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ABSTRACT 

The investigation of polypeptide composite particles, PCPs, is described. The production 

of mesoporous and polycolloid architectures is also addressed. PCPs were prepared by both 

growing form and grafting to method. They consist of a core made of silica, silica-coated 

magnetite or silica-coated cobalt. Some of the particles were covalently labeled with fluorescein 

isothiocyanate. Several polypeptides were chosen for attachment on the core: poly(γ-stearyl-L-

glutamate), PSLG, poly(N
ε
-carbobenzyloxy-L-lysine), PCBL and poly(o-benzyl-L-tyrosine), 

PBTY.  

Attachment of a well-characterized alkyne-end terminated PSLG and PCBL to an azide- 

functionalized particle yielded PCPs with a desired sparse coverage. A blend of techniques such 

as FTIR, XPS, TEM, HTEM, XRD, GPC, MALDI-TOF, DLS, and SQUID was used to confirm 

their production and to investigate their properties. The near superparamagnetic PCBL-CPs 

showed thinning behavior when subjected to stress. PSLG-CPs dispersed in different surfactant 

aqueous solutions and also enabled the immobilization by adsorption of a lipase from Candida 

rugosa. Dispersed in a liquid crystal PSLG matrix they rendered interesting morphologies.  

Mesoporous silica structures, some called geodesics, were obtained by prolonged storage 

in a slightly basic solution of ammonium hydroxide. Treatment with 3mM NaOH of fluorescent 

silica and PCPS yielded interesting mesoporous structures. Silica fluorescent particles were 

easily up-taken in the living cells of the Arabidopsis thaliana leaf. A concentrated NaOH 

solution (~10%) was used to cleave the polypeptide shell and measure the molecular weight. 

The helix conformation of the shell and the molecular weight, were confirmed by GPC assays. 

PCBL-CPs underwent to an inverse helix-to-coil transition in m-cresol as a function of 

temperature. The transition was followed by DLS, DSC, NMR T1 and SAXS. The results 
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obtained with the blend of these techniques suggested a complicated landscape for the transition. 

The conformational change is not a pure coil-to-helix transition, rather transient states were 

identified. 

Polycolloid architectures were obtained by using enzymatic (Horseradish peroxidase) 

and photolytic catalysis (PICUP-Photo-induced Cross-linking of Unmodified Proteins). 

Comparison between the two approaches emphasized the facile preparation of the polycolloid 

structures by PICUP. The technique was suitable for preparation of different architectures 

obtained by patterning the reaction vessels. PICUP also enabled the formation of permanent 

magnetic PCP chains.  
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CHAPTER 1 

PROGRESS IN SILICA POLYPEPTIDECOMPOSITE COLLOIDAL HYBRIDS: 

FROM SILICA CORES TO FUZZY SHELLS 
 

1.1 Introduction 

Colloids have been used for various purposes since the earliest records of civilization. 

People have used them in technological processes such as making paper, cosmetics and soaps 

involved in colloidal systems. Over time, the technical improvements allowed the design of well 

defined materials. One of these materials is colloidal silica, or silica sol, which consists of stable 

dispersions or sols of discrete particles made of amorphous silica particles. Nature is abundant in 

silicon sources such as quartz. One key difference between colloidal silica and quartz sand, 

having the same chemical formula (SiO2), is in the size. The typical range of the silica grains is 

between 1 and 5 nm and usually is expanded in the growth process to a size range covering the 

nano and the micrometer scale. The other key difference is in crystallinity. Colloidal silica is 

usually amorphous while quartz is crystalline. Silica has advantages over other inorganic 

materials such as nontoxic to the living bodies, inexpensive cost of the production and its 

refractive index matches with a broad variety of solvents. The first part of this review will 

summarize the preparation methods and the myriad of application of silica colloids as good 

models to perform fundamental studies.  

The range of the silica applications is considerably expanded when they are dye-labeled 

or/and they carry magnetic inclusions. For example, tagged colloidal particles can be used as 

tracers, in order to understand diffusion in colloidal dispersions or in very viscous liquids.
1-5

 The 

magnetic inclusion inside the colloidal silica add a degree of complexity which makes the system 

very appealing especially for biological applications.
6
 Martel et al. reported the manipulation of 

the colloidal magnetic beads at speeds in the order of 8 μm/s, along preplanned paths by 
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magnetostatic bacteria.
7
 A section will provide a glimpse of the work involving only magnetite 

(Fe3O4) and cobalt (Co) superparamagnetic particles.  

Core-shell particles having a well-defined solid core made of silica or a polymer have 

enhanced colloidal stability and robustness. In the past, few composite core-shell colloidal 

particles that have been made featured a homopolypeptide shell.
8-13

 The exquisite advantage of 

these composite particles is that, in the same material, the chemical versatility of the polypeptide 

shell is combined with magnificent optical and physical properties of the core.
14-21

 The 

combination between these properties and the features of the colloidal particles would be 

beneficial. The last section of this review will give a survey over the work done on the core-shell 

hybrid particles with special emphasis on silica polypeptide-based colloids.  

1.2  Colloidal Silica 

1.2.1  Historical Perspective on Colloidal Silica Sols 

 Among other colloidal systems, silica nanoparticles occupy a top position in the scientific 

research because of their facile preparation that makes them an extraordinary candidate for 

various applications. In this respect, researchers have to be able to tune the quality of these 

products which is dependent strongly on the size and the size distribution. Reports of stable 

concentrated silica sols that do not gel or precipitate for a long time became available in early 

1940’s. These reports on concentrated silica solution production were summarized by Iler in the 

first edition of his book.
22

 Vail in 1925, Treadwell and Wieland in 1930 had prepared sols that 

contained more than 10% silica particles but were not stable to the gelling effect. Ammonia- 

stabilized sols were reported by Griessbach in 1933. Later in 1941 Bird et al. prepared 5- 10 nm 

sized particles by removing alkali from the dilute sodium silicate using hydrogen ion-exchange 

resin, followed by stabilization with dilute alkali and concentration of the solution. Later, White 
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et al. used the process of peptizing the gel to a sol by dispersion in a basic solution and heating. 

Better control on the size and the uniformity was achieved by Bechtold et al. in 1951. Bechtold’s 

method was improved by Rule et al. by optimizing the concentrations of alkali used for 

stabilization.  

1.2.2  One-Time Addition of Silicon Alkoxide 

 The first report on monodisperse silica particles formation through the hydrolysis and 

condensation of a silicon alkoxide, tetraethylorthosilicate (TEOS) in a mixture of alcohol, water 

and ammonia was made in 1956 by Kolbe et al.
23

 The first systematic study and probably the 

most cited work on monodisperse colloidal silica prepared in the solution, was performed by 

Stöber et al. in 1968.
24

 Particle sizes ranged from several hundred nanometers to 2 microns in 

diameter. The synthetic procedure utilized ammonia-catalyzed hydrolysis of silicon alkoxides of 

different chain lengths and subsequent condensation of the silicic acid in the alcoholic solutions. 

The key to the Stöber procedure is the use of highly pure tetraalkyl silicates obtained by 

redistillation. Since the Stöber report, the most popular silanization agent has been 

tetraethylorthosilicate, TEOS. The silicon atom in TEOS carries a partial positive charge which 

makes it susceptible by the nucleophilic attack. In the presence of water the silicate, Si—OEt, 

bonds are hydrolyzed yielding ethanol, EtOH, and a new silanol Si—OH bond. The silanol group 

reacts further with other TEOS molecules producing new Si—O—Si bonds. The result of this 

process is the formation of the dimers, trimers, etc. Further, the polymerization reaction gives 

cyclic molecules. These cyclic polymers form grains that will grow further in highly condensed 

particles by the addition of the new monomers.
25

 The Stöber procedure is illustrated in the 

Scheme1.1. 
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Scheme 1.1 Schematic illustration of Stöber method. 

 

Silane-based polymers condense in a compact state, leaving —OH groups on the outside. The 

degree of this compact state depends on the reaction conditions, as shown by Van Helden et al.
26

 

Even though the hydrolysis-condensation reactions can occur on a wide range of the pH, only 

between 7-10 and in the absence of the salts, are all the condensed species ionized and therefore 

mutually repulsive.  

Because TEOS is not water miscible, a small alcohol molecule is introduced to enable the 

miscibility between the two. Bogush et al. expanded the range of the reagent concentration and 

the reaction temperature and obtained 17% yield of suspension with narrow distribution and 

good control over sizes.
27

 They proposed an expression to predict the diameter of the particle as 

a function of reagent concentrations: 
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d = A[H2O]
2
 exp(-B[H2O]

1/2
)                                                                                  Eq. 1.1 

where A = [TEOS]
1/2

 x (82 + 151[NH3] + 1200[NH3]
2 

– 366[NH3]
3
) and 

B = 1.05 + 0.523[NH3] – 0.128[NH3]
2
 

In this equation d is the average diameter in nanometers and the concentration of the reagents are 

expressed in mol L
-1

. 

Even though the earlier researchers on Stöber particles were focused mainly on the 

empirical prediction of the final size, they were also proposing models to understand the 

physical/chemical growth mechanisms of silica. Silica formation was divided into two events: 

nucleation and growth. The controlled aggregation model proposed by Bogush and co-workers 

considered that the nucleation and the growth of silica occurs as an aggregation process of the 

small silica grains of several nanometers in size.
27-29

 Matsoukas et al. explained the nucleation 

through the monomer addition model: the nucleation arises as a result of the hydrolysis between 

two monomers followed by the growth through molecular addition.
30-32

 These two models are 

akin condensation versus addition polymerization. Many studies concerning the growth of the 

silica particles were developed in the last years.
33-39

 They improved and explained in more depth 

these two models. 

One step growth process yielded, indeed, a broad range of sizes with narrow particle 

distribution but the drawback was the low solid weight fraction of the particles. The increase in 

the concentration of the TEOS resulted in heterodisperse sols because of the second nucleation. 

In order to attain narrow distributions, larger particles and good solid yield, Bogush et al. 

pioneered the regrowth method or the more popular seed method.
27
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1.2.3  Seed Method-A Route to Monodispersity 

In a typical seed method experiment depicted in Scheme 1.2, a suspension of the silica particles 

is prepared and further amounts of the TEOS are added as a function of the desired size numbers. 

 

Scheme 1.2 Schematic illustration of seed method. 

 

Bogush et al. used seeds of 170 nm, fabricated using distilled TEOS, and added various portions 

of TEOS equal to the TEOS volume used for seeds. After ten additions at 8 h intervals, the stable 

suspensions of silica colloids were analyzed and found to keep their spherical shape and narrow 

distributions, while size increased significantly. The mass fraction of solids increased to a 

theoretical limit of 24%. They correlated the size of the final particle with the volume of the 

TEOS used: 
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where d is the final average diameter, d0 is the average seed diameter, V0 is the volume (or 

moles) of TEOS used for the seed production and V is the total volume (moles) of TEOS added. 

It was also found that the use of TEOS as received in subsequent growth step did not impact the 

particle shape and distribution.  

Extra purification of silicon precursors increases the cost of the production. 

Consequently, the combination of the original Stöber and the Bogush’s seed methods were 

streamlined to use readily available tetraethylorthosilicate, TEOS. Zhang et al. obtained silica 

colloidal particles with uniform size, shape and composition following Bogush formulation.
40

 

The unique Zhang’s contribution was to dilute TEOS 4 times with ethanol rather than to distill it. 

In the subsequent regrowth steps, the diluted TEOS was drop added continuously. This approach 

was inspired by previous reports on silica synthesis which showed that undesired sizes and 

shapes such as peanut-like cannot be avoided. The use of TEOS with no dilution over 8 h 

addition intervals led to a long period of the growth. In order to shorten the nucleation and the 

growth times and to suppress the undesired shapes and sizes, dilution of TEOS with ethanol was 

found to be an effective approach. The dilution increases the diffusion rate of the reagents and 

the nascent nuclei have a greater probability to grow, in the same time, by the condensation and 

the hydrolysis of the TEOS, without secondary nucleation occurrence. It also depresses the 

adhesion or aggregation of the particles. 

The influence of the different dilution ratios, the temperature and the ammonia-ethanol 

ratios were also studied in depth. The method developed by Zhang et al. proved efficient in the 
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silica preparation, their sizes ranging from 150 nm to 1.2 μm with a percentage standard 

deviation from ±5% to ±1%.  

Recently Watanabe et al. prepared monodisperse particles by the seed method using L-

arginine for nucleation.
41

 Monodisperse seeds were prepared by emulsion in a mixture 

containing L-arginine and TEOS. Various sizes of the particles were obtained by addition of 

TEOS to the original sol and additional small amounts of L-arginine. This method underlines the 

importance of the seed quality. Spherical and monodisperse seeds lead to even better colloid 

materials in terms of size dispersity after sequential growth by the TEOS addition. Other 

researchers reported silica prepared by seed method.
42-45

  

Alternate sources of the silica captured the attention of the researchers in the recent years. 

For example, Balamurugan et al. prepared silica beads from Sorghum vulgare seed heads, an 

agricultural waste which apparently has no other potential use.
46

 Despite such novel approaches, 

the high yield of the colloidal particles coupled with the narrow size distribution, the broad size 

range and the spherical shape make the seeded method the most effective approach to the silica 

particles with controllable size and shape. 

1.3  Magnetic Cores  

1.3.1 Magnetite 

Ferrites are ceramic-like ferromagnetic materials, mainly composed of α-Fe2O3.
47

 One of 

the first recognized magnetic materials from the ferrites family is magnetite, Fe3O4. Its discovery 

dates back in time to the old legend of the shepherd Magnés. His metal-tipped stick and the nails 

from his boots were attracted to the ground while he was herding his sheep on Mount Ida. When 

he dug in the ground to find what was pinning his boots on the ground, he found stones that 

today are referred to as lodestones and contain magnetite. The actual discovery of lodestones can 
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be attributed to either Greeks or Chinese. Magnetite is also used by magnetotactic bacteria, 

Aquaspirilum magnetotacticum, microorganisms found in fresh water. They contain fine Fe3O4 

particles and are capable of orienting along the Earth’s magnetic field which enables them to 

swim. In the laboratory, Smiltens et al. prepared large crystals of magnetite using a modified 

Bridgeman-Stackbarger procedure.
48

 Over the years, several methods were developed to 

synthesize functional magnetic nanoparticles with controllable size and shape driven from their 

broad technological applications.  

1.3.2 Coprecipitation Method 

The preparation of the ferrofluids containing magnetite is usually performed in both 

acidic and basic solution by mixing the appropriate amounts of an iron (II) salt and iron (III) salt. 

Magnetite, Fe3O4, is the black precipitate obtained, a mixture of two oxides (Fe (II) and Fe (III)), 

FeO•Fe2O3. The earliest coprecipitation preparation of Fe3O4 was accomplished by the Bureau of 

Mines.
49

 Later, this technique was modified by Massart et al.; theirs is one of the most cited 

reports on the ferrofluid production.
50

 In order to prevent the oxidation of the magnetite particles, 

Massart et al. stabilized the dispersion with different peptizing agents in both acidic and basic 

media. Philipse prepared magnetite-coated with silica
51

 and stabilized the magnetic nuggets with 

oleic acid prior silica coating.
52

 Coating magnetic particles with an inorganic matrix proved to be 

an efficient route to produce magnetic colloids. The iron surface has a high affinity toward silica. 

A silica shell not only prevents the magnetic particles from aggregation in different pH ranges 

but also provides a surface which can be further modified with various functionalities (Scheme 

1.3).  
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Scheme 1.3 Schematic route for preparation of the magnetite particles by coprecipitation 

method. 

 

The coprecipitation, also called the sol-gel method, has been adopted more widely 

because the yield of the silica-coated magnetite or maghemite particles is high, even when the 

production of a uniform particle with a single magnetic inclusion is not very well controlled and 

this can be viewed as a drawback. Other advantages over other methods are: low cost, relatively 

mild reaction conditions and surfactant free. Still, this method is the main source of the magnetic 

fluids because, over the time, researchers added improvements to the original work of Massart 

and Philipse.  

Wang et al. prepared silica-magnetite particles directly by reacting the magnetite sol with 

TEOS in a basic alcohol/water mixture.
53

 The reaction conditions favored the coagulation of the 

particles. Aliev et al. devised a slow sol-gel process and used sodium silicate as a silica source.
54

 

The morphology of the final composite could not be well controlled because the silica coating 

was performed without pretreatment of the magnetic nugget. Several other reports dealt with ill-

defined structure and morphology of the composite particles by ignoring the treatment of the 

magnetic cores before coating.
55-58

 Stabilization with oleic acid was achieved by Lu et al.
59

 Tsai 

et al. prepared water stable dispersions of the magnetite stabilized with tartaric acid.
60

 Yang et al. 

reported a sol-gel approach optimized to control the preparation of the magnetite-silica particles 

by using electrostatically stabilized magnetite particles as seeds.
61

 Deng et al. aimed to offer a 
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suitable method for the preparation of the uniform silica-coated magnetite by systematically 

studying the formation of such composite.
62

 Their investigations revealed that low polar alcohols 

yielded irregular particle morphology while increasing the amount of TEOS gave more regular 

and monodisperse shapes. The catalyst, ammonia, and the ratio alcohol/water seemed to impact 

tremendously the shape and the dispersity of the final product. 

Systematic studies should regard all parameters involved in the synthesis of the magnetic 

particles especially when the final particle is desired to have superparamagnetic properties which 

are directly related to the size of the magnetic grain, the smaller-the better. In this respect, Iida et 

al. found that varying the hydrolysis conditions, especially the ratio of the ferrous to ferric ions, 

led to larger Fe3O4 particles.
63

 The magnetic properties could be controlled to some extent. When 

only ferrous sulfates or chloride salts were used in the preparation, the saturation magnetizations 

were 86.6 and 81.0 emu∙g
-1

. A significant drop in the saturation magnetization when compared 

with the bulk magnetite, ~91 emu∙g
-1

, was noted for samples prepared from both ferric and 

ferrous sulfates of chlorides, 46.7 and 55.4 emu∙g
-1

, respectively. The trend was attributed to the 

oxidation of the ferric ion during the preparation, leading to a ferrimagnetic material. Other 

reports obtained the same values.
64,65

 Precipitation with a basic solution at temperatures below 

60°C led to the preferential formation of the maghemite, while temperature over 80°C yielded 

magnetite.
58,66,67

 Higher saturation magnetization, better crystallinity and smaller particle size 

were achieved by using ammonia solution instead of sodium hydroxide.
68,69

 Also pouring the 

alkali solution as quickly as possible into magnetite forming mixture under vigorous stirring 

resulted in a black coloration but the size dispersity of the magnetic particles was broad. A slow 

pouring rate favors less nucleation and the crystalline grains grow all at the same time.
70

 The 

nuclei number remains constant and the added monomer molecules condensate on the existing 
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grains. The coprecipitation method may remind the reader about living addition polymerization. 

The absence of chain termination and chain transfer reactions, and a higher rate of initiation than 

propagation ensure the growth of the polymer chains at a constant rate. Their lengths are similar 

and the polydispersity index low. 

Oxygen removal is essential to obtain pure magnetite particles. Unwanted oxidation is 

prevented by the presence of an inert atmosphere (e.g. argon or nitrogen bubbling). This 

approach not only prevents against oxidation but enables a decrease in the particle size.
68,71

 Liu 

et al. demonstrated that when the deionized water was not degassed and the synthesis proceed 

under ambient conditions without N2 protection, a reddish-brown colloid was obtained, 

indicating the presence of other iron oxide phases as a consequence of Fe3O4 oxidation.
70

 These 

phases impacted the magnetic properties of the desired magnetite by lowering the saturation 

magnetization or even arresting the superparamagnetic behavior. Small, superparamagnetic 

magnetite particles were prepared using coprecipitation by other research groups in various sizes: 

6- 7 nm diameter with 2 nm silica shell,
72

 9.2 nm,
73

 ~10 nm,
74,75

 10.4 and 12.3 nm. 6 and 12 

nm,
76

 and 10 and 40 nm.
77

 

1.3.3 Emulsions 

Preparation of colloids in the emulsion has been regarded as an effective method to either 

produce monodisperse silica particles or encapsulate magnetic inclusions into a silica or a 

polymer shell. This paragraph will describe the fabrication of both silica and magnetic silica 

coated particles. Emulsion is a general term to introduce micro/macro emulsions, reverse micelle 

or inverse microemulsion. The difference is made by the interplay between the water-in-oil 

emulsion’s components. An amphiphilic surfactant is added in an attempt to lower the interfacial 

tension between water and oil. Each hydrophilic and hydrophobic part within the surfactant 
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molecule has its preferred solvent. Water-in-oil designates usually a mixture between the water 

and an alcohol, hydrocarbon or more sophisticated choices (such as supercritical carbon dioxide 

assisted emulsions).
78-91

 Water and oil domains are separated by surfactant monolayers; hence, 

the unfavorable contact between water-oil is prevented. Macroemulsions are thermodynamically 

unstable in contrast with microemulsions. Nanosized emulsion droplets are formed 

spontaneously. Reverse micelles are equilibrium phases on a molecular scale and thus are 

thermodynamically stable. The control of the water/oil/surfactant content allows tuning over the 

size of the droplets, the nanoreactors, which contains the reagents. Consequently, the droplet 

uniformity is the crucial factor that will trigger the quality of the final product. Inside the 

droplets, the particle formation is a combination of the nucleation, growth, coagulation and 

flocculation, in some instance. The major advantage of the emulsion is the uniformity of the 

resulting particles. Reverse micelle is the most successful procedure used in the synthesis of the 

colloidal particles with narrow distribution because the nucleation occurs simultaneously at a 

large scale within the micelle and it is separated by the growth due to the intermicellar 

interactions. The reverse micelle phase consists of surfactant-encapsulated water droplets, the 

aqueous pool physically separated by the oily phase. The challenge is in controlling the size of 

the pool droplets to obtain fine and uniform particles.
92-97

 Reverse micelle method yielded, over 

the years, a broad spectrum of silica- based materials and it is reflected in Scheme 1.4 by an 

example of the silica coating of metal particles (e.g. magnetite).  

The optimum condition found for the preparation of such products seems to point to a 

gradual increase of pH up to 11-12 after immersing the silica precursor, usually tetraethyl 

orthosilicate, TEOS, in the water-ethanol phase. The condensation of TEOS must be catalyzed 

by a base or an acid. Ammonia is the most commonly used catalyst because it was noticed to 
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yield good spherical morphologies of the particulates. The optimal temperature should be kept 

below 25°C, because of the possible thermally induced phase inversions. The reaction time has 

been reported from few hours up to 48 h for a complete reaction. The control over the size of the 

silica-based particle is obtained by tuning the ratio between TEOS/water/surfactant. 

 

Scheme 1.4 Schematic illustration of the silica coating of metal particles 

using the reverse micelle. 

 

The formation of the silica particle or the silica coatings by the reverse micellar system 

can be explained by a series of steps. Even a series of contradictory opinions was formulated 

upon the emulsion mechanism; the most agreed-upon path for a mono-emulsion involves the 

association of TEOS molecules within the micelles, as the first step, after its addition into the 
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emulsion phase. The catalyst then enables the hydrolysis of TEOS with the formation of the 

monomers. Nucleation occurs by condensation of monomers via inter- and intra-micellar 

exchange. Further nuclei growth is favored by addition of TEOS or by aggregation. Materials 

such as ferrofluids,
98-101

 silica
102

 and silica-coated particles either metal (Fe,
103

 Co,
104-106

), oxide 

(Fe2O3,
51,107,108

 Fe3O4,
109

), alloy type (NiFe,
110

 Co-ferrite
111

) or mixed oxides (MnFe2O4,
112

 

CoFe2O4,
113

 ZnFe2O4
114

) have been prepared. 

 Now let us take a look back over the microemulsion method and underline what might be 

considered as the future trends. Even the micelle itself is considered a nanoreactor. The main 

drawback is the still-poor control over the reactions and the reaction conditions that govern the 

formation of a high-quality product. Good spherical monodisperse particles were obtained but 

the method is still shadowed by the low yields of the final material. Yet, combination with other 

synthesis techniques (e.g. sol-gel,
115-121

 hydrothermal/solvothermal
122

) can take various 

advantages: the fine and the tunable nucleus size obtained in the reverse micelle and the growth 

controlled by the stoichiometry through the sol- gel method. Combined techniques opened the 

door to more complex products. The layer-by-layer deposition of the opposite charged 

electrolytes onto the particle surface,
123

 metal-doped carbon nanotubes
124,125

 or polymer 

encapsulated nanoparticles
126

 have been produced in the reverse micellar systems. One 

intensively explored trend is the assembly in 3D supermolecular lattices.
127-130

 Driven by 

external fields (e.g. magnetic or electric), self-assembled crystalline structures are considered a 

future challenge. The new combination of different surfactants may give the rise of a better 

control over the morphology and the useful properties of the desired materials. Before ending 

this section it must be mentioned the several reviews dedicated to this subject.
131-136
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1.3.4 Solvothermal/Thermal Decomposition Routes 

High level of the monodispersity and the size control over nanoparticles can be obtained 

using high-temperature methods. The thermal decomposition of organometallic precursors such 

as Fe(acac)3, (acac=acetylacetonate), and Fe(CO)5, (carbonyls), assisted by organic solvents and 

surfactants is a reliable way to monodisperse nanocrystallites ranging in diameter from 3 to 15 

nm. Surfactants (ligand) are, in general, long-chain amines, fatty acids or both. They have a dual 

role: to mediate the growth during reaction and to prevent particle aggregation. A satisfactory 

stabilization requires at least six-carbon-long ligand.
137,138

 A zerovalent metal precursor leads to 

the formation of a metal grain or cluster that can be subjected further to oxidation and give high- 

quality iron oxide particles. Cationic metal sources yield directly iron oxides. Control over the 

size distribution and the morphology is achieved by optimizing the ratios of the starting materials 

(iron precursor, solvents, and surfactants). In addition, temperature and time complete the map of 

decisive factors in controlling the size and the monodispersity.  

Kwon et al. prepared iron oxide particles by thermal decomposition of the iron oleate 

complex in their effort to elucidate the kinetics.
139

 The mechanism of the decomposition had 

been shown to evolve through intermediate species, which can act as monomers for iron oxide 

monocrystals, as shown in the Scheme 1.5. The sudden increase in the concentration of the 

nanocrystals (burst crystallization) as evidenced by TEM was followed by a rapid decrease in 

size distribution (size focusing) variance. Once the reaction time increased the iron cluster grew 

unevenly. 
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Scheme 1.5 Schematic representation of the size, morphology and magnetic properties as 

a function of the reaction temperature and reaction time for magnetite synthesized by 

thermal decomposition methods. Adapted from Reference 139. 

 

The control over the ratio of surfactant to FeO(OH) led to a broad distribution of the sizes 

ranging from 8 to 55 nm, some with a high magnetization moment.
140-144

 Even though the 

thermal decomposition process yields monodisperse particles with narrow distribution, it is not 

environmentally friendly and economic. For example, the Fe(CO)5 precursor is highly toxic and 

ligands such as 1-octadecene and oleylamine are expensive.
145,146

 Zhang et al. developed a green 

thermal chemistry using ethanol as solvent and 1,2-dodecanediol as ligand. The reaction mixture 

was held at 150°C in an autoclave for 24h. The iron clusters were comprised of 5 nm magnetite 

crystals.
147

 Ultrafine magnetite powders are prepared by the hydrothermal, also called the 

solvothermal method. The aqueous media is the major advantage of this reaction but high 

pressure (greater than 2,000 psi), high temperature (higher than 200°C) and a good sealing is 

required once the mixture is placed into autoclave. The concentration of the iron source used in 
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preparation can tune the size of the magnetic crystal and the nanocluster.
148-152

 The continuous 

hydrothermal process is a simple route to metal oxide particles of the specific size and 

morphology. Although this route is environmentally friendly and can be scaled up easily, the 

mechanism of particle formation has not been yet determined. Investigations on factors that 

contribute to evolution of continuous process were performed by Xu et al.
153

 Particle size 

distribution variance and aggregation seemed to increase with increased concentration of 

polyvinyl alcohol, temperature and time.  

The drawback of the conventional hydrothermal method is the slow kinetics at any 

specific temperature. In an effort to speed the crystallization kinetics, Komarneni et al. 

introduced a new approach termed microwave-solvothermal method.
154

 The shorter time and 

thermal conditions allowed the production of particles in a 2 to 60 nm size range with good 

control over the variance dispersity. Balasubramanian et al. used DC thermal arc-plasma to 

prepare Fe3O4 powders having a high magnetization saturation, 88 emu∙g
-1

.
155

  

1.4 Cobalt 

Most common magnetic materials contain metal oxides. These are often mixtures of 

oxides, which imply that their magnetic properties are not always reproducible and well defined. 

Pure metals such as Fe, Co, Ni and their alloys are also good candidates in various fields of 

magnetism. The use of pure metals has difficulties arising from their instability toward oxidation 

in air. Once the particle size decreases, especially close to superparamagnetic limit (~10-15 nm), 

oxidation becomes easier. Thus the preparatory approaches require ways to improve the 

chemical stability of the particles. One of the metal particles with increased sensitivity to air 

exposure is the cobalt. Two crystal structures, face-centered cubic (fcc) and close-packed 

hexagonal (hcp) are specific to cobalt. These structures coexist at room temperature but at 
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elevated temperature (450°C) fcc is thermodynamically favored.
156

 Consequently, the magnetic 

properties of cobalt greatly depend on the crystal nature and the temperature.
156-160

  

The era of cobalt particles starts most probably with a report by Hess et al. in 1966. They 

thermally decomposed dicobalt octacarbonyl in solutions of different polymers.
161

 A cobalt 

organometallic precursor has been used by Chaudret et al. to prepare cobalt particles and coated 

them with polyvinylpyrrolidone.
162

 Coating procedures also included noble metals, used as 

insulating shells through the microemulsion method or other chemical approaches such as redox 

transmetallation.
163,164

 Thus, Sobal et al. reported stable Ag-Co nanoparticles with cobalt as 

shell.
165

 Gedanken et al. used a sonochemical procedure to obtain air-stable Co colloids.
166

 The 

explanation behind the stability of the nanoparticles was the formation of a carbon shell on the 

particle surface. The pyrolysis of metal carbonyls was applied to produce Co, Fe, Ni and other 

magnetic materials. The solution phase metal salt reduction was involved in the preparation of 

the Co, CoO and FePt particles. Riffle et al. obtained magnetic cobalt dispersions in the presence 

of poly(dimethylsiloxane). The challenge in the above-mentioned reports was the control over 

stability and size. Particles were rather polydisperse and not very uniform.  

The deposition of the silica shells on the magnetic particles as a stabilizer was used in 

several reports. The facile modification of the surface, the excellent stability of the aqueous 

solutions and the good control on the interparticle interaction, either in solution or within 

structures are few advantages that makes silica one of the best candidates for coating metal 

nanoparticles. Hematite (Fe2O3) spindles,
167

 reduced to metallic iron in a dry state
168

 and 

magnetite (Fe3O4) clusters
51,169-172

 were successfully coated with silica. The complications in 

silica attachment arise due to the lack of functional groups, especially OH, on the metal surface. 

Therefore, it is necessary to use a primer to enable silica deposition. For example, in 1996, Liz-
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Marzan et al. coated gold colloids with silica in a three-step deposition process.
173

 First citric 

acid was used as stabilizer and afterwards was replaced with amino silane groups. Finally silica 

was attached to the surface of the particles through the Stöber method. This approach was used 

for noble metals which are chemically very stable. Matijevic et al. showed that a modified Stöber 

method could yield differently sized silica-coated silver particles without surface “conditioning” 

with amino silanes.
174

 A very good control over the size and the colloid stability, following the 

Liz-Marzan et al. procedure, was reported by Kobayashi et al. in 2003.
175

 They used a one-pot 

reaction, as shown in the Scheme 1.6, to prepare silica-coated cobalt particles with different Co 

core size and silica shell thickness.  

 

Scheme 1.6 Schematic of the surface reactions involved in the formation  

of silica- protected cobalt particles. 

 

  Further, the authors demonstrated that addition of the silica precursor, TEOS, improved 

the particle uniformity and the shape without altering the magnetic properties. Two crystal 

structures, face-centered cubic (fcc) and close-packed hexagonal (hcp) of silica-coated cobalt 

particles were identified after annealing at different temperature (200°-700°C). After annealing 
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at high temperature, these particles showed high magnetization saturation in the range of 120- 

180 emu∙g
-1

 per cobalt. 

1.5   Dye-labeling  

Labeling of the colloidal silica with fluorophore molecules leads to composite materials 

with a broad spectrum of the applications. Various labeling agents can be incorporated into 

nanoparticles to yield fluorescent probes. Dye-doped nanoparticles, semi-conductor quantum 

dots (Q-dots) or fluorescent beads are considered good candidates for biolabels. Each class of 

these probes has drawbacks. Q-dots are small in size and photostable with tunable optical 

properties. Yet, their quantum efficiency lags when compared with the organic dyes. The real- 

time monitoring might be limited by their blinking emission. Furthermore, the UV range 

required for Q-dot excitation might be harmful for biological species. Upon UV excitation highly 

toxic Cd
2+

 ions are released as a consequence of the surface degradation. This process practically 

kills cells. A multitude of methods were designed for the production of such fluorescent colloids 

but the focus of this review is on the fluorescein isothiocyanate (FITC) encapsulated silica-based 

nanoparticles. Silica has been widely chosen for both, industry and laboratory research, because 

of the close refractive index match (dn/dc=0.143 mL∙g
-1

) with organic solvents such as 

chloroform, cyclohexane and hexadecane. In the early ‘90s Van Blaaderen et al. developed a 

facile method for the FITC-silica through two major steps.
176

 First FITC was covalently bound to 

a silane coupling agent, 3-aminoproyltriethoxysilane, APS, and formed the FITC-APS molecule, 

as shown in Scheme 1.7. 



22 

 

 

Scheme 1.7 Sketch of the FITC-APS molecule formation. 

 

Second, the FITC-APS reaction product was incorporated in the Stöber mixture consisting of 

water, ammonia and TEOS used in the silica grains preparation. The procedure allowed the 

production of the silica either with a thin fluorescent shell or an inner layer. The later approach 

had as purpose the dye prevention from leaking or bleaching. A series of reports using a similar 

procedure to obtain fluorescent labeled particle was recorded.
177-181

 

Fluorescent labeling of silica-based colloids having magnetic inclusions has received a 

growing interest because the range of their applications spans both fundamental and applied 

research. The labeling procedure is performed in the same manner as described above. The most 

widely used magnetic particles are either magnetite (Fe3O4) or maghemite (γ-Fe2O3).  

1.6  Surface Functionalization and Characterization 

The requirement for specific applications in nanotechnology poses great challenges to 

researchers to develop efficient preparatory methods and, most of all, to understand the impact of 

the composite particle on the environment for which they were targeted. Various techniques used 

can now offer a wide palette of hybrids with unique properties. But one of the key steps to such 
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materials is the surface functionalization. Therefore the section will outline some general aspects 

on surface tailoring and, afterwards, will focus mainly on amino-decorated silica surfaces.  

The attachment of functional groups on particle surface governs their solubility and 

chemical functionality. The groups or the molecules attached on the particles, either by physical 

or covalent bonds, should provide a stable colloid suitable for further chemistries. One of the 

most employed ways to functional materials is silica coating which has advantages over the 

organic coating.
182,183

 Naked metal nanoparticles are in some cases very air/moisture sensitive 

and a thin layer of silica protects against oxidation. Furthermore, the silica surface has terminal 

OH groups which can be easily reacted with other molecules by a simple chemistry. From this 

perspective, particles consisting of an especially magnetic core and a silica shell
59,62

 have 

received particular interest in terms of their magnetic responsivity, controllable interparticle 

interactions by tuning the shell thickness and biocompatibility.
184

 Posing a negative charge stable 

in the 6-7 pH range, the silica surface is an ideal model to mimic the behavior of the negatively 

charged biomolecules in physiological conditions.
185

 Coatings with double layers of silicon led 

to materials suitable for the magnetic bioseparations and drug delivery. The first layer protects 

the core against degradation or etching in rough conditions and the external can be etched in 

basic or acidic conditions to a porous structure. Consequently, enhanced properties can be 

obtained such as high surface area. In this order of idea, Sen et al.
186

 discovered a jump from 25 

to 250 m
2
g

-1
 while Deng et. al.

187
 reported 365 m

2
g

-1
. On the other side, the silica shell can 

screen the magnetic response of the composite causing an increase in coercivity.
188-190

 Thus, 

control over silica coatings is essential. Various functional groups can be attached to the surface 

such as —SH,
191-193

 —COOH,
194-199

 —N3,
200-206

 —CHO, vinyl, —Br
205,206

 and biomolecules (e.g. 

oligonucleotides)
207,208

 but in the next lines the focus will be placed on amine-functionalized 
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particles used as initiators in the growing from method which will be discussed in a following 

section. The wide used amine precursor is 3-aminopropyltriethoxy silane, APS. The activation of 

the silica surfaces with APS is carried out usually in organic solvents. The silane coupling agents 

react with the silanol groups to yield amino functions on the surface. In order to lower the cost of 

production, the surface modification in aqueous media was also devised. The later approach 

involves the hydrolysis of the amino precursor at pH 3 and, afterwards, the condensation with 

silanol groups resulting in siloxanes bridges.
209

 Even though the chemistry behind 

aminoactivation is well established, it still suffers from controlling the loading and the 

reproducibility. The water content when organic solvents are used is an issue. Assink et al.
210

 

have shown by 
1
H and 

29
Si NMR that the rate of the hydrolysis is much faster than condensation. 

Thus, a safe approach to water free amino-particles involves the azeotropic distillation and the 

use of anhydrous solvents. A recent review of Yu et al. discusses the pros and shortcomings of 

the generally accepted amino-silanization mechanism for the surface activation.
211

 

Polypeptide-based silica hybrids obtained by the growing from method involves the use 

of amine activated particles as the primary amine initiators in the ring opening polymerization, 

ROP, of N-carboxyanhydrides. In this respect, the development of techniques enabling the 

control over the amino moieties on the silica particle surface greatly influences the polypeptide 

load. Applications of hybrid particles may require either a dense
212,213

 or sparse
214

 activated 

surfaces. A crowded assortment of amine groups can be obtained either by the reaction of silica 

particles with aminosilanes
215

 or the co-condensation between the silicate and amino 

precursors.
216

 The preparation of the dense amino grafted surfaces needs to take in account the 

interaction between amine-amine and amine-silanol groups through H-bonding. Better control on 
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amino sites is provided by separating the amines and capping the free silanol groups, as shown in 

the Scheme 1.8.  

 

Scheme 1.8 Schematic illustration of the surface reactions involved in 

the formation of a dense and a sparse coverage with functional groups. 

 

In order to manipulate the loading of functionalities on the surface, researchers have used 

various approaches. Mixtures of aminosilanes and alkylsilanes such as APS and methyl 

trimethoxysilane, MTMS were considered the easiest way to asses control over the grafting 

density.
217,218

 Hydrolyzable templates placed on silica favored low loading (less than 0.2 mmol 

NH2/g product).
219,220

 Yet, after hydrolysis, the silanol-free groups are available for interaction 

with amine. The molecular imprinting and the thermolytic deprotection of carbamate silica to the 

corresponding amino silica have yielded particles with less than 0.23 or 0.27 NH2/g of the 

matched set material.
221,222

 The Jones group devised an unique method involving the 

immobilization of the bulky tritylimine and upon deprotection in acidic conditions revealed 

amines spaces between each other.
223

 They also used benzyl spacers. Still the amine-amine and 
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amine-silanol interactions were assumed to be reduced or eliminated but no quantitative assay of 

OH groups was performed to verify the assumption.
223,224

 Several groups have used only APS 

without any passivator and they have calculated the amount of the amino precursor per surface 

unit based on the concentration of the particle solution and total surface area of the colloid.
209,225-

233
 The key factor in the activation-passivation tandem seems to be the length of the two species. 

A long aminosilane and a short alkyl silane can reduce or eliminate the amine-silanol interactions 

but the H-bonding of amine-amine is still present. The amino end-capped chains can bend and 

either can hinder other functional groups or they become inaccessible for further molecule 

attachment. Consequently, a better approach to arrest such interactions will be the use of 

activator-passivator with comparable length. Such a method was devised by Heise group in late 

‘90s. They have prepared 1-bromo-11-(trichlorosilyl)undecane and 1-trichlorosilylundecane and 

then grafted on the silica flat surface. The conversion of terminal bromine groups to azide by 

reaction with sodium azide, NaN3, followed by the reduction in the presence of LiAlH4 yielded a 

surface covalently grafted with amino groups.
234

 Even though the reduction to amino groups is 

not performed azide-functionalized particles can be further used in click chemistry coupling. 

Amine functions can modify the macroscopic surface properties. Nevertheless, these 

properties and the subsequent polypeptide grafting greatly depend on the density of amino 

groups per unit area, thus their quantification is necessary in order to maintain a control over the 

functionalization. Several methods such as fluorometry,
235-237

 spectroscopy
238-240

 and 

colorimetry
241,242

 have been reported. Most of them involved only flat inorganic or organic 

surfaces. Some are more time consuming and expensive due to the cost of fluorophores. The 

success of these techniques in the quantification of amine moieties relies on their reactivity, their 

stability and their capability to attach labels and probes. Microscopy (electron and light) and 
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spectroscopy (e.g. X-ray Photoelectron Spectroscopy, XPS) give useful information about 

surface composition and binding energies, but their efficiency is limited mostly to flat surfaces. 

Moreover, a covalent attachment between the primary amino group and the label, in some cases, 

is required. That means the surface cannot be used for further application which is a major 

drawback. A standardized, fast, inexpensive and accurate determination of the amino moieties 

grafted on silica beads or other spherical surfaces is still under perfection. Recently Coussot et 

al.
243

 and Noel et al.
244

 quantified the protonated groups NH3
+
 with Coomasie Brilliant Blue, 

CBB and Orange II respectively, as the colorimetric reagents, but applicable to polymeric 

surfaces. Chen et al. devised a so-called fluorescent Fmoc-Cl method which was found to be 50 

times more sensitive than the UV assay.
245

 They have shown that the pendant amino groups from 

the silica particle surface produced stronger fluorescence than a smaller amine free in solutions. 

A facile and inexpensive method to determine the amino grafting density was innovated in this 

group using zeta potential.
246

 Thermogravimetric analysis, TGA, is another convenient resource 

researchers exploit in amino assay. Devised by Bartholomé et al., the method uses the weight 

loss percentages which ultimately are converted to the grafting density.
8,247

 Other groups have 

proposed improvements but overall Bartholome’s approach remains the milestone.
248

 

1.7  Shell 

1.7.1 Synthetic Polypeptides and Their N-carboxyanhydride Precursors 

The most economical and practical method for synthesis of polypeptides, especially 

homopolypeptides with long chains, is the polymerization of α-amino acid N-

carboxyanhydrides, NCAs.
249,250

 These amino acid precursors were discovered by coincidence 

when Hermann Leuchs attempted to purify N-ethoxycarbonyl or N-methoxycarbonyl amino acid 

chlorides by distillation and, at first, they were called Leuchs’s anhydrides.
251-253

 Even Leuchs 
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abandoned his work on this field because of misbelief in the existence of covalent polymers with 

molecular weights higher than 10,000 Da. Curtius et al.
254-257

 and Wessley et al.
258-264

 used 

primary amines, water and alcohol as initiators and reported for the first time high-molecular 

weight polypeptides. These reports helped the international community of researchers to 

acknowledge Staudinger’s concept of covalent macromolecules.  

The ring closure of NCA with phosgene was pioneered by Fuchs et al.
265

 The method, 

widely used, was modified over the years to produce higher yields of NCAs.
266-268

 The control 

over the gas amount was achieved by bubbling it into the solution
269

 or by using derivatives such 

as diphosgene.
270,271

 The phosgene approach has several disadvantages. Besides its high toxicity, 

phosgene generates HCl as a byproduct, which can lead to further side reactions during the NCA 

polymerization. Consequently, the complete removal of HCl from NCA mixture is essential. 

Since the anhydride’s ring is very sensitive to moisture, the most common route to pure NCA is 

the recrystallization performed in an inert atmosphere and with anhydrous solvents. Another 

method, such as rephosgenation, was proposed by Dorman et al.
272

 An important contribution to 

the field of NCA synthesis was pioneered by Daly et al. Substitution of phosgene with 

triphosgene, (bis(trichloromethyl chloroformate)), had been proven a viable route. The 

probability of the side reactions was greatly decreased because only 1/3 equivalent of 

triphosgene delivered in situ was enough to close the NCA’s ring in high yield.
273,274

 The 

mechanistic route involved in the preparation of the polypeptides using triphosgene is depicted in 

Scheme 1.9. 
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Scheme 1.9 Schematic of the synthesis of α-amino acid  

N-carboxyanhydrides, NCAs, with triphosgene.  

Adapted from References 273 and 274. 

 

Wilder et al. also used triphosgene at room temperature.
275

 A novel approach in the NCA 

purification was introduced by Poché et al.
276

 Cold, oily NCA mixture prepared in ethylacetate 

was rinsed with icy water, neutralized with an icy solution of the sodium bicarbonate and finally 

dried with anhydrous MgSO4. The behavior of NCA toward cold water runs against the common 

belief of the NCA moisturizing at room temperature. This method allows the decrease in the 

number of recrystallizations which also decreases the yield. Many researchers have been using 

this method or variations. Because the field of polypeptide precursors grew rapidly only 

representative work had been cited. 

The work on the kinetics and the mechanism of the NCA polymerization was written by 

Szwarc in a comprehensive review.
277 N-carboxyanhydrides have several reactive sites that make 

the polymerization complicated. The carbamoyl (C-2) and carbonyl (C-5) are electrophile centers 

while NH (3) and α-C (C-4) are nucleophile sites, as shown in Figure 1.1  
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Figure 1.1 Representation of the amino acid N-carboxyanhydride structure. 

 

No doubt, the polymerization path will depend mostly on the initiator’s nature. One 

major advantage of NCAs widely exploited in the polypeptide synthesis relies on its ring 

capability to combine the activation of the C-5 carbonyl with the protection of the amino group. 

The activation of CO (C5) by the acylation of amino groups occurring at the room temperature or 

even lower, can render oligomerization products very difficult to separate from the desired 

polypeptide. Although reports of using N-unsubstituted NCAs were accounted, the route didn’t 

attracted large interest.
278-284

 NCAs are not stable upon storage for long periods of time and water 

traces attached to the crystal surface through H-bonds can initiate the polymerization in the solid 

state.  

