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ABSTRACT 

The major allergen of mugwort pollen, Art v 1, is a significant contributor to hay fever in 

Europe and North America.  A notable motif in Art v 1 – characterized by clusters of contiguous 

β-arabinosides of hydroxyproline – was found to be a key recognition element for antibodies 

generated in response to the natural protein.  This dissertation details the synthesis of oligomers 

of β-arabinosides of hydroxyproline and the search to establish the minimal carbohydrate 

epitope of Art v 1. 

The key issue pertaining to the formation of glycosidic bonds is the α/β selectivity at the 

anomeric carbon.  To this end, using a 2,3,5-O-benzyl-1-thio-α-L-arabinofuranoside donor, we 

were able to obtain the Ara-Hyp monomer in 60% yield with 4:1 β:α selectivity using silver 

triflate and N-iodosuccinamide as activators.   

A dimer of β-Ara-Hyp was prepared by deprotection of the N- and C- termini of the β-

Ara-Hyp monomer respectively, after which peptide coupling of the two compounds was 

performed using HATU as coupling reagent to give the product, Boc-([β-L-Araf]Hyp)2-OAll, in 

60% yield.  Similar approaches were employed using a [2+1] or [1+2] fragment condensation 

strategy to produce the trimer, Boc-([β-L-Araf]Hyp)3-OAll, in 35% yield.  The tetramer, Boc-([β-L-

Araf]Hyp)4-OAll was produced using a [2+2] strategy in 49% yield. 

We’ve installed terminal amides on the oligomers to best mimic the extended peptide 

found in the natural allergen.  Production of oligomer-specific building blocks (Ac-([β-L-

Araf]Hyp)-OMe, Boc-([β-L-Araf]Hyp)-NHMe) allowed a more convergent synthesis towards the 

end-capped oligomers.  With this strategy, end-capped dimer, trimer, and tetramer were 

synthesized by fragment condensation in 48%, 35%, and 15% respectively.  The end-capped 

glycopeptides could then be fully deprotected by global debenzylation to give the final products 

in quantitative yield. 

xvi 
 



 

 Nuclear magnetic resonance and circular dichroism spectra were obtained for all 

synthetic glycopeptides.  Analysis of the CD spectra showed that the glycosylated proline 

oligomers exhibit a polyproline type II helical conformation.    While CD spectrum of the 

monomer showed that it was unordered, the elliptical curve of dimer, trimer, and tetramer all 

exhibited significant PPII characteristics.  Spectra obtained from 1H, 13C, and various 2D NMR 

was used for comparison with NMR data taken from the natural allergen.   
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CHAPTER 1: INTRODUCTION 

1.1 Carbohydrates in Biology 

It has been shown over the past couple of decades that carbohydrates play a more 

important role in biology1 than previously appreciated.   Sugars are found in abundance in 

nature as biopolymers.  Sugars can exist as oligosaccharides, polysaccharides, and/or 

glycosides in natural products, many of which display important biological activity.  Many 

carbohydrates have specific roles in biological processes ranging from signal transduction2 to 

immune response3.   

The functions of carbohydrates in living organisms are diverse.  For example, heparan 

sulphate (Figure 1.1), a linear polysaccharide in proteoglycans, is found on the plasma 

membrane of all animal cells and regulates a wide variety of biological activities.4  Gene 

mutation leading to the expression of modified proteoglycans has been implicated in conditions 

including rib malformations, craniofacial defects, and eye and lens defects.   

