable indicators of how well a clarification or 

decolorization process will work under “real-world” conditions.  In order to evaluate the nature of cold 

and hot liming regimes, Eggleston (2000a) conducted a series of full-scale mill tests. Because this body of 

work is most definitive for clarification practices in Louisiana, these works shall be analyzed in greater 

detail. This author believes that it characterizes the current state-of-the-art.  

Eggleston (2000a) ran four replicates, which spanned the crushing season, of juices (mixed (MJ), 

clarified (CJ), etc.) produced at two mills. One of these mills practiced cold-liming and the other hot-

liming. Observations from this work suggest that the juice at the cold liming mill had a higher initial 

purity. The difference in sucrose measured via polarimetry (pol) was, on average, marginal. The hot-

liming mill simply was removing more non-sugar than the cold-lime mill, but there was more to remove.  

It is important to note that while the purity difference (CJ purity – MJ purity) observed in the hot-liming 

mill was greater than that seen for the cold-lime process, it closely parallels the starting purity difference 

(cold MJ – hot MJ). 

The control of the brix appears spurious in a hot-lime process. The hot lime brix varied by a 

factor of approximately 6.7 while the mixed juice brix differed by only 1.0.  
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Thus, the difference seen in the clarified juice as a consequence of process was most likely significant. It 

was also noted that the brix was measured using refractive index at the cold-liming mill and by spindle 

at the hot liming mill. The use of the spindle (hydrometer) may have been a source of the bias observed 

in the hot-lime data. Because the brix is used to calculate the purity, this inconsistency can be expected 

to propagate though the rest of the data. Either way, the differences in purity, judged vs. a differential in 

polarimetric sucrose (and uncertain brix) was not definitive, and appears to be, when normalized with 

respect to starting purity, inconclusive. Neither method appears to be clearly superior.  

The differences observed between the CJ and MJ pol (if brix were equal) indicate that the cold 

lime-process demonstrated a 0.38 g/100g increase in pol while the hot-limed CJ increased by 0.28; these 

were not significantly different 

The pH was measured for both processes. In particular, the cold sample was limed to pH 7.2 at 

room temperature (rt) whilst the hot sample was limed to pH 6.8 at operating temperature.  

Because the pH decreases as temperature increases due to effects intrinsic to the pH probe, it can be 

expected that the limed pH at rt. would be even higher than the cold limed sample. Using the Vukov-

Schaffler approximation (Rein 2007, Madsen 2007; see Appendix B) the calculated pH at operating 

temperature (assumed to be 100°C) for the cold lime sample was ~6.15 and that the pH at rt. of the hot 

limed sample was ~7.3. This would indicate that more Ca(OH)2 was added in the hot limed process than 

was used during the cold-lime tests.  

When these effects were noted for the final evaporator syrup (FES) it appears that the hot limed 

juice was over-limed (7.31-7.14), but, the lower brix (13.56 cold, 13.03 hot) made it invert more rapidly. 

Manipulation of this data with the Vukov-Schaffler approximation indicates that for either method, the 

sucrose inverted over time was almost exactly equal, that is, ~0.25 g/100g of sucrose was inverted 

either way. It was noted, however that the majority of sucrose losses during cold-lime clarification 

occurred in the incubation tank (at ambient temperature) and likely resulted from microbial action. 
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With regard to color, in all cases, the cold-liming procedure produced CJ and FES that exhibited 

~20 % less (relative to the incoming MJ color) color than that made by hot-liming. The increase in color 

from MJ to FES was significantly higher in syrup produced by hot-liming. It is of interest that the mill 

using the cold-liming process was using a Stockhausen (Evonik Industries ) flocculant (presumably 

Praestol 2640 SL) at 3 ppm on CJ and that the hot-liming mill was using TalosepA3 (Tate and Lyle, 

Kampen, 2000) at 0.013lb/ton cane. Assuming 86 % juice on cane, this correlates to 3 mg/kg of the 

Stockhausen flocculant used in the cold lime process vs. 5-8 (7.55) mg/kg of the TalosepA3 that was 

used in the hot lime process. The effect this difference might have on the color of the resulting clarified 

juices is unknown, but 5 mg/kg is the regulatory limit for the use of anionic polyacrylamide (21CFR173.5) 

in cane processing. Polyelectrolyte flocculants will be discussed in greater detail in a later section. 

Eggleston (2000b) investigated the properties of cold and hot liming by assessing residual Ca2+, 

conductivity ash, turbidity and mud settling characteristics. Because of the insolubility of lime at higher 

temperatures, it would be expected that less residual Ca2+ would be present in juice that was limed hot 

(Farnell, 1924) which explains the lower residual Ca2+ detected after hot liming . It appears that  the 

overall Ca2+ in the CJ product is not significantly higher than that found in the MJ feed, regardless of 

whether it was limed hot or cold. 

 The difference appears to be in the intermediate stage, which is referred to as “hot limed juice” 

or HLJ. Here, there are significant differences. The Ca2+ levels were higher in the cold limed material. It 

was assumed that the Ca2+ which disappeared between this intermediate point and the CJ product 

precipitated during the process, likely onto heat transfer surfaces in either the juice heaters, 

evaporators, or both.  

“Ash” (non-volatile inorganic material) is frequently defined using a truncated method which 

correlates ash content with conductivity. This is called “conductivity ash” and an empirical calculation is 

used to convert the conductivity to the representative value describing ash content.  
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Regardless of efficacy or accuracy of definition, this measure is frequently used in the sugar industry and 

there is an ICUMSA certified method for its use; this method was used in the work described below. 

It appears that the hot-liming process removes ~1 % more turbidity than the cold-lime process. 

There appears to be no advantage to using either process.  

The turbidity appears to decrease as conductivity increases in mixed juice whilst there appears to be no 

significant correlation with clarified juice .This type of behavior would beexpected  if the mineral 

material was dissolving rather than precipitating. 

In summary, it appears that the superiority of one liming procedure over the other depends 

upon the desired outcome and can be summarized thus: 

1. Hot liming is superior if the desire is to make the largest quantity of a raw-grade product. 

The smaller quantity of lime needed will minimize operational costs including lime, 

evaporator and juice heater cleaning chemicals (EDTA, sulfamic acid, HCl, NaOH, etc.) and 

down-time. The CJ is of equal purity, but suffers in terms of control of brix. The product has 

greater color and turbidity than that observed with a cold-liming process. 

 

2. Cold liming is superior if the desire is to make a higher grade sugar at the expense of yield, 

extra lime, chemicals for cleaning and the down-time attendant thereto. This appears to be 

feasible if there is a premium offered for a finer grade of sugar. 

 

2.3.4.2. Hydrolyzing Metal Salts 

 In addition to lime, hydrolyzing metal salts are frequently used coagulants. This type of 

coagulant is not used in the sugar industry. They are most commonly used for waste water treatment, 

and are frequently salts of either aluminum or iron. 

 The format of a hydrolyzing metal salt involves the sequential formation of the hydroxyl 

complex of the metal. This involves ionizing water to add a hydroxyl which results in a proton entering 

the bulk solution. The rate for each step is variable and depends upon both the metal and salt-form (of 

both the coagulant and the colloidal particles; Matijevic, et al, 1964). The set of reactions (Gregory and 

Duan, 2001) for a trivalent metal is given here. 
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The rate at which each species formed, relative to pH for Al3+ is different from that observed for 

Fe3+. The differences in coagulating properties are related to this difference, and will be discussed in the 

following two sections. 

2.3.4.2.1. Aluminum Salts 

 Although not applied, aluminum salts, both neat and partially (aluminum chlorohydrate) or 

completely pre-hydrolyzed (poly-aluminum chloride, PAC) have been studied extensively for use in the 

sugar industry. It was demonstrated by Oliveira (2006) that a direct white sugar could be made using 

PAC (400-800 µg/mL) in conjunction with sulfitation.  At roughly the same time, Godshall, et al. (2006) 

tested the efficacy of the pre-hydrolyzed aluminum salt.  They noted that a blend of aluminum polymers 

(PAC?) and between 25-50 % poly-quaternaryamine (cationic polyacrylamide) flocculant achieved the 

best results. Specifically, it was stated that “better color reduction was obtained with the PAC containing 

polyamine, and…the color removal was proportional to the amount of polyamine.” 

 Godshall noted that the flocs settled more slowly, relative to lime, when PAC was used. A lime 

floc settled to 36 % of the original volume in ~5 min while, over the same time, the mud pack was only 

50-60% when PAC was used (either with lime or soda ash). The removal of color ranged from 51-61 % at 

bench scale, but was unpredictable when scaled removed ~16 %. 

 It is known that beet juice, treated with PAC no longer foams when agitated.  

The stabilization of foam in beet processing is attributed to the juice containing a high concentration of 

protein (1.56 %) which tended to emulsify the pectin (foaming, Funami, et al, 2007).  
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This indicates that, on removal of 50-57 % of the polysaccharides, the protein which acts as a mediator 

between the emulsified domains and the pectin (which facilitates the stability of the emulsion in 

aqueous media) was also likely removed.  

 The aqueous solubility of aluminum hydroxide is very small. Since this is the predominant 

species (figure 2.6) at alkaline pH, the residual aluminum was noted, by Godshall, to be lower in the 

treated products than in the raw juice (by a factor of ~ 16 (2 vs. 32 ppm).  

This is positive, as aluminum has been implicated (but not proven unequivocally) with the etiology of 

several disease states including bone fragility (Mjoberg, et al, 1997), possibly caused by renal damage 

(Deitl, et al, 1997) and may modulate the formation of neurofibrillary tangles (via binding to Tau protein) 

which are related to Alzheimer’s dementia (Shin, et al, 1994). This was debated by Mizoroki, et al. (2007) 

who argued that aluminum induces the formation of Tau aggregates in-vitro, but not in-vivo.  

 

Figure 2.6.  Mole fractions of the various hydrolyzed species derived from Al3+ at pH 2-10. 

 From figure 2.6, it was noted that the predominant species present at juice pH (~5.8) were 

Al(OH)2+ and Al(OH)2
+ at ~35% each, Al3+ and Al(OH)4

- at ~0.1% each and Al(OH)3 at 0.05%. At liming pH 

(~7.2) 99% of the Al was Al(OH)4
-. In neither case was Al greatly solvated. This pointed us toward a 

charge neutralization mechanism centered about Al gel coagula rather than covalent effects. 
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2.3.4.2.2. Iron Salts 

Used quite extensively for the treatment, particularly as coagulants, of industrial and municipal 

waste water (Metcalf and Eddy, 1979; Kemmer, 1988), ferric chloride and sulfate are common and 

inexpensive chemicals recoverable as waste from other industrial uses (Patterson, 1985),  such as iron 

pickle liquor. Iron is present in sugar cane, and some 30-40% (Seip, 1947) of it is extracted into the juice 

during milling. Additional iron enters the juice as soluble salts (Subbarao, 1935) via the action of acidity 

upon mild steel piping and equipment; the total amount of iron in juice is normally ~10-20 µg Fe/L (Seip, 

1947; van der Poel, 1998; Riffer, 1986; Prasad, 1989). 

 This iron is implicated in the formation of color in cane juice, presumably by formation of both 

colored complexes and oxidation products (quinones and polymer) with intrinsic phenolic compounds. 

Zerban (1921) noted that iron applied at 20 µg/mL of juice demonstrated no coagulating effect, but did 

lead to a marked increase in color. At higher concentrations, this is the mechanism was exploited by 

Madsen (Madsen, 1984) to cause coagulation of phenolic colorants.  The hydrolysis of Fe3+ at varying 

pH’s is given in figure 2.7. 

 

Figure 2.7.  Mole fractions of the various hydrolyzed species derived from Fe3+ at pH 2-10. 
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When applied to juice (pH ~5.8), the primary species would be a 60:40 % mix of Fe(OH)2 and 

Fe(OH)3. The FeCl3 should rapidly hydrolyze and drop the pH to the 3-4 range where we should observe 

a 55:40:10 % mixture of Fe(OH)2+, Fe(OH)2 and Fe3+. If this mixture was limed to pH 7.2, the ~94% of the 

Fe would be Fe(OH)3. From this, a FeCl3 added to juice will yield soluble and redox active Fe3+/Fe2+. 

Liming will yield insoluble colloidal Fe(OH)3 which should act in a manner similar to Al(OH)3 coagula. 

2.3.5. Flocculants/Polyelectrolytes 

The earliest reference that was found where a polyelectrolyte was used in clarification of sugar 

juice (in this case for beets, Beta vulgaris) was the “Colonies Process” which was in use ca. 1811 in the 

West Indies. Milk or blood (McGinnis, 1982) was added to enhance clarification. Both blood and milk are 

colloidal suspensions of large, lyophobic macromolecules, specifically proteins. 

Polyelectrolytes are applied to enhance both the speed and extent of flocculation of the calcium 

phosphate-derived coagula. These polymers are by definition charged and are sold commercially in both 

cationic and anionic forms.  

 While most are derivatives of polyacrylamide (poly(2-propenamide) in varying states of 

hydrolysis), other polymers have been used for this purpose, including chitosan (poly-β-glucosamine) 

which is also water soluble in acidic solutions where it is protonated.  

Below is given a representative structure (figure 2.8) of an anionic polyelectrolyte with the 

equation used to express the degree of hydrolysis, and hence, relative charge density of the polymer. 

The molecular weight of the commercial anionic polyacrylamides are within the 107 g/mol (Rein, 2007), 

and an inexpensive Chinese product cites assay values of 13-15.5E6 g/mol (Dongying Guangzheng, 

2008). This material was also cited to contain 88-90.6 (g/100g) of active product and had a degree of 

hydrolysis of 20-30 %. At least three popular brands, Magnafloc LT340 (Ciba), Praestol 2640SL 

(Stockhausen) and TaloSep (Tate& Lyle) A3 or A5 are commonly used as process flocculants in the sugar 

industry. These hydrolyzed polymers are statistical copolymers of acrylamide and acrylic acid.  
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Preastol 2640SL is sold with a cited molecular weight of >20E6 g/mol whilst TaloSep flocculants are 

smaller, and usually have a molecular weight between 1 and 5E6 g/mol. 

Polymers of this type can also be made by co-polymerization of acrylamide and acrylic acid (or 

acrylate). The degree of substitution is calculated the same way.  

The distribution of functionality in the copolymerized product, unlike the hydrolyzed material, is not 

solely dependent upon the length and extent of hydrolysis of  the parent chain. It is dependent upon the 

reactivity ratios (r) of the monomers (M). 

               

                                 Eqn. 2.2 

 

 

Where:   
  DH = degree of hydrolysis, % 

  y =number of hydrolyzed, carboxyl-substituted units 

  x= number of intact amide substituted units 

 

Figure 2.8. Representative structure of an anionic polyacrylamide flocculant. 

 

 The reactivity ratios for the copolymerization of two monomers are derived by observation of 

how often each monomer adds itself to a growing chain. This is measured in terms of the rate constants 

(k) that are observed for M1 adding either M1 or M2. The ratio of kM1+M1 divided kM1+M2 is known as the 

reactivity ratio for M1 with respect to M2. r2 is calculated in the same way. Frequently, r1≠r2. This 

information can be used to classify the copolymer as ideal (perfectly random, r1=r2 =1), alternating 

(r1=r2=0) or block (r1>1, r2>1). Reactivity ratios can also be used to determine the molar composition that 

can be expected for a given copolymerization. 

 The quantity of each monomer incorporated into the copolymer of acrylamide and acrylic acid 

as described by the coplymerization equation which is given below (Odian, 1981).  
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Eqn. 2.3 

 
Where:   d[M1]/d[M2]  =  molar ratio of the monomers where M1 and M2 are the moles of   

                 monomers 1 and 2. 

           r1, r2         =   reactivity ratios for monomers 1 and 2. 

 With polar monomers, the reactivity ratios can sometimes be controlled by variation of pH 

(Paril, et al., 2006). It was found that at pH 5 and 2, the predominant monomer was either acrylamide or 

acrylic acid, respectively.  

This feature makes copolymerization of acrylamide and acrylic acid a tunable process providing  control 

over the final properties of the resulting polymer. For example, it is possible to make a copolymer with a 

relatively low molecular weight and a high charge density. While ideal (no monomer is favored which 

yields a random copolymer) at pH 3-5, a copolymerization of acrylamide and acrylic acid carried out at 

pH 7.5 should give a nearly alternating (r1r2=0.01), substitution pattern (Paril, et al., 2006). This property 

makes it possible to calculate the active sites for a given mass of polymer which can be tailored not only 

to solubility (which is greatly enhanced at lower molecular weights) but also to provide the needed 

charge density with a quantity of polymer that is within the regulatory limits dictated in 21CFR173.5 (5 

µg/mL). 

 These polymers can be made to contain from 0-100 % acrylate substitution, but the common 

Talo products are designed to bear between 5 and 50 %, or, approximately one acrylate group per 20 

monomeric units to a statistically alternate polymer (Tate & Lyle, 1975). The large amounts of K+, Cl- and 

Ca2+in juice can cause the extended conformation of the polyamine to collapse which decreases the 

solution viscosity as the polymer is rendered insoluble. Cross-linking is specifically avoided because this 

limits the water solubility of the polymer. 

Anionic polyacrylamide flocculants are available at modest cost and are approved for use in food 

products in amounts not to exceed 5 mg/kg (anionic) or 100 mg/kg (cationic).  
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The common process involves the introduction of <5 mg/kg (total polymer) of prepared solution (the 

process of solution is slow, frequently greater than 2 hr) into the juice after it has reached flashing 

temperature (directly before settling). The polymer is frequently added directly into the flash tank. 

While used in sucrose refinery operations (syrup flotation), cationic flocculants are not, at present, used 

in the production of raw-grade sugars. 

Cationic flocculants are more complex. These are usually based on polyacrylamide, but they can 

also be natural or biomimetic in origin.  

For example, chitosan (poly-β-glucosamine) will serve as a cationic polyelectrolyte when solvated under 

acidic conditions (Pinotti, et al, 2001; Izvozchikova, et al, 2002). In this case, the amino group is 

protonated, and is thus carries a quaternary ammonium moiety per monomeric unit. Represented in 

figure 2.9, the quaternary ammonium group (+NR3H) is the mainstay of cationic polyacrylamide 

functionality. Reproduced in one form or another, either in imine or amine form, pyridinium or pyrolium 

cationic form, the protonated nitrogen is the key.  

 

Figure 2.9. Representative structure of a cationic flocculant polymer (MAP-TAC, Shubin and Linse, 1995) 

These polymers are usually provided in dry salt form and the counter –ion has been 

demonstrated to have a profound effect on the amount and type of anionic contaminants that can be 

removed from suspension. (Liu, et al. 1999). 

2.4. The Nature of  “Color” in Sugar Processing 

The ICUMSA (International Commission for Uniform Methods of Sugar Analysis) color unit (IU) is 

used for quality control at the raw sugar production level.  
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The higher this is, the greater the color and, hence, the lower the quality of the sugar so produced. 

ICUMSA color is defined as the measure of absorbance of light at 420 nm (ICUMSA, 2007) of some 

material when adjusted to pH 7.0±0.1. Considered arbitrary by many (Singhe, 2006), IU is the standard 

unit of measure in the raw-sugar factory.  

 Color follows Beer’s law and is calculated as follows. The density of the sucrose solution 

measured can be referenced from a table or approximated via calculation. An equation for calculating 

the density of technical sucrose solutions given in Appendix B. Density is then used to calculate the 

concentration of the material:            

                         Eqn. 2.4             

� �
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Where: 
    RDS   =   refractive dry solids or °brix 

   ρ        =   density, kg/m3 

   c        =   concentration, g/mL 

 

IUs are then calculated using Beer’s Law:                   Eqn. 2.5 
 

��.� �  
1000 · ��

��
 

 
Where:    

   As       =   absorbance at 420 nm 

   b        =    cell path length, usually 1 cm 

   c         =   concentration, g/mL 

   IU7.0    =   ICUMSA color measured at pH 7.0±0.1   

  

Sugar refineries are aware of the dependence of color on pH; color increases with pH. The 

refineries examine the sugar that they buy at 420 nm, but at pH 8.5. This difference in methodology 

creates confusion between the raw manufacturer and the refiner. That is, the raw producers do not 

necessarily know what they are selling, color-wise. It is possible for two 2000 IU raws, to give 2400 and 

4800 “IU” respectively, when they are measured at pH 8.5. The type of colorant present, as well as the 

quality, has a bearing upon the ultimate color of the sugar. 
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2.4.1. Chromophoric Groups in Sugar Processing 

Either produced during processing of cane to make sugar, or entering the process with the sugar 

cane, the colored compounds related to cane processing are poorly characterized.  

Loosely, the colored materials which evolve as a consequence of processing are segregated into three 

main groups. These groups are referred to as hexose alkaline degradation products (HADP), melanoidins 

(Maillard reaction products or MRPs) and caramels. All of these colorant classes are formed in the 

presence of reducing sugars. 

The bulk of the carbohydrate in sugar cane juice is sucrose, which is non-reducing, and hence, 

unreactive. Sucrose must first hydrolyze or “invert” prior to color formation. Because sugar cane is not 

processed under alkaline conditions (unlike beet processing) and the pH during liming should never 

exceed pH 7.2, HADP will not be discussed in detail. The processes involved with the synthesis of 

caramel and melanoidin colorant-classes will be briefly discussed in following sections. 

Intrinsic to the sugar cane, chlorophylls, xanthophylls, polyphenolics and flavonoids enter the 

mill with the cane. These compounds are known to form transition metal complexes, particularly with 

iron, which are highly colored (Zerban, 1921). Seen in table 2.6, the phenolics are not sufficiently ionized 

to be removed via clarification with lime. Compounds representing the other colorant classes are 

sufficiently ionized, but are not present in raw cane juice. The following table (Chou, 2000) gives the 

percentage ionization for the major colorant classes. 

Table 2.6. Ionization of the main colorant classes at clarification pH (6.8-7.2), Chou, 2000. 

Colorant Class: Ionized, %: 

Caramels 99.7 

Melanoidins 66.7 

Hexose Alkaline Degradation Products (HADP) 99.2 

Polyphenolics (Flavonoids, cinnamyl derivatives) 0.6 

 

From table 2.6, it appears that melanoidins and polyphenolics are likely to pass though the 

clarification process.  
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Because caramels and melanoidins are made in-process where temperature and brix are both high, the 

formation of these classes of colorant must be inhibited. The phenolics entering the process, however, 

represent the class of compounds that are neither removed nor neutralized.  

It is clear that pH’s significantly higher than that encountered during lime clarification would be required 

in order to ionize the phenolic compounds. 

2.4.1.1. Caramels 

“Caramels” are colored molecules that result when reducing carbohydrates are heated to the 

point of decomposition. Caramel, represents the “simplest” case and it is best described as a series of 

events beginning with the establishment, at pH>7.0 (Wolfrom, 1951), of an equilibrium (Clarke, 1997), 

between glucose, fructose, and mannose.  From here, fructose is dehydrated to yield 5-hydroxymethyl-

2-furaldehyde (HMF, Wolfrom, 1951; Shaw, et al., 1967; Wunderlin, et al., 1998). Antal also used D2O to 

confirm that the dehydration did not involve the open chain form of the carbohydrate. The intermediate 

A (4-hydroxy-5-(hydroxymethyl)-4,5-dihydrofuran-2-carbaldehyde), in figure 2.10, was confirmed by 

Amarasekara, et al (2008) via 1H and 13C NMR using DMSO-d6 as a solvent and catalyst.  

 

Figure 2.10. Dehydration of fructose to yield HMF and subsequent hydrolysis. 

  The HMF can be cleaved, in-situ, to yield one molecule each of levulinic and formic acid (Antal, 

1990).  
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The mechanism for this reaction is poorly characterized, but empirical models involving acid catalyzed 

hydrolysis have been made (Chun, et. al. 2006). Accumulation of these organic acids lowers the pH. 

Because both the synthesis of HMF and its hydrolysis are catalyzed by acid, the reaction sequence is self-

catalyzed and cumulative (Kuster, 1977).  

  With increasing acidity and decreasing water activity, viz. evaporation, a heterogeneous polymer 

forms which consists of up to 15-28% of difructose dianhydrides (Defaye, et al., 1995).  

During this process, the polymerization of some of the HMF also occurs. HMF cannot self-

condense (Pine, 1987), but, it can condense with other carbonyl compounds present in the system.  

It has been demonstrated that reducing sugars can yield reactive α-dicarbonyl intermediates including 

glyoxal, methyl glyoxal, and dihydroxyacetone (Antal, 1990) via enolization andreverse-aldol scission 

(Clarke, et al., 1997; Antal, 1990).Fragmentation facilitated by free radical intermediates has been 

observed using electron-spin resonance (ESR, Namiki, et al., 1983). Reverse aldol scission is exemplified 

for D-glucose via the alkali-catalyzed mechanism in figure 2.11. The acid catalyzed route would first 

involve protonation  

of the carbonyl. 

 

Figure 2.11. Reverse-aldol scission o f D-glucose. 



 

 

 These reactive carbonyl compounds can condense with the HMF yielding first fluorescent 

precursors, then a yellow/brown (depending on extent of reaction) material of relatively high molecular 

weight known as “caramel”. The scent a

pyranones or maltol analogues formed via cyclization and dehydration of fructose which is similar to 

that for HMF, but begins with the pyranose

mechanisms involving the formation of HMF from fructose.

 Although not documented as such, the chemistry indicates that HMF will likely oxidize when 

heated in the presence of air to yield 5

yield the corresponding polyester (Lichtenthaler, 2002). A reaction scheme for this is given in 

2.12.

Figure 2.12. Oxidation of HMF and condensation of HMFA to poly

2.4.1.2.  Melanoidins 

“Melanoidins” are colored molecules that are produced when a reducing sugar is heated in the 

presence of amino compounds, specifically amino acids. In addition to caramelization, if amino acids, 

amines, or NH3 are present, a cascade of reactions known collectively as t

occur with reducing sugar to yield dark brown insoluble polymer, frequently in excess of 20 kDa 

(Godshall, et al., 1987; Lindeman, 2001). The “reaction” is general in that reducing sugars will react with 

practically any amine to yield a multitude of products. The amine reacts with the open chain 

carbohydrate to yield an unstable intermediate which dehydrates to yield the corresponding “Schiff 

base” or imine (Hodge, 1953a). Under acidic conditions, the imine is protonated, which th

the isomerization of an aldose to a ketose (Amadori rearrangement, 

rearrangement), to yield in the Amadori case, an amino
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These reactive carbonyl compounds can condense with the HMF yielding first fluorescent 

precursors, then a yellow/brown (depending on extent of reaction) material of relatively high molecular 

weight known as “caramel”. The scent and flavor profile of the mixture is mainly composed of 

pyranones or maltol analogues formed via cyclization and dehydration of fructose which is similar to 

that for HMF, but begins with the pyranose-form; Antal et al. (1990) present an excellent review of 

mechanisms involving the formation of HMF from fructose. 

Although not documented as such, the chemistry indicates that HMF will likely oxidize when 

heated in the presence of air to yield 5-hydroxymethyl-2-furoic acid (HMFA), which can self

yield the corresponding polyester (Lichtenthaler, 2002). A reaction scheme for this is given in 

Oxidation of HMF and condensation of HMFA to poly-(5-hydroxymethyl-2-

are colored molecules that are produced when a reducing sugar is heated in the 

presence of amino compounds, specifically amino acids. In addition to caramelization, if amino acids, 

are present, a cascade of reactions known collectively as the “Maillard reaction” can 

occur with reducing sugar to yield dark brown insoluble polymer, frequently in excess of 20 kDa 

(Godshall, et al., 1987; Lindeman, 2001). The “reaction” is general in that reducing sugars will react with 

yield a multitude of products. The amine reacts with the open chain 

carbohydrate to yield an unstable intermediate which dehydrates to yield the corresponding “Schiff 

Under acidic conditions, the imine is protonated, which th

the isomerization of an aldose to a ketose (Amadori rearrangement, Figure 2.13) or vice versa (Heyns 

rearrangement), to yield in the Amadori case, an amino-deoxyketose.   

These reactive carbonyl compounds can condense with the HMF yielding first fluorescent 

precursors, then a yellow/brown (depending on extent of reaction) material of relatively high molecular 

nd flavor profile of the mixture is mainly composed of 

pyranones or maltol analogues formed via cyclization and dehydration of fructose which is similar to 

present an excellent review of the 

Although not documented as such, the chemistry indicates that HMF will likely oxidize when 

furoic acid (HMFA), which can self-condense to 

yield the corresponding polyester (Lichtenthaler, 2002). A reaction scheme for this is given in figure 

 

-furoic acid).  

are colored molecules that are produced when a reducing sugar is heated in the 

presence of amino compounds, specifically amino acids. In addition to caramelization, if amino acids, 

he “Maillard reaction” can 

occur with reducing sugar to yield dark brown insoluble polymer, frequently in excess of 20 kDa 

(Godshall, et al., 1987; Lindeman, 2001). The “reaction” is general in that reducing sugars will react with 

yield a multitude of products. The amine reacts with the open chain 

carbohydrate to yield an unstable intermediate which dehydrates to yield the corresponding “Schiff 

Under acidic conditions, the imine is protonated, which then promotes 

or vice versa (Heyns 
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 From here, deamination can occur via elimination (hydrolysis) of the protonated amine to yield 

a “deoxyosone” or dicarbonyl compound. The amine can then go on to further catalyze this series of 

reactions. Noted by Hodge (1953b), the amine is eventually integrated into the colored material, but not 

until the later stages, and thus is called a “pseudo-catalyst”. The amine pseudo catalyst is regenerated 

when it is hydrolyzed from the aminoketose (figure 2.13 center, bottom). 

 

Figure 2.13. Amadori rearrangement of D-glucose to D-fructose via Schiff base, II. 

These dicarbonyl compounds are the keystone of color formation via Maillard reaction.  

They are universally reactive and can lead to the evolution of aldehydes from amino acids via Strecker 

degradation. The Strecker degradation of phenylalanine assisted by D-glucose and subsequent 

condensation of the amino-ketone intermediate to yield a pyrazine is given in figure 2.14. 



 

 

These aldehydes can condense with HMF, each other, deoxyosones, proteins, and many other 

compounds, leading to a wide distribution of products. 

Figure 2.14. Strecker degradation of phenylalanine with D

The Strecker degradation is the mechanism by which the amine is finally sequestered. Here, the 

amino acid decarboxylates and deaminates (Ho, 1994)

or an amino ketone (Hoffmann, et al., 2000) and CO

pyrazines (Shibamoto, 1977; Koehler, et al., 1969)

responsible for a large fraction of the flavor and odor prof

Baltes, 1987). The ammonia can react as cited previously, or can be removed by distillation. 