In order to overcome some of such complications, NCAs can be either subjected to N-

protection chemistry or protected amino acids can be used in their synthesis. The attachment of 

an electron-withdrawing group to the nitrogen lowers its nucleophilic site in such a way that the 

reaction with phosgene or its derivatives is not favored in mild conditions. In an insightful 

anniversary review on NCAs, Kricheldorf compiled the routes to N- protection: cyclization of N-

protected amino acids and attachment of a protecting group to a preformed NCA.
285
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  Since the beginning of the 1940s, polypeptides synthesized by the ring opening 

polymerization of the corresponding NCAs served as models of natural polypeptides and 

proteins to investigate the relationship between their primary and secondary structures. Hence 

systematic studies regarded the elucidation of the synthetic homo- and copolypeptides structure. 

Polypeptides can adopt a multitude of conformational stable secondary structures depending on 

the nature of side chain substituent. The best-known are random coil, β-sheet and α- helix.
286-288

  

Many studies were devoted to the elucidation of the NCA polymerization mechanism. 

NMR and IR spectroscopy were the most used analytical methods to detect the polymerization 

intermediate adducts and final products. Kricheldorf has published an important volume of work 

dedicated to the polypeptide formation mechanism.
285,289-297

 The most common mechanism is 

through amines, whether primary, secondary or tertiary. The first NCA reaction, amine initiated, 

was reported by Fuchs
265

 and Wessely.
260

 Kinetic studies were conducted by Waley et al. on the 

polymerization of sarcosine NCA. The rate of the propagation was followed by the increase in 

the CO2 pressure at constant volume. The titration of terminal amino groups at the onset of 

polymerization indicated the absence of the termination and, hence, the living character of the 

process. These findings were supported at that time by other researchers on other systems.
298-304

 

Scheme 1.10 displays a schematic of the primary amine mechanism. The amine initiator attacks 

the C-5 of the NCA monomer, which induces the ring opening and, further, the decarboxylation 

of the intermediate unstable carbamic acid or its zwitter-ion.
305

 The new formed molecule will 

initiate the attack on another nearby NCA molecule. 
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Scheme 1.10 Schematic of the initiation and growth steps involved in ring  

opening polymerization of NCAs initiated by a primary amine. 

 

The new formed molecule will initiate the attack on another nearby NCA molecule. The overall 

step sequence in the reaction of the primary and secondary amines with NCA’s studied with 

labeled isotopes
306

 showed that decarboxylation occurs at C-2 of the intermediate. This step was 

not demonstrated as the rate-determining process. The reaction should depend either on the 

intermediate formation or on the ring opening between C-1 and C-5.
307,308

 The NCA monomer 

feeds the growth of the living polymer. At a specific ratio monomer to initiator, M/I, the chains 

should grow in the same time, assuming rapid initiation compared with propagation. The fast 

initiation is achieved with strong nucleophiles. The formation of the polypeptide can adopt 

another pathway if the primary amine initiator is strong enough to deprotonate the intermediate 

carbamic acid, yielding a new adduct which further reacts with the NCA monomer and forms an 

intermediate anhydride (Scheme 1.11). Decarboxylation of the intermediate anhydride enables 

the formation of the corresponding polypeptide.  
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Scheme 1.11 Schematic of the initiation and growth steps involved in ring opening 

polymerization of NCAs initiated by a primary amine through carbamate mechanism. 

 

Kricheldorf gave a critical overview on the previous work and used MALDI-TOF mass 

spectrometry among other techniques to better identify the end-group combinations.
297

 Mass 

spectroscopy doesn’t necessarily determine accurately the molecular weights and molecular 

weight distributions, MWD, of the polymer, but qualitatively it does offer a picture of the 

frequency distribution.
285

 The polydispersity index, PDI, values depend strongly on the 

polymerization medium and, as well, on the solubility and the secondary structure of the forming 

polypeptide chain. Secondary reactions occurring during polymerization retard the propagation 

mechanism enabling the termination. Broad
296,309,310

 and low
311

 PDI’s were reported accounting 

for the aforementioned reaction conditions. Mostly poly(alkyl glutamates) and poly(N-protected-

L-lysine) were investigated but, also, other amino acid NCAs.
312,313

 Optimum preparation of long 

chains with low PDI’s can be achieved from soluble α-helix forming polypeptides and lowering 

the temperature to freezing point of water.
314,315

 Therefore in the primary amine initiated NCA 

polymerizations it is challenging to control the chain-end functionality. The absence of the side 
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reaction results in a true living polymerization and the amino end-group is stable over a long 

time, as proven by Kricheldorf.
311

 

The inherent problem in conventional NCA polymerization is the poor control over the 

reactivity of the growing chain due to side reactions. An important contribution in this field was 

brought by Deming’s group. He studied many metal complexes such as zerovalent nickel
316,317

 

and cobalt
318

 known to increase both the reaction selectivity and efficiency.
319

 The manner in 

which these metal complexes react with NCAs is similar. Scheme 1.12 illustrates the n-

carboxyanhydride polymerization initiated by the Ni(0) complex.  

 

Scheme 1.12 Schematic of polymerizations of N-carboxyanhydrides initiated by Ni(0) 

complexes. Adapted from Reference 285. 

 

The oxidative addition reactions are followed by the attachment of a second NCA molecule and 

yield six-membered amido-alkyl metallacyles. Further, these cyclic intermediates contract to a 
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five-membered ring upon addition of the NCA monomers. This process was explained to occur 

via proton migration from an amide group to the metal bound carbon, thus liberating the chain 

end from the metal. The cyclic intermediate was proposed as the active specie capable of 

initiating the nucleophilic attack of the amido group on the electrophilic C-5 of the NCA.
316-

318,320
 The large cycle formed as the result of the propagation could contract through CO2 release. 

The amido amidate propagating species formed as a result of the proton transfer from the free 

amide to amidate group enables ring contraction. In fact, the end chain of the polymer becomes 

free and the metal chelate can migrate along the growing polymer.
321

 Despite some ambiguity 

regarding the correct mechanistic route, Deming’s work spans a variety of preparative 

applications. Variation of the metal allowed good control over the molecular weight and PDI of 

poly(glutamate)s, and the use of the different NCA precursors resulted in a broad range of 

homopolypeptides. No less important is the multitude of the architectural copolypeptides 

designed by using metal chelate initiation.
322-345

  

The common theme of improving the classical amine-initiated polymerization initiators 

was also shared by other groups. Hadjichristidis conducted primary amine initiated 

polymerizations of NCAs under high vacuum conditions. 
346-353

 Even though doubts were placed 

on the purification efficiency of NCA monomer under high vacuum when compared with the 

recrystallization under an inert atmosphere, the polymerization of the γ-benzyl-L-glutamate NCA 

(BLG-NCA) and N-carbobenzyloxy-L-lysine NCA, (CBL-NCA) in DMF under high vacuum 

was found to have a living character. The main conclusion drawn by the authors outlines that the 

side reactions in the amine-initiated mechanism are a result of the impurities contained in the 

monomer. Furthermore, the continuous removal of CO2 generated during the reaction can 

mediate the polymerization.
346-353

 Low-polydispersity products were obtained with predictable 
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molecular weight but the method needs more insight on the chain-end characterization. In a 

recent report of Pickel et al., the preparation of the poly(o-benzyl-L-tyrosine), PoTYR, in DMF 

was performed both using high vacuum techniques and glovebox environment.
354

 Polymers 

prepared by initiation with 1,6-diaminohexane in the high vacuum followed the normal amine 

pathway, the termination occurring with DMF. Products prepared in the glovebox showed 

initiation by both amine and activated monomer mechanisms and the termination yielded several 

species. The nano-assisted desorption/ionization time-of-flight mass spectrometry, NALDI-TOF 

MS, was used for the chain-end analysis and the conclusion pointed to the end-group fidelity 

obtained via high vacuum.
354

 

N-trimethylsilylamines were used for controlled ring opening polymerization of NCAs by 

Cheng and coworkers.
355

 The unique feature of this technique is that the amine end-groups are 

obtained after cleaving the protecting trimethylsilyl end-group. A narrow distribution was 

achieved and the 
13

C NMR, the fast atom bombardment mass spectrometry, FAB-MS,
356

 the 

matrix assisted laser adsorption ionization time of flight, MALDI-TOF,
355

 and the electrospray 

ionization mass spectrometry, ESI-MS,
357

 determined the nature of terminal groups. In order to 

avoid the formation of NCA anions during the polymerization, Schlaad et al. have utilized 

primary amine hydrochloride salts as initiating species. Their goal was to inhibit the 

polymerization through the activated monomer mechanism, obtaining in this way low dispersity. 

A drawback of this work points to the lack in the end-group determination. Higher values of 

molecular weight were obtained for products when compared with those theoretically 

computed.
358-360

 

The identification of the terminal groups is also important from another point of view. 

For a long time in the NCA ring opening polymerization era it was believed that resulting 
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adducts were linear, unless branching was intentionally desired. One exception stated 

otherwise
361

 until Kricheldorf confirmed the in situ formation of the cyclic polypeptides along 

with the linear ones.
297,362

 Solvents with high nucleophilicity and donor ability such as pyridine, 

DMF, N-methylpyrrolidone, NMP, and dimethylsulfoxide, DMSO, were found to catalyze 

zwitterionic polymerizations.
363

 The Scheme 1.13 displays the interactions between the 

polymerization species when the solvent involved is pyridine. 

 

Scheme 1.13 General route of the pyridine-mediated ring opening polymerization of N-

protected N-carboxyanhydrides via zwitterionic ionic intermediates. Adapted from 

Reference 285. 

 

Consequently, the synthesis of homo- and copolypeptides in these solvents should take into 

account that the polymerization mixture might be a blend of most linear chains with cyclic 

“contaminations”. Soluble polypeptides that adopt a random coil conformation showed a high 

tendency toward cyclization.
364

 It has been known that traditional NCA ring opening 

polymerization leads to low-molecular weight polymers. Once removed (and usually discarded) 
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the remaining high-molecular weight polymer is very good (Mw/Mn ~ 1.2). Thus, it will be more 

efficient to fractionate and keep both high-molecular weight and low-molecular weight 

polymers. 

From the perspective of the next section dedicated to core shell systems where the core 

consists of an inorganic hard sphere and a shell built from a fuzzy homopolypeptide, several 

words will be spent first on the enormous potential of polypeptides as shell materials. Depending 

on their side chain substituent, polypeptides can deliver a variety of versatile properties such as 

chirality, ability to form liquid crystals (LC), secondary structure structural changes as a 

response to external stimuli, etc. No less important than self assembly in spherical and 

cylindrical micelles or vesicles, the ability of polypeptides to form liquid crystalline phases has 

attracted a lot of interest. One of the most studied polypeptides is poly(γ-benzyl-L-glutamate), 

PBLG.
365

 Most of the early publications concentrated on PBLG lyotropic LCs are mentioned in 

the book by Block.
366

 The first reports of PBLG LC phases date in the 1950s
365,367,368

 and since 

then an immense volume of the work was dedicated to its LC behavior.
366,369-388

 Studies on 

glutamates with different side chain moieties were reviewed by Daly et al. 
389

 The Russo group 

focused on PBLG’s and other glutamate-based liquid crystals, aggregation and gelation 

behavior.
274,390-407

 The driving force behind such phenomenon is the change in the secondary 

structure and its effect on the phase behavior. Substituents attached to the side chains were found 

to induce thermotropic transition.  

A very commonly used technique in the phase behavior for concentrated solutions of 

poly(glutamate ester)s was optical rotation dispersion, ORD. It has an advantage over circular 

dichroism, CD, because the interference from the solvent can be better discriminated. ORD can 

also deal very well with solutions prepared in solvents not suitable for CD. Most studies focused 
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on the characterization of the cholesteric phase.
407-409

 It was found that the pitch of the 

cholesteric helix varies inversely proportional to the optical rotation. More or less recent 

investigations dealt with the specific features of helix formation and tried to simulate different 

models. Yet, below a critical point (temperature, molecular weight), the ORD signal suddenly 

became intense.
410

 This jump in the intensity was attributed to the short range order of the long 

axes of the α helices. The orientational effect, as well the distorsions (disclinations) in the 

cholesteric phase were studied by varying temperature,
373,411

 solvent,
412

 polydispersity of the 

polymer
413,414

 , surfactants,
415,416

 and concentration.
417,418

 Small-angle X-ray scattering, SAXS, 

and dynamic/static
373

 light scattering, DLS/SLS, techniques added more information to the 

mechanism of helix formation and LC stabilization. Α helices possess a high dipole moment 

which can be influenced by electric
381,419

 and magnetic fields.
420,421

 The helix order vector aligns 

parallel to an external field. Strong fields can hamper the formation of the cholesteric phase. 

Chiral and special solvents,
422-424

 surfactants and fluorescent tags were additional tools used to 

influence the molecular orientation in the LC phases. The diffusion coefficients of the rod-like 

mesogens (PBLG) were measured by the means of the pulse field gradient nuclear magnetic 

resonance, PFG-NMR.
425-428

 The diffusion coefficient for a solution of PBLG in chloroform at 

30°C decreased from the isotropic to the cholesteric phase. The diffusion parallel, D
II
, to the 

helix axis was higher than perpendicular, D┴. The diffusion behavior of the PBLG in 

concentrated solutions was found to follow Kirkwood theory. Very recently investigations with 

fluorescence photobleaching recovery, FPR, on the magnetically aligned fluorescein (FITC) 

labeled PBLG have found that the rate of the parallel diffusion in the direction of α-helix 

declined with the concentration while the rate perpendicular remained approximately constant. 

At low concentrations of the LC domain, the ratio between D
II
 and D┴ was 5 but at higher 
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concentrations it was 2. The molecular mobility and the flexure effects on the LC phase in m-

cresol were studied by rheology.
372,429-435

 Mesophases occurring as a result of the transition from 

various LC states were investigated in terms of stability.
436,437

 The nature of the side chain 

substituents and their influence on the molecular orientation was studied by varying the 

temperature.
424

 The work of Watanabe et al. on random copolymers made of different glutamates 

and on polyglutamates with mesogenic groups was dedicated to thermotropic phase behavior.
438-

455
 The pitch of the molecular helix was found to increase with the length of the n-alkyl chains 

and with the temperature.
456

 A columnar hexagonal mesophase formed at temperatures below the 

cholesteric phase. Phase behavior of PBLG in m-cresol was also studied in depth.
457,458

 Research 

performed by other groups used differential scanning calorimetry, DSC,
459

 NMR,
425,460-462

 

electron spin resonance, ESR
463

, X-ray photoelectron spectroscopy, XPS,
20

 and CD to 

understand better the LC behavior. Polarized light microscopy, POM, was another technique 

used to visualize the morphologies of the LC phases and to calculate the order parameter.
384,464-

466
 Many other investigations were extended to poly(L-lysine),

467-470
 poly(L-alanine),

471
 poly(γ-

benzyl-L-aspartate),
472,473

 and other unusual polypeptides.
474

 

The end of this section briefly summarizes the ability of polypeptides to undergo 

conformational transitions induced by the temperature, solvent, pH and surfactants. Doty
475

, 

Blout
476

 and Applequist
477

 conducted pioneering studies on PBLG helix-coil transition. A well-

defined transition temperature for PBLG in dichloroacetic acid, DCA, (37% vol.)-chloroform 

(63% vol.) mixture was identified.
478,479

 The heat capacity associated to the transition was 

determined by calorimetry. Watanabe et al. measured the dielectric constant and electric 

birefringence of the PBLG in DCA–EDC, 1,2-dichloroethane, mixture. Addition of DCA in 

small amount (~0.1%) caused a sharp change of these properties and was assigned to the helix-
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coil transition.
480

 Ackermann et al. investigated the thermodynamics of PBLG in the same 

solvent mixture by polarimetric measurements.
481

 The critical transition temperature increased 

with the PBLG concentration at constant solvent composition. This trend was also noted when 

the PBLG solutions had equal concentration but the amount of DCA increased. Both studies 

seem to agree that parameters such as transition enthalpy or cooperativity depend greatly on the 

concentration, the temperature and the solvent composition. The present trend in the literature 

concerns PBLG copolymers and the aggregation behavior based on the secondary structure 

changes.
482,483

 Polytyrosine, PTYR, undergoes a helix-coil transition in mixtures of 

dimethylsulfoxide, DMSO, and DCA.
484,485

 Upon addition of a strong base, NaOH, PTYR 

changed the helix conformation into the β- sheet.
486

Poly(N
ε
-carbobenzyloxy-L-lysine), PCBL, 

has a reverse transition from helix to coil in m-cresol as a function of the temperature.
487-489

 

Poly(β-benzyl-L-aspartate) is another polypeptide known to change its conformation in m-

cresol.
490

 Deprotection of side chains of the PBLG, PCBL, etc., enables the pH-dependent 

conformational transitions.
491-493

 Helix-to-helix
494

 or helix-to-sheet
495,496

 changes were also 

reported. A picture of the processes involved in the structural changes will be given in other 

chapters of this document. 

1.8  Silica Polypeptide-based Hybrids 

The past decades encountered a rapid development of micro- and nano-scale materials 

which found applications in wide areas such as medicine, industry and technology. Core-shell 

particles having a well-defined solid core made from silica and a shell comprised of a polymer 

can display a range of projected behaviors besides colloidal stability and robustness. From all 

core-shell particles, silica particles featuring a polypeptide shell have become lately an 

expanding field of research because of their potential applications, still in the incipient phase of 
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the exploration. In this section early reports on silica polypeptide hybrids will be summarized 

and, as well, trends in present research. Methods used in hybrid material synthesis such as 

grafting to (onto) and growing from will be compared and the shortcomings in designing the 

desired properties of the final product will be also addressed. The main steps involved in these 

two techniques are presented in Scheme 1.14. 

 

Scheme 1.14 Schematic illustration of the growing from and the grafting to methods. 

 

The key feature of the polypeptide-grafted silica particles is the possibility to combine in 

one material the distinct secondary structures (α- helix, β- sheet, random coil) with the low cost, 

easy preparation and facile surface modification of the silica particles. As a consequence, these 

hybrids possess a broad range of functional and structural properties. In addition, a silica core 

with magnetic inclusions and the functional groups decorating the polypeptide chain give a 

colloid responsive to external stimuli such as magnetic and electric field, pH, solvent, 
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temperature and electrolytes. Besides using a silica spherical core, polypeptides were deposited 

on flat surfaces by the classical ROP of the corresponding NCA or by the vapor 

deposition.
15,18,19,234,489,497-507

 Researchers were devoted to controlling the surface grafting 

density, to assessment of  the orientation of the polypeptide chains, to growing multi-polypeptide 

layers, and, most importantly to explore the conformational changes in response to the external 

stimuli.  

In the past years, a few composite core-shell colloidal particles have been made that 

featured a homopolypeptide shell.
8-13

 In the Russo group the era of the polypeptide-silica hybrids 

started one decade and a half ago from the simple desire to design a better core for engineering 

star shaped polymers such as PSLG-a hairy rod-like polymer.
274,389,403,508

 The step to discovering 

new and interesting properties these materials can display, was almost natural. Beautiful 

colloidal crystals were obtained from PCBL-grafted silica upon improving the uniformity of the 

silica cores.
232,233

 The effect of polydispersity on the formation of colloidal crystal has been 

reported.
509,510

 Soon it became obvious that methods to control the grafting density are necessary, 

as well as knowing the length of the polymer grown on the particle, usually by dissolving the 

silica core using etching procedures. 

The emergence of the click chemistry or Huisgen 1,3-dipolar cycloadition
511

 had made 

possible the control over the length of polymer attached to the core. This is the major advantage 

of the grafting to method: well-characterized polypeptide chains, further attached to the 

functionalized surface of the core, produce a uniform shell. Another feature of click chemistry is 

the possibility to match the end group of the preformed polymer with the reactive functional 

moiety grafted on the silica surface. The compatibility between the matching groups prevents 

interference with any other functional moieties on the silica surface or on the polymer. It also 
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favors the fast covalent grafting step over the other complementary processes (e.g. polymer 

chains can fold and give a nonreactive surface). The chemoselective and fast grafting to method 

is also known for its tolerance to a broad range of the functional groups.
512-517

 The most popular 

among all is the cycloadition of an alkyne and azide groups via stable 1,2,3-triazole linkages, as 

shown in the Scheme 1.15. 

 

Scheme 1.15 Schematic of the surface reactions involved in the preparation of 

polypeptide composite particles using click chemistry. 

 

Click chemistry was involved from the very beginning in coupling premade polymers or 

biomolecules to peptides, proteins, nucleic acids, viruses, cells, sugars and synthetic 

polymers.
518-523

 Several groups reported block copolymers made of homopolypeptides.
238,524-533

 

Yet, few reports were recorded about click hybrid particles featuring a homopolypeptide shell or 
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other synthetic polymer.
205,206,534-536

 The Russo group grafted an α-helical hydrophobic PSLG to 

silica particles.
204

 These particles formed stable dispersions in a broad range of organic solvents 

such as THF, chloroform, dodecane and toluene. The molecular weight of the coupled polymer 

was calculated to be approximately 4600 Da based on the monomer-to-initiator ratio and a repeat 

unit weight of 381 g∙mol
-1

. The GPC/MALS measurement returned a much higher value as listed 

in Table 1.1, an indication that some initiator molecules were probably inactive or yielded dead 

chains. At the same time, Gupta group used the tandem of the click chemistry and the ROP of 

NCAs to fabricate PBLG-, PLL- and PLGA-grafted silica particles with a high grafting density. 

The methodology was extended to obtain copolypeptide-grafted hybrids such as poly(L-lysine-b-

poly-L-leucine), (PLL-b-PLLeu) silica particles. The molecular weights of the grafted polymers 

appear in Table 1.1. 

Table 1.1 Polymer Name, Ratio of the Monomer to Initiator, Weight-average Molecular 

Weight, Polydispersity and the Corresponding Reference for Several Polymers Prepared 

for Click Chemistry 

Polymer [M]/[I] Mw PDI Reference 

Theoretical Actual 

Alkyne-PSLG 30 4,600 8,480 1.15 Balamurugan et al. 

Alkyne-cbz-PLL 30 n/a 8,000 1.05 Kar et al. 

Alkyne -PBLG 25 n/a 7,000 1.1 Kar et al. 

Alkyne-p-methoxy-PBLG 30 n/a 9,500 1.08 Kar et al. 

Alkyne-p-methoxy-PBLG 40 n/a 12,000 1.04 Kar et al. 

Alkyne- PLGA 30 n/a 4,300 1.08 Kar et al. 
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Table 1.1 continued 

Polymer [M]/[I] Mw PDI Reference 

Theoretical Actual 

Alkyne- PLGA 30 n/a 5,000 1.04 Kar et al. 

Alkyne-cbz-PLL-b-PLLeu 25:15 n/a 8,000 1.06 Kar et al. 

 

Comparison of the results contained in Table1.1 also helps to underline some drawbacks 

in grafting to approach. Regardless of the available range of alkyne- amine initiators, good 

control over the desired molecular weight of the polypeptide is still not evident. For example, 

propargylamine, one of the most common primary initiators used in click chemistry, is not 

reactive enough. The initiation step needs to be fast in order to enable the propagation and the 

growth of the nascent chains in the same time. The preparation of the short polypeptides as well 

as very long ones still remains a challenge. Lately, new initiators that are more reactive were 

developed and offered a better control over polymerization. One of them, N-trimethylsilyl 

propargyl amine,
357

 also used by the Gupta group seems to give low-polydispersity polymers and 

molecular weights that lie closer to those predicted from the monomer-to-initiator ratio. 

Even if the polymer has a well-characterized molecular weight, once grafted onto the 

surface the loading on the particle still remains low leading to low yields. The attachment of the 

active functions on the particle surface needs to be adjusted in such a way that will avoid a 

crowded surface. Moreover a dense coverage will result in many sites with unreacted functional 

groups because of steric hindrance. In this situation, homopolypeptides carying a side chain and 

covering the core surface are forced to interpenetrate. Therefore, some properties of the final 

product might be affected. For example, a crowded shell may fail to undergo secondary 
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transitions in response to the external stimuli if that was the application targeted for the hybrid 

particle. In order to illustrate the aforementioned, Table 1.2 summarizes grafting densities 

obtained by the two groups for several click particles. 

Table 1.2 Hybrid Particle Name, Core and Overall Size, Weight Loss, Grafting Density 

and Associated Reference for Polypeptide Composite Particles Prepared by Click 

Chemistry 

Hybrid  

Particle  

Diameter/nm, DLS) Weight loss 

% 

Grafting 

density/μmol∙m
-2

 

Reference 

Core  Core+shell 

Silica- 

PSLG 

140 ± 3 160 ± 10 30 1.48  Balamurugan et 

al. 

Silica- 

PLGA-30 

22 ± 3 37 ± 3 25 0.427 Kar et al. 

Silica- 

PLGA-40 

22 ± 3 38 ± 6 28.4 0.45 Kar et al. 

 

Another disadvantage in the grafting to approach arises from the difficulty and the costly 

protocol to remove the copper traces from the final product. Used in tandem with a ligand, the 

common N, N, N', N', N"-pentamethyldiethylenetriamine, PMDETA, or recently used sulfonated 

bathophenanthroline,
200

 the copper in the salt form (e.g. CuBr, CuI) catalyzes the coupling 

reaction between the azide and the alkyne functionalities through stable 1,2,3-triazole bonds. The 

presence of the metal in the click colloid can exert cytotoxic effects on metabolism in the living 

body, and thus hampers its use in biological applications. A step toward improving the utilization 

of this method was made by the innovation of the so-called copper-free click chemistry. 

Biorthogonal reactions use components inert to the biological environment and employ several 

classes of reagents. One class of molecules, cyclooctynes, coined by Wittig and Krebs
537

 reacts 

selectively with the azide groups at ambient temperature. The activation energy of the classical 

Huisgens [3 + 2] cycloadition is high, 26 kcal/mol,
515

 thus, elevated temperature and pressure are 

required to accelerate the rate of coupling. The copper-free chemistry has a lower activation 
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barrier, 18 kcal/mol of ring strain,
538

 because of the unique feature of cyclooctynes, a highly 

strained ring, which confer them a higher reactivity at the ambient temperature and pressure. 

Recent developments were directed to increase even more the reactivity and selectivity of the 

cyclooctynes.
539-543

 In depth view about the biorthogonal chemistry was also comprised in a 

review by Jewett and Bertozzi.
544

 The drawback of the copper-free click-to approach concerns of 

the cost and the complicated chemistry behind the synthesis of these compounds. The future of 

this subclass of click chemistry is very promising in terms of the visualization of substructures in 

cells and conducting reactions in vivo (e.g. covalent labeling of biomolecules). The method will 

also allow the in depth study of the cellular machinery. Overall, click chemistry remains an 

expanding field of the research in nanotechnology. Recent reports used click chemistry to 

prepare macromolecular self-assembling building blocks, polypeptide-g-polyhedral 

silsesquioxane (POSS) copolymers from a mono-azido-functionalized POSS and poly(γ-

propargyl-L-glutamates), PPLG.
545

 The PPLG-POSS nanoparticles had superior thermal 

properties and better conformational stability compared to pure PPLG.  

 Disadvantages of the grafting to method can be circumvented by the grafting from 

technique. Historically grafting from method was used as an exclusive tool to grow polypeptide 

brushes on planar surfaces such as silicon wafers. The ring opening polymerization of NCAs was 

conducted in solution,
19,234,502,505,506,546-550

 melt
504

 and by vapor deposition.
18,501,551,552

 One of the 

most-used polypeptides for grafting was PBLG.
553,554

 The work by Fong and Russo 

demonstrated the successful growth of the PBLG on the spherical surface made of silica 

particles.
232,233

 Lately, the same group demonstrated the grafting of PCBL in a controlled fashion 

and opened the door to copolypeptide shells, as shown in the Scheme 1.16.
218
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Scheme 1.16 Schematic of the surface reactions involved in the preparation of the 

polypeptide composite particles having a homopolypeptide and a heteropolypeptide shell. 

 

Control over the shell thickness could be assured by the sequential addition of the NCA 

monomer. The Heise group expanded the work on stimuli-responsive polypeptide-based silica 

hybrids and investigated the optimal conditions of the polymerization to produce uniform 

shells.
248

 Reactions carried out at 0°C seemed to give a core-shell structure whose hydrodynamic 

radius increased proportionally with the BLG-NCA monomer addition. The same polypeptide 

was grown on silica enclosing a magnetic (magnetite) nugget. Magnetic inclusions broaden the 

responsiveness spectrum of the hybrid particle. 

Even though the polypeptide loading on the particles is much higher than click particles, 

the grafting from method suffers from several constrains which will be further addressed. First, 
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the control over the grafting density still needs to be improved. For this reason, the Russo group 

used the tandem passivator/activator (e.g. methyltrimethoxy silane, MTMS/aminoethyl-3- 

aminopropyltrimethoxy silane, AEAPTMS, MTMS/ 3-aminopropyltrimethoxy silane, APTMS) 

in the effort to avoid a densely polypeptide packed surface. Two sets of particles were prepared: 

one carrying a shell consisting of PCBL and the other had PBLG.
218

 Methods to demonstrate the 

packing nature of the shell are limited because the molecular weight of the polymer is not easily 

accessible unless the hybrid particle is subjected to a “haircut”. This aspect will be developed in 

a future paragraph. Information about the “densification” of the shell was gathered by a 

combination of light scattering and computation methods based on the core-shell form factor.
555-

558
  

          
      

  
 
      

 
    

       

      

       

  
                        

In this equation, R is the outer radius of the polypeptide silica core shell particle, x= qR, q is the 

scattering vector magnitude defined as q = 4πn•sin(θ/2)/λo (n is the solvent refractive index, θ the 

scattering angle and λo the wavelength in vacuum), j1 is the first-order spherical Bessel function 

given by sin(x)/x
2
- cos(x)/x. The relative refractive indices were expressed as m1 = n1/n0 and m2 = 

n2/n0 with n0, n1 and n2 the refractive indices for the solvent, the shell and the core, respectively. 

The term f designates the fraction belonging to the core from the total dimension of the particle: f 

= (R-t)/R (t-is the thickness of the shell). Well-solvated particles can be modeled using the 

refractive index contrast between the solvent, the shell and the core.
556,559

 Suspensions of PCBL 

silica particles in pyridine showed a near agreement between their radius measured by DLS and 

SLS suggesting good solvation of a shell which was not densely packed. Setting the values of the 

refractive indices to 1.507 for the pyridine solvent,
560,561

 1.544 for the PCBL
562

 and 1.445 for the 
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silica
563

 adequate contrast was ensured to detect both entities: the core and the shell. In the 

Rayleigh-Gans-Debye limit
556,564

 at zero scattering angle the scattering intensity is given by: 

            
  

  
 
 

                      

In this expression ν is the number density of particles, dn/dc is the differential refractive index 

increment and M is the mass. Under these conditions and assuming a hypothetical suspension 

containing only PCBL shell without core, light scattering at finite angles should return different 

values for both RSLS (core-shell) and Rcore (silica). The results didn’t reflect this trend pointing 

once again to a good solvation of the shell, in contradiction with the situation of a highly packed 

one. Yet, this qualitative assessment couldn’t associate the apparent thickness of the shell with its 

length even under the assumption that polypeptide is oriented perpendicular to the core surface.  

The continuous reactivity of the chain ends was proven by sequential addition of the 

NCA (BLG-NCA) monomer.
218

 The direct assay of the shell was facilitated by the 

thermogravimetric analysis. The weight loss at each step increased, indeed not linearly, with the 

monomer concentration and the results were confirmed by DLS measurements. The lower 

grafting efficiency could be explained by the formation of the untethered polymer in the 

polymerization mixture. This aspect was also noted by the Heise group.
248

 The growth of the 

copolymers made of homopolypeptides on silica spheres was assessed. The importance of 

washings to remove the free, untethered polypeptide was reflected in the thermogravimetric 

curves. Approximately 25% weight loss difference was recorded between the unwashed and the 

washed sample. The reactions conducted at various temperatures (0°C and 20°C) showed good 

control over the shell thickness, especially at 0°C. This is in agreement with the findings that at 

0°C the NCA doesn’t react with moisture.  
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A sensitive and debatable issue is the determination of the molecular weight of the 

homopolypeptide grown on the surface. The most popular technique is etching the silica cores by 

hydrofluoric acid, HF. Soto Cantu et al. reported the ability to control the size of the silica when 

HF etchant was employed.
246

 The etching method was adapted to the polypeptide composites 

from the extensively used treatment of the silica wafers.
565,566

 Yet, no detailed study was 

conducted so far to determine the effect of etching conditions on the polypeptide shell. Questions 

if the degradation of the polypeptide can occur were asked and answers still wait. The Heise 

group was the first to combine molecular weights from GPC and mass of shell polymer from 

TGA to determine the number of polypeptide chains on a particle (0.4 chains/nm
2
 or 2.5 nm

2
 

“parking area” per chain).
248

 The obtained molecular weights of the PBLG ranged from 7,700 to 

20,100 Da for polymerizations conducted at 0°C while the values for polymerizations performed 

at 20°C varied from 8,700 to 20,100 Da. The polydispersity indexes were 1.4 (0°C) and mostly 

1.3 (20°C). The authors claimed that lower temperatures are better but a net difference in the 

molecular weights values cannot be distinguished. Moreover, the polymerization conducted at 

20°C seemed to favor slightly lower PDI’s. Some research groups have shown that 

polymerization in solvents such as DMF as Heise used can initiate the polymerization of the 

NCA, consequently competing with the initiation by the amino groups. The DMF initiation, as 

shown in the Scheme 1.17 was also studied by Kricheldorf.
285,363

 

This competition arrests the formation of the high molecular weight polymer and yields 

polydisperse polymers, because the growth of the nascent chains occurs before, during and after 

the addition of initiator. Yet, the Heise group brought an important contribution to this field by 

engineering hybrids decorated with a copolypeptide shell. These results demonstrated the 

potential adaptability of the polymerization to a broader range of amino acids. The continuous 
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reactivity of the polypeptidic chains was consequently proven, which agreed with the Russo 

group reports.  

 

Scheme 1.17 Schematic of the initiation steps of solvent (DMF)-induced 

zwitterionic polymerization of N-protected N-carboxyanhydrides. Adapted from 

References 285, 296 and 363. 

 

The stability of the polypeptide-based silica hybrids is of special interest from the 

perspective of their potential applications. The Russo group presented a study conducted on the 

aging PCBL-silica hybrids over one year since they were fabricated. It was found that, in time, 

particles tend to aggregate, a prerequisite of the shell interdigitation. Dynamic and static light 

scattering techniques recorded correlation functions characteristic to aggregate entities. 

Sonication over 30 min. reversed the aggregation: particles’ size was similar with the one 

recorded right after the preparation. The downward tendency of μ2/Г
2
, the DLS polydispersity 

index, similar with Mw/Mn in GPC, could be explained by the presence of the aggregate particles 

that could not be separated by the sonication. The polypeptide seemed to survive the treatment 

for the aggregate breakage. Liu et al. sonicated their PBLG-SiO2-Fe3O4 composite particle in 
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DMF for 36 hours to test the presence of the polypeptide on the magnetic silica surface.
567

 Still, 

the authors fail to display the thermograms of all steps involved in the preparation and also the 

size before and after sonication. Ostlund et al. have shown that prolonged sonication of PBLG 

alters greatly the chains.
568

 The scission was noted to occur preferentially on the backbone 

between the weaker C–N bonds than the C–C or the side chain C–O bonds. The molecular 

weights dropped to less than half from the initial value, while the polymer retained its helical 

conformation. Consequently it is not clear how the sonication affected the grafted polypeptide on 

the Liu et al. magnetic silica surface or on those “de-aggregated” by the Russo group using 

sonication. 

Another route employed in the production polypeptide-silica core shell particles is layer-

by-layer, LbL, assembly, method exploited by Caruso group.
569,570

 The method is mainly used as 

an efficient way to design capsules. This technique utilizes the electrostatic interactions between 

layers of oppositely charged polyelectrolytes which are sequentially deposited on a silica 

sacrificial template. In this manner, the charge is compensated at each layer.
571-573

 The LbL 

method has the advantage of providing better control on the capsule dimensions.
574

 Engineered 

as drug carriers, these capsules must be small and flexible to travel through the circulatory 

system’s tiny vessels
575

 without obstructing the blood stream. The LbL polymer assembly is not 

limited only to the electrostatic or the zwitterionic interaction. Lately, the LbL assembly was 

expanded on the H-bonding
576,577

 and also on the DNA- DNA hybridization.
578

 The continuous 

development of click chemistry enabled the LbL deposition of the click functional group 

“matched” polymers.
579-582

 Once the desired number of layers is loaded on the sacrificial silica, 

the core template is removed by etching with HF. Afterwards, the capsule can be loaded with 

drugs for release purposes. Initially designed with one single void, the morphology of the 
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capsules was adjusted to create sub-compartmentalized micro-reactors by using liposomes.
583-589

 

The Caruso group took one step further in the field and produced crosslinked poly(L-glutamic 

acid), PLGA particles. The procedure employed positively charged amino-functionalized 

mesoporous silica particles which were further decorated by LbL deposition with PLGA carying 

cysteine residues.
590

 Further, the final composite particle was obtained by disulfide crosslinking 

and the silica template removal. The polypeptide particles were found to degrade under 

cytoplasmic conditions and were stable under physiological conditions making them promising 

candidates as therapeutic carriers.  

1.9  Future Trends and Applications of Polypeptide-based Silica Hybrids 

 Colloids with a soft shell, especially made of homopolypeptides, are extraordinary 

candidates for a broad range of applications. This section will outline several areas of the impact 

and also future trends in the polypeptide-based hybrid particles.  

 One important feature of the polypeptides, still not fully exploited, is their ability to self- 

assemble in spherical shapes, micelles. Hybrids carrying such shell can be envisioned as 

excellent models to mimic the self assembly and the action of viruses during the infection stage. 

Many other proteins have this ability to form the so-called virus-like particles but the polypeptide 

composite particles, PCPs, have the advantage of the sequence simplicity. Reports emphasized 

the great potential of the capsid structures resembling virions in designing vaccines that could 

replace the therapeutic monoclonal antibodies used in some disease treatments.
591

 Having a well-

defined core and a shell that can be adjusted to the intended shape and thickness, PCPs can be 

compelling models to understand the interplay forces between the viruses and the living cells 

within the body. Moreover, such capsids can be easily obtained from PCPs by etching the core 

with HF or NaOH. In addition, the control over the etching conditions can lead to various 
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mesoporous morphologies useful in the drug delivery. They can also serve as platforms to 

investigate the laborious work of the nature in virus construction and to unravel fundamental 

properties of the infecting bodies.
592

  

 Another area less explored is jamming. Before designing complex applications as 

previously mentioned one needs to understand the interactions between the colloid particles in 

different states, medium and external stimuli. The most studied soft matter, the colloidal hard 

spheres, was shown to render a slow relaxation dynamics under crowding conditions as a result 

of either repulsive or attractive forces. Jamming soft matter helps to better understand the 

relationship between the viscoelastic properties and the spatial correlations of the dynamics.
593

 

Jammed matter evolves from a flowing to a rigid state. Even though the dynamics change 

dramatically, the internal structure remains disordered in both solid and fluid phase, quite 

different than crystallization.
594-600

 Rheology is one of the traditional tools used to investigate the 

dynamic behavior of colloidal suspensions: See Reference 601-602 for reviews.
601,602

 The change 

in the polarization of dipolar composites under the influence of the external electromagnetic 

fields was another subject of interest for researchers.
602

 Other techniques employed in jamming 

matter investigations such as sedimentation,
603,604

 hydrostatic pressure
605

 or elipsometry
606

 gave 

insight into the short- and long-time dynamic properties of the colloidal core-shell particles. For 

example, Ross et al. used the generalized Mie theory applied to multiple spheres to study the 

relationship between the scattering matrix and the elipsometric scattering variables as a function 

of the nonconcentricity and the shell thickness.
606

 Fluctuations in scattering modes enabled the 

design of a contrast model that could be used as a guide in the future light scattering 

experimentation. The mutual interactions between particles suspended in a liquid more or less 

viscous are greatly influenced by the particulate size. For simple fluids, the molecular size, and 
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nanometer scale, the behavior is well characterized by the hydrodynamic equations. Once the 

frontier of the micron scale is crossed one has to deal with the non-equilibrium dynamics, 

dictated by depletion.
607-628

 This phenomenon does influence the stability of the suspension, as a 

result of the manner in particle interaction either in a confined volume or flowing along a 

surface.
629,630

 

Largely studied systems comprised of core-shell particles confined in a polymer matrix 

were used as models to investigate the self-assembly phenomenon. A special interest was placed 

on mixtures of hard spheres and rod-like polymers. A milestone can be considered the work of 

Tracy and Pecora on ternary systems silica/PBLG/DMF at different concentrations.
631,632

 The 

diffusion coefficients of 60.4 nm hard spheres suspended in PBLG of 70 nm in length could be 

measured simultaneously and were found to deviate from the theoretical predictions. Such 

deviation found in the rod and coil solutions suggested that the hydrodynamic interactions 

between the polymer chains play an important role. At first look one may question why such 

complex interaction should matter. It matters because the present and future technology is 

devoted to expand the frontier of the liquid dispersion by preparing complex composite liquids. 

Used as lubricants, paints, adhesives and ceramic precursors it is important to understand the 

interactions between each component within the liquid. The cytoplasm in the biological cells is 

another example of the complex fluids. The increased complexity of drug carriers, the targeted 

reactions at the cell level or the infiltration of infecting bodies under cell size, altogether, reflect 

the picture of the complicated interactions within the cell medium. From the biological point of 

view and the applications that may arise, the study of ternary systems using particles coated with 

a homopolypeptide shell suspended in the same or different helical polypeptide matrix as the 

shell, is not even in its infancy. Useful techniques recently emerging are devoted to offer high 
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resolution information on such advanced materials and their dynamics. Micro-rheology using 

optical tweezers is one of these methods.
633-637

 Forces acting on single colloids without any 

mechanical contact that can be carried out in nano- and microfluidics can be measured. Trapped 

in the focal point of the strongly focused lasers, a particle is held and manipulated in the 

desirable medium enabling excellent insight especially on the pair interaction, the electrophoretic 

mobility and drag forces, respectively.
638

 For example, DNA’s uniform and non-uniform 

stretching was studied since the 1990’s by Brochard and Pecora.
639

 Attached to a magnetic bead 

with one end they could investigate the behavior of the DNA strand under different conditions. 

The progress in the field over the past decades enables today high resolution experiments on 

single cell adhesion
640

 or parasite entity manipulation,
641

 to name only a very few applications in 

the biological sciences. 

One of the most extraordinary and unique features that polypeptides provide is their 

capability to undergo conformational changes as a function of the pH, temperature or solvent. 

Stimuli-responsive assembly such as polymeric micelles, capsules or polymersomes found a 

myriad of applications from cosmetics, pharmaceutics, and biotechnology to biomedicine. Steps 

toward introducing polypeptide-coated silica as biodegradable and easy-to-manipulate candidates 

to the field of such applications were made and this area continues to grow. Borase et al. 

entrapped Rhodamine B within the poly (L-glutamic) acid-based, PLGA, composites that was 

released when the pH of the aqueous solution was changed from acidic (pH=2) to basic 

(pH=10).
248

 The Rhodamine B release mechanism can be considered a good model for future 

pH-responsive payload delivery. Furthermore, the feasibility of the bioconjugation was 

demonstrated by the attachment of a green fluorescent protein using NHS coupling chemistry. 

Aggregate particles were visualized by the means of fluorescence microscopy. Kar et al.
200
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explored the potential of the PLGA as a biodegradable platform in the preparation of the 

scaffolds for drug delivery,
642-652

 MRI contrast agents
653,654

 and tissue engineering 

applications.
655

 Well-defined, aligned three-dimensional macroporous structures were produced 

from PLGA-grafted silica particles crosslinked with polyethyleneimine, PEI, upon ice templating 

approach with directional freezing. The PEI treatment had as role the stabilization of the scaffold 

against water disassembly. The presence of the PLGA makes possible the post-functionalization 

with other organic moieties for the purpose of tissue engineering applications. A devoted work to 

the field of biocompatible and biodegradable responsive materials has being elaborated by other 

research groups. Lecommandoux group has developed their polymersomes comprised of diblock 

copolymers, one being PLGA.
656

 These self-assembled structures resemble in their structure 

primitive biological cells. Agut et al. demonstrated that poly[2-(dimethylamino)ethyl 

methacrylate]-b-poly(glutamic acid), the double hydrophilic block copolymers, DHBCs, self-

assemble in micelles and polymersomes.
656

 Their sizes and morphology could be varied as a 

function of the pH, the temperature, the composition of the DHBC and its isoelectric point and 

the PLGA block length. The separate response upon pH and temperature changes achieved with 

these models was considered a new route to stimuli-responsive carriers. Sanson et al. synthesized 

biocompatible block copolymers from poly(trimethylene carbonate)-b-poly(L-glutamic acid), 

PTMC-b-PLGA that formed vesicles and their sizes and dispersities were controlled under 

different conditions (e.g. polymer concentration, nature of organic phase, etc.).
657,658

 The 

polyelectrolytic PLGA corona responded to the pH changes. The encapsulation of 

superparamagnetic maghemite, γ-Fe2O3, within the membrane of the vesicles by a 

nanoprecipitation process enhanced their responsiveness: they could be guided under external 

magnetic fields.
659

 Furthermore, by loading with an antitumor drug such as doxorubicin 
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hydrochloride, DOX, their use as complex drug carriers and as potential candidates for 

controlled drug release by radio frequency magnetic hyperthermia was proven. Not the last, 

polymersomes fully based on the PLGA and the carbohydrate (galactose) building blocks 

prepared by the click glycosilation have shown various morphologies triggered by the reaction 

conditions and they also aligned to the raw of the nanosized drug carriers targeted for drug 

delivery.
660

 

No matter the procedure involved in the preparation of such void-polypeptide shell, the 

so-called either polymersomes, micelles, vesicles, capsids or caposomes, the future of these self- 

assembled morphologies is directed toward manufacturing more complex structures with 

enhanced responsiveness, biocompatibility and multiple compartments. The future availability of 

such advanced materials was already demonstrated, for example, by Caruso’s caposomes used as 

platforms to future therapeutic cells and organocells.
583,588

 In the same order of ideas, 

polypeptide-based silica hybrids remain a field in continuous exploration and development with 

compelling future applications ranging from biomedicine to simple cosmetics. 
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CHAPTER 2 

PREPARATION AND CHARACTERIZATION OF STRATIFIED COLLOIDAL 

SILICA 
 

2.1 Introduction 

 The fast expansion of nanotechnology to a broad range of vital fields of science and 

technology provides opportunity to develop new advanced materials with excellent properties 

and facile control over such features. These fields relate to pigments,
1
 catalysts,

2
 

chromatography,
3
 dynamic behavior,

4
 drug delivery,

5
 bioimaging,

6
 photonics,

7,8
 etc. The road to 

such materials usually starts with the preparation of simple particulates. For the most advanced 

materials, the quality of the core, in terms of control over size and shape, is of great importance. 