 

Figure 1.1 Structure of heparan sulfate subunit 

Over 500 N-acetylglucosamine (Figure 1.2) protein conjugates are involved in almost all 

aspects of cellular function.5  Both hypo-and hyper-glycosylation of these proteins have been 

associated with disease.   For example, altered glycosylation of proteins due to nutrient excess 

and/or stress has been associated with glucose toxicity,6 a.k.a. type-2 diabetes.  Reduced 

glycosylation leading to the hyperphosphorylation of tau proteins may also affect neuronal 
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function.  The hyperphosphorylated tau proteins aggregate into neurofibrillary tangles, one of 

the proposed mechanisms in the onset of Alzheimer’s disease.7 

 

Figure 1.2 N-acetyl glucosamine (GlcNAc) 

Advances in glycobiology and glycochemistry have enabled the development of 

carbohydrate-based experimental therapeutics for a variety of diseases, including HIV and 

cancer.8  Carbohydrate-based tumor antigens that induce only weak immunological responses 

have been successfully conjugated to carrier proteins to illicit a more powerful immune 

response.9  Advances in glycopeptide assembly have led to synthetic antitumor vaccines such 

as GD3 (Figure 1.3) that are conjugated to keyhole limpet hemocyanin (KLH), a well-known 

carrier protein.  

 

Figure 1.3 GD3-Protein conjugate vaccine for melanoma 

Various pathogenic bacteria are coated with polysaccharides, glycoproteins, and/or 

glycolipids which can be targeted by carbohydrate-rich protein-conjugated antibacterial 

vaccines.10  Vaccines against Streptococcus pneumonia, Neisseria meningiditis, and 

Salmonella typhi are now commercially available.   
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Carbohydrate-based antiparasitic vaccines are also in development based on the unique 

glycoconjugates found on the surface of many parasites.11  Plasmodium falciparum is the 

pathogenic parasite responsible for malaria, a disease which kills more than two million people 

per year.12  P. falciparum expresses large amounts of glycosylphosphatidylinositol (GPI) on the 

surface of its cells.  This glycolipid is responsible for the activation of the inflammatory nature of 

malaria.  A synthetic hexasaccharide GPI (Figure 1.4) conjugated to a carrier protein was 

administered to malaria-infected mice.  The mortality rate of the infected mice was reduced to 

ten percent.13   

 

 

Figure 1.4 Synthetic hexasaccharide GPI 

1.2. Hydroxyproline-Rich Glycoproteins 

The focus of this dissertation, Art v 1, is a hydroxyproline-rich glycoprotein (HRGP).  

Glycosides of hydroxyproline (Hyp) in the plant cell wall matrix were originally discovered by 

Lamport and co-workers in the 1960s.14  These glycoproteins and proteoglycans are widely 

distributed in the plant kingdom15 with functions associated with growth, cell differentiation, and 

plant defense.16  The HRGPs can be divided into four groups:  
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1) Extensins - Hyp-rich glycoproteins with repeating sequences such as Ser(Hyp)4 and 

are highly glycosylated with oligosaccharides of arabinose. 

2) Arabinogalactan proteins (AGPs) - typically contain arabinogalactan (Ara-Gal) chains 

that are attached to the protein via a Gal-Hyp linkage. 

3) Solanaceous lectins -  Hyp-rich lectins that consist of a carbohydrate-binding domain 

and an extensin-like domain.     

4) proline-rich proteins (PRPs) - a broad classification of molecules that are rich in 

Pro/Hyp, but which cannot be classified as any of the previous three groups. 

While the HRGP can be divided into groups, there are no distinct boundaries between them.  In 

fact, Art v 1 draws characteristics of all four HRGP groups.   

1.3 Art v 1: the Major Allergen of Mugwort 

 Artemisia vulgaris (Figure 1.5) is a widespread weed that belongs to the Asteraceae 

family.  The plant is native to temperate Europe, Asia, parts of North Africa, and has been 

naturalized in North America.  This species is known by several common names, amongst them 

are chrysanthemum weed, wild woodworm, felon herb, and mugwort, and typically blooms from 

July to September.   The pollen of this plant is a major contributor to hay fever (allergic rhinitis) 

in late summer to early fall.  Art v 1, the major allergen of mugwort, is recognized by up to 95% 

of mugwort pollen-sensitized patients.17  In Europe, mugwort pollen affects up to 14% of all 

patients with pollinosis.18  In industrialized countries of the world, Immunoglobulin E (IgE) 

mediated allergy affects more than 40% of the population.19   
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Figure 1.5 Artemisia vulgaris plant 