The formation of the dicarbonyl “deoxyosone” intermediate compound is reversible, but 

decarboxylation is permanent. This is key in the formation of the bonds that can lead to the formation of 

larger, colored structures. If some agent were introduced to interfere with this intermediate, a 

significant amount of color formation could likely be inhibited. 

 It was first noted by Hodge (1953b) that browning reactions were retarded in the presence of 

bisulfite, and that large amounts of completely inhibited the reaction.

2.4.1.3. Polyphenols 

 “Polyphenol” is the term used to describe hydroxyphenolic and flavonoid natural product
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These aldehydes can condense with HMF, each other, deoxyosones, proteins, and many other 

compounds, leading to a wide distribution of products.  

Strecker degradation of phenylalanine with D-glucose. 

The Strecker degradation is the mechanism by which the amine is finally sequestered. Here, the 

amino acid decarboxylates and deaminates (Ho, 1994) yielding the aldehyde described above, either NH

amino ketone (Hoffmann, et al., 2000) and CO2. These amino ketones then can condense into 

pyrazines (Shibamoto, 1977; Koehler, et al., 1969) and many other heterocyclic ring structures which are 

responsible for a large fraction of the flavor and odor profile of cooked foods (Hoffman, et al., 2000; 

Baltes, 1987). The ammonia can react as cited previously, or can be removed by distillation. 

The formation of the dicarbonyl “deoxyosone” intermediate compound is reversible, but 

is is key in the formation of the bonds that can lead to the formation of 

larger, colored structures. If some agent were introduced to interfere with this intermediate, a 

significant amount of color formation could likely be inhibited.  

by Hodge (1953b) that browning reactions were retarded in the presence of 

bisulfite, and that large amounts of completely inhibited the reaction. 

“Polyphenol” is the term used to describe hydroxyphenolic and flavonoid natural product

These aldehydes can condense with HMF, each other, deoxyosones, proteins, and many other 

 

The Strecker degradation is the mechanism by which the amine is finally sequestered. Here, the 

yielding the aldehyde described above, either NH3 

. These amino ketones then can condense into 

and many other heterocyclic ring structures which are 

ile of cooked foods (Hoffman, et al., 2000; 

Baltes, 1987). The ammonia can react as cited previously, or can be removed by distillation.  

The formation of the dicarbonyl “deoxyosone” intermediate compound is reversible, but 

is is key in the formation of the bonds that can lead to the formation of 

larger, colored structures. If some agent were introduced to interfere with this intermediate, a 

by Hodge (1953b) that browning reactions were retarded in the presence of 

“Polyphenol” is the term used to describe hydroxyphenolic and flavonoid natural products.  
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More commonly, the term is used to describe a family of compounds with antioxidant potential, within 

which, the hydroxyphenols and flavonoids belong. Phenolic compounds serve two main purposes in 

plants. Lignin is the adhesive that holds the cellulose bundles together in plants. It is a heterogeneous 

cross-linked polymer composed of various phenolic compounds, primarily 4-hydroxy, 4-hydroxy-3-

methoxy and 4-hydroxy-3,5-dimethoxy derivatives of cinnamic acid. It is made by the plant from the 

amino acid phenylalanine by the enzymes phenylalanine ammonia lyase (PAL) and coumaryl 

methyltransferase (COMT).  

 Breakage of stalks in wind, cracking from freeze, herbivory or boring from cane-borer moths (or 

other insects) will cause sugarcane to produce polyphenoloxidase enzymes which lead to the formation 

of o-hydroxyphenyl species and their quinone forms. These polyphenolic compounds, called 

phytoalexins (in the context of defensive weaponry), are frequently toxic to insects (and many bacteria, 

including symbiotic gut flora) and can decrease the digestability of protein in the herbivore gut (Falco, et 

al, 2001).  

A wide variety of such compounds have been isolated from cane including 4 and 3,4-dihydroxy 

derivatives of benzoic and cinnamic acids. Chief among these are caffeic (3,4-dihydroxycinnamic acid) 

and chlorogenic (5-(3,4-dihydroxycinnamoyl) quinic acid) acids. A comprehensive list of phenolic species 

found in cane and sugar is compiled in table 2.7. 

 Polyphenyloxidase or o-diphenol:O2 oxidoreductase (PPO, Coombs and Baldry, 1978) is released 

when cane tissue is exposed to air. It causes the native phenolics (sp. chlorogenic acid) to polymerize 

and yield colored materials. It was noted by Vickers, et al. (2005) that overexpression of this enzyme in 

sugarcane results in both darker juice and raw sugar.  

They noted that there were linear correlations of juice color (IU) to PPO (U/mL, R2 =0.8831) of and of 

juice color to sugar (crystal) color (R2 = 0.8793). Further, in all cases, 90.51±1.90 % of the color did not 

end up in the sugar. This means that ~9.5 % remained.  



 

 

It was indicated that engineering a cane with lower PPO activity would lead to product sugar with lower 

color. This also suggests that removal of the phenolic materials entering with the cane will result in the 

production of a sugar with less color.

 The activity of the PPO isolated from cane was specific for the oxidation of 

(specifically chlorogenic acid, Coombs

the oxidation of chlorogenic acid. Of the compounds tested, Purpurogallin was the poorest inhibitor (14 

%) and DOPA was the most efficient, inhibiting the reaction by 87 %

tyrosinase-type PPO (which adds a hydroxyl adjacent to the existing phenol) whic

with the o-diphenoloxidoreductase

this, the flavonoids bearing the o-dihydroxy moiety 

potential to form pigments. In table 

primarily by either the caffeoyl or luteolinoyl groups.

the three structures given in figure 2.15

  

Figure  2.15. The structures, from left

 

 Most of the literature on phenolic compounds 

There is little detailed work in the area of non

precursors. The o-phenolic compounds can react with amines, specifically those present in protein.

The formation of complexes of 

dihydroxybenzoic acid, 3,4-DHBA) and caffeic acids was noted by Bartolome, et al. (2000).
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It was indicated that engineering a cane with lower PPO activity would lead to product sugar with lower 

is also suggests that removal of the phenolic materials entering with the cane will result in the 

production of a sugar with less color. 

The activity of the PPO isolated from cane was specific for the oxidation of o-dihydroxyphenols 

nic acid, Coombs et al, 1974). Caffeic acid exhibited a level inhibition of 43% upon 

the oxidation of chlorogenic acid. Of the compounds tested, Purpurogallin was the poorest inhibitor (14 

%) and DOPA was the most efficient, inhibiting the reaction by 87 %. Cane was found to not contain 

type PPO (which adds a hydroxyl adjacent to the existing phenol) which operates in tandem 

diphenoloxidoreductase-type to create larger, more highly conjugated products

dihydroxy moiety become the most important when considering the 

. In table 2.7, these compounds are marked in bold italics and are marked 

luteolinoyl groups. Note the o-hydroxyphenyl moieties common to 

figure 2.15. 

. The structures, from left-to-right, of caffeic acid, chlorogenic acid and luteolin. 

phenolic compounds deal with the enzymatic color forming process. 

here is little detailed work in the area of non-enzymatic formation of colored materials from phenolic 

phenolic compounds can react with amines, specifically those present in protein.

The formation of complexes of between bovine serum albumin (BSA) and protocatechuic (3,4

DHBA) and caffeic acids was noted by Bartolome, et al. (2000).

It was indicated that engineering a cane with lower PPO activity would lead to product sugar with lower 

is also suggests that removal of the phenolic materials entering with the cane will result in the 

dihydroxyphenols 

affeic acid exhibited a level inhibition of 43% upon 

the oxidation of chlorogenic acid. Of the compounds tested, Purpurogallin was the poorest inhibitor (14 

. Cane was found to not contain a 

h operates in tandem 

type to create larger, more highly conjugated products). Because of 

the most important when considering the 

7, these compounds are marked in bold italics and are marked 

enyl moieties common to 

right, of caffeic acid, chlorogenic acid and luteolin.  

c color forming process. 

c formation of colored materials from phenolic 

phenolic compounds can react with amines, specifically those present in protein. 

protocatechuic (3,4-

DHBA) and caffeic acids was noted by Bartolome, et al. (2000). 
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Table 2.7. Polyphenols isolated from cane or sugar. 

a. Farber and Carpenter, 1971 

b. Paton and Duong, 1992 

 
It was noted, but not covered in any detail, that for 3,4-DHBA and caffeic acid that 24.3 and 33.5 % of 

each were bound to BSA, respectively.  

 It was determined by Cavalieri, et al. (2002) that quinones prepared from o-hydroxyphenolic 

species can be attacked (nucleophilic) by the tertiary amines of purine bases to yield the N-

hydroxyphenyl derivatives. No hypothetical mechanism was given. Modifications such as this could 

modify (mutate) DNA directly and could potentially lead to the evolution of cancer and 

neurodegenerative disease. 

Compound: Type: Origin: Method: 

p-hydroxybenzoic acid Phenolic acid Cane leafa TLCa 

4-hydroxy-3-methoxybenzoic acid  

(vanillic acid) 
Phenolic acid Cane leafa TLCa 

4-hydroxy-3,5-dimethoxybenzoic acid (syringic acid) Phenolic acid Raw sugara TLCa 

3,4-dihydroxycinnamic acid (caffeic acid) Phenolic acid Raw sugara TLCa 

7-hydroxycoumarin (umbelliferone) Chromenone Raw sugara TLCa 

3,5,7-trihydroxy-2- 

(4-hydroxyphenyl)-4H-1- 

benzopyran-4-one (Kaempferol) 

Flavanol Raw sugara TLCa 

4-hydroxy-3,5-dimethoxycinnamic acid (sinapic 

acid) 
Phenolic acid 

Refined 

sugara 
TLCa 

4-hydroxy-3-methoxycinnamic acid  

(ferulic acid) 
Phenolic acid 

Refined 

sugara 
TLCa 

5-(3,4-dihydroxycinnamoyl) quinic acid 

(chlorogenic acid) 
Phenolic acid 

Refined 

sugara,b 
TLCa, RP-HPLC b 

p-hydroxycinnamic acid (p-coumaric acid) 
Phenolic acid 

Refined 

sugara 
TLCa 

Neocarlinoside (luteolin) Flavonoid Juice b HPLC b 

Vicenin 2 (apigenin) Flavonoid Juice b HPLC b 

Tricin 7-glucoside sulfate Flavonoid Leaves b HPLC b 

Iso schaftoside (apigenin) Flavonoid Juice b HPLC b 

Iso orientin (luteolin) Flavonoid Juice b HPLC b 

Schaftoside (apigenin) Flavonoid Juice b HPLC b 

Swertiajaponin (luteolin) Flavonoid Juice b HPLC b 

Iso orientin triglycoside Flavonoid Leaves b HPLC b 

Swertisin (apigenin) Flavonoid Juice b HPLC b 

Tricin 5-glucoside Flavonoid Leaves b HPLC b 

6-methoxy luteolin Flavonoid Juice b HPLC b 
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Charlton, et al (2002) studied the interaction of salivary proteins with catechin in the presence 

of EDTA (which served to sequester cations). They found that complexes with proline-rich proteins 

proceeded in three phases. In the first phase, a reversible binding occurs, presumably via hydrophobic 

interaction. This occurs until sufficient catechin has bound to the peptide such that the probability of 

interaction between coated peptide increases to where interaction is likely to occur. Until this occurs, 

the complexes are soluble. Then, weak intermolecular bridging occurs through proximity of the 

polyphenols on one protein to those on a similar particle This was posited to double the size and lead to 

precipitation. In the third phase, these dimers aggregate into larger structures (flocs). A model 

considering covalent bonding was not suggested.  

2.5. Decolorization  

There are two primary strategies for dealing with color in sugar processing: 

1.  Remove the colorants that enter the mill with the cane. 

2. Inhibit the formation of caramel/melanoidins during processing. 

Inhibition, could lead to a more efficient means of color reduction in product sugars. In principle, 

the idea is to disrupt, out-compete, or otherwise nullify the path of the color forming reactions that can 

take place during processing. In order to undermine color formation, it is necessary first to know the 

limiting steps in the chemistry involved. 

Polyphenolic colorant materials that are not removed in clarification can account for a large 

proportion of the color observed in sugar and are not made (appreciably) in-process.  

Removing them before they can react or carry though the process is a desirable goal. The decolorization 

processes often used for refining raw sugar, are discussed briefly below. 

2.5.1. Decolorization Processes 

 Although hot-liming with settling clarification is the most popular technique in raw sugar 

processing, the quality of the sugar so produced is limited to a VHP (very-high purity; not VLC) raw sugar. 
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Other technologies exist, which are adapted from current refining processes. In reality, many of these 

practices including the use of char (bone derived carbon), carbonatation and sulfatation are borrowed 

from the sugar producers of the 19th century. More recent technologies involve the use of polymeric ion 

exchange resins, activated carbon and ultrafiltration. 

 In order to produce either very-low color raws or white sugar directly, a number of technologies 

have been tried. These methods can be categorized into schemes which include membrane and ceramic 

ultrafiltration, (Kwok, 1996; Saska, 2001; Willet, 1997; Chou and Iqbal, 2006; Rossiter, et al, 2002; Bekker 

and Stolz, 2001) granulated activated carbon (GAC) or char (Godshall, et al, 1992; Rein, et al, 2007), 

chromatography (Kochergin, 2000; Stolz, 2001) and/or ion exchange resins (Rease, 1999) and a variety 

of additives such as ozone (Davis, et al, 1998; Moodley, et al, 1999; Godshall and McKee, 2004; Charlet, 

2002; Davis, 2001), hydrogen peroxide(Mane, et al, 1992; Mane, et al, 1998, Mane, et al, 2000, Davis, et 

al, 2000;Duffaut, 2002; Mendoza, 2002), sulfur dioxide/sulfite (Oliviero, 2006) and N-acetylcysteine 

(Madsen, 2006b). All of the above listed techniques have problems associated with them. 

2.5.1.1. Ultrafiltration 

 Ultrafiltration processes are expensive, provide only a small amount of decolorization, and lead 

to significant recovery costs associated with sucrose in the retentate. Retentate is very dilute, requiring 

increased energy expense to concentrate (Kochergin, 2000). Membranes are also known to foul when 

used in raw sugar operations (Clarke, 2006). 

2.5.1.2. Carbon/Char 

 At present, there are no industrial scale decolorizers operating in raw sugar mills in the United 

States. The base technology is present in the form of carbon and resins used in refined sugar facilities. 

The color load of incoming cane juice rapidly saturates decolorizing carbon necessitating frequent and 

costly regeneration. 



 

 

47 

 

 The overall cost efficiency of a decolorizer is limited most sharply by the necessity of frequent 

regeneration of GAC and/or resins. This rapidly effects the fiscal viability of the process as saturated 

carbon conventionally requires kilning (thermal desorption) for regeneration. This difficulty was 

surmounted by a process (Bento and Rein, 2006) whereby the saturated GAC can be chemically 

regenerated. Although this allows for recovery of the adsorbed materials, viz. an antioxidant blend 

(Saska, 2002b), there is currently no market in place to provide an offset for the financial burden 

associated with the frequent regeneration schedule required when operated with clarified juice as feed. 

Fouling by particulates can be avoided via installation of a guard column or filtration apparatus, at extra 

cost.  

2.5.1.3. Ion Exchange 

 Ion-exchange resins are used extensively in sugar refining for deashing, softening and/or 

decolorization. It has been noted that the larger portion of the colored materials found in sugar cane are 

negatively charged (Deerr,  1916). As such, they can be removed via exchange using a weak anionic 

resin, usually in Cl- form (Broadhurst and Rein, 2002). It has been noticed, however, that a large amount 

of colored material seems to be removed, along with a large amount of “ash” using a cationic resin 

(sulfonated styrene-divinylbenzene) (Kearney, 2003).  With a strong-acid cationic resin, the low pH 

necessitates the use of refrigeration (which is an energy intensive process) in order to avoid inversion of 

sucrose. A strong cation exchange resin is used at high temperature commercially, to hydrolyze sucrose 

yielding a 1:1 glucose:fructose product called “invert sugar”.  

 There is also significant evidence that a large amount of the colored material removed using 

either type of resin may be more an effect of hydrophobic interactions with unsubstituted parts of the 

resin than of ion exchange or electrostatic attraction.  

Extension of this technology to raw sugar production can be problematic.  
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In the refinery, the product stream is consistent in terms of composition, purity, pH and temperature, 

and, the overall colorant load is very small when compared to clarified cane juice. Clarified juice, on the 

other hand, is the opposite in every respect. Not only are the composition, pH and temperature variable, 

but the colorant and ash load is large enough to rapidly saturate the active sites on the GAC/resin 

surfaces. This creates a frequency in regeneration exceeding what is normally seen in a refinery 

operation.  

2.5.1.4. Adjuvants 

 In general, the use of additives to remove (bleaching) or prevent the formation of (inhibition) 

color in processing streams, or on sugar (Saska, 2006) can be expensive. For example, the use of H2O2 as 

a pretreatment method for decolorization involves a continuous dosage (if applied as a 70% solution) of 

approximately 1000µg/g on dry solids (Rein, 2007). A mill crushing 9091 MT cane/d can  produce ~9400 

MT clarified juice/d. 1000µg/mL of peroxide amounts to approximately 1.5 MT on solids (at 15 °brix) or 

~2.2 MT of 70%, per day. The unit cost of this peroxide solution is $1.54/kg ($0.70/lb, Daly, 2007) which 

corresponds to a daily cost of approximately ~$3,300/d or $300,000 per (90d) season.  

2.6. Autooxidation  

Molecular oxygen, O2, exists in its most stable form as a triplet “diradical species”. It is therefore 

capable of existing in highly reactive singlet states as well (Puglia, et al. 1984).  Both molecular and 

singlet oxygen are capable of triggering the formation of various oxidative species including peroxyl 

radical (R-O-O.), superoxide (O2
-) and hydroxyl radicals (HO.). In order to combat this oxidative stress, 

plants and animals have developed protective mechanisms which serve to scavenge these reactive 

oxygen species (ROS).  

2.6.1. Anti-oxidant/pro-oxidant behavior 

In the most fundamental sense, any compound which can lead directly to the formation of 

radical species is called a pro-oxidant.  
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Conversely, any compound which is capable of stabilizing the radicals, thus removing them from the 

reactive theatre is called an anti-oxidant. Somewhat less known however, is that an anti-oxidant 

compound which is effectively “saturated” with stable radicals can theoretically operate as a 

destructible reservoir, and hence source of radical species. The two may also operate in tandem to 

initate catalytic REDOX cycling that can yield reactive oxygen species (ROS).   

2.6.2. Oxidation of o-Hydroxyphenyl Derivatives 

Ortho and para substituted dihdroxybenzene derivatives can be readily oxidized to yield their 

corresponding quinones. This has been done in a number of ways including the use of Jone’s reagent 

(potassium dichromate in sulfuric acid; chromic acid), AgO, AgCO3, Pb(OAc)4, HIO4 and air (March,  1992) 

(with and without catalytic metal ions).  The mechanism is not well characterized, but studies involving 

the oxidation of catechol in H2
18O using sodium periodate observed that the product was not labeled. 

They suggested the following mechanism: 

 

 

 

Figure 2.16. Mechanism proposed for the oxidation of catechol using NaIO4. 

For the scope of the work described in this dissertation, we are more interested in reactions where 

O2 is the oxidant, and a transition metal is leading to a radical (semiquinone) intermediate. The reaction 

involved is chemically reversible, and can be described as a series of single-electron transfer reactions 

which can be carried out electrochemically (without catalytic species). The electrochemical REDOX of 

quinoid species is well documented (Huang, et al. 1998, Danilewicz, 2003). The scheme for this is given 

in figure 2.17. 
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Figure 2.17. REDOX potentials of catechol  at pH 0 (standard) and 3.5 (Danilewicz, 2003). Note the 

semiquinone intermediate. 

 

2.6.2.1. Nucleophilic addition 

The addition of an electron rich attacking species (nucleophile) to an electron poor target 

(electrophile) is known as a nucleophilic addition. The converse is known as electrophilic addition. 

Nucleophilic additions can appear, kinetically, either first or second order. The order of the reaction is 

determined by the transition state which is dictated by the steric environment of the target molecule, 

the “hardness” of the nucleophile and the choice of solvent. 

 Where polar, protic solvents such as water favor SN1 reactions, polar aprotic solvents such as 

N,N’-dimethylformamide (DMF) or dimethylsulfoxide (DMSO) favor the SN2 type. In highly concentrated 

solutions, viz >65 g/100g sucrose, the water activity drops off quite sharply (Malmberg and Maryott, 

1950). The dielectric constant of the medium can become as low as 40 (from 80, for pure water) at the 

concentrations typically found in a vacuum pan or crystallizer (> 80 g/100g, 65 °C). The results that will 

be presented do not consider water activity, but would be fit to a mass percentage of sucrose in the 

mixture.  
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2.6.2.2. Michael Addition 

The conjugate addition of a nucleophile to an α,β-unsaturated system is frequently referred to 

as a Michael addition. This usually takes place under alkaline conditions whereby the reaction is driven 

by the removal of a proton from the attacking species.  

This reaction has been demonstrated to occur with quinones (March, 1992). The reaction 

occurring in acidic environments has not been well studied, however. It is possible, that under acidic 

oxidative conditions (e.g. with FeCl3), the quinone thus formed is immediately protonated creating a 

electrophilic electron sink negating the need for a deprotonated enolate. Such a route is given here: 

 

Figure 2.18. “Michael addition” of a nucleophile to an protonated α,β-unsaturated carbonyl 

 In a bio-based system such as sugarcane juice, the primary nucleophiles will be amino and 

sulfhydryl groups.   

 Under aerated conditions, such as those prevailing with processed cane juice, the sulfhydryl 

groups on non-denatured protein will likely be oxidized to yield disulfide linkages. These linkages 

remove the sulfhydryl group and leave the dangling Nε-groups from lysine as the primary nucleophilic 

species.  This group is separated from the rest of the molecule by three carbon units, which allows us to 

ignore inductive effects from either the α-amino or the carboxylic groups. Assuming that the Nε groups 

of lysine act as primary aliphatic amines, using methylamine as a model, the pKa of the conjugate acid is 

~10.6. At any pH lower than ~10.6 amino groups of this type will begin to protonate. At lower pHs, 4-6, 

such as those prevailing in cane juice, these groups have a very high probability of being completely 

protonated to yield the quaternary ammonium species. Quaternary ammonium derivatives are non-

nucleophilic.   
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 Thus, at low pH (1-3), the acidic Michael-type mechanism is limited by the concentration of the 

nucleophile (which is very small). We suggest that a mechanism similar to that given for the 

electrochemical model in figure 2.17 or a similar system with alternative free radical initiation can be 

expected to prevail. The likelyhood of this is given in table 2.8, below. 

Table 2.8.    REDOX potentials of phenolic compounds at pH 0 (standard) and 3.5 (Danilewicz, 2003). 

 

 

 

 

 

 

From the data given in figure 2.17, it appears that the REDOX potentials for most quinoid 

species decrease at lower pHs. The rate of the analogous reaction of catechol in D2O with singlet oxygen 

generated photochemically with rose Bengal dianion as a photosensitizer is 5.4E7 L/mol.s (Martire, et 

al., 1991). The rate for caffeic acid (3,4-dihydroxycinnamic acid is 5.4E5 L/mol.s in CD3OD (Scurlock, et 

al., 1990) when excited at 532nm in the presence of hematoporphyrin IX (2.5E-3  mol/L). From this, it 

appears that the rate of reaction of catechol exceeds that of caffeic acid by a factor of at least 10 with 

respect to singlet oxygen. 

2.6.2.3. Specific Oxidation Reactions 

Here, phenol is o-hydroxylated by H2O2 with Cu2+ acting as a catalyst.  Reactions of this sort are 

referred to as “assisted “electrophilic aromatic substitutions (Stewart, 1964). The mechanism for this 

reaction is given below. The arrows were not included in the cited figure and were added by this author. 

In this case, the oxidizing species is the cupryl peroxo ion. This system is can undergo further oxidation 

to yield the quinone. 
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Figure 2.19. Assisted electrophillic hydroxylation of phenol (Stewart, 1964). 

From the mechanism given by Stewart (1964), a small reservoir of quinone is required to 

achieve reasonable quantities of the semiquinone intermediate. The needed species likely arrives as a 

consequence of trace contamination in the media (Isenberg, 1961). Since some small amount of quinoid 

species will be found in any unpurified hydroquinone (or any purified material that has been stored for 

any appreciable amount of time in contact with air). This mechanism could be expected to function in 

mixed media, such as cane juice which has been, by consequence of process, aerated.  

 Following suit, a REDOX cycle of this sort may be established with Fe3+ so long as a small amount 

of Fe2+ is present or made in-situ from contaminants in the substrate. 

 

Figure 2.20. In-situ oxidation of catechol to o-benzoquinone (Stewart, 1964). 

Iron is capable of oxidation states up to 6+ (Stewart, 1964). The Fe6+ is most commonly 

encountered as the perferryl ion, FeO2
2+ (George, 1954) or, simply “ferrate”. This material is available as 

the potassium salt from Aldrich Chemicals (K2FeO4, #480010).  
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It can be made via this reaction: Fe2+ + O2 �FeO2
2+. Fe2+ can react with H2O2 to give FeOH2+ and HO. 

(Stewart, 1964). In a fashion analogous to Cu, Fe3+ + H2O2 �FeO2H
2+ + H+. Following this, we can expect 

the ferryl (Fe4+) ion to behave in a way similar to Cu. 

The REDOX potential of the important half-cell reactions are given by Bard and Faulkner(2004): 

p-benzoquinone + 2H+ + 2e- � 0.6992 V 

Fe2+ + 2e- � Fe° -0.44 V 

Fe3+ + e- � Fe2+ 0.771 V 

Attempts have been made to differentiate between the oxidative activity of ferryl and 

purported hydroxyl radical solutions (Rush, et al, 1990). It was noted that ferryl is not acting as the 

oxidant species whilst in acidic media (Walling, 1975). This strengthens the case for the transient 

existence of hydroxyl radical in connection with oxidations involving trivalent iron and hydroquinoid 

species. 

Similar reactivity has been noted with aliphatic α-hydroxy ketones (Fieser and Fieser, 1967). 

Here, acidic FeCl3 has been observed to lead to the oxidation of 2-hydroxycyclohexanone to give 

cyclohexane-1,2-dione in high yield (90%). For the original article see L. De Borger, et al, 1964. 

 

 

 

 

Figure 2.21. Oxidation of α-hydroxyketone  

 An intermediate complex of catechol with Fe3+ and subsequent oxidation to yield the quinone 

was posited by Hamilton (1963) to proceed via an ionic mechanism. In this case, anisole is hydroxylated 

via the catechol:iron complex. The proposed scheme for this reaction is given in figure 2.22. 
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Figure 2.22. Proposed ionic mechanism for the oxidation of o-hydroxyphenol using Fe3+ and H2O2. 

 

The formation of the iron complex proceeded at a rate 25 times faster than that of the 

corresponding oxidation (Xu, 1988b) and two equivalents of Fe were required. As such, the complex 

formation precedes the oxidation reaction, and can be thought of as a “rapid preequilibrium”. This can 

be observed by color change.  

 During the reaction of 2,3-DHBA with Fe3+, blue color is first observed, followed, in several 

minute by yellow which turned, in several hours, brown. It appears that the initial complex involving the 

carboxylic acid group and the 2-hydroxyl was blue and the semiquinoid 2,3-dihydroxy iron complex was 

yellow.  

 The brown color would be consistent, as outlined previously, with polymerization of the quinone 

thus formed with remaining dihydroxy substituted species. The scheme for this is given in figure 2.23 

(Xu, 1988a). 
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Figure 2.23. Proposed radical mechanism for the oxidation of o-hydroxyphenol using Fe3+ and H2O2. 

Note the semiquinone intermediate. 

 

2.7. Iron and Fenton’s Reagent 

 Published first  by Henry J. Horstman Fenton in 1876 (Fenton, 1876), was the serendipitous 

(Koppenol, 1997) observation that  ferrous iron (sulfate or chloride) will react with tartaric acid (L or D-

2,3-dihydroxybutane-1,4-dioic acid) in the presence of either chlorine water (HOCl) or hydrogen 

peroxide to yield a violet product under alkaline conditions.  Fenton continued to work with this reaction 

and determined that the action of iron in the oxidation of tartaric was catalytic (Koppenol, 2000). 

Ultimately, the resulting product was dihydroxymaleic acid and a detailed account was given by Fenton 

in 1905. The identity of the product was questioned by Hartree (1953) who determined that the free 

acid was, specifically, trans-dihydroxyfumaric acid. 

 Fenton observed that the reaction with tartaric acid was oxidative and only took place when 

ferrous iron was present.  In 1894, Fenton noted that alkaline mixtures containing tartaric acid, Fe2+, and 

H2O2 were decolorized via addition of acid (Fenton, 1894). It was also noted that, as with similar 

mixtures containing FeCl3 and phenolic materials (pyrocatechin or phloroglucin), readjustment of pH 

toward alkaline restored the violet color.  
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Further, it was found that excess iron or oxidant likewise decolorized the mixtures. This indicates that 

there may exist, in these mixtures, some product or intermediate that operates as a pH indicator. 

 Alternative oxidants were attempted including chlorine water (as per the original note), 

hypochlorites, Ba(OH)2, NaOOH and KMnO4; these were found to be inferior  to H2O2. Nitrous and nitric 

acids and ozone (O3) were likewise unreactive. Passing O3 through ether (implied to be diethyl ether), 

however, yielded a highly reactive material, likely diethyl peroxide, which further strengthened the case 

that the observed reaction was peroxide-specific. 

 The reaction was determined to be (although not called such) electrochemically REDOX active as 

the aforementioned solution would be yellow about the anode and violet at the cathode of a cell using 

Pt electrodes. The reaction was also found to be sensitive to air when ferrous tartrate, made alkaline, 

turned purple when exposed to air (of interest, Fenton thought that fresh air was more reactive than the 

air in his laboratory). 

 Two  key observations were noted in this early work, first, the iron need be used only in catalytic 

amounts, that is, changing the iron ratio from 1 to 1/16 to one mole of tartaric acid did not affect the 

maximum color developed so long as the air exposure remained fixed. Second, the extent of reaction 

was found to be greatly enhanced by the addition of Fe3+ salt. It was noted by Koppenol (2000), citing 

Manchot and Lehman (1928) that the stoichiometry was concentration dependent. The equivalence of 

iron to H2O2 was 2:1 when the iron was present in excess.   