This requirement demands improved ways to prepare and to characterize the colloidal 

suspensions.  

 Silica, SiO2, is probably the most widely used filler in the development of the composite 

materials. Abundant natural silica is not amenable for scientific and technological applications 

because it is blended with metal traces. The purification of silica from natural sources will raise, 

consequently, the price of the production. Research-grade silica is mostly prepared by synthetic 

methods as pure and amorphous powders. One of the bottom-up routes to silica particles is the 

sol-gel method. This approach involves the hydrolysis and condensation of the silica precursors, 

tetraethylorthosilicate, TEOS, metal alkoxides, or inorganic salts such as sodium silicate in 

acidic or basic conditions. The basic environment provided by aqueous ammonia is milder 

during the preparation of particulate suspensions than the acidic medium used to generate gel-

like products. A two-step process―hydrolysis of silicon alkoxide precursor to silicic acid 

followed by base-catalyzed alcohol condensation is used to make certain materials. Today silica 

colloid is synonymous with Stöber silica because the work published by Stöber et al. in 1968 
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became the most popular way to quasi-uniform particles.
9
 Yet, several years before, Kolbe 

observed the formation of silica particles through the hydrolysis and condensation of TEOS in 

mixtures of water, alcohol and ammonia.
10

 Some other reports were also known before the dawn 

of the Stöber era.
11

 The drawbacks of the Stöber’s approach, such as slow and costly TEOS 

distillation and the fast addition of TEOS to the basic alcoholic solution, have received much 

attention by other researchers attempting to obtain inexpensive monodisperse silica 

particulates.
12

 Bogush et al.
12

 and then Zhang et al.
13

 developed a seeded growth technique to 

improve the spherical shape and uniformity, and to also increase the size of the particles. The 

contribution of latter authors was substantial in the field of colloids because it allowed the 

production of high-quality materials in terms of size and shape. Over the years research in the 

silica production was directed in improving the original Stöber method with focus on controlling 

the size distribution and shape.
14,15

  

 Silica formation was studied extensively from a kinetics point of view in an attempt to 

describe the growth mechanism. Two models have been proposed: monomer addition
16,17

 and 

controlled aggregation.
12,18,19

 The size of the primary particles is a commonly studied aspect, and 

researchers reported values from 2-4 nm to over 20 nm.
18,20-23

 A review has appeared.
24

 

 Amorphous silica was found to be appealing for biomedical applications. Even though 

studies performed on the cytotoxicity were sometimes contradictory, in general silica is 

considered nontoxic for living bodies.
25

 Monodisperse particles with a spherical shape are 

excellent candidates for photonic crystals applications.
26

 Upon treatment with hydrofluoric acid, 

HF, or with base, NaOH, plain silica can be modeled into mesoporous structures which find 

applications in drug encapsulation and drug delivery.
27-29

 The nature of the silica surface makes 

possible the decoration with functional groups which enables the attachment of polymers, 



118 

 

polypeptides, enzymes, etc. It is easy, then, to consider amorphous silica particles as an excellent 

platform to vital applications stemming from their properties.  

 Particle characterization typically uses tools such as electron microscopy (TEM and 

SEM) and light scattering. Flow field flow fractionation, F4, has emerged lately not only as a 

size evaluation method but also as a reliable utensil to separate colloid suspensions over a broad 

range (1 - 1000 nm) of sizes.
30

 A member of the F4 family of techniques is asymmetric flow 

field-flow fractionation, AF4, introduced by Giddings.
31

 The combination of AF4 with on-line 

detectors such as multi-angle light scattering, MALS, emerged as a powerful tool with enhanced 

sensitivity and high resolution information on particle morphology, composition and stability in 

a liquid media.
32-34

 The AF4-MALS method is considered today an effective and viable alternate 

route to characterization of macromolecules
34-36

 and especially non-spherical
37

 and spherical 

particles.
33,38-44

 More details about this technique are presented in a recent review article
45

 and 

the theoretical background is described largely by Podzimek in his book.
46

 

 The present chapter describes a method to prepare a silica suspension in which particles 

of different size are separated into vertical layers. The layer separation occurred over a period of 

time in basic conditions. After their stratification each layer was collected separately and 

characterized by TEM, light scattering and AF4-MALS. Comparison of the size information 

gained by these techniques showed a tremendous improvement in particle dispersity. The mild 

basic conditions allowed a slow etching process of silica beads into mesoporous structures. The 

stability of the colloidal particles in time was also studied. Fractionation performed by AF4-

MALS enabled the evaluation of the sizes within a given layer, along with information about the 

size distribution within that band. AF4/MALS was effective not only in the determination of the 



119 

 

intriguing mesoporous morphologies discovered in the silica layers but also in detecting the 

presence of degraded particles. These findings were also confirmed by TEM and DLS assays. 

2.2. Materials  

Tetraethyl orthosilicate, TEOS, (>90% purity) was purchased from Sigma-Aldrich. 

Absolute anhydrous ethyl alcohol 200 proof ACS/USP grade was obtained from Pharmco-

AAPER. Ammonium hydroxide 28-30% ACS grade was purchased from BDH Aristar. All 

reagents were used without further purification. Deionized water (18 MΩ•cm
-1

) was drawn from 

a Barnstead Nanopure water purification system.  

2.3 Results and Discussion 

2.3.1 Preparation and Characterization of Stratified Silica Colloid 

 The production of silica particles separated naturally by layers is illustrated in Scheme 

2.1. A modification of the Stöber, Bogush and Zhang procedures was employed, albeit water was 

not used as in Stöber and Bogush approaches. The amount of water used was only from the 

ammonium hydroxide solution (28-30%). Briefly, a basic alcoholic solution (pH = 9) was 

obtained by mixing absolute ethanol with aqueous ammonium hydroxide for 15-20 min to 

achieve homogenization. Separately reagent grade TEOS was diluted 4x with absolute ethanol 

and rapidly added to the basic alcohol solution under vigorous stirring. After 2 h of reaction the 

white-bluish colloidal suspension was left undisturbed at least 12 h and, afterwards, was stored in 

tall bottles (8-8.5" in height, 3-4" in diameter). More preparatory details are described in Chapter 

8, Sections 8.1, 8.1.1 and 8.1.2. At least six batches were prepared in both medium- (~500 mL) 

and large-scale (~1250 mL). The purpose of multiple batches was to test the method 

reproducibility in terms of yield, particle size and shape.  
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Scheme 2.1 Production of the stratified silica colloid (Not drawn to scale). 

 

After preparation, the resting silica colloid began to separate into layers. The process took 

place from 4 weeks to almost 2 months. Each layer was collected separately. The particles were 

not washed. They were kept in the original basic conditions. The morphology of the particles 

was visualized by TEM. Figure 2.1 depicts particles from a batch which separated into two 

layers. Particles were uniform in size and spherical in shape. A tendency to pack into flower-like 

structures is evident in the TEM images. Undesired shapes such as peanut, were not observed. 

The peanut morphology occurs as a consequence of particle aggregation during the growth 

process.
13

 The absence of such shapes demonstrates the importance of TEOS dilution with 

ethanol. The dilution slows the diffusion of the silane precursor to the silica nascent nuclei and 
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the growth evolves on a constant scale within the batch. These results are in good agreement 

with the report by Zhang et al.
13

  

 

 

Figure 2.1 TEM images of silica-1 (CR5119) from different layers:  

top (A) and bottom (B). 

 

Particles in the top layer, Figure 2.1A, were slightly bigger than those in the bottom layer, Figure 

2.1B. The silica particles displayed in Figure 2.1A and Figure 2.1B have the consistency of hard 

solids. A softer appearance was observed for other batches and it is shown in Figure 2.2.  
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Figure 2.2 TEM images showing the soft appearance of the silica-2  

(CR5134) cores. 

 

In silica preparation the hydrolysis and the condensation of the TEOS have as result the 

formation of crosslinked siloxanes networks on top of each other. The soft morphology suggests 

either the silicon layers are not arranged in a very compacted structure or the basic conditions 

“soften” the spheres. They had a lower contrast in the electron beam as seen in Figures 2.2A and 

Figure 2.2B.  
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Measurements by DLS and AF4/MALS were also involved in the characterization of the 

silica particles. Figure 2.3 displays the DLS and AF4 profiles of the silica-1 (CR5119) and silica-

3 (CR6133A) particles. 

  

  

Figure 2.3 Representation of Rapp versus q
2
, and Dapp versus q

2
 (inset) for (A) silica-1 

(CR5119) and (C) silica-3 (CR6133A) and AF4-MALS elugrams for (B) silica-1 

(CR5119) and (D) silica-3 (CR6133A). 

 

The sizes, summarized in Table 2.1, were larger for the top layer than for the bottom layer, in 

agreement with TEM. 

DLS and AF4 along with TEM data suggest that the sedimentation of the particles was a 

density-driven process. The lighter yet larger silica collected at the top layer while the denser but 
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smaller particles sank to the bottom. The difference between DLS and AF4 size values is made 

by the way the radius is calculated. 

Table 2.1 Silica Top and Bottom Layers and Their Radius from DLS and AF4 

Silica R(DLS)/nm R(AF4)/nm 

Silica-1(CR5119) top 84 ± 4.9% 75.5 ± 0.7% 

Silica-1(CR5119) bottom 57.5 ± 5.2% 69.2 ± 0.5% 

Silica-3(CR6133A) top 270 ± 3.3% 154.5 ± 2% 

Silica-3(CR6133A) bottom 107 ± 1.2% 153 ± 1% 

 

In AF4, the radius is obtained by fitting a spherical form factor applicable to a sphere with no 

internal structure. The obtained size is equal to the size of a uniform, simple sphere that matches 

the measured form factor. Sometimes this radius is erroneously referred to as the geometric 

radius. DLS fits the radius of a sphere with the radius calculated from the measured translational 

diffusion coefficients based on Stokes-Einstein relationship: 

  
   

      
                

where D is the measured translational diffusion coefficient at the absolute temperature T, kB is 

the Boltzmann constant, η0 is the solvent viscosity and R is the radius. Both techniques assume a 

hard sphere model; consequently the reliability of the calculation depends on how well the actual 

particles adhere to the simple, uniform spherical model in terms of the shape and consistency. In 

Figure 2.3B the slight angle dependency noted for the top layer suggests either a distribution of 

the particles within the layer or a deviation from the sphere shape. Figure 2.3D reflects an 

average radius calculated by AF4. 
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The silica particles shown in Figure 2.1 were obtained in good yields. The method used 

allows for scale-up of the production. The cost of these particles is very low  (assuming student 

salary $62/day, cost of reagents/3 medium batches ~$40, utilities/day ~$35 and a total of three 

medium batches produced which gives 15 g of particles, the total cost is $137/15g or ~$10/1g of 

silica) when compared with particles produced by the emulsion method. It is known that silica 

obtained in a reverse micelle have good uniformity but the major drawback is the very low yield. 

Figure 2.4 displays silica particles prepared in a sol-gel and a reverse micelle approach.   

  

Figure 2.4 Silica particles obtained by (A) the sol-gel method (D = 122 ± 11 nm) and (B) 

the reverse micelle method (D = 33.5 ± 1.1 nm). 

 

Even though the uniformity is worse for sol-gel silica, Figure 2.4A, than for particles obtained by 

the reverse micelle method; Figure 2.4B, the sol-gel method is an excellent way to produce 

monodisperse particles by the regrowth process in which new layers of TEOS are built on the 

particles used as seeds. The reproducibility of the silica colloids depends was satisfactory and 

depends on the reagent purity. Table 2.2 reflects the sizes of silica batches prepared at different 

times. In time, reagents can absorb traces of moisture while they had been used resulting in an 

alteration of their quality. This influences the growth of the silica colloid. 



126 

 

Table 2.2 Silica Sample and the Radius by TEM, AF4 and DLS Measured After 

Synthesis and From the Top Layer of Four Separate Batches.  

Silica* R(AF4)/nm R(TEM)/nm R(AF4)/nm R(DLS)/nm 

Silica-1(CR5119) 80 ± 0.7% 61 ± 4.5% 75.5 ± 0.7% 84 ± 3.5% 

Silica-2(CR5134) 80 ± 2% 53 ± 4% 54± 2% 58 ± 0.6% 

Silica-4(CR6184) 115 ± 0.5% 118 ± 4.5 104 ± 0.7% 118 ± 1.8% 

Silica-5(CR6155) 63 ± 6% 84 ± 6.2% 80 ± 0.5% 114.5 ± 1.1% 

 *The size of the batch was medium, 500mL. 

The slight deviations depicted in the Table 2.2 will be addressed later. 

2.3.2 Colloidal Stability of the Stratified Silica  

The development in advanced materials field, featuring core-shell architecture, qualified silica 

particles as a best candidate for such products. Among a variety of cores that can be prepared, 

silica has the main advantage of easy surface modification with functional groups. Figure 2.5 

shows, for comparison reasons, standard polystyrene beads and standard colloidal silica spheres. 

The shape of the polystyrene, Figure 2.5A, prepared by emulsion method is better than the silica 

obtained in the sol-gel process, Figure 2.5B. Despite the undesired shapes, Figure 2.5B inset, 

silica remains the most widely used material as a core for a large palette of composite particles.  

Many studies involved silica sols over the years but less studied is the colloidal stability 

over a long period of time. One might expect that the spherical shape is preserved for quite a 

long time. Still, silica can undergo changes in its structure and the result is reflected in Figure 

2.6. The mesoporous structures called geodesics, were found in the top layer of the silica-1 

batch, Figure 2.6A. Intriguing is the size of these structures when compared with the original top 

layer sol. The total diameter was calculated from the TEM images as 320 nm ( 3.4%) and the 

pore diameter as 70 nm ( 6.7%). The initial particles had a diameter of 122 nm ( 9%). The size 
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increased almost three times. The geodesics from silica-3 top sample, Figure 2.6B, had a size 

comparable with the original particles (~300 nm in diameter). 

 

 

 

Figure 2.5 SEM pictures of (A) standard polystyrene latex 

and (B) standard silica, (inset) undesired silica shapes. 
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Figure 2.6 TEM micrographs of the cavitated structures: geodesics 

discovered in (A) silica-1 top and (B) silica-3 top and hollow discovered  

in (C) silica-2 top. 
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Figure 2.6C displays a hollow morphology found in the silica-2 top. Unlike the above particles, 

these ones shrank a little (~90 nm average diameter) when compared with the original ones 

(~100 nm average diameter). A common feature can be noted for all these three samples: all the 

non-solid morphologies were found in the top layer which is in a good agreement with the 

finding that the top layer consists of lighter particulates. The evolution of these particles from 

plain spheres to the mesoporous spheres is still not fully understood. Because the reaction and 

the storage conditions were the same for all the samples presented in this work, the parameters 

that could impact the formation of such structures are the size and the polymerization degree of 

the TEOS into crosslinked networks. Indeed, in early studies on silica sols, Van Helden et al. 

demonstrated that the core of a silica bead had a lower density than the outer surface.
47

 Water 

trapped inside the silica hydrolyzes the siloxanes Si—O—Si bonds to Si—OH. The appearance of 

the mesoporous silica in TEM images can be correlated to different rate etching of more or less 

crosslinked siloxane networks. The formation of the silica was performed at pH 9, as well as 

their storage. The TEM pictures displayed in Figure 3.6 suggests that the etching took place from 

the interior to the exterior. It can be implied that the core of the silica beads had a less compacted 

siloxane network. This idea is in agreement with Van Helden et al.
47

 and more recently with 

Gross et al.
48

 Studying the effect of the pH on the silica chemistry, Gross et al. showed that pH 7 

resulted in the most highly polymerized networks while at pH 11 the structure was the least inter-

bonded. The condensation of the silica occurred faster at pH 7 while the hydrolysis was faster at 

pH 11. Higher pH (~12) was found to dissolve silica almost instantaneously. This aspect will be 

presented in Chapter 4. Gross et al. correlated the observed expansion and contraction of the 

silica spheres to the degree of the silica polymerization into a compact network. These 

observations were also confirmed by Liu et al.
49

 and Park et al.
50

 In the incipient stages of the 
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silica formation, the nascent silica beads have a less dense structure govern by the medium’s pH. 

During reaction it might be possible a slight “pH dilution” due to byproducts which favors the 

formation of more compact siloxane networks. Moreover, the size of the surface pores should be 

smaller, hence preventing the penetration of the etchant molecules to the particle interior. The 

geodesics depicted in Figure 2.6A show an empty core with tunnels pointing to the exterior. 

Most probably the etching started as an interior process causing, in time, the expansion of the 

particles. This process can be compared to an ant hill; as the insects excavate their homes, the 

dirt is piled up on the outside. The Figure 2.6B depicts geodesics with a still filled core but the 

tunnels are just empty voids. The particles were etched from the outside which might explain the 

nearly constant size when compared with the original sol. This is intriguing because based on the 

size of the plain particles, this mesoporous spheres should behave more like the first geodesics 

shown in Figure 2.6A. The hollow structure, Figure 2.6C, probably result from etching at both 

the surface and the interior. The surface could undergo a slight modification due to the siloxanes 

hydrolysis which, at some extent, can close the pores of the remaining particle. This might be 

suggested by the presence of the outer silica membrane seen at higher electron density contrast. 

The core of the beads was etched by the etchant/water molecules trapped inside. In order to 

verify the series of assumptions made, the same layer of the silica-2 and silica-3 was monitored 

by AF4 at different times of the storage. The data are presented in Table 2.3. 

Table 2.3 Silica Top Layers and Their Radius at Different Storage Times Measured by 

AF4 

Silica R
a*

/nm R
b*

/nm 

Silica-2 top 54 ± 2% 44 ± 0.8% 

Silica-3 top 130 ± 1% 154.5 ± 2% 

*a and b are different storage times; Δ(a,b) was 2-4 weeks. 
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Indeed the silica-3 underwent to a size increase over the time suggesting a dense siloxanes 

network which, upon etching, could swell. On the other side, silica-2 shrank but this observation 

is not a surprise since the TEM analysis showed a low electron density contrast particles, an 

attribute of a light siloxanes interbonded networks.  

The mesoporous particles presented by this work can be obtained in high yields. Once 

formed, they can be washed with ethanol and water and stored in an acidic solution which stops 

the hydrolysis of the siloxane bonds. The geodesics, especially the ones seen in Figure 2.6A can 

be used as good fillers in the membrane manufacture. Furthermore, the mesoporous particles can 

be functionalized with the reactive groups. The functional moieties can be further used as 

platforms to attach biomolecules or other macromolecules. 

 The colloidal stability and the size preservation should take into account the duration, 

temperature and other conditions of storage. Particles kept even in a mild basic pH undergo to a 

slow etching process enabled in this case by the aqueous ammonia. Therefore, the size of the 

particles can change dramatically over the time. As proof-of-concept, Figure 2.7 reflects silica 

particles immediately after separation into layers and after more than one year of storage. The 

original sol separation into layers contained particles of spherical shape. They had the 

appearance of a hard core, as shown in Figure 2.7A. The sizes obtained by AF4/MALS 

measurements suggest a uniform silica density. Figure 2.7B reflects the stratification driven by 

weight: the bottom stratum contained the largest particles while the top had the smallest. After 

one year, the top layer, Figure 2.7C, had spherical particles. They retained the tendency of the 

hexagonal packing. Figure 2.7D depicts the middle layer with particles having a different 

architecture. The spheres underwent to a surface modification, a process which caused their 

morphology to change into one similar with a core-shell rather than a hard core (Figure 2.7D, 
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inset). The edges of the particles are not clear and the fuzziness around the area of the darker 

contrast is obvious. The bottom layer, Figure 2.7E, had a more pronounced fuzziness, as clearly 

seen in the zoom in area presented in the inset. 

 

 

 
 

Figure 2.7 Silica-6 (CR51): (A) TEM image of the initial bottom layer particles  

showing their spherical structure, (B) AF4-MALS chromatogram of the initial  

separated sol reflecting an expected trend of the layer sizes: top the smallest,  

(C) TEM image of the top layer (higher magnification, inset) after one year,  

(D) TEM image of the middle layer (higher magnification, inset) after one year,  

(E) TEM image of the bottom layer (zoom in, inset) after one year and (F) Radius,  

Rapp, versus scattering vector magnitude, q, and (inset) diffusion coefficients, Dapp  

versus scattering vector magnitude after one year showing the new trend of the layer 

sizes: bottom the smallest. One year samples were stored in the initial basic conditions. 



133 

 

Figure 2.7 continued 

 
 

 

All three layered particles were able to self-assemble into a hexagonally close-packed structure, 

as a consequence of their uniform sizes and regular shapes. Hence, the silica beads obtained by 

this strategy are expected to possess photonic crystal properties. Nanoscale silica coated 

particles, similar in size with the particles presented in this work (200-300 nm), were found to 

exhibit optical properties applicable in the visible part of the spectrum.
51

 The sizes returned by 

DLS showing a reverse trend when compared with the initial values obtained by AF4/MALS 

assay. Reasons for this finding will be addressed in a next paragraph.  

 In the experiment described in the preceding paragraph it was demonstrated that silica 

particles do change their sizes over time. Since silica are used as standard in many applications, 

concerns rise on their stability. In a simple experiment, standard silica (200 nm) more than one 

year old, were analyzed by TEM, DLS and AF4/MALS. The results are presented in Figure 2.8. 

The size modification is clearly visible in Figure 2.8A. Most of particles not only lost their 

spherical shape but began to develop a core-shell structure even their storage was not in a mild 

basic solution as silica-6. They should appear as the standard silica presented in Figure 2.5B. 
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Figure 2.8 Standard silica (>one year): (A) TEM image, (B) apparent  

radius, Rapp, and apparent diffusion coefficients, Dapp, (inset) as a function  

of the scattering vector magnitude from DLS and (C) AF4-MALS  

chromatogram. 
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The DLS results, Figure 2.8B, showed no angle dependency of the radius but the points do not 

align nicely on the fitted line. In the AF4/MALS chromatogram, the ascendant slope rather than 

flat of the radius points to a slight distribution of the standard particles. Regardless of silica’s 

application from raw to standard material, it is clear that the stability of the size and shape is not 

a long time feature. 

As stated before, these silica particles separated into layers were not washed to remove 

the base. Therefore a question might rise concerning the effect of the washings on the 

stratification. Figure 2.9 depicts a batch of silica particles kept in different conditions after 

extensive washings were performed with ethanol and water.  

 

Figure 2.9 Silica seed particles stored in different conditions; from left to right: 

the original sol, in water, in water and ammonium hydroxide (pH=9) and in ethanol. 
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The leftmost bottle is shown in its initial basic conditions as a comparison. No matter the 

pH, either neutral (silica in only ethanol and only water) or basic (9) (silica in water and 

ammonia) all showed the tendency to separate into layers in the same manner as the initial sol. 

2.4 Applications 

2.4.1 Fractionation of Colloids by AF4/MALS Using Inexpensive Silica as a Study Model 

The continuous expanding of the advanced materials comprising colloidal particles 

demands the production of a large variety of particles in terms of size and shape. Not all involve 

an inexpensive process of production as silica does. In some applications, a narrow distribution is 

necessary, in others specific shapes are targeted. The fabrication of multiple batches to attain the 

desired particle uniformity and shape can make the final product really expensive. AF4/MALS is 

a technique that allows a good separation of particles by size and fractions of these particles 

eluting at different times can be collected. Silica can serve as a good model to demonstrate the 

capability of the AF4/MALS to resolve accurately even degraded batches of the particles. To 

prove the concept, silica-1 was chosen. Figure 2.10 shows the evolution of silica-1 over one year, 

monitored by AF4/MALS. As discussed before, silica-1 separated into two layers, Figure 2.10A, 

with the top layer eluting in AF4 instrument last, meaning larger particles. After one year the top 

stratum had a broader distribution with a shoulder eluting near the end, Figure 2.10B. The plot of 

the radius versus the elution volume showed an improved slope near flat. The trace of the bottom 

layer, Figure 2.10C, showed bigger particles and a shoulder similar with the top layer. 

Comparing the initial AF4/MALS traces with those recorded after one year, it can be seen that 

particles changed their size and/or shape. The top layer had initially larger particles but, in time, 

the middle became the smaller particle layer. Only the shoulder for both, top and bottom layers, 

overlapped in the same region of the elution time. 
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Figure 2.10 Comparison of the size distribution: silica 

all layers after 2 months(A), top layer after one year 

(B), bottom layer after one year (C) and silica all  

layers after one year (D). 
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Figure 2.10 continued 
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The radius slope for the region where the most particles eluted is almost flat when compared 

with the old standard silica, as shown in Figure 2.11A. 
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Figure 2.11 AF4-MALS traces of: (A) standard silica and silica-1 bottom  

1 year and (B) silica-1 bottom 1 year showing the fractions collected. 
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Silica-1 bottom was elected for fractionation. Figure 2.11B reflects the slices collected at 

different elution volumes. The content of the fractions was analyzed by TEM and DLS and the 

results are presented for comparison in Figure 2.12.  

 

 

  

Figure 2.12 TEM images of the silica-1 bottom from (A) fraction 9, F9, (B) fraction 11, 

F11, and DLS radius, R, versus scattering vector magnitude, q, of silica-1 bottom for (C) 

F9, F10, F11, F13 following third cumulant and one exponential analysis and (D) F11 

following double exponential fitting algorithm (diffusion coefficients as a function of q, 

inset). 

 

Fractions up to F10 contained spherical particles with good uniformity as shown in Figure 

2.12A. The particle fraction corresponding to the shoulder eluting near end had lost their hard 
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core spherical appearance. Remnants of the original beads can still be seen, sparsely, but most of 

the new shapes suggest the agglomeration of several denaturized beads. The new shape could be 

assigned to a core-shell as well as to an ellipsoid shape, as marked with a white frame. The DLS 

results presented in Figure 2.12C shows the radius of the particles as a function of the scattering 

vector. No angle dependency can be seen up to F9 but higher fractions showed a curvature at 

lower angles whilst at higher q values they aligned on the flat region of the fit line. It was evident 

that the fitting analysis taken as an average over the third cumulant and one exponential 

algorithm did not suffice an accurate reflection of the shape. To determine more precisely the 

trend of the size, two exponentials formalism was employed in analyzing the F11 particles. 

Indeed, as shown in Figure 2.12D two distributions can be seen: one diffusing fast and one 

slower (inset). The fast mode corresponded to the smaller particles and the slow was attributed to 

the larger aggregates seen in TEM image, Figure 2.12B. The trend of the radius for the slow 

diffusers, ascendant with the increased angle, is a fingerprint of the aggregation which is in 

agreement with the TEM images. 

Several remarks should be addressed on the formalism used to analyze the particles size 

by both light scattering techniques, DLS and AF4/MALS. The AF4 instrument with online light 

scattering detection uses Wyatt Astra software, version 5.3.4.1.3 which by routine uses a 

spherical model for spheres. For a solid sphere the form factor, P(qR), is expressed by: 

      
 

     
                                    

As demonstrated by Soto-Cantu et al. the fitting to a sphere form factor and data quality were 

better at lower angles than higher, a drawback of the Wyatt’s machine nonlinear least squared fit 

formalism.
52

 They also underlined the importance of using the best shape corresponding form 
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factor. The fit using a core-shell form factor improved the high angle data analysis. For the silica 

particles described in this work, it is clear that such formalism can tremendously improve the 

quality of the data. A core-shell form factor is expressed as follow:
52

 

         
    

  
 
      

 
  

        

    

       

  
  

 

            

where x= qR, j1 is the spherical Bessel function expressed as: 

      
    

  
 

    

 
           

In the same formula, f is the fraction of the linear particle calculated as R-t/R with R the overall 

core-shell radius and t is the thickness of the shell, m1 is the ratio between the relative indices of 

the shell to solvent refractive index, n1/n0 and m2 is the same ratio of the core to solvent relative 

indices of refractive index, n2/n0.  

Particle artifacts as seen in the F11 might require more sophisticated form factors. For an 

accurate analysis, a core-shell model also encounters its own challenges. In a case of a composite 

core-shell particle made of a hard core and a confined organic shell it is relatively simple to 

determine the refractive index of the core and the shell. For silica in the core-shell structure it is 

crucial to determine the refractive index of the lighter silica shell and the denser silica core. 

Without these parameters any form factor formalism might fail on improving the spherical 

approach. Despite the difficulties in shape representation when data analysis is performed to 

qualitatively evaluate the size distribution and uniformity, AF4/MALS technique can be reliably 

used to resolve difficult and more expensive samples. 

2.4.2 Silica Seeds-Support for Preparation of Uniform Fluorescent Probes 

Silica particles prepared by the approach described above can be used as seeds in the 

regrowth process by sequential addition of the diluted TEOS. More details on this regrowth 
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process are presented in Chapter 8. Bogush et al. demonstrated the close correlation between the 

quality of the silica seeds in terms of the uniformity and the quality of the final silica particle. 

Spherical shape visibly improved and also the uniformity.
12

 In addition, the regrowth process can 

be used to prepare fluorescent particles by the incorporation of fluorescent molecules. The 

fluorophore, in this case the fluorescein isothiocyanate, FITC, was covalently incorporated as a 

molecule with the 3-aminopropyltriethoxy silane, APS. The addition of the fluorescent tag does 

not impact negatively the shape of the grown silica particles. Moreover, sequential additions of 

TEOS protect the dye against leaking and bleaching and also add more to the quality of the final 

particle. Such fluorescent particles are shown in Figure 2.13. The fluorescent particles shown in 

Figure 2.13A were uniform in size and had a polydispersity comparable with standard particles. 

TEM images taken on several hundreds of particles did not revealed undesired shapes. That 

means particles grew in the same time during regrowth process without adhesion or secondary 

nucleation. Fluorescent silica prepared from the seeds can be used in applications such as 

labeling, in vivo imaging and fluorescent probes. Figure 2.13B reflects a fluorescence image of 

the particles purposely bleached in a chosen area. The bleached area (inset) appears darker but 

snapshots taken at different times of bleaching showed the particles retained ~ 50% from the 

initial fluorescence intensity (Figure 2.13C). Several other samples were subjected to the same 

treatment and for a longer time. The decrease noticed was as less as 70%. Another exquisite 

application that can be designed is in drug delivery and drug encapsulation. Silica covalently 

tagged with FITC can be transformed into mesoporous spheres, still fluorescent. This aspect is 

largely described in Chapter 4. 
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Figure 2.13 TEM image of the fluorescent silica particles obtained  

by the seeded method (D = 280 nm  4%), (B) fluorescence image of 

 non-bleached particles (powder) (inset, bleached in aqueous solution)  

and (C) fluorescence intensity of the bleached particles (in solution,  

ethanol solvent) using illumination through a fluorescence microscope. 
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2.5 Conclusion 

In summary, this work demonstrated that stratified silica colloid can be obtained by 

sedimentation in the initial conditions of the preparation. The process is slow and takes place 

between four weeks and two months, depending on the batch and the seed size. The separation of 

the particles is mostly a density-driven process, due to the degree of the polymerization of the 

TEOS into interbonded networks. In addition, the use of less water than in the original Stöber 

and Bogush methods can also had a contribution to the manner the TEOS hydrolyzes and 

condenses into more or less compact crosslinked networks. In the central part of the silica bead, 

the TEOS is less crosslinked than in the outer part of the particle. TEM, DLS and AF4/MALS 

were three reliable techniques used in the characterization of the stratified colloid. They revealed 

the morphology and the uniformity of the spheres from each layer. The storage for a longer time 

in the basic ammonia solution yielded mesoporous structures, some called geodesics, others 

displaying hollow architecture. The morphology of the mesoporous particles gave a qualitative 

image of the TEOS networks within the particles. The softness of the bead core was suggested 

by the low-contrast appearance of the porous spheres in the electron beam. Using the approach 

described, again slow in time, monodisperse seeds can be obtained in high yields. Once noted to 

form, the mesoporous structures can be separated from the original sol by washings and 

neutralization to an acidic pH that stops the etching of siloxanes network. The stability of the 

silica particles was also studied. It was found that the size and the shape preservation is not a 

long time feature. Particles, even standard silica, changed the shapes and broaden their 

distribution. In some cases, layer sizes reversed after more than one year of storage. It should be 

pointed out that standard particles should be monitored in time for shape degradation and 

replaced as often as needed. Asymmetric flow field flow fractionation, AF4, was used as a 
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reliable technique to resolve a challenging sample of the degraded silica particles. Fractions were 

collected and visualized by TEM. The size measurements by DLS agreed with the AF4-MALS 

data. Data were analyzed using the spherical model. The new morphologies noted require 

adequate form factors in data fitting analysis. Despite all challenges encounter in analysis 

formalism, AF4/MALS remains a reliable tool to characterize and separate particles by size and 

shape. Hence, silica particles presented in this work are a good model to study more expensive 

particles. Moreover, the recovery of the still uniform and spherical silica beads from the 

degraded old sample was demonstrated by AF4 fractionation. The silica seeds prepared by this 

approach can be covalently tagged with fluorescent moieties. The regrowth process with 

sequential additions of TEOS yields particles resistant a longer time to bleaching. All particles 

from initial batches to those slowly etched into mesoporous structure retained their tendency to 

self-organize in 2D hexagonal arrays. 
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CHAPTER 3 

POLYPEPTIDE COMPOSITE PARTICLES BY CLICK CHEMISTRY: 

PREPARATION, CHARACTERIZATION AND APPLICATIONS OF 

MAGNETIC POLYPEPTIDE-BASED SILICA COLLOIDS SYNTHESIZED BY 

CLICK CHEMISTRY 
 

3.1  Introduction 

 Hybrid materials made of inorganic cores and polymeric and biological shells have 

received an extensive research focus in the recent years. Their popularity arises from the unique 

properties they display and are not achieved by either shell or core alone.
1-10

 Colloidal silica, 

either carying or lacking a magnetic nugget, are probably the most popular candidates for 

preparation of hybrid materials due to their low cost of fabrication, easy route of synthesis, 

resistance against oxidation and surface availability for post-functionalization with different 

moieties. Many applications were already found for such colloids especially in biosensing, 

separations, photonics and drug delivery. Recently a series of reviews summarized the progress 

in the field with special emphasis on the applications.
7,11-15

 Among these kinds of composite 

materials, silica particles furnished with a homopolypeptide shell are of special interest. 

 Polypeptides exist in a well-defined ordered secondary structure (α-helix, β-sheet, 

random coil) and retain such conformation even in solution.
16-18

 Different moieties anchored to 

the side chains allow them to respond when subjected to external stimuli such as pH, magnetic 

field, temperature or solvent.
19-25

 Poly(Nε-carbobenzyloxy-L-lysine), PCBL is known for its 

reversible transition from random coil to α-helix in m-cresol as a function of temperature.
26-29

 

Cleavage of the benzyl side chain yields a water soluble composite material responsive to pH 

changes. One polypeptide that is less studied than its homolog poly(γ-benzyl-L-glutamate), 

PBLG, is poly(γ-stearyl-L-glutamate), PSLG. Besides being soluble in a wide range of organic 

solvents, PSLG exhibits a semiflexible rodlike structure: an α-helical backbone surrounded by 
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long flexible side chains positioned perpendicular to the helix axis giving the polypeptide a hairy 

constitution.
30-33

 PSLG has both lyotropic and thermotropic properties due to the good solubility 

of pendant stearyl chains in desirable solvents and due to libration of these same side chains at 

high temperatures.
34-36

 

 Polypeptide and other biomolecular grafts on silica particles were obtained mainly by 

growing from and grafting to approaches. In the grafting from method the free amine decorated 

silica particles initiate the polymerization of particular amino acid N-carboxyanhydride, NCA, 

via ring opening polymerization. Early reports from this group dealt with the fabrication of both 

PBLG- and PCBL-coated silica particles. The former formed beautiful colored colloidal 

crystals.
37,38

 Control over the thickness of the shell can be achieved by rationally choosing the 

ratio of the initiator to the monomer. Soto-Cantu et al. demonstrated the facile preparation of the 

composite particles in this manner opening the door to the copolymeric shells.
39

 This method 

enables the formation of a uniformly dense shell on the core surface in a few steps, but the main 

disadvantage arises from the difficulty to evaluate the molecular weight of the grafted 

polypeptide accurately. The cleavage of the shell is available through treatment with 

hydrofluoric acid, HF, but besides etching the silica, HF may alter the polypeptide chain. The 

decrease in the size core with etching time was also studied by this group.
40

 Recently the Heise 

group prepared polypeptide core-shell silica particles by grafting from with a high load of 

polypeptide.
41

 Treatment with HF enabled access to the molecular weight of the shell by GPC 

means. The controlled polymerizations at 0°C and 25°C afforded polymers with molecular 

weights ranging from 7 to 20 kDa. Liu et al. prepared magnetic composites with silica coated 

magnetite core and PBLG shell with relatively high saturation magnetization.
42

 On the other 

side, the grafting to method solves this challenging issue. The premade polymer is well-
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characterized prior to the covalent attachment on the surface. Click chemistry has the main 

advantage of “matching” binding groups with an affinity for each other,
43,44

 hence proving the 

selectivity of this approach. The drawback of the click methodology still remains the lower 

polymer loading and the efficient attachment of higher molecular weight polymer due to the 

steric hindrance. Few reports have been devoted to the attachment of polymers on silica 

particles
45-51

 and even fewer on composite materials obtained by clicking a polypeptide on the 

same inorganic core. In this group, Balamurugan et al. attached 8 kDa PSLG on silica particles 

with 57,000 PSLG molecules per particle particles (±16%).
52

 The higher-than-expected value of 

the molecular weight suggested that not all initiator molecules lead to growing polymer chains. 

Kar et al. have used N-trimethylsilyl propargyl amine in an effort to lower the polydispersity of 

the polypeptide and to have better control over the polymerization. The highest molecular weight 

of alkyne-poly(L-glutamic acid) obtained after deprotection of alkyne-poly(p-methoxy-benzyl-L-

glutamate) was 12 kDa (Mw/Mn= 1.04).
53

 The same methodology was employed to synthesize 

poly(L-lysine), PLL (~8 kDa by NMR, Mw/Mn= 1.05 by GPC) by deprotection of the PCBL 

homolog.
54

 A block copolymer consisting of poly(L-lysine) and poly(L-leucine), PLL-b-PLLeu,  

(8 KDa, Mw/Mn= 1.1), was also used to prepare complex conjugate particles. Several reports 

have described the use of Huisgen 1,3-dipolar cycloadition to make block polymers consisting of 

homopolypeptides.
55-64

 

 The basis of click chemistry pioneered by Sharpless is coupling azide- and alkyne- 

terminated reactants through a very stable 1,2,3-triazole cycle, in the presence of a Cu(I) salt 

catalyst. The technique has been used to obtain a wide range of materials with a broad range of 

applications. Recently several reviews appeared which described the quintessence of this 

progressing field.
65-71

 PSLG grafted on membranes allowed an increase in activity retention and 
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thermal stability of lipases immobilized on them. This behavior was attributed to the 

hydrophobic interaction between the long stearyl chains and lipase.
72,73

 Further self-assembly of 

PSLG deposited on flat surfaces produced a flowerlike morphology
74

 which was used to support 

biomimetic membranes.
75

 

 This work is devoted to expanding the field of multifunctional homopolypeptide-grafted 

silica composite particles using the grafting to approach. Designing responsive materials is a 

continuous challenge from the perspective of targeting very specific applications. Thus, a step 

forward was made to increase the responsiveness of click materials. Hybrid fluorescent PSLG 

and PCBL composite colloids furnished with a silica coated magnetite core were prepared. The 

lipase from Candida rugosa, was attached to the stearyl chains of PSLG particles demonstrating 

that the geometry of the surface doesn’t hinder the capability of the lipase to adhere to the 

pendant chains. Magnetic and fluorescent particles were dispersed in a rodlike, liquid crystal 

forming solution of the same polymer, PSLG, to investigate the effect of external fields on 

mixture behavior. Water-soluble materials can be produced by cleaving protective side groups. 

In this way a PCBL shell can be converted to poly(L-lysine), PLL, yielding an aqueous 

dispersion of particles. The similarity between stearyl chains and some surfactant molecules 

enabled the dispersion of the PSLG click particles in diluted aqueous solutions. The rheological 

behavior of magnetic composite particles was also investigated. 

3.2  Materials  

L-glutamic acid (99%), stearyl alcohol (octadecanol) (99%), tert-butanol, (99.5%), 

anhydrous dichloromethane, anhydrous tetrahydrofuran, THF, N,N,N',N',N"-

pentamethyldiethylenetriamine (PMDETA) (99%), CuBr (99.99%), propargylamine (98%), 

tetraethoxysilane (98%), triethylamine (99.5%) were purchased from Aldrich and used as 
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received. Nε-carbobenzyloxy-L-lysine (99%) was obtained from Acros Organic. Lipase from 

Candida Rugosa was purchased from Sigma Aldrich. Triphosgene was obtained from TCI 

America. (3-Bromopropyl)trichlorosilane was purchased from Gelest. All other chemicals were 

reagent grade and used without further purification. 

3.3  Results and Discussion 

3.3.1  Characterization of Polypeptide-based Hybrid Colloids.  

Magneto- fluorescent azide-functionalized particles were obtained through several steps, as 

shown in Scheme 3.1. The magnetite core was produced by a sol-gel process involving 

coprecipitation of iron salts (Fe
+2

 and Fe
+3

) in a mole ratio of 1:2. The citric acid protection was 

removed by dialysis and was replaced with a silica layer. The inorganic silicon protective 

coverage was realized by a modification of the Stöber procedure. In order to make the particles 

fluorescent, a layer of silica and an adduct made of 3-aminopropyltriethoxysilane, APS, and 

fluorescein isothiocyanate, FITC, was covalently attached onto the silica coated magnetite. 

Prevention against dye bleaching was possible by coating with another layer of silica. The 

condensation of (3-bromopropyl)trichlorosilane onto silica yielded the bromo-functionalized 

particles, as the precursors for the final product azide-functionalized colloid. The later was 

obtained by conversion of bromine functions to azide by nucleophilic substitution with NaN3 in 

DMF in the presence of tetrabutylammonium iodide as catalyst. The final click product was 

obtained by coupling the premade alkyne-end terminated polypeptide and azide-end terminated 

particles through 1,3-Huisgen cycloadition using CuBr as catalyst and PMDETA as ligand. 

PMDETA enhances the rate of copper-catalyzed type azide-alkyne cycloadition in an organic 

environment. The alkyne polymer was prepared by ring opening polymerization of the 
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corresponding N-carboxyanhydrides initiated by the propargyl amine used as an initiator. This 

procedure is illustrated in Scheme 3.2.  

 

 

Scheme 3.1 . Synthetic route for preparation of magnetic fluorescent azide-functionalized 

particles. 
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Scheme 3.2 Schematic representation of alkyne-terminated polypeptide preparation. 

 

Preparation of the magnetite cores by the coprecipitation method and their protective 

coating with silica was confirmed using HRTEM, XRD and FTIR. Figure 3.1A shows the image 

of the relatively uniform magnetite particles with the average size of 11 nm in diameter. The 

diffraction lattice can also be easily observed. After preparation magnetite colloid had a layer of 

citrate ions on the surface to prevent against oxidation and to ensure a good dissolution in 

aqueous solutions. The presence of citrate ions was evidenced by FTIR (Figure 3.1 C inset). The 

specific band corresponding to C=O can be seen at 1628 cm
-1

 and the broad OH signal is clearly 

visible at ~3500 cm
-1

. A magnetite’s specific Fe—O—Fe stretch is reflected in the IR spectra by 
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the peak centered at 571 cm
-1

. In biomedical applications, some organic coatings are not 

desirable because they might be toxic to the living body. 

 

Figure 3.1 HRTEM images (A and B), FTIR (C) and XRD (D) spectra of naked 

magnetite and silica-coated magnetite (CR472 and CR615). 

 

Removal of the citrate coating by dialysis is evidenced by the disappearance of the OH broad 

peak at 3500 cm
-1

 in the silica-coated magnetite particles. Only insignificant traces of the citrate 

are suggested by the small shoulder at 1628 cm
-1

. The ratio between the specific band of silica 

(Si—O—Si) centered at 1086 cm
-1

 and iron (Fe—O—Fe, 571 cm
-1

) suggested the presence of a 

thin silica layer on the surface. This thin coverage was also confirmed by XRD as shown in 

Figure 3.1D. Indeed the images recorded with the high-resolution electron microscope (Figure 
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1B inset) show an approximately 4.5 nm thick coating. Additional information on crystal nature 

was gathered by XRD. Magnetite has an inverse spinel structure described by a cubic close 

packing with tetrahedral sites occupied by Fe
+3

 and octahedral sites randomly shared by either 

Fe
+3

 or Fe
+2

 with the same proportions. Based on this arrangement, the structural formula can be 

written as [Fe
+3

](Fe
+2

Fe
+3

)O4.
76

 Under air exposure, Fe
+2

 can easily be oxidized and the 

magnetite crystallite will have an iron deficit, but this was not observed in the present 

synthesized magnetite. The characteristic peak 311 was located at 2θ = 41.4° and perfectly 

matched the standard values of pure magnetite taken from the NIST file no. 19-0629. 

Calculations based on the Scherer equation made the evaluation of the crystallite (coherent 

diffraction domain) size for both pure magnetite and silica coated particles possible. The 

measured values were 11 nm for the first and 19 nm for the latter.  

  
   

       
           

where d is the crystallite diameter, K is the shape factor, λ is the X-ray wavelength, β is the line 

broadening at half the maximum intensity (FWHM) for 311 peak and θ is the Bragg angle.  

The increase in silica shell thickness after the protection against dye leaking and bleaching is 

clearly shown in the Figure 3.1B. The inorganic silica coating thickness increased from 4.5 nm to 

about 15 – 17 nm.  