   A modular glycoprotein, Art v 1 has a tadpole-like structure that is comprised of two 

major domains known as the “head” and “tail” domains.  The head domain is similar to protein 

sequences found in plant defensins.  This globular domain, comprised of amino acids residues 

1-55 (Table 1.1), is cysteine-rich and stabilized by disulfide bonds.  The tail domain, comprised 

of amino acid residues 56-108 (Table 1.2), is the proline-rich domain.  This section contains 

about 20 proline residues and is heavily hydroxylated and glycosylated.  The prolyl domain 

facilitates protein folding20 and influences the conformation of the globular domain.21  

Table 1.1 Amino acid residues in the “Head” domain 

1-10 11-20 21-30 31-40 41-50 51-55 

AGSKLCEKTS KTYSGKCDNK KCDKKCIEWE KAQHGACHKR EAGKESCFCY FDCSK 

 

Table 1.2 Amino acid residues in the “Tail” domain 

56-60 61-70 71-80 81-90 91-100 100-108 

SPPGA TPAPPGAAPP PAAGGSPSPP ADGGSPPPA DGGSPPVDGG SPPPPSTH 

. 
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1.4 Natural Versus Recombinant Art v 1 

 During the primary post-translational modification (PTM) of the polyproline domain of 

HRGPs, most of the proline residues are hydroxylated by a prolyl-4 hydroxylase (Scheme 1.1).  

The hydroxyprolines are further modified by subsequent O-glycosylation with some type of 

carbohydrate molecule(s) during the secondary PTM.  The carbohydrates in natural Art v 1 

constitute about 30-40% of the mass of the molecule.   

 

Scheme 1.1 Two sequential post translational modifications  

The cDNA sequence of the Art v 1 glycoprotein was determined.17  Natural Art v 1 (nArt 

v 1) was characterized and expressed in Escherichia coli and produced as the recombinant 

allergen (rArt v 1).  The major difference between the natural and recombinant allergen is that 

rArt v 1 lacks the post translational modifications of the proline rich domain.  Any differences 

found in biological reactivity of the two allergens could be attributed to the carbohydrate moiety 

of the natural versus recombinant allergen.   

1.5 Two Novel O-Glycans in the Polyproline Domain 

The hydroxyproline-rich domain of Art v 1, also known as the tail section, contains amino 

acid residues 56-108.  Post translational modification of the tail section gives rise to two novel 

O-glycans that have been described by Leonard et al.22  Through the use of high field NMR, in 

conjunction with chemical and enzymatic degradation and mass spectrometry, Leonard reported 

the existence of a new carbohydrate determinant in Art v 1.  The three major peaks of the gel 

filtration chromatogram of alkali-degraded nArt v 1 are shown in Figure 1.6.   
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Figure 1.6 Gel filtration chromatogram of alkali-degraded nArt v 1.  Reprint with permission from 
Journal of Biological Chemistry 

 
The first and smallest peak (I) of the gel filtration chromatogram was attributed to 

incompletely digested material (Figure 1.6).  The second peak (II) was most intense and 

attributed to hydroxyproline-linked arabinogalactan, which the authors termed Hyp-

polysaccharide (Hyp-PS).  Natural Art v 1 was found to contain an 11.4:1 ratio of arabinose and 

galactose residues.  Analysis of Hyp-PS showed that it contained arabinose and galactose 

residues in a 5.5:1 ratio, about half of all arabinose residues in the glycoprotein.  Limited acid 

hydrolysis of Hyp-PS saw cleavage of the arabinose units while leaving the trigalactosyl-Hyp 

intact with a calculated [M+Na]+ ion mass of 640 Da.  When Hyp-PS was treated with α-L-

arabinosidase, similar results were found indicating that Hyp-PS composed of a galactosyl-core 

with α-L-arabinose residues attached.  Hyp PS has a β-1,3-linked galactan backbone with side 

chains of β-1,6-linked units similar to type II arabinogalactans (arabino-3,6-galactan),23 but with 

differing patterns of substituted arabinose residues.  Leonard et al. proposed that this be termed 

a type III arabinogalactan polysaccharide (AGP).  Mass spectrometry indicated that Hyp-PS has 

isoforms that contain 5-28 α-linked arabinofuranose residues in the positions indicated in Figure 