When the converse is true, the amount of iron oxidized is greater than two equivalents. It was 

hypothesized that the excess iron was oxidized to yield Fe2O5 (Fe5+) which was cycled via reduction to 

Fe3+ by either Fe2+ or H2O2. 

 These observations were explained in a chain of transactions which are reviewed in 

chronological order by Koppenol (2001). The relevant features are outlined here, and were initiated by  

the work of Haber and Willstatter(1931). 
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Originally designed to elucidate the mechanistic function of catalase, this work ultimately led to these 

equations: 

 

 George (1947) demonstrated that Fe does not appear to effect superoxide via experiments 

involving K2O (superoxide). The observed evolution of O2 from K2O was stoichiometric.  He noted that O2 

evolved from systems containing O2
.- and Fe2+ regardless of the presence or concentration of H2O2. 

George concluded that superoxide will disproportionate spontaneously in the presence of iron. The 

reactions are given below. 

 

 

 The originally published work of Haber and Weiss (1932) demonstrated that the action of iron 

upon the decomposition reaction of H2O2 was catalytic and that the reaction proceeded via a chain-

propagation-type mechanism.  This is reflected in the following equations where the cycling of iron 

cancels out on both sides. 
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  The chain reaction initiated with Fe2+, with the corrections which were added after considerable 

debate between Weiss and George, are given here: 

  

 It would not be until 1951 that reactions of this sort would be connected to Fenton’s work 

(Barb, et al, 1951a).  Barb et al. described, in great detail, the reaction cascades and behavior of both 

ferrous and ferric (Barb, et al, 1951b) species. 

2.7.1. Reactive Intermediates Resulting from Fenton’s Reaction 

 An additional feature of Fenton’s work with the oxidation of tartaric acid (Fenton, 1894) was 

that many of the products were too reactive (air, pH, temperature, evaporation under vacuum) to be 

isolated. A powerful reducing agent was isolable from ether under very dry conditions (H2SO4, P2O5, or 

silica gel).  

 A white product remained after removal of the solvent which reacted with Fe3+ to yield a violet 

color. This suggests that the compound is likely capable of keto-enol tautomerization. Of further 

interest, is that the isolate readily decarboxylates at 50 °C. 

 The oxidative power exerted upon the substrate, tartaric acid, became apparent when Fenton 

noted that the reaction of his isolate with ethanolic (?) phenylhydrazine yielded at least three 

phenylhydrazones. This indicated that the products were either ketones, aldehydes, or both. The 

reductive nature of the product appeared to indicate the presence of an aldehyde.  
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When regarding the products associated with the Maillard reaction, we observed the formation of 

compounds which confirm Fenton’s findings. We refer to compounds of this sort as “reductones”. The 

term “reductone” has been used rather ambiguously and includes any sort of reducing keto (or 

tautomeric) species. These compounds fall into many classes, all of them representative of the sort of 

color-related compounds that we will find throughout the course of sugar processing. It is these 

compounds that can show up as reducing sugar under conventional REDOX assays where no such 

complementary amount of reducing sugar is to be found using GC (Eggleston, 2006). 

  Among them are the antioxidant phenolic compounds of (unsurprisingly) the quinoid class such 

as hydroxyhydroquinone (Yasuhara, 2002). Certain intermediates in the Maillard reaction cascade are 

likewise antioxidative, and are referred to as amino-reductones. Examples of this type include the 

enamine, 3-hydroxy-4-(morpholino)-3-butene-2-one and “amino hexose reductone” (Dittrich et al, 

2003). Thus, a mixture of glucose and amino acid (glycine, lysine or arginine, in Dittrich et al’s work) will 

yield a mixture of antioxidative intermediates which will eventually condense to yield colored materials. 

This also suggests that the intermediate products associated with phenolic and amino reductones can 

interact. 

 Fenton’s reagent establishes an oxidative cycle whereby Fe3+ is reduced to Fe2+ and a reactive 

substrate is oxidized.  

The cycle is perpetuated by the addition of H2O2 which re-oxidizes Fe2+ whilst creating a hydroxyl radical 

which oxidizes the nearest organic substrate. In this way, most organic materials, including very stable 

compounds such as polynuclear aromatic hydrocarbons (PAH, Flotron et al, 2003) or polychlorinated 

biphenyls (PCBs, Aronstein et al., 1995) can be oxidized to CO2. For this reason, Fenton’s reagent is often 

employed in a H2O2 fed-batch to remediate especially intractable industrial sludges.  It was noted by de 

S. e Silva, et al. (2008) that endogenous Fe in Brazilian soil (~600 µg/g) can act as a photo-Fenton 

catalyst.  
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This reaction was found to be more effective for remediating PAH than the classic Fenton reagent. Cane 

juice is exposed to very little (usually diffuse) light so, the photo-fenton and like reactions will not be 

discussed in any detail.  

 Although Fe3+ is not capable of catalyzing the decomposition of H2O2, the Fe2+, undoubtedly 

present as a contaminant, is. The small amount of .OH so produced can yield O.2- from H2O2. This is 

capable of giving Fe2+ from Fe3+ and establishing a Fenton cycle. The rate of reaction will be limited by 

the small concentration of the catalytic species. In order to increase the rate, the concentration of Fe2+ 

in the system must be increased. Because Fe3+ is not capable of directly oxidizing a PAH such as 

naphthalene, a pro-oxidant, such as caffeic acid, will be required to increase the amount of Fe2+. A 

proposed scheme is given here: 

 

 

  

From this, it appears that the rate of oxidation of naphthalene (or other substrate) might be 

controlled by altering the amount of pro-oxidant, and thus, the amount of catalyst which is present. In 

the system presented, caffeic acid would be oxidized to the quinone in the process of reducing the Fe3+ 

to yield Fe2+. 
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 Because the rate of complex formation is significant and some of the pro-oxidant will be 

relegated to polymerization with the quinones, the rate increase witnessed will be somewhat self-

cancelling and dependent upon the quantity of Fe3+. This also means that if a substoichiometric quantity 

of Fe3+ is added to a biomimmetic system containing pro-oxidants and multiple substrates, that the pro-

oxidants will be oxidized first. So long as the amount of Fe3+ added is below the threshold for the 

establishment of a true-Fenton cycle (e.g. in excess over the pro-oxidant) then reactive quinoid species 

should exist whilst minimizing oxidative damage to the sugars present in the system.  

 A truly biomimmetic system will not have the provision for added H2O2. It will likely have some 

iron, but that iron is bound to prevent detrimental Fenton-like events from occurring in-vivo. When this 

goes wrong, for example with the genetic disease, hemochromatosis (Figueiredo et al., 1993) the effects 

can be lethal. Free radicals were noted in rat-liver (secondary hemochromatosis was induced using 

“saccharated” iron) at pH 5.0 using electron paramagnetic resonance (EPR). The radicals were not 

detected at pH 7.4.  However, certain pro-oxidants, such as CFA can yield H2O2 on oxidation. The 

following scheme demonstrates that with the proper pro-oxidant, a stoichometric amount of H2O2 can 

accumulate which will be decomposed by the Fe2+. The extent of oxidation resulting from the hydroxyl 

radicals thus formed will be directly dependent upon the quantity of pro-oxidant in the system so long 

as the Fe is present in excess. 

 

2.8. Concluding Statement  

 During sugar processing, sugarcane is extracted via either milling or diffusion and yields both 

juice and bagasse. The bagasse is stored and burned for fuel creating a carbon neutral closed-energy 

system.  
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The remaining bagasse could be used to generate other products, viz. cellulosic ethanol, but this 

technology is not ready to deploy. The juice is purified, primarily via hot-liming where it is heated to 

>100°C, treated with lime to pH ~7.2 and then up to 5 mg/kg of a very high molecular weight anionic 

polyacrylamide is added. Cationic polyacrylamide is not currently used in the production of raw sugar. 

The resulting mixture is allowed to settle and the clarified juice is decanted. This yields a clear juice, but 

it gains color during the process. This color can carry through the process to increase the color of the 

final sugar. 

 The removal of these colored materials has been done using GAC and/or ion-exchange, often in 

tandem with ultrafiltration. Because of the added expense and intrinsic technical difficulties, 

ultrafiltration is only used to produce certified “organic” sugar which sells for a significant premium. 

 Additionally, various chemical techniques have been applied with success, including sulfitation, 

carbonitation and phosphoflotation. These techniques are expensive to implement and maintain and 

residual processing chemical in product sugar is intolerable. Slim profit margins (~$0.01lb/production 

cost) and marginal quality control on raw sugar make implementation of these technologies in Louisiana 

unlikely and ill-advised. These technologies (WSM, NAP, DWISP, etc.) have been used to make a direct 

white sugar and while commercialized, have yet to be applied in the United States. 

 Because the new 1E6 lb/y Louisiana refinery is to be built without the benefit of either an 

affining station or GAC, the quality of the feed is important. A raw feedstock with a lower color will likely 

produce a final sugar of higher quality. We surmise that it is possible to produce a raw-grade sugar with 

color low enough to compete with the affined materials. In order to do this, two strategies may be 

employed.  

First, the formation of color (melanoidin and/or caramel) during processing can be inhibited via 

the addition of nucleophilic traps (such as R-SH). Lowering process temperature and/or processing at 

greater speed will slow down the formation of the electrophilic reactive intermediates. 
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Second, the color which passes though the process, which is principally composed of phenolic 

compounds in various states of polymerization, can be removed before they enter the process. 

 The chemical reactions involved with the formation of both caramel and melanoidin involve 

dicarbonyl intermediates. These condense and dehydrate to yield a heterogeneous conjugate polymeric 

material that is of moderately high molecular weight and dark color. Likewise, o-phenolic compounds in 

quinone form (which are α, β-dicarbonyl species) can react via conjugate addition or condensation 

reactions with the aforementioned dicarbonyl species resulting from the caramel or Maillard-type 

reaction series. The polymer which can result resembles humic material and is not soluble in water or 

common solvents. Polymer of this sort has been found on heat transfer surfaces where the temperature 

is >100°C. This material impedes heat transfer, which has a negative impact on steam economy.  

 The phenolic component of the final colorant polymer originates with the cane, and only 0.6% of 

it is ionized during clarification with lime.  

This means that ~99.3 % of these compounds proceed into the process where they are subject to 

oxidation, dehydration and heat. If these compounds can be removed before this occurs, it is expected 

that the sugar produced will carry less color with it. Improved heat transfer at exchanger surfaces could 

be a desirable side-effect.    

 Adapted from water treatment technology, hydrolyzing metal salts are not used in sugar 

processing. Preliminary studies using PAC with mixtures of flocullant polymers have observed that 

excellent color removal and clarification characteristics are observed at bench scale. The technology was 

found to be unpredictable and unsatisfactory when applied at industrial scale. The Al salts and mixtures 

thereof are also expensive and Al is implicated with disease in man. There was a patent filed which 

made use of ferric chloride to remove color and turbidity from cane juice.  

It produced very small coagula which required the use of ultrafiltration to remove. The use of 

ultrafiltration for this purpose would not offset the cost of its use.  
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The premium for high grade raw sugar is much less than that for refined sugar which is fractional when 

compared to the per-unit price for an “organic” product. 

 Hydrated ferric chloride is a good oxidizer and it readily forms complexes with phenols and 

enols. This is the basis of a common qualitative test (e.g. phenol:Fe3+ is purple). The complexation of Fe3+ 

with o-hydroxyphenols or hydroxysalicylic acid derivatives involves the radical semi-quinone 

intermediate. This intermediate is more easily oxidized by air and can be an electrophilic target. 

 This makes attack from either radical or nucleophilic species possible and creates a route for 

polymerization of the quinone. The addition of the FeCl3 results in the release of three equivalents of H+ 

which can rapidly drop the pH. At lower pH, nucleophilic species such as amines will be protonated.  

When Fe3+ is added to a mixture containing an amine and an o-hydroxyphenol, it first hydrolyzes which 

drops the pH. The hydrolysis competes with complex formation with the o-hydroxyphenol. The quinone 

is evolved more slowly via autooxidiation of the semiquinone by O2. 

 The quinone would then be protonated to create an electrophilic target. Unless the addition of 

the nucleophile to the quinone exceeds the rate at which is protonated, the addition of the remaining 

nucleophile will be slow. Thus, the rate of conjugate addition to a protonated quinone would be a factor 

of the pH which is dependent upon the amount of added Fe3+. 

 The amine can also add to a quinone carbonyl group to yield the imine. The imine makes 

decarboxylation of precursors (if the target is a phenolic acid, such as 3,4-dihydroxybenzoic acid or the 

amine is an amino acid) more likely. The imine can also be protonated to create an electrophilic target 

which is why they are subject to hydrolysis. The existence of these species, minus a reducing agent to 

trap the imine as the amine, is thus an equilibrium which can be easily reversed by altering the pH.  

In highly aqueous and aerated media, such as cane juice, decarboxylation is unlikely and hydrolysis is the 

most likely route. Imines are likely transient species in this system. It was noted that radicals existed in 

biological systems, at pH 5.0, when iron exceeded of the chelating ability of the native enzymes. 
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This pH is very near that of cane juice (5.0-6.0), particularly if FeCl3 has been added (3.4-5.5). 

Cane juice, when fresh is a living biological system with active enzymes and living cells and should be 

expected to behave in a similar way. 
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CHAPTER 3. EXPERIMENTAL 

3.1. Color: Significance and Behavior vs. pH 

 It was indicated previously that many consider both the definition and means of measuring color 

to be arbitrary. We will attempt to more clearly define what is meant by “color” in the context of sugar 

processing.  The relationship between color in raw mill syrup and pH was defined by UV-Vis spectra 

obtained by titrating syrup vs. pH adjusted with standard NaOH. For comparison, the same syrup was 

treated with 160 µg/g of Fe3+. 

3.1.1. Materials and Methods 

Raw mill syrup (provided by Cora Texas Mfg. Co.) was titrated with 0.01 N NaOH. The titrant was 

prepared from freshly dried (50°C, 24” Hg, 8 hr) NaOH (Baker, pellets) weighed quickly into degassed 

(24“ Hg, sonication, 20 min) 18 MΩ water (Barnstead nano-pure). Standard HCl was prepared from 

certified standard 1.005-0.995 N (Fisher) via dilution by mass to provide, assuming 100% dissociation, a 

titrant H+ concentration of 0.1010±0.0057 N. A solution of FeCl3
.6H2O (Mallinkrodt) was prepared in 

degassed 18MW water. The stock solution assayed at 44,600 µg/g Fe3+ (phenanthroline). 

Weighed aliquots (5.008±0.006 g) of the alkali so prepared were titrated to phenolphthalein (1 

drop of 1% g/100mL in EtOH) endpoint using standard (0.1010 N, Fisher) HCl. All volumetric 

measurements were converted to mass via density correction. The alkali was standardized in triplicate 

and had a hydroxide concentration of 0.0981±0.0005 N. This material was diluted (1:10), by mass, in a 

pre-tared 100 mL volumetric flask to give a titration with an alkali concentration of 0.0098 N.  

Syrup was vacuum filtered through a 47 mm 0.45mm filter with a Whatman #4 paper prefilter. 

To 60.42 g of filtered syrup was added 80.04 g of water. 25.0034 g of this were further diluted to a total 

mass of 50.0838 g. A second batch was prepared similarly, and was treated with 160 µg/g of Fe3+.  

Both syrups were adjusted to pH 3.00±0.02 with standard HCl and then titrated vs. pH (Orion, 

temperature compensated) using standard alkali.   
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Every time pH increased by +0.5, a 0.5 mL aliquot was removed (Eppendorf). The absorbance spectrum 

of each aliquot was measured from 200-700 nm using a Beckman-Coulter DU-800 spectrophotometer. 

Absorbance measured in the UV range exceeded the linear range of the detector (ABS >2.0) so, 25µL 

aliquots were removed from the previously measured samples and diluted into 1000µL (final, DF = 40) in 

1.5 mL 9Q quartz cuvettes. These were scanned similarly. 

3.1.2. Results 
 

The UV-range spectra were unremarkable; there were no significant differences observed that 

were clearly dependent upon pH. A plot of this data is given below. There appears to be a peak in 

measured color at a pH between 3 and 4.5. Otherwise, the ∆ABS/∆pH when measured at 334 nm seen 

in figure 3.1 inset, is flat from pH 5-10. 

 

Figure 3.1. UV-range absorbance of cane syrup at various pH. Inset, lack of dependence of ABSUV to pH. 
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Absorption in the visible wavelengths, however, exhibits significant dependence on pH. The 

range from approximately 330-520 nm is the only part of the wavelength continuum where pH has a 

significant effect on absorbance.  

A strong, non-linear pH dependence in absorbance, figure 3.2, is seen between 380-480nm, the 

peak has a λmax ~400, and is a shoulder on a much larger peak with a λmax between ~330-380 nm. It 

interesting to note that the absorbance at 400 nm also exhibits a peak at pH between 3-4, this is likely 

the result of baseline elevation which occurs as a consequence of some component(s) which absorb in 

the 330-380 nm band and are pH sensitive in this range.  

 The behavior of pH relative to the mMol of titrant with the corresponding “color” is given in 

figure 3.3. 

 

Figure 3.2. Visible-range absorbance of cane syrup at various pH. Inset, dependence of ABSVIS on pH. 
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Figure 3.3. The behavior of pH relative to titration with alkali (NaOH). Note the inflection points in the 

untreated syrup at pH 5.50 and 8.00. The hashed line, with scale on the right is the ratio of color (IU) of 

the iron treated syrup / untreated syrup. 

 

3.1.3. Conclusion/Discussion 

 With the exception of a peak in absorbance between pH 3 and 4.5, a pH range which is 

specifically avoided in sugar processing, there is little if any dependence of absorbance on pH in the UV 

range (230-380 nm). There is, however, a strong and non-linear dependence which is observed in the VIS 

range (380-700 nm). 

In the VIS range, specifically between 380 and 520 nm, we see that “color” measured as 

absorbance at 420 nm is very close to the maximum (λmax = 400 nm) of a shoulder on a much larger peak 

with a λmax at 340 nm. This wavelength range is consistent with phenolic compounds and corresponds 

specifically with an absorbance which is characteristic of the π�π* transition of an aromatic system  

substituted with electron donating group(s) and is conjugated at the benzylic carbon. 
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This is highly suggestive of components(s) which resemble or contain a 4-vinylphenol core structure. 

The results of the titration indicate that a linear relationship exists between pH and added 

titrant over a pH range from 5.5 to 8.5. There is a parallel relationship between pH and  the ”color” 

measured over this range. Interestingly, the ratio of color in the samples treated with iron to the 

untreated color is linear, and decreasing between pH 5.5 and 8.5 (Fe IU/IU = -1.5748*mL titrant + 

13.915; R2 = 0.9930).  

At present, a number which is the ratio between the absorbances measured at pH 9 and 4 is 

used to provide a measure of the quality of a raw sugar or syrup. This value is known as an“indicator 

value (IV)” and is attributed primarily to the phenolic compounds present in the material (Paton, 1992). 

From this work, it appears that determination of IV should be made between pH 5.5 and 8.5. 

It also appears that the iron not only increases the color, but that the color formed is less 

subject to the effect of increasing pH. The ratio of observed color in iron treated syrup to untreated 

syrup ranges from 5.5 (pH=3.00) to 6.7 (pH = 3.5) and then decreases to 1.32 at pH 8.5. The ratio does 

not change as pH is increased past this point. It appears that some small amount of iron present in the 

native syrup may contribute to the peak in color seen at pH 3.5. The pH vs titrant for the iron treated 

syrup lacks the distinct inflection points that are seen in the untreated syrup. This suggests that the 

behavior of whatever colored material formed when iron is added is likely more complex than the 

simple protonation-deprotonation-type pH dependence that is observed with the native material.  

It appears that, if the decision to use 420 nm for measurement of “color” was indeed arbitrary, 

then it was fortuitous. However, raw sugar factories measure their sugar at pH 7 and the refinery, who 

purchases the sugar, measures at pH 8.5.  

Because the quantity and type of colorant present can vary significantly from day-to-day and/or mill-to-

mill, the definition of what a 1500 IU raw sugar actually is remains the subject of debate. 
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3.2. Analysis of Cane Juice and Sugar Using GC-MS 

 As much of the colored material that finds its way into sugar is likely phenolic in origin, we 

sought to identify, as completely as we could, the phenolic compounds found in cane processing 

streams. We were also interested in the behavior of phenolic compounds with respect to the process of 

clarification using heat and lime. Juices, syrups, molasses and sugars were extracted then the products 

separated using gas-liquid chromatography with mass selective detection (GC-MS). 

3.2.1. Materials and Methods 

 Samples of cane juice, clarified juice, syrup, molasses, raw and refined sugars were extracted 

using dichloromethane (DCM). Each matrix was spiked with a known quantity of 3-phenylphenol, prior 

to extraction to aid in evaluation of possible matrix-related effects on recovery. Liquids (100g, each) 

were extracted at pH 2 and 10, each with 3 X 25 mL DCM to yield separate acid and base-neutral 

fractions. These extracts were dried over Na2SO4(anh.) and concentrated to 1 mL using a Zymark Turbovap. 

Solid sugars were weighed into 500 mL Erlenmeyer flasks and extracted using 3 X 50 mL DCM with 

shaking and ultrasonic treatment. The resulting extracts were dried and concentrated as before.The 

solid products were then dried completely in-vacuo at 45°C, 24” Hg, 4 hr. These products were then 

extracted as before using 10 % methanol in ethanol (absolute). As before, the extracts were 

concentrated and subject to GC-MS. 

 The resulting extracts were analyzed using gas-chromatography with mass selective detection 

(GC-MSD). The operating parameters for the instrument are given in table 3.1. 

Table 3.1. Operating parameters for the GC-MSD. 

 

Gas chromatograph Agilent 7890, Injector 250°C, 2 µL, split 50:1 (He, 50 L/min). split/splitless liner. 

MSD 
Agilent 5975C, inert source EI 71 eV, solvent delay: 3 min., scan 40-550 u, 

threshold 150, source 250°C, quadrupole 150°C. 

Column DB-5XLB 30m X 0.25mm X 0.25 µm, He, 1 mL/min (7.36 psi, 54 mL/min total). 

Temperature Program 
Init. 45°C, total run-time: 36.17 min. 

15°C/min to 250°C hold 10 min. 

20°C/min to 300°C hold 10 min. 
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The total ion chromatograms (TICs) were integrated with a threshold area of 50 counts.  

The integrated peaks were compared with library searches against the NIST and WILEY spectral data 

bases. Spectra with significant similarity to those found in the database were examined for accuracy 

using a mixture of fragment analysis and familiarity with the source material (for example, we know that 

mescaline, 3,4,5-trimethoxyamphetamine is impossible while the structurally similar syringic acid, or 4-

hydroxy-3,5-dimethoxy benzoic acid is reasonable).  

3.2.2. Results 

The compounds listed in table 3.2 were found both in clarified juice and in raw sugars at  

relative concentrations of 0.1 % or greater (GC, % of total area). The relevant library search results are 

given in Appendix E.  

Table 3.2. Major compounds identified in DCM extract of clarified juice. *likely a folic acid analogue. 

Tr: Compound: Q%: Area %: 

5.51 benzoic acid 87 1.149 

6.05 benzeneacetic acid 83 0.118 

6.53 2-methoxy-4-vinylphenol 91 0.558 

6.83 4-hydroxy benzaldhehyde 91 1.191 

7.14 4-hydroxy-3-methoxy benzaldehyde 94 0.563 

7.25 3,4-dimethoxyphenol 95 0.145 

7.7 1-(4-hydroxy-3-methoxyphenyl)-ethanone 97 0.355 

8.38 3,4,5-trimethoxyphenol 96 0.111 

8.74 4-hydroxy-3,5-dimethoxybenzaldehyde 95 1.641 

9.3 3,4,5-trimethoxybenzoic acid 95 0.246 

9.92 3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid 93 2.027 

10.07 3,4-dimethoxycinnamic acid 98 1.324 

10.26 n-hexadecanoic acid 96 0.629 

10.46 3,5-dimethoxy-4-hydroxycinnamaldehyde 91 1.634 

10.69 
5,6,7,8-tetrahydro-1,3,6,7,8-pentamethyl-2,4(1H,3H)-

Pteridinedione?* 83 0.611 

11.06 4,5-dimethoxy-4-hydroxycinnamic acid 93 1.392 

 

3.2.3. Conclusion/Discussion 

 The extracts of clarified juice contained both more numerous and larger quantities of  phenolic 

constituents than extracts of equivalent masses of raw juice. Most of the compounds identified were 

phenolic and appeared to be representative of the lignin monomers commonly seen in grasses (Boerjan, 

et al., 2003).  
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Coumaryl (4-hydroxy), guiacyl (4-hydroxy-3-methoxy) and syringyl (4-hydroxy-3,5-methoxy) substituted 

species of both benzoic and cinnamic acids were tentatively identified. Of the 31 compounds assigned 

reasonable identities, 16 of them were present in quantities of 0.1 % or greater (based upon total 

chromatographic area). Of these, 14 were phenolic and possibly originated from or were precursors for 

lignin. 

 

  

 

 

 

 

 

 
Figure 3.4. Cinnamic monolignols, from left, caffeiyl, p-coumaryl, guiacyl or coniferyl and sinapyl 

alcohols. 

 

  The high levels of lignin-like phenolic compounds in clarified juice can be attributed to the pH 

(high) and temperatures (100-110°C) that are employed in the clarification process. It is known that 

these conditions can solvate lignin (Thring, et al., 1989) and it is a solvolysis involving the hydrolysis (or 

ethanolysis in organosolv processes) of the lignin backbone. It is likely that the increase in color across 

clarification,is more an issue of solvated lignin than of the formation of hexose alkaline degradation 

products. An overlaid chromatogram comparing the complexity of extracts obtained from equivalent 

quantities of mixed and clarified cane juice is shown in figure 3.5. 

It was also noted that the bulk of the material removed during lime clarification (hot or cold) 

consisted of waxes and sterols. This is consistent with the waxy type I particles observed by Bennett 

(1957b). The main wax component was identified, vs. the bona-fide compound, to be n-octacosanol (a 

ceryl alcohol).  
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A secondary wax was unidentified, but the fragmentation pattern strongly suggests that it too is a linear 

waxy alcohol, likely C26H54O (382.71 g/mol).  

 

Figure 3.5. GC-MS TIC, extracts from equivalent volumes of raw, blue and clarified cane juice, offset with 

scale on the right, red. 

The main sterol components, given in figure 3.6, were γ-sitosterol ((3-β-24S)-Stigmast-5-en-3-

ol), stigmasterol (β-(E)-23-ethylcholesta-5,22-dien-3-ol), and campesterol (β-ergost-5-en-3-ol) .If an 



 

 

76 

 

efficient and inexpensive isolation method can be derived on a large scale (400 tons/hr), then a nutritive 

(Awad and Fink, 2000) product derived from these materials could be produced.  

 

Figure 3.6. Policosanols and phytosterols identified in raw (blue) and clarified (red) cane juice. 

 The component profile of raw sugar was simpler than that of clarified juice. While it contained 

fewer phenolics (that were present in quantities we could detect), it also contained compounds which 

were consistent with the formation of caramel which included 5-hydroxymethyl-2-furaldehyde (HMF) 

and maltol. These materials were fluorescent under long-wave ultraviolet light (365 nm) and color 

decreased the observable fluorescence; most likely due to a quenching effect. 

 In refined sugar, the profiles are even simpler, and the quantities of each color component  

carried through the refining process are very small. The contaminants resembled caramel-type 

intermediates and were most highly represented by HMF, maltol and other furanoid analogues.  

An overlay of chromatograms from clarified juice, raw and refined sugar is given in figure 3.7.  
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The chromatograms are not normalized to the indicated scale. 

 The phenolic compounds present the greatest overall (detectable) contribution to the color to 

raw sugar. It was noted that the clarification process increased the quantity and variety of these 

compounds in the juice. It was decided, from this point forward, to focus on the phenolic compounds 

which are inherent in the cane when considering methods for producing a raw sugar with very low color. 

 

Figure 3.7. TICs of clarified juice (red), raw (blue) and refined (green) sugar.  

 

3.3. Behavior of Clarified Cane Juice and Syrup in the Presence of Iron (III). 

 As previously described (Bennett, 1953a), hydrolyzing salts containing transition metals in higher 

oxidation states are effective coagulants. As the higher oxidation states may promote the formation and 

precipitation of aggregated phenolic contaminants, ferric ion, Fe3+ was tested for efficacy in removal of 

color from clarified cane juice and syrup. 
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 Models containing and aqueous mixture of “phenolic surrogate” (caffeic acid) and L-glutamine 

(sugarcane contains a large quantity of this free amino-acid) were micro-titrated with Fe3+.  

The changes in the UV-Vis spectra were recorded for each level of added Fe. The binding of Fe3+ was 

tested via addition of ethylenediaminetetraacetic acid (EDTA) to the samples. 

3.3.1. Materials and Methods 

Clarified cane juice syrup were obtained from Cora Texas Mfg. Co., Inc. An aqueous solution of 

FeCl3 was prepared (FeCl3 
. 6H2O, Mallinckrodt, 99.8 %) to contain approximately 1.4% Fe3+(xj = 0.207) . 

Using a Hamilton syringe, ten µL (140 µg/mL Fe3+) of this solution was applied directly to 1 mL each of 

the clarified juice and syrup. The samples were visually inspected and then the UV-VIS spectra (200-

700nm) were acquired (Beckmann Coulter DU-800). 

Following this, model solutions were made to contain either 3,4-dihydroxycinnamic acid (caffeic 

acid, Aldrich 99%), L-glutamine (Sigma, 99%), or both. To one mL each of these solutions was added the 

FeCl3 solution, in 1 uL aliquots. After the addition of each aliquot, the UV-Vis spectrum was acquired as 

before. After the addition of 14 µL (196 µg/mL) of FeCl3 solution, EDTA (Sigma-Aldrich, ACS 99.4%) was 

added in excess. 

3.3.2. Results 

The addition of Fe3+ to clarified juice resulted in an instantaneous four to six–fold increase in 

color. An example of this is given in figure 3.8, where W = water, CJ = clarified juice, CJFe = clarified juice 

with added Fe3+. 

UV-Vis matrices against Fe3+ indicated the appearance of a strongly colored complex with a peak 

absorbance of 300-350 nm with a concomitant increase in absorbance at 210nm, which is consistent 

with an oxidation of o,p-phenolic materials to yield quinones (n�π*, carbonyl). Analogous experiments 

made with models containing sugar, caffeic acid and L-glutamine behave similarly, and examples of the 

spectral matrices are given in figure 3.9.  