Another technique frequently used in particle characterization is X-ray photoelectron 

spectroscopy. The confirmation of products obtained at each step presented in Scheme 3.1 and 

Scheme 3.2 was also possible using XPS as shown in Figure 3.2. The nature of the Fe ions 

valence can be determined from 2p core-level spectra.
77

 The spectrum displayed in Figure 3.2A 

shows the bonding energy of Fe 2p3/2 centered at 710 eV and Fe 2p1/2 at 723.8 eV. 



160 

 

 

Figure 3.2 High-resolution XPS survey scans of (A) Fe 2p for magnetite  

and (B) N1s for azide-functionalized magnetite. 

 

It is known that Fe ions bond with carboxylate groups belonging to protective acids.
78

 This 

linkage is reflected in an XPS spectrum by the presence of the C1s peak at 286.7 eV. The C−C 

bonds from the acid’s alkyl chain also contribute to the occurrence of this signal. The peak for 

free acid was not found. XPS confirmed the successful coating with silica and was reflected by 

the specific peaks Si2s (152.4 eV), Si2p (104.5 eV) (Figure 3.3)
79

. The covalent fluorescent 

doping with FITC-APS complex was confirmed by the N1s (396.5 eV) signal and the increased 

C1s (286.7 eV) (Figure 3.3). Further indication of a protective silica layer coating was evident 

from XPS spectrum by the disappearance of the N1s peak at 396.5 eV and a visible decrease in C 

1s intensity (Figure 3.3). The coating of the surface with bromine groups was evident from the 

survey spectrum of bromine-functionalized particles.  

Figure 3.4A shows the specific peaks corresponding to Br3d at 68 eV and Br3p at 181.5 

eV as well as other elements present on the particle surface. Conversion of bromine groups to 

azide groups was evidenced by the disappearance of bromine peaks and the occurrence of azide 

N1s centered at 400 eV. A noticeable decrease in the C1s signal was also observed. 
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Figure 3.3 XPS survey scans of all steps involved in the preparation of the PSLG-click 

hybrid. 

 

The replacement of the bromine moieties with bulky azide can hinder the carbon situated on the 

particle surface. A high-resolution spectrum (Figure 3.2B) gave more information on the 

structure of the azide-functionalized particles. The bonds from the azide were reflected in the 

N1s double peaks at 400 and 402.8 eV.
80,81

 The electron deficiency of the azide’s middle 

nitrogen can be seen by the less intense peak at 402.8 eV.
81
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Figure 3.4 XPS-survey scans for (A) click-hybrid particle, (B) azide  

magnetic silica and (C) bromine magnetic silica. 

 

The immobilization of polypeptide on the particle surface through click chemistry was evident in 

the XPS survey of the click-hybrid (Figure 3.3 and Figure 3.4). A consistent decrease in the N1s 

signal was recorded for the click-hybrid. The contribution to the N1s signal in the click hybrid is 

made by the nitrogen from the polypeptide backbone and possible unreacted azide groups. The 

polypeptide packs into stiff rod-like structure. This conformation might hinder the nitrogen from 

the backbone. Also some free azide groups can be hidden due to polypeptide chains which can 

bend or collapse on the surface. Another reason can be a light grafting density of the chains on 

the particle surface. The increase of the C1s signal for the click particle, Figure 3.4A, when 
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compared with the signal for the same element recorded for azide magnetic silica, Figure 3.4B, 

clearly proved the attachment of the polypeptide onto the particle surface. 

 One of the advantages of the grafting to when compared to the growing from method is 

that the former allows the characterization of the polymer which will constitute the shell. The 

molecular weights of the polypeptides (Table 3.1) were determined by GPC/MALS (Figure 3.5), 

using dn/dc=0.08 ± 0.002 mL∙g
-1

 (PSLG) in THF and dn/dc=0.123 ± 0.002 mL∙g
-1

 (PCBL) in 

DMF.   

Table 3.1 Molecular Weights and Polydispersity Index for Alkyne-Polypeptides. 

Polymer [M]/[I] Theoretical M Mn/Da Mw/Da Mw/Mn 

Pr-PSLG 100:1 38,300 25,700 ± 3% 30,000 ± 4% 1.17 ± 1% 

Pr-PCBL 100:1 26,400 5,300 ± 3% 6,000 ± 5% 1.11 ± 2% 

 

The average molecular weight values returned by GPC/MALS based on monomer to initiator 

ratio showed that some initiator molecules could lead to dormant chains or were simply inactive. 

The amine-initiated mechanism was confirmed by the MALDI-TOF analysis which allows the 

identification of end groups. A range of single peaks was observed for both polypeptides: from 

m/z = 1731 to 5056 Da (Figure 3.5B) with the mass difference of 381 units matching the SLG 

repeat units and from m/z = 1404 to 6379 Da (Figure 3.5C) with a mass difference of 262 units 

identical with the molecular weight of CBL repeat units. The average molecular weight values 

returned by GPC/MALS based on monomer to initiator ratio showed that some initiator 

molecules could lead to dormant chains or were simply inactive. 
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Figure 3.5 Illustration of (A) GPC chromatogram of alkyne-PSLG 

recorded in THF (the dn/dc was taken as 0.080 ± 0.002 mL∙g
-1

);  

MALDI-TOF MS of (B) poly(γ-stearyl-L-glutamate) and (C)  

poly(Nε-carbobenzyloxy-L-lysine) prepared with propargyl amine. 
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The amine-initiated mechanism was confirmed by the MALDI-TOF analysis which allows the 

identification of end groups. A range of single peaks was observed for both polypeptides: from 

m/z = 1731 to 5056 Da (Figure 3.5B) with the mass difference of 381 units matching the SLG 

repeat units and from m/z = 1404 to 6379 Da (Figure 3.5C) with a mass difference of 262 units 

identical with the molecular weight of CBL repeat units. The peak centered at m/z = 2713 in 

Figure 3.5C corresponds to decameric protonated fragment, CBL, with an incorporated initiator 

propargylamine as end-group. All adducts recorded in the chromatograms have a supplemental 

35-39 units which might be explained by the adherence of potassium (K
+
) to the fragments.  

Polypeptides are known to adopt different secondary structures dependent on the solvent, 

temperature and pH changes.
16

 PSLG is helical in solvents such as THF, toluene and chloroform. 

A single turn of the helix requires 3.6 monomer units with a projected diameter of 5.4 Å. If a 

degree of polymerization of about 78 computed from GPC/MALS data is taken into 

consideration, the number of turns is 20. The helical structure is stabilized by H-bonding 

between the N—H and C=O backbone groups. This twisting gives the polypeptide a rodlike 

behavior. PSLG does not undergo any conformational transitions when compared with PCBL. 

The lower molecular weight measured by GPC for the latter polypeptide has raised concerns on 

its helical conformation. The degree of the polymerization indicates 23 monomer units and 

points to a very short helix of about 6 turns. The formation of the helical secondary structure 

requires between 10 and 18 monomers per turn, on average, depending on the polypeptide. The 

unique feature of PCBL is its capability to undergo an inverse-type reversible helix-coil 

transition in a single organic solvent, m-cresol, as a function of temperature.
82

 Upon deprotection 

of the side chains, poly(L-lysine) becomes sensitive to pH changes from acidic to basic. FTIR 

technique was exclusively used to investigate the structure of the polypeptides untethered and 
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tethered to the particle surface. Figure 3.6 illustrates the IR spectra of alkyne-PSLG and PSLG-

click hybrid particle.  

 

 

Figure 3.6 FTIR spectra of (A) alkyne-PSLG and the expanded region  

from 1800 to 1400 cm
-1

 and (B) PSLG-click hybrid particle and the  

expanded region from 2200 to 1400 cm
-1

. 

 

Both IR spectra were recorded in chloroform solution. Figure 3.6A shows the specific bands of 

amide I at 1654 cm
-1

 and amide II at 1546 cm
-1

 which are characteristic of amide α-helical 

structure. The N—H stretching of the amide A along with the N—H endgroups stretch, 

overlapped in the region from 3500 to 3200 cm
-1

. The peaks visible between 3000 and 2800 cm
-1
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correspond to asymmetric and symmetric vibrations of the hydrocarbon side chain (CH2)18. The 

C=O ester stretching of the polypeptide can be seen at 1730 cm
-1

. Figure 3.6B shows that PSLG 

retained the helical conformation after grafting on the spherical surface. The characteristic peaks 

of the polypeptide described above are visible at the same wavenumbers within experimental 

error. The supplemental peak centered at 2100 cm
-1

 is assigned to azide groups, which is in 

agreement with XPS data showing free azide moieties on the surface. The specific signal of the 

Si—O—Si band is also visible at 1095 cm
-1

. The same trend was followed by the PCBL click 

hybrid and is shown in Figure 3.7. 

 

Figure 3.7 FTIR spectrum of the PCBL-click hybrid (CR6176) and  

the expanded region from 2200 to 1400 cm
-1

. 

 

Dynamic light scattering was used to estimate the size of the magnetic particles. Figure 

3.8 doesn’t reflect the true size of the individual PSLG click hybrid particle. Moreover the 

particles tended to cluster due to the magnetic anisotropy and most probably to the stickiness of 

the side chains toward each other and to dodecane, the solvent used in measurements.  
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Figure 3.8 Apparent radius and the associated diffusion coefficients 

(inset) measured at seven different angles using DLS (CR715). 

 

The elevated temperature at which the measurements were performed (50°C) couldn’t 

overcome the cluster formation. A cluster noticed at lower angles seemed to be an agglomeration 

of 10 individual particles with a diameter of 60 nm for PSLG click particles. The same cluster 

size behavior of about 10 particles each was also noted for PCBL particles in DMF (Figure 3.9) 

pointing to the anisotropic nature of the composite particle encasing magnetite cores. The 

anisotropy can be explained on the basis of a small remanent magnetization. The TEM 

measurements indicated a size of 60 nm in diameter for PSLG click composite particle and 55 

nm for PCBL click hybrid particle. 

Thermogravimetric analysis, TGA, provided information about the loading on the particle 

at each step. Figure 3.10 shows the TGA traces recorded in both nitrogen and air atmosphere. 

The TGA profile, Figure 3.10B, shows the weight loss difference when the decomposition took 

place under nitrogen and air atmosphere. The supplemental 0.7% weight loss recorded under air 

conditions can be attributed to oxidation of Fe(+2) to Fe(+3). 
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Figure 3.9 Typical DLS data collected for PCBL-click hybrid particle  

in DMF; (A, inset) apparent diffusion coefficients, Dapp, as a function of  

the scattering vector magnitude, q, extrapolated to q = 0, (A) apparent  

radius, Rapp, as a function of the scattering vector magnitude, q, and  

(B) polydispersity index, μ2/Г
2
. 

  

 

 



170 

 

 

 

Figure 3.10 TGA thermograms for PSLG click-hybrid and the  

intermediate steps followed in the synthesis. 

 

All thermograms discussed here on were obtained under nitrogen. TGA curves, Figure 3.10A, 

clearly shows the successful protective silica coating performed after the cores were doped with 

FITC: less decomposition can be seen in the double layered silica cores. This also shows the 

increased thermal stability of the fluorescent particle. The weight loss up to 200°C in the case of 

the click-hybrid can be attributed to the adsorbed water and probably to the unreacted azide 

functional groups. The decomposition range from 200 to 600°C corresponds to tethered 

polypeptide. The mass difference gave 6% coverage with polypeptide for both PSLG and PCBL 
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click hybrid particles. The thermograms associated with PCBL click product are presented in the 

Figure 3.11.  

 

Figure 3.11 Decomposition profiles for products obtained at each step 

involving PCBL- click hybrid particle. 

 

TGA data were further converted in grafting densities, σ, using the following equation:
52

 

  
                                   

                       
                      

where f is the fraction of polypeptide ashes, w200-600  is the weight loss of the polypeptide 

between 200 and 600°C, wsilica is the weight loss of the silica in the 200-600°C temperature 

interval, M is the molecular weight of the polypeptide (g∙mol
-1

) and Sspec is the surface specific 

area (m
2
∙g

-1
). Sspec was calculated considering the density of the silica 1.98 g∙cm

-3
 and a core 

radius of 25 nm from TEM measurements. The values calculated are summarized in Table 3.2.  

Table 3.2 Sample Name, Grafting Density and Chains per Particle 

Sample Grafting density/μmol∙ m
-2

 Chains per particle 

PSLG click 0.03 ± 1.5×10
-3

 125 ± 6 

PCBL click 0.12 ± 6×10
-3

 800 ± 40 
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The magnetic properties of the particles were investigated with a SQUID device. Figure 

3.12 displays the hysteresis loops for pure magnetite and click-hybrid. 

 

Figure 3.12 Hysteresis loops for pure magnetite and click-hybrid (CR6176). 

 

The magnetic properties of the particles greatly depend on their size. A close inspection of 

magnetization curve for pure magnetite shows no hysteresis loop at 300K. This behavior is 

characteristic to superparamagnetic particles with a grain size up to a critical value of 20 nm.
83

 

The native magnetite showed a slow approach to saturation at a high field and no coercivity, Hc. 

Grafting layers of different natures onto the magnetite surface was reflected by the shape and the 

decrease in magnetization for the polypeptide click hybrid as shown in Figure 3.12. The coercive 

field necessary to obtain zero magnetization was 100 Oe. Overall the click composite particle 

exhibited insignificant remnant magnetization, Mr, and a low coercive field, Hc. Moreover the 

final product can be considered a nearly superparamagnetic material.  
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3.4 Applications of Polypeptide-based Click Hybrids.  

3.4.1 Immobilization of Candida Rugosa Lipase 

The PSLG click hybrid is an ideal support for immobilization of lipases known for their 

increased activity when in contact with a hydrophobic substrate.
84

 The adsorption of the lipase to 

the click particles was performed in neutral pH phosphate buffer and is illustrated in Scheme 3.3. 

Details on the preparation are available in Chapter 8. 

 

Scheme 3.3 Representation for the adsorption of lipase from Candida rugosa onto the 

PSLG-click composite particles 

 

The disposition of the stearyl chains pointing out of the helical backbone allows a facile 

interaction with the hydrophobic part of the lipase. During adsorption, the lipase experiences 

important conformational rearrangements which uncovers the so-called “open state”.
73

 Further, 

the lipase is able to recognize the hydrophobic site of the carrier, in this case the stearyl chains, 

and adhere to them. The main issue with the immobilization of the enzymes on the substrates is 

their poor catalytic activity due to the steric hindrance between the carrier molecules (substrate) 
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and enzyme.
85

 Spacer arms were incorporated to reduce undesirable interactions between the 

enzyme and the substrate.
86

 Therefore, it is very important to have a lightly grafted substrate to 

enhance the enzyme’s activity. Because PSLG-click hybrid had a low coverage with polypeptide 

chains, it was expected to easily immobilize the lipase. The TGA analysis gave the loading with 

lipase of the click particle as shown in Figure 3.13.  
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Figure 3.13 TGA traces of the lipase from Candida rugosa (inset),  

PSLG-click hybrid particle and PSLG-Candida rugosa hybrid particle. 

 

A close inspection of the two traces for the PSLG-click hybrid particle and the immobilized 

enzyme particle revealed a 4% loading with lipase. The comparison between 6% coverage with 

polypeptide and the percent of enzyme loading, gives 66% immobilization efficiency. The 

immobilized-lipase-click hybrid material has several advantages when compared with 

hydrophobic flat surfaces. Due to its small size, the colloid particle carying the enzyme can 

access tiny areas. Furthermore, the magnetic inclusions enable the control in-out of the particles, 

consequently the material is easily recovered and reusable. In addition, the immobilization onto 
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the hydrophobic sites promotes the purification of the enzyme. The reversible incorporation of 

the lipase enables the recovery of the support particles after the enzyme inactivation. Finally the 

PSLG is a biofriendly substrate which can be used to mimic the tethering of the enzymes on 

natural macromolecules.
87-89

 

3.4.2 Suspension of PSLG-click Colloids in the Rodlike Polypeptide Matrix. 

 PSLG click hybrid particles were suspended in a 40 wt% solution of PSLG in toluene at 1 

wt% mass fraction. Figure 3.14A shows the texture of the particles 2 days after preparation. 

Columns made of particles seemed to arrange in a more or less organized network. It was also 

evident that the particles were well-dispersed in the mixture. An external magnetic field was 

applied to test whether the particles were able to respond and align. Particles aligned relatively 

fast (15- 20 min.) as shown in Figure 3.14C.  

  

Figure 3.14 POM micrographs of 1 wt% PSLG-click hybrid particles (CR715) 

suspended in 40% PSLG/toluene taken at room temperature: (A) thin  

column arrangement after two days, (B) nascent ring-like texture after two days,  

(C, D) different orientations adopted by composite particles under applied magnetic  

field, (E, F cross polars) well-defined ring-like patterns after 6 days, and  

(G, H cross polars) thick columns of particles after 6 days in the absence of the  

applied magnetic field. 
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Figure 3.14 continued 
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Furthermore the orientation of the magnetic field was changed to test if the particles were 

“locked” in the chain-like texture. Figure 3.14D clearly reflects the ability of the particles to 

reorient accordingly with the different direction of the applied magnetic field.
90

 Interesting 

patterns resembling rings were observed nucleating as shown in Figure 3.14B. After more days 

these rings were well-defined and pretty uniform in size. In Figure 3.14E and F the coexistence 

of isotropic droplets and an anisotropic region can be seen.
91

 These droplets were essentially free 

of particles. This might suggest that the particles had a higher affinity for the isotropic phase than 

the anisotropic area. Most likely, the particles were depleted from the droplet interface and were 

more compacted in the isotropic phase. In the absence of an applied magnetic field, the network 

observed initially (Figure 3.14A) changed the morphology. Particles were compacted in more 

thickly isotropic columns. They seemed to be expelled by the liquid regions which also appeared 

isotropic. Along with these patterns, spot-like textures, isotropic in nature were also visible 

(Figure 3.15). After 8 days the particles seemed to be depleted from the isotropic liquid phase. 

Thick random bands can be seen in Figure 3.15C and D right underneath the glass wall, 

“floating” above the LC phase. The formation of these morphologies in the mixture of particles 

coated with a shell similar to the suspension matrix can be explained by the interaction of the 

particles and the matrix molecules. PSLG in toluene assumes a rod-like conformation and at high 

concentrations can form cholesteric liquid crystals, LC. Large particles or clusters can induce 

topological defects in the LC orientation.
92,93

 The sparse presence of the fingerprint morphology 

of the cholesteric PSLG supports the fact that particles deformed the nascent LC. The cholesteric 

domains, once formed, seemed not to be impacted by the particle presence. The magnetic 

clusters were probably bigger than the distance between the cholesteric bands.
94
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Figure 3.15 POM micrographs taken at room temperature of the 1 wt% PSLG-click 

hybrid particles (CR715) in 40 wt% PSLG/toluene: (A, B) cluster texture and (C, D) 

random stripe texture formed after 8 days. 

 

Hence these clusters couldn’t interpenetrate into these bands, rather the particles were expelled 

(Figure 3.16). The combination of polypeptide magnetic particles with liquid crystals made of 

rodlike polypeptides can be useful platforms to study the new and improved LC mixtures with 

tunable properties.  
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Figure 3.16 POM micrograph showing cholesteric patterns along  

with ring-like texture for 1 wt% PSLG-click hybrid particles (CR715) 

  in 40 wt% PSLG/toluene. 

 

The highly dispersed state of the particles in the polymer matrix attained by these preliminary 

experiments, can prove useful for the discovery of new morphologies and the development of 

new composite liquid crystal-colloid mixtures. 

3.4.3 Soap-like Aqueous Suspensions of PSLG -click Particles in Surfactant Driven 

Media. 

 

 Magnetic particles carrying a hydrophobic shell consisting of poly(γ-stearyl-L-

glutamate), PSLG, were found to disperse in aqueous surfactant solutions. Four surfactants were 

chosen: sodium dodecyl sulfate, SDS, cetyl trimethylammonium bromide, CTAB, Pluronic, and 

Genapol. The stearyl chains are very similar to the hydrophobic part of the surfactant. As shown 

in Figure 3.17 the click magnetic particles formed stable suspensions in SDS, CTAB, Genapol 

and partial in Pluronic. The suspended particles kept their magnetic properties. The mechanism 

of dissolution can be explained on the basis of hydrophobic-hydrophobic interactions. These 

interactions can cause the formation of localized micelles between the arms of the polypeptide 

helices anchored on the particle surface and the hydrophobic tail of the surfactant, with the 

surfactant’s hydrophilic head pointing to the aqueous phase. 
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Figure 3.17 PSLG click hybrid particles suspended in Genapol (G), SDS (S), CTAB (C) 

and Pluronic (P). 

 

The easy access of the surfactant molecules to the polypeptide side chains is also favored by the 

sparse populated particle surface.  

3.4.4 Rheological Behavior of PCBL-click Particles 

 Magnetic particles were subjected to shear stress to measure their viscoelastic behavior. 

Figure 3.18A reflects the shear thinning behavior of the polypeptide-coated magnetic particles 

suspended in DMF (c = 1.5 wt%) in the absence of an applied magnetic field. This behavior was 

compared with standard magnetic latex suspended in water which showed thinning under stress, 

Figure 3.18B. The elastic modulus, G′, was higher than viscous modulus, G″, suggesting that the 

material behaved like a viscoelastic solid. The agglomerated structures present in the magnetic 

suspension began to break with applied force but, at the same time, they probably recombined 

reversibly in other smaller aggregate morphologies. This is suggested by the profile of the 

storage and loss modulus, G′ and G″ respectively. They seemed to be frequency independent.
95

 

In the absence of magnetic field, a magnetorheological fluid was expected to behave similarly to 

a Newtonian fluid,
96

 but Figure 3.18A shows that the PCBL click particles had a non-Newtonian 

flow behavior, a characteristic of stiff materials. 
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Figure 3.18 Illustration of the rheological behavior:  

(A) storage (G′) modulus, loss (G″) modulus, viscosity,  

η and phase angle, δ, as functions of frequency sweeps 

for PCBL click hybrid in DMF (no magnetic field applied),  

shear rate kept at 10Pa, (B) storage (G′) modulus, lost (G″)  

modulus, viscosity, η and phase angle, δ, as functions of  

shear stress for standard magnetic latex 0.5 μm in water  

(no magnetic field), frequency kept at 1 Hz, (C) storage (G′)  

modulus, loss (G″) modulus, viscosity, η and phase angle, δ,  

as functions of shear stress for PCBL-click hybrid in DMF  

(under applied magnetic field applied parallel to the rheometer 

 plates), frequency kept at 1 Hz, (D) storage (G′) modulus, lost (G″) 

 modulus as functions of shear stress for PCBL-click hybrid particle 

 under and no applied magnetic field, frequency kept at 1 Hz  

and (E) storage (G′) modulus, lost (G″) modulus, viscosity,  

η and phase angle, δ, as functions of frequency sweeps for PCBL  

click hybrid in m-cresol (no magnetic field applied), shear rate kept 

at 100 Pa. 
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Figure 3.18 continued 
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Figure 3.18 continued 
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Under an applied magnetic field, Figure 3.18C, the rheological properties of the suspension 

changed dramatically. The G′ and G″ moduli increased with at least two orders of magnitude, 

Figure 3.18D.
95,97

 Under the magnetic field, the clustery suspension arranged in column-like 

microstructures due to the induced magnetic polarization and the resulting dipole-dipole 

interactions between the particles. At low frequencies the structure of the cluster remains fairly 

constant. Once the shear rate increases, the elastic modulus, G′, decreases and the loss modulus, 

G″, increases. The fluid tended to approach the Newtonian behavior. Also the close proximity of 

up to an almost crossover point between G′ and G″ attained at higher frequencies suggested that 

polypeptide coated particles might gel. Under an applied magnetic field, the viscosity decreased 

to a critical value and then suddenly increased, pointing to the magnetorheological effect. This 

effect is due to the flow hindrance by the aggregate and columns formed within the sheared 

suspension. It can also be speculated that the polypeptide can have an important role in such 

behavior. The polypeptide grafted onto the surface was very short and had the ability to pack into 

very rigid helices of 6 turns each. Once a shearing force is applied the particles are more or less 

reversibly jammed. Jammed together, the chains might interpenetrate. As a result, a local 

compacted structure can form, close in appearance with a liquid crystalline phase. The carrier 

(solvent) viscosity didn’t seem to impact the magnitude of the G′ and G″ as shown in Figure 

3.18E. These preliminary results demonstrate that polypeptide composite particles can be used to 

study jamming effects under stress. Applied magnetic fields can be used to tune the rheological 

properties of the colloidal system. 

3.5  Conclusion 

Hybrid composite particles featuring a homopolypeptide shell were prepared by click chemistry. 

To increase the range of responsiveness, these FITC covalently labeled particles were furnished 
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with a magnetic core consisting of magnetite. The characterization of the products obtained at 

each step was performed with different range techniques. XRD confirmed the spinel structure of 

the magnetite and gave an average crystallite size of about 11 nm, in good agreement with the 

HRTEM analysis. Silica protection of the naked magnetite core was monitored by FTIR, 

HRTEM and XRD. The first protective layer of SiO2 was 4 nm thick as determined by both 

HRTEM and XRD. After functionalization with azide groups, the well-characterized 

polypeptides, PSLG and PCBL respectively, were easy attached using the versatile Huisgen’s 1,3 

cycloadition yielding stable dispersions in THF and DMF. After grafting to the spherical surface, 

the two polypeptides retained their α-helical structure as proven by FTIR. The surface of the 

composite particle had a low population of polypeptide chains, 125 for PSLG and about 800 for 

PCBL-click particles. The composition of the surface was evaluated by XPS. The sparse 

coverage with polymer chains was also evidenced by the presence of the at N1s peak specific to 

azide moiety at very low intensity along with FTIR spectra showing the signal of azide 

functional group centered at 2100 cm
-1

. SQUID investigation showed the superparamagnetic 

behavior of the colloid particle. The low grafting density enabled a good efficiency of enzyme 

immobilization. Lipase from Candida rugosa was incorporated by adsorption onto the PSLG- 

click particles yielding a product which can be further used as a versatile candidate to mimic the 

enzyme tethering to natural molecules. Upon suspension in the surfactant aqueous solutions, the 

PSLG-click particles formed stable dispersions. The surfactant molecules seemed to intermediate 

the dispersion of the PSLG into the hydrophilic media. Subjected to stress, the PCBL-click 

particles behaved as a stiff material showing shear thinning behavior.  
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CHAPTER 4 

POLYPEPTIDE-BASED SILICA HYBRID PARTICLES: A NOVEL 

APPROACH TO ENGINEER MESOPOROUS CORES AND MEASURE THE 

HAIRY SHELLS 
 

4.1  Introduction 

Silica colloids have been heavily researched for several decades, due to the range of 

applications they can display. Their unique properties such as low cytotoxicity, facile 

preparation, easy control over interparticle interaction, stability at the physiological pH range (6-

7) and, most of all, the easy modification of their surfaces with functional groups, qualify silica 

particles as excellent candidates for biomedical applications such as drug delivery, cell 

separation and photonics.
1,2

 Several review articles have appeared on these subjects.
3-6

 Silica 

colloids are prepared usually from alkylorthosilanes in the sol-gel process pioneered by Stöber et 

al. in 1968, and, since then, they have been known by the colloid community as Stöber silica.
7
 

Many other reports were recorded over the years on modifying the Stöber procedure to 

improving the particle uniformity.
8,9

 The emulsion method gives more monodisperse colloids but 

the shortcoming is the low yield.
10,11

 Particles with a narrow size distribution typically have 

uniform physical properties desired in the application process.  

The rapid development of biotechnology and biomedicine asks for advanced silica 

colloids. Physically or covalently loaded with dyes, fluorescent particles are used as probes and 

also for in vivo imaging purposes. They can encapsulate a magnetic nugget making them 

responsive to external stimuli such as electric and magnetic fields, but this aspect will not be 

developed in this chapter. From the multitude of the fluorescent agents, fluorescein 

isothiocyanate, FITC proves to be a good choice due to its high quantum efficiency when 

compared with self-quenching. Viger et al. studied the reduction of self-quenching in fluorescent 

silica coated silver particles.
12

 Fluorescent particles were obtained using a silane coupling agent, 
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3-aminopropyltriethoxy silane, APS, in two steps. First the dye was chemically bound to the 

APS and then silver silica particles were prepared in a reverse micelle. These particles provided 

higher detection ability and lower self-quenching when compared with unbound dye molecules. 

The stability against photodegradation depends on the fluorophore recycling time or the life of 

excited state. A similar approach was employed by Santra et al. in the preparation of the FITC 

labeled silica nanoparticles for bioimaging applications.
13

 Lu et al. prepared robust fluorescent 

silica particles in a two step process involving the sol gel technique.
14

 They followed the Stöber 

procedure and added the APS-FITC complex to grow silica fluorescent particles. Further, after 

washings were performed, these particles were treated with supplemental amount of TEOS. 

Upon standing 12 h, a pure silica outer layer was deposited. In order to close the pores through 

which the dye might leak, the suspension was treated with sodium silicate, Na2SiO3, at pH 10.0, 

and acid exchange resin. This procedure suppressed the penetration of the protons inside the 

particle and, consequently, arrested their attack on the dye-containing networks. 

Significant progress has been made in the past two decades on modification of the outer 

surface of silica with organic polymers. 
15,16

 A large variety of composite particles was designed 

but few featured a shell made of homopolypeptide.
17-23

 Polypeptides were grown, first, on 

different flat surfaces.
15,16

 Oosterling et al. reported, for the first time, aerosil silica grafted with 

poly(L-aspartates) and poly(L-glutamates).
24

 Tsubokawa et al. used carbon black as a core and 

grafted poly (γ-methyl-L-glutamate) by ring opening polymerization of the corresponding N-

carboxyanhydride initiated by the amino groups attached to the carbon black surface.
25

 These 

early reports dealt with issues such as low grafting density, colloidal stability and uniformity. 

Also, the determination of the helix orientation was a real challenge. In 1999, the Russo group 

reported polypeptide-coated silica particles with improved uniformity and higher polypeptide 
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loading.
19

 The uniformity of the poly(carbobenzyloxy-L-lysine), PCBL silica particles was 

confirmed by the formation of beautiful colloidal crystals.
20

 Once the uniformity was improved, 

the real challenge was to measure the molecular weight of the polypeptide grafted on the surface 

and compute the grafting density. The problem could be circumvented by the younger and 

rapidly evolving technique, click chemistry, which can attach ready-made and fully characterized 

polymer s to the cores. Balamurugan et al.
17

 and Kar et al.
21,22

 prepared silica particles featuring 

a homopolypeptide and a copolypeptide shell by attaching a well-characterized polymer with an 

alkyne terminus to a silica surface decorated with azide groups. This technique allows a facile 

evaluation of the number of chains grafted on the particle. Yet, the main drawback of the click 

chemistry remains the lower polymer loading or lower grafting densities when compared with 

the more popular growing from approach. Control over the population of the functional groups 

used as initiators in the growing from method was demonstrated by Soto-Cantu et al. using the 

tandem activator-pasivator in the functionalization step.
23

 The Russo group also established a 

correlation between zeta potential and the number of the amino groups attached to the silica 

surface
26

 and opened the door to copolymeric shells.
23

 Recently, the Heise group was able to 

combine the thermogravimetric assays and gel permeation chromatography to measure the 

molecular weight of the polypeptides attached to the silica surface by the growing from 

technique.
18

 The cleavage of the polypeptide was facilitated by the treatment of the polypeptide 

composite particle with hydrofluoric acid as an etchant. Strong bases such as NaOH and KOH 

were also used but mainly for the purpose of obtaining silica mesoporous particles. Regardless of 

the nature of the etchant used, acid or base, a new question arises: is the polypeptide’s helical 

conformation surviving such treatment? The conservation and the stability of the polypeptide 
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structure, especially the helix is of great importance in tailoring the applications of these 

composite materials.  

A newly emerged subclass of colloid particles is the so-called mesoporous silica. The 

possibility to create particles with complex morphologies, composition and internal structures 

makes them attractive for applications such as catalysis, separations, diagnostic, coatings, optics 

and electronics.
27,28

 Several techniques have been employed in developing porous structures such 

as swelling with supercritical carbon dioxide,
29,30

 microfluidic devices,
31,32

 spray drying
33-35

 or 

etching with hydrofluoric acid.
36-40

 More recently template synthesis
41-43

 received increased 

attention. The removal of the polymer template caused the particles to shrink. Moreover, the 

control over the size and morphology of the final product was not optimal. Lately an important 

emphasis is placed on using NaOH as an etchant to tailor the internal morphology of the 

colloid.
44

 Basic conditions can also be ensured by ammonium hydroxide. For example, 

Grzelczak et al. obtained carbon nanotubes encapsulated in the hollow silica shells resembling 

wormlike structures.
45

Chapter 2 of the dissertation is dedicated to ammonia etching.  

Ranging from rattle-type or yolk-shell to sponge-like these configurations are very 

appealing, as demonstrated by Zhang et al.
46

 Chen et al obtained mesoporous silica resembling 

pomegranate fruit-like morphology and also foam-like structures. These simple synthetic 

procedures enable the scale-up of the methodology. Even if the method involved was so-called 

“surface-protected etching” or just simple aging, the rational use of NaOH facilitated the creation 

of desirable silica morphologies.
47,48

 The base route is much milder when compared with the 

acidic variant (safety issues, longer time required to complete reaction, etc.), etching with 

hydrofluoric acid, widely used for treatment of flat silicon substrates.
49,50
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In this chapter, a simple and efficient route to transform polypeptide composite particles, 

PCPs, or silica core-polypeptide shell particles into mesoporous colloids, while releasing all or 

some of the shell polypeptide is considered. The focus is on NaOH as etchant and poly(N
ε
-

carbobenzyloxy-L-lysine), PCBL and poly(L-tyrosine), PTYR as polypeptide. The etching 

method is applied to nonfluorescent and fluorescent PCPs and also to bare fluorescent silica 

particles as a control. The effect of polypeptide coverage on the porosity and morphology of 

etched silica is assessed. A real challenge in the characterization of growing-from core-shell 

colloids is the determination of the molecular weight of the shell polymers. This problem is 

addressed by subjecting the polymers cleaved from the surface during the etching process to 

analysis by GPC/MALS. The conformation of these polymers, as revealed by their fractal 

dimension, is compared to that of polymer prepared normally (not by from surface initiation). In 

order to address the question of the shell polypeptide degradation, normally produced polymer is 

also subjected to NaOH etching.  

4.2 Experimental 

The synthetic procedure describing the production of mesoporous particles and shell 

cleavage is illustrated in Scheme 4.1. Details on the particle preparation are available in Chapter 

8. The black arrows represent the routes to nonfluorescent polypeptide composite particles, PCP, 

while the green denote the preparation steps for fluorescent particles.  

4.3  Results and Discussion 

4.3.1 Architectural Particles: Mesoporous Non-Fluorescent Silica 

Silica cores were prepared following combined seeded and Stöber procedure with 

modifications.
7,9,51-53

 Fluorescent particles were obtained by covalent incorporation of the adduct 

made of flourescein isothiocyanate and 3-aminopropyl triethoxysilane, FITC-APS. 
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Tetraorthoethylsilicate, TEOS, diluted four times with EtOH was also added to build a thin silica 

layer on top of the dye. Afterwards, another layer of silica was deposited to prevent dye leaking 

and bleaching. The surface of the silica spheres was furnished with amino functional groups 

facilitated by the use of APS as the silane agent.
26

 On the left side, the nonfluorescent 

aminofunctionalized silica particles were obtained by the treatment with APS in the same fashion 

as described for the fluorescent particles. The growing from approach was used to grow the 

polypeptide shell around the core by ring opening polymerization of the corresponding N-

carboxyanhydrides, the polypeptide precursors, initiated by the amino groups decorating the 

surface of silica beads.
18-20,23,54

 Composite particles, either poly(N
ε
-carbobenzyloxy-L-lysine), 

PCBL or poly(o-benzyl-L-tyrosine), PBTY were converted to water soluble colloidal materials, 

poly(L-lysine), PLYS and poly(L-tyrosine), PTYR respectively, by deprotection of the 

polypeptide side chains with a solution of HBr/CH3COOH (33%). The preparatory steps of non- 

and fluorescent polypeptide composite particles are presented in Scheme 4.1. 

Thermogravimetric analysis, TGA, confirmed the presence of the polypeptide on the 

silica surface. Figure 4.1 shows the percent polypeptide loading on the core for protected and 

deprotected hybrid materials, as well as the weight difference after debenzylation.  

The percent mass loading with polypeptides before and after etching is summarized in the 

Table 4.1. After preparation, particles were visualized by transmission electron microscopy, 

TEM, (Figure 4.2).  
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Scheme 4.1 Schematic illustration of the preparation of polypeptide-coated silica 

mesoporous hybrids using 3mM aqueous NaOH and shell cleavage using ~ 10% NaOH. 

The black arrows designate the non-fluorescent PCPs while the green are for fluorescent 

counterparts. 
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Figure 4.1 TGA traces before and after deprotection for PCP PCBL-coated  

silica hybrid (CR7160) (A) and PCP PBTY-coated silica hybrid (CR7161) (B). 
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Figure 4.1 continued 
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Table 4.1 Polypeptide Composite Particles, PCP, and the Percent Mass Loading with 

Polypeptide 

PCP Mass Loading/% 

PCBL-silica 35 

PLYS-silica 15 

PBTY-silica 55 

PTYR-silica 45 
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Figure 4.2 TEM images showing the morphology of the polypeptide composite 

particles before and after etching with a 3mM NaOH solution (pH= 12.6): (A) 

PCP PCBL (CR7160), (B) PCP PLYS (CR88A), (C) PCP PBTY (CR7161), (D) 

PCP PTYR-(CR88B), (E) bare fluorescent silica (CR760Atop) and (F) bare 

fluorescent silica after etching (CR828). Scale bars 100 nm. 
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Figure 4.2 continued 

  

 

In order to make the polypeptide corona visible, the sample of PCP PCBL displayed in 

Figure 4.2A was stained by exposure to OsO4 vapors. To guard against the possibility that 

polymer was deposited at the particle surface as the solvent was wicked off and dried down, 

Soto-Cantu and co-authors added a bare silica control particle that could be identified by a cobalt 

inclusion. Guided by this experiment, here it is assumed that no such dry-down artifacts occur. 

23
. It is clearly shown that the core has a shadow around assigned to the polypeptide shell when 

compared, for example, with PCP PBTY seen in Figure 4.2C. The other images were obtained 

without staining; consequently only the core is visible. The hollow structure inside the spheres 

can be observed in the case of the fluorescent particles (Figure 4.2B). The image suggests that 

the grafted polypeptide can protect the surface against the action of the etchant agent in 

agreement with the results published by Zhang et al. on silica particles coated with 

polyvinylpyrrolidone, PVP.
47,48

 The nonfluorescent composites, PCP PTYR, adopted a 

completely different architecture (Figure 4.2D). In comparison with the sample before etching, 

Figure 4.2C, the formation of the pores from the surface can be noted. The particles underwent a 
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slight shrinkage. A closer inspection of the fluorescent mesoporous structures gave another 

interesting detail: the dark “belt” present inside the empty particle and the full rattle core 

correspond to the size of the silica colloid after covalent doping with FITC–APS adduct. 

Therefore it can be hypothesized that the layer of the silica-dye adduct can act as a sacrifice 

which lowers the etching of the silica seed. As a proof-of-concept, a control experiment was 

developed as follows: bare fluorescent silica without carying a polypeptide shell, Figure 4.2E, 

were chosen and subjected to the same etching conditions as the former. As seen in the Figure 

4.2F the morphology of the silica is identical with the one of the fluorescent composite particles. 

Figure 4.3 shows the control silica at different times of etching. Before exposure to NaOH, 

control silica particles had a good uniformity, as seen in Figure 4.3A (D = 176.5 ± 9 nm from 

TEM). The tendency to pack in 2D hexagonal arrays can be easily noted. After one day of the 

base incubation, Figure 4.3B, particles began to slightly excavate. The size stated essentially 

constant to 164 ± 7.5 nm. The formation of the pores from the surface can be seen in the second 

day, Figure 4.3C. The edge of the particles does not have the clarity and the sharpness of the 

initial spheres visualized in Figure 4.3A. Still, particles size remained constant and was evaluated 

as 171 ± 15 nm. The edges had a low contrast in the electron beam, a signature of a lower 

electron population due to internal etching. After 3 days, small voids inside the particle began to 

form and their morphology is presented in Figure 4.3D. Very interesting are the tunnels between 

the voids, seen at a higher magnification. These passages were also observed for PCP PLYS 

hybrids (Figure 4.4A and B). 
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Figure 4.3 TEM micrographs recorded at different stages of etching the silica cores 

(CR760A top) with 3 mM NaOH (pH= 12.6): (A) 0 days, (B) after 1 day, (C) after 2 days 

(zoom inset) (D) after 3days (zoom inset), (E) after 4 days (zoom inset), (F) after 5 days 

(zoom), (G) after 6 days (zoom inset) and (H) after 7 days (zoom inset). 
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Figure 4.3 continued 

  

  

 

The control experiment on bare fluorescent silica revealed the possibility to also obtain 

morphologies such as void-belt-void-belt, as illustrated in Figure 4.3E. After 4 days of etching in 

3mM NaOH solution, particles had an outer and an inner membrane, with voids in between. 

Most probably the small voids observed in day 3 merged into bigger structures separated by 

those tendon-like silica. Intriguing are the particles with an empty core formed along with the 

ones that have a full core. The density of the etched particles decreased in time due to the 

hydrolysis of the silane network. The Si—O—Si bonds of the 3-aminopropyltriethoxy silane 



207 

 

hydrolyze faster into Si—OH bonds due to less crosslinking when compared to the TEOS 

siloxane. 

 

 

Figure 4.4 TEM images of (A) mesoporous PCP PLYS showing their morphology and 

(B) tunnels between the inner and outer membrane (marked with red arrows). 

 

TEM size evaluation suggested the treatment with a basic etchant caused control particles 

to swell up to 268 ± 11 nm in the 4
th

 day while those coated with a polypeptide corona slightly 

decreased in size. The decrease might be explained by the attractive forces associated with the 

mass of the corona which might induce the collapse of the outer membrane to the interior. Most 

of the particles did not change the spherical shape due to a symmetric and uniform coverage with 
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polypeptide. Yet, the sharp increase in size for silica was not seen in DLS measurements, Figure 

4.5A.. 
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Figure 4.5 Diameter as a function of time (days) for fluorescent silica from: 

(A) dynamic light scattering along with associated polydispersity index,  

μ2∙Γ
-2

,and (B) TEM. 
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The peaking value of diameter seen in the 4
th

 day from TEM, Figure 4.5B, is most probably a 

dry-down artifact. 

After 5 days of base exposure particles lost their belt-void-belt appearance, Figure 4.3F. 

A decrease in size was observed while the polydispersity index from DLS deviated significantly. 

The diameter of the particles scaled at 145 ± 8 nm. Particles underwent excavation, a sign that 

the sacrificial TEOS-APS layer was probably hydrolyzed and the base reached the silica seed. In 

the day 6 the size increased to 177.5 ± 14 nm, Figure 4.3G. In the last day of the experiment, 

Figure 4.3H, silica began to drop in size again. The edges of the spheres clearly show the porous 

appearance along with the fuzzy shell consisting of hydrolyzed silica. Still the etched beads 

maintained their spherical shape after seven days of the NaOH treatment. DLS data showed that 

the size of the etched colloid was not altered significantly from the initial value, with the 

exception of the 5
th

 day. The constancy of the size is a very important feature from the 

perspective of potential applications which will be later described.  

The production of the mesoporous silica particles has engendered contradictory findings 

about the possible pathways of the etching mechanism. For example, Park et al. found that the 

etching took place predominantly in the particle interior
55

 while El-Toni et al. showed 

mesoporous structures formed by shell-to-core etching.
56

 Liu et al. reported shrinkage of the 

particles in the alkaline solution
57

 but Chen et al.
58

 and Zhao et al.
59

 showed particles which 

slightly swelled after the alkaline treatment. This report showed that the size of the fluorescent 

silica cores remained essentially constant while the size of polypeptide-coated particles slightly 

decreased, according with TEM. The size of mesoporous particles before and during etching is 

summarized in Table 4.2.  
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Table 4.2 Mesoporous Particles and Their Core Diameter from TEM Obtained Before 

and During Etching 

 

Mesoporous particle Diameter/nm 

PCP PCBL 275 ± 18 

PCP PLYS 234 ± 16 

PCP PLYS inner core 137 ± 20 

PCP PBTY- 200 ± 5 

PCP PTYR 136 ± 18 

 Silica (CR760Atop) 0 days  176 ± 9 

Silica-1 day 164 ± 7.5 

Silica-2 days 171 ± 15 

Silica-3 days-total 

Silica-3 days-inner core 

179 ± 12 

132 ± 9 

Silica-4 days-total 

 Silica-4 days-filled inner core 

Silica-4 days-empty inner core 

268 ± 11 

174 ± 8 

132.5 ± 9 

Silica-5 days 145 ± 8 

Silica-6 days 177.5 ± 14 

Silica-7 days 168 ± 4 

 

The etching of the fluorescent particles, both furnished with polypeptide corona and 

without, was predominantly seen in the interior. What seems to happen in the formation of the 

void fluorescent particles is illustrated in Scheme 4.2. These particles have an inner layer of the 
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FITC-APS adduct blended with TEOS. The network formed by APS during the hydrolysis-

condensation process is less crosslinked and dense than the TEOS network. The excavation that 

takes place in the first two days removes only a superficial layer of TEOS from the outer surface 

of the silica. The main effect is most probably the creation of larger pores. This way the etchant 

molecules have an easy path to the interior of the particle. Consequently, exposed to water and 

catalyzed by the hydroxyl ions, OH¯,
 
provided by the etchant, the Si-O-Si bonds from the APS 

network hydrolyze faster to Si-OH bonds than the denser TEOS. The weakness of the Si-O-Si 

bridges promotes the formation of the sparse small voids. As a consequence of the prolonged 

exposure to the basic environment, the voids begin to merge while being separated by thin 

tunnels.  

The afore described mechanism was also proposed by Roca et al. for their gold-void-

silica particles.
60

 Double silica membranes or belts seen in the case of PCP PLYS particles and 

bare silica mesoporous particles match pretty closely with the intermediate particles used in the 

core production (See Chapter 8 for experimental details and Figure 4.6 for the radii values). 