1.7.  β-Glucosyl Yariv reagent (Figure 1.8), a synthetic phenyl glycoside that specifically binds to 

arabinogalactan polysaccharides (AGP),24 was used to precipitate natural Art v 1.  This positive 

test confirms that Hyp-PS is an AGP.   
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.   

Figure 1.7 The unusual arabinogalactan (Hyp PS); arrows indicate potential sites for further 
arabinosylation 

 

 

Figure 1.8 β-glucosyl Yariv reagent 

 Type II arabinogalactans have known to be immunogenic with monoclonal antibodies 

binding to arabinose-containing epitopes.25  Surprisingly, Hyp-PS bound very weakly to 

antibodies from the sera of mugwort-allergic patients.22 A similar glycoprotein from Phleum 

pratense also disappointed investigators by its insignificant binding to IgE of patients.26   

 The final peak (III) in the gel filtration chromatogram of alkali degraded nArt v 1 

represents β-L-arabinoside of hydroxyproline (β-L-Araf-Hyp) (Figure 1.6).  Initially, it was 

thought that the carbohydrate domain of Art v 1 comprised only of α-arabinose and β-galactose 

residues.  However, upon treatment of nArt v 1 with α-arabinofuranosidase and β-galactosidase, 
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the product had a calculated mass much larger than the total peptide mass of the carbohydrate 

region of nArt v 1 (Figure 1.9).  The authors calculated that about 2.5 kDa of unaccounted mass 

still remained in the enzymatically treated glycoprotein.  This mass was eventually attributed to 

16-17 arabinose residues that were resistant to the α-arabinosidase.   

-arabino-

furanosidase -galactosidase

nArtv1

15 kDa

isoform
13 kDa

isoform

-Ara

-Ara

-Gal

-Ara

-Ara

-Gal

 

Figure 1.9 Enzymatic degradation of Art v 1. 

 Proton and two dimensional NMR data suggested that the 16-17 residues of “dark 

matter” were single β-arabinofuranosides linked to hydroxyproline (Figure 1.10a).  This novel O-

glycan does occur as a monomer, but anywhere from two to four adjacent β-arabinosylated 

prolines may be present (Figure 1.10b, 1). Unlike other well-known HRGPs having the Ser-Hyp4 

motif, no oligo-arabinosides were found in Art v 1. This second new type of O-glycan did react 

with antibodies from the sera of mugwort-allergic patients.  As reported earlier, comparison of 

the recombinant and natural allergen showed that a number of patients responded only to the 

natural Art v 1.27  This means that the post translational modifications, namely proline 

hydroxylation and subsequent β-arabinosylation, are influencing the conformation of the 

epitopes of the mugwort allergen.  While the exact mechanism of the stabilizing effects of 

arabinoglycosylated prolines are yet unclear, it has been implicated that β-arabinosides in the 

polyproline-domain does influence the allergenicity of Art v 1.21   
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Figure 1.10 a) The single β-L-Ara-Hyp motif, b) Tetramer of Hyp-β-arabinofuranoside 