 

 

 

Figure 3.8. The effect of iron on the color of clarified juice. 

EDTA added to this mixture dim

Fe3+-caffeic acid complexes following sequestration of the Fe

significantly higher than the starting material indicating that some permanent, covalent colored material 

had been formed. 

 

 

 

 

 

 

 

 

 

Figure 3.9. Caffeic acid with, right and without

 
3.3.3. Conclusion/Discussion 

Attempts in our laboratory 

sufficient to precipitate them from 
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The effect of iron on the color of clarified juice.  

 

EDTA added to this mixture diminished the color (presumably via disruption of non

cid complexes following sequestration of the Fe3+ ions), but, the color of the product was 

significantly higher than the starting material indicating that some permanent, covalent colored material 

and without, left, glutamine in a sucrose matrix treated with Fe

 failed to polymerize the phenolic compounds to a molecular weight 

from clarified cane juice.  

 

inished the color (presumably via disruption of non-covalent 

ions), but, the color of the product was 

significantly higher than the starting material indicating that some permanent, covalent colored material 

atrix treated with Fe3+ 

to polymerize the phenolic compounds to a molecular weight 
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These tests demonstrated that Fe3+ can markedly increase the color of clarified juice and syrup 

(Anjal, et al., 1974), which is in agreement with the literature (Riffer, 1986). The observed spectra are 

consistent with the oxidation of the dihydroxy moiety of CFA to yield quinoid species.  

The evolution of an absorption band at ~300 nm at the expense of the carbonyl absorbance at 210 nm is 

consistent with reaction of the quinoid carbonyls. This reached a maximum when 140 µg/mL of Fe3+ had 

been added. The peak at 300 nm decreases upon addition of further Fe3+. We suppose that the 

increasing absorbance at 400 nm reflects increased conjugation resulting from polymerization of the 

quinones and un-oxidized o-dihydroxyphenolic species. These systems did not precipitate color when 

treated with neither anionic nor cationic polymeric flocculants.  

Exploration into the limitation and mechanistic operation of this technique emphasized the 

complexity of cane juice and the difficulties which lie in the deconvolution of any particular chemical 

system operating within it. 

 In order determine how this system works, we examined models which were made to resemble cane 

juice, in terms of composition. Following this, the optimized system was tested on raw cane juice. 

3.4. Behavior of Raw Cane Juice in the Presence of Iron (III). 

It was hypothesized that the reason the application of iron to syrup failed to precipitate 

phenolics was that either the concentration of participating species was too low, or that the kinetics 

were too slow to offer the desired result in a useful span of time. In either case, the material removed 

from the juice during the clarification process must be accounted for. It was realized that the primary 

component which is removed during hot-lime clarification was protein. Raw juice contains bulk 

albuminoid protein which is not found in clarified juice.  

We supposed that quinones, which are susceptible to nucleophilic attack by other phenolic 

species, might also be labile toward the addition of other nucleophilic species. The free amino groups 

(Kroll and Rawel, 2001), specifically the Nε-amino groups present of lysine, and the sulfhydryl moieties of 

cysteine fill that niche. 
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The hypothesis was that the free amino groups in the protein would lend themselves to cross-

linking via in-situ induction of quinoid species (figure 3.10). To test this, Fe3+ (Mallinkrodt, FeCl3-6H2O(aq)) 

was added to raw juice in increasing concentrations ranging from 0-1600 µg/mL.   

 

Figure 3.10. Conversion of o-dihydroxybenzenoid compounds to o-quinones via REDOX cycling of Fe 

with O2. 

 

The iron treatment was followed by liming step. Two permutations of the liming step were tested. They 

were both two-step processes whereby the juice was treated with iron while at either ambient (22-24 

°C) or boiling temperature (100-101 °C). After dosing with Fe3+ (2 minutes) both were boiled, neutralized 

with lime and treated with 5 µg/mL of LT-340 (Ciba) anionic polyacrylamide. 

3.4.1. Materials and Methods 

To mixed cane juice was added, with stirring, an aqueous solution of FeCl3
. 6 H2O made to 

contain 1.35 g/100g of Fe3+. For the initial tests, the Fe3+ was added drop-wise until an effect was 

observed. Later, these drops were weighed to establish that Fe3+ in a range of 400-500 µg/g routinely 

gave satisfactory results. Following these tests, Fe3+ in the range of 50-1600 µg/g was tested on juices 
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provided by three Louisiana sugar mills. The juices were treated with Fe3+, incubated for 20 minutes at 

ambient temperature (24 °C) and centrifuged at 4 kRPM for 10 min.  

The centrifugate was quickly brought to a boil and treated with lime to a pH of 7.2 (electrode 

with temperature compensation). The hot mixtures were treated with 5 µg/mL of an anionic  

polyacrylamide, Magnafloc LT-340 and allowed to settle. 

The juice was decanted and re-centrifuged, as before. 

The color was determined by the ICUMSA method and pH was assayed using an electrode. 

3.4.2. Results 

When applied to raw juice at ambient temperatures, Fe3+ led to a removal of color with a 

corresponding reduction in turbidity. The color removal was concentration-dependent. This behavior, 

seen in figure 3.11, is an average of three replicates (mean RSD, % =14.5), represented by one sample 

each from three different Louisiana sugar mills. ICUMSA color and percent decolorization are given in 

figure 3.12. In all cases, there was a significant reduction in the amount of the pH dependant colored 

material. This decrease in the indicator values (IV pH 9/3) are given (inset) for iron dosages of 0-500 

mg/kg.The observed behavior suggests that phenolic components were removed.  

It can also be observed from figure 3.12 that at higher doses, the amount of color removed 

appears to decrease. In fact, the color observable with the eye increases over the control. Beside the 

increase in ICUMSA color, the absorbance at 590 nm (violet) also increased. This was observed as the 

appearance of an absorption band for phenol:iron complexes (Tomiyasu, et al., 2000). It should be noted 

that the peak at 590, though broad, is not large enough to interfere with the absorbance measured at 

420. The net result is a global increase in color which is sepia (dark brown/black) in color. 

When the juice was treated with 450 mg/kg Fe3+ at ambient temperature and limed, 62 %, on 

average, of the color was removed. A sample of this juice, made using 322 µg/g of Fe3+ at ambient 

temperature followed by hot-liming, is compared with a hot-limed control in figure 3.13.  
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Figure 3.11. Average of three replicates of raw cane juice treated with increasing concentrations of Fe3+ 

at ambient temperature. 

 

 

Adding the iron when hot, however, yielded the expected result at first, but then the juice  

darkened rapidly upon exposure to air after liming.  The increase in color is empirically similar to that 

observed with the larger iron dosages (500-1600 mg/kg). The pH of the final first (ambient-FeCl3) and 

second (Hot-Lime) stage juices are shown in table 3.3. 
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Figure 3.12. ICUMSA color of three juices from three mills with respect to added Fe3+.  

 

 

Table 3.3. pH of first and second stage juices relative to iron dosage. 

Sample: Fe3+, ug/g: Stage 1 pH: Stage 2 pH: Color, IU: 

Juice 0 5.98 6.31 8806 

50 45.82 5.54 6.21 9177 

100 91.63 5.20 6.27 6875 

150 137.45 4.80 5.89 6993 

200 185.18 4.42 5.81 6038 

250 230.99 4.18 6.10 5721 

300 276.81 3.84 6.23 5580 

350 322.63 3.55 7.07 2632 

400 368.44 3.30 6.16 3260 

450 414.26 3.04 7.17 4038 

500 461.98 2.80 6.77 4383 

600 553.62 2.53 6.00 7711 

 



 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.13. Left, raw juice clarified normally via hot liming

 

3.4.3. Conclusion/Discussion 

 The color responded to the dose of Fe

maximum, on average, of 62 %, relative to the control The sample in 

color of 70%; this appears to be upper limit of the color that can be removed by the addition of FeCl

whilst ambient followed by hot-liming. Addition of the iron to boiling juice initiated a situation whereby 

the profound color formation would occur upon liming and exposure to air. 

It is hypothesized that the larger polyphenolic molecules are being oxidi

then serve to crosslink the native protein (probably via the 

linking has been described with salivary proteins and tanni

albumin (BSA) and epichatechin (Chen and Hagerman, 2005)

2000), catechol and both S- and N- 

acid, a known component of cane juice, with lysozym
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Left, raw juice clarified normally via hot liming and right, treated with Fe3+

The color responded to the dose of Fe3+ and led to a reduction in color which, reached a 

, relative to the control The sample in figure 3.13 exhibited a reduction in 

color of 70%; this appears to be upper limit of the color that can be removed by the addition of FeCl

liming. Addition of the iron to boiling juice initiated a situation whereby 

the profound color formation would occur upon liming and exposure to air.  

that the larger polyphenolic molecules are being oxidized to quinones which 

then serve to crosslink the native protein (probably via the ε-amino group of lysine residues). Such cross

linking has been described with salivary proteins and tannin (Cai and Bennick, 2006), bovine serum 

n (Chen and Hagerman, 2005) and protocatechuic acid (Bartoleme, et al., 

 terminal groups of protein (Schwiegert, et al., 2001)

acid, a known component of cane juice, with lysozyme (Rawel, et al., 2000).  

3+ the hot-limed.  

and led to a reduction in color which, reached a 

exhibited a reduction in 

color of 70%; this appears to be upper limit of the color that can be removed by the addition of FeCl3 

liming. Addition of the iron to boiling juice initiated a situation whereby 

zed to quinones which 

amino group of lysine residues). Such cross-

bovine serum 

d (Bartoleme, et al., 

n (Schwiegert, et al., 2001), and chlorogenic 
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These large adduct molecules are likely charged under the conditions employed and thus serve as 

flocculent/coagulants themselves, viz. a coagulant synthesized in-situ from the native materials found in 

the raw juice.  

This type of relationship was noted between protein and indigenous cane polysaccharides in 

refined sugar (Du Boil, 1997), but not with cane polyphenolics in raw juice. Since the protein is largely 

removed during hot lime clarification (Martinez, et al., 1987), most likely the result of denaturing at 

clarification temperatures, this process does not work with clarified juice and subsequent products. 

In order to explain the increase in color that occurs at high temperature and low pH, we 

hypothesize that it was possible that at least four concomitant reaction-types were occurring. First, the 

protein was denatured and released any iron that was chelated. Second, larger phenolic adducts were 

hydrolyzed (or otherwise disrupted) to cause the bulk release of small, reactive phenolic species. The 

free iron formed complexes with the phenols to yield green iron-semiquinone species. These species 

then reacted with air and re-polymerized to yield a brown/black polymer.  

The observed color was consistent with that witnessed upon reaction of CFA with glutamine in 

the presence of air (described later). The polymer so formed was of insufficient size or charge to 

precipitate or form floc.  

 The involvement of air in the formation of color suggests that a radical mediated reaction is 

taking place. Because Fe3+ is added to our mixtures which contain reducing/antioxidant substances (o-

phenols), we reason that Fenton-type reactions were established. At room temperature, and acidic pH 

(optimum pH=4.5, range 3.0-6.0), Fenton-type chemistry is relatively slow (Bishop, 1968; Cheves, 1975). 

This is consistent with the stability, relative to air, of the samples when at low pH. This could be offset by 

addition of large quantities of iron, which would lead to higher concentrations of radical species, even at 

low temperatures. 

When the pH is adjusted using lime, the model enters the optimal range for the Fenton reaction.  
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Since the lime is added hot, the chemistry should demonstrate an Arrhenius dependence on rate 

(approximately 16 times faster than at rt.). We suspect that some amount of the iron bound to free 

phenols facilitating autooxidation via O2 and the rest was reduced to Fe2+, which initiated a Fenton cycle 

top yield hydroxyl radicals which proceeded to either oxidize and damage the nearest substrate 

(perhaps a protein, where the Fe was initially bound) or to disproportionate yielding peroxyl radical. 

3.5.  A Representative Model  

 In order to ascertain whether our hypothetical mechanisms were correct, it was decided to use 

models to mimic the behavior witnessed with cane juice. 

3.5.1. Materials and Methods 

Two sets of samples were prepared, one contained Fe3+ (220 µg/g) and the other was an 

untreated control. Assuming a dependence upon protein and phenolic material, both sets contained 

water and either  0.5 g/100g bovine serum albumin (BSA,Sigma, Cohn fraction V, 69 kDa), 900 µg/mL 

caffeic acid (CFA, Aldrich, 99+%) or both. 

Initially, it was supposed that both calcium and phosphate would be required, so these samples 

were prepared to contain approximately 400 µg/mL Ca as CaCl2 (Fisher, ACS) and 300 µg/mL phosphate, 

applied as H3PO4 (Fisher, 85%).  

The test was repeated in a matrix containing 50 g/100g of sucrose.  

3.5.2. Results 

When the iron was added, both samples immediately became turbid. The sample containing 

caffeic acid turned green/black. Centrifugation of all samples (4 kRPM, 15min) yielded the results seen in 

figure 3.14, below.  

The reaction of CFA with GLN can be seen in figure 3.15. The CFA/Fe3+ was initially green, but on 

storage (16 hr) turned brown and contained particulates. The sample with GLN immediately turned 

black and formed stable particulates.  



 

 

Glutamine, alone, did not react with Fe

with respect to color. 

Figure 3.14. Effect of Fe3+ on BSA both with and without caffeic acid, and controls (right). 

Figure 3.15. The appearance of caffeic acid treated with iron either alone, or in the presenc

glutamine. 

 The replicate which contained sucrose did not react when iron was added. These samples turned 

green and remained transparent, regardless of the content of amino nitrogen. 
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Glutamine, alone, did not react with Fe3+. Other amines, eg. 2-aminopropanol, behaved in a similar way 

 

on BSA both with and without caffeic acid, and controls (right). 

 

The appearance of caffeic acid treated with iron either alone, or in the presenc

The replicate which contained sucrose did not react when iron was added. These samples turned 

green and remained transparent, regardless of the content of amino nitrogen.  

behaved in a similar way 

on BSA both with and without caffeic acid, and controls (right).  

 

The appearance of caffeic acid treated with iron either alone, or in the presence of L-

The replicate which contained sucrose did not react when iron was added. These samples turned 
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They slowly developed into green, turbid mixtures. The material was colloidal and did not coagulate. 

Centrifugation at 4 kRPM for 20 min was insufficient to sediment the particles. 

3.5.3. Conclusion/Discussion 

It appears that the Ca3(PO4)2 precipitates regardless  of BSA or CFA content. The Fe3+ caused the 

BSA to precipitate. The color change in the sample was consistent with CFA reacting with an amine, not 

merely the formation of the green iron semi-quinone complex (which becomes reddish brown, slowly, in 

the presence of air as polymerization occurs).  

From this point forward, we continued to operate under the assumption that the caffeic acid, 

the phenolic surrogate, is being oxidized (via Fe and O2), and is removed along with the protein (BSA) 

which is serving as the vehicle. 

The addition of sucrose stabilized the complex(es) forming stable, non-colored colloidal material 

which failed to settle, even with centrifugal assistance (4 kRPM/10 min was insufficient). 

3.5.3.1. Triggering the Precipitation of BSA:CFA from Solutions Containing Sucrose 

In order to determine why the BSA:CFA failed to precipitate when in the presence of sucrose, 

and, more importantly, to find a way around it, we consulted the “known” composition of cane juice.  

It was noted that cane juice contains a large amount of carboxylic acids. The addition of various 

carboxylic acids and other carbonyl compounds (aldehydes and ketones) was tested to determine if the 

precipitation of sucrose-stablized protein could be triggered.  

3.5.3.1.1. Materials and Methods 

All compounds save pentanoic acid, sodium salt (sodium valerate), were purchased at ACS or 

analytical grade and were used as is. The amount of each chemical was adjusted to compensate for 

purity and adsorbed moisture and/or water of hydration (determined via gravimetry). 

Sodium valerate was prepared from valeric acid (pentanoic acid, Aldrich, 99%, 10g, 0.1M) via 

slow, stoichiometric addition, with magnetic stirring, of chilled NaOH (ACS) diluted to 1M.  



 

 

The precipitate was filtered (Buchner), washed with water until pH ~ 4.5 and dried in

Hg, 60 °C) overnight. The product, a pure white (microcrystalline) material releases heat upon solution, 

and assayed 99+% via HPLC-HAEC (suppressed gradient HPLC anion exclusion chromatography).

Many attempts and permutations which involved 16 compounds, were tested and are listed,

with the model parameters (quantities of sucrose, BSA, CFA and iron), in 

The samples were made to contain, in order, sucrose (prepared as a 50 g/100g solution), BSA 

(prepared to contain 6050 µg/g), CFA (an aqueous suspension containing 8780

compound (each diluted to 10 mMol) and Iron (29,170

samples were kept at ambient temperature (24 °C) for 20 minutes and then centrifuged for 10 min at 4 

kRPM. Success was measured by the presence 

of the tube. 

Table 3.4. Compound test matrix. 

 

Sucrose,

Test Compound: g/100g:

AcONa* Buffer, 1M 

AcONa* Buffer, 1M 

AcONa* Buffer, 1M 

Methanal 

Propanal 

Isobutyral 

Isopentanal 

Benzaldehyde 

Phenylacetaldehyde 

Methanoic acid 

Ethanoic acid 

Propionic Acid 

Butanoic acid 

Pentanoic Acid 

Citric Acid 

Aconitic Acid 

Acetone 

Acetylacetone 
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The precipitate was filtered (Buchner), washed with water until pH ~ 4.5 and dried in

product, a pure white (microcrystalline) material releases heat upon solution, 

HAEC (suppressed gradient HPLC anion exclusion chromatography).

Many attempts and permutations which involved 16 compounds, were tested and are listed,

with the model parameters (quantities of sucrose, BSA, CFA and iron), in table 3.4. 

The samples were made to contain, in order, sucrose (prepared as a 50 g/100g solution), BSA 

g/g), CFA (an aqueous suspension containing 8780 µg/g), the test 

compound (each diluted to 10 mMol) and Iron (29,170 µg/g as Fe3+, FeCl3
.6H2O, Fe xj = 0.20). The 

samples were kept at ambient temperature (24 °C) for 20 minutes and then centrifuged for 10 min at 4 

kRPM. Success was measured by the presence of a dense pack of green/black precipitate in the bottom 

 

Sucrose, BSA, CFA, Fe3+ 

g/100g: mMol: mMol: mMol: 

31 3.9E-05 

3.9E-05 

9.3E-04 1.00E-02 

31 

 

0.0E+00 

 31 

 

9.3E-04 

 31 

 

 

 31 

   

 

31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   31 

   

The precipitate was filtered (Buchner), washed with water until pH ~ 4.5 and dried in-vacuo (26” 

product, a pure white (microcrystalline) material releases heat upon solution, 

HAEC (suppressed gradient HPLC anion exclusion chromatography). 

Many attempts and permutations which involved 16 compounds, were tested and are listed, 

The samples were made to contain, in order, sucrose (prepared as a 50 g/100g solution), BSA 

g/g), the test 

= 0.20). The 

samples were kept at ambient temperature (24 °C) for 20 minutes and then centrifuged for 10 min at 4 

of a dense pack of green/black precipitate in the bottom 

Agent, 

 mMol: 

0.35 

0.35 

2.35 

0.35 
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3.5.3.1.2. Results 

It was found that neither the n-aldehydes (methanal-isopentanal) nor the neat acids 

(methanoic-pentanoic) caused BSA to precipitate from solutions of sucrose.  

The salts of these acids (acetic and propionic), however, triggered the immediate formation of 

color and concomitant precipitation of protein/phenolic adducts. The pH attributed to the addition of 

the various salts was consistent, averaging 4.5. Other carboxylic salts were subsequently investigated.  

Sodium salts of formic, acetic, propionic, butyric and valeric acids triggered the precipitation of 

BSA:CFA adduct from solutions containing sucrose. Ammonium acetate triggered precipitation of BSA at 

a concentration equivalent to an effective dose of the Na+ salt. The observation that ammonium and 

sodium acetates possess equivalent activity indicates that the choice of counter ion is of little 

consequence. The carboxylate ligand is most likely the active principle. 

  It was noted that the amount of sodium acetate required, 0.5 mMol, was significantly less than 

that needed for sodium formate, 0.68 mMol. It was subsequently determined, as in table 3.5, that the 

length of the carbon backbone was inversely related to the minimum mole-equivalent of salt that was 

needed to trigger the precipitation of BSA. A plot of the effective quantities, in both mass and moles, is 

given in figure 3.16. Other materials conform with table 3.4. The minimum concentrations that 

triggered precipitation of the BSA were made bold. 

Table 3.5. The quantity of each carboxylic acid salt needed to precipitate BSA from sucrose solution.  

 

Test Compound: mMol: mMol: mMol: mMol: 

Sodium formate 0.25 0.40 0.55 0.69 
Sodium acetate 0.25 0.38 0.50 0.63 

Ammonium acetate 

acetate 

0.25 0.38 0.51 0.64 

Sodium propionate 0.25 0.33 0.40 0.48 

Sodium butyrate 0.25 0.27 0.32 0.36 
Sodium valerate 0.25 0.32 0.50 0.60 

Sodium oxalate 0.25 0.38 0.51 0.64 
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3.5.3.1.3. Conclusion/Discussion 

 Because of the threshold in the length of the carbon “tail”, the carboxylates described here are 

too small to be creating a formal micelle (Ueno at al, 1981). The critical micelle concentration (CMC) 

reaches an asymptotic value at chain lengths of ~10 (CMC = 85.91e-1.146carbon#). The extrapolated CMC for 

NaOEt would be ~8.74 mol/L or ~7.6%; the effect we are observing takes place at concentrations 

~24,000 times less. Thus, It is possible that the salts accommodate either ligand assisted phase transfer 

or are acting as chain transfer catalysts (Fevola, 2003), perhaps to propagate .OH or .OOH radicals.  

Sodium oxalate also causes BSA to precipitate and it does so at the lowest concentration of all of the 

compounds tested (½ of that needed with acetate).  

Because oxalic acid is both small (MW = 90.03 g/mol) and a dicarboxylic acid, it has two polar 

ends and very little of the hydrophobic character associated with a large alkyl “tail”. The 2:1 

stoichiometry of oxalate, relative to acetate, tends to rule out micellar activity and adds credibility to the 

ligand assisted phase-transfer hypothesis.That is, one-half of oxalate = acetate, in terms of efficiency in 

this system. Because the destabilizing effect is observed with terminal carboxylates, and the effect is 

quantitative, it is unlikely that the oxalate is behaving as a difunctional bridging species. This is of special 

consequence because in cane juice, oxalic acid constitutes, along with citric (2-hydroxypropane-1,2,3-

tricarboxylic), aconitic (prop-1-ene-1,2,3-tricarboxylic), succinic (1,4-butanedioic), glycolic (2-

hydroxyethanoic) and malic (2-hydroxy-1,4-butanedioic) acids, approximately 13 % of the nonsugar 

fraction (Payne, from Honig, 1953). The sodium salt-forms of these acids have yet to be tested in the 

outlined model system. 

Since chemicals are sold on weight, rather than moles, sodium propionate appears to be 

optimal. This behavior is described in figure 3.16. 

It was initially thought that protein stabilization via sucrose should only be a factor in highly 

concentrate sucrose solutions, viz.  >50%, as the polarity decreases with increased concentration. 
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Figure 3.16. The dependence of the chain length of carboxylic acid Na+ salts on the amount, in mMol, 

blue and g/L, red, on the Fe3+ that triggered formation of insoluble aggregates of caffeic acid and BSA. 

 
The calculated values from 0 to 85% sucrose(aq) predict a change in dielectric constant from ~80�40. 

This is a function of free water/total water, which decreases markedly at sucrose concentrations in 

excess of 60g/100g where much of the available water is involved in the sucrose hydration sphere 

(Barbosa-Canovas, 2003; Starzak and Mathlouthi, 2005).   

This was found to be less significant when further tests revealed similar behavior in more dilute 

solutions. In solutions containing sucrose approximate to juice (10-15 g/100g, polarity approximate with 

water) the precipitation required the carboxylic acid salt. It was concluded that if sucrose is present in 

great excess (the threshold appears to be ~10 g/100g) over the other components, particularly the 

protein, then the observed stabilization effect (and salt requirement) will occur. 
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3.5.3.2. Optimization of the Model  

We now knew that four components, iron, protein, lignol and carboxylic acid salt were required to 

initiate coagulation of protein in the presence of sucrose. We did not, however, know how much of each 

is required. Toward this, experiments were conducted to determine not only the optimum 

concentration of each component, but also to discern the practical limitations of the method. Because 

the colored materials found in raw sugar have propagated through the entire cane sugar manufacturing 

process, these experiments took place in a dilute raw sugar solution.   

3.5.3.2.1. Materials and Methods 
 

 We optimized the concentration of salt required for our process to work. We chose to use 

sodium acetate because it is abundant in cane juice. Ferric chloride (assayed 15,960 µg/mL Fe3+), CFA 

(8501 µg/g), BSA (0.60 g/100g) and sucrose (50.08 g/100g) were sourced and prepared as described.  

All volumetric deliveries were made using Eppendorf pipetters that were pre-calibrated by weight. 

 Into 9 x 15 mL polyethylene conical centrifuge tubes was added 8 mL of a raw sugar solution 

prepared to contain 50.08 g/100g. To each tube was added 4 mL of BSA (1846.2 µg/mL) and 0.6 mL of 

CFA (392.4 µg/g). In the case where sodium acetate (NaOAc) was the dependent variable, 0, 25, 50, 75, 

100, 125, 150 and 200 µL of NaOAc (1M, pH 5.0) was added to tubes 2-9. Tube 1 was a control which 

contained neither BSA nor NaOAc. The tubes were sealed and mixed by inverting slowly three times. To 

each tube was added 200 µL of FeCl3 solution (245.5 µg/mL). The tubes were sealed, inverted slowly 

once to mix, and allowed to sit at ambient temperature (22 °C) for 20 minutes prior to centrifuging at 4 

kRPM for 10 min. 

 The samples were photographed and aliquots were corrected to pH 7.0±0.1 (electrode) using 

either dilute HCL or NaOH, filtered through 0.45 µm nylon membrane filters. 

The absorbance of the samples was measured at both 420 and 590 nm (Beckman Coulter DU-800).  

These steps were repeated with each variable to be tested, namely CFA, AcONa and Fe3+.  
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Each model set was built upon the prior set, eg. The optimum value for NaOAc from set one was 

carried to the next set. The sets are given in table 3.6.  

 

Table 3.6. Optimization of Model parameters, empirical quantities, A and mMol, B. Non-title bold 

numbers indicate the optimization range, A or maximum value tested, B. 

 

    

g/mol: 
 

 

BSA: 0.6 g/100g 69200 

 

 

Sucrose: 50.08 g/100g 342.3 

 

 

Fe3+ 15960 µg/mL 55.845 

 

 

CFA: 8502 µg/mL 180.16 

 

 

NaOAc: 1 M 84.05 

 A 
     Set: BSA, mL: FeCl3, µµµµL: Sucrose, mL: CFA, µµµµL: NaOAc, µµµµL: 

NaOAc 4 200 8 600 0-200 
CFA 4 200 8 0-600 200 

Fe3+ 4 0-294 8 301 200 

BSA 0-5.2 148 8 301 200 

B 
     

 

BSA FeCl3 Sucrose CFA NaOAc Max 

Set: mMol: mMol: mMol: mMol:  mMol: 

NaOAc 0.00035 0.057 11.70 0.028 0.017 
CFA 0.00035 0.057 11.70 0.028 0.017 

Fe3+ 0.00035 0.084 11.70 0.014 0.017 

BSA 0.00045 0.042 11.70 0.014 0.017 

 

3.5.3.2.2. Results 

Each optimization trial is outlined and discussed in order. 

 

3.5.3.2.2.1. Carboxylic Acid Requirement Modeled Using NaOAc 

This sample set was made with raw sugar to contain sucrose, 50.08g/100g; BSA, 0.17 %; CFA, 

360 mg/kg; Fe3+, 230 mg/kg and acetate, variable. A picture of this series is given in figure 3.17. 
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Figure 3.17. Samples treated with increasing amounts of sodium acetate. 

 

Figure 3.18. Color of samples in figure 3.17 after pH adjustment and filtration. 
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3.5.3.2.2.2. o-hydroxyphenol Requirement Modeled Using CFA 

 Precipitation of BSA is dependent upon the quantity of phenolic material. This is seen in figure 

3.19 in solutions made to contain Sucrose, 50.08 % (50 bx), BSA, 0.17 %,  Fe3+, 226 mg/kg and variable 

CFA. It is apparent from this series that, from figure 3.19, there is a clear relationship between the 

amount of phenolic compounds present and the volume of sediment which evolves. From figure 3.20, 

however, it appears that there is also a fairly narrow range where sedimentation is abundant and the 

color remains manageable. 

 

Figure 3.19. Samples treated with increasing amounts of caffeic acid. 

Further tests have indicated a strong relationship of this quantity (of CFA) with the amount of 

protein present in the system. 
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Figure 3.20. Color of samples in figure 3.19 after pH adjustment and filtration.  

3.5.3.2.2.3. Ferric Iron Requirement Modeled Using FeCl3 

Raw sugar solutions made to contain sucrose, 50.08 % (50 bx), BSA, 0.17 %, Caffeic acid, 60 

mg/kg and variable Fe3+ were tested. The expected increase in sediment and concomitant color removal 

was seen up to ~226 mg/g Fe3+. After this, seen in figure 3.21, the material remained quite dark. 

Adjustment of the materials to pH 7 and subsequent filtration via 0.45µm (nylon) removed the color 

yielding a consistent dose response curve which is given in figure 3.22. 

3.5.3.2.2.4. Protein Requirement Modeled Using BSA 

 The optimal concentration of protein (BSA), relative to CFA, was determined as previously 

described. Figure 3.23 was taken of a system optimized based on the previous tests (in terms of iron, 

CFA and acetate).  The values used were Sucrose, 50.08 % (50 bx), BSA, variable, caffeic acid, 183 mg/kg 

and Fe3+, 198 mg/kg.  
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Figure 3.21. Samples treated with increasing amount of Fe3+. 

 

Figure 3.22. Color of samples in figure 3.21 after pH adjustment and filtration. 
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Figure 3.23. Samples treated with increasing amounts of BSA. 

  

Figure 3.24. Removal of CFA:Fe complex (ABS590nm) relative to quantity of BSA. 
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Figure 3.25. Samples from figure 3.23 at pH 4, top, and 7, bottom.  