Figure 4.6 shows the silica seeds which were fluorescently tagged with the FITC-APS adduct 

and TEOS and finally with a protective layer of TEOS. These particles were the precursors of 

PCP PLYS colloids. For example, the size of the silica seeds closely matches with the size of the 

inner core seen after etching of the PCP PLYS. 
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Scheme 4.2 Schematic illustration of the mesoporous fluorescent silica formation. 

 

 

Figure 4.6 TEM images of the particles involved in the PCBL and  

PLYS-silica core preparation: (A) silica seeds (D = 154 ± 13 nm), (B)  

fluorescent core, Si-FITC-Si (D = 235 ± 12 nm) and (C) silica-protected  

core, Si-FITC-Si-Si, (D = 275 ± 18 nm). 
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Figure 4.6 continued 

 

 

 

4.3.2  Applications of Mesoporous Polypeptide Composite Particles 

After etching, the particles were still fluorescent. Figure 4.7 shows PCBL-silica and 

PLYS-silica particles. This is a very important feature of the technique involved in the particles 

fabrication which offers a multitude of advantages. Procedures for making fluorescent 

mesoporous particles require supplemental steps: after the formation of the voids, the colloid is 

labeled with FITC or other fluorescent dye. Further coatings with silica are not possible because 

the voids can be covered and the material loses its viability as a potential encapsulation 

candidate. Consequently, the dye might leak and can be easily bleached. 
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Figure 4.7 Fluorescence images of polypeptide composite particles: (A) PCP 

PCBL(CR7160) before etching and (B) PCP PCBL (CR7160) after etching. 

Scale bar 50 μm. 

 

Applications such as in vivo imaging might be affected because the free dye is bleached 

and flushed quickly from the cell making it fluorescently invisible.
61,62

 In comparison, the 

present colloid is already protected against leaking and bleaching thus ensuring a longer time for 

use in applications such as imaging. Figure 4.8 reflects the control silica particles visualized in 

fluorescence light inside an Arabidopsis thaliana leaf.  

 

Figure 4.8 Fluorescent image of the fluorescent silica particles uptake 

in the vascular system of an Arabidopsis thaliana leaf and (inset) a  

zoom in the white circled area showing particles in the plant cells. 
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Despite their size (176 nm in diameter), particles were able to flow into the mainstream of the 

leaf’s capillary system. 

The stability and the good dispersion of the silica into the vessel’s fluid seemed to hinder 

their aggregation, thus clogging the artery. Only two clusters can be seen in the image. 

Furthermore, some of the particles were able to penetrate through the cells walls and are visible 

in the inset. The protection against dye leakage and bleaching combined with the ability to 

penetrate into living cells makes the fluorescent silica particles, described in this chapter, 

potential candidates for in vivo imaging and, not the last, as probes. 

4.3.3 Shell Haircut: Grafting Density and Secondary Structure 

Inspired by the formation of the mesoporous hybrid particles in 3mM aqueous NaOH 

solution, another key approach of this work was developed: the use of NaOH etching to haircut 

the composite particle and asses the molecular weight of the polypeptide. Studies conducted up 

to present used HF as etchant
18

 These experiments, especially the controls using vendor-

purchased untethered polymer, are in their infancy. This section will be developed in Chapter 7, 

Section 7.5. Data on the cleaved PCBL along with the future experiments necessary to fulfill the 

goal of the project will be presented.  

4.4  Conclusion  

 A facile and mild method, based on NaOH etching to manipulate hard silica cores into 

mesoporous morphologies was presented. This method, besides the good yields, can also be 

viewed as a convenient way to fluorescent mesoporous particles. The unique feature of the 

particles is that the fluorescent dye is protected from bleaching with a supplemental silica layer. 

The formation of the voids from the inside out was seen in both categories of colloids, simple 

fluorescent silica cores and fluorescent PCPs. In addition, the difference in morphologies 
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between a fluorescent particle and one lacking the fluorescent tag, pointed to selective etching of 

the dye-containing networks acting as a sacrificial layer and the heavy crosslinked TEOS strata. 

The less APS crosslinked network was hydrolyzed faster than the denser TEOS network. Voids 

occurred and upon prolonged exposure to the basic solution, they merged into silica-void-silica 

structures separated by the silica tendons or belts. The control particles retained enough 

fluorescence for bioimaging purposes. The fluorescence study showed they were transported 

through the vascular tract of Arabidopsis thaliana leaf and delivered to the plant cells. 

Observations made on the moderate etching of the silica with the formation of the mesoporous 

particles led to the idea of using NaOH of higher concentration and for a shorter time to haircut 

the polypeptide particle and measure the molecular weight of the grafted polypeptide, such a 

sensitive task in the growing from method. The combination of the thermogravimetric and 

chromatographic assays allowed the calculation of the grafting density and the chain population 

of the polypeptide-based hybrid particle. The cleavage experiments are presented in Chapter 7, 

Section 7.5. Several concluding remarks withdrawn from experiments carried out on cleaved 

PCBL are presented here. GPC experiments have shown that the cut off PCBL had a helical 

conformation and behaved like a rigid rod in the limits of Kratky – Porod model. The small 

random coil residues identified by FTIR did not impact the rodlike behavior. This behavior 

compared with the other polymers of different molecular weight underline the fact that not only 

the secondary structure of the PCBL was conserved but also the grafting from method can be 

considered a good way to produce well-behaved rigid rod polypeptides.   
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CHAPTER 5 

PHYSICAL PROPERTIES OF SILICA POLY(CARBOBENZYLOXY-L-

LYSINE) COMPOSITE PARTICLES: METHODS TO INVESTIGATE THE 

REVERSE RANDOM COIL-TO-HELIX CONFORMATIONAL CHANGE IN 

M-CRESOL AS A TEMPERATURE RESPONSE 
 

5.1  Introduction 

Stimuli-responsive peptide-conjugated silica nanoparticles have captured attention in the 

last decade. These hybrid materials provide an opportunity to design novel materials that 

combine the biological functionality and the enormous chemical versatility of the polypeptide 

with the features of colloidal particles (stability, facile surface modification, low cost and most of 

all easy manipulation in gravitational and magnetic fields). Composite particles featuring a 

homopolypeptide shell can be considered useful models that can help understanding the tethering 

mechanism behind virus infection.  

Polypeptides undergo structural changes induced by various factors such as pH, 

temperature and solvent. Studies focused on this field have reported controversial results but all 

highlighted the importance of understanding such phenomenology. The most widely investigated 

polypeptide from this point of view is PBLG. Zimm and Bragg
1
 and then Applequist

2,3
 have 

demonstrated that a cooperative thermally induced helix-coil occurs in many polypeptides. 

Zimm’s theoretical approach agreed with the experimental observations accounted by Doty, 

Blout et al.
4-7

 on poly(γ-benzyl-L-glutamate), PBLG. This homopolypeptide underwent a helix-

coil transition dependent upon temperature and solvent composition. The interval of the 

transition was strictly related to the molecular weight of the PBLG. Zimm also evaluated the 

parameters of the helix formation based on previous theoretical predictions and coupled them 

with the optical rotation results.
1
 One conclusion stated that optical rotation depends linearly on 

the fraction of helical residues. Karasz et al. measured the effects of deuteration and solvent 
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composition on helix-coil transition by optical rotation and calorimetry.
8
 The transition 

thermodynamics was approached through the prism of Zimm-Bragg theory. A well-defined 

transition temperature for PBLG in dichloroacetic acid, DCA, (37% vol.)-chloroform (63% vol.) 

mixture was identified. The heat capacity associated with the transition was determined by 

calorimetry.
9
 Watanabe et al. measured the dielectric constant and electric birefringence of 

PBLG in DCA–EDC, 1,2-dichloroethane, mixture. Addition of DCA in a small amount (~0.1%) 

caused a sharp change of these properties which was assigned to a helix-coil transition.
10

 

Ackermann et al. investigated the thermodynamics of the PBLG transition in the same solvent 

mixture by polarimetric measurements.
11

 The critical transition temperature increased with the 

PBLG concentration, at constant solvent composition. This trend was also noted when the PBLG 

solution had equal concentration but the amount of DCA increased. Both studies seem to agree 

that parameters such as transition enthalpy or cooperativity are greatly dependent on 

concentration, temperature and solvent composition.  

A less studied polypeptide with a structure similar to that of PBLG is poly(N
ε
-

carbobenzyloxy-L-lysine), PCBL. In the early 1970’s the Fujita group reported a reverse random 

coil-to-helix transition of PCBL in m-cresol.
12,13

 The data gathered by optical rotation dispersion, 

ORD, were fitted to the Moffit-Yang equation
14

 to obtain the Moffit parameter
15

 which further 

was used to calculate the fraction of helix during the transition from coil-to-helix. The solvent 

changes its viscosity with temperature.
16

 The intriguing aspect in the occurrence of the transition 

is the unusually strong cooperativity. Omura et al. measured the optical rotation and investigated 

the dielectrical behavior of the dilute solutions.
17

 The conformational change was assumed to 

evolve in all-or-none fashion, in good agreement with Karasz et al. reports.
18

 The transition 

temperature was found to depend significantly on the molecular weight of the polypeptide: as the 
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molecular weight value increased the temperature moved to lower values around 27°C. The 

transition temperature interval increased with the decrease in the molecular weight. These 

observations were in good agreement with the early reports on PBLG. Fasman et al. noticed that 

the helix stability for PCBL is lower than for PBLG.
19

 A mixture of 36% dichloroacetic acid, 

DCA in chloroform was sufficient to induce the transition while PBLG needed a 68%. In support 

of these observations came the work by Applequist and Doty.
20

 They investigated PCBL of 

different molecular weights by light scattering, viscosity and flow birefringerence. The structure 

of the molecules was found to be stiffer than for a random coil especially for those polymers 

with a lower persistence length. Even having the same backbone structure, PCBL helices seemed 

to be more flexible than PBLG helices. Such behavior could be supported by Kratky-Porod 

“worm-like” model
21

 but with the condition of having imperfect helices. The helix defects could 

be explained by the manner in which the amino acid side chains pack. PCBL has a bulkier side 

chain than PBLG therefore their freedom of motion in the helix is restricted to some extent. This 

feature can be considered a source of the instability among the intramolecular H-bonding, 

causing frequent breaks in the helix. Further confirmation on such occasional bends in the shape 

of the molecule was found from light scattering of the high molecular weight polymer. Such low- 

stability helical polypeptides were also reported at that time.
22,23

 The net variation of the helix 

stability in the same solvent pointed out to have a great dependence of the helical structure on the 

nature of the side chains. It was shown that particular side chain can arrest the helix formation.
24

 

The change in conformational structure motivated in-depth studies on thermodynamic 

and kinetic aspects, especially of helix-to-coil transition. The widely accepted model was 

proposed by Zimm and Bragg.
25

 This model used as main parameters the free-energy preference 

and the cooperativity to form a helix. The dependence of the partition function on the H-bonding 
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was calculated. Since its formulation, the Zimm-Bragg model was used in many studies 

describing the kinetics and the thermodynamics of the helix-coil transition in both equilibrium 

and non-equilibrium. Recent investigations concentrated on the kinetics of the helix 

nucleation.
26-34

 Various models were proposed such as temperature jump kinetics,
35,36

 Ising 

models,
37,38

 or conformational diffusion.
29

 All seem to agree to some extent with Zimm-Bragg 

theory: the formation of the first turn of the helix is dominated by a consistent reduction in 

entropy. This feature makes difficult the construction of the nascent helix but once formed the 

turn acts as a nucleus for other helices by adding H-bonds. In addition to entropic effects, a 

boundary tension was explained to occur as a consequence of missing H-bonds at the adjacent 

segments.
25

 The competition between available degrees of freedom in the coil and the helix 

fragments respectively, was shown to impact greatly the cooperativity in the helix-coil 

transition.
39

  

Tethering the polypeptide on a surface may affect the dynamics when compared with the 

free polymer because of restrictions on the freedom degree. The first study on the PCBL silica-

tethered magnetic colloid performed in Russo laboratory showed a consistent variation in size of 

the composite particle suspended in m-cresol as a function of the temperature as shown in Figure 

5.1. Data corresponding to cycle 4 on cooling didn’t seem to agree with the cycle 3 on heating. 

The possible causes and their effects on the measurements will be addressed in the Results and 

Discussion section.  

This chapter concerns the study of the reversible, inverse-type helix-to-coil transition in 

m-cresol of PCBL tethered on silica as a response to temperature variation. The polypeptide 

hybrid particle was prepared by ring-opening polymerization of corresponding N-

carboxyanhydride
40,41

 using amino-functionalized silica cores as an initiator. The cores are 
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simple Stöber silica with slight modifications.
42-46

 In order to expand the field of applications 

silica cores were covalently-labeled with fluorescein isothiocyanate, FITC. 
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Figure 5.1 Dynamic light scattering data: (A) apparent radius, Rapp, as a  

function of the scattering vector magnitude, q, and (B) polydispersity  

index, μ2 Γ
-2

 of PCBL-CPmag. 
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The combination of light and small angle X-ray scattering techniques was mainly used to 

test the following hypothesis: as a consequence of conformational changes the colloid size may 

vary in size with the temperature both on heating and cooling mode. The novelty of this work 

arises from the fact that the polypeptide chain free motion was partially arrested by attachment to 

a well-defined core in terms of the size and the curvature. In addition to this, different grafting 

densities were used to investigate the crowding effect on the transition. Observations on the 

PCBL-CP nurtured on a silica bead having a magnetic nugget were previously made in this 

group.
47

 
1
H NMR experiments were also conducted to determine the longitudinal or spin-lattice 

relaxation time, T1. NMR measurements were not possible for the particles whose transition 

appears in Figure 5.1A and Figure 5.7A because they were magnetic. Modulated differential 

scanning calorimetry was used as a complementary method to investigate thermal behavior of 

the tethered and untethered polypeptide during the coil-to-helix transition. The data gathered 

with this blend of techniques point to a complicated landscape for the coil-to-helix transition in 

PCBL-m-cresol.  

5.2  Materials.  

Nε-carbobenzyloxy-L-lysine, CBL, (99%) was purchased from Acros Organics. 

Triphosgene (99%) was obtained from TCI America. Anhydrous solvents such as ethyl acetate, 

EtOAc, tetrahydrofuran, THF, hexanes were procured from Sigma Aldrich. 

Tetraethylorthosilicate, TEOS, 3-aminopropyltriethoxy silane, APTS, sodium bicarbonate, 

fluorescein isothiocyanate (99%) were also purchased from Sigma Aldrich. Absolute ethyl 

alcohol 200 proof ACS/USP grade was obtained from Pharmco-AAPER. Ammonium hydroxide 

28-30% ACS grade was purchased from BDH Aristar. All reagents were used without further 

purification. Deionized water (18 mΩ) was drawn from a Barnstead Nanopure instrument.  
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5.3 Syntheses.  

The preparatory steps involved in the production of PCBL-coated silica particles are 

presented elsewhere (Chapter 8, Section 8.4, 8.7, 8.8.2, 8.8.7 and 8.8.8).  

5.4 Results and Discussion 

5.4.1 Confirmation of the Polypeptide on the Core Surface.  

Polypeptide composite particles carying a shell comprised of poly(N
ε
-carbobenzyloxy-L-

lysine), PCBL-CPs, were prepared by the growing from method. Details on the preparation are 

available in Chapter 8. The visualization of the PCBL-CPs was achieved by TEM, as shown in 

Figure 5.2. The staining procedure involving exposure to OsO4 vapors, revealed the presence of 

the polypeptide corona (the dark shadow) surrounding the silica hard cores. 

 

 

 

Figure 5.2 TEM micrographs of 

PCBL-CPs stained with OsO4: 

PCBL-CP100 (A) (CR810B), 

PCBL-CP55 (B) CR810A) and 

PCBL-CP175L (C) (CR7188). The 

shadow around the particle is the 

polypeptide shell.  
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Figure 5.2 continued 

 

 

 

In the abbreviated particle name, the numbers denote the radius of the silica core and H/L 

is the grafting density, high/low, with amino groups prior polymerization, (e.g., PCBL175H). 

The presence of the PCBL on the particle surface was also investigated by thermogravimetric 

analysis, TGA. Figure 5.3 displays TGA traces of the silica cores, amino-functionalized particles 

and polypeptide-coated particles. The weight loss associated with the peptide loading onto the 

silica surface is listed in Table 5.1 for all samples employed in this investigation.  
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Table 5.1 Sample Code, Percentage Loss and Grafting Density with amino Groups for 

PCBL-CP samples 

Sample Code Shell Mass 

Loss 

(%) 

Sspec. 

/m
2
 g

-1
 

σ 

/mmol m
-2

 

σ 

/mmol g
-1

 

NH2 groups 

/nm
2
 

 silane 

layers* 

PCBL175L 

(CR7188) 

55.8 8.66 0.026 ± 1.3×10
-3

 0.23 ± 0.011 16 ± 0.8 4 

PCBL175H 

(CR7160) 

34.6 8.66 0.034 ± 1.7×10
-3

 0.29 ± 0.014 20 ± 1.0 5 

PCBL100H 

(CR810B) 

13.5 15.15 0.006 ± 0.3×10
-3

 0.17 ± 0.008 4 ± 0.2 1 

PCBL55H 

(CR810A) 

55.5 27.5 0.003 ± 1.5×10
-4

 0.09 ± 0.004 2 ± 0.1 1 

*the maximum number of aminosilanes per nm
2
 is 4.

48
 

The weight loss up to 200°C is due to adsorbed water. The decomposition from 200 to ~600°C 

can be assigned to the polypeptide coating the particle surface. PCBL-CPs were designed to have 

different surface coverage: from a crowded to a sparse population. The first step in achieving 

such grafting was the control over the number of the initiator molecules (e.g. amino groups) 

attached on the surface. The TGA profiles allowed the computation of the initiator grafting 

density using the following formula:
49,50

 

      
                         

                    
                                                           

where wSi-APTS and wSi are the measured fractional weight losses associated with decomposition 

of the amino groups and silica cores respectively, M is the molecular weight of the grafted amino 

silane (APTS) and Sspec represents the specific surface area of the silica nanoparticles.  

PCPs having a larger core, Figure 5.3A, had 0.026 ± 1.3×10
-3

 mmol m
-2

 grafting density with 

initiators. Considering a surface specific area of 8.66 m
2
 g

-1
 and the silica density of silica 1.96 g 

cm
-3

 the number of initiators estimated per nm
2
 was 16 ± 0.8. This value revealed that the amino 

silane condensed into four subsequent layers because, for monolayer coverage, only 3-5 silanol 

groups
51

 are available for condensation of the organosilane molecules, leading to four amino 
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functionalities per nm
2
.
52

 The projection of an organosilane on the surface was taken as 0.25 

nm
2
, the most agreed value. PCBL-CP175H, Figure 5.3B had a higher amino grafting density 

estimated to 0.034 ± 1.7×10
-3

 mmol•m
-2

, with 20 ± 1.0 initiators arranged into five layers. Lower 

loadings with amino moieties were achieved for PCBL-CP100H, Figure 5.3C and PCBL-CP55H, 

Figure 5.3D. The first had 0.006 ± 0.3×10
-3

 mmol•m
-2

 functions equivalent to 4 ± 0.2 initiators 

per nm
2
. For the second the grafting density was designed even lower, 0.003 ± 1.5×10

-4
 mmol•m

-

2
 meaning 2±0.1 functional moieties per nm

2
. Both last-discussed PCBL-CPs had monolayer 

distribution of the amino silane on their surface. In order to compute the initiator efficiency the 

polypeptide was cut off from the surface by dissolution of the silica core in ~10% NaOH. 

Chapter 8 presents the detailed strategy and calculations.  
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Figure 5.3 TGA profile of silica cores (−),  

amine-functionalized particles (−)  

and PCBL-CPs (−): (A) PCBL-CP175L  

(inset untethered PCBL),  

(B) PCBL-CP175H, (C) PCBL-CP100H and  

(D) PCBL-CP55H.   
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Figure 5.3 continued 
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Figure 5.3 continued 
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It was found that PCBL-CP175L had a grafting density of 0.9 ± 0.045 μmol•m
-2

 

polypeptide, meaning 209,000 ± 10,000 chain per particle. Taking in account the initiator 

grafting density, 26 ± 1.3 μmol∙m
-2

, this leads to 3.5% grafting efficiency. Indeed this number 

suggests that many amino groups were not able to initiate the ROP of NCA into 

homopolypeptide chains. Small traces of moisture could also result in the initiation of the 

polymer chains which might grow as free polymer in the solution. In multilayer disposition the 

organosilanes carrying the functional groups can polymerize in a vertical fashion. That means 

some of the amino groups can be “buried” inside of a sublayer, thus they are hindered from 

initiating the polymerization. Only the functional moieties from the top layer can actively 

participate in the ROP of NCA. Consequently, in a multilayer arrangement, the aminosilane can 

act both as an activator and a passivator in the same time. The amino group content from the 

silica surface was also evaluated by zeta potential at low pH (1.46) because amino moieties are 
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charged.
48,52-54

 Figure 5.4 presents the dependency of the surface charge on the grafting density 

and the number of the functionalities calculated from TGA. 

PCBL-CPs with a higher calculated number of functional groups in a multilayer 

disposition had similar potential with the PCPs having monolayer of amino groups. This result 

confirmed the assumptions made upon calculations from TGA and clearly proves that for 

multilayer an important part of the functional groups are not available for initiating the 

polymerization due to steric hindrance.  
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Figure 5.4 Zeta potential as a function of amino grafting density and 

the number of amino groups per squared nanometer. 

 

5.4.2 Light Scattering  

The size of the PCBL-CPs was investigated, first, by light scattering assays. Dynamic 

light scattering was a convenient tool to measure the deviation in the particle size during the 

inverse helix-to-coil transition as a function of the temperature.  
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In the Introduction section was presented the first study on this transition when the PCBL 

was tethered to a magnetic silica bead. The profile of the data gave rise to concerns regarding the 

presence of the free polymer in the solution. Free polypeptide can affect the viscosity of the 

solution. Because the Stökes-Einstein relation uses the solvent viscosity in the radius 

calculations, a divergence between the real medium viscosity and the one used in calculations 

can affect the results. In order to test such issues, the original sample of magnetic PCBL-CP 

(now almost 10 years old) was separated from the old solvent and suspended in a fresh one by 

centrifugation. The size of the PCBL-CPs was tested first at 20°C and 45°C by multi-angle DLS 

in both the old and fresh solvent for comparison purposes, as shown in Figure 5.5. 

Once the old solvent was replaced with a fresh one the fitting of the size improved. The 

polydispersity index slope fitting, the insets of the Figure 5.5A1 and 5.5B1 has a higher value 

than the slope from fitting the polydispersity data of the sample in fresh solvent, insets of the 

Figure 5.5C1 and Figure 5.5D1.  

The profile of the apparent diffusion coefficients and apparent radius presented in Figure 

5.5A and 5.5A1 can be explained in two ways: the particles could coalesce in aggregate 

structures or the viscosity of the medium was not the same when fitting the data as was 

mentioned in the Introduction section. Yet, the difference in size computed at low and high 

angles is low for an aggregated colloid. In order to have more information about the factor that 

could affect the trend of the size displayed in Figure 5.1A, the viscosities of the old and fresh 

solvent was measured and plotted against temperature as seen in Figure 5.6.  

The profile of the apparent diffusion coefficients and apparent radius presented in Figure 

5.5A and 5.5A1 can be explained in two ways: the particles could coalesce in aggregate  
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Figure 5.5 Dynamic light scattering representation of PCBL-CPmag: (A) apparent 

diffusion coefficients as a function of scattering vector magnitude, q, (inset) first 

cumulant versus q
2
 (old solvent, 20°C), (A1) apparent radius as a function of scattering 

vector magnitude, q, (inset) polydispersity index, μ2 Γ
-1

 (old solvent 20°C), (B) apparent 

diffusion coefficients as a function of scattering vector magnitude, q, (inset) first 

cumulant versus q
2
 (old solvent, 45°C), (B1) apparent radius as a function of scattering 

vector magnitude, q, (inset) polydispersity index, μ2 Γ
-1

 (old solvent 45°C), (C) apparent 

diffusion coefficients as a function of scattering vector magnitude, q, (inset) first 

cumulant versus q
2
 (fresh solvent, 20°C), (C1) apparent radius as a function of scattering 

vector magnitude, q, (inset) polydispersity index, μ2 Γ
-1

 (fresh solvent 20°C) and (D) 

apparent diffusion coefficients as a function of scattering vector magnitude, q, (inset) first 

cumulant versus q
2
 (fresh solvent, 45°C), (D1) apparent radius as a function of scattering 

vector magnitude, q, (inset) polydispersity index, μ2 Γ
-1

 (fresh solvent 45°C). 

 



237 

 

Figure 5.5 continued 
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structures or the viscosity of the medium was not the same when fitting the data as was 

mentioned in the Introduction section. 

The profile of the apparent diffusion coefficients and apparent radius presented in Figure 

5.5A and 5.5A1 can be explained in two ways: the particles could coalesce in aggregate 

structures or the viscosity of the medium was not the same when fitting the data as was 

mentioned in the Introduction section. Yet, the difference in size computed at low and high 
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angles is low for an aggregated colloid. In order to have more information about the factor that 

could affect the trend of the size displayed in Figure 5.1A, the viscosities of the old and fresh 

solvent was measured and plotted against temperature as seen in Figure 5.6.  

The Figure 5.6 shows evidence of altered solvent. The values of the measured viscosity 

didn’t overlap with those reported in the literature and the fresh solvent. Over time, m-cresol can 

absorb water and can undergo oxidation. Fresh m-cresol is colorless or slight amber-like color; 

instead the old one had a strong yellow to red coloration. These data suggest that the lower 

viscosity of the old solvent due to both free polypeptide in solution and its degradation might 

affect the size measurements as seen in Figure 5.1A. PCBL-CPmag composite suspended in 

fresh solvent was subjected to multiple cycles on both heating and cooling using one-angle 

dynamic light scattering instrument from Malvern. The flatness of Rapp versus q
2
 plots (Figure 

5.5) suggests one-angle measurements should be valid.  

Figure 5.7 shows a significant difference in the size trend with the temperature as 

displayed in Figure 5.1A. At low temperatures the polypeptide is in a random coil conformation. 

The Figure 5.7A shows a descending trend of the radius up to 30°C followed by a sharp increase 

and then falls again to smaller values. The abbreviation of this trend will be presented later in 

this document. The polydispersity index, Figure 5.7A1 seems to remain relatively constant up to 

30°C but began to rise in values and level out again but in this plot the error bars make it difficult 

to be certain of the behavior. The intensity plot against the temperature interval 15-50°C, Figure 

5.7A2, suggested a sharp decrease followed by an increase and after a flat zone can be identified. 

Since the data were collected at the same angle and were viscosity corrected, a linear profile of 

the intensity was expected. 
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Figure 5.6 The ten base logarithmic representations of the old and fresh  

m-cresol as well as the literature reported values as a function of inverse  

Kelvin temperature. The red lines are the linear fits. The green and blue lines  

represent the upper and the lower confidence and prediction limits. 

 

Hence, the plots presented in Figure 5.7 suggest that the transition of PCBL-tethered on 

silica might be more complex than a simple coil-to-helix conformational change. Besides the still 

“alive” fluctuation in size with temperature of the ten years old PCBL-CPmag, these experiments 

also reflects the stability of the CPs with time.  

The newly produced (by the present author) nonmagnetic PCBL-CPs were analyzed in 

the same fashion as Turksen’s magnetic counterparts. Preliminary experiments were performed, 

first, to evaluate whether the PCBL-CPs behaved as a uniform colloid. Measurements were 

performed at the extremities of the transition temperature interval, 15°C and 50°C respectively. 

Figure 5.8 shows the data recorded at 15°C.  
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Figure 5.7 Dynamic light scattering data: (A) apparent  

radius, Rapp, as a function of the temperature,  

(A1) polydispersity index, μ2∙Γ
-2

 as a function  

of the temperature and (A2) the intensity profile  

as a function of the temperature. The red and blue 

lines represent the linear regression applied to the data.  
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Figure 5.7 continued 
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Because the contribution from the smaller particles becomes more evident at higher 

angles, a broad distribution could interfere greatly with the data interpretation regarding the shell 

transition. As shown in Figure 5.8, particles did not show significant angle dependence, and in 

agreement with TEM images these PCBL-CPs can be considered monodisperse. After the 

independent trend of the radius with the angle was confirmed by multi-angle measurements, the 

one-angle Malvern instrument was used to examine the reversibility of the transition. At least 

four cycles on heating-cooling modes were recorded for each sample. The values of the radius 

are reported as an average over three sets of measurements, each of 600s duration. Samples were 

equilibrated 30 min. at each temperature before the measurement. Figure 5.9A shows the trend 

recorded for PCBL-CP175L.  



242 

 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

 

 


/ 

k
H

z
q

2
/ 10

10
 cm

-2

 

 
D

a
p

p
/ 

1
0

-1
0
 c

m
2
 s

-1

q
2
/ 10

10
 cm

-2

PCBL-CP175L

15°C

A

 

0 1 2 3 4 5 6 7
100

200

300

400

500

600

700

0 1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

 

 


2
 

-2

q
2
/ 10

10
 cm

-2

 

 

R
a

p
p
/ 

n
m

q
2
/ 10

10
 cm

-2

PCBL-CP175L

15°C

A1

 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

0 1 2 3 4 5 6 7
0

20

40

60

80

100

 

 


/ 

k
H

z

q
2
/ 10

10
 cm

-2

 
 

D
a

p
p
/ 

1
0

-9
 c

m
2
 s

-1

q
2
/ 10

10
 cm

-2

PCBL-CP175L

50°C

B

 

0 1 2 3 4 5 6 7
100

200

300

400

500

600

700

0 1 2 3 4 5 6 7
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

 
2
 

-2

 

 

q
2
/ 10

10
 cm

-2  

 

R
a

p
p
/ 

n
m

q
2
/ 10

10
 cm

-2

PCBL-CP175L

50°C

B1

 

Figure 5.8 Light scattering results for PCPs dispersed in m-cresol as a function of 

squared scattering vector magnitude: apparent diffusion coefficients, Dapp (A) PCBL-

CP175L (15°C, CR7188), (B) PCBL-CP175L (50°C, CR7188), (C) PCBL-CP175H 

(15°C, CR7160), (D) PCBL-CP175H (50°C, CR7160), (E) PCBL-CP50H (15°C, 

CR810A), (F) PCBL-CP50H (50°C, CR810A), (G) PCBL-CP100H (15°C, CR810B), 

(H) PCBL-CP50H (50°C, CR810B) insets represent the decay rates as a function of 

squared scattering vector magnitude, and apparent radius, Rapp (A1) PCBL-CP175L 

(15°C, CR7188), (B1) PCBL-CP175L (50°C, CR7188), (C1) PCBL-CP175H (15°C, 

CR7160), (D1) PCBL-CP175H (50°C, CR7160), (E1) PCBL-CP50H (15°C, CR810A), 

(F1) PCBL-CP50H (50°C, CR810A), (G1) PCBL-CP100H (15°C, CR810B), (H1) 

PCBL-CP50H (50°C, CR810B), insets represent the polydispersity index, μ2·Γ
-2

, as a 

function of squared scattering vector magnitude. The red line is fitting excluded the 

angles at which the fitting was not linear. 
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Figure 5.8 continued 
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Figure 5.8 continued 
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Figure 5.8 continued 
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After the independent trend of the radius with the angle was confirmed by multi-angle 

measurements, the one-angle Malvern instrument was used to examine the reversibility of the 

transition. At least four cycles on heating-cooling modes were recorded for each sample. The 

values of the radius are reported as an average over three sets of measurements, each of 600s 

duration. Samples were equilibrated 30 min. at each temperature before the measurement. Figure 

5.9A shows the trend recorded for PCBL-CP175L.  
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Figure 5.9 One angle dynamic light scattering results:  

(A) average apparent radius on cooling-heating as a function 

of temperature, for PCBL-CP175L, (A1) radius versus  

temperature trend over four cycles on heating-cooling for  

PCBL-CP175L (CR7188), (A2) polydispersity index,  

μ2/Γ
2
, as a function of temperature for all four heating-cooling  

cycles, and (B) control experiment showing independent trend  

of the radius with the temperature for polystyrene latex in water.  

The measurement for PCP PCBL175L was performed in m-cresol. 
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Figure 5.9 continued 
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One-angle measurements required less time than multi-angle thus giving faster an image 

of the PCBL-CPs behavior. On heating, the particle size decreased from 338 nm at 15°C to about 

325 nm at 29-31°C followed by a visible increase to about 350 nm at 43-45°C and then 
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decreased again to 330 nm at 50°C. This trend was abbreviated DID. A similar behavior can also 

be seen on cooling mode: a drop from 320 nm to 310 at 29-30°C, an increase to about 358 nm at 

43-45°C and also a decrease to 320 nm at 50°C. Figure 5.9A1 reflects the total number of 

cooling-heating cycles averaged in Figure 5.9A. The reversibility of the helix-to-coil transition is 

clearly proven. Moreover particles did show a good “memory” of the temperature point or cycle. 

The hysteresis seen within a cycle may be considered an artifact of the different rates on cooling 

and heating even the sample was equilibrated at each temperature point. The polydispersity 

index, μ2 Γ
-2

, shown in Figure 5.9A2 can be correlated with the radius trend. While the radius 

decreased, first, up to 29-31°C, the index, μ2 Γ
-2 

increased until about 25°C and decreased around 

29-31°C pointing to both an alteration and a recovery of the particle uniformity. In the next 

temperature interval, 31- 45, 47°C, marked by an increase in radius, the uniformity was again 

altered. In the hottest region of the transition 45- 50°C, the polydispersity index decreased, and 

so the radius. This trend was abbreviated as IDID. In order to test against artifacts stemming 

from the instrument, a control experiment was devised. Polystyrene latex beads were measured 

at the same temperatures and the size obtained is reflected in Figure 5.9B. The radius values can 

be easily fitted on a flat line proving their angle independence. Comparing Figure 5.9A and 

Figure 5.9B it is safe to assume that the t radius fluctuation seen for PCBL-CP175L is real and 

due to the particle’s shell behavior.  

Before discussion on the other samples involved in the study, several words should be 

spent on describing the curvature of the core and its influence on the polypeptide arrangement 

onto the particle surface. Figure 5.10 shows the relationship between the radius of the core and 

the thickness of the shell. In the case of the PCBL-CP175H and PCBL-CP175L the radius of the 

core, R, is higher than the thickness of the shell, t. The polypeptide disposition onto the surface 
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of these particles should be more similar with that of the grafted polymers on flat surfaces. For a 

radius approximately equal with the thickness, PCBL-CP100H, the polypeptide might “feel” the 

curvature of the surface. A sensible smaller core radius than thickness favors the star-like 

configuration of the particle.  

 

Figure 5.10 Idealized models of sparse and dense covered particles and the relationship 

between core radius, R and the shell thickness, t. 

 

 

Bearing this in mind, let’s examine the other three samples. PCBL175H presented in Figure 

5.11A followed the same trend as seen for PCBL-CP175L but at a lower radius deviation and 

also the polydispersity index, Figure 5.11A1.  

In the case of the PCBL-CP100H, Figure 5.11B, the DID behavior is clearly seen in the 

15-27°C, 30 – 43°C and 45 – 50°C temperature interval. The uniformity of the particles, Figure 

5.11B1 altered, translated in the increase of the polydispersity index up to 45°C and after showed 

stabilization to smaller constant values. In comparison, the DID fluctuation of the PCBL-CP55H 

radius, the “star PCBL-CP”, Figure 5.11C is visible especially in the 27, 30 – 43°C and 45- 50°C 

interval. The μ2 Γ
-2 

index, Figure 5.11C1, did not vary consistently, rather settling around 0.2. 
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Table 5.2 summarizes the values for the radius of the composite particles studied in this work at 

the extremities of the temperature interval and as well as the variation of the size between the 

middle point of the temperature interval and its limits.  
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Figure 5.11 Variation of the apparent radius, Rapp and the polydispersity index, μ2 Γ
-2 

as 

a function of the temperature recorded in m-cresol for (A, A1) PCBL-CP 175H 

(CR7160), (B, B1) PCBL-CP100H (CR810B) and (C, C1) PCBL-CP55H (CR710A) 

gathered at one angle. Red lines represent the linear regression applied to the data. 
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Figure 5.11 continued 
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Table 5.2 Code, Radius of the Core, Radius Difference Between Low and High Limits of 

Transition Temperature Interval, Transition Midpoint Radius, Transition Midpoint and 

Transition Width for PCBL Silica Composites Recorded at One-Angle. 

Code Rcore/nm Δ(Rcold-

Rmid)nm 

 

Rmid/nm Δ(Rhot-

Rmid)/nm 

Transition 

Midpoint/°C 

Transition 

Width/°C 

PCBL175L* 

(CR7188) 

175 57 327.5 41.5 29 25 - 35 

PCBL175H* 

(CR7160) 

175 34 318 48 35 27 - 43 

PCBL100H 

(CR810B) 

100 30 257 52 29 23 - 47 

PCBL55H 

(CR810A) 

55 17 222 22 35 30 - 43 

 

The DID behavior of the PCBL-CPs noted for PCBL-CP175L and confirmed by the other three 

PCBL-CP samples was also investigated by multiangle measurements, as reflected in Figure 

5.12. Indeed the multiangle values agreed with the ones recorded at one angle, so the size trend.  
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Figure 5.12 Apparent radius, Rapp, as a function of temperature, for (A) PCBL-CP175L 

(CR7188), (B) PCBL-CP175H (CR7160), (C) PCBL-CP100H (CR810B), (D) PCBL-

CP55H (CR810A) and polydispersity index, μ2 Γ
-2

, for (A1) PCBL-CP175L, (B1) PCBL-

CP175H, (C1) PCBL-CP100H, (D1) PCBL-CP55H. The data were collected in m-cresol 

at 45°, 50° and 60° angles for each temperature and then averaged. The red and the blue 

lines represent linear regressions applied to the data. 
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Figure 5.12 continued 
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The multiangle measurement added additional information on DID trend of the particle 

size and polydispersity index, μ2 Γ
-2

. For example, in Figure 5.12A and Figure 5.12D, the drop in 

the radius within the 15 – 30, 32°C temperature interval is more prominent than in one angle 

measurements. Figure 5.12C confirmed that the decrease in size recorded in 40 – 50°C interval is 

sharp, as also seen in Figure 5.9A. The trend IDID for the μ2 Γ
-2

 index was also confirmed, 
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Figures 5.12A1, 5.12B1, 5.12C1 and 5.12D1. The intensities corresponding to the solution 

scattering were plotted against the temperature. As stated before, a linear trend was expected if 

no structural changes (e.g. aggregation, conformational changes) happen in the system. The 

intensity profiles of the two PCBL-CP samples shown in Figure 5.13A and Figure 5.13B is 

different than that of polystyrene latex. The PCBL-CP175L scattering decreases up to 25-27°C, 

then levels until the temperature reaches 40°C and finally decreases. The PCBL-CP50H intensity 

decreases over entire temperature interval.  

 The design of the experiments described above conducted both at one-angle and multi-

angle allowed samples to equilibrate at each temperature for 30 minutes. Thus, it was interesting 

to investigate the behavior of the polypeptide shell when temperature equilibrium was not 

reached. Figure 5.14 displays several approaches to these non-equilibrated measurements. 
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Figure 5.13 Scattering intensities as a function of the temperature for  

(A) PCBL-CP175L (CR7188), (B) PCBL-CP50H (CR810A) and  

(C) PS latex as control collected at one-angle. The red and the blue  

lines represent linear regressions applied to the data. 
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Figure 5.13 continued 
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The intensity profiles of the two PCBL-CP samples shown in Figure 5.13A and Figure 

5.13B is different than that of polystyrene latex. The PCBL-CP175L scattering decreases up to 
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Figure 5.14 Dynamic light scattering data for PCBL-CP175L gathered at one-angle, 45°: 

(A) apparent radius as a function of time when the temperature jumped from 15° to 50°C, 

(B) apparent radius as a function of time when the temperature was jumped from 50°C 

to15°C, (C) apparent radius as a function of temperature when the temperature was 

jumped from 50°C to 15°C followed by rump to 50°C and (D) apparent radius as a 

function of time when the temperature was jumped from 50°C to 15°C followed by rump 

to 50°C. 

 

25-27°C, then levels until the temperature reaches 40°C and finally decreases. The PCBL-

CP50H intensity decreases over entire temperature interval.  
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 The design of the experiments described above conducted both at one-angle and multi-

angle allowed samples to equilibrate at each temperature for 30 minutes. Thus, it was interesting 

to investigate the behavior of the polypeptide shell when temperature equilibrium was not 

reached. Figure 5.14 displays several approaches to these non-equilibrated measurements. 

The set-up of the experiments involved two DLS instruments available in the laboratory, 

DLS1 and DLS2. Noteworthy, before any experiment started it was necessary to determine the 

best optical settings for intensity. Since the DLS2 apparatus was used to collect the correlation 

functions associated with the sample scattering, the sample was inserted in the DLS2 set at 45° to 

adjust the pinhole-aperture and the filter for a scattering intensity between 200- 300 kHz. 

Further, in the temperature jump experiment, the sample was inserted in the holder cell of DLS1 

instrument. The cell holder was isolated with a custom made Delrin cover and it was cooled for 1 

hour using an attached cooling bath. In the same time the cell holder of the DLS2 instrument was 

heated at 50°C. The cell insertion of this instrument has a toluene bath. After one hour the 

sample was quickly switched from 15° to 50°C and the correlation functions was recorded over 

short runs of 60s each over 30-35 minutes. In the temperature jump-rump measurement the 

cooling bath of the DLS2 instrument was set to rump again. For example, if the sample was 

jumped from 15°C (DLS1) to 50°C (DLS2) the cooling system of DLS2 was set to rump back to 

15°C. In this case the temperatures were also recorded until reached the interval limit (e.g. 15°C) 

and stabilized around its value. Figure 5.14A and 5.14B show the profile of the apparent radius 

recorded on 15° to 50°C and 50° to 15°C. The trend of the radius seemed to have common 

features with the equilibrated experiments in terms of size fluctuation. Yet, several details must 

be discussed regarding the data analysis. The radius values displayed on the plots were taken as 

average between 3
rd

 cumulant and one-exponential fitting algorithms. The Stökes-Einstein 
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equation employed in size calculations used the solvent viscosity corrected for the temperature of 

the DLS2 cell holder toluene bath. It is true that the real temperature of the sample was not 50°C 

in the 15° to 50°C jump experiment. The sample “warmed” gradually until reached 50°C. The 

“perfect” experiment needs to allow the recording of the real sample temperature. This is 

attainable by inserting of a probe thermometer in the vial. These measurements can be 

considered only as “crude” observations on the shell behavior when exposed to extreme 

temperature variation. The jump-rump experiments, Figure 5.14C and Figure 5.14D did allow 

the recording of the ramp temperature but still differences in solvent viscosity as described are 

present.  

In order to further demonstrate the occurrence of the reverse helix-to-coil transition in 

tethered PCBL system and as well to have a clearer image of how the grafting density might 

affect it a “mid-age” PCBL-CP nonfluorescent sample, five years old, was subjected to the same 

investigation by light scattering as the above described samples. The fluctuation of the size with 

the temperature is displayed in Figure 5.15. The PCBL-CP65 have a light coverage with 

polypeptide (a mixture of APS and passivators methyltrimethoxy silane, MTMS, was used to 

functionalize the silica surface) and also a lower polypeptide load (~30%).  

Figure 5.15A shows a noisy fluctuation in the radius size up to 30°C. A smooth increase 

can be noted both in cooling and heating mode which “breaks” in a noisy slightly descending 

trend. The same evolution was observed for the polydispersity index, Figure 5.15A1. The profile 

of the size as a function of the temperature was similar with that of the magnetic and 

nonmagnetic fluorescent PCBL-CPs. The mid-point transition was around 37°C. The intensity, 

Figure 5.15A2, was found to decrease from low to high temperature interval limits. Combining 

the information about a low grafting density with initiator which would result in a sparse surface  
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Figure 5.15 Dynamic light scattering data for PCBL CP65  

(ES453A): (A) apparent radius, Rapp, as a function of  

temperature, (A1) polydispersity index, μ2·Γ
-2

, as a function 

of temperature and (A2) intensity as a function of temperature. 

The red and the blue lines represent linear regressions applied to the  

data. 
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Figure 5.15 continued 
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with polymer chains, the percentage of polypeptide load and the transition mid-point it can be 

concluded that the polypeptide had short chains (lower molecular weight) which underwent 

transition at a higher temperature as reported by the Fujita’s group for free untethered 

polypeptide.  

5.4.3 Nuclear Magnetic Resonance  

M-cresol and tethered PCBL were analyzed first by simple 
1
H NMR. Figure 5.16A shows 

the spectra of the bulk solvent collected at different temperatures. The signal from methyl 

protons was very stable and was centered at ~1 ppm. The OH proton instead shifted downfield 

with increased temperature. In order to test the possibility of a reversible OH shifting the sample 

was cooled down from 45°C to 25°C and compared with the initial spectrum collected at 25°C. It 

can clearly be seen that the two 25°C spectra match perfectly in the OH region. Another detail 

was present in the 45°C spectrum. One of the aromatic proton signal slightly shifted downfield 
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when compared with 25°C. In Figure 5.16B the characteristic peaks for tethered PCBL can be 

seen. The amide protons from the backbone and side chain can be seen at 7ppm and 6ppm at 

25°C. Upon increasing the temperature the peak corresponding to backbone amide proton shifted 

downfield to about 5.5ppm and became less intense, while the side chain NH proton didn’t 

change. This shift and decrease in intensity can be correlated with the formation of the α-helix. 

In a random coil disposition the backbone moves more freely than a rigid rodlike helical 

structure. At elevated temperatures the motion is more restricted, the fast contribution probably 

comes from the coil tail flanking the rigid rods. The side chains also lose some degree of 

freedom since they are folding around the helix axis. A supplemental evidence for coil-to-helix 

transition is reflected by the α(H) proton, Figure 5.16C. At 25°C when the polypeptide is 

essentially a random coil the α(H) signal is very sharp and well-resoluted. Once the temperature 

increased at 45°C at which the polymer is helical the α(H) peak almost disappeared. Once the 

rigid helix become to form, the α-CH fragment is hindered by being packed inside the helix, 

consequently the signal should decrease or disappear. Instead the neighbor signal from β(H) 

proton became sharper, a fingerprint of more freedom to move when compared with α(H). 