 

Figure 3.26. CFA:Fe3+ complex as an indicator from pH 3-11. 

3.5.3.2.3. Conclusion/Discussion  

In terms of NaOAc, the optimal value is not obvious from the acidic solutions. Upon 

neutralization and filtration, we can see that the optimum value is actually the point where we get the 

maximum volume of sediment (Fig. 3.17, 0.075-0.200 mMol NaOAc) and where the color is also 

acceptable. In this case, this value, seen in figure 3.18, is between 0.075 and 0.125 mMol. It appears, 

however, that the amount of material which is strongly colored at acidic pH is removed to an extent of 

approximately 80% and correlates well with the amount of acetate present.  
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 For CFA, the optimum value lies between 60-120 µg/g (CFA in this idealized system). The 

amount of CFA, 119-180 µg/g, which is required for good precipitation to occur is rather close to the 

point of diminishing return. Nevertheless, in models containing sucrose, caffeic acid appears to be 

required at a minimum molar ratio, relative to BSA, of ~ 35:1. 

 The color which was discharged via liming and filtration was attributed to residual iron which 

was present at the higher iron dosages. Under these conditions, the pH adjustment did not increase the 

color, which appears to be Fe(OH)3 (Gregory and Duan, 2001) which, upon precipitation, carried the 

remaining color, via adsorption, with it. Regardless of ultimate color removal, this iron level (>250 µg/g) 

is undesirable for our purposes. Where pH adjustment is routine, membrane filtration is not. Therefore, 

the optimum range established for the iron dosage should be between 150 and 225 µg/g.  

 Figure 3.23 demonstrates the efficacy of BSA quantities greater than or equal to 0.11 g/100g. 

The overall removal of iron:phenolic complexes is evidenced in figure 3.24 by absorbance at 590 nm, 

and was approximately 90.6 % when BSA was present at 0.11 g/100g. 

 When adjusted to pH 7, the samples with protein ranging from 0.04-0.11 g/100g gave the best 

results, color-wise (absorbance at 420 nm). Of interest is that some residual iron must be present from 

0.04-0.07 g/100g which precipitates as Fe(OH)3 at pH 7.  

 While the initial colored materials appear to be removed, all concentrations greater than 0.11 

g/100g led to the evolution of some blue material (figure 3.25). This nature of this material is unknown 

at present, but is consistent with the CFA:Fe complex at similar pH which is seen in figure 3.26. 

 In summary, the optimized values for this quaternary system (regarding raw sugar solutions at 

50g/100 dry solids) are given in Table 3.8.  

 It is interesting to note, that when adjusted for the increased color of juice, (15,000 IU) the 

quantities of each of the four parameters modeled during this study are similar to those found in cane 

juice (van der Poel, et al., 1998).  
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Table 3.8. The quantities of each component needed for optimal color removal. 

Component: mg/kg: In cane juice. mg/kg: mMol eq. to BSA: 

BSA 1500 Protein: 700-2200 1 

CFA 150 Phenolics: 50-400 35 

AcONa 2000 Carboxylic acids: 4100-6200 1450 

Fe
3+

 150-200 ~10 117 

 

3.6.     Residual Iron  

 Residual iron can lead to green sugar (Riffer, 1986) which is known to deteriorate (color-wise) 

rapidly upon storage (Prasad, et. al., 1989). In order to determine if this will be a problem, raw juice was 

treated with iron (0-554 µg/g) and the juices and sediment were assayed for residual iron.  

3.6.1. Materials and Methods 

 Briefly, 8 mL samples of raw cane juice (Cora Texas) were treated at ambient (24°C) temperature 

with FeCl3 (aqueous, 16,641 mg/g Fe3+) to contain Fe3+ ranging from 0-554 µg/g of juice. The samples 

were mixed by inversion and 10 µg/g of cationic polyacrylamide (Cytec-C445) was added. The samples 

were incubated at ambient temperature for 20 minutes and centrifuged at 4 kRPM for 10 min. Each 

liquor was decanted (liquor 1) and sampled.  

The sediment was filtered through a tared filter paper (Whatman, medium, ashless), washed and dried 

in-vacuo (26” Hg/40 °C, overnight).  

 Liquor 1 was subject to hot liming and the product, liquor 2 was decanted. The residue from 

stage 2 was recovered as before. The weighed filter papers (with residues) were digested whole in aqua 

regia first via boiling, and then via ultrasonic treatment. The digest was filtered and diluted to 25 mL 

(weights were used for expression of results on mass).  

 The digests and juices were filtered, diluted in acetate buffer (1M, pH 5) and the background 

absorbance (510nm) was measured. To each sample was added hydroxylamine-HCl and o-

phenanthroline. Briefly, to a 1.5 mL polystyrene cuvette was added acetate buffer, 600 µL, water, 500 

µL, sample, 50 µL and then 150 µL each of hydroxylamine hydrochloride (Aldrich, metals grade 99.999%, 

1% w/v) and o-phenanthroline (Sigma, spectro-grade, 0.2% w/v).  



 

 

104 

 

The cuvettes were sealed with parafilm and inverted to mix. The samples were allowed to react for 20 

minutes prior to reading the absorbance at 510 nm (Spectronic Genesys 5). 

 The absorbance for each sample was read and compared against a six point curve prepared with 

standard Fe3+ (EM) to contain 0-7.5 µg/g Fe. Final values were calculated on mass basis. 

3.6.2. Results 

The composite results for this test (as total Fe) are given in figure 3.27. The stages indicated in 

the legend are defined as follows and are given as the total per cent of Fe in the dried solids.  

Stage 1 liquor: the filtered liquid after treatment with iron and cationic polyacrylamide 

Stage 1 residue: the material remaining on the filter 

Stage 2 liquor: the filtered liquid after treatment of stage 1 liquor with lime and anionic 

polyacrylamide while hot 

 

Stage 2 residue: the material remaining on the filter 

 

 

Figure 3.27. Residual iron in liquors 1 and 2 and in the precipitate collected from each stage. 
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3.6.3. Conclusion/Discussion 

Significant iron, up to 3g/100g of dry residue, co-precipitated with the protein during the first, 

acidic stage. The remainder in solution, up to 9.5g/100g, was removed during the liming phase to 

produce a final juice with levels of iron similar to the intrinsic level found in milled raw juice. A 

compartmental accounting of the iron is given in figure 3.27. Blank filter papers digested similarly were 

negative for Fe. 

Of interest is that in samples where the iron concentration exceeded the optimum range 

between 150-300 µg/g, the residual iron decreased and the liquor iron increased (it is not as apparent 

from the plot as the residue is 100% solids and the juice is perhaps 15%).  

This suggests that once the protein:CFA “capacity” is exceeded, free iron accumulates, and leads to a 

rapid increase in color, particularly on exposure to air. This suggests the initiation of, perhaps, 

unchecked Fenton type chemistry. 

3.7.  Decolorization Relative to Temperature at Varied Iron Dosages 

 It was noted that the final, hot step operated in a hot-liming mode, that is, heated to boiling 

then treated with lime and anionic poly-acrylamide, was unpredictable. A study was made to determine 

how this system behaved relative to temperature.  

3.7.1. Materials and Methods 

 Because there is insufficient protein in syrup for iron decolorization to work, diluted (15 g/100g 

sucrose) syrup was fortified with BSA (the optimized amount, 0.11 g/100g,). The pH of the starting 

material was measured (electrode) and 30 g samples were equilibrated to the testing temperatures (25, 

45, 65, 75, 85 and 95 °C) for 5 minutes. The equilibrated samples were then treated with 500, 1000, or 

2000 mg/g of Fe3+ and allowed to react for exactly 2 minutes (stopwatch). The pH was then adjusted to 

6.8-7.5 (Hydrion papers) using lime and 5 µg/g of LT-340 anionic polyacrylamide was added. The liming 

operation took 5 minutes, and the samples were cooled and allowed to settle. The final juice was gravity 

filtered through fluted paper and assayed for residual iron as previously described.  
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 An aliquot of each sample was diluted by weight to contain 0.25 g/100g refractive dry solids 

(Bellingham and Stanley critical angle refractometer). These samples were filtered through 0.45 µm 

nylon membrane syringe filters and analyzed via HPLC-DRI calibrated for sucrose, glucose and fructose. 

The HPLC results were compared against the Vukov-Schaffler inversion model which is described in 

Appendix B. 

3.7.2. Results 

 A plot of the effect of temperature on color is given in figure 3.28 (the control syrup color was  

8000 IU), and residual iron is plotted in figure 3.29. The amount of sucrose (HPLC-DRI) hydrolyzed is 

described in figure 3.30. 

 

 

Figure 3.28. Color relative to temperature and iron dosage.   



 

 

Figure 3.29. Effect of temperature on residual iron.

Figure 3.30. Sucrose as a function of operating temperature and iron dose.

 

107 

Effect of temperature on residual iron. 

Sucrose as a function of operating temperature and iron dose. 
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3.7.3. Conclusion/Discussion 

The amount of iron required to decolorize the diluted syrup (15 brix with BSA at 0.11 g/100g) 

was 2 to 4 fold larger than was required to obtain equivalent behavior in juice. This could be due to the 

fact that syrup contains caramel/melanoidin precursors as well as phenolic compounds. There is also the 

possibility that the indigenous cane protein is more amenable to precipitation via Fe3+ than BSA. 

Because these samples were not fortified with NaOAc, this effect might also be attributed, at least in 

part, to distillation of the volatile organic acids during the evaporation process.  

From figures 3.28-3.30 it appears that, given equivalent time, increased temperature leads to 

increased levels of unbound iron, increased color (above and beyond the control) and an increased rate 

of sucrose hydrolysis (inversion).  Curiously, as the applied iron dosage is increased, the residual iron in 

the juice decreases. This implies that it is removed with the mud. As the temperature is increased the 

residual iron in the juice increases, and with it the rate of inversion. It is not known if the iron is a direct 

variable upon which the inversion rate is dependent. 

The rate of inversion exceeds that which would normally be estimated as a result of pH and 

temperature alone (Vukov, 1965; Schaffler, 1987). The ratio of the observed to calculated 

(observed/calculated) inversion is given in table 3.9. The behavior of the observed inversion came closer 

to ”ideal” as both iron dosage and temperature were increased. Because the pH decreased when FeCl3 is 

added, this may be explained by some mechanism which ceases to function at very low pH, below 

which, classical inversion predominates. At very low pH, Fenton-type chemistry is slow. This may be 

attributed to the increased stability of H2O2 at acidic pH. At lower iron dosages, and thus higher pH, it is 

possible to reach the range where Fenton-type reactions can occur at significant speed, namely pH = 

3.0-6.5. It is possible that the amount of Fe2+ produced from the oxidation of the phenolic compounds 

may reach a concentration which is sufficient to quench the radical species to yield, hydroxyl radical, 

Fe3+ and HO- (Halliwell and Gutteridge, 1990). At any rate, this implicates the iron, at lower temperatures 

and iron dosages, with an anomalous sucrose inversion. It also provides a possible explanation for why 



 

 

109 

 

the color increases when the mixtures containing excess Fe (at low pH) and/or treated with Fe while hot 

and then limed. 

Table 3.9. Ratio of the observed inversion (%) over that calculated using the Vukov-Schaffler model.  

  obs./calcd. obs./calcd. obs./calcd. 

T, °C: 
Fe3+ 500 
mg/kg: 

Fe3+ 1000 
mg/kg: 

Fe3+ 2000 
mg/kg: 

25 19679.71 3529.73 1182.82 

45 1407.91 184.53 56.97 

65 121.62 18.19 4.12 

75 45.01 7.63 1.35 

85 29.46 4.36 0.75 

95 13.99 3.01 0.73 

 

 It appears likely that at high temperatures, the rate of REDOX cycling of iron with the phenolic 

materials (in air) is greatly accelerated. This might act to deplete the antioxidant potential of the mixture 

until it is unable to quench the remaining free radicals which then proceed to react with the first 

available target.  

If this system was at very low pH, there would be an accumulated reservoir of Fe2+ and H2O2. If 

the pH is suddenly increased, as it would be during a liming procedure, the H2O2 would become more 

reactive and subject to decomposition catalyzed by Fe2+ (which would be present in relatively large 

amounts). This could result in an “avalanche” of HO.. The target of the hydroxyl radicals so produced 

may be phenol:iron and/or protein:iron complexes (or aggregates of the two). Destruction/denaturing 

of these complexes might release the iron and increase the load of soluble colored material (this would 

account for both the increase in color and iron). 

3.8. The Dependence of pH and Temperature on Autooxidation in the Presence of Air 
 

Because FeCl3 hydrolyzes to yield the hydrated ion and 3-4H+, the pH drops when it is added to 

water. Cane juice is more complex than water, and it has a buffering capacity that is not well 

characterized. To provide a plot for reference, a sample of juice was titrated against pH (electrode) using 

a FeCl3 solution.  
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We determined that under hot liming regimes, the juice would darken over time (minutes) on 

exposure to air. We supposed that the initial pH of the Fe3+ might contribute to the autooxidation in air 

which leads to the undesirable formation of color. To test this, FeCl3 was applied, at various levels of 

neutralization, to juice pre-equilibrated to 95 °C.  

3.8.1. Materials and Methods 

Using a manual burette, 50 g samples of raw juice were titrated vs pH using standardized HCl 

(Fisher, Certified 0.1010 N). 

 Mixtures were prepared via titration of a pre-determined quantity (to deliver 400 µg/g) of the 

FeCl3 solution which amounted to 500 µg/g Fe3+, on-sample. The pH of each of five mixtures was 

adjusted using 0.1N NaOH (See 3.1.1.) vs electrode to 3, 4, 5, 6 and 7±0.1, respectively. The appearance 

of the mixtures is seen in Figure 3.31.  

 

 

Figure 3.31. Ferric chloride adjusted to various pH. 

 Samples (50 g) of raw juice were equilibrated to temperature on a hot-plate with a 

thermocouple feedback loop. The set point was set to 95°C.  
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This was checked using a NIST (National Institute of Standards and Technology) certified digital 

thermometer. The juice was allowed to equilibrate to bath temperature for 5 minutes. The “neutralized” 

FeCl3 was added and allowed to react for 1 minute. The juices were then limed to pH 7.2, allowed to boil 

for 2 minutes and then 5 mg/mL of Magnafloc LT-340 (Ciba) anionic polyacrylamide was added. The 

samples were cooled and centrifuged at 3.6 kRPM for 10 minutes. 

Color was measured by ICUMSA method. Aliquots were removed from each sample, diluted 

with water and the carbohydrate profiles were assayed via HPLC-DRI. 

3.8.2. Results  

 

Figure 3.32. The effect of added FeCl3 on the pH of raw cane juice 

 The titration of juice with FeCl3 was straightforward and demonstrated two discrete linear 

ranges (pH 6.5-4.1-3.3). The inflection point was sharp at pH 4.1 (175 µg/mL Fe3+).  



 

 

Figure 3.33. The appearance of cane juice clarified hot with Fe

3.8.3. Conclusion/Discussion 

The behavior of pH relative to added FeCl

titration of acidified juice vs. standard alkali. There is only one inflection point, and it occurs upon 

addition of 175 µg/g of Fe3+. The titration is presented in 

variable. Adjustment of juice to equivalent pH (based on FeCl

clarification nor color. 

All resulting juices, except the Fe

color-wise on exposure to air; this is seen in 

compared with that observed when the iron is applied at ambient temperature.

juice to <2 with H3PO4 affected neither

optimal pH of the FeCl3 “reagent” for this “hot” treatment is 

Above this pH, color removal decreases and turbidity increases
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The appearance of cane juice clarified hot with Fe3+ (top) and then hot-limed (bottom).

The behavior of pH relative to added FeCl3 is not similar to that observed with the previous 

titration of acidified juice vs. standard alkali. There is only one inflection point, and it occurs upon 

. The titration is presented in figure 3.32. pH was not a discrete depen

of juice to equivalent pH (based on FeCl3 dosage) with HCl affected neither 

All resulting juices, except the Fe3+ at pH 1.5 (the native pH of the stock solution) 

wise on exposure to air; this is seen in figure 3.33, bottom. The color removal was 

when the iron is applied at ambient temperature. Adjusting the pH of raw 

affected neither color removal nor formation of floc. It is apparent that the 

for this “hot” treatment is approximately 3.  

color removal decreases and turbidity increases.  

 

limed (bottom). 

is not similar to that observed with the previous 

titration of acidified juice vs. standard alkali. There is only one inflection point, and it occurs upon 

. pH was not a discrete dependant 

ffected neither 

(the native pH of the stock solution) were stable 

. The color removal was marginal when 

Adjusting the pH of raw 

t is apparent that the 
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Below this point (pH = 1.5), in the presence of air, a reaction begins that causes a rapid increase in color. 

It also appears that essentially all of the Fe3+ is in the insoluble hydrated form (Fe(OH)3) when  

pH >4. The direct application of the colloidal Fe(OH)3 did not lead to the removal of color or phenolic 

species. It is supposed that the oxidative species must be in solution at the time of addition and that this 

cannot occur with FeCl3 solutions prepared at pH much greater than 3.  

A process using the ambient first-stage appeared to be superior, but may be subject to microbial 

depredation. It was supposed that the lower pH may mitigate this effect. Lower pH and faster 

clarification, such as that promised by fractal designs (Kearney, 2006), could help prevent loss of sucrose 

either to inversion or dextran.  

3.9.  Iron Mediated Clarification and Decolorization (FeMCaD). 

 In order to evaluate which compounds are either added or removed from raw juice during 

clarification, a composite raw juice was created (Raceland and Lafourche Sugar Mills).  

We discovered, using small spot-tests, that liming the iron-treated juice prior to heating it yields 

satisfactory clarification and color removal whilst eliminating the problem with stability in air. This set of 

tests evaluates the treatment of cane juice with iron and 15 µg/g PCS 3106 (Ecolab) cationic 

polyacrylamide, liming to pH 6.8-7.2, bringing to boil, adding 5 µg/g LT-340 Magnafloc (Ciba) anionic 

polyacrylamide and settling.  

3.9.1.  Materials and Methods 

 The raw juice was examined as-is. A 500 mL portion of composite raw juice was cold-limed to pH 

7 (litmus), rapidly brought to a vigorous boil (microwave oven on “high” for approximately four 

minutes), and then 5 µg/mL of LT-340 anionic polyelectrolyte was added. The resulting material was 

settled in a 1L Pyrex Imhoff cone. The settling rate was measured with a stopwatch and volumes were 

determined using a syringe. The mud was gravity filtered through coarse paper and the resulting filtrate 

was added to the decanted juice to yield a composite sample. 
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 The composite juice was treated, in triplicate (3 x 100 mL, 104 g), with 350 µg/g Fe3+ (450 µL of 

FeCl3 assayed at 49,000 mg/g Fe3+ via phenanthroline method) and 15 µg/g PCS-3106 (Ecolab) cationic 

polyamine flocculant. They were settled and the rates were measured in the same manner that was 

used for the hot-limed sample. As for the cold-limed sample, the mud was filtered and the resulting 

filtrate was added to the decanted juice. The stage-1 juice was then limed to pH 7 and brought to boil, 

treated with 5 µg/mL LT-340 (Ciba) anionic polyacrylamide and settled as before. All juice products were 

subject to assay via HPLC-DRI for content of sucrose, glucose and fructose, absorbance at 420 nm (pH = 

4.5, 7.0 and 8.5), and dry solids via refractometry. 

 The muds from each stage were decanted into tared centrifuge tubes and spun down at 4 kRPM 

for 10 min. The resulting pellets were suspended with deionized water and re-spun twice. The tubes 

were loosely capped and the water was removed in-vacuo (26” Hg, 50°C, overnight). The residue 

weights were determined by difference from the tare weight of the tube. Because the quantity of mud 

was very small when dry, the resulting muds were combined (stage 1 and 2 composites). 

 The composite mud samples were pulverized using a mortar and pestle. The powdered muds 

were extracted with 3 X 10 mL hexanes via sonication for 20 minutes. Each time, the solvent was 

removed with a pipette and transferred into a tared aluminum dish. The solvent was evaporated and an 

extract residue weight acquired by difference. This step was repeated using dichloromethane. Once 

weighed, the residues were dissolved in DCM, concentrated to 1mL using a N2 blow-down technique and 

analyzed via GC-MS. 

3.9.2.  Results 

 The analytical data for this test are given in table 3.10. Results from the GC-MS are Appendix E.  
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Table 3.10. Analytical parameters and composite data table for a bench-scale test of FeMCaD method. 

  Brix, Sucrose, Glucose, Fructose, color "Color", Decol., mud,  hexane, DCM, 

Sample: g/100g 
: 

Bx %: Bx %: Bx %: pH:  IU: %: mg/g:  mg/g:  mg/g: 

          4.52 6662 

Raw juice 13.52 84.91 2.72 6.10 6.96 9890 0.00 

8.50 14943 

  4.50 4301 

Cold-Lime 12.44 90.36 2.90 2.74 7.03 9507 3.87 3.517 0.072 0.021 

8.49 15942 

  4.49 6073 

stage 1 A 13.46 91.69 3.11 2.81 6.99 9209 6.88 

8.48 13263 

  4.51 4885 

stage 1 B 13.51 90.91 2.93 2.84 7.02 9342 5.54 

8.48 13456 

  4.52 4475 

stage 1 C 13.51 92.93 3.08 3.01 7.04 9758 1.33 9.721 0.064 0.046 

8.46 13787 

  4.53 1835 

stage 2 A 12.62 87.72 2.85 2.74 7.03 4025 59.30 

8.49 7994 

  4.52 2332 

stage 2 B 12.68 86.26 2.80 2.65 6.99 4724 52.23 

8.49 8563 

  4.52 2394 

stage 2 C 12.72 95.47 2.99 2.78 6.95 4559 53.90 0.003 0.015 0.007 

8.51 9102 

 

3.9.3. Conclusion/Discussion 

 The resulting juices, filtered through 1.2 µm cellulose acetate membranes with a coarse ashless 

paper pre-filter, are shown in figure 3.34, below. The degree of decolorization (Decol. %) was relative to 

the cold-limed control and for the set shown in figure 3.34, the FeMCaD either removed or prevented 

the addition of, on average, 57.88±3.7 % of the colored material. 

 Inversion did not appear to be a significant factor when the acidic, iron-laden juice was limed 

prior to heating. 

 



 

 

Figure 3.34. Raw juice, A, cold-limed juice, B, stage 1, C and FeMCaD, D, juice at process pH, top and pH 

7±0.1, bottom. 

 It is interesting to note that the stage

color when brought from the operational pH of 3.5

color (7.0). The stage-two juice does not exhibit this pH sensitivity and is stable to air. The example of 

this given in figure 3.35 demonstrates a color remo

was approximately 2 cm. 

It was concluded that the first stage of iron mediated clarification removed the bulk of the 

colored material, but left behind some pH sensitive iron

neutralization of pH. The colored materials thus formed were removed as colloidal Fe(OH)

situ during the liming stage. In other words, the method described using Fe

discrete mechanisms. 
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limed juice, B, stage 1, C and FeMCaD, D, juice at process pH, top and pH 

It is interesting to note that the stage-1 juice still contains pH sensitive material that increases in

color when brought from the operational pH of 3.5-4.0 to the pH used for determination of ICUMSA 

two juice does not exhibit this pH sensitivity and is stable to air. The example of 

demonstrates a color removal of approximately 60 per cent. The path

It was concluded that the first stage of iron mediated clarification removed the bulk of the 

colored material, but left behind some pH sensitive iron-complex(s) which polymerized upo

neutralization of pH. The colored materials thus formed were removed as colloidal Fe(OH)

In other words, the method described using Fe3+ incorporates at least two 

 

limed juice, B, stage 1, C and FeMCaD, D, juice at process pH, top and pH 

1 juice still contains pH sensitive material that increases in 

4.0 to the pH used for determination of ICUMSA 

two juice does not exhibit this pH sensitivity and is stable to air. The example of 

val of approximately 60 per cent. The path-length 

It was concluded that the first stage of iron mediated clarification removed the bulk of the 

complex(s) which polymerized upon 

neutralization of pH. The colored materials thus formed were removed as colloidal Fe(OH)3, formed in-

incorporates at least two 
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Figure 3.35. Clarified cane juice produced via a two-stage iron mediated clarification and decolorization 

(FeMCaD) process, top and a cold-limed control, bottom at pH 4.5, 7.0 and 8.5. 

  

When acidic, the phenolics are oxidized by the soluble Fe3+ and react with the protein. If the protein 

reservoir is exceeded, which occurs much of the time due to the small stoichiometric ratio relative to 

CFA, some oxidized or conjugated material still exists. This material is then removed via Fe(OH)3  either 

by adsorption, coagulation, or both. The two-stage process yielded approximately 2.5-3.0 times more 

mud, on dry mass, than the cold-limed control. 

 The kinetics involved with the settling of the floc from lime is also quite different from that 

observed with the first stage of the iron process. The juice clarified with lime settles logarithmically, and 

the iron is removed sigmoidally. An example of this is given in figure 3.36 and suggests that the iron-

based system requires an induction period (~5 min) before large flocs form. At 20 minutes, the mud 

resulting from the iron-based process had settled to only ~83 % of that for lime.  
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Figure 3.36. Settling characteristics of the iron-based process compared with a cold-lime process. 

 As noted previously, the materials which can be discerned via GC-MS become more numerous 

during clarification. An overlay of the TICs from extracted muds (hot lime, stage1 and 2) is given in figure 

3.37. It should be noted that the FeMCaD removes significantly greater quantities of the policosanol and 

phytosterol components than hot liming.  The FeMCaD process was observed to remove (or otherwise 

convert to quinoid derivatives) many phenolic compounds while hot-liming appears to strip them from 

lignin and add them to solution. The selective isolation of the policosanal/sterol fraction may lead to the 

cost effective recovery of these value-added products. 
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Figure 3.37. GC-MS of extracts from hot-lime and stage 1 and 2 FeMCaD juice. 

3.10.  Stoichiometry and Hypothetical Mechanisms  

Previously, the stoichiometry of BSA to CFA was assessed. Here, we duplicated that test with 

tighter control and GPC (gel permeation chromatography) support.  From literature (SwissProt) we know 

that BSA contains 60 lysine residues, which, barring translational modification, can behave as 

nucleophiles with respect to oxidized quinoid species. In this test, Fe3+ and BSA are fixed. The objective 

was to elucidate a reasonable mechanism explaining how the phenolic compounds interact with BSA 

when in the presence of Fe3+. 

3.10.1.  The Stoichiometry of CFA and BSA in the Presence of Iron 

 The objective of this section is to attempt to establish the stoichiometry that exists between BSA 

and CFA:Fe3+ at steady-state. From this it should be possible to derive the nature and length of the 

bridges that appear to be made between protein molecules when irreversible coagulation occurs. 
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3.10.1.1. Materials and Methods 

 A solution was prepared with analytical grade sucrose (Fisher, ACS, 99.8% [α]D
25=+66.5°) and 18 

MΩ de-ionized water (Barnstead Nanopure with 0.2µm capsule filter) .  This solution contained 40 

g/100g (brix) and was standardized by refractometry (Bellingham and Stanley RFM340). 

Ferric chloride (Mallinckrodt, hexahydrate, 99.8%) solution was made with 18 MΩ, degassed 

and de-ionized water to contain 79,923 µg/g of Fe3+. This material was assayed via absorbance of the 

tris-o-phenanthroline complex at 510 nm. The solution so prepared was found to contain 49,232 µg/g of 

iron, 1.71 % of which was Fe2+. The difference was likely water taken up from humid air. 

Fraction V bovine serum albumin (BSA, Cohn fraction V, Sigma, 96-99%) was used as is to make 

up a solution to deliver 9.04E-8 mMol/µL (5853 µg/g) in de-ionized water. 

1M Acetate buffer was prepared from 18 MΩ de-ionized water and sodium acetate (Fisher, ACS, 

anhydrous, 99.4%); it was adjusted to pH 5.00±0.05 (Oakton 11 series with Ag/AgCl probe) using glacial 

acetic acid (Mallinkrodt, AR). 

3,4-dihydroxycinnamic acid (caffeic acid, CFA, Sigma, 99 %) was used as-is  to make a solution of 

4.95E-5 mMol/µL (8825 µg/g) in a degassed (26 ”Hg/sonication) matrix  consisting of ethanol (Aaper, 

absolute-200 pf) and water, 1:1. 

A 0.2M phosphate buffer solution (PBS) was prepared by dissolving NaH2PO4 (EM, GR, 99 %), 

9.36 g and Na2HPO4 (Baker, ACS, 99+ %), 32.73 g into 1 L (volumetric flask) of 18 MΩ de-ionized water.  

Eluent for gel permeation chromatography (GPC) was prepared using 250 mL of this solution and 17.53 g 

NaCl (Mallinckrodt, ACS, 100%) diluted to 1 L. The eluent contains PBS 50mMol and NaCl, 0.3M and   

pH= 7.0±0.1. This solution was degassed under vacuum (24” Hg) with sonication (Branson 5210) prior to 

use. 

The aforementioned materials were used to prepare a set of samples according to the matrix 

given in table 3.11.  
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The amount of BSA applied to each sample equates to 9.04E-5 mMol of protein or 5.42E-3 mMol of Nε-

NH2-lysine. Fe3+ is added at 5.65E-3 mMol, a slight excess over the BSA amino equivalent. Samples CFA 3 

and 7 (bold text) represent one and two equivalents of CFA, respectively.   

To 15 mL polyethylene centrifuge tubes was added, in this order: water, sucrose solution, BSA 

solution, CFA solution, AcONa buffer and, finally, FeCl3 solution. 

Table 3.11. Sample matrix 

Sample: BSA, µµµµL: 

FeCl3, 

µµµµL: 

AcONa, 

µµµµL: 
Sucr., 
40bx: CFA, µµµµL: 

water, 

µµµµL: 

Total, 

µµµµL: µµµµg/mL: 
CFA 

mMol: 

CFA 0 1000 22 125 2500 0 1353 5000 0.00 0.00000 

CFA 1 1000 22 125 2500 59 1294 5000 104 0.00289 

CFA 2 1000 22 125 2500 85 1268 5000 150 0.00416 

CFA 3 1000 22 125 2500 111 1242 5000 196 0.00544 

CFA 4 1000 22 125 2500 137 1216 5000 242 0.00671 

CFA 5 1000 22 125 2500 163 1190 5000 288 0.00798 

CFA 6 1000 22 125 2500 189 1164 5000 334 0.00926 

CFA 7 1000 22 125 2500 221 1132 5000 390 0.01083 

CFA 8 1000 22 125 2500 241 1112 5000 425 0.01181 

CFA 9 1000 22 125 2500 261 1092 5000 461 0.01278 

CFA 10 1000 22 125 2500 281 1072 5000 496 0.01376 

 

The samples were sealed and swirled (vortex mixer) to mix and allowed to stand at room 

temperature (24°C) for 10 minutes. The samples were centrifuged at 3.6 kRPM for 10 min.  

 The tubes were sampled and analyzed via GPC. The operational parameters for the GPC are 

given in table 3.12. The instrument was standardized (figure 3.38) for molecular weight using (6.5 kDa), 

carbonic anhydrase (29 kDA) and BSA (66.4 kDa) via absorbance at 280 nm.  

 A quantitative calibration, in figure 3.39, was made using a mixed standard containing BSA and 

CFA. Since only one wavelength is available at a time, 330 nm was chosen because it is an absorbance 

maxima for caffeic acid. BSA has a very small absorbance at this wavelength, so it was thought that 

quantitation could be made using the DRI. 
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Table 3.12. GPC parameters  

Pump Waters 510 

Detector 1 Thermo Differential Refractive Index (DRI), 45°C 

Detector 2 Applied Biosystems  UV-VIS, 330 nm 

Detector hold-up time 1 minute, DRI to UV-VIS 

Column Shodex Protein KW-903, 300mm X 4.2 mm(ID), 5µm particles 

Column Heater 40°C 

Eluent 50mMol phosphate buffer, pH 7.00±0.05 and NaCl, 0.3 M 

Degasser Perkin Elmer, Vacuum 

Flow 1.0 mL/min 

Autosampler BioRad AS3500 

Acquisition/run-time Dionex ACI, Dionex Peaknet 5.2, 30 min 

6.5 kDa, Aprotinin, min. 16.17 

29 kDa, Carbonic anhydrase, min. 12.53 

66.4 kDa, BSA, min. 9.45 

Quant. BSA, monomer at 7.29 min. 491, 978, 1949 µg/g, RF= 1.12E-3, R
2
 =0.995 

Quant. CFA, 15.02 min 115, 203, 397 µg/g, RF= 1.26E-5, R
2
 =0.997 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38. Molecular weight calibration; ABS 280 nm. 
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Figure 3.39. Curves used for quantitation. 

3.10.1.2. Results 

 As seen in Figure 3.40A, the samples appear to be identical, with the exception of the color of 

the increasing amount of CFA. Upon the addition of the iron, it was immediately noted that samples 

containing 2 BSA equivalents (1.1E-2 mMol) of CFA precipitated immediately. This was not obvious 

without inspection against a bright light source, so the samples in figure 3.40B were centrifuged. The 

precipitation of colored material in figure 3.40C is striking and increases with the amount of added CFA. 

Further, upon standing sealed for three days, all samples containing at least 1 BSA equivalent (5.4E-3 

mMol) of BSA precipitated completely. The precipitate pellets in Figure 3.40D appear smaller because 

the mixtures were re-centrifuged to settle the fluffy flocs which had formed.  

 In order to determine when the system “saturates” which should be evident as a lack of CFA 

consumption, it was decided to test a second set of samples with higher concentrations of CFA. It was 

hoped that, when coupled with figures describing the external free Lys-amino groups, that this figure 

could be used to calculate an approximate chain length or degree of polymerization (Xn). 

The samples shown in figure 3.40C were analyzed via GPC. The plots acquired using the DRI 

were not used because the BSA rapidly fell below our limit of quantitation. Further, the sucrose and 

buffer created an immense smear across much of the chromatogram. 
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Figure 3.40. Addition of iron and centrifugation of model samples; 148 and 375 µg/mL CFA correspond 

to CFA 3 and 7.  

This smear appeared to be consistent for all samples. The results from these plots were not used. The 

UV-VIS plots taken at 330 nm were useful. The absorbance of the BSA at 330 nm was too small to give a 

response, but the CFA was linear across all concentrations used here. The following results were derived 

from the absorbance plots and were based on the quantities of CFA detected. 

 Under the conditions specified in table 3.11, caffeic acid had a retention time (or elution volume 

at 1 mL/min) of 14.68±0.04 minutes.  

A response factor (amount/area) was used for quantification; this value was 6.022E-05±4.7%. The CFA 

detected versus the amount applied is plotted in figure 3.41. The points at 200, 390, 568, 780, 992, and 

1204 µg/mL represent 1.0, 2.0, 3.0, 4.0, 5.1 and 6.2 BSA (60 * LYS) equivalents, respectively. 
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Figure 3.41. CFA detected relative to the initially amount (blue) and the percent of the initial amount 

(red). BSA Equivalents are marked with dotted vertical black lines. 

 The results in figure 3.41 appear to be rather puzzling. It is indicated that the CFA detected 

increases until some critical point and then drops off, even though the amount of CFA added to each 

sample is increasing. Later, after three BSA equivalents, the CFA levels begin to increase relative to the 

amount applied. In order to more clearly understand what is happening, the same data is plotted in 

terms of the amount of CFA consumed (amount added – amount detected) relative to the dose. This is 

given in figure 3.41.   

The discrete peak in figure 3.41 reached maximum at 200 and was resolved at 500 µg/mL CFA. 

This is equal to 0.005 mMol and is very close to 1 Nε-lysine BSA equivalent (0.0054 mMol). It appears 

that the inflection point in consumption at the same point is in figure 3.42 is a real feature. 
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Figure 3.42.  Amount of CFA consumed vs that which was added.  

 At least two, simultaneous reactions were occurring. The first suggested a saturation effect and 

the second, polymerization. Note the plateau (steady state) and point of saturation at ~2000 mg/L CFA. 

 Between 7.971 and 8.333 BSA equivalents of CFA are needed before the rate of consumption 

stabilizes. Further, at approximately 14.5 equivalents are needed before the amount of CFA detected 

equals the amount that was applied.  

Upon examination of the stage-1 (acidic Fe3+) process under a dissecting microscope, it was 

found that the application of 6M urea completely failed to disrupt the floc, and the addition of EDTA 

caused only a marginal disassociation. Addition of o-phenanthroline caused the flocs to become larger 

and more robust. This is demonstrated in figure 3.43.  
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GC-MS of mixtures of juice and phenanthroline with and without Iron indicated that the ligand was 

either removed from solution or otherwise destroyed. 

 

Figure 3.43. FeMCaD trial in a juice droplet, 25X magnification. 

3.10.1.3. Conclusion/Discussion 

The plot in figure 3.41 suggests that there is a fast initial consumption of CFA which ends when 

~1 lys-BSA equivalent, or 0.05 mMol of CFA has been added. This suggests that the free sites are 

reacting/binding until saturation. Following this, there is a short induction period, possibly the 

accumulation of an undetectable intermediate, followed by a linear increase in consumption. This 

implies that either the residues added in the prior saturation step are reacting with further CFA and 

removing it from the bulk solution or the CFA is homopolymerizing. 

It appears from this data that first, the free Nε-amino-lysine groups are reacting with the 

phenolic species, probably in the quinone form. Then, the quinone end-groups are reacting further to 

extend phenolic chains outward. This continues until either, the CFA reservoir is exhausted and/or the 

chains extending from two separate proteins meet and couple.  

From the stoichiometry given in figure 3.42, where the maximum CFA consumed amounts to 

0.0343 mMol, it can be derived that the equivalence to BSA is approximately 380:1. On free amino-

groups this amounts to a ratio of 6:1. Since there appears to be, depending upon the cross-linker used, 

of 60 lysine residues, approximately 8-12 free lysine residues in BSA are able to crosslink though space 

(Huang, 2004).  We can approximate that the number of chains per protein is, on average, 10.  
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The CFA to amino group ratio then becomes 38:1. Dividing this figure by two, for two interacting protein 

molecules gives a bridge length or degree of polymerization of approximately 8. 

The failure of 6M urea to disrupt the floc tends to argue that little in the way of hydrogen 

bonding is responsible for the stability of the BSA:CFA aggregates. The very slight disruption observed 

when the aggregate was treated with EDTA indicates that some, but not all of the structure is likely 

dependent upon chelation of iron. The effect of added o-phenanthroline was unexpected. 

Rather than causing the material to disintegrate (at least partially) due to sequestration of any 

bound iron that might be structural, the addition of o-phenanthroline caused the flocs to become larger. 

Unsure of this result, we treated juice with “excess” o-phenanthroline with and without added FeCl3. 

These samples were analyzed via GC-MS and revealed a marked (>90%) removal of the ligand. In order 

to explain this, it was found that Cavalieri, et al (2002) had reported on the electrophilic addition of o-

quinone species to purine bases in DNA. The reaction involves the radical semiquinone and is functional 

over a relatively wide range of pH, including physiological. An adapted scheme is given in figure 3.44. 

 

Figure 3.44. Synthesis and reaction of an o-quinone with a purine base (Cavalieri, et al. 2002). 

 The scheme in figure 3.44 is in-line with what we have observed. Instead of using cyp 

(cytochrome P) 450, Fe3+ serves as the initial oxidant to yield the semiquinone which is subsequently 

subject to autooxidation via O2. The resulting quinone then reacts with the purine base to yield the 

adduct.  

 We suspect, but were unable to confirm that the o-phenanthroline was behaving in a similar 

way. Further, it is suspected that the compound, being difunctional, might be serving a crosslinking 

species. 
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It was noted that with cold liming, it might be possible to do both steps, sequentially, in one 

reactor. 

3.10.2. The Stoichiometry of CFA and Iron 

From the previous set of experiments, it was decided to review the dependence of the system 

on the quantity of iron used.  

3.10.2.1. Materials and Methods 

Tubes were made to contain BSA, 0.0052 mMol (LY –eq.) AcONa buffer, 0.125mMol, CFA, 0.0096 

mMol in 20 % sucrose(aq).  

  To each tube was added an increasing amount of FeCl3, in a range from 0 - 0.0565 mMol. The 

experiment, with CFA substrate (the samples without CFA contained water-to-balance), was structured 

as described in table 3.13.   

Table 3.13. Sample matrix 

Sample: BSA, µµµµL: 

FeCl3, 

µµµµL: 

AcONa, 

µµµµL: 
Sucr., 
40bx: CFA, µµµµL: 

water, 

µµµµL: 

Total, 

µµµµL: Fe, µ, µ, µ, µg/mL: mMol: 

CFA 0 1000 0 125 2500 220 1155 5000 0 0.0000 

CFA 1 1000 5 125 2500 220 1150 5000 79 0.0071 

CFA 2 1000 10 125 2500 220 1145 5000 158 0.0141 

CFA 3 1000 15 125 2500 220 1140 5000 237 0.0212 

CFA 4 1000 20 125 2500 220 1135 5000 316 0.0283 

CFA 5 1000 25 125 2500 220 1130 5000 395 0.0353 

CFA 6 1000 30 125 2500 220 1125 5000 474 0.0424 

CFA 7 1000 35 125 2500 220 1120 5000 552 0.0495 

CFA 8 1000 40 125 2500 220 1115 5000 631 0.0565 

 

3.10.2.2. Results 

Samples in figure 3.45 (A, BSA without CFA and B, BSA and CFA), below, containing 0.014-0.021 

mMol, correspond to dosages of 158 and 237 µg/mL Fe3+, respectively.  

The samples seen in figure 3.45 were scanned from 300-1100 nm using a Beckmann/Coulter DU-

800 spectrophotometer. It was thought that the samples not containing CFA would be used for 

background correction.  
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It appears, however, that the increase in absorption caused by the iron, or of some BSA:iron complex 

changes when CFA is included in the system. 

 

 

Figure 3.45. Model system with increasing amounts of iron. 

 

Seen in figure 3.46, the absorbance at 315 nm (near the second strong absorbance maxima for caffeic 

acid) decreases exponentially (ABS315 = 1.034e -180 Fe, R2 = 0.989) as iron is increased until the quantity 

exceeds that of CFA (0.01 mMol) by a factor of approximately 2.2. 

 When the quantity of iron exceeds 2.2 equivalents (on CFA) the peak at 315 begins to return and 

increases in a linear fashion (ABS315 = 33.52FemMol – 0.683, R2 = 0.990) until a Fe:CFA ratio of 4.4:1 exists. 

At this point, it appears that the increased absorbance at 315 nm heads toward an asymptotic value 

somewhere between 0.80 and 1.00 AU, which corresponds with the original CFA dose. 
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Figure 3.46. The absorbance at 315 nm vs Fe3+ of samples with (red) and without (blue) CFA and the 

difference (green). 

3.10.2.3. Conclusion/Discussion 

 The optimum quantity of iron was re-confirmed to be between 150-350 µg/g (237 µg/g was 

optimal) and the correct molar ratio of Fe3+ to BSA appears to be 4.08. The point of saturation, where 

free iron appears is twice that, when the ratio is ~8.15 (474 µg/g). 

The dashed line in figure 3.46 illustrates that the background absorbance of the Fe3+:BSA 

mixtures disappears completely, and consistently (∆ABS315control = -0.5073±0.084) when CFA is present at 

the tested dose and iron is present at a 2.2:1 ratio. Prior to the establishment of this ratio, ∆ABS 

increases (y = 2898.x2 - 138.6x + 0.999, R² = 0.997) with Fe3+ dose which suggests that it is being bound. 
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Figure 3.47. UV and VIS absorbing products from BSA:CFA when iron dosage exceeds 0.02 mMol. 

  

 The amount of “re-appearing” CFA that is not accounted for via background correction 

originated from product(s) which evolve when Fe3+ exceeds 0.02 mMol. The traces in figure 3.47 

demonstrate the evolution of absorbance at 315 and 694, which overlap and elevate the baseline. These 

absorbance bands may arise from conjugated compounds, such as phenol:quinone adducts and iron 

semiquinone complexes, respectively. 
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3.10.3. Inhibition of Coagulation/Flocculation of BSA by Surrogate Amines 

The involvement of the BSA amino groups is consistent with our observations. If we assume that 

this is true, then we can suppose that the reaction of the protein-bound Nε-lysine groups should be 

relatively slow due to the steric bulk of the macromolecule. Smaller, kinetically favored amines should 

react with the quinone species at a greater rate than those attached to the protein. In order to test this, 

the much smaller amines, L-lysine and 3-aminopropanol, were added to a model system. If the protein 

amino groups are involved, then the addition of a smaller, more soluble amine should retard, or inhibit 

altogether, precipitation of the phenol:protein aggregates.  

3.10.3.1. Materials and Methods 

 The samples were prepared as before (see tables 3.11, 3.13), but now were made to contain a 

gradient of either L-Lysine (Sigma) or 3-amino-1-propanol (Sigma Aldrich) along with the BSA. BSA, CFA 

and Fe3+ were added at 0.0053, 0.010 and 0.031 mMol, respectively. The samples were centrifuged (3.6 

kRPM, 10 min) after incubation at ambient temperature (24 °C) for 10 minutes. The centrifugation was 

repeated after 24 hr had elapsed. A control was made in either case which contained only the inhibiting 

amine at 1 BSA Lysine equivalent or 0.0053 mMol. 

3.10.3.2. Results 

For both experimental series, the samples containing only the inhibiting amine yielded 

precipitate first. The volume of precipitate was smaller than for those samples also containing BSA. The 

samples fortified with lysine demonstrated a break-point between 0.0037 and 0.0046 mMol. This was 

not observed with 3-aminopropanol. Both sets exhibited complete precipitation after 24 hr.  

3.10.3.3. Conclusion/Discussion 

 The samples containing the lysine gradient precipitated immediately between 0.0037 and 

0.0046 mMol. The quantity of precipitate in the control without protein was <1/2 of that observed in the 

other samples.  
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This was attributed to the formation of phenol:amine aggregates that were not as bulky as the protein 

equivalent. Rather than inhibiting the aggregation, the lysine made it more efficient.  

The samples containing lysine appeared to precipitate at approximately twice the rate as those 

containing 3-amino-1-propanol. At present, we suspect that this was observed because lysine is an α, ε 

diamine which can participate in cross-linking reactions to trigger, rather than inhibit, precipitation of 

the aggregate material. 

 The samples containing 3-aminopropanol improved only subtly across the concentration 

gradient. We suspect that inhibition was taking place, but that the “capped” protein was also unstable in 

solution. It was supposed that the 2-amino-1-propanol was reacting with the phenolics and bridging 

some, but not all, of the protein reversibly via hydrogen bonding.  

 

Figure 3.48. Inhibition of protein:phenol coupling in the presence of a more reactive amine.  
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3.11.  Pilot Tests 

  This work describes the pilot-scale test of the iron mediated clarification and decolorization 

(FeMCaD) method using two reactors. The method is inexpensive and yields product juice with less color 

than conventional hot-liming. The bench-scale (15 mL – 1L) experiments, described previously, were 

scaled to 152 L. The pilot was operated in both pulsed and continuous modes at Raceland Raw Sugar 

Corp. during the 2007 crop season. 

3.11.1. Two-Reactor Configuration 

At bench scale, up to 70% of the colorant material entering the mill in the cane juice can be 

removed using this method. Exploration of the clarification mechanism with modeled juice and syrup 

revealed that four components, protein, phenolic compounds, carboxylic acid salts, and iron were 

required. The quantities of each of these components, except iron, are in the range found in cane juice.  

 It was noted during the bench scale trials that, although the decolorization continues to improve 

as iron levels are increased (up to a point), the settling rates decrease and mud-pack volume increases. 

This can be seen, for juice settled for 20 minutes, in figure 3.49 where less juice recovered equates to a 

greater volume of mud. In the laboratory, we can centrifuge or filter the juice in order to measure the 

color. 

Because this is impossible to do in the mill, it was decided that dosing to 150-200 mg/L to provide a 

decolorization of up to 50% would be our practical limit. 

 The aim of this testing was to evaluate the overall color removal which is possible both in batch 

(single-tank of juice dosed at once) and continuous modes of operation (steady-state with in-line 

addition of chemicals). 
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Figure 3.49. Increase of mud volume witnessed when increasing iron dosages beyond 200 mg/L. 

 Briefly, the two-reactor or “dual clarification” method involves: 

1. Concomitant treatment of raw juice with Fe3+ at approximately 150 mg/L and a cationic polyacrylamide 

flocculant applied at 10-15 mg/L at ambient temperature. 

 

2. Settling of this mixture to yield “stage-1 juice”. 

3. Stage 1 juice is limed “cold” to pH 7 and rapidly heated to boil. 

4. To this is added up to 5 mg/L conventional anionic flocculant and the mixture is settled to provide a 

decolorized, “stage-2” juice. 

 

3.11.1.1. Batch Tests 

The clarifier was operated in batch mode. 
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A fixed quantity of raw juice was bolus-dosed with FeCl3 and cationic polyacrylamide to give the 

desired concentrations of Fe3+and flocculant. The color removal and settling characteristics were noted.  

3.11.1.1.1. Materials and Methods 

The bench-scale process (4-14 mL) was scaled-up, using a pilot-scale settling-clarifier 

constructed to hold approximately 40 gallons (151.6 L) of juice and was designed to operate 

continuously at two gal/min (7.58 L/min). The clarifier was used to test the efficacy of the two-reactor 

iron-mediated decolorization (FeMCaD) technology which was developed from this research. The set up 

used for this work can be seen in figure 3.50. 

 

Figure 3.50. Pilot clarification module tested at Raceland (2007 campaign). 

FeCl3
.6H2O was applied directly as shipped (55 gal, 38.4 % w/w, water purification grade, 

Harcros Chemicals) using a small peristaltic pump.  



 

 

Ecolab PCS 3106 cationic polyacrylamide (supplied as a solution containing 60% polymer) was 

likewise added from a solution diluted to 5100 

 In the batch tests, the amount of iron added was 

50, 100, 150 and 200 mg/L in 40 gallons (152 L) of raw juice. 

and treated juice were taken simultaneously. The incoming juice was cold

(microwave, high, 4 min.), treated with 5 mg/g LT

iron-treated sample was cold-limed to pH 6.8

measured by ICUMSA method.   

3.11.1.1.2. Results 

 

Figure 3.51. 152 L batch tests with incremental amounts of Fe
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Ecolab PCS 3106 cationic polyacrylamide (supplied as a solution containing 60% polymer) was 

likewise added from a solution diluted to 5100 µg/g polymer. 

In the batch tests, the amount of iron added was bolus-dosed and was incremented from 0 to 

0 and 200 mg/L in 40 gallons (152 L) of raw juice. Samples of the incoming (untreated) juice 

and treated juice were taken simultaneously. The incoming juice was cold-limed and rapidly boiled 

(microwave, high, 4 min.), treated with 5 mg/g LT-340 (Ciba) anionic polyacrylamide then settled. The 

limed to pH 6.8-7.1, brought to boil, and treated with LT-

152 L batch tests with incremental amounts of Fe3+.  CTRL samples were cold limed.

Ecolab PCS 3106 cationic polyacrylamide (supplied as a solution containing 60% polymer) was 

incremented from 0 to 

Samples of the incoming (untreated) juice 

limed and rapidly boiled 

nic polyacrylamide then settled. The 

-340. Color was 

 

CTRL samples were cold limed. 
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It was found that the color (ICUMSA) reduction was dependent on amount of iron applied. This 

relationship appears to follow the following empirical equation, where x is the amount of iron added in 

mg/L. Color removal appeared asymptotic at 50 % when iron was applied at 200 µg/g on juice. 

                        Eqn. 3.1. 

� � 35289���.�� 

A chart displaying the removal, relative to a control taken simultaneously for each iron dosage is 

given in figure 3.51.  

3.11.1.1.3. Conclusion/Discussion 

The overall color reduction, versus raw juice clarified by cold-liming (control) was approximately 

50% when the iron was applied at 150-200 mg/L. When applied iron exceeded this amount, the settling 

rate decreased. Thus, a dosage of 150 mg/L of iron was chosen for the test where the clarifier would be 

operated continuously. 

The results were consistent with those achievable in the lab with a nominal average color 

removal of ~50%. It was noted that ~1/2 of the iron was required to achieve the same result with very 

fresh juice. This was attributed to state of the protein (unfrozen, etc.) relative to that observed in the 

laboratory. 

3.11.1.2. Continuous Test 

 For this test, the clarifier was run under flow with continuous dose of iron and cationic 

polyacrylamide until steady state (a clear and static liquid:solid boundary with a bulk solution 

composition that remained more-or-less the same) was reached. Then, the juice produced was cold-

limed and the color was assayed relative to controls, as before. The settling characteristics were noted. 

3.11.1.2.1. Materials and Methods 

The clarifier was brought to steady-state; this took approximately one hour.  The 40 gallon 

(151.6 L) vessel was fed raw juice at 2.04 gallons per minute (gpm, 7.7 L/min).  
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Iron and cationic flocculant were dosed to supply 150 and 15 mg/L, respectively. The stage-1 juice was 

taken off at a rate of 1.8 gpm (6.7 L/min) and mud was removed via a progressive-cavity pump at a rate 

of 0.26 gpm (1.0 L/min). Samples were taken with controls as previously described. Color was measured 

by ICUMSA method, and dry solids were determined via gravimetry. 

3.11.1.2.2. Results 

After 45 minutes, the mud had a settled volume of 26 mL mud/100 mL of raw juice. This volume 

of mud contained approximately 1.2 g of dry solids (~4.6 g solid/100g mud). When run at bench scale, 

different juice (acquired on a day outside of the pilot test) from Raceland results very similar to those 

observed with the pulsed tests. This figure should vary somewhat, depending upon location, cane and 

the conditions prevailing through harvest, transport, storage and milling. 

3.11.1.2.3. Conclusion/Discussion 

The clarifier operated without incident for approximately 6hr (~734 gallons). During this time, 

the juice was collected, along with a concomitant control, limed, brought to boil using a microwave, 

flocced (5 mg/L anionic flocculant) and settled to yield stage-2 juice which was assayed for color. The 

juice examined in this way exhibited a level of decolorization which was comparable to that observed in 

the batch test at equivalent dosage.  

It was concluded that the two-reactor method scales well and can provide a clarified juice with ~50% 

less color than that achievable with normal hot or cold-liming procedures. 

During the course of this test it was realized that heating the juice after liming (cold liming) was 

quite effective. This was contrary to prior tests, involving the heating then liming of the juice (hot-liming) 

which led to juice which colored on exposure to air. Likewise, it was noted that cationic flocculant allows 

for higher dosages of iron to be used whilst still achieving reasonable mud settling rates.  From this, it 

was found that a single reactor process, negating the need for a second clarifier, is possible. 



 

 

We have found that if cane juice is treated with iron, cationic flocculant and cold

50% of the color in the juice can be removed at the clarifier. The liming step 

juice is heated. If this order is reversed

air.  The discovery of this fact led to the single reactor process which negates the need to install a 

second clarifier. 

3.12. A “Dual-Stage” Process Using One Reactor

A one-reactor process has been tested at bench scale. Briefly, the one

1. Concomitant treatment of raw juice with Iron (III) at approximately 150 mg/L and a polyamine 

cationic flocculant at 10-15 mg/L at ambient temperature.

 

2. The juice is limed “cold” to 

3. To this is added up to 5 mg/L conventional anionic flocculant and the mixture is settled to provide a 

decolorized juice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.52. Decolorization of raw juice using the one
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We have found that if cane juice is treated with iron, cationic flocculant and cold

50% of the color in the juice can be removed at the clarifier. The liming step must take place 

juice is heated. If this order is reversed, the sucrose inverts and the juice will form color on contact with 

air.  The discovery of this fact led to the single reactor process which negates the need to install a 

Stage” Process Using One Reactor 

s has been tested at bench scale. Briefly, the one-reactor process entails:

Concomitant treatment of raw juice with Iron (III) at approximately 150 mg/L and a polyamine 

15 mg/L at ambient temperature. 

 pH 7 and rapidly heated to flash. 

To this is added up to 5 mg/L conventional anionic flocculant and the mixture is settled to provide a 

Decolorization of raw juice using the one-pot process at bench scale. 

We have found that if cane juice is treated with iron, cationic flocculant and cold-limed, up to 

take place before the 

, the sucrose inverts and the juice will form color on contact with 

air.  The discovery of this fact led to the single reactor process which negates the need to install a 

process entails: 

Concomitant treatment of raw juice with Iron (III) at approximately 150 mg/L and a polyamine 

To this is added up to 5 mg/L conventional anionic flocculant and the mixture is settled to provide a 
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The decolorization potential, in figure 3.52, is similar to that seen in the 2-pot process, but 

suffers, as in figure 3.49, from similar issues with settling when operated at iron concentrations greater 

than 200 mg/L. 

It appears, from the preliminary work, that the one-reactor process can yield results that are 

comparable to (decolorization, settling characteristics, etc. ) those achieved using the two-reactor 

process.  

We expect that this process could be implemented in a cold-liming mill with only the costs involved 

being chemicals, dosing pumps, and plumbing.  

In order for this procedure to work at a mill, iron must be dosed at the appropriate rate, 

concurrently with a cationic flocculant. This can be done at the level of the first mill. Immediately 

thereafter, the treated juice can be limed and clarified normally.  A minimum time of about a minute (it 

can be less, but we have observed that this time is safe) is required after iron addition, prior to liming.  

3.12.1. Conclusion/Discussion 

 Iron (150-200 mg/mL) was found to remove approximately 50% of the color that entered the 

mill with the cane. The method produced reproducible results with mixed juices acquired from three 

Louisiana mills and the dose-response was consistent from batch-to-batch. 

 At present the iron mediated process is embodied in the form of two processes. The first is a 

two-stage process which involves the treatment of the juice with the iron and a cationic flocculant 

(cationic polyamine, 10-15 mg/L, active ingredient) and settling the material at ambient temperature. 

The resulting juice is decanted and cold-limed (it was found that hot-liming led to a rapid increase in 

both residual iron and color). This method has been tested at pilot scale (40 gal at 2 gpm) and yielded 

results similar to those seen in the more controlled laboratory-scale tests. 

 The second embodiment of the technology has only been tested at laboratory-scale, and can be 

done in one reactor.  
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This method has more promise for use in a sugar milling operation because it will necessitate far fewer 

expensive changes in the factory configuration. In this case, the juice, at ambient temperature, is treated 

with the iron and cationic agent and allowed to react for 1-5 minutes. To this is added lime to pH 7-8. If 

additional removal of turbidity is desired, the juice can be over-limed to pH 8 and titrated to pH 7 using 

H3PO4. The limed juice is rapidly heated to boiling and is treated with up to 5 mg/L anionic flocculant. 

This material is then settled and decanted normally. The only changes to a cold-liming mill involve the 

addition of dosing pumps and, perhaps a static mixer. 
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CHAPTER 4. SUMMARY 

A new sugar refinery is to be built in Louisiana. Cooperation of the refinery with the raw sugar 

producers would help to insure the liquidity of the industry in the global market by providing a profit 

share on refined sugar (0.41-0.43 $/lb). Because raw sugar is produced at roughly 0.01$/lb (0.19-0.24 

$/lb) over cost of production, there is significant motivation for the raw producers to participate. 

However, the refinery could import less expensive raw sugar from abroad (Brazil, Mexico, etc.). There 

must be a net increase in profit in order for this cooperative to work. The required incentive can be 

derived from the cost of fuel. 

When cane is processed, the juice is removed from it leaving behind a lignocellulosic material 

called “bagasse”. The production of raw sugar from cane is a “green” process which is powered by 

combusting approximately 2/3 of the daily yield of bagasse. The remaining third is retained, and might 

find use in ventures involving the production of cellulosic ethanol. The price of the bagasse is rolled into 

the price of cane. Since this price is established on the theoretically recoverable sugar (TRS, lb sugar/ton 

cane), the fuel is free. 

The refinery is powered using natural gas and the associated cost can offset up to 2/3 of the 

profit on refined sugar. A refinery is an industrial decolorizer. If the raw producer can make sugar with 

less color, then the refinery will need to burn less gas to operate. Therefore, for a cooperative venture 

to be profitable, the feed sugar must be of significantly less color. The threshold color reduction of at 

least 50 % (1500-700 IU) relative to conventional raw sugar would be required. 

To do this, the raw producer could use carbon, ion exchange resins or ultrafiltration at the front 

end on either clarified juice or syrup. The initial and operational expenses associated with these 

operations are prohibitive unless a high-value specialty product is made (eg. Organic sugar). 

Alternatively, the factory could install affining stations which mingle the crystals in a solution pre-

saturated with sugar. This serves to wash the mother liquor (molasses) off of the crystals.  
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Affination has been found to remove ~50% of the color. These stations cost approximately 30 million 

USD each, and this tends to increase the interest in new alternatives. 