Similar with m-cresol, the aromatic contribution of protons was different at ambient and high 

temperatures. The Ar(H) shift downfield was also seen. It can be speculated that the peak 

position changes in the region of the amide and α(H) protons can be a consequence of H-bonding 

with the formation of α-helix. The aromatic shift can be a signature of relaxation from a π – π 

stacking disposition between side chains and solvent-side chains, most probable in a random coil 

configuration at low temperature.   

The shift in the OH signal with the temperature might suggest not only a change in 

viscosity but also a change in solvent conformation. The aromatic molecules carying pendant  
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Figure 5.16 

1
H NMR data for: (A) m-cresol at different  

temperatures, (B) tethered PCBL at 25°C and 45°C and 

(C) zoom of —NH—/ Ar and α(H) proton regions.  

Measurements B and C were performed in deuterated m-cresol. 
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Figure 5.16 continued 

2.4 2.2 2.0 1.8 1.6 1.4

 

 

 45°C

 25°C

(H)

7.5 7.0 6.5 6.0 5.5 5.0

 

 

 45°C

 25°C
-NH-

Ar(H)

backbone

side chain

 

 

 /ppm

C PCP PCBL175L

zoom -NH- and 

Ar(H)

zoom (H)

 

 

free OH and CH3 groups in meta positions have the possibility to associate through H-bonds and 

π – π interactions. Figure 5.17 displays the comparative areas of the signal shifts for m-cresol and 

untethered polypeptide. It seems, the solvent shows deviations in the same temperature interval 

as the PCBL.  

 

Figure 5.17 Percentage of proton area peak as a function of the 

temperature for m-cresol and PCBL. 
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In order to get more information about the transition, the spin-lattice relaxation times 

were measured. NMR relaxation measurements are more sensitive to both local motions of the 

side chain residues and the global motion of the polymer chain. For illustration Figure 5.18A 

displays the T1 times and the corresponding signal shifts downfield for amide proton as a 

function of the temperature for tethered polypeptide. The amide proton T1s increase with the 

temperature for both samples but at different amplitudes. Figure 5.18B shows the solvent 

viscosity-corrected T1 times. The spectrum for untethered polypeptide shows the occurrence of 

two relaxation T1 modes starting at 35°C. The tethered polypeptide does not reflect such 

tendency, but slight deviations can be also observed at 35°C. The similarity between the profiles 

of the lower and highly populated surface is evident. The best representation that reflects the 

transition for coil-to-helix of PCBL in m-cresol is displayed in Figure 5.19. 
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Figure 5.18 (A) Representation of T1 relaxation times and  

signal shifts as a function of the temperature and (B) T1 relaxation  

times corrected or solvent viscosity versus temperature for  

composite particles and untethered polypeptide. The line is the eye guide. 
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Figure 5.18 continued 
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Tethered polypeptides presented in Figure 5.19A show three domains of relaxations. At lower 

temperatures up to 25°C, region i, the relaxation is rather constant. Then a gradual increase of the 

proton relaxation occurred within domain ii. The high temperature interval was marked by a 

sharp increase of T1s (region iii). In Figure 5.19B the untethered PCBL behaved in the same 

manner. The net difference can be noted at higher temperatures. One of the two split modes 

showed an increase with temperature of the T1 while the other decreased. The coexistence of the 

three domains is in agreement with the DID trend reflected in DLS data. Together these data 

suggest that the transition of the PCBL in m-cresol induced by temperature is not a pure coil-to-

helix. Moreover the transition might undergo through intermediary conformations. The elevation 

of the relaxation times is in agreement with the other reports by McCormick et al.,
55

 

Ponomarenko et al.,
56

 and Raby et al.,
57

 to mention only few of them. The decrease in the 

relaxation times, thus faster correlation times, is associated with the increased mobility. At low 
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Figure 5.19 Solvent viscosity- and temperature-corrected NMR relaxation  

spin-lattice T1 times for (A) tethered PCBL (PCBL-CP175L(CR7188) 

 and PCBL-CP175H(CR7160)) and (B) untethered PCBL. 

 

temperatures the polypeptide backbone and its side segments moves freely with no restrictions. 

The high mobility enables polypeptide protons to relax faster. The solvent change in viscosity 
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with temperature elevation arrests the free motion once the backbone starts to fold into α-helical 

turns and increases T1s. Since the bulky carbobenzyloxy side group is packed inside the helix, 

the contribution to relaxation from PCBL side chains is lower to negligible. This is true for a 

rigid rod-like conformation and is clearly reflected by the PCBL tethered on the silica beads. 

PCBL is known to behave more like a wormlike polymer.
20

 The helical segments are interrupted 

by random coil fragments which makes the PCBL rod flexible. The number of backbone flexures 

increase with the molecular weight.
57

 These flexures were also suspected in poly(γ-benzyl-L-

glutamate) during helix coil transition.
58

 The descending high-amplitude T1s seen in Figure 

5.19B around 35°C can be attributed to the motion of polymer from the coil flexures and from 

the random coil fragments flanking the ends of the rods. The ascendant T1s can be associated 

with the slower movement of the polypeptide packed in helical rod-like segments. The motion of 

these fragments is slower thus the relaxation times, T1s, increase.  

5.4.4 Differential Scanning Calorimetry  

The inverse helix-to-coil transition of tethered PCBL in m-cresol as a function of the 

temperature was also investigated by differential scanning calorimetry, DSC. Thermal behavior 

of the untethered PCBL was investigated early by Fujita group.
13

 Figure 5.13A displays the 

thermograms obtained for m-cresol, tethered and untethered PCBL along with several control 

samples at a flow rate of 5°C min
-1

. The endothermic events seen for PCBL-CP175L, PCBL-

CP175H and untethered PCBL in the 29 - 40°C temperature interval, gave a rough image on 

their thermal behavior. Other reports pointed out the major difficulties in understanding the 

thermodynamics of helix-coil transition.
59,60

 The broad range of the transition interval was 

associated with a low enthalpy and, in some situations the fully helical structure was never 

attained. The traditional DSC method is widely used to study the thermal transitions in materials. 
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Difficulties arise when the material’s thermal behavior involves multiple processes. The 

sensitivity and the resolution of the simple DSC might not suffice such complex transitions. As 

shown in Figure 5.20A the DSC thermograms do confirm some thermal events in the above 

mentioned temperature interval but at low resolution. In order to overcome such inconvenience, 

samples were subjected to modulated differential scanning calorimetry, MDSC, an extension of 

the DSC. In a typical MDSC experiment, the total heat flow is separated into the kinetic and the 

heat capacity components, thus increasing the amount of structural information gained at a 

higher resolution and sensitivity. Figure 20B shows the reversible heat flow. PCBL-CP175H had 

two endothermic events in the 27 - 40°C temperature interval. Such events can be translated 

through the PCBL-CP tendency to evolve from a less to a more organized state. Noteworthy, the 

first endotherm is broader followed immediately by a narrower and a sharper endothermic 

transition.  

MDSC was also a convenient tool to obtain an image about the cooperativity between the 

solvent and the polymer resulting in coil-to-helix transition. The bulk solvent seen in Figure 

5.20C had three dominant endothermic relaxation peaks. The heat flow was 2°C min
-1

 and the 

modulation was performed every 60s period with 0.318s. The structural changes in m-cresol are 

the result of the intra and intermolecular interactions. H-bonding and π – π stacking are the most 

probable interactions occurring in the bulk m-cresol. At sub-ambient temperatures the solvent 

viscosity is high pointing to a maximum of “packing” due to these connections. Upon increasing 

the temperature the viscosity thinning is translated through the increased freedom of the 

molecules to move due to weak and loose interactions. The endotherms at elevated temperatures 

reflect the intra and intermolecular H-bonding. The solution of PCBL in m-cresol, Figure 5.20D, 

showed multiple endothermic events. At the low temperatures similar relaxation signals were 
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Figure 5.20 (A) DSC thermograms collected at a heat  

flow of 5°C min
-1

, (B) modulated DSC thermograms  

recorded in m-cresol for tethered PCBL, untethered PCBL,  

silica cores and solvent, (C) zoomed MDSC for m-cresol  

and (D) zoomed MDSC for untethered PCBL. 
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Figure 5.20 continued 
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visible for both solvent and PCBL solution. One supplemental peak was present in the same 

region of temperature in PCBL solution. These events suggest that besides interactions between 
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the solvent in bulk present in a larger amount than polymer new interactions solvent- polymer 

took place. The pendant side chain of the PCBL had a high probability to stack with the aromatic 

ring of the solvent. The H-bonding between OH groups of the m-cresol and backbone and side 

chain NH were also very probably. Upon temperature increase the entropic-enthalpic exchange 

between solvent and PCBL promotes the formation of the helix, the more organized state seen as 

a sharp peak for both untethered and tethered polypeptide. The middle thermal endotherms at 20- 

27°C seen in Figure 5.20D could be a reflection of the breakage of solvent- polymer H-bonds 

with the formation of the polymer – polymer H-bonding.  

5.4.5 Small Angle X-Ray Scattering  

The growing interest in composite particles comprising especially responsive shells made 

SAXS a viable characterization tool. Many studies showed that the particulate changes in shell 

conformation can be resolved by SAXS. Figure 5.21 presents the SAXS data collected for 

PCBL-CP175H. Qualitative information about the PCBL-CP can be withdrawn. Since the 

PCBL-CPs have a hard silica core, the fluctuations in the scattering profile at different 

temperatures should emerge only from the shell. Such visible variations are also ensured by the 

electron contrast between the silica core and polypeptide shell. 

The intensity profiles gathered at 25°, 29° and 50°C do not show significant difference 

from each other. At higher temperature particles seem to scatter less. This may be true if they 

decreased slightly in size. Such size variation would come from the conformational change 

suffered by shell because the core size is constant at all time. Other cause of the difficulty in data 

interpretation can be assigned to baseline errors. Further experiments will shed more light into 

these issues. Unfortunately, quantitative information could not be gathered in the q range that 

particles were analyzed. A Guinier regime could not be delimited to calculate the particle size. 
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Figure 5.21 2D SAXS scattering profiles for PCBL-CP175H gathered at  

25°C, 29°C and 50°C. 

 

The radius of gyration or Guinier radius can be calculated from the Gaussian decay of the 

initial scattering intensity:
61

 

              
 

 
  

                                                         

where Rg is Guinier radius and q is the scattering vector magnitude. 

The cross section scattering of a core-shell particle is directly correlated to the corresponding 

form factor:
62-67

 

           
               

            

                                                              

       
               

                                                                          

where fx(q,R) is the normalized scattering amplitude of a homogenous sphere, and can be defined 

as:
68
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Vx is the volume define as 4πR
3
/3, (Rshell = Rtotal - Rcore) and ρ is the density.  

A detailed analysis using equation 5.3 and a more critical consideration of baseline errors should 

be performed before reading too much into the SAXS data. All together the DLS, NMR, MDSC 

and SAXS data point to a not simple pure coil-to-helix transition of the PCBL in m-cresol. 

Moreover transition states can be expected. 

5.4.6 Understanding the Reversible Coil-to-Helix Transition.  

The helical conformation is the most common secondary structure occurring in proteins. 

Most of the traditional studies investigated the helix-coil transition in free polymers. Attachment 

to the surface may influence the transition in terms of the free energy.
69,70

 Chains tethered to a 

surface with one-end would behave differently than free ones mainly due to the restriction on the 

degree of freedom for the chain motion.
71,72

 In this study, PCBL was grafted onto silica beads of 

different sizes. As shown in Figure 5.10, the polypeptide can be considered grafted on a flat-like 

surface or lying in a star-like disposition. It is also known that the reverse coil-to-helix transition 

of PCBL in m-cresol as a function of temperature occurs on the basis of a strong 

cooperativity.
12,17,19,73

 In the attempt to explain the evolution from a less ordered to a highly 

ordered state, one must take into consideration the key factor, H-bonding.
74-76

 M-cresol in bulk 

can form H-bonds due to the polar OH groups. Additionally, the aromatic ring is a good source 

for π-π stacking. At low temperatures, the bulk solvent is probably well-packed due to these 

interactions and NMR data also suggested such interactions. Once the temperature increases, the 

molecules gain entropy and their degree of freedom increases. On the other side, polypeptide 

chains experience interactions due to side chains and due to the backbone. In the binary system 

solvent-polypeptide, three types of interactions compete with each other: solvent-solvent, 
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polymer-polymer and solvent-polymer. Several studies evaluated the enthalpy associated with 

the peptide unfolding and have indicated that the contribution from the side chain to side chain 

interaction is much smaller than the contribution from the solvation of the peptide backbone.
59

 

Consequently the solvent acts like a spy molecule and inserts with its OH groups into these weak 

H-bonds of the polypeptide. The effect of m-cresol aromatic ring folding over the one of the 

polypeptide side chain protective groups has to be also taken in consideration.
77

 During helix 

formation, the side moieties of PCBL align themselves along the helical axis.
75

 At low 

temperatures, the polymer is well-solvated and essentially in an extended random coil 

conformation. Once the temperature elevates, the solvent-polypeptide H-bonds become loose and 

the polar sites of the backbone are “seeing” each other due to the departure of the solvent in the 

bulk state. A close proximity of such polar sites would result in the formation of H-bonds 

between C==O and NH backbone groups which also promotes the formation of a helix turn and 

polypeptide folding. The creation of the helix is entropically driven but once the first turn forms 

it can act as a nucleus for the rest of the remnant chain. In addition, the fact that the polypeptide 

chain is fixed with one end to the surface induces more stress whose compensation can be made 

on energy penalty.  

 The hypothesis formulated in the preceding paragraph on the transition complexity is 

sustained and confirmed first by DLS data. Figure 5.22 shows the four transient states proposed 

for PCBL transition. From one- and multi-angle DLS size fluctuation profiles, several states can 

be distinguished. At 15°C the chains are fully extended by the solvent in a random coil state. The 

H-bonding is dominated mainly by solvent-polymer interaction. The increase in the temperature 

causes a drop in PCBL-CP size suggesting a collapsed state. This corresponds with the solvent 

going in the bulk and the occurrence of a “naked” backbone.
76

 This configuration can be 
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imagined by the fallen chains on the silica surface as illustrated in Figure 5.22B. The helix- 

forming temperature interval is characterized by a transition midpoint at which at least 50% 

helical fraction is present. During the interval marked by a sharper increase in size, the 

alternation of the random coil and the helical segments is probably the most favored constitution 

for the nascent rod-like polymer during collapsed chain-helix transition.
70

 The formation of the 

loose helices is also promoted by the density of chains grafted on the surface.
72,78,79

 The sample 

presented in Figure 5.9A had a grafting density of 0.9 μmol m
-2

 which translates to about 

200,000 chains per particle. A dense population of chains would impact the transition by 

broadening its temperature interval as shown in for PCBL-CP175H and the inter-chain 

interactions can have as result the interrupted helical structure.
78

 The loose conformation, Figure 

5.22C, is reflected by an increase in the radius around 43-45°C. The drop in the colloid size at 

even higher temperatures suggests the transition from a loose helix into a more compact one, 

Figure 5.22D.  

 

Figure 5.22 Schematic illustration of transient states associated with reverse coil-to-helix 

transition of PCBL in m-cresol as a function of temperature. The green circle symbolizes 

the silica bead and the grey circles the monomeric repeat unit of the polypeptide. Not 

drawn to scale. 
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The contribution from random coil segment flanking the end of the rod is insignificant and the 

chains can be treated as rigid rods. The schematic of the four states random coil, collapsed 

chains, loose helix and compact helix are illustrated in the Figure 5.22.  

The confirmation of the rigid rod-like conformation was obtained by GPC means (details on 

Chapter 7). The representation of the radius as a function of the molecular weight in a 

semilogaritmic fashion revealed that the radius for the haircut polypeptide scaled well with the 

Flory exponent ν equal to 1, characteristic for helix conformation.  

 The confirmation of these transient states especially transition from a loose helix to a 

compact helix was also supported by MDSC measurements. Moreover, as shown in Figure 

5.20A, three endothermic humps were present in the MDSC profile of the tethered polypeptide at 

17-23°C, broad 27-35°C and sharp 37°C and can be assigned to coil-to-collapsed chain, 

collapsed chain-to-helix and helix-to-helix transitions, respectively. The transition states, 

especially the collapsed chain, found in this work are in good agreement with the work published 

by Kemp et al
80

 but on a reversed trend. Samulski et al. also observed these transient states at 

higher temperature but different system.
81

 

 The most intriguing feature of this transition is its reversibility. DLS multiple cycles on 

heating-cooling mode showed the good “memory” of the polypeptide undergoing from coil-to 

helix and back to coil state. Supplemental confirmation that supported the reversible character of 

the transition was gained by spin-lattice relaxation time, T1, measurements. PCBL-CP175L was 

cooled from 45°C directly to 25°C. The relaxation time measurement gained at 25°C was scaling 

with the first one, at the same temperature, within experimental error.  

The DLS data revealed other useful information about the temperature responsive PCPs. 

Figure 5.23A shows the plot of the polypeptide radius in a random coil versus helix 
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configuration. The intersection between the coil, coil-to-collapsed chain sizes and collapsed 

chain-to-loose helix and loose helix-to-compact helix can be regarded as the most probable 

temperature at which the polypeptide has both random coil and helix segments. The position of 

such point depends greatly on the relationship between the curvature of the surface that holds the 

polymer and the grafting densities. PCBL-CP175H had a broader collapsed chain-to-loose helix 

and loose helix-to-compact helix temperature interval transition than PCBL-CP175L. The higher 

grafting density with amino function confirmed by zeta potential measurements could result in a 

higher loading with polymer. As discussed before, the polypeptide shell disposition of the two 

PCBL-CPs with a core of 175 nm, was considered similar with a polymer grafted on a flat 

surface. At high grafting, chains interpenetrate and most extend to relieve crowding. 

Stretching of the chains in a collapsed state most probably balance with helix formation. 

Once the shell feels the surface curvature an energy penalty must be paid to stabilize the nascent 

helix due to the increased angle between the rods. This is seen for PCBL-CP100H and PCBL-

CP55H even though the last had a low grafting density with functional groups, therefore less 

polymer chains on the surface. It is true that the relationship between the shell thickness and the 

core radius dictated the tethering disposition but no dependent trend can be attributed to them per 

se as shown in Figure 5.23B.  

This study can be considered a good model to study the tethering of biological molecules 

such as viruses on the surfaces of different curvatures. One example is Influenza virus whose 

infecting mechanism is not fully understood. Thus, PCBL-CPs can mimic the infected cells. The 

expansion-contraction of the PCPs during transition can be also exploited in application 

regarding self-annealing of colloidal crystals. Due to the reversible trend of the transition, PCPs 

can be used as good platforms to study memory shaped materials. 
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Figure 5.23 (A) tethered polypeptide radius in the coil and helix state as a  

function of the temperature and (B) shell radius as a function of the core radius.  

The shell radius was taken as an average over the values recorded on  

15°-50°C temperature interval. 
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5.5 Conclusion 

 Polypeptide composite particles, PCPs, having a shell consisting of poly(Nε-

carbobenzyloxy-L-lysine), PCBL were prepared by ring opening polymerization of 

corresponding N-carboxyanhydride, initiated by the amino group furnishing the surface of silica 

core. The confirmation of the polypeptide shell was possible by TEM, TGA and DLS assays. 

The combination of the TGA and zeta potential measurements offered the possibility to evaluate 

the amount of the amino functional group grafted onto the surface of the different sized silica 

cores. High and low graft densities were achieved. The zeta potential values measured agreed 

with the TGA measurements and supported the idea that in a multilayer disposition the 

functional groups act both as an initiator and a passivator as well. The variation of the shell size 

during inverse helix-to-coil transition as a function of the temperature in m-cresol was followed 

by DLS. After the independent behavior with the angle of the PCPs was confirmed the samples 

were measured at one angle, in order to obtain a faster image of the size behavior. All PCP 

samples aligned to a decrease-increase-decrease, DID, behavior. The reflection of the size 

changes was also seen in the DLS polydidpersity index, μ2 Γ
-2

 (IDID). The DID trend was also 

confirmed by multiangle measurements. The relaxation times corrected for the solvent viscosity 

increased with elevated temperature pointed to a sequestration of the free motion. Three regions 

were distinguished. MSDC measurements revealed that the transition evolves through two 

consecutive organized states. Together with the NMR data DSC measurements also showed the 

crucial role of the solvent in the transition occurrence. Due to similar structure with the 

polypeptide side chain m-cresol can interact through π – π stacking. H-bonding between the 

solvent and polymer is another feature that can explain the unusual high cooperativity. Based on 

the DLS, NMR, MSDC and SAXS data four transient states could be proposed: random coil, 
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collapsed chain, loose helix and compact helix. The transition interval and its middle point were 

greatly dependent on the grafting density and the polypeptide loading. The intersection between 

the polypeptide size in random coil and helix was regarded as the point at which the polymer 

existed equally in both conformations. The thickness of the shell was found to be independent on 

the radius core. 
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CHAPTER 6 

POLYCOLLOIDS: PREPARATION AND CHARACTERIZATION OF CROSS-

LINKED POLYTYROSINE-SILICA HYBRID COLLOIDS 
 

6.1 Introduction 

Tyrosine, TYR is a unique amino acid with versatile chemical properties. Bearing a 

phenol group in the side chain, TYR can form different types of hydrogen bonds.
1
 Upon 

deprotonation, the tyrosinyl anion can be further oxidized to a neutral radical by direct proton 

release.
2
 Hydrogen bonding also plays a key role in the conformation of polytyrosine PTYR 

obtained from TYR polymerization. Several studies were devoted to elucidate the PTYR 

structure. While in most organic solvents this homopolypeptide assumes an α-helical 

conformation,
3-7

 in aqueous solution PTYR has an antiparallel β-conformation as the degree of 

ionization of hydroxyl groups from phenol ring decreases.
8-15

 Hamada et al. investigated the 

conformation of PTYR in dimethylformamide DMF by small-angle X-ray scattering (SAXS) and 

found a right-handed α-helix.
16

 Other extensively used techniques in analyzing homopolymers of 

amino acids are circular dichroism CD and optical rotation ORD. Polypeptides having aromatic 

rings in their side chain do not show the typical CD spectrum of the secondary structure.
17-22

 The 

cause arises from overlapping of the optical rotation of aromatic chromophores and optical 

activity of the backbone’s amide chromophore. Circular dichroism was used by various research 

groups in their effort to elucidate the secondary structure of polytyrosine and contrasting 

conclusions were withdrawn. Beychok et al. dissolved PTYR in water at pH 11.2 and reported a 

helical conformation. Dissolution above pH 12 followed by back titration to pH 11.2 revealed a 

random coil structure.
23

 On the contrary, Friedman et al. investigations found different spectrum 

patterns while PTYR was retaining its helical conformation. They suggested that the difference 
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in the degree of ionization of the phenol rings might be responsible for such behavior.
24

 

Watanabe et al. were able to separate the CD component of the backbone of the tyrosyl 

fragments using fluorescence detected circular dichroism FDCD. The presence of the two 

negative peaks centered at 213 nm and 222 nm, were attributed to the α-helix conformation when 

dissolved in methanol. Transition from helical to β-sheet structure was induced by addition of 

aqueous NaOH.
25

 In addition to CD and ORD, Wen et al. used viscosity and infrared 

spectroscopy (IR) and found a random coil conformation in dimethyl sulfoxide DMSO. Upon 

addition of dichloroacetic acid DCA, PTYR underwent to a coil-to-helix transition, its 

completion being attained at 20% DCA.
26

 Beside the above mentioned methods, nuclear 

magnetic resonance (NMR)
6
 and vibrational circular dichroism VCD

27
 were used to elucidate 

PTYR conformation. Theoretical methods pointed to a right-handed α-helix conformation.
28

  

 The unique nature of tyrosine, a hydrophobic side chain comprised of a phenol ring 

moiety, indicates TYR a potential candidate for many biological applications. The rigid side 

chain, conductive even at low entropic energy loss, can interact with antigens. Thus, tyrosine is 

ideal for recognition of antibodies.
29-37

 Phosphorylation of sidechain hydroxyl groups by tyrosine 

kinases plays an important role in signal transduction processes.
38

 

Tyrosine residues can be easily coupled to di- and trityrosine adducts. Such processes 

take place naturally; a good example is post-translational modification of proteins. Resilin, found 

in insects and anthropods, increases dramatically its elasticity due to intermolecular 

crosslinking.
39,40

 Other tyrosine coupling products were found in keratin,
41

 collagen,
42,43

 

cuticlin,
44

 elastin,
45,46

 extensin
47

 and fibroin.
41

 Tyrosine also takes advantage over N-terminus 

amino acids (lysine), terminal carboxyl groups (aspartic acid, glutamic acid) or cysteine’s thiol 
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group in protein modification. Hydrophobic tyrosine has a higher site-specificity than 

hydrophilic amino acids because fewer TYR residues are exposed to the protein surface.  

Chemical cross-linking is an appealing tool for engineering the architecture of proteins. 

Many oxidative reactions were developed by researchers over the years.
48-51

 Enzymatic reactions 

were also employed, especially tyrosine coupling catalyzed by peroxidases.
52-57

 Horseradish 

peroxidase-assisted coupling is one of the most utilized enzymatic approaches in cross-linking 

tyrosine residues. During its enzymatic cycle,
58-60

 HRP assists the formation of a free radical in 

the phenol moiety. Recently Minamihata et al. genetically introduced at the C-terminus of 

Escheria coli alkaline phosphatase, a peptide tag containing tyrosine moieties which were further 

cross-linked by incubation in HRP and H2O2.
36

 Grupen’s group and collaborators coupled 

hydroxy-arylated oligosaccharides with tripeptides having tyrosine.
61

 Heijnis et al. isolated the 

dimer of α-lactalbumin and studied its cross-linking path. Structural modeling indicated that 

intermolecular cross-linking of tyrosine is favored.
62

 

In the late 1990s Kodadek’s group develop a fast and versatile method for coupling 

peptides bearing tyrosine residues: photo-induced cross-linking of unmodified proteins, PICUP. 

They photogenerated an oxidant specie involving tris-bipyridylruthenium (II) for coupling of 

associated proteins containing tyrosine.
63,64

 Cross-linked products in very high yields were 

obtained with irradiation times less than 1s.  

The formation of amyloids β-protein (Aβ) deposits (fibrils and neurotoxic oligomers) is a 

progressive neurodegenerative process. These deposits were believed to be the key factor 

causing diseases such as Alzheimer’s. Bitan et al. used PICUP to understand earliest the stages 

of Aβ oligomerization.
65-71

 Covalent linkage through PICUP system made possible the 

stabilization of prion proteins (PrP) aggregates in their native structure, proving that degradation 



290 

 

of structural features involved in prion propagation were not affected by the cross-linking 

procedure.
72

 Clérico et al. explored the cross-linking pattern when signal peptides were linked to 

E. coli signal recognition particle.
73

 

In the present work polytyrosine was grown on silica particles. The hybrid colloids are of 

particular interest because they can serve as models for improved understanding of the behavior 

of protein-caged materials like viruses. Many methods to immobilize polymers or 

biomacromolecules onto particles exist, but growing from was chosen because it yields a higher 

grafting density and a thicker shell is obtained with fewer steps. In this approach the surface is 

functionalized with initiating groups that promote the polymerization upon addition of 

monomer.
74

A drawback of this method is the characterization of grafted polymer. Yet etching 

silica core with either solution of hydrofluoric acid, HF, complexes containing fluorine
75-78

 or 

alkaline aqueous solution (NaOH, KOH)
79,80

 can circumvent the challenge. Concerns regarded 

the degradation of the polypeptide chain as well as a consequence of etching. This group has 

reported poly(γ-benzyl-L-glutamate), PBLG and poly(Nε-carbobenzyloxy-L-lysine), PCBL 

polypeptide-coated silica colloids.
74,81,82

 Even though the properties of the polytyrosine-based 

hybrid are appealing from the point of view of biological application, no work has been 

attempted to explore the direct growth of PTYR homopolypeptide on colloid surfaces. Indirectly, 

in an effort to understand cell adhesion, Auenheimer et al. studied the amount of cyclic arginine-

glycine-aspartate (RGD) protein radio labeled with 
125

I of tyrosine containing RGD bound to 

different surfaces.
83

 Fan et al. used fluorescence immunostaining with tyrosine hydroxylase to 

evaluate the effect of surface roughness on central neural cells (Substantia nigra) adherence to 

silicon wafers.
84
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This work concerns the use of cross-linking methods to prepare polycolloids. The 

versatility of the photopolymerization, PICUP, method is compared with polymerization assisted 

by enzymatic Horseradish peroxidase. The use of PICUP procedure to cross-link proteins is 

extended to the colloidal size domain to attempt the production of poly(colloids). Because the 

colloidal particles do not naturally aggregate, unlike amyloids peptide fragments so successfully 

stitched together using PICUP, they were made with magnetic inclusions to draw them close in 

chains.  

6.2 Materials 

O-benzyl-L-tyrosine (99%) was purchased from Indofine Chemical Company, Inc., and 

Sigma-Aldrich, triphosgene (99%) was obtained from Acros Organics. Hydrobromic acid 

solution (HBr) (30 %) in acetic acid, NaOH, tetraethylorthosilicate (TEOS) (99%), 3-amino-

propyl-tetraorthosilicate (APS, 99%), cobalt chloride hexahydrate (CoCl2 x 6H2O), sodium 

borohydride (NaNH4) (%), citric acid (%), phosphate monobasic, NaH2PO4, phosphate dibasic, 

Na2HPO4, anhydrous magnesium sulfate (MgSO4), sodium bicarbonate, Na2CO3, Peroxidase, 

from horseradish, type VI, essentially salt-free, lyophilized poeder, 274 units/ mg solid, tris(2,2´ 

bipyridyl)dichloro-ruthenium(II) hexahydrate, anhydrous (≥99.9%) dimethylsulfoxide were 

obtained from Sigma-Aldrich. Anhydrous solvents such as tetrahydrofuran (THF), hexanes, ethyl 

acetate (EtOAc) were purchased from Aldrich and used as received. Absolute anhydrous ethyl 

alcohol 200 proof ACS/USP grade was obtained from Pharmco-AAPER. Ammonium hydroxide 

28-30% ACS grade was purchased from BDH Aristar. All reagents were used without further 

purification. Deionized water (18 mΩ) was drawn from a Barnstead Nanopure instrument.  
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6.3 Results and Discussion 

6.3.1 Core and Polypeptide Precursor Preparation.  

Silica non-magnetic cores were prepared following the well-known Stöber method with 

modifications.
85,86

 The synthetic route for the fabrication of the Co-nugget silica particles 

followed Kobayashi procedure
87

 and is shown in the Scheme 6.1. 

 

Scheme 6.1 Schematic representation of preparation of amino-functionalized silica-

coated cobalt particles 

 

The reduction of cobalt salt, CoCl2•6H2O, in the presence of sodium borohydride, NaNH4, 

yielded cobalt particles with a diameter of 15 nm measured by TEM. Due to their sensitivity to 

oxygen exposure, cobalt nougats were covered immediately after their preparation with a 

protective silica layer in a one-pot reaction. The addition of 3-aminopropyl-triethoxysilane, APS 

primed the surface for the TEOS on the cobalt surface. Cobalt particles do not have hydroxyl, 

OH, groups on the surface like silica necessary in TEOS polymerization. Instead cobalt has a 

high affinity to form coordination complexes with amino carriers. The morphology of the 

synthesized cores is presented in Figure 6.1. 

The size distribution of the non- and magnetic cores was investigated by multi-angle 

dynamic light scattering, as shown in Figure 6.2. 
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Figure 6.1 TEM images of silica cores (A) and HRTEM of silica-coated  

cobalt particles (B). 
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Figure 6.2 Apparent diffusion coefficients, Dapp, and the decay rates (inset) as a function 

of the squared scattering vector magnitude, q, for silica (A) and silica-coated cobalt 

particles (C); apparent radius, Rapp and polydispersity index, μ2 Γ
-2

, (inset) versus q
2
 for 

silica (CR7124) (B) and silica-coated cobalt colloids (CR842mag) (D). Measurements 

were performed in water (silica) and ethanol (cobalt-coated silica) at 25°C over 9 angles 

from 30° to 120°. 
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DLS results show that these particles were uniform because no angle dependency was noted, 

Figures 6.2B and6.2D. This argument applies better to large particles than to small ones. Table 

6.1 summarizes the core sizes evaluated by DLS. 

Table 6.1 Sample, Solvent, Temperature, Radius and Polydispersity Index of Silica 

 and Silica-coated Cobalt Particles from Multi-angle Measurements 

Sample Solvent Temperature/ °C Radius/ nm PDI, μ2 Γ
-2

 

Silica 230 (CR7124) Ethanol  25 124 ± 4.7 0.05 ± 0.04 

Co-silica (CR842mag) Ethanol  25 44.4 ± 0.23 0.16 ± 0.04 

Silica 620 (CR10165) Water  25 620 ± 16 0.35 ± 0.03 

 

Even though the size of the magnetic particles was much smaller than the size of the bare silica 

they were slower diffusers, Figure 6.2C. The movement of the particles in the solution is 

dominated by friction which is size dependent. 

Due to the size of the cobalt inclusion (less than 20 nm), the silica-coated cobalt particles 

were expected to show superparamagnetic behavior. Such particles align when exposed to a 

permanent magnetic field but lose the orientation instantly, once the magnetic field is removed. 

The magnetic behavior was visualized with an optical microscope as displayed in Figure 6.3. 

Indeed before exposure to a magnetic field provided by a neodymium magnet, particles 

were diffusing randomly. Once the magnet was placed close to the capillary containing the 

particles, they began to align. After fifteen minutes clear strings of particles could be seen as 

shown in the Figure 6.3, middle. The removal of the magnet caused the chained particles to 

instantly move randomly as individual particles again. 
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Figure 6.3 Optical micrographs of silica-coated cobalt particles (CR842mag) before 

exposure to a magnetic field (left), fifteen minutes under exposure (middle) and 

immediately after the magnetic field was removed. The magnet was placed at ~45°  

to the capillary containing the particles. 

 

The polypeptide monomer precursor, o-benzyl-L-tyrosine N-carboxyanhydride, BTY-

NCA, was prepared by adapting the Poché et al. procedure
88,89

 as illustrated in Scheme 6.2.  

 

Scheme 6.2 Representation of BTY-NCA formation using triphosgene as the ring closure 

agent. 

 

The closure of the BTY-NCA ring was performed with triphosgene. The protected aminoacid 

was selected for NCA preparation because, without the protective benzyl groups, the NCA 
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formation can evolve simultaneously with in-situ polymerization initiated by the free hydroxyl 

groups. The reaction product was analyzed by FTIR. The spectrum presented in Figure 6.4 

shows the characteristic peaks of BTY-NCA. The characteristic bands of carbonyl groups C=O 

can be seen at 1840 and 1774 cm
-1

. The stretching of the —NH— occurred at ~3300 cm
-1

. The 

peaks seen at 3000 and 2800- 2900 cm
-1

 correspond to benzyl and —CH2— symmetric and 

asymmetric stretching.  
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Figure 6.4 FTIR spectrum of o-benzyl-L-tyrosine N-carboxyanhydride, BTY-NCA. 

 

6.3.2 Preparation of Polytyrosine Composite Particles.  

The preparation of PCPs having a shell consisting of benzyl-protected poly(L-tyrosine), PCP 

PBTY, was achieved by employing growing from method.
74,90-92

 Three batches, two non-

magnetic (PTYR PCP230 and PTYR PCP620, the number indicates the diameter of the core) and 

one Co-nougat composite particles were prepared in the same fashion. Scheme 6.3 illustrates the 
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synthesis of magnetic composites. Amino-functionalized particles were reacted with polypeptide 

precursor, o-benzyl-L-tyrosine N-carboxyanhydride. After the reaction completed, the PCP 

PBTY particles were collected by centrifugation and washed several times (3-4) with THF by 

centrifugation-redispersions to remove any unreacted polypeptide. In order to convert poly(o-

benzyl-L-tyrosine) to unprotected poly(L-tyrosine) the former was treated with HBr/CH3COOH, 

33%. The purification of the PCP PTYR colloid was performed with toluene and acetone by 

centrifugation-redispersion to remove benzyl bromide. Then the particles were neutralized with 

3mM NaOH solution and finally were washed with deionized water using centrifugation- 

redispersion method. The cleavage of the benzyl protective side group yielded a water-

dispersible product, PCP PTYR, carrying free hydroxyl groups. 

 

Scheme 6.3 Schematic representation of magnetic poly(L-tyrosine) composite particles 

prepared by the growing from method. 

 

A picture of the PCP PTYR particles is shown in Figure 6.5. Figure 6.5A shows the presence of 

the polypeptide shell seen as the dark corona surrounding the silica core which is not visible in 

Figure 6.1A of plain silica or Figure 6.5B showing the magnetic PTYR PCPs. The visualization 
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of the shell was achieved by exposing the particles deposited on the TEM grid to OsO4 vapors to 

increase the electron contrast.  

 

 

 

Figure 6.5 TEM image of PCP PTYR: (A) non-magnetic, PTYR PCP230  

(CR856) stained with OsO4 and (B) magnetic PTYR PCPs (CR9151) without 

 staining. 

 

The size of the PCPs was evaluated by dynamic light scattering. Table 6.2 summarizes 

the data gathered using this technique.  
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Table 6.2 Sample, Measurement, Solvent, Temperature, Radius and Polydispersity Index 

of Poly(L-tyrosine) Polypeptide Composite Particles Measured by DLS  

Sample Measurement Solvent Temperature/ °C Diameter/nm μ2 Γ
-2

 

PBTY PCP230 

(CR836) 

Malvern m-cresol 17-41 631 ± 33 0.33 ± 0.08 

PTYR PCP230 

(CR856) 

Multi-angle water 25 823 ± 30 0.33 ± 0.08 

PTYR PCP230 

(CR856) 

Malvern DMSO 25 568 ± 4 0.37 ± 0.03 

PBTY PCPmag 

(CR9151) 

Multi-angle m-cresol 25 610 ± 33 0.38 ± 0.01 

PTYR PCP620 

(CR10.190A) 

Malvern DMSO 25 728 ± 54 0.79 ± 0.29 

 

The analysis by multi-angle or one-angle (Malvern) DLS encountered complications 

stemming from the insolubility of the PBTY in conventional solvents. Sharing a phenyl ring in 

their structure, PBTY was dispersed in m-cresol. The particles seemed to give a good dispersion. 

PBTY PCP230 was measured by Malvern as an average over 10 runs performed at 17°C, 23°C, 

31°C, 35°C, 37°C and 41°C. At each temperature the data were corrected for solvent viscosity 

(see Chapter 5, Figure 5.6). After deprotection, PTYR PCPs were expected to disperse well in 

water. Multi-angle measurements at 25°C showed that the particles tend to coalesce. This trend is 

evidenced by the angle-dependent profile of the apparent radius, Figure 6.6A and the ascending 

polydispersity index, Figure 6.6B. 

The non-magnetic particle aggregation can be caused by the H-bonding between 

hydroxyl groups of the phenolic side chain. It is also possible that the some of the chains are still 

protected with benzyl groups. Another suitable solvent for PTYR is dimethylsulfoxide, DMSO. 

The size of the PTYR PCP230 and PTYR PCP620 was evaluated by Malvern in DMSO. All 

other samples were measured at one-angle. The magnetic interaction due to slight magnetic 

remanence can be responsible for magnetic particle aggregation. 
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Figure 6.6 Typical DLS data for non-magnetic PTYR PCP230 (CR856):  

(A) apparent radius, Rapp, as a function of squared scattering vector magnitude,  

q
2
, (inset) apparent diffusion coefficients, Dapp, as a function of q

2
 (inset) 

and (B) polydispersity index, μ2·Γ
-2

, as a function of q
2
. Data recorded in water,  

at 25°C. Run time 100s. 
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Additional confirmation of the polypeptide shell came from TGA measurements. Figure 

6.7 displays TGA traces of silica cores before functionalization, PBTY PCP, PTYR PCP and 

untethered poly(L-tyrosine) for both non-magnetic and magnetic PCPs. 
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Figure 6.7 TGA traces for the steps involved in preparation of (A) non-magnetic  

PTYR PCP230 and (B) magnetic PTYR PCPs. The TGA response of the untethered 

poly(L-tyrosine) is also shown. Scan rate 10°C·min
-1

. 
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The weight loss up to 200°C is due to the water. In the case of the PCP PBTY and PCP PTYR 

the decomposition occurring in the 200 and 600°C temperature interval corresponds to the 

grafted PTYR. The large core non-magnetic PCPs were designed to have a very sparse coverage 

with polypeptide. The TGA traces of this sample are seen in Figure 6.8A suggest a small 

polypeptide load.  
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Figure 6.8 Typical thermogravimetric analysis data: 

(A) percentage of mass loss and (B) derivative mass 

loss as a function of the temperature for untethered  

PTYR, silica-tethered PTYR (CR10.190A) and plain 

silica. Scan rate was 10°C·min
-1

. 
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Figure 6.8 continued 
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Yet, such a low difference in mass loss between the plain silica cores and the PTYR composite 

particles can be questionable as being due to the presence of the polymer. In order to clarify this 

doubt, the derivative of mass loss was plotted against temperature. Figure 6.8B shows the peak 

associated with the decomposition of the untethered and silica-tethered PTYR with the maxima 

situated between 300-400°C. This peak is not present in the trace of the plain silica. The 

overlapping of the two events of free untethered PTYR and PTYR PCP proves that the small 

difference in mass lost during decomposition is due to the polypeptide and not to the other 

artifacts (e.g. solvent, impurities). In Table 6.3 is listed the percent polypeptide loading for each 

sample of PCPs.  

The FTIR spectra of PCPs benzyl protected and unprotected, Figure 6.8 shows the 

characteristic adsorption bands of siloxane bond, Si—O—Si, at 1048 cm
-1

.  
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Table 6.3 Code and Weight Loss from TGA for PCPs Samples 

Code Weight Loss from TGA/ % 

PBTY PCP230 50 

PTYR PCP230 40 

PTYR PCP620  2 

PTYR PCPmag 35 
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Figure 6.9 FTIR spectra of (A) PCP PBTY and  

(B) PCP PTYR. The insets show the expanded region  

from 2200 to 1250 cm
-1

. 
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Figure 6.9 continued 
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The specific bands shown in the inset for PCP PBTY, Figure 6.9A, correspond to a mixture of 

helical and random coil polypeptide. The dominant secondary structure of the composite material 

is random coil, reflected through the presence of the amide I peak at 1635 cm
-1

 and the amide II 

at 1510 cm
-1

. The α-helix amide I band assigned to C=O stretch is located at 1668 cm
-1

 (small 

shoulder) and the amide II corresponding to in-plane NH bending and C—N stretching vibration 

is found at 1545 cm
-1

. Beside the peaks corresponding to helical and random coil assignments, 

other distinct bands were evident in the spectrum at 1635 cm
-1

 possible overlap, 1610 cm
-1

 and 

1510 cm
-1

. These adsorption bands can be assigned to skeletal vibration of the tyrosine ring and 

to its protective benzyl side chain as well. The absorption of the ether linkage C(Ar)—O—

CH2—C(Ar) is visible at 1263 cm
-1

 and 1168 cm
-1

. The cleavage of the benzyl protective groups 

of the side chains is reflected by the occurrence of the broad peak around 3300- 3500 cm
-1
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specific to—OH adsorption. In addition, a significant decrease in the intensity of the aromatic 

C—H stretch at ~3000 cm
-1

 can be also seen. The polypeptide chains have a dominant random 

coil structure ( amide I, 1629 cm
-1

, amide II, 1512 cm
-1

) with small traces of α-helix (amide I, 

1666 cm
-1

, amide II, 1545 cm
-1

). The presence of the silica particles is marked in both FTIR 

spectra by the intense peak at 1048 cm
-1

. 

6.3.3 Photo-induced Cross-linking of Unmodified Polypeptides, PICUP.  

The photo-cross-linking reaction, PICUP, involving ruthenium bipyridyl complex was 

performed at room temperature in a phosphate buffer solution following the Kodadek et al. 

procedure.
63,64

 First, the reaction was carried out without any attempt to obtain regular shapes. In 

order to design a shaped material, an appealing technique is illustrated in Scheme 6.4: the 

alignment of the magnetic composite particles followed by shining visible light of 470 nm 

wavelength through a Ronchi ruling. Particles shadowed by the dark stripes of the ruling cannot 

cross-link because the light is obstructed to illuminate them. Therefore, the cross-linking will be 

possible only in illuminated areas. This procedure can facilitate the preparation of a polycolloid 

of a precise length. For example, a Ronchi ruling having 50 μm wide grid lines can yield of 50 

μm long polycolloid chains. The mechanism of the PICUP reaction, especially the catalysis of 

the ruthenium complex, is not completely understood. Yet, the tentatively accepted route 

suggests that excitation with visible light of 452 nm wavelength induces the oxidation of Ru(II) 

to Ru(III). In the same time, ammonium persulfate loses the peroxide bond, —O—O—, and 

produces a sulfate anion and a sulfate radical. Further the Ru(III) ion attacks the aromatic ring of 

tyrosine unit extracting a proton from the immediate proximity of the Ar—OH group leaving 

behind a free electron and finally reduces back to Ru(II). A nearby tyrosine unit can provide the 

former an electron to suffice the deficit for a double bond while linking in the ortho position.  
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Scheme 6.4 Idealized illustration of magnetic polycolloid preparation through PICUP 

reaction using magnetic PCP PTYR and, inset, the accepted mechanism for ruthenium 

complex catalysis. 
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At this step the sulfate radical donates the electron necessary to reform the double bond of the 

later tyrosine unit and receives the proton in change.  

 The versatility of the PICUP method was compared with that of the cross-linking reaction 

using the enzyme Horseradish peroxidase, HRP, as a cross-linking catalyst. Both methods used 

the same medium (phosphate buffer) at slightly different pH, 6.5 and 7, respectively. Yet, the net 

distinction between these two methods is made by the reaction time. The reaction time in the 

case of PICUP is equal with the duration of illumination and varies roughly from 2 to 15 minutes 

while the HRP approach requires, in general, 3 hours. HRP cross-linking necessitates the 

addition drop by drop of 5% H2O2 over 2 hours and another hour for complete reaction. HRP is a 

much more expensive catalyst when compared with Ru bipyridyl complex. In Figure 6.10A are 

shown the non-magnetic PCPs before the HRP-mediated cross-linking. Figure 6.10B and Figure 

6.10C show the cross-linked adduct at low and high magnification.  