Toward this, we investigated the “color” found in the various stages of sugar processing. First, 

we observed that the choice of 420 nm for measurement of color at pH 7.0 was not arbitrary. Titration 

with standard alkali and subsequent UV-Vis spectrophotometry revealed that “color” was a shoulder 

with a λmax = ~400 nm on a much larger (order of magnitude) peak at λmax = ~370 nm. This range 9400-

560nm), unlike the UV portion of the continuum, was pH sensitive and increased with the application of 

alkali. Relative to the peak at 400 nm, 420 nm exhibits an absorbance low enough to, in many cases, 

avoid dilution which contributes to the practical nature of this measurement. It was interesting to note 

that, all else equal, the ratio of color with iron over that without, relative to mMol of NaOH, was linear 

between pH 5.5 and 8.5. The equation defining this line was (R2 = 0.9970): 

                       Eqn. 4.1. 

43.1587.892 +⋅−= mMol
IU

IUFe  

A linear range in color was also demarcated between pH 5.5 and 8.5; it is given here: 

                       Eqn. 4.2. 

24.99.1114 −⋅= mMolpH  

 It was concluded that an indicator value determined between these 5.5 and 8.5 would bear 

more theoretical significance than convention dictates, namely, the ratio of absorbance at 420 nm 

measured at pH 8.5 and 4. 

The bulk of the color in sugar processing results either from reactions between carbohydrates 

alone (caramels) or with amines (melanoidin) via the Maillard-type reactions or, it enters the mill with 

the cane. Analysis via GC-MS of juice, syrup, molasses and raw sugar indicate that a many phenolic 

compounds enter in juice and survive processing to arrive in raw sugar. Very small amounts survive the 

refining process.  
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Focus was placed on the clarification process, and it was found that the clarification of hot juice 

(100-104 °C) with lime causes an increase in the number and quantity of phenolic compounds present in 

the juice. Because the majority of the phenolic compounds were from the monolignol class (coumaryl, 

guacyl or syringyl derivatives of benzoic or cinnamic acid), we concluded that alkaline delignification of 

the fine vegetable matter (bagacillo) present in the juice was causative. Compounds of this sort, 

specifically the 1,4 and 3,4-dihydroxybenzenoid derivatives, once oxidized, can become quinones. 

Because it is widely known to be correlated with color, and was explained by Riffer (1986), iron 

has been regarded as anathema in sugar industry circles. Nevertheless, we considered that trivalent iron 

may be used to cause the polyphenols to polymerize to an extant sufficient to remove them via 

precipitation. 

 Because current research regarding decolorization dealt with clarified juice or syrup, we tested 

Fe3+, applied as FeCl3.6H2O on those first. We observed a 4-6 fold increase in color, which justified the 

industry-wide fear of iron. The next day, we observed that the color had decreased and there was a 

brown precipitate. Our idea was valid, but the time required was so long that microbial destruction 

and/or inversion of sucrose would be irreconcilable. Why did this not work? 

It occurred to us that amines could react with quinones, and that protein is made up, in part, by 

the amino acid L-lysine (LYS). An α,ε-diaminocarboxylic acid, LYS, when part of a protein, will have a 

tethered (ε) amino group which could function as a nucleophile through space. Clarification with lime 

and heat removes the protein from the cane juice. We supposed that quinones could serve as cross-

linking agents with respect to the free-amino functionality that is intrinsic to cane albumin.  

Without protein to rapidly increase the molecular mass of the aggregates, the addition of Fe3+ triggered 

the immediate formation of green-black, water-soluble phenol:iron complexes which eventually (hours) 

polymerized. We supposed that Fe3+ would increase the color of any product downstream from the 

clarifier. It is also why we applied Fe3+ to raw juice, protein and all. 
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 Raw juice turned black when 500 µg/g Fe3+ was applied. The black material soon coagulated, 

and settled slowly. Upon centrifugation, ~90 % of the color appeared to have been removed. After hot-

liming to pH 6.8-7.2, the material regained (indicator value) some color, but, final decolorization was 

observed to be ~70%. When tested on three raw juices, representing three Louisiana mills, we 

demonstrated a decrease in color that was dose responsive. The response when the juice was measured 

at pH = 7 is described here (R2=0.9703):                                  

                                              Eqn. 4.3. 

( ) 313.58/ln935.19,% 3 −⋅= + mLgFetionDecoloriza µ  

The relation given above applied well to iron doses of 500 µg/mL, or less. When more than this 

was applied, a large increase in color occurred. This color thus formed resembled that observed when 

iron was applied to clarified juice or syrup. A similar effect was observed after liming when raw juice was 

treated with iron while hot. The color formation was observed to occur upon exposure to air. More 

troubling is that when the color forming reactions were taking place, sucrose was being inverted at a 

rate exceeding that predicted by the Vukov-Schaffler model.  

It was noted that the accelerated effect was more profound at the lower temperatures and that 

it tended to agree more with the model at higher temperatures and with higher iron doses.  The 

behavior correlated well with the power law described here. The results are given in table 4.1. 

                                    Eqn. 4.4. 

 

Table 4.1. Inversion in FeMCaD models relative to the Vukov-Schaffler approximation. 

Where: x = T °C 

  

    Fe
3+µµµµg/mL: a: y: R

2
: 

500 1.00E+12 5.529 0.9931 

1000 2.00E+11 5.468 0.9966 

2000 2.00E+11 5.912 0.9886 

 

y

predicted

observed xa
I

I −⋅=
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 At low temperature (25°C), the model predicts that very little inversion should be taking place 

during the allotted 12 minutes. Thus, even a very small amount of inversion will provide a very large 

ratio. We suppose that the tendency toward ideal (model-like) behavior at higher temperature involves 

the point at which “true” inversion becomes the dominant reaction. The tendency for this to happen 

faster, when observed at equivalent temperature, is likely dependant upon iron dosage because H+, 

which is catalytic, results from hydrolysis of the FeCl3. The nature of the reaction which leads to the 

destruction of sucrose at low temperature is unknown, and would be an interesting subject of further 

research. 

 It became clear that there were factors at work in the juice that we did not understand. In order 

to gain control of this system, so that it could be made industrially useful, we modeled the system. 

Drawing on the findings of the cited works and our study using GC-MS, we decided to use caffeic acid, 

the prototype 3,4-dihydroxycinnamic acid found in cane as our phenolic surrogate. For protein, we 

chose to use BSA (Cohn fraction 5) because it is well characterized and readily available in purified form. 

 Our initial tests took place in water, and it was found that BSA will precipitate when acted upon 

by FeCl3. HCl when added to equivalent pH (4.5) failed to elicit the same response. With CFA in the 

system, the BSA precipitated, but it had turned black. CFA, like chlorogenic acid (chlorogenic means 

“giving birth to green”) treated with Fe3+ yields a green complex.  

We suspected that the CFA was reacting with the protein in some way. We suspected that the amine 

functionality from lysine (εNH2) was involved.  Because L-glutamine is known to exist in cane juice, we 

tested mixtures of CFA and GLN with FeCl3. 

 These samples containing the amino acid also turned black. When spectrophotometrically 

titrated against FeCl3, a peak arose at ~ 300 nm at the expense of a peak at ~230 nm. The peak at 300 

nm disappeared at the expense of a broad elevation of absorbance in the visible range when larger 

doses of iron were added.  
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A large increase in absorbance at 210 nm was attributed to an increase in carbonyl (quinone) 

functionalty. We attributed these observations to the reaction of quinones with amines either via Schiff-

base imine formation with the quinone carbonyls or oxidative addition to the quinoid rings. The 

disappearance of the peak at higher iron dosage was attributed to polymerization of the quinoid 

materials to yield larger more highly conjugated structures. 

 When tested in sucrose solutions ranging from 10 – 50 g/100g, Fe3+ failed to precipitate BSA 

regardless of whether or not CFA was present. Other than the color of the FeCl3 solution, there was very 

little, if any change in color. It was found that the salts of small carboxylic acids triggered the immediate 

formation of colored precipitate. The counter ion was found to be of no consequence as the NH4
+ salt of 

acetic acid was found to be equivalent to the Na+ form. The free acids were not effective. There was a 

dependence of chain length of the acid to the amount which was required, and it decreased with 

increased carbon number. This dependence followed a power law and is given here (R2 = 0.9930, Cn = 

carbon number for n-alkanoic acids): 

                        Eqn. 4.5. 

45.0

/ 686.0 −⋅= CneCarboxylat Lg  

Because of increasing molecular weight, the relation in mM is parabolic (R2 = 0.9989): 

                        Eqn. 4.6. 

0349.00046.00008.0 2 +⋅−⋅= CnCneCarboxylat mMol  

 From the parabolic relation, it appears that the propionic acid salts are the most effective 

relative to the mass required. This is offset by the fact that there is a large amount of acetate present in 

cane juice.  

 It was noted that the quantity of sodium oxalate required to trigger precipitation was almost 

exactly ½ of that for sodium acetate.  
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Because the counter ion was found to be unimportant (if monovalent), we concluded that the 

carboxylate moiety was required, and that oxalate was behaving as two equivalents. It is not known if 

the oxalate was bridging. 

 The mechanism is unknown, but because these carboxylates are too small to form micelles, we 

are concluding that the mechanism involved may be related to ligand assisted phase transfer. This 

hypothesis would provide an excellent starting point for future work in this area. Further, oxalate is 

present in juice, along with other di and tri-carboxylic acids. It would be of interest to test the sodium 

forms of these acids for efficacy.  

 Now that we had models that worked, we were able to test them. The model was optimized in 

terms of the quantities of each component, BSA, CFA, acetate and iron that provided both adequate 

clarification and removal of color. The optimum quantities were determined via spectrophotometry and 

were compiled into table. 3.8. The quantities of each component corresponded with those normally 

found in cane juice, the optimized quantity of Fe3+ (~225 mg/mL or 0.05 mM) was routinely removed 60-

70 % of the color from raw juice. Our model was found to be representative of juice with respect to 

flocculation with hydrolyzing iron salts. 

 Residual iron decreases the quality of raw sugar and can cause the sugar to degrade more 

rapidly over time. We tested the juices and muds resulting from the iron and lime stages of the two-step 

process. We determined that significant iron is removed in the initial stage, which suggest some removal 

via complex formation.  

The bulk of the residual iron was removed during the liming stage where it was removed as the insoluble 

hydroxide. Significant decolorization, presumably via different mechanisms occurred at each stage.  

 A plateau in the iron recovered from stage 1 mud occurred at dosages exceeding 500 mg/kg. 

This was attributed to a “saturation” of the existing chelating material. The iron began to increase in the 

juice at the point directly following the plateau. This is consistent with the previous conclusion.   
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It appears that the Fe3+:CFA equivalence is ~2.2:1. Binding of Fe3+ directly to the protein was also 

observed, and this appears to be optimal at a molar ratio totaling  ~4.1:1. Free iron began to appear at 

ratios exceeding 8.2:1.  

 An ancillary experiment that was not detailed in this work, demonstrated that while both caffeic 

and prototcatechuic (3,4-dihydroxybenzoic) acids rapidly led to floc formation in optimized systems, 

catechol (2-hydroxyphenol) did not. Upon examination of these samples after 24 hr, it became apparent 

that the catechol did yield precipitate, but that it took far longer—hours rather than seconds. This 

information, coupled with the equivalents on iron, pH of the solutions, knowledge of “capping” that was 

derived though the inhibition experiments helped us to imagine the theoretical structure in figure 4.1, 

which is one of many, that fits the observations that we have made. 

 From this figure we imagine that Fe3+ complexed with, in this case, CFA and facilitated the 

oxidation via O2 to yield the electrophilic quinone which was attacked by the Nε-amino group from 

lysine. The total Fe bound and needed for single electron transfers adds up to very nearly 4:1 on CFA 

which is very close to the observed 3.8-4.1. Alternatively, the radical from the semiquinone delocalized 

to the 6 position and participated in the bond formation. In this way, the protein is first “capped”. It is 

unknown if catechol caps the protein and then gets “stuck there” relying on a dilute concentration of 

monomer to grow.  

 The initial “caps” then add further CFA which is held in place by salicylate-type bonding. This 

stage should be reversible, but, at room temperature, was too fast to test. Held in place by the Fe3+, 

which simultaneously facilitated the autooxidation, the addition of the new CFA residue occurs.  

Growth would continue in this way until the CFA is exhausted, the iron is totally bound, the chains from 

opposing proteins meet or otherwise terminate, and/or the capping oligos become large enough to 

precipitate the aggregate. 
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It is not known, but is possible, that metal assisted hydroxylation (via Fe3+/O2) of tyrosine (also, 

possibly, tryptophan) residues might occur. This would explain some of the deviations in the 

stoichiometry that we were unable to account for. That is, on-board, reactive phenolic species could 

lead to inter-chain bonding by creating a quinone to serve as an attachment point. 

 

Figure 4.1. A theoretical aggregate intermediate. 

Once they are exposed to lime, the fate of the materials formed during treatment with iron is 

unknown. What is the partition coefficient for iron between the phenolic and proteinaceous fractions? 

That would be an excellent question to answer with further work.  

 It appears that the iron mediated stage involves reversible, but fast, coagulation via charge 

neutralization. Irreversible bridging resulted from crosslinking of protein via phenol-oligomers grown in-

situ which were flocked via a combination of electrostatic and covalent bridging with cationic 

polyacrylamide (c-PAC).  
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The coagulation/flocculation which occurred both before and after addition of c-PAC was non-

reversible. Addition of further c-PAC did not re-disperse the flocs and increased floc volume. When 

centrifuged, higher c-PAC dosages facilitated decolorization in the higher ranges (60-80%), but the 

suspensions did not settle, unassisted, within a useful frame of time (20 min or less). Because this limits 

the decolorization potential to ~50%, doses of c-PAC greater than 10-15 µg/mL should be avoided.  

 Changing pH did not disrupt the stage-one flocks. They survived pH 2-11 intact. Because the 

equilibria governing imine formation can be reversed by changing pH, this tends to rule out a Schiff-only 

covalent mechanism. Whether a reduction occurs stabilizing the imine as the amine, which would 

render it stable to changes in pH is unknown. A study testing mixtures of various antioxidants with pre-

formed imino compounds in the presence of Fe3+ and then looking for formation of the corresponding 

amines would be interesting. 

At this time we have a two stage system which can remove up to 70% of the colored material 

which enters the mill with the cane. The method is chemically inexpensive, but the implementation of a 

two-stage process includes the addition of a second clarifier which will make implementation difficult or 

impossible. The method works well, but it was found that treatment of heated juice (hot-liming 

protocol) with iron led to the initation of a reaction sequence which rapidly increases the color when the 

juice is exposed to air. This effect was attributed to the quantity of free iron detected in the juice. 

Concisely, at higher temperatures, a smaller quantity of iron will contribute a similar destructive 

influence as an excessive dose added at lower temperature. When this condition occurs, color is formed 

and destruction of sucrose results at a rate exceeding that predicted by calculation. 

 Experiments conducted to understand why this was happening with the hot-liming system 

system revealed that the addition of iron to juice at ambient temperature (19-30°C) and then liming (a 

cold-liming protocol) produced a decolorized juice which was stable on exposure to air. Neither added 

color nor inversion resulted when the iron was applied to cold juice, limed then heated. 
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The stoichiometry of CFA to BSA demonstrates a rapid saturation where nearly all available 

amino groups are “capped” via reaction with quinone species. Consumption of CFA increases in a linear 

fashion which suggests polymerization. The steady state consumption of CFA just prior to termination, 

which is abrupt, indicates that each protein would have, attached to it, ~10 phenolic chains of DP = ~8. 

Aside from this, there are at minimum, four components required for this process to work. 

There must be soluble iron in 3+ oxidation state, some protein (or amino-substituted polymer; both 

chitosan and poly-allylamine work very well as protein substitutes), phenolic material, and carboxylic 

acid salt. The ranges required are 150-300 mg/g, 0.04-0.15g/100g, 60-150mg/g and 0.075-0.125mM, 

respectively. 

It appears that cane protein behaves differently than BSA in diluted syrup matrices, requiring up 

to an order of magnitude more iron to achieve the same result. Work is on going to characterize gross 

cane protein such that a greater understanding of this system can be derived.  

Methods geared toward the measurement of antioxidant activity are severely hampered by the 

fact that the samples contain iron, and if the samples also contain phenolics, then some of that iron is 

Fe2+. Fe2+ quenches, via single electron transfer, most stable free radicals that are customarily used as 

probes (such as 1,1’-diphenyl-2-picrylhydrazyl). Effort toward the development of a viable assay for 

these matrices is underway and the initial results look promising.  

It has been demonstrated (Godshall, et al. 2006; Zossi, et al. 2009) that what works on the 

bench is not always equally effective when brought to industrial scales. The iron mediated decolorizing 

and clarification (FeMCaD) process is the embodiment of a cold-liming procedure involving a 

pretreatment of the juice with FeCl3 (less effective, Fe2(SO4)3). On the bench, with centrifugation, it can 

provide a juice with ~70 % less color than a hot-limed control. When left to settling only, with the aid of 

a cationic polyacrylamide, the method reliably delivers a 50 % reduction in color while settling within 20 

minutes. 
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 The method was scaled up to 40 gallons (151.6 L) using a specially constructed pilot scale 

settling clarifier that was operated in both pulsed and continuous (2 gpm, 7.6 L/min) modes with 

increasing iron dosages. It was demonstrated that the color removal, relative to a cold-limed (removal 

vs. hot-limed juice would appear to be greater) control was dependant upon the dosage of iron (unlike 

PAC where color removal was proportional to the amount of flocculant; Godsall et al, 2006). The 

dependence is given by equation 3.1. The color removal reached a maximum near 50%. When run in 

continous mode, at a fixed iron concentration of 150 mg/L, the color removal was again ~50 %, relative 

to a cold-lime control. If this translates into sugar with less color, this process is competive with affining. 

We concluded that the FeMCaD process can be run at intermediate scale with efficacy similar to 

that seen on the bench. We have finished the addition of a tube-sheet heat exchanger, hold up tank and 

additional dosing pumps to our pilot clarifier. We intend to run this module for several weeks, in a sugar 

mill, to determine how well color removal from juice translates to sugar. 

Methods, like this one, meeting the benchmark of 50% color removal, can extend the time 

between regeneration cycles in decolorizer modules using carbon and/or ion exchange. Since the profit 

achievable from sugar is a balance between the raw sugar quality and the cost of the fuel needed to 

refine it, it is our intent to fully develop this new technology so that it can be eventually applied to the 

economic benefit and stability of our state. 
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APPENDIX A: FUNDAMENTALS OF CARBOHYDRATE CHEMISTRY 

A.1. Nomenclature 

 Carbohydrates are naturally occurring polyols. They are usually denoted via the end group, 

carbon number, and the suffix “ose”. Thus, carbohydrates containing six carbons are referred to as 

“hexoses”. Further, the functionalization of the end group also adds a prefix for aldehydes and ketones, 

specifically, “aldo-“ or “keto-“. It follows then that a six carbon moiety may be referred to as either an 

aldo or ketohexose. The numbering system for a simple aldohexose, glucose, is given in figure A.1. 

Individual carbohydrate residues are also referred to as “monosaccharides”. 

 

 

 

 

 

Figure A.1.   The numbering system used for monosaccharides. 

The family tree of aldoses is given in figure A.2. Frequently, the keto form is differentiated by 

adding “-ulose” onto the name. Examples of this include dextrose (an aldohexose, glucose) and levulose 

(a ketohexose, fructose). This brings us into dealing with the stereochemistry of carbohydrates, 

beginning with L and D nomenclature. 

 Note the red, blue and green highlighted positions in figure A.3. By convention, sugars and 

amino acids are referred to as either D or L (dextro or levorotatory). If the hydroxyl group attached to 

the penultimate carbon (the fifth position) is on the left side of the fisher projection, the carbohydrate is 

designated as L. If the 5-hydroxyl is on the right, it will be called a D sugar. Although this nomenclature 

does in no way predict the optical rotation of the molecule, it does refer, structurally, to the progenitor 

carbohydrate, D-glyceraldehyde.  



 

 

A clear example of this, which will be described in detail later, can be observed when glucose (D

glucopyranose) and fructose (D-fr uctofuranose) are polarized. The D

and the D-fructose is levorotatory (negative). Thes

Ingold-Prelog priority rules where R (

Figure A.2. The D-family of aldoses  (Pigman, 1957).

 Nearly all naturally occurring carbohydrates are D in 

amino acids where the L form predominates in nature). Interpreting carbohydrate structures, like the 

Fisher projections given in figure A.2

structures are interpreted, the most common are given in 

projection of the aldohexose, glucose. As shown in 

assumed to be facing out of the plane of the page. Staggering the 

form C and bending it around through a structure similar to 

the most stable “chair form”, is the standard used most today. The green centers in 

represent anomeric carbons. 
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A clear example of this, which will be described in detail later, can be observed when glucose (D

uctofuranose) are polarized. The D-glucose is dextrorotatory (positive) 

fructose is levorotatory (negative). These conventions are not interchangeable with the Cahn

Prelog priority rules where R (rectis) and S (sinister) are most  commonly used. 

family of aldoses  (Pigman, 1957). 

Nearly all naturally occurring carbohydrates are D in configuration (the opposite is true for 

amino acids where the L form predominates in nature). Interpreting carbohydrate structures, like the 

figure A.2 can be difficult. In order to more clearly define how these 

nterpreted, the most common are given in figure A.3. The structure  A is the Fisher 

projection of the aldohexose, glucose. As shown in B, all of the bonds given in the Fisher projection are 

assumed to be facing out of the plane of the page. Staggering the bonds into the sterically favorable 

and bending it around through a structure similar to D which leads to the Haworth structure, 

the most stable “chair form”, is the standard used most today. The green centers in figure

A clear example of this, which will be described in detail later, can be observed when glucose (D-

glucose is dextrorotatory (positive) 

e conventions are not interchangeable with the Cahn-

 

 

configuration (the opposite is true for 

amino acids where the L form predominates in nature). Interpreting carbohydrate structures, like the 

can be difficult. In order to more clearly define how these 

is the Fisher 

, all of the bonds given in the Fisher projection are 

bonds into the sterically favorable 

which leads to the Haworth structure, E. F, 

figure A.3  
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Figure A.3. Fisher projection and the literal interpretation, A and B; the bent form of B, C the Haworth 

structure, E and the chair form, F. 

 

A.2. Mutarotation 

Also known as saccharose or, simply “sugar”, sucrose (α-D-glucopyranosyl-(1�2)-β-D-

fructofuranoside) is a dissacharide composed of  α-D-glucose and β-D-fructose. They are connected by a 

1�2 glycosidic bond. This bond serves to protect the hemiacetal of both residues which prevents the 

carbohydrate from behaving as a reductant. The reducing potential of a carbohydrate results from the 

linear form which bears an aldehyde group. The linear form is usually present only in small amounts at 

equilibrium and is due to an isomerism about the anomeric carbon which known as mutarotation. 

Mutarotation is the process whereby a carbohydrate achieves anomeric equilibrium. That is, β-

D-glucose in aqueous solution will experience opening of the hemiacetal. The resulting open chain 

aldehyde then acts as an electrophile whereby nucleophilic attack by the 5-OH (for a hexose) may occur. 

When this happens, the hydroxylic nucleophile has the opportunity to add to either side of the carbonyl. 

This results in the formation of two anomeric forms, α or β. The general mechanism for this is given 

below in figure A.4. 
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Figure A.4. Mutarotation of glucose 

At neutral pH and room temperature (25°C), mutarotation of glucose is slow or, in the case of 

fructose, non-existent.  Mutarotation is accelerated by increased temperature. This is why fructose is 

only used as a sweetener in cold-beverages; when heated, the predominant furanoid anomeric form is 

much less sweet. Acidic pH, when cold tends to favor mutarotation which yields the sweeter pyranose 

forms (Danisco, 2005). Evidence of increased carbonyl, and hence open-chain form were given using 

fourier transform infrared (FTIR) spectroscopy (Rodriguez-Saona, 2005).  It was demonstrated that an 

exponential increase in open-chain fructose begins at 20°C and increases with temperature. Fructose 

displays anomalous mutarotation resulting from the isomerization of the keto-form which is the rate 

determining step. This is because, unlike glucose (which is either open-chain or, predominantly α (35%) 

or β (64%) pyranose), fructose has appreciable amounts of each of 5 possible anomeric forms (open-

chain, α,β furanose (0.76 and 28-32%) and pyranose (4 and 68 %))  at equilibrium. This can be sped up 

geometrically via alkaline catalysis (Budavari, 1989). Because heating a reducing sugar can lead to 

evolution of acidic products, and acid can catalyze mutarotation (Ballash and Robertson, 1972), heat will 

cause “self-catalysis” to occur. Arrhenius kinetics are obeyed.  
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The anomeric forms are not strictly equivalent and the proportions are influenced by steric 

hindrance and hydrogen bonding of the intermediates (which differ by the arrangement of hydroxyl 

groups which is peculiar to the carbohydrate). Ergo, one form usually predominates. Because the optical 

rotation of the α and β anomer are not necessarily the same, the quantities of each, from pure 

carbohydrate can be approximated using polarimetry. The optical rotation attributed to each anomer, 

for both glucose and fructose, and of their mixtures at equilibrium are given in Appendix B, which deals 

with inversion. 

A.3. Glycosidic Bonding 

When one or more monosaccharides are connected to one another, we say that there is 

glycosidic bond between them. The naming convention is based upon the number of units (residues) 

that are connected. For example, two units gives a disaccharide, four a tetrasaccharide and so-on. 

Generally, chains of more than 4 residues and less than 10 are called oligosaccharides (National Library 

of Medicine, 2008). Larger chains are called polysaccharides and can, in nature, easily exceed 40,000 kDa 

in molecular weight. 

The name of the saccharide is derived from the loci of bonding as well and even apparently 

small differences can have profound structural (and hence, chemical) consequences. For example, 

consider the disaccharides maltose and cellobiose. Both are constructed from two glucose residues, and 

both are connected with 1�4 glycosidic bonds. A glycosidic bond results when the hemiacetal of one 

saccharide condenses with a hydroxyl of another. This makes the glycosidic bond and completes the  

acetal.   

Because a carbohydrate exists in a constant state of tautomeric flux, even mild conditions will 

likely damage the saccharide before it has the opportunity to form a glycosidic bond. Some of the 

transformations include dehydration via the E1 mechanism and fragmentation  via reverse (or retro) 

aldol (Kenner and Richards, 1954).  
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Under either condition, the small, highly reactive product molecules (usually carbonyl species) can 

condense to form a multitude of conjugated products. 

Reactions like these, coupled with the difficulties associated with the selective modification, 

protection and deprotection (Cumpstey, 2008) of any particular hydroxyl group make modifications of 

carbohydrates especially challenging. Usually, many steps (Sato 2007) using expensive and/or harsh 

reagents are needed. Even so, there is frequently a complex mixture of products which then leads to a 

laborious (often “impossible”) task of separating a useful quantity of the desired product. Because of 

this, enzymes, such as α-1�4 glucosyltransferase or Sucrose 6-phosphate-synthase (Lunn, 2002) are 

usually required to effect a reliably specific modification of a carbohydrate with reasonable yield. Even 

using enzymes, the molecular weight of the product so obtained can be polydisperse (Van den Ende, 

1996) which can make product isolation tedious and expensive (Day and Chung 2007). It follows that the 

naming conventions, particularly IUPAC (International Union for Pure and Applied Chemistry), while 

systematic, are complex. Practitioners have defined a unique nomenclature to help mitigate this 

Usually, for naming purposes, the residue with carbonyl involvement is chosen to be the starting 

point. Following the numbering convention given in figure A.1, maltose (diglucose) would be called, by 

IUPAC rules, “6-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl)-oxy-oxane-2,3,4-triol”. 

The stereochemistry of each glucose residue would be given as 2R, 3S, 4R, 5R. Assignment of the R/S 

stereochemical descriptors for glucose is given in figure A.5. Since this sort of nomenclature leads one 

toward names which increase in complexity with the number of residues, the carbohydrate Chemist 

would call this molecule, more simply, “D-glucopyranosyl -(1�4)-α- glucopyranoside”. In practice, the 

linking atom need not necessarily be oxygen; the linkage atom is sometimes also given. Thus, maltose 

can also be called 4-O-α-D-glucopyranosyl glucose.  Abbreviations are also used, and following this 

“short-hand” maltose is also known as “D-Glc(1�4)-α-D-Glc”. This sort of linkage is also frequently 

referred to as an “α(1�4)” linkage. 
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Figure A.5. Assignment of stereochemistry to a carbohydrate exemplified using α-D-glucose. 

Maltose and cellobiose are constitutional isomers differing only with the anomerism about the 

glycosidic bond. For maltose, this bond is α and for cellobiose, it is β. This yields two structures which 

differ greatly in how they are conformed in space; this is exemplified in figure A.6.  

 

Figure A.6. Maltose and cellobiose. 

The spatial conformation effects the inter and intramolecular hydrogen bonding options which effect 

crystallinity and hence, the solubility and reactivity of the molecule.  
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While maltose and cellobiose are both hydrolytically cleaved by acid, more profound differences are 

seen when additional residues are added to yield, from maltose or cellobiose, starch and cellulose, 

respectively.  

 A principle component of starch, amylose is an α(1�4 ) polyglucan which self-orders via intra-

chain hydrogen bonding into discrete helices (Zhang et al, 2006) whilst cellulose is linear (Saxena and 

Brown, 2005) and crystalline due to inter-chain hydrogen bonding (Bochek, 2003). Examples of this 

phenomenon are given in figure A.7, exemplified using α and β(1�4) octasaccharides. This explains why 

amylose is begrudgingly soluble in water whilst cellulose, for which plants would be thankful, if they 

could, is not. 

  

 

Figure A.7. Conformation of maltooctaose, α and cellooctaose, β. Note the helical conformation of the 

α form. The figures were drawn using ChemBioDraw Ultra v.11, imported into Chem3D Pro v.11 and the 

energy was minimized using MM2 ab-initio to 300 K. The resulting files were given a black background, 

spliced, labeled and cropped using Adobe Photoshop CS. 
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A.3.1. Sucrose: αααα-D-glucopyranosyl-((((1����2)-ββββ-D-fructofuranose 

 The main carbohydrate of commerce is known as “(2R,3S,4R,5R)-2-(3S,4R,5R)-3,4-dihydroxy-2,5-

bis(hydroxymethyl)tetrahydrofuran-2-yloxy-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol”. More 

commonly referred to as “D-glucopyranosyl-(1�2)-β-D-fructofuranose”,  “saccharose”,  “sucrose” or 

simply “sugar”, this material serves , with high fructose corn syrup (HFCS) as a primary bulk sweetener. 