 

Figure 6.10 SEM pictures of (A) PBTY CP and (B) 

polycolloid obtained by Horseradish peroxidase-

catalyzed cross-linking without magnetic alignment  

(lower magnification) and (C) the same polycolloid 

at higher magnification. 
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Figure 6.10 continued 

 

 

 

Silica beads are embedded in the polymer network due to the intra- and inter-cross-linking. The 

heavy cross-linking is a result of high grafting density with polypeptide.  

PTYR PCPs chemically photo-cross-linked via PICUP were also characterized by FTIR. 

Figure 6.11 shows the disappearance of several specific signals when compared with the PBTY 
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and PTYR PCPs. The disappearance of the peaks seen at 1229 and 1172 cm
-1

 for PTYR PCPs 

and also the band at 1380 cm
-1

 suggest the formation of linkages between tyrosine units. 
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 Figure 6.11 FTIR spectrum of cross-linked PTYR PCPs using the PICUP method  

 

Non-magnetic PCPs particles presented in Figure 6.5A were photo-cross-linked using patterned 

surfaces as shown in Figure 6.12. One wall of the clear disposable square cuvettes was detached 

by using a syringe needle (25G, 5/8") heated with a torch yielding three-wall cuvette for the 

purpose of the easy reagent addition. The same flamed needle was used to draw lines on the 

bottom of the cuvette. Then it was covered with aluminum foil which had scratched lines 

overlaying with the ones drawn as described before. Another setting was obtained by drawing 

circles on the bottom of a cuvette and the rest of the wall was colored in black using a permanent 

marker. The light- emitting diode, LED, of 470 nm wavelength was set to illuminate the cuvettes 

from the bottom. 



312 

 

  

  

  

Figure 6.12 Components used in the PICUP reaction: (A) TENMA Regulated DC power 

supply and the photopolymerization box, (B) LED source 470 nm wavelength, lateral 

view, (C) LED source 470 nm wavelength, top view, (D) LED source 470 nm 

wavelength, front view, (E) illumination set-up from the lateral position, and (F) Ronchi 

ruling (50 μm), spacings (inset). 
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Figure 6.13 displays several polycolloids obtained using the PICUP method. The sample shown 

in Figure 6.13A and Figure 6.13A1 was obtained with no patterning. Non-magnetic PCP 

particles were deposited in a thin layer on a three-wall cuvette by sedimentation overnight inside 

a Petri dish with water set aside in a vial cap to prevent the evaporation of buffer solution from 

the sample. The Petri dish was kept in the box further used for the photo-crosslinking. Then the 

Ru complex was added inside the box in the dark followed by the ammonium persulfate. The 

cuvette was illuminated from the bottom for 15 min. SEM showed that the cross-linked particles 

seemed to self-assemble into maple leaf-like structures. The high magnification image visualized 

the edge of these shapes and shows deeply imbedded particles into the polymerization adduct.  

The polycolloid shown in Figure 6.13B and 6.13B1 was obtained using the patterned 

cuvette. The morphology of this product resembled a crystal-like branched structure. The simple 

drawing of stripes with the torched syringe needle couldn’t result in smooth and straight edges. 

The imperfections of the stripes were filled by the PTYR PCPs and after cross-linking they 

displayed the shape of those defects. Similar to the photo-polymerization product exhibited in 

Figure 6.13A, the particles are difficult to distinct due to the heavy cross-linked shell. The 

particle used in these reactions (Figure 6.5A) had a relatively small silica core and a thick shell. 

In order to visualize the colloid after cross-linking PTYR PCPs with a big core and a very sparse 

PTYR-populated shell was used. The polycolloid displayed in Figure 6.13C and 6.13C1 was 

obtained by mixing the two kinds of PTYR PCPs aforementioned in a ratio 50:50. The SEM 

image shows that macrocycle polycolloids similar to macrocycle untethered polymer can be 

obtained easily by simply drawing circles on the cuvette bottom as shown in Figure 6.12G. In the 

high- magnification image, the big core particles (PCP PTYR620) can be clearly seen along with 

the small-cored ones (PCP PTYR230).  
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Figure 6.13 SEM images of (A) cross-linked PTYR PCP230 (CR11.2A) showing maple 

leaf-like structure, (A1) zoom into circled (A) area, (B) cross-linked PTYR PCP230 into 

crystal-like shape, (B1) zoom into circled (B) area, (C) crosslinked 50:50 mixture of 

PTYR PCP230 and PTYR PCP620 into macrocycle-like structure and (C1) zoom into the 

circled (C) area.  
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The polycolloid shown in Figure 6.13B and 6.13B1 was obtained using the patterned cuvette. 

The morphology of this product resembled a crystal-like branched structure. The simple drawing 

of stripes with the torched syringe needle couldn’t result in smooth and straight edges. The 

imperfections of the stripes were filled by the PTYR PCPs and after cross-linking they displayed 

the shape of those defects. Similar to the photo-polymerization product exhibited in Figure 

6.13A, the particles are difficult to distinct due to the heavy cross-linked shell. The particle used 

in these reactions (Figure 6.5A) had a relatively small silica core and a thick shell. In order to 

visualize the colloid after cross-linking PTYR PCPs with a big core and a very sparse PTYR-

populated shell was used. The polycolloid displayed in Figure 6.13C and 6.13C1 was obtained 

by mixing the two kinds of PTYR PCPs aforementioned in a ratio 50:50. The SEM image shows 

that macrocycle polycolloids similar to macrocycle untethered polymer can be obtained easily by 

simply drawing circles on the cuvette bottom as shown in Figure 6.12G. In the high- 

magnification image, the big core particles (PCP PTYR620) can be clearly seen along with the 

small-cored ones (PCP PTYR230).  

 Not only non-magnetic but Co-nugget particles were cross-linked using PICUP method. 

The exposure of the magnetic PTYR PCPs to an external magnetic field induces the alignment of 

the particles in chains in the same fashion as the cores seen in Figure 6.3. The shells of the 

particles are forced to interpenetrate. The photo-cross-linking enables the formation of the 

permanent chains due to the formation of the dityrosine linkages. The magnetic polycolloid 

obtained using Ronchi ruling is shown in Figures 6.14A and 6.14A1. The TEM images show a 

specimen with a very high electron contrast. This is due to the Ru traces present in the sample. 

Yet, particles seem to be “locked” in the chain-like fashion. The TEM images were obtained 
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without staining with OsO4 and that explains the smaller appearance of PCPs compared to Figure 

6.5B.  

  

Figure 6.14 TEM images of cross-linked Co-nugget PTYR PCP at (A) lower and (A1) 

higher magnification. 

 

 Polycolloid obtained either through the HRP or the PICUP approach can be considered a 

good candidate for specific applications. Due to their high PTYR load, these PCPs may be useful 

in post-translational modification of proteins through tyrosine side chain coupling.
36

 The nature 

of the tyrosine unit is hydrophobic (despite the presence of –OH groups) while the most protein 

amino acid units are hydrophilic. The modification of the protein through the hydrophilic 

residues is not effective because these residues are exposed on the surface. While the population 

of the hydrophilic residues exposed on the surface is high, tyrosine units are less. Therefore the 

coupling through the hydrophobic tyrosine residues is more effective because is more site-

selective. Furthermore, tyrosine is a neutral amino acid over a broad range of pH. Consequently, 

the modification of the proteins through tyrosine coupling can be a more effective way for 

protein modification. The advantage of using the PTYR PCPs in such processes is that they 

provide a higher number of tyrosine units per surface area, thus increasing the effectiveness of 
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the site-specific coupling. Grafted on a smaller core, PTYR PCPs can be up-taken into the living 

bodies and used, for example, in antibody recognition as a result of tyrosine capability to interact 

with specific antigens.
33

 Magnetic PCPs may be also useful in such an application because they 

have the ability to be guided with external magnetic fields to less accessible sites. Labeled with a 

fluorescent core they can be easily visualized during and after cross-linking. Another opportunity 

to use the PCPs and the PICUP method is to stabilize protein aggregates.
68

 A number of fatal 

diseases are associated with the folding of the soluble amyloid-like fibrils into insoluble 

aggregates. Coupling the small aggregates formed at the incipient stages of the disease may slow 

down or even stop further growth of the aggregates.  

Besides several possible applications described above the polycolloid can be used as a 

platform for drug encapsulation and drug delivery. After photo-polymerization, the silica cores 

can be easily dissolved with either NaOH or HF yielding a cross-linked vesicle-like morphology 

which can be loaded with drugs.  

Future efforts will be focused on perfecting the patterned poly(colloid). The smoothness 

and narrowness of the striped cuvettes will be attained by using better tools (e.g. Dremel tool). 

Other means such as microfluidic devices are also considered for this work. 

6.4 Conclusion 

This work was devoted to expanding the architectural repertoire of polypeptide 

composite particles and their potential applications. PTYR PCPs, non-magnetic or having a 

cobalt intrusion, were synthesized via the growing from method. The non-magnetic PCPs were 

prepared in two batches with a dense and a very sparse polypeptide shell. The difference in their 

size core was about three times. The presence of the polypeptide on the silica beads was 

evidenced by TEM, TGA, DLS and FTIR. Poly(L-tyrosine) had mostly a random coil structure 
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with remnant α-helix. The effectiveness of the PICUP method was compared with the HRP-

mediated cross-linking. While both procedures yielded heavily cross-linked adducts, only PICUP 

allowed architectural maple-like, crystal-like and chain-like structure. This procedure requires no 

stirring and a very short reaction time when compared with the HRP-catalyzed approach. The 

desired architectures of the polycolloid were obtained by using patterned squared cuvettes by 

simple drawing with a flamed syringe needle or a permanent marker. The design concept used to 

prepare the polycolloid opens the door to an entire palette of the unusual morphologies. This 

method presented here may be employed further in engineering precisely defined cross-linked 

polypeptide composite materials.  
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CHAPTER 7 

FUTURE WORK 
 

7.1 Self- and Mutual Diffusion of a Rodlike Polymer  

The aim of this project is to study self- and mutual diffusion of rodlike polymers using 

dynamic light scattering, DLS, and pulse field gradient (pulse gradient spin echo) nuclear 

magnetic resonance, PGSE. The distinction between the two types of diffusion is that mutual or 

cooperative diffusion represents the motion of the rod in response to a weak local concentration 

gradient while self diffusion is friction driven. Self diffusion is proportional with the squared 

distance traveled by the diffuser in time and is friction dependent.
1
  

      
    

 
                                    

      
   

 
                                   

where Dself is the self diffusion coefficient, x is the distance, t is the time, kB is the Boltzmann 

constant, T is the absolute temperature and f the friction coefficient. 

A rod-shaped molecule moves parallel and transverse to its own axis. The average motion is 

given by:
2
  

      
 

 
   

     
             

where Ds is the self-diffusion coefficient, D
0
 is the diffusion coefficient at concentration 

extrapolated to zero,   
  is the parallel motion and   

  is the transverse motion to the axis. In the 

dilute regime the friction coefficients are the same, fm = fs and thermodynamic driving terms that 

affect mutual diffusion are absent. Consequently Ds and Dm are also equal. In semidilute 

conditions, the contribution from transverse diffusion becomes negligible. The diffusion can be 

expressed then: 
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Usually, self diffusion coefficients are measured by PGSE or fluorescence photobleaching 

recovery, FPR, or other advanced methods developed largely in response to the rapid 

development of transport theories in the late 1970s and early 1980s. The mutual diffusion 

coefficients are usually measured by DLS. Studies were conducted before on different molecules 

with different conformations such as polyelectrolytes,
1
 globular proteins,

3
 stiff and random coil 

polymers,
4,5

 etc. Most of these results found a disagreement between the values of diffusion 

coefficients collected by both DLS and PGSE. In a typical sample, Ds rises while Dm falls with 

the concentration. They agree at zero concentration, practically the dilute limit. A disagreement 

between DLS and PGSE was noted by the amyloids community.
6
 For the short amyloids the two 

techniques agree but once the fibrils become longer they start to diverge. On the assumption that 

fself = fmutual, the discrimination between Dm and Ds can be eliminated if the corrections for 

thermodynamic force and solvent back flow are made:
7
 

  

  
 

 

  
 

  

  
                        

where M is the molecular weight, RT is the gas constant multiplied by the absolute temperature, 

Π is the osmotic pressure, c is the concentration and    is the partial specific volume.  

The rodlike configuration of polypeptides qualifies them as appealing candidates for 

investigating the dynamical behavior. The most studied polypeptide from this perspective is 

poly(γ-benzyl-L-glutamate), PBLG. Self and mutual diffusion of the PBLG was explored using 

FPR and DLS by this group,
2,8,9

 and by others. It is difficult sometimes to find the best model to 

study rodlike polymers.  
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Early studies showed that PBLG is not quite a rigid rod as might be expected.
10-12

 The 

best model found is poly(γ-stearyl-L-glutamate), PSLG.
13-15

 Having the long stearyl chains 

pointing out from the backbone, PSLG has a stable α-helix conformation, without random coil 

interruptions as PBLG does. This polypeptide was studied before in the Russo group
16,17

 and also 

by other researchers.
18,19

 PSLG is easy to prepare and easy to obtain in a very narrow molecular 

weight distribution by fractionation. Polypeptides mimic natural molecules, some of them 

involved in fatal diseases. Using PSLG as model, one can introspect then, the behavior of the 

amyloid fibers, responsible for Alzheimer’s disease. A real monodisperse sample of amyloids is 

difficult to obtain. The study of a rigid rod-like conformation usually uses light scattering. For 

example, in the case of a short rod-like PSLG prepared in this laboratory, both DLS and PGSE 

excellently agreed as shown in Figure 7.1A.  

PGSE returned two modes of decay from the correlation functions: fast and slow. In such 

situation one might suspect two things: the contribution from the rotation of the rod and the 

solvent contribution. The easiest way to test the later is to plot the intensity associated to the echo 

pulse against the concentration. As shown in Figure 7.1B the signal declines at elevated 

concentration. At increased concentration, the higher population of rods hinders the free motion 

of the solvent molecules. The rotational contribution can be tested with a rodlike polypeptide 

which has the capability to undergo helix-coil transition in a single solvent. Poly(ε-

carbobenzyloxy-L-lysine), PCBL is the polypeptide of choice due to its well-documented inverse 

helix-to-coil transition in m-cresol.
20-23
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Figure 7.1 Logarithmic representation of the self and mutual diffusion  

coefficients collected by PGSE and DLS as a function of the concentration 

(A) and the intensity of the echo signal as a function of the concentration (B). 

 

Finally, this project is devoted to research the limit at which DLS and PGSE techniques 

will disagree measuring the rigid rodlike PSLG. It will be completed in collaboration with Prof. 

Ernst Von Meerwall from Akron University, Akron, OH. 
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7.2 Physical Properties of Silica Poly(N
ε
-carbobenzyloxy-L-lysine)-based Colloids: 

Methods to Investigate the Reverse Random Coil-to-Helix Conformational Change 

 

7.2.1 Optical Rotatory Dispersion, ORD 

Optical rotatory dispersion, ORD was largely used on early studies focused on polypeptides 

conformation. ORD was the main tool to investigate the inverse helix-to-coil transition of PCBL 

in m-cresol as a function of the temperature. This part of the project described in Chapter 5 will 

be completed using a future locally available ORD or in collaboration with another laboratory. 

7.2.2 Nuclear Magnetic Resonance: Spin-Spin Relaxation Times, T2 Measurements 

New investigations regarding spin-spin relaxation times, T2 are under way in completion 

 to T1 measurements. These studies are meant to help in having clearer image of the mechanistic 

pathway the PCBL transition undergoes. 

7.2.3 Spectroscopic Assay: UV-VIS 

PCP PCBL particles can be excellent platforms to obtain gold-decorated PCPs by 

physical adsorption of colloidal gold to the terminal amine groups of the PCBL chains, as shown 

in Figure 7.2. This material can find potential use in sensing. Regardless of the size of the 

colloidal gold, these advanced PCPs can be useful tools for monitoring the helix-coil transition. 

It is hypothesized that the gold emission signal will shift according with the transition states of 

the polypeptide.  

7.3 Saturn Belts 

The project entitled “Saturn belts” will borrow ingredients from the projects described in 

several chapters of this document. The idea is illustrated in Figure 7.3. The architecture is similar 

with that of ABA block copolymers. There is one simple question this project is willing to 

answer: “Can we make ABA colloids or colloidal amphiphiles?” Briefly, particles with magnetic 

inclusions, either iron or cobalt, superparamagnetic or paramagnetic are coated with silica. 
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Optional, the complex of FITC-APS can be embedded into them, with supplemental silica 

protective coating. 

 

Figure 7.2 TEM micrograph of PCP PCBL(175)L decorated with colloidal  

gold (D = 5 nm). 

 

Further particles are prepared for surface chemistry. If click chemistry will be employed 

to graft the polypeptide, the surface will be primed with azide functional groups. The growing 

from method uses a surface functionalized with amino groups. Once the surface of the particles 

has the desired functionality, they are aligned in a magnetic field. The polypeptide corona will 

grow only in the free area while the contact surface between particles is not accessible for 

growth. After magnetic field removal, another polypeptide can be grown. Aligned, they can also 

be crosslinked to resemble chain-like structure. This architectural colloid can be used as 

suspension for high power cars and bridges and to mimic an artificial muscle. 
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Figure 7.3 Schematic representation of the Saturn Belt production 

7.4 Light-emitting Colloidal Hybrids, LECH. 

Magnetic dye-doped silica colloids have attracted more and more attention lately because 

of their bifunctionality.
24 

Iron oxide particles were intensely studied for in vivo and in vitro 

biomedical applications, such as magnetic resonance imaging and drug delivery.
25,26

 Dye-coated 

silica colloids qualified as good candidates for biolabeling and bioimaging.
27 

He et al. obtained 

stable Cy5 dye doped silica fluorescent nanoparticles (SFNP) with the shell consisting of 

biomolecules (e.g. polylysine, insulin) of different isoelectric points.
28

 These hybrids gave good 

results in recognition of breast cancer cells.
 

Wu et al. obtained photoswitchable and 

thermotunable multicolor fluorescent silica nanoparticles grafted with poly(N-

isopropylacrylamide (PNIPAM)) brushes labeled with fluorescence resonance energy transfer 
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(FRET) donors as potential materials for human stem cell labeling, photodynamic therapy and so 

on.
29

 

The purpose of this project will be two-fold: a) synthesis of magnetic, azo-dye loaded 

silica polypeptide-based hybrids; and, b) characterization of hybrids by IR, XPS, TGA, DLS, 

TEM, SEM and UV-Vis. A third tunable property, helix-coil transition of the polypeptide, 

PCBL, will be investigated along with magnetic properties and dye’s photochromism. This 

colloid is envisioned as a multi-purpose, responsive material. 

 

Figure 7.4 Schematic illustration of LECH preparation 

 

It is predicted that the polypeptide shell will wiggle as a response to the trans-cis 

transition (photochromism, Figure 7.4) induced by the photolysis of the azochromophore.  
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Figure 7.5 Trans-cis transition of azo-derivatives (photochromism) 

 

The photochromic behavior is taking advantage of the azo-dye shape change to produce 

switchable receptors. Both kinds of transition (helix to coil for polypeptide and trans-cis for azo-

dye) can be initiated by raising the temperature and light irradiation. The question is how they 

will interact? Can one block the other? Upon irradiation, an increase in viscosity might occur 

(photoviscosity effect) due to azo-dye conformation changes.  

7.5 Shell Haircut: Grafting Density and Secondary Structure 

In this section the work performed to measure the molecular weight of the polypeptide 

cleaved from the particles made by the growing from method will be described. Future 

experiments necessary to complete the project will also be presented. 

Inspired by the formation of the mesoporous hybrid particles in 3mM aqueous NaOH 

solution, another key aspect of this work was developed: the use of NaOH etching to haircut the 

composite particle and assess the molecular weight of the polypeptide. Studies conducted up to 

present used HF as etchant
30

 A dilute 3mM NaOH solution required a long time to form voids 

inside the silica beads. It was hypothesized that a more concentrated basic solution and a shorter 
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time of exposure to such conditions will “dissolve” silica cores leaving the polypeptide intact. 

This hypothesis was made on the basis of the thermogravimetric analysis which clearly showed 

that the particles still have polypeptide on the surface after deprotection and etching. Preliminary 

tests (Figure 7.6) have shown that ~10% NaOH and 40 minutes were sufficient to cause bare 

control fluorescent silica dissolution. 

 

Figure 7.6 Control fluorescent silica cores with no polypeptide loading before (left) and 

after (right) etching for 40 min. in ~10% NaOH solution. 

 

The original yellow turbid solution became transparent yellow and a thin layer of silicates (white 

transparent) have deposited on the bottom. Because the polypeptide can play a protective role 

against etching, a longer time was expected for complete disappearance of the silica core in the 

case of polypeptide-based colloid. Upon suspension in ~10% NaOH, starting from THF as a 

solvent, PCP PCBL hybrid lost its core and the cleaved shell polymer was collected by 

centrifugation. Dissolution in DMF followed by precipitation with water (2 times) and drying in 

vacuo overnight gave a white solid sample which was further analyzed by gel permeation 

chromatography, GPC/MALS. Figure 7.7A shows GPC/MALS chromatograms for PCBL cut 

from the particle, obtained by using Zimm model. 
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Figure 7.7 GPC/MALS traces and the mass plots of (A) PCBL from shell (CR7188)  

and cumulative and differential weight fraction of (B) PCBL from shell (CR7188). 

The chromatograms were recorded in DMF + 0.1M LiBr at 25°C and the refractive index 

was taken, dn/dc = 0.123 ± 0.002mL g
-1

 in accordance with Applequist and Doty.
31

 

 

Table 7.1 summarizes data obtained by GPC/MALS. 

Table 7.1 Sample Code, Number-Average Molecular Weight, Mn, Weight-Average 

Molecular Weight, Mw, Polydispersity Index, Mw/Mn and Gyration Radius for Cleaved 

PCBL 

Sample code Mn Mw (Mw/Mn) Gyration Radius/Å 

PCBL-1  60,000±1.2% 77,000±0.7% 1.27(1.4%) 200±17.7% 

 

FTIR spectrum presented in Figure 7.8 shows the characteristic N−H stretching of the amine at 

3290 cm
-1

 along with other specific peaks of PCBL-1: amide I band at 1651 cm
-1

 and 1626 cm
-1

 

amide II at 1537cm
-1

 and C=O stretch of ester at 1689 cm
-1

. The assignment of the characteristic 

bands was in accordance with data published by Fasman et al.
20

 The split signal detected for 

amide I can be associated with α-helix conformation (1651 cm
-1

) and traces of random coil (1626 

cm
-1

). The evidence of a random coil residue in addition with GPC data suggests that in the 

growing from approach polymer does not grow uniform and small “caps” can be present on the 

surface along with longer chains. It is also possible that, during etching, some long chains could 
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be broken. Indeed the chromatogram displayed in the Figure 7.7A shows a small shoulder at 

higher elution volume. 
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Figure 7.8 FTIR spectrum of PCBL-1 (CR7188) cleaved from the particle  

with ~10% NaOH. 

 

The corresponding weight-average molecular weight, Mw, was 3,300 Da which gives a degree of 

polymerization, DP, of about 12.  

The presence of the secondary structure other than α-helix can be explained on the basis of the 

monomer units number necessary whether to form, or not, a helix. A degree of polymerization of 

12 is probably not enough to form a stable helix. Consequently the most of oligomers peaking at 

higher values of the elution volume are probably in a stable random coil secondary structure, as 

also seen in the FTIR spectrum. 

The assessment of the shell’s polymer size in terms of the molecular weight is important 

but also the evaluation of the grafting density is the most sensitive issue in the grafting from 

methodology. The combination of the GPC/MALS and TGA measurements made possible the 

computation of the chain population using the formula: 
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where f 
-1

 is the fraction of the polypeptide ashes, w200-600 is the weight loss associated with 

polypeptide degradation between 200°C and 600°C, wSi is the weight loss of the silica core in the 

same temperature interval, 200-600°C, M is the molecular weight of the polypeptide, and Sspec is 

the surface specific area. The calculation of the molar grafting density, σ, have used weight loss 

profiles from TGA shown in Figure 7.9, and the GPC/MALS results reflecting the value of the 

molecular weight for the grafted polypeptide. This approach followed Bartholome et al.
32

 which 

was corrected by Balamurugan et al.
33

 The factor f
 -1

 (0 < f < 1) represents the fraction of the 

polypeptide ashes and it is taken as 0.94 from the inset TGA trace profile for the free 

polypeptide, assuming a hypothetical 1 gram of composite particle. The term w200-600 is 

associated with the decomposition of the polypeptide shell between 200°C and 600°C. The wsilica 

is the fraction lost by silica cores in the same temperature interval as the polypeptide and it is 

measured before grafting the polypeptide. It is assumed that the weight loss is mostly due to 

water and hydroxyl groups from the silica surface and it will be the same in the case of the 

composite particle. In the denominator, the weight average molecular weight of the polypeptide, 

Mw, was taken as 77,000, measured by GPC/MALS. The surface specific area, Sspec, was 

calculated considering a core of radius 175 nm and the density of the silica 1.98 g mol
-1

. The 

result was 8.66 m
2
 g

-1
. According with Figure 4.11, w200-600 was 0.92-0.31= 0.61 and wsilica was 

0.92-0.87= 0.04. Introducing the data into the surface density expression, led to σ = 0.9 μmol m
-

2
. To calculate the population of the chains from the silica core surface, first the aria of the core 

needed to be computed. Multiplying this amount, 4πR
2

core, with the grafting density, σ, and 

Avogadro’s number, NA, returned a population of about 200,000 chains per particle. 
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Figure 7.9 TGA traces for fluorescent silica core, amino-functionalized  

fluorescent silica and PCP PCBL (CR7188) particle used in the cleavage  

experiment. 

 

The grafting density, expressed in number of chains per particle alone, it is not useful 

information if the profile of the cut off polypeptide is not described in terms of its secondary 

structure. Polypeptides, as well as proteins, carry information imbedded in their conformation. 

Understanding the polypeptide structures helps to also understand more complex processes such 

as protein folding. Consequently, the first concern after the cleavage of the PCBL from the 

composite’s core was to investigate its conformation. The most common secondary structure for 

polypeptides is α-helix and was confirmed by FTIR. The stabilization of secondary configuration 

is ensured by intramolecular H-bonding which gives a rodlike structure. A rodlike behavior 

enables extraordinary properties and PCBL should be expected to behave in the same manner. 

Because the stability of the helical structure is the most important feature in a large palette of 

applications concerning responsive materials, it was of crucial importance to determine 

whenever the haircut polypeptide behavior was a reflection of a rodlike shape. A plot of radius, 
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R, versus molecular weight, M, appears in Figure 7.10 and shows the stiff rod conformation of 

the cut off PCBL. The deviation of data corresponding to the two polymers PCBL from PCP and 

lab prepared can be assigned to the difference in refractive index increment used in data analysis. 

The graphical representation was constructed by also plotting a lab-synthesized by the primary 

amino initiation and not tethered PCBL of medium molecular weight, PCBL lab prerpared 

(Table 7.2).  

Table 7.2 Sample Code, Weight–Average Molecular Weight and Polydispersity Index of 

Cleaved and Lab-prepared PCBL Samples Used in This Study. 

Sample Code Mw/g mol
-1

 Mw/Mn 

PCBL from PCP 77,000 1.27 

PCBL lab prepared 202,000 1.10 
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Figure 7.10 Conformation plot for different molecular weight of the PCBL;  

PCBL from PCPs (CR7188) and PCBL Russo’s laboratory-prepared. 

 

Deviations from the rigid rod behavior become evident with the increase in the molecular 

weight. In a log – log representation, PCBL lab prepared with a calculated persistence length, ap, 
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of 1600Å, gave a Flory scaling parameter, νf,
34,35

 (Rg~M
ν
f) of ~0.80 for higher values of M 

(Figure 7.11).  
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Figure 7.11 GPC/MALS traces (A) and conformation plot (B) for lab-prepared PCBL 

(Mw = 202,000 kDa). Adapted with permission.
36
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Variations from rigid rodlike conformation in helicogenic solvents, as seen in Figure 4.13B,were 

reported before especially for PBLG.
5,16,17,37-41

 This finding might be an indication that Kratky – 

Porod model does not extend to the whole range of the molecular weight. It is also true that 

PCBL, as well as PBLG, seem to have higher values of the persistence length for a rigid rod 

conformation and increases with molecular weight.
41

 Applequist and Doty compared a PCBL 

chain of 262 Å persistence length with the values obtained for other rigid molecules such as 

deoxyribonucleic acid (ap = 500 Å) and cellulose trinitrate (ap = 117 Å) and found that the shape 

of the molecule is that of a free-draining coil.
31

 The wormlike model can be reconciled with the 

dynamical behavior of the PCBL on the base of the enhanced flexibility for PCBL helix. Studies 

performed on helix-coil transition of PCBL in helicogenical solvents or mixtures have pointed 

out to a “broken” conformation.
20-23,42

 The helices could be interrupted, consequently the chains 

might have missing intramolecular H-bonds which ultimately create multiple bends. Thus, the 

behavior of the PCBL-2 sample analyzed in this work can be explained through the prism of 

broken helices. Yet, several other speculations can be added to the picture of the PCBL 

conformational behavior. The polydispersity of the sample can be an artifact of the aggregation. 

It is also true that PCBL’s structure might favor branching, if the protective side chain benzyl 

groups are missing. Either debenzylation occurring in time or a not fully protected monomer 

precursor used in the polymerization, can constitute sources of branching. Hence questions can 

be posed on the GPC detection limit for very polydisperse high molecular polymers and a good 

option to answer can be asymmetric flow field flow fractionation, AF4.
43,44

 

 The future work requires control experiments on untethered, vendor-purchased PCBL. 

GPC\MALS will be used to evaluate molecular weights and polydispersity index. The polymer 

will be subjected to the same conditions of etching: 3h in aqueous 10% NaOH and also a longer 
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time (e.g. 48h). The non-etched polymer will be another sample to analyze. Before GPC\MALS 

experiments, the refractive index of the samples will be determined using a refractometer. These 

measurements will be the first indicators whether the polymer will undergo degradation.  
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CHAPTER 8 

SYNTHETIC PROCEDURES AND CHARACTERIZATION TECHNIQUES 
 

Synthetic procedures 

 

NOTE: 1. Chemicals used in the preparation of the materials described in the following sections 

are listed in the chapters 3,4,5,6 and 7 after Introduction section. 

 2. All particles prepared were stored as suspensions. 

3. Yield was calculated by taking an aliquot of a given silica-based suspension 

(usually 1mL) in a vial and was dried either at 100°C for 2-3h (plain silica cores) or in  

vacuo overnight (polypeptide composite particles). The weight observed was used to 

calculate the total yield and the solids concentration of the suspensions. 

4. Abbreviations  

8.1 Preparation of Silica Particles by Sol-Gel Method
1,2

(Chapter 3) 

Silica particles were prepared by a modified Stöber procedure in medium and large 

batches as described below. 

8.1.1  Medium-Size Batch 

In a two-neck 1000 mL round-bottomed flask connected to an overhead mechanical 

stirrer, 500 mL of EtOH was mixed with 40 mL of ammonium hydroxide (28%) to ensure a basic 

pH (9- 10, pH paper). Moderate stirring of the mixture (150-200 rpm) was performed over 15- 20 

min. Then a solution of TEOS (13.3 mL) in 53 mL of EtOH was added quickly, ~10 – 15s, 

(using a glass funnel with a long and wide leg) under vigorous stirring (~400 rpm) at 22-25°C 

and reacted for 2h. The obtained colloid was transferred in a tall bottle and a small aliquot was 

kept for further characterization. 

Typical yield: 5.2 g (c = 8.6 mg∙mL
-1

). 
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8.1.2  Large-Size Batch 

A larger batch of Stöber silica can be prepared using a 2000 mL two-neck flask in the 

same fashion as described above. Ethanol (1250 mL) and ammonium hydroxide (28%, 100mL) 

were mixed together and the same moderate stirring rate and time was kept as for medium batch. 

After homogenization, TEOS (33.25mL) in EtOH (132.5mL) was added fast and the reaction 

continued as described in section 8.1.1.  

NOTE: If a lower pH than 9 was noted after homogenization of the solution S1 for 15- 20 min., 

supplemental ammonium hydroxide was added to adjust to the optimal value (9- 10). 

Typical yield: 11.2 g (c = 7.4 mg∙mL
-1

). 

8.2 Preparation of Silica Particles by Reverse Microemulsion
3
 

 Cyclohexane, water, aqueous ammonia and surfactant were mixed together to form the 

reverse microemulsion. In a typical experiment, 17.5 mL of surfactant Igepal CO-520 and 225 

mL cyclohexane were fed in a 500 mL three-neck flask connected to an overhead mechanical 

stirrer. Then, 5 mL of ammonium hydroxide (28%) was added and the mixture was stirred for 10 

min. at 300 rpm. While the rate of the stirring was kept constant, 5 mL of TEOS was added fast 

(10 – 15 s) and the reaction continued overnight at room temperature. Methanol (50-60mL) was 

used to break the reverse microemulsion and extract the particles. The extracted particles were 

washed 3 times with methanol, 3 times with a mixture of methanol/water by centrifugation-

redispersion. Finally they were stored in methanol.  

Yield: 200 mg, (c = 10mg∙mL
-1

). 
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8.3 Preparation of Fluorescent Molecules FITC/APS
4-6

 and RhB/APS
7-10

  

(Chapters 4,5 and 6) 

 

8.3.1 Rhodamine B-APS Molecule  

Rhodamine B (0.485 g, 0.001 mol) was dissolved in 20 mL chloroform in a round bottom 

flask wrapped in aluminum foil, immersed in an oil bath and connected to an azeotropic 

distillation adapter (Dean Stark). This adapter had a condenser attached to it. The mixture of the 

dye was stirred and heated to the boiling point of the chloroform (61.2
o
C). Then 3-

aminopropyltriethoxy silane (0.223 mL, 0.001 mol) was injected dropwise into the hot solution 

while being stirred. The water formed during the condensation was collected via azeotropic 

adapter over r 30 min. and collected in the Dean Stark attachment. After water removal, the 

chloroform was distilled off from the reaction mixture and red crystals were obtained which were 

stored in brown bottles or transparent vials wrapped in aluminum foil. 

Yield: 0.684g (100%) 

FTIR: C=O (1772 cm
-1

), Si-O-C (1114 cm
-1

, 1070 cm
-
1, 1101 cm

-1
).  

8.3.2 FITC-APS Molecule  

Fluorescein isothiocyanate (50 mg, 0.12 mmol) and 10 mL of absolute ethanol were 

suspended in a 50 mL round-bottomed flask capped with a septum. The mixture was 

magnetically stirred for 30 min. and 3-aminopropyltriethoxy silane (0.5 mL, 1.2 mmol) was 

injected into the solution through the septum. The reaction proceeded for 18 h in the dark to 

prevent the dye from bleaching. 

Yield: 0.081g (100%). 

8.4  Synthesis of Fluorescent Covalently Tagged Silica Particles
4-6,11

 (Chapter 5 and 6) 

After the formation of the silica seeds (see Section 8.1.1), a separatory funnel containing 

75 mL TEOS five times diluted with EtOH (375 mL) was attached to the two neck flask. The 
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flow of the dropping solution was adjusted for 1 drop per minute (~ 50 μL). Using a syringe, a 

volume of 8 mL of FITC–APS adduct was injected into the silica seed suspension. The round 

bottom flask was wrapped in aluminum foil to prevent dye bleaching. The reaction proceeded for 

36 h under continuous stirring (200 rpm) at room temperature. Fluorescent particles were washed 

copiously with ethanol by repeated centrifugations-dispersions to a loose precipitate settled on 

the bottom of the PTFE tubes until the washing alcohol was not giving fluorescence signal when 

illuminated with a 488 nm wavelength laser.  

Typical yield: 19 g (c = 18 mg∙mL
-1

). 

 8.5 Protective Coating of Fluorescent Silica Particles.
11

 (Chapter 5 and 6) 

Silica coating was performed on particles as described in the previous step (8.4) in order 

to prevent dye leaking and bleaching. Control over the size of the final particle was 

intermediated by the use of the calculations by Zhang et al.: 

d = d0(V/V0)
1/3

                                        Eq. 8.1 

where d is the final diameter of 375 nm, d0 is the initial size of the silica seeds, V0 is the initial 

volume of the TEOS used in silica seeds preparation and V is the TEOS needed for a target 

particle size. Several sizes were prepared ranging from 250 nm to 1.3 μm. The detailed procedure 

for a target size of 375 nm is described below. 

From the original fluorescent suspension (8.4), 100 mL (4.74 g) were taken and diluted to 

200 mL total volume in a beaker. This mixture was first sonicated with an ultrasonicator 

operating at 40 amps for 5 min. to ensure a good dispersion of particles within the solution. Then 

the suspension was quickly transferred into a 500 mL two-neck round bottom flask connected to 

an overhead mechanical stirrer and wrapped in aluminum foil. Ammonia, 43 mL was added to 

create a basic environment validated by pH paper. This mixture was stirred for 15 – 20 min. for 
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homogenization. Separately 6 mL TEOS was diluted four times with absolute EtOH (24 mL) and 

the solution was swirled for homogenization. This mixture was transferred into a small 

separatory funnel (125 mL) attached to the two-neck flask containing the fluorescent particles. 

The flow rate was 50 μL per minute under continuous vigorous stirring (~400 rpm) at room 

temperature. The reaction continued over 24 h. Particles were washed 3-4 times with ethanol by 

centrifugation-dispersion and stored in brown bottles as alcoholic suspension. 

Typical yield: 5.92 g (c = 215 mg∙mL
-1

). 

8.6  Preparation of FITC Covalently Labeled Silica by Reverse Emulsion
3
 

Cyclohexane, water, aqueous ammonia (28%) and surfactant were mixed together to 

form the reverse microemulsion. In a typical experiment, 17.5 mL of surfactant Igepal CO-520 

and 225 mL cyclohexane were fed in a 500 mL three-neck flask connected to an overhead 

mechanical stirrer. Then, 5 mL of aqueous ammonia and 2 mL of FITC/APS complex were 

added and the mixture was vigorously stirred for 10 min. at 300 rpm to form the emulsion 

droplets. The flask was covered with aluminum foil to prevent dye bleaching. While the rate of 

the stirring was kept constant, 5 mL of TEOS was added fast, 5 – 10s, and the reaction continued 

overnight at room temperature. Methanol (50-60mL) was used to break the reverse 

microemulsion and extract the particles. The extracted particles were washed by centrifugations-

dispersions to lose precipitates 3 times with methanol, 3 times with a mixture of methanol/water 

and finally with methanol until the supernatant didn’t fluoresce when irradiated with a blue laser. 

The particles were dispersed in methanol as the storage solvent.  

Yield: 245 mg (c = 1 mg∙mL
-1

). 
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8.7  Functionalization of Silica Surface with Amino Groups
12-14

 (Chapters 4, 5 and 6) 

The functionalization with amino groups used 3-aminopropy triethoxysilane, APS as an 

amination agent. The volume of the amino precursor, APS, was computed as a function of the 

desired surface coverage. In a typical preparation, an aliquot of silica-protected fluorescent 

particles (~10 mL) was diluted with absolute ethanol (see Table 8.3). The suspension was 

sonicated for five minutes prior to use and quickly transferred into a 250 mL two-neck round-

bottom flask attached to an overhead mechanical stirrer and protected with aluminum foil. 

Afterwards APS was injected into the mixture with a syringe. The reaction proceeded for 18 h 

under stirring (200 rpm) at room temperature. The particles were washed by centrifugation-

dispersion to lose precipitates with ethanol until the ninhydrin test was negative indicating the 

absence of free amino groups in the suspension. For testing small aliquots (1 mL) of supernatant 

from the centrifuge tubes were loaded in vials placed in a water bath set at 45°C. Two drops 

(~100 μL) of a 10% alcoholic solution of ninhydrin was added. The presence of free amino 

group was indicated by a purple to blue coloration. Afterwards, the particles were washed by 

centrifugation-dispersion twice with anhydrous THF and stored in a dark vial suspended in the 

same solvent, anhydrous THF. The amounts of the particles, the desired coverage with amino 

groups and the volume of the amino silane are listed in Table 8.3 

Table 8.1 Amino-Silica Prepared for This Work Following the Section 8.7 Recipe 

Silica Amino-silica Volume 

of APS/μL 

#NH2/groups  

nm
-2

 

Chapter/ 

Section Abbreviation Mass 

/mg 

Abbreviation  Solvent 

/mL 

Yield 

/ mg 

SF1(175) 

(CR797A) 

770 SFA1 

(CR7157) 

90 600 15 4NH2 

(100%APS) 

Ch6, Ch5 

SF1(175) 

(CR797A) 

900 SFA2 

(CR7184A) 

90 820 20 2NH2 

(100%APS) 

Ch6, Ch5 

SF2(100) 

(CR7151) 

350 SFA3 

(CR83A) 

40 280 12 4NH2 

(100%APS) 

Ch6 
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Table 8.1 continued 

Silica Amino-silica Volume of 

APS/μL 

#NH2/groups 

nm
-2

 

Chapter 

/ 

Section 
Abbreviation Mass 

/mg 

Abbreviation Solvent 

/mL 

Yield 

/mg 

SF3(55) 

(CR7153B) 

300 SFA4 

(CR84A) 

40 240 19 4NH2 

(100%APS) 

Ch6 

S1(105) 

(CR7124) 

620 SA5 

(CR7153A) 

90 525 70 4NH2 

(100%APS) 

Ch5 

S1(105) 

(CR7124) 

360 SA6 

(CR822) 

50 300 30 4NH2 

(100%APS) 

Ch7 

 
8.8  Magnetic Particles with a Magnetite, Fe3O4, Core (Chapter 3) 

8.8.1  Preparation of Ferrofluid
15-17

 

A 500 mL three-neck flask connected to an in-line N2 source, using a long needle, a 

mechanical overhead stirrer and a condenser attached to a cooling bath was loaded with 150 mL 

of deionized, degassed water (overnight, by bubbling dry N2) and two aqueous solutions of iron 

chlorides prepared separately as follows: (I) 3.97 g of FeCl2 • 4H2O and (II) 6.33 g FeCl3 and 4 

mL of deionized, degassed water were added to each vial and injected sequentially into the three-

neck flask. The light brown mixture was heated under vigorous stirring (300 rpm) at 80°C. Then 

60 mL of 10 M NaOH were injected slowly through a septum over a period of 40 min while the 

temperature was kept at 80°C. The solution changed color from light brown to dark brown and 

finally became the color of the black mud. After the addition of the base, temperature was 

maintained at 80°C another 30 min. Then 100 mL solution of 0.6 M sodium citrate was added 

and the temperature was increased to 95°C. Heating and stirring continued for 90 min. The black 

slurry was cooled down to the room temperature while stirring continued. The black mud was 

poured into a large beaker (1000mL) containing 400 mL of acetone. The particles precipitated 

almost instantaneously. The precipitation step was repeated twice. Particles were collected with a 

strong Nd magnet each time by binding them to the flask’s wall surface. The exposure time to 

the magnetic field varied as a function of the dispersion concentration and volume. In order to 
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collect all particles the dispersion was separated into 200 mL beakers each containing ~100mL 

of magnetic solution. A volume of 100 mL and a concentration of~20 mg·mL
-1

 of ferrofluid 

required 3-5 minutes of magnet exposure for complete separation. Finally they were dispersed in 

water and had the consistency of a well-dispersed ferrofluid. In order to remove the excess base 

and citrate coating, iron particles were dialyzed over deionized, degassed water by using a 6-8 

KDa cutoff membrane made from regenerated cellulose which had been previously boiled in 

deionized water for 15 min. The dialysis took place in a glove bag over a period of 3 days in an 

inert N2 atmosphere to prevent particle oxidation. The dialysis water (deionized and degassed) 

was changed every 6 hours initially, and then over a longer period of time until the pH changed 

from 13 to 7. Finally the ferrofluid was washed twice with fresh deionized degassed water and 

stored as an aqueous solution (~150 mL) in an Erlenmeyer flask capped with a glass stopper 

insulated with parafilm.  

Yield: 4.13 g (c = 275 mg∙mL
-1

). 

8.8.2  Silica Coating of Magnetite Particles by Sol-Gel Method
1,2,11,16,18-20

 (Chapter 3) 

The protective silica coating of the magnetite particles was accomplished by using the 

well-known Stöber procedure with some modifications.
1,2,11,16,18-20

 A 250 mL two-neck flask was 

charged with a mixture of 85 mL absolute ethanol and 22.7 mL deionized and degassed water. 

To this mixture 20mL of (1.14 g of solids) magnetite dispersion was added and the dispersion 

was sonicated for 30 min. Then the flask was connected to an overhead stirrer and 3 mL of 

ammonium hydroxide (28%) were added. The mixture was stirred vigorously for 15-20 min. and 

the pH was measured. The optimum pH value for silica coating is 9. In a separate vial 1 mL of 

TEOS was diluted with 5 mL of absolute ethanol. The alcoholic solution containing the 

silanization precursor was injected into the ferrofluid mixture drop by drop, over 30 min. while 
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the mixture was vigorously stirred. The reaction continued for 12 h. The particles were then 

washed 3× with absolute ethanol and then 3× with deionized water using a magnet for 

separation. Finally they were suspended in water.  

Yield: 2.1 g (c = 15.7mg∙mL
-1

). 

8.8.3 Silica Coating of Magnetite Particles by Reverse Emulsion
3
 

 This procedure used the magnetite particles described in the section 8.8.1. 

Typically, 300 mL of cyclohexane, 24 mL Igepal CO-520 were mixed in a three-neck 500 mL 

flask connected to an overhead mechanical stirrer. Aqueous ammonia (28%), 7 mL, was added 

and the mixture was stirred vigorously (300 rpm) for 20 min. to allow the formation of the 

reverse emulsion droplets. An aliquot (~3mL) of original magnetic dispersion (suspended in 

water) was suspended in 10mL of cyclohexane by centrifugation-redispersion at least 5-6 times. 