Sucrose  is used as the standard material for what is considered to be “sweet”. 

 Like maltose, sucrose is a disaccharide. Unlike maltose, it is composed of one residue each of D-

glucose and D-fructose. D-fructose or levulose, is the keto isomer of D-glucose and its formation via 

reversible isomerization is given here in figure A.8. The numbering and anomeric convention applied to 

furanoses differs from that used for the corresponding pyranoses.  For example, an anomeric hydroxyl 

pointing “down” is α for a pyranose and β for a furanose. Further, the first carbon on the hydroxymethyl 

group connected to the anomeric carbon is designated as 1. Thus, both a (1�2) furanoside and a (1�1) 

pyranoside would both be full acetals. 

 

Figure A.8. Isomerization glucose to fructose 

 

 The Isomerization of carbohydrates from aldo to keto form and vice-versa is frequently referred 

to as the Lobry de Bruyn-Alberda van Ekenstein rearrangement and an excellent review is presented by 

Angyal (2001). This reaction can be accelerated via acidic or alkaline catalysis, although the alkaline 

route is both faster and more synthetically useful. The rearrangement can be pseudo-catalyzed by the 

presence of amino species, including amino acids. This can segue into the Maillard reaction sequence. 
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 Sucrose is an α(1�2) glycoside, and as such, has a completed acetal. Sugars like this are not 

reducing. That is, an oxidizer added to a mixture containing sucrose will not be reduced. This is the basis 

for many time-tested assays for “reducing sugar”. These assays include, but are not limited to Fehling’s 

(Fehling, 1849) and Benedict’s (Benedict, 1908) copper reagents and the popular dinitrosalicylic acid 

assay (Sumner and Graham, 1921). The ability of some carbohydrates to be reducing is also principle 

behind why electrochemical methods (PAD/HPLC) are widely used and it is the reason why maltose 

[α(1�4)]will reduce Tollins reagent (Solomons, 1994) and sucrose [α(1�2)] will not. The structure of 

sucrose is given in Appendix B. 

 Another fine example, yet another disaccharide containing two D-glucosyl units, trehalose, is 

isolated from mushrooms, and is thus, frequently called “mushroom sugar” (Pigman, 1957). Like 

sucrose, it is non-reducing. Trehalose is an α(1�1) sugar and is thus useful as a unique, non-reducing  

material that is useful as an internal standard for sucrose in quantitative methods using HPLC (ICUMSA, 

2007). The structure of trehalose and the REDOX chemistry typical of a reducing sugar is given in figure 

A.9 where the green oxygen atoms represent complete acetals that are non-reducing. Red atoms 

indicate incomplete acetals that are capable of opening via equilibrium or acid/base catalysis to the 

aldehyde which can be oxidized by an added reagent.  Any carbohydrate end group that is not protected 

in acetal form will be referred to as a “reducing sugar”. 

Either route is further accelerated by the addition of an amine “pseudocatalyst” (acts to 

minimize the needed Ea, but is eventually consumed to yield reaction products). Rearrangements of this 

sort are called, depending upon whether the starting carbohydrate is an aldose or a ketose, the Amadori 

or Heyns rearrangement, respectively (Wrodnigg and Eder, 2001). These reactions lead to the Maillard 

reaction sequence which is discussed in chapter 2. 
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Figure A.9. Structure-activity relationship between sugars which are reducing and those that are not 

(top) and an example, below. 
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APPENDIX B. INVERSION 

B.1. Definition and Measurement 

Sucrose “inversion” is a hydrolysis reaction whereby one equivalent of sugar is made to yield 

one equivalent each of glucose and fructose. This reaction is given in figure 2, below: 

 

Figure B.1. Hydrolytic “inversion” of sucrose; note optical rotation (Budavari, 1989; Pigman, 1957). 

From figure B.1, it can be seen that the hydrolysis of sucrose yields a mixture with a negative 

net contribution, viz. (glucose [α]20
D= +52.5°) + (fructose [α]20

D= -92°) = -39.5° to the optical rotation. 

This means that, when observed with a polarimeter, a mixture of sucrose and water while heated with 

some catalyst, viz. invertase or acid, will become progressively negative as time goes on. This change in 

the optical rotation from positive to negative is why sucrose hydrolysis is frequently called “inversion”. 

Since “inversion” is a process that destroys our product, and the conditions governing the 

phemonema are frequently encountered during routine processing of cane, a number of methods for 

estimating the magnitude of loss have been determined and have found wide use. Among these 

methods, the assembled tables of Stadler (Stadler, 1932, Honig, 1953) and mass balance approaches 

(Schaffler, et al., 1985) are popular. Unfortunately, regardless of the utility of the Stadler tables, there is 

no accommodation for the effect of sucrose concentration on the rate of inversion. The mass balance 

approach produces adequate results, but it requires that the compositional sugar analysis be known 

before-hand.  
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In answer to this, this work serves to outline the derivation of a method which can be used to 

approximate the amount of sucrose theoretically inverted under varied conditions of temperature, brix 

and pH whilst requiring no compositional information besides the material purity. 

The first detailed kinetic observation of sugar “inversion” via acid catalysis was made by 

Wilhelmy in 1850 (Wilhelmy, 1850). His work established that, at ambient temperature and with added 

acid, the concentration of sugar did not effect the rate of inversion. He did discover, however, that 

changes in the ambient temperature did effect inversion, but he did not endeavor to create a model. 

B.2. Dependence of temperature on the rate constant. 

The defining work in this area was performed by the Swedish scientist Svante’ Arrhenius in 1889 

(Arrhenius, 1889). Amongst many seminal works including the concept of ionic dissociation of salt(s) in 

solution, for which he was awarded a Nobel Prize in 1903 (Gadre, 2002), and the concept of “global 

warming”, his observations on inversion of cane sugar are most important to us. 

Arrhenius determined experimentally that increasing the temperature of the mixture by 10 K 

(Kelvin, or °C+273) resulted in a two-fold increase in the rate of inversion. Building on the work of Van’t 

Hoff (1884), he conceived of an energy barrier, called the “activation energy”. This activation energy or 

Ea describes the energy that need by introduced into a system in order to form an “activated complex”. 

Which way the equilibrium shifts depends on an independent “collision number”, A, which represents 

the probability that this activated complex will dissociate to form either products or reactants. From 

this, the Arrhenius equation was formulated, and was found to agree with the data sets provided by 

many contemporaries including Urech (1884) and Spohr (1888) (Giunta, 2003): 

                        Eqn. B.1. 
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  Where, 

    k = rate constant, mole/second 

    A=frequency constant, or collision number 

    R= gas constant, 8.314 J°K/mole 

    T= Temperature, °K 

    Ea=Activation energy, J/mole 

 

Ea, or the activation energy peculiar to sucrose has been experimentally observed by many, and 

a comprehensive table of values is given by Vukov (1965). From this table the average value of the Ea of 

sucrose is 25.92±0.74 kcal/mole (108.45 kJ/mole). Ea was found to be essentially constant within the 

temperature range of 20-130°C. 

Since Ea is constant for sucrose within the given temperature range, Vukov found it simpler to 

derive a decadic exponent that to calculate the values of the Arrhenius exponent continuously. As a 

result, for sucrose, the value for Ea/R just slightly forward of equilibrium is ~5670 (103.7536). Dividing this 

by the temperature in °K gives, 5670/T, the change in the rate constant relative to the temperature for 

systems composed of sucrose and water. 

B.3. pH Definition and Measurement 

Fales and Morrell (1922) addressed the issue of catalysis of sucrose inversion with acid. In 

particular, they examined the effect of the thermodynamic H+ ion concentration or activity on the rate 

of inversion. They were able to support the prior findings of Jones and Lewis (   ) that even though the 

concentration of H+ ion was constant, the activity of the H+, aH+ (activity = [H+]γ, where γ is the activity 

coefficient, usually calculated using the extended Debye-Huckel equation) was not; it increased with 

added sucrose! 

Indeed, this phenomenon plagued earlier researchers including Ostwald and Arrhenius, both of 

whom conclude that the effect must be the result of the neutral salt effectively increasing the relative 

concentration of sucrose available for reaction (Fales and Morrell, 1922).  
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This problem exists today, and has been investigated by Eggleston et al (1996), who concluded that salts 

actually do increase the H+ ion concentration by cleavage of water to yield metal hydrate complexes and 

a H+ ions. The truth likely involves both effects, where salts on one hand, serve to augment or quench 

the H+ ion concentration and on the other where they effect the activity of those ions; it is possible, for 

example to add LiCl to HCl (pH=1.0) and observe a decrease in H+ ion concentration with a concomitant 

decrease in pH (McCarty and Vitz, 2006). Examples of this are given in table B.1, below with values 

obtained at The Audubon Sugar Institute (Madsen, 2002) verifying that the range of values is 

representative. 

Table B.1. Effect of salt addition on the pH of aqueous solutions. 

 

Salt:
a
 ∆pH/∆Cm :

a
 Cane Juice,  % 

solids:
b
 

KCl 
-0.10 as K2O, 1.31

14 

as K
+
 4.63

15
 

NaCl -0.20 As Na
+
 0.12

15
 

CaCl2 
-0.45 as CaO, 0.29

14 

as Ca
++ 

0.37
15
 

MgCl2 
-0.48 as MgO,0.28

14 

as Mg
++ 

0.24
15
 

Cl
-
 

n/a as Cl
-
 0.22

c14
 

as Cl
-
 1.19

15
 

SO4
2-
 

n/a as SO4
-2 

0.52
14 

as SO4
-2 

0.70
15 

PO4
3-
 

n/a as P2O5 0.40
14 

as PO4
3-
 0.39

15
 

Fe
3+ 

 

n/a Fe2O3 0.01
d14 

Fe2O3 0.008
17 

aMcCarty and Vitz, 2006, b14Chen and Meade, 1977, b15Madsen, 2002, b172006c, cClarified juice, dSyrup 

It is interesting to note that most of the salts given are not likely to increase the H+ ion 

concentration in solution, viz. by formation of complex aqua-cations. In fact, it is stated specifically for 

Mg2+, (MgCl2), that Mg(H2O)6
2+ is not acidic (Cotton, 1980). Why does a one molal (mole/kg or ~9.6% 

w/w) addition of MgCl2 to an aqueous solution reduce the pH by 0.48?  

Cations require significant water to become solvated. This leads to an overall reduction in the 

amount of water available for the solution of the existing H+ ions. This results in an increase in the 

reactivity or activity of the H+ ions.  
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2

2525 0017.0015.00339.0 pHpH
dT

dpH
−+−=

As for the augmentation of the H+ ion concentration, ions such as K+ or Mg2+ are not suitable alone, but 

in the presence of other cations such as Fe3+ and anions, viz. SO4
2-, can lead to significant H+ ion 

evolution (Nordstrom, et al., 2000): 

Fe3+ alone:    [Fe(H2O)6]
3+ = [Fe(H2O)6(OH)]2+ + H+ 

Fe3+, K+, and SO4
2-: 3Fe3+ + 2SO4

2- + K+ + 6H2O = Kfe3+
3(SO4)2(OH)2 + 6H+ 

The H+ ion activity of even simple solutions containing one or two species can be difficult to 

approach theoretically. Since cane juice contains multiple salts and likely hundreds of unknown non-

sugar components (and this composition varies constantly), a reliable mathematical approximation of H+ 

ion activity is practically impossible at this time. Theory derived for approaching this problem only 

applies to dilute solution (Grenthe and Wanner, 2000), viz. it involves extrapolation through zero 

concentration (ko, or the rate constant at infinite dilution). The current theory falls apart when 

concentrations approach what a sugar technologist would call “dilute”, viz. juice where the minimum 

concentration of solute would be ~10-15% w/w. In order to correct measured pH20 to true pH at 

operating conditions, an empirical approximation is required. 

In 1987, Schaffler (1987) explored the effects of temperature on the pH measured in cane juices. 

In this work, it was made clear that the pH used in the calculations must be the same as the operating 

pH for the results of Vukov’s approximation to be correct. Following this, Schaffler explored the pH 

values for cane juice at temperatures of 30-35, 50-55, and 80-85°C. These values were subject to 

regression analysis yielding a 2nd order polynomial equation approximating the change in pH relative to 

the instantaneous temperature. As such, it will eventually become parabolic yielding increasingly 

inaccurate results. This figure may only be used for pH in the range of 4.5-8.5.  This equation is given 

here; pH25 is the pH measured at 25°C: 

                       Eqn. B.2. 
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Now, this figure is used to calculate the pH at operating temperature: 

                       Eqn. B.3. 

 

 

B.4. Water and Inversion 

Vukov (1965) reasoned that, even though water is consumed 1:1 with sucrose, the overall effect 

on the water quantity was negligible. For example, 100g of a 50% brix (w/w) solution contains 50g each 

of water and sucrose, but the molar ratio is ~19:1 and an excess of water is virtually insured. This seems 

to be less true as concentration exceeds 60% w/w, the Norrish equation (Barbosa-Canovas, 2002), 

indicates that for sucrose, water activity falls off sharply at concentrations exceeding 60% w/w. The 

Norrish equation accounts for the measure of “free” water which is bound solvating the sucrose. 

For now, let’s call log10(ρ-c) or simply “W” the fraction of the composition that is water. W can 

be calculated by first using an equation which approximates the density of sucrose solutions at various 

levels of saturation. Although there are more rigorous (and slightly more accurate) approximations of 

sucrose solution density (Hugot, 1986; see Bubnik), the equation below approximates the density of 

sucrose solutions with fidelity sufficient for our needs (Lyle, 1957) while requiring that only the % dry 

solids and temperature (°C) be known. 

          Eqn. B.4. 

            

  

 

 Where: 

   ρ  = density, kg/m3 

   wDS=g dry solids/100g of material 

   T = Temperature, °C 
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Using this density, we can calculate the fraction of our material that is water:     

 

                       Eqn. B.5. 

  

 Where: 

   ρ  = density, g/cm3 
   bx = brix, g sugar/100g 

 

B.5. Assembly of Working Equations 

Parker (1970) derived an equation which enables the direct calculation of ka using temperature, 

pH, and concentration.Vukov (1965) assembles a nearly identical equation to approximate the rate 

constant of sucrose inversion under varying conditions of temperature, concentration, and pH. Vukov’s 

equation is given here. The differences with Parker’s equation are discussed afterward: 

 

                       Eqn. B.6. 

 

 Where: 

   ka= Rate constant, min-1 

   ku= Empirical constant, 16.91min-1 

   ρ= density of the solution, g/mL  

   c= solute, g/mL 

   T= Absolute temperature, °Kelvin 

   pH = -log10(aH+) 

 

Substituting in the previously derived decadic exponent, water fraction, and pH correction gives us: 

      

                       Eqn. B.7. 
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The equation derived by Parker differs in three respects, 1, ku is given as 15.30 rather than 16.91 

min-1, 2, the decadic expression is given as 5810/T rather than 5670/T, and 3, water fraction is given by 

the log10(water moles – sucrose moles) rather than log10(ρ-c). Described by Wittver (1984), this results in 

two equations both useful for pH ranges of 1-6.0, but for temperature ranges of 25-85°C (Parker) and 

20-130°C (Vukov). The broad temperature range of Vukov’s approximation appears most appropriate for 

our use, and most references shall be made accordingly.  

Although simpler to calculate by parts using a program such as Microsofttm Excel, the complete 

equation is given here:                     Eqn. B.8. 

 

 

Then we solve for ka:                     Eqn. B.9. 

 

Since we can now calculate the rate constant ka, we need to be able to express this in a practical form. 

Integrating the previous rate equation with respect to time yields an equation that approximates the 

proportion of original sucrose that has been “inverted”. This equation (Honig, 1953) is given here: 

                     Eqn. B.10. 

 

 Where: 

   I=fraction of sucrose inverted 

   c=concentration of sucrose at time t 

   co=Initial concentration of sucrose 

   e= base of natural logarithms, 2.718… 

   t=time, minutes 

 

The equation set we have derived here can be used to approximate the level of sucrose inversion 

relative to time.  
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APPENDIX D. ORIGIN OF LIME 
 

  CaO or “lime” is manufactured either via calcination (heating) of limestone or as a byproduct of 

the hydrolysis of calcium carbide (CaC2) to yield ethyne (acetylene). Ca(OH)2 can be produced on a small 

scale directly by the reaction of Ca° with water. The general reactions for the industrial preparation of 

Ca(OH)2 are given below (aWatkins, K.W., 1983; bChenier, P.J., 1992, cThermochemical data tables). 

 
 

  In either case, a large amount of energy goes into the preparation of CaO which is why hydrating 

it is a strongly exothermic process.  When hydrated, or “slaked”, CaO yields Ca(OH)2. The solution of 

Ca(OH)2 is an exothermic process, but much heat (-64.8 kJ/mol) was released when the CaO was slaked. 

This does not leave much free energy to accommodate solution; see below. Because of its low solubility 

in water at STP, the heat of solution is measured as the heat of neutralization which invokes the same 

ionization, principally: 
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APPENDIX E: GC-MS LIBRARY SEARCH RESULTS FOR EXTRACTS OF  

CANE JUICE and SUGAR 

E.1. Raw Juice Extracted with Dichloromethane; with 3-Phenylphenol Surrogate ($) 

Pk#         RT                Area%         Library/ID                                 Qual 
  1    5.698   0.21  Phenylethyl Alcohol                       94               

  2    6.666      0.26  2,3-dihydro-Benzofuran      87 

  5    8.583    1.35  3,4-dimethoxy- Phenol                  94 

  7   10.058   0.78  3,4,5-trimethoxy- Phenol               94               

  9   10.530    0.40  4-hydroxy-3,5-dimethoxy-Benzaldehyde     94               

10   10.862    3.95  [1,1'-Biphenyl]-3-ol    $                97              

11   10.932    0.64  p-Hydroxybiphenyl     $                  97 

12   11.107   1.96  4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol    97                                

15   12.547    3.06  n-Hexadecanoic acid                      99 

17  12.786    0.57  3,5-Dimethoxy-4-hydroxycinnamaldehyde      95            

20   13.654    0.54  (Z,Z)-9,12-Octadecadienoic acid        90 

21   13.677    1.24  (E)-9-Octadecenoic acid              99 

22   13.957    0.76  Hexadecanamide                           95 

23  15.309    5.35  (Z)-9-Octadecenamide                  99 

24 24.058    1.31  Trifluoroacetic acid, n-octadecyl  ester      91  

25   26.017    9.17  Hexadecyl-oxirane                     90 

26   26.570   15.73  Cyclooctacosane                          96  

30  27.812    7.99  Campesterol                              99      

31   27.952    2.92  Hexadecyl-oxirane                      90 

32   28.173   10.75  Stigmasterol                            96 

34   28.844   14.23  β-Sitosterol                         98 

  

E.2. Hot-Limed Juice Extracted with Dichloromethane; with 3-Phenylphenol Surrogate ($) 
 

Pk#         RT                Area%         Library/ID                                 Qual 
1    5.698    0.25  Phenylethyl Alcohol                      94 

  2    6.665    0.36  2,3-dihydro-benzofuran                  72 

  3    7.639    0.94  2-Methoxy-4-vinylphenol                 90 

  4    7.989   0.55  4-hydroxy-benzaldehyde                  91                

  5    8.414    0.35  Vanillin                                  97                  

  6    8.583    0.80  3,4-dimethoxy-Phenol                   94                

  8    9.714    0.59  4-hydroxy-3-methoxy-benzoic acid      87 

 11   10.064    0.76  3,4,5-trimethoxy-Phenol                98 

 12   10.192    0.31  3-Hydroxy-.beta.-damascone              78 

 14   10.530    1.11  4-hydroxy-3,5-dimeth oxy-benzaldehyde     94               

 15   10.862    3.71  [1,1'-Biphenyl]-3-ol        $             97 

 16   10.932    0.67  p-Hydroxybiphenyl        $               97 

 17   11.107    3.25  4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol    97                 

 18   11.206    0.37  6-chloro-N-ethyl-N'-(1-methylethyl)-3,5-Triazine-2,4-diamine   98                

 19   11.503    0.37  4-hydroxy-6-trimethyl-4-(3-oxo-1-butenyl)-3,5,2- 

    Cyclohexen-1-one        86                
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 20   11.597    0.18  4-hydroxy-3,5-dimethoxy-benzoic acid      93                  

 21   11.678    0.73  Benzoic acid, 4-hydroxy-3-methoxy-ethyl ester     83                

 24   12.547    2.42  n-Hexadecanoic acid                      98 

 29   13.654    0.37  7-Pentadecyne                            95 

 30   13.677    0.91  (Z)-9,17-Octadecadienal               98              

 31   13.957    0.92  Hexadecanamide                           94 

 33   15.315    9.50  (Z)-9-Octadecenamide                  95 

 34   15.508    0.49  Octadecanamide                          93 

 35   24.058    0.82  2-Chloropropionic acid, octadecyl ester     90               

 37   26.017    5.64  1,19-Eicosadiene                        94 

 38   26.564    8.68  (Z)-9-Tricosene                       93 

 40   26.891    0.57  Vitamin E                                87 

 43   27.812    7.12  Campesterol                             99 

 45   28.173    9.65  Stigmasterol                            99                 

 47   28.843   12.77  β-Sitosterol                        95 

 

E.3. Fe3+ Stage 1 Juice Extracted with Dichloromethane; with 3-Phenylphenol Surrogate ($) 
 

Pk#         RT                Area%         Library/ID                                 Qual 
1    3.267    0.44  p-Xylene                                  95 

  2    6.666    0.34  2,3-dihydro-benzofuran                  80             

  4    7.639    1.21  2-Methoxy-4-vinylphenol                 90 

  6    8.583    1.39  3,4-dimethoxy- Phenol                   94 

  8    9.714    0.44  4-hydroxy-3-methoxy-benzoic acid     91 

  9    9.790    3.91  2,6-Dimethoxybenzoquinone               80 

 10   10.064    0.88  3,4,5-trimethoxy-Phenol                95 

 12   10.530    0.79  4-hydroxy-3,5-dimethoxy-benzaldehyde     90              

 13   10.862    5.69  [1,1'-Biphenyl]-3-ol         $            97 

 14   10.932    1.04  p-Hydroxybiphenyl          $              94 

 15   11.107    2.37  4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol   97                                 

 16   11.503    0.41  4-hydroxy-3,5, 5-trimethyl-4-(3-oxo-1-butenyl)-   

    2-cyclohexenone        90       

 20   12.547    2.22  n-Hexadecanoic acid                      97 

 25   13.654    0.26  (Z,Z)-9,12-Octadecadienoic acid        99 

 26   13.677    0.79  7-Pentadecyne                            95 

28   13.957    1.95  Hexadecanamide                           94                  

 30   15.321   19.31  (Z)-9-Octadecenamide                  95 

 31   15.508    1.04  (Z)-9-Octadecenamide                  93                 

 32   22.298    0.78  Squalene                                91                 

 34   26.011    5.44  1,19-Eicosadiene                        94                

 35   26.564    8.04  Cyclooctacosane                         94                  

 38   27.806    5.43  Campesterol                             99                 

 40   28.167    7.31  Stigmasterol                            99               

 41   28.838    8.83  β-Sitosterol                        95 
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E.4. Fe3+ Stage 2 Juice Extracted with Dichloromethane; with 3-Phenylphenol Surrogate ($) 
 

Pk#         RT                Area%         Library/ID                                 Qual 
  1    6.666    0.39  2,3-dihydro-benzofuran                  87 

  3    7.639    1.22  2-Methoxy-4-vinylphenol                 90               

  4    7.989    1.06  4-hydroxy-benzaldehyde                  91                

  5    8.344    0.44  2-methoxy-1,4-Benzenediol,             94 

  6    8.414    0.38  Vanillin                                  97 

  8    8.583    0.57  3,4-dimethoxy-Phenol                   94               

 10    9.714    0.44  4-hydroxy-3-methoxy- Benzoic acid      91 

 13   10.064    0.69  3,4,5-trimethoxy- Phenol                98 

 14   10.192    0.56  3-Hydroxy-.beta.-damascone              92 

 17   10.530    1.42  4-hydroxy-3,5-dimeth oxy-benzaldehyde     81              

 18   10.862    4.78  [1,1'-Biphenyl]-3-ol        $            97 

 19   10.932    0.73  p-Hydroxybiphenyl         $               97 

 20   11.107    2.87  4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol    97                  

 21   11.503    0.36  4-hydroxy-3,5, 6-trimethyl-4-(3-oxo-1-butenyl)- 2-   

    cyclohexenone                      80 

 25   12.541    0.87  n-Hexadecanoic acid                      99 

 27   12.657    1.20  Tetradecanamide                          97                

 28   12.786    0.73  3,5-Dimethoxy-4-hydroxycinnamaldehyde     93             

 29   12.832    1.89 trans-2H-Pyran-2,2-dicarboxylic acid, 3, 6-dihydro-3,6-dimethyl-   

    diethyl ester         80                  

 34   15.327   26.69  (Z)-9-Octadecenamide                  95 

 35   15.514    1.69  (Z)-Octadecenamide                  90               

 37   26.011    2.04  1,19-Eicosadiene                        98                  

 38   26.559    2.36  Pyridine-3-carboxamide, oxime      90 

 39   27.812    4.56  Campesterol                             99 

 41   28.173    6.34  Stigmasterol                            98 

 42   28.838    8.22  β-Sitosterol                        96 

 

E.5. Mud from Hot-liming 
 

Pk#          RT    Area%           Library/ID                                  Qual 
  1   12.541   1.76  Hexadecanoic acid       98               

  2   15.479   36.44     Octadecanoic acid, butyl ester      96 

  3   26.023   22.83  C26 policosanol       99               

  5   26.570   16.91  n-octacosanol        99            

  6   27.818    4.54  Campestrol        95                

  8   28.185    3.66  Stigmasterol        95 

  9   28.849   9.53   β-sitosterol        95 
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E.6. Mud from FeMCaD Stage 1 
 

Pk#           RT    Area%           Library/ID                                  Qual 
1   12.541    0.56  Hexadecanoic acid       99                  

2   13.654    0.25  (Z,Z)-9,12-Octadecadienoic acid     98                  

3   13.677    0.59  9,12-Octadecadienoic acid      97                                   

4   13.975   0.57  Hexadecanoic acid, butyl ester       99               

5   15.479    4.63  Octadecanoic acid, butyl ester       96                 

6   22.467    1.32  (Z)-14-Tricosenyl formate      91                

7   24.087    1.68  (trans)-2-nonadecene                    91                                    

8   26.040   33.68  C26 policosanol        95                                 

10   26.582   23.83  n-octacosanol        94               

12   27.824    3.79  Campestrol         97                 

13   27.969    8.82  hexadecyl oxirane                     90                  

14   28.185    4.56  Stigmasterol         95                

15   28.628    2.71  1-Eicosanol        89                              

16   28.855    7.07  β-sitosterol        99 

 

E.7. Mud from FeMCaD Stage 2 
 
Pk#           RT    Area%           Library/ID                                  Qual 
1    3.716    0.05  2,5-Cyclohexadiene-1,4-dione  (p-Benzoquinone)   76 

2    4.200    0.07  Hexanoic acid         80                 

4    4.387    0.09  (E)-3-Hexenoic acid        97                  

5    5.564    0.08  Nonanal                                   91                  

6    5.704    0.32  Phenethyl alcohol         95                 

7    6.106    0.12  Benzoic acid         91 

8    6.567    0.11  Decanal          91                

9    6.666    0.64  4-vinylphenol          91 

10    6.957    0.66  2-methoxy-[1,4]-benzoquinone       93 

11    7.639    0.82  2-Methoxy-4-vinylphenol       96 

13    7.995    1.28   4-hydroxy-benzaldehyde       94 

15    8.344    0.37  2-methoxy-1,4-Benzenediol              97              

16    8.420    0.44  4-hydroxy-3-methoxy-benzaldehyde (vanillin)      96                

17    8.583    0.86  3,4-dimethoxy-phenol        95                 

20    9.166    0.10   1-(3-hydroxy-4-methoxyphenyl)-ethanone     93                  

21    9.370    0.19  BHT          97                                 

22    9.469    0.19  3,5-Dimethoxybenzyl alcohol       95                                   

24    9.650    0.14  n-Dodecanoic acid        91                  

25    9.714    0.40  3-Hydroxy-4-methoxybenzoic acid         93                             

26    9.802    3.52   2,6-Dimethoxybenzoquinone      86                

29   10.064    0.83  3,4,5-trimethoxy- Phenol       95                  

30   10.192    0.31  3-Hydroxy-.beta.-damascone              78                 

34   10.530    1.40  4-hydroxy-3,5-dimethoxy-benzaldehyde     93               

38   10.868    4.47  m-hydroxybiphenyl        96                 

39   10.932    0.78  p-Hydroxybiphenyl                        97                 

40   11.043    0.18  β-4-Hydroxy-3-methoxyphenyl)-propionic acid      91                  

41   11.107    2.57  4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol     97                  
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42   11.160    0.38  Tetradecanoic acid       95                 

43   11.288    0.27  1H-Indole-3-ethanol       90                  

46   11.603    0.21  4-hydroxy-3,5-dimethoxy-benzoic acid     94 

50   11.859    0.14  Pentadecanoic acid       93               

51   11.970    0.03  3-(4-hydroxy-3-methoxyphenyl)- 2-Propenoic acid    90               

53   12.547    1.71  Hexadecanoic acid       99                  

55   12.786    0.82  3-(3',5'-dimethoxy-4'-hydroxyphenyl)-E-2-propenal  93                 

59   13.648    0.25  (Z,Z)-9,12-Octadecadienoic acid      99                

60   13.672    0.55  9,12-Octadecadienoic acid      94                 

62   13.957    1.72  Hexadecanamide                          96                 

65   15.327   16.20  (Z)-9-Octadecenamide       99                                   

66   15.508    1.15  Octadecanamide       89                 

73   22.286    1.81  2,6,10,14,18,22-Tetracosahexaene     99                 

80   26.011    2.79  1,19-Eicosadiene                        99                 

84   26.559    2.29  Cyclooctacosane                         97                 

91   27.806    4.25  Campestrol                   99                  

93   28.168    5.08  Stigmasterol        99                 

95   28.832    6.69  β-sitosterol        99 

 

Of interest: 

45   11.509    0.35  4-hydroxy-3,5,5-trimethyl-4-(3-oxo-1-butenyl)- 2-Cyclohexen-1-one  87                  
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