After the concentration of the suspension was determined as described in the introductory notes, 

2.4mL of dispersion containing 17 mg magnetic particles previously ultrasonicated were 

introduced into the emulsion batch, while stirring. The stirring, at the same rate, was kept for 

another 15 min. TEOS, 6 mL was finally added to the above mixture and the reaction continued 

overnight, under stirring and at room temperature. Methanol (50-60mL) was used to break the 

emulsion. The particles were washed by centrifugation-dispersion several times with methanol, a 

mixture of methanol/water and again methanol. They were finally stored as a suspension (~40 

mL) in methanol. 

Yield: 250mg (c = 6.25 mg∙mL
-1

). 

8.8.4. Fluorescent Labeling of Silica-coated Magnetite Particles via Sol-Gel (Chapter 3) 

Silica coated magnetite was suspended in a basic ethanol solution (S1) in a 200 mL two- 

neck round bottom flask connected to an overhead mechanical stirrer. The mixture was sonicated 
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with a probe sonicator for 5 min. to ensure a good dispersion of the particles. In a separate vial, 

an alcoholic solution of TEOS (S2) was prepared. This solution and the amount of the 

fluorescent complex were injected simultaneously in the flask. The reaction was carried out at 

room temperature, with stirring (200-300 rpm) for 12 h. The particles were washed 3× with 

absolute ethanol, 3× with deionized water and finally suspended in absolute ethanol. A magnet 

was used to separate particles by immobilization to the side wall of the flask. The amounts of the 

dye complex and alcoholic solutions are listed in the Table 8.4. 

Table 8.2 Sample Code, Amounts of the Ferrofluid, Solutions S1 and S2, Amounts of the 

Dye Molecule and Yields for Preparation of the Fluorescent Magnetite Particles. 

Sample Code Ferrofluid/g Solution 1 (S1) 

EtOH/water/mL 

Solution 2 (S2) 

TEOS/EtOH/mL 

Dye complex Yield/g 

Si-RhB-Si-Fe3O4 0.42 34/8.5 0.21/5 68.2 mg 0.50 

Si-FITC-Si-Fe3O4 1.15 92/23 0.575/7 5 mL 1.75 

 

8.8.5  Fluorescent Labeling of Silica-coated Magnetite Particles via Reverse Emulsion
3
 

 In order to obtain FITC covalently labeled silica coated magnetite particles, the batch 

described in the step 8.8.3 was used. Typically, after overnight stirring of the magnetic sol, 1.5 

mL of the FITC/APS was added and the reaction was carried out for another 18 h under stirring 

at room temperature. Methanol was used to break the emulsion. The particles were washed 

several times with methanol, a mixture of methanol/water and again methanol using a magnet. 

They were finally stored as a suspension (~40 mL) in methanol. 

Yield: 210 mg (c = 5.25mg∙mL
-1

).  

8.8.6  Preparation of Silica-protected Fluorescent Ferrofluid via Sol-Gel (Chapter 3) 

The silica coating performed at this step had the role to prevent dye bleaching and 

leaking. The procedure followed the same well-known Stöber procedure as described in the 

previous steps. The magnetic sol used was described in the section 8.8.4. 
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Fluorescein isothiocyanate tagged ferrofluid (1.34 g) was dispersed in 107 mL absolute ethanol 

and 27 mL deionized water inside a two-neck flask. The mixture was probe sonicated for 5 min. 

The flask was connected to an overhead mechanical stirrer and 3.5 mL aqueous ammonia (28%) 

were added to ensure the basic pH (9) for condensation. The suspension was stirred (150 rpm) 

for 15-20 min. In a separate vial, a solution consisting of 12 ml absolute ethanol and 567.5 μL 

TEOS was prepared. This solution was added drop by drop to the magnetite mixture using a 

buret. The reaction continued for 12 h. Then the particles were washed 3× with absolute ethanol, 

3× with deionized water using a magnet and finally suspended in absolute ethanol. 

Yield: 1.56 g (c = 11mg∙mL
-1

). 

8.8.7  Functionalization of Fluorescent Silica-coated Magnetite Particle Surface with 

Bromine Groups.
3,21-24

 (Chapter 3) 

 

Silica-protected fluorescent magnetite particles (0.33 g) were suspended twice in dry 

toluene (~30mL) using a magnet. Then they were loaded as a dispersion (50mL toluene was 

used) in a three-neck flask immersed in an oil bath and connected to an in-line N2 and an 

overhead stirrer. To test for water traces, 5 mL of toluene was collected by distillation using a 

Dean Stark adaptor and a condenser attached to a cooling bath. The stirring rate was 150 rpm. In 

a separate vial 151 μL of (3-bromopropyl)trichlorosilane was mixed with 1 mL toluene. This 

mixture was injected in the ferrofluid suspension dropwise under stirring and N2 bubbling. The 

reaction continued for 18 h at 80°C and afterwards was cooled down to room temperature. 

Finally the particles were subjected 6× to centrifugation and redispersion in absolute ethanol and 

stored in the same solvent . 

Yield: 0.39 g (c = 7.8 mg∙mL
-1

). 
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8.8.8  Functionalization of Fluorescent Silica-coated Magnetite Particle Surface with 

Azide Groups.
3,21-24

 (Chapter 3) 

 

An amount of 0.226 g of brominated ferrofluid was ultrasonicated in 100 mL dry DMF 

for 5 min. and quickly transferred to a three-neck flask connected to an in-line N2 bubbler and an 

overhead mechanical stirrer. In a separate vial, tetrabutylammonium iodide (0.038 g, 0.001 mol) 

was added to 2 mL of dry DMF. This mixture and sodium azide (1.51 g, 0.023 mol) was 

subsequently introduced into the ferrofluid suspension under vigorous stirring (300 rpm). The 

mixture was heated at 80°C for 24 h and then cooled down to room temperature. The particles 

were washed three times with toluene and three times with DMF; each time, a magnet was used 

to separate the particles from the rinse.  

Yield: 0.30 g (c = 2.8 mg∙mL
-1

). 

8.9. Preparation of Magnetic Particles with a Cobalt Nugget
25

 

8.9.1  Preparation of Silica-coated Cobalt Particles (Chapter 6) 

In a four-neck flask capped with septa and fitted to a Branson probe ultrasonicator 

operating at 40% amplitude (sonicating horn 1/2”), 200 mL of freshly prepared 4  10
-4

M 

NaBH4 aqueous solution containing 4 10
-4

M citric acid was added. Cobalt precursor, CoCl2, 

200 μL 0.4M in deionized degassed water was injected through the septum using a syringe with a 

long needle (gauge 18, 10 in. long). The nitrogen flow rate and the ultrasonication power were 

adjusted to prevent solution from frothing. The formation of the cobalt particles was manifested 

immediately after CoCl2 addition by an intense grey coloration. Separately, a solution consisting 

of absolute ethanol, 800 mL, APS, 14.4 μL and TEOS, 169 μL (1/9 ratio APS/TEOS), was 

prepared (refer to this as solution C). After 1 min. of mixing CoCl2 and NaNH4 solutions, 

solution C was added rapidly to ensure silica protective coating of cobalt particles. The reaction 

continued 1 h under N2 bubbling and ultrasonication. After 1 h the cobalt containing sol was left 
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to rest undisturbed overnight. Then particles were collected both via a magnet and by 

centrifugation. They were washed several times with absolute ethanol and finally suspended 

(~15mL) in the same solvent. 

Yield: 65 mg (c = 4.3 mg∙mL
-1

). 

NOTE  All aqueous solutions were degassed by bubbling dry N2: the water used to prepare 

CoCl2 (overnight) and citric acid solutions and these solutions after their preparation (30-45 

min.). 

8.9.2  Functionalization of Silica-coated Cobalt Particles with Amino Groups
26

 (Chapter 6) 

In a 500 mL two-neck flask connected to an overhead mechanical stirrer, the cobalt 

particles obtained in the previous step were suspended in 200 mL of absolute ethanol. A solution 

25:75 of amino silane, AEAPTMS and passivator MTMS, 200 μL, was injected and the reaction 

continued 18 h under moderate stirring (150 rpm). The particles were collected by centrifugation 

and washed with absolute ethanol until no free amino groups were detected. This procedure is 

described in section 8.7. They were also washed twice with anhydrous THF and finally 

suspended in the same solvent. 

NOTE  At all steps involving ferrofluid suspension μ-metal was used to shield against the 

magnetic field from the hot/stirrer plate. The metal foils were inserted between the flask and the 

hot plate. Two of these foils were enough to completely screen the magnetic field. 

8.10  Preparation of Polypeptides and Their Monomer Precursors (Chapters 3, 4, 5and 6) 

8.10.1  Preparation of γ-Stearyl-L-glutamate, SLG 

L-glutamic acid (16 g, 0.11M), t-butanol (170 mL) and γ-stearyl alcohol (117.6 g, 0.434 

M) were fed into a three-neck flask immersed in an oil bath and connected to a condenser. An in-

line N2 bubbler was also attached to the flask. The temperature was raised to 40°C, under 
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magnetic stirring, and then 12 mL of sulfuric acid was added dropwise, using a dropping funnel. 

The mixture was further heated at 65°C for 45 min., by which time a clear solution formed. The 

oil bath was removed and 12 mL (0.084 M) of trimethylamine was added dropwise while stirring 

continued. A white precipitate formed. Afterwards the stirring was stopped. Ethanol (300 mL), 

deionized water (20 mL) and triethylamine (34 mL, 0.242 M) were added to give a thick white 

solid cake upon standing 30 min. The cake was allowed to rest overnight to complete 

precipitation. The solid was suction filtered and hot methanol (400 mL) and hot ethyl acetate 

(400 mL) were used to rinse the white solid sitting on the filter paper inside the funnel. Then the 

partially dried solid was transferred into a large beaker charged with 1000 mL mixture of 1:1 n-

butanol and deionized water. The mixture was heated to 95°C, under magnetic stirring until it 

became clear (about 60 min.). After dissolution, the mixture was allowed to cool down to room 

temperature. White crystals began to form and a complete crystallization was obtained overnight. 

The crystalline white solid was recovered by filtration and was vacuum dried at ambient 

temperature for 12 h.  

Yield: 27.15 g (63.14%). 

8.10.2  Preparation of γ-Stearyl-L-glutamate N-carboxyanhydride, SLG-NCA.
27

 

Dry γ-stearyl-L-glutamate (5.1 g, 0.0125 molar) and anhydrous THF were added to a 

three- neck round bottom flask equipped with a condenser attached to a cooling bath, a stirring 

bar, and connected to a nitrogen bubbler in-line to ensure the inert atmosphere and release the 

pressure formed during reaction. The flask was heated to 50°C using an oil bath, and triphosgene 

(1.26 g, 0.0042 molar) was added under stirring. After a clear solution formed over 1 h, the 

reaction continued for another hour. The mixture was concentrated to 1/3 of its volume and 

poured into twice its volume of cold, dry n-hexane. A white precipitate began to form and the 
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complete crystallization was obtained overnight upon refrigeration. In a glovebag filled with dry 

N2, the crystals were filtered by suction filtration and washed with cold hexane. The white solid 

was redissolved in dichloromethane and shaken with sodium carbonate (a small amount) and 

filtered through a pad of Celite deposited on cotton. The filtrate was concentrated and cold 

hexane was poured slowly into it. The recrystallization was performed thrice. Finally the white 

solid was dried in vacuo and freshly used in the next step.  

Yield: 3.97–4.24 g, 75-80% 

8.10.3  Synthesis of N
ε
-carbobenzyloxy-L-lysine N-carboxyanhydride, CBL – NCA and o-

benzyl-L-tyrosine N-carboxyanhydride, oBTYR-NCA.
27,28

 

 

The amounts of the chemicals involved in the preparation are listed in the Table 8.4. 

Table 8.3 NCA Name and Ingredients Used in the Polypeptide Precursor Synthesis. 

NCA Name 

Solvent  NCA precursor, CBL/oBTYR Triphosgene 

Anh. EtOAc/ 

mL 

 Mass/ 

g 

Molarity/ 

mmol 

Mw/ 

gmol
-1

 

Mass/ 

g 

Molarity/ 

mmol 

Mw/ 

gmol
-1

 

CBL-NCA 150  5.021 18.0 280.32 1.8 6.0 296.75 

o-BTYR-NCA 150  4.66 18.4 271.31 1.82 6.1 296.75 

 

In a N2-filled glove bag, anhydrous (Sigma) ethyl acetate, EtOAc, 150 mL was mixed with the 

amount of the NCA precursor in a flame-dried three-neck round-bottom flask. The flask was 

immersed in an oil bath and connected to dry N2 (passed through Drierite with indicator). A 

condenser attached to a cooling bath was also connected to the flask and capped with a glass 

stopper. Under N2 bubbling and magnetic stirring the slurry was brought to reflux. In a separate 

vial the desired amount of the triphosgene was weighed inside the hood in a glove bag filled with 

dry N2. The content of the vial was quickly added to the refluxing mixture and the reaction 

continued until the solution became clear (4-5 h). In situation when after 90–120 min. the 

solution was still turbid, supplemental amounts (0.2 g) of solid triphosgene were fed into the 
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mixture. After the solution turned clear, the reflux was kept for another hour. The clear solution 

was allowed to cool down to room temperature while stirring and bubbling nitrogen continued. 

Overnight, the solution was kept in the freezer at -5°C. Removal of unreacted amino acid and 

HCl was performed by washing oily NCA in a separatory funnel with icy water (75 mL) and icy 

solution (0.5%) of NaHCO3 (75 mL). Two layers formed each time and the upper was the 

organic phase of interest. Afterwards, the NCA was dried over anhydrous MgSO4 until the 

drying powder didn’t show clumping. The clear solution of NCA was then suction filtered 

through Whatman 90 mm filter paper. The drying steps and the filtration were performed in a 

glove bag. The volume of the mixture was reduced to 1/3 by evaporation inside the glove bag 

placed in the hood. Finally dry cold dry (Aldrich) hexane (100 mL) was poured slowly in the 

NCA solution. White crystals of NCA started to form. The crystallization took place overnight in 

the freezer at -5°C. The recrystallization was repeated twice in a glove bag filled with dry 

nitrogen as follows: NCA was dissolved in a minimum amount (15-20 mL) of dry THF and then 

cold dry hexane was poured slowly and the flask gently swirled until white crystals began to 

form. The flask was capped with septum and placed inside the freezer overnight for a complete 

crystallization. 

Yield: CBL-NCA- 4.43g, 86%; oBTYR-NCA-4.18g, 82%. 

NOTE 1. The dissolution of the NCA in THF during recrystallization steps might require 

warming the mixture. The flask containing NCA solution should be attached to a bubbler to 

release the pressure caused by the THF vapors. Preheated water (T~ 30-35°C) can be used to 

warm the mixture with continuous swirling. 

2. Triphosgene is a toxic chemical. Therefore, the reaction is conducted in a well-

ventilated hood and the HCl/phosgene gas formed during reaction should be passed through an 
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ammonia hydroxide solution for neutralization purposes. This is realized by connecting the 

bubbler to a flask containing aqueous ammonia. The triphosgene should be weighed inside the 

hood.  

8.10.4  Preparation of Alkyne-terminated Poly(γ-stearyl-L-glutamate), PSLG, and Alkyne-

terminated Poly(N
ε
-carbobenzyloxy-L-lysine), PCBL for Click Chemistry (Chapter 3) 

 

The alkyne-terminated polypeptides were prepared by ring-opening polymerization of the 

N-carboxyanhydrides of γ-stearyl-L-glutamate and N
ε
-carbobenzyloxy-L-lysine respectively. 

The reagents used are listed in Table 8.5. 

Table 8.4 Reaction Conditions Used in the Synthesis of Polypeptides. 

Polypeptide Solvent 

DCM/mL 

Monomer 

Concentration/% 

[M]/[I] SLG-NCA Propargyl  

amine 

 Mass/g Mol Mass/g Mol 

PSLG-

Alkyne 
50 2 100 1.0 0.002 0.001 0.0004 

PCBL-

Alkyne 
50 2.4 100 1.2 0.004 0.002 0.002 

 

The amount of the NCA was weighed inside a glove bag into a 50 mL round-bottom flask. To 

this, the solvent, anhydrous (Aldrich) dichloromethane, DCM, was added and the flask was 

capped with a rubber septum. The mixture was swirled until the NCA completely dissolved. 

Then the initiator, propargyl amine was dissolved in 1 mL of the solvent inside the glove bag and 

was injected into the NCA solution using a syringe. The flask was immersed in a water bath set 

at 30°C and connected to an in-line nitrogen bubbler to release pressure formed during reaction. 

The polymerization of NCA was allowed to continue for 72 h until no gas bubbling was noticed. 

Purification of the alkyne-polypeptides was performed as follows: the alkyne-PSLG mixture was 

concentrated to a thick solution by bubbling dry nitrogen and precipitated in acetone (~75 mL). 
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The so-obtained polypeptide was suction filtered through Whatman filter paper 55 mm circles, 

washed with acetone (~50 mL) on the filter paper and dried in vacuo overnight.  

Yield: 0.82 g 

The alkyne-PCBL mixture was concentrated in the same manner as afore described alkyne-

PSLG, precipitated in water (75 mL) and then suction filtered through the same filter paper type. 

Then the solid was redissolved in 20 mL of DMF and precipitated again in water (75 mL). The 

purified polypeptide was suction filtered dried in vacuo overnight.  

The presence of the alkyne end-group was confirmed using FTIR and MALDI-TOF mass 

spectrometry (Chapter 3). 

Yield: 1 g 

8.11  Preparation of Polypeptide Composite Particles Without a Magnetic Core  

8.11.1  Preparation of Poly(Nε-carbobenzyloxy-L-lysine) Composite Fluorescent Silica 

Particles (Chapter 4and 5) 

 

In a flame-dried round-bottom flask the designated volume of anhydrous (Aldrich) THF 

was loaded. To this amount of solvent CBL-NCA was added (see Table 8.7). The flask was 

capped with a rubber septum and stirred until the CBL-NCA completely dissolved to a clear 

solution. To this mixture amino functionalized particles were added under the inert atmosphere 

ensured by the glove bag. The flask, immersed in a water bath set to 35°C, was rapidly connected 

to a bubbler to release the CO2 formed during the reaction. After three days the production of the 

gas stopped an indication for reaction completion. The particles were subjected to centrifugation 

and dispersion five-six times with THF and finally suspended also in THF. They were stored in 

dark vials. The batches of the PCP PCBL particles prepared after this recipe are listed in Table 

8.7.  
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Table 8.5 PCBL PCP Particles by the Growing From Method and the Chapter Number of 

the Dissertation Where They Have Been Used 

Amino-silica  PCP 

Chapter/ 

Section 5Abbreviation Mass/mg Solvent/mL Abbreviation Yield/mg 

SFA1(CR7157) 400 50 PCP 

PCBL(175)H*(CR7160) 

600 Ch5, Ch4 

SFA2(CR7184A) 600 50 PCP 

PCBL(175)L(CR7188) 

800 Ch5, Ch4 

SFA4(CR84A) 180 50 PCP 

PCBL(55)L(CR810A) 

250 Ch5 

SFA3(CR83A) 255 50 PCP 

PCBL(100)H(CR810B) 

320 Ch5 

*The number represents the core radius and H, L high and low loading with amino groups. 

8.11.2  Synthesis of Poly(o-benzyl-L-tyrosine) Composite Silica Particles, PBTY  

(Chapter 6) 

 

Anhydrous (Aldrich) tetrahydrofuran, THF, was loaded into a flamed dried 150 mL 

round-bottom flask. Polypeptide precursor, o-benzyl-L-tyrosine N-carboxyanhydride, oBTYR-

NCA, was added and the flask capped with a septum. The mixture was swirled until it became 

clear. Then, amine-functionalized silica particles were added along with a stir bar. These 

reactions were performed in a glove bag under inert atmosphere of nitrogen. The flask was 

connected to a bubbler to release the CO2 formed during reaction. The reaction continued for 72 

h at 35°C. After the gas release stopped the particles were washed 6× with THF by 

centrifugation/dispersion and finally stored in anhydrous THF. The amounts of the reagents used 

in all PBTY PCPs syntheses are listed in Table 8.8. 

Table 8.6 Hybrid Particle, Solvent, Amine-core Amount, NCA, Yield and the Chapter 

PCP Particles Have Been Used. 

Hybrid Solvent/mL Amine-core Amount/g NCA/g Yield/g Chapter 

PBTY PCP230*L 

(CR7161) 

50 0.175 2.5 0.2 4,6 

PBTY PCP230 

(CR836) 

50 0.196 2 0.3 6 
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Table 8.6 continued 

Hybrid Solvent/mL Amine-core Amount/g NCA/g Yield/g Chapter 

PBTY PCP620 

(CR10.180) 

50 0.47 1.6 0.5 6 

*The numbers represent the core diameter 

8.12  Preparation of Polypeptide Composite Particles with a Magnetic Nugget 

8.12.1  Surface Grafting of Alkyne End-terminated PSLG and Alkyne End-terminated 

PCBL on Azido-fluorescent Silica-coated Magnetite Particles through Huisgen’s 1,3-

Dipolar Addition (Chapter 3) 

 

The reagent amounts used in synthesis are listed in Table 8.9. 

 

Table 8.7 Synthesized Hybrid Name, Amounts of Azido-functionalized Ferrofluid, 

Polypeptide, CuBr, PMDETA and Solvent and the Yield of Particles Obtained from Click 

Reaction. 

Hybrid Azide-

ferrofluid/g 

Polypeptide/g CuBr/g PMDETA/mL Solvent/mL Yield/g 

PSLG-

click 

0.230 0.6 0.091 0.26 30 0.25 

PCBL-

click 

0.155 0.3 0.091 0.26 30 0.172 

 

Azido-magnetic silica was dispersed in 10 mL of dry solvent (anhydrous (Aldrich) 

toluene for PSLG-click) and (anhydrous (Aldrich) tetrahydrofuran, THF for PCBL-click) inside 

a three-neck flask which was connected to a nitrogen line, a water condenser and an overhead 

mechanical stirrer. This suspension was degassed for 10- 15 min. In a separate vial the alkyne-

polypeptide was dissolved in 10 mL of the reaction solvent (toluene/THF) and was degassed for 

10 min. In another vial CuBr was weighed and dissolved in 10 mL of the solvent (toluene/THF). 

The vial was capped with a rubber septum and the mixture was stirred and degassed for 10 min. 

To the CuBr mixture, PMDETA was added using a syringe. These degassed solutions of alkyne 

polypeptide and CuBr were injected sequentially into the three-neck flask containing the azido-

functionalized ferrofluid. The flask was immersed in an oil bath and heated to 60°C for 1 h and 
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then to 40°C for 24 h. The reaction mixture was cooled down to the ambient temperature and the 

particles were separated by a magnet. Washings with the solvent used during click reaction were 

performed 3× to remove unreacted polypeptide. Afterwards the hybrid particles were dispersed 

in chloroform and extracted with water, a sodium salt solution of EDTA , and again with water 

to remove the copper. After copper removal the click colloid was washed 3× with chloroform 

(PSLG-click) or THF (PCBL-click). The coupling reaction for PCBL-click was also repeated 

using anhydrous (J.T. Baker) dimethylformamide, DMF. 

8.12.2  Preparation of Poly(o-benzyl-L-tyrosine) Composite Silica Particles with Cobalt 

Inclusions (Chapter 6) 

 

In a glovebag under nitrogen atmosphere BTYR-NCA (1 g) was added to anhydrous THF 

(30 mL) in a 50 mL flame-dried flask equipped with a stirring bar and capped with rubber 

septum. To this mixture, an aliquot of amino-functionalized particles (13.5mL, c=0.5 mg/mL) 

dispersed in anhydrous THF was injected into NCA solution. The flask was connected through 

tubing to a graduated cylinder placed upside-down in a beaker and filled with oil. This setting 

was used to monitor the release the CO2 during reaction. The reaction was performed over 3 days 

(no gas release noticed). The particles were collected by centrifugation. Several washings (4x) 

using centrifugation-dispersion method with THF were necessary to remove unreacted monomer. 

The obtained particles were stored as a dispersion (~8mL) in dry THF. 

Yield: 7 mg (c = 0.8 mg∙mL
-1

). 

8.13  Deprotection of the Side Chains
29,30

  

The amounts of the chemicals used in synthesis are listed in the Table 8.10. An amount of 

polypeptide-coated silica particles was placed in a Teflon tube and the storage solvent 

(anhydrous THF) reduced until the mixture became a slurry. Then a volume of HBr/CH3COOH 

(33%) (Aldrich) was added inside the hood. The tube was quickly capped and the mixture stirred 
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magnetically for 45 min. The light brown mixture was washed with toluene, acetone, neutralized 

with 3.5 mM NaOH, washed with water twice. Finally particles were dispersed in water. The 

amounts of the chemicals used in synthesis are listed in the Table 8.10.  

Table 8.8 Reaction Conditions for Deprotection of Benzyl-protected Poly(L-tyrosine)-

coated Composite Particles 

Sample Amount of the 

Particles/g 

Volume of 

HBr/CH3COOH/mL 

Yield of deprotected 

particles/g** 

Chapter 

PLYS175*H 

(CR7160) 
0.2 2 0.14 5,6 

PTYR230L 

(CR7161) 
0.21 5 0.15 5 

PTYR230 

(CR856) 
0.19 6 0.18 7 

PTYRmag 

(CR10.190B) 
0.025 0.5 0.017 7 

PTYR620 

(CR10.190A) 
0.2 3 0.185 7 

*the number 175 is the core radius and 230 and 620 represent the diameter of the core. The 

abbreviation “mag” means magnetic PCPs with cobalt intrusions. 

**Based upon aliquot analysis 

8.14  Aging with 3 mM NaOH Solution (Chapter 4) 

Particles subjected to aging (~50 mg) were concentrated to a slurry by removal of almost all 

storage solvent, using centrifugation. The 3 mM NaOH solution (3 mL) was poured over the 

thick suspension of particles. The aging took place in a glass vial under gentle stirring for 36 h. 

Particles were washed several times (six) with deionized water by centrifugation-dispersion and 

stored in water.  

Yield: 40 – 45 mg 

8.15 Particle Haircut with 10% NaOH (Chapter 7) 

An amount of the PCBL-coated silica particles (40 mg; Section 8.11.1) was mixed with 2 

mL of 10% NaOH aqueous solution. The mixture was stirred for 2 h. After aging, a white layer 

formed containing the polymer from the shell, which was separated by centrifugation (7,000 
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rpm). The white solid was washed 3× with water and collected each time by centrifugation. 

Finally the white solid was dried in vacuo at 40°C overnight. 

Yield: 12 mg 

8.16  Immobilization of Lipase from Candida Rugosa by Adsorption onto the PSLG-click 

Composite Particles
31,32

 (Chapter 3) 

 

PSLG click-particles (44 mg) were dispersed in absolute ethanol several times using a 

magnet. Particles were kept in 5 mL of the same solvent for 1 h. They were further washed with 

deionized water and a phosphate buffer solution (0.05M, pH=7.0). Separately a solution of lipase 

(2 mg•mL
-1

) was prepared in phosphate buffer. The particles were suspended in 5 mL of lipase 

solution and kept overnight at 30°C and under gentle stirring. Finally the particles were washed 

copiously with the buffer solution to remove the free lipase and were stored in the buffer (~5mL) 

for further investigations. 

Yield: 35 mg (c = 7.5 mg∙mL
-1

). 

8.17 Enzymatic Horseradish peroxidase-catalyzed Cross-linking of PTYR PCPs  

(Chapter 6) 

 

 In a scintillation vial 2.5 ml of PTYR PCPs (c = 10 mg•mL
-1

, Section 8.13, (CR856)) 

were suspended in phosphate buffer (pH=7). The enzyme catalyst, Horseradish peroxidase was 

first dissolved in the phosphate buffer (0.5 mL) and then added to the vial containing PCPs. The 

mixture components were mixed by vortex for 1 min. Hydrogen peroxide (5.0% aqueous 

solution, 2 mL) was added dropwise to the mixture at room temperature under air and gentle 

magnetic stirring. The reaction was complete after a total of 3h. Then the cross-linked material 

was washed by dispersion-sedimentation-decantation 3× with the phosphate buffer. 

Yield: 20 mg, (c = 4 mg∙mL
-1

). 
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8.18 Photo-cross-linking of PTRY PCPs Using Photo-induced Cross-linking of 

Unmodified Peptides, PICUP (Chapter 6) 

 

PICUP cross-linking reactions were carried out in a buffer comprised of 15 mM sodium 

phosphate (pH=7.5) and150mM NaCl. The ruthenium catalyst, Ru(bpy)3Cl2 was dissolved in the 

above described buffer in as a 3.125mM (2mL) solution and stored in a vial wrapped with 

aluminum foil until use. A stock solution (5mL, 62.5mM) of ammonium persulfate, was 

prepared in the same buffer. The PCPs solution was placed in either 1 mL Eppendorf tubes or 

disposable squared cuvettes modified as shown in Chapter 6. Some of these cuvettes were 

patterned on their bottom to allow the production of an architectural polycolloid. Some had 

drawn lines with a flamed syringe needle, other had circles and the rest covered with a black 

permanent marker. In the case of the magnetic PCPs a Ronchi ruling was positioned underneath 

the cuvette. The irradiation of the reaction mixtures used a light emitting diode of 470 nm 

wavelength, situated at a distance between 2 and4 cm from the sample. The exposure time varied 

between 5 and 10 minutes. The nonmagnetic PCPs were allowed first to sediment in a thin layer 

on the cuvette bottom. The magnetic PCPs were aligned using an external magnetic field provide 

by a permanent magnet. After the particles were settled on the bottom or aligned the catalyst was 

added in the dark using a simple cardboard box with a front-cut window. After 1 min. the 

ammonium persulfate was added and the visible light source was turned on. After reaction 

completion particles were gently suspended in the fresh buffer and kept for further analysis. All 

the settings are available in Chapter 6 as pictures. Table 8.11summarizes the amounts of the 

reagents and parameters used for PICUP reactions. The yield is assumed 100%. 
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Table 8.9 Reaction Conditions for Polycolloid Preparation by PICUP Method 

Sample Amount 

PCPs/mg 
Solvent/mL Catalyst/μL APS/μL Shape Setting 

Exposure 

Time/min. 

Picup-1 

 
40 0.5 30 60 random Eppendorf 5 

Picup-2 
60 0.75 20 40 maple leaf 

three-wall 

cuvette 
7 

Picup-3 
60 0.75 20 40 crystal-like 

three-wall 

cuvette 
10 

Picup-4 
80 1.2 30 60 macrocycle 

three-wall 

cuvette 
15 

Picup-5 
10 0.5 20 40 chains 

three-wall 

cuvette 
25 

*Picup-1 (CR11.1A), Picup-2 (CR11.2A), Picup-3 (CR11.2B), Picup-4 (CR11.2C) and Picup-

5(CR11.2D) 

 

Table 8.10 Supplemental Batches of Amino-Silica Prepared as Described in Section 8.7 

and Not Used in This Work (Available Upon Request) 

Silica Amino-silica 

Abbreviation Mass 

used/mg 

Abbreviation Initiator used Yield/mg 

S1 (CR7124) 1200 SA1(CR7130A) APS (4NH2/100Å
2
) 900 

S1(CR7124) 1200 SA2(CR7130B) APS:MTMS (25:75) 800 

S2(CR10169) 3200 SA3(CR10178) APS (2NH2/100Å
2
) 2500 

SF1(CR797A) 770 SFA1(CR7158) APS:MTMS (25:75) 500 

SF1(CR797A) 900 SFA2(CR7184B) APS:MTMS (25:75) 600 

SF2(CR7101B) 1000 SFA3(CR7163A) AUDTES  720 

SF2(CR7101B) 1000 SFA4(CR7162) APS 740 

SF2(CR7101B) 1000 SFA5(CR7163B) AEAPTMS 720 

SF2(CR7101B) 1000 SFA6(CR7167) APS:MTMS (25:75) 700 

SF2(CR7101B) 1000 SFA7(CR7168A) AUDTES:MTMS (25:75) 720 

SF2(CR7101B) 1000 SFA8(CR7168B) AEAPTMS:MTMS 

(25:75) 

700 
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Table 8.10 continued 

Silica Amino-silica 

Abbreviation Mass 

used/mg 

Abbreviation Initiator used Yield/mg 

SF4(CR7153B) 300 SFA10(CR814) APS:MTMS (25:75) 260 

MSCo1(CR760B) 50 MSACo1(CR7185A) AEAPTMS 40 

MSCo2(CR713B) 60 MSACo2(CR7185B) AEAPTMS:MTMS 

(25:75) 

45 

MSCo3(CR7120) 50 MSACo3(CR815) AEAPTMS:MTMS 

(25:75) 

45 

 

Table 8.11 Supplemental batches of PCPs by Growing From synthesized but Not Used in 

This Work 

Amino-silica PCP 

Abbreviation Mass used/mg Abbreviation Yield Mass Loss TGA/% 

SFA1(CR7158) 92 PCP PCBL(CR7164) 60 5 

SFA2(CR7162) 600 PCP PCBL(CR7166A) 400 4 

SFA10(CR814) 195 PCP PCBL(CR821) 220 4 

MASCo1(CR7185A) 30 PCP PBTY(CR7187) 40 35 

MASCo2(CR815) 30 PCP PBTY(CR7187) 45 43 

Abbreviations: Sx- nonfluorescent silica; SFx:-fluorescent silica; SAy-nonfluorescent amino-

silica; SFAy-fluorescent amino-silica; MSCo-magnetic silica-coated cobalt; MSACo-magnetic 

amino-silica-coated cobalt 

 

Characterization Techniques 

8.19  Dynamic Light Scattering, DLS 

A custom-built, multi-angle apparatus using an ALV-5000/E digital autocorrelator and a 

632.8 nm laser source was used to measure the size of the composite particles at each step during 

their preparation. Silica magnetic/nonmagnetic cores were dispersed in anhydrous ethanol 
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filtered through a 0.02μm Whatman filter with a guard 0.1 μm PTFE filter. Benzyl-protected 

polytyrosine silica hybrids were dispersed in dry THF.  After deprotection the colloid was 

dispersed in pure water.  Solvents such as ethanol and THF were filtered through 0.1 μm 

Whatman PTFE filter and water through 0.1 μm Millipore filter. Measurements were achieved at 

multiple scattering angles from θ= 30º to 90º. The size evaluation was made as follow: first the 

apparent diffusion coefficient was computed from Dapp= Γ/q
2
, where Γ represents the decay rate 

of the electric field autocorrelation function g
(1)

(τ) and q is the scattering vector magnitude, 

expressed as q= 4πnsin(θ/2)/λo, n being the solvent refractive index, θ the scattering angle and λo 

the wavelength in vacuo. Stokes- Einstein equation, D = kT/(6πηoRh), was used then to calculate 

the hydrodynamic radius, Rh. In this equation D represents the extrapolation of Dapp to q = 0, k is 

the Boltzmann’s constant, T is the absolute temperature at which the experiments were carried 

out and ηo is the solvent viscosity. The hydrodynamic radius is the actual radius when particles 

diffuse independently.  In order to evaluate the particle uniformity, the dimensionless ratio of the 

second cumulant to the square of the first (polydispersity index), μ2/Γ
2 

is analyzed. Another 

qualitative indicator of dispersity is the q-independence of Dapp: at higher angles the scattering 

contribution from larger particles diminishes rendering smaller particles relatively more visible. 

8.20  Transmission Electron Microscopy, TEM 

Transmission electron microscopy images of magnetic particles at different stages were 

obtained using a high resolution STEM (JEOL-2010 CX operating at 200KVand a JEOL 100-

CX with an accelerating voltage of 80KV electron microscopes were used for nonmagnetic 

particles. A dilute sample solution was prepared by dispersion of 20μL of particles in 1mL of 

appropriate solvent (water, ethanol, THF of dimethylformamide, DMF). The sol was sonicated 1-

2 min. to ensure a good dispersion of particles in the solution. From this solution a drop was 
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placed on top of a 400 mesh carbon-coated grid (Electron Microscopy Sciences) and dried either 

in the air, overnight or 2-3 hours in the vacuum. Particles having a polypeptide corona were 

placed on the bottom of a Petri dish and further exposed to only OsO4 vapors for 15- 20 min. The 

small silica particles obtained by reverse emulsion polymerization were stained with uranyl 

acetate to obtain a better contrast. Particle size visualized in the transmission electron microscope 

was analyzed using NIH Image J processor. 

8.21  Scanning Electron Microscopy, SEM 

 Scanning electron microscopy, SEM, has been used to visualize the polycolloid material 

and some of the PCPs and their cores. The images were recorded with a JSM-6610 apparatus. 

The instrument has a rotating stage which can take 7 samples. The resolution depth is 3 nm. 

Samples were prepared as follow: the stubs were first cleaned with ethanol to remove potential 

impurities. The stubs used had 12.7 mm diameter. Each stub is mounted on a pin which had 8 

mm height and a diameter of 3.2 mm (1/8"). Carbon conductive double adhesive coated sheet 

was placed on top of the stub by thumb pressing. Small pieces of mica sheets from Tedpella, Inc. 

were glued on the sticky conductive sheet. The specimen was grounded to the stub on the mica 

as drops with a digital pipette and allow to air dry 2-3 days or overnight in the vacuum at 

ambient temperature. Before visualization the non-conductive samples were sputter coated with a 

layer of Pt for 4 min. (1 min= 15 nm Pt deposition).  

8.22  Fourier-Transform Infrared Spectroscopy, FTIR 

Fourier transform infrared spectroscopy, FTIR, was used to confirm the characteristic 

adsorption bands. Spectra were obtained with a Bruker Tensor 27 FT-IR instrument having a 

Pike Miracle single-bounce attenuated total reflectance (ATR) cell and a ZnSe single crystal. The 

powder samples were directly deposited on the crystal. Composite particles were analyzed in 
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solution using the special cell attachment for liquid samples. The solvent was scanned first for 

background subtraction.  

8.23  Confocal Light Microscopy, CLM 

A Leica TCS SP2 confocal microscope, CLM, operating in reflection mode investigated 

the surface details of the morphologies. A YOKOGAWA, CSU22(2) confocal unit equipped 

with home built microscopic optics coupled to the rheometer instrument further described in the 

section was used to visualize the behavior of the fluorescent particles at Institute of Liquid 

Crystals, Kent State University, Kent, OH. 

8.24  Optical/Polarized Light Microscopy, OM/POM 

Optical images of particles suspended in liquid crystal solutions were recorded with an 

Olympus polarized light optical microscope, model BH2, equipped with an Amscope color CCD 

camera. 

8.25  Nuclear Magnetic Resonance Spectroscopy, NMR 

Proton spin-lattice relaxation times (T1) were measured at a field of 9.39T on a Bruker 

DPX-400 NMR spectrometer over the temperature range 20 to 38 C, at intervals of 2 C. The 

temperature interval was reduced to 1 C over the range 38 C to 45 C. The sample was allowed 

to equilibrate at least 5 minutes, at each temperature, in order to minimize temperature gradients 

over the volume of the NMR sample. Using a spectral window of 12 ppm, 32,000 data points 

were collected. Data was zero-filled once prior to Fourier transformation. Data processing and T1 

calculation were conducted using Bruker’s Topspin software, version 1.3. 
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8.26  Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectroscopy, 

MALDI-TOF 

 

A Bruker PROFLEX III MALDI-TOF mass spectrometer was used to obtain the matrix-

assisted laser desorption/ionization time of flight spectra of alkyne-PSLG and PCBL. The matrix 

used was dithranol and the solvents were chloroform and acetone, respectively. 

8.27  Electrospray Ionization, ESI 

ESI spectra were obtained with an Agilent Technologies, 6210 Time-of-flight LC/MS 

device under nitrogen flow. The electric field used for fragmentation was set at 215V. The 

samples were dissolved in chloroform and subjected to 12 scans each ranging between 0.195- 

0.375 minutes. 

8.28  Differential Scanning Calorimetry/Modulated Differential Scanning Calorimetry, 

DSC/MDSC 

 

DSC and MDSC were carried out using a 2920 MDSC V2 6A instrument from TA 

Instruments at a scan rate of 2 and 5 °Cmin
-1

 under nitrogen, for both heating and cooling. 

Samples, 40 μL solution in m-cresol, were placed in the DSC liquid cells. The sample weight 

was in the range of mg. The reference consisted of a pan filled with m-cresol identical to that 

used to hold the samples. 

8.29  Thermogravimetric Analysis, TGA 

Thermogravimetric analysis, TGA, of samples was obtained with a TGA Q50 apparatus 

from TA Instruments under nitrogen flow and a heating rate of 10°C min
-1

. Several experiments 

were conducted under air atmosphere at the same heating rate for the magnetite containing 

colloids.  
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8.30  Gel Permeation Chromatography/Multiangle Light Scattering, GPC/MALS 

The molecular weight of the alkyne-PSLG was measured by gel permeation 

chromatography with multiangle light scattering, GPC-MALS. An instrument equipped with an 

Agilent 1100 solvent degasser, Agilent 1100 pump and Agilent 1100 autosampler was used for 

separation. The instrument had a 10 μm, 50 x 7.8 mm guard column and two Phenogel 300 x 7.8 

mm columns from Phenomenex, Torrance, CA: (1) 10 μm, 10
5
 Å (10K-1000K) and (2) 10 μm, 

MXM, (100-10000K). The detection was assured by a Wyatt Dawn DSP-F multiangle light 

scattering detector, with a He-Ne laser and a Hitachi L-7490 differential index detector (32 x 10
5
 

RIUFS). An injection volume of 100 μL was used for separation. The mobile carrier was THF (1 

mL min
-1

) stabilized with 250 ppm BHT for PSLG and DMF + 0.1 N LiBr for PCBL. The 

refractive index of PSLG was taken as 0.080 ± 0.002 mLg
-1

.
33

 The refractive index of PCBL 

was taken as 0.123 mLg
-1

.
34

 

8.31  Asymmetric Flow Field Flow Fractionation, AF4 

Size measurements as well fractionation of stratified silica colloid were performed with 

an AF4 instrument, Eclipse 2 Separation System from Wyatt Technology Corporation, Santa 

Barbara, CA. The apparatus was equipped with a pump connected to an in-line vacuum degasser 

and an autosampler (1100 series, Agilent Technologies, Palo Alto, CA). This setting was used to 

deliver the mobile phase, deionized water with 200 ppm sodium azide, upon injection onto AF4 

channel. A Mylar spacer of 490 μm thickness and a trapezoidal shape with a tip-to-tip length of 

24 cm, an inlet width of 2.15 cm and an outlet width of 0.6 cm respectively, formed the assembly 

of the flow channel. The accumulation wall consisted of regenerated cellulose membrane 

(Wyatt) with a cutoff of 10 KDa. The instrument had connected an Optilab rEX differential 
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refractive index (DRI) detector and a Heleos multi angle light scattering, MALS, detector. The 

scattering measurements used a GaAs 50mW laser source with a wavelength λ0 = 658 nm. 

8.32  X-ray Photoelectron Spectroscopy, XPS 

The surface composition of the particles at all stages was investigated with a Kratos 

Analytical Axis 165 X-ray photoelectron spectrometer (XPS) with Al Kα-radiation with an 

energy of 1.48 KeV and a takeoff angle of 90°. For each sample, a high resolution spectrum and 

a survey spectrum of individual elements were recorded with pass energies of 40 and 80 eV, 

respectively. The peak locations were calibrated based on a C1s signal at 284 eV. Samples were 

dried in vacuo to a powder state. They were deposited on the copper conductive tape attached to 

the instrument sample holder. 

8.32  X-ray Powder Diffraction, XRD 

X-ray powder diffraction (XRD) analysis was performed at Center for Advanced 

Materials and Devices, CAMD, in a custom built instrument, using CoKα radiation (λ = 1.7902 

Å). The apparatus is equipped with a double crystal monochromator with silica (111) and 

germanium (220) crystals, a huber four-cycle goniometer capable of step size as low as 0.0001°, 

and a Canberra high purity germanium solid state detector. The sample holders consisted of 

quartz cut 6° from 0001 with 50 μm sample depth. The data were analyzed with MDI’s Jade 

software. The samples were dried in vacuo overnight and grinded to fine powders.  

8.33  Small Angle X-ray Scattering, SAXS 

SAXS measurements were performed at Stanford Linear Accelerator Center, SLAC, 

Stanford, California in the Stanford Synchrotron Radiation, Laboratory, SSRL, at the station 

bL1-4. Data collected were normalized by counts:  
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where I0 is the incident intensity, T is the transmission and t the rum time. The beam at SSRL is 

stable within a few percent, therefore the term I0 from equation 1 may be skipped and the counts 

expression simplified to: 

                                                

The correction for transmission is expressed by: 

  
            

             
                                          

where Ipre is the pre-sample ion chamber reading, Ipst is the post-sample ion chamber reading, 

Ipre(0) is the pre-sample ion chamber reading in air, no sample and Ipst(0) is the post-sample ion 

chamber reading in air, no sample. 

The final expression used to normalize by counts is: 

       
            

       
                            

The parameters involved in transmission correction were collected first with the ion chamber in 

place. Run time for pre- and post air with no sample readings was 300s. Then the heating stage 

from Mettler was positioned inside the sample chamber and the reading in air was repeated. Then 

the sample (a solution in a glass capillary from Charles Supper Company, D = 1.0 mm, wall 

thickness = 0.01 mm and length = ~80 mm) was fixed onto the hot stage and the readings pre- 

and post- with sample in place were recorded. After beam horizontal and vertical alignment of 

the capillary in the beam the ion chamber was removed and controlled temperature dependant 

runs were performed by using the Mettler hot stage. It has to be mentioned that the centering of 

the sample was facilitated by a camera which records the position of the capillary in the beam. 

The run time was 700s with an equilibration between runs of 5 minutes. The same procedure was 

followed for the solvent, m-cresol, itself with a run time of 1000s. The data were corrected as 
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described above. The solvent scattering was subtracted from the sample and the scattering 

difference was plotted against scattering vector magnitude, q, in a semilogaritmic representation. 

Conversion of the corrected intensity to natural logarithm and plotting agains q gave the Guinier 

representation of the acquired data.  

8.34  Rheology 

The rheological behavior was studied using a HAAKE MARS instrument with parallel 

plates belonging Prof. Chanjoong Kim from Institute of Liquid Crystals, Kent University, Kent, 

OH.  

8.35  Superconducting Quantum Interference Device, SQUID 

Magnetic measurements were performed on a SQUID magnetometer (Quantum Design 

MPM S XL-7) belonging to Prof. Carlos Rinaldi from University of Puerto Rico Mayaguez. 
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