1.6 Immunological Studies 

1.6.1 In vitro and in vivo testing of Art v 1 

 T-cells, or T-lymphocytes, are a specialized type of white blood cell that play a central 

role in cell-mediated immunity.  Initial testing showed that the post-translational modifications 

did not influence T-cell recognition of Art v 1.17  In a related study by Jahn-Schmid et al., 

peripheral blood from eighteen mugwort pollen-sensitized patients was collected based on case 

history and positive in vitro and in vivo tests.  These patients were found to have IgE that 

recognized both nArt v 1 and rArt v 1.  For this patient group, the nArt v 1 and its recombinant 

form elicited similar T-cell responses in peripheral blood mononuclear cells (PBMC) and in 

allergen-specific T-cell lines (TCL).28  

 T-cell epitopes were determined by TCL against both the natural and recombinant 

allergen.  The T cell proliferation assays utilized thirty-three overlapping 12-mer peptides that 

spanned the entire amino acid sequence of rArt v 1.  Out of seventeen patients, fourteen 

recognized an Art v 1 epitope at amino acids 22-36 in the cysteine rich region of Art v 1.  Five 

patients recognized an epitope at amino acids 43-54, also in the cysteine domain.  Only two of 

seventeen patients exhibited multiple dispersed epitopes, a rather low number in comparison to 
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known epitopes of other pollen allergens.  A follow up study by this group reported that the 

single T cell epitope Art v 122-36  is associated with the expression of HLA-DRB1*01.1*, 29  

 In the first clinical study of mugwort allergens, Schmid-Grendelmeier and co-workers 

investigated the allergenicity of nArt v 1 and rArt v 1 by both in vitro and in vivo experiments.30  

Thirty-two patients with mugwort pollen allergy (17 female, 15 male; 16-43 years old) and 10 

control subjects (7 female, 3 male; 21-41 years old) were included in this study.  The thirty-two 

mugwort allergic patients were selected based on having a clinical history of recurrent rhinitis, a 

positive skin prick test (SPT) response to mugwort extracts, and increased IgE levels to 

mugwort pollen.       

 The in vitro results agreed with the findings of Jahn-Schmid and co-workers.  It was 

reported that both nArt v 1 and rArt v 1 alone were able to induce T-cell proliferation in mugwort-

sensitized patients.  The proliferative responses of PBMCs to rArt v 1 and nArt v 1 were 

comparable, the only difference being that the recombinant form required longer incubation 

periods to induce lymphocyte proliferation.   

 The in vivo tests, however, showed that the recombinant allergen elicits a lower SPT and 

nasal provocation test (NPT) reactivity than the natural allergen.  While rArt v 1 was still able to 

elicit positive SPT and NPT, the amount of rArt v 1 required was significantly higher than that for 

nArt v 1.  The recombinant allergen showed a decrease in the size of the wheals induced in the 

SPT, while having a reduced response compared to that of its natural counterpart in the NPT. 

 

 
                                                           
1*Human Leukocyte Antigen (HLA) is the name of the major histocompatibility complex (MHC) in 
humans.  MHC mediates the interaction of leukocyte (white blood cells) with other leukocytes or body 
cells. 
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1.6.2 IgE recognition of Art v 1 

 Immunoblots, radioallergosorbent tests (RAST), and enzyme-linked immunosorbent 

assays (ELISA) were used to evaluate the IgE binding properties of natural and recombinant Art 

v 1.17  Immunoblots and RAST showed that two groups of patients exist: one group that exhibits 

similar IgE recognition of nArt v 1 and rArt v 1, and a second group that showed significantly 

lower or no reactivity to the recombinant allergen.  ELISA experiments showed that rArt v 1 only 

caused a partial (30%) inhibition of IgE binding to nArt v 1.   

 Oberhuber and co-workers published a paper in 2008 detailing the analysis of IgE 

binding profiles in a group of mugwort-allergic patients.27  Sera from 100 pediatric mugwort 

allergic patients (62 males, 38 females; 1-19 years old) were tested.  Patients all showed 

hypersensitivity to mugwort based on a SPT from mugwort pollen extract and a positive RAST.   

In order to evaluate IgE binding activity, ELISA experiments were performed with purified 

nArt v 1 and rArt v 1.  The natural allergen was recognized by the serum of 79 of the 100 

patients.  As for the recombinant allergen, only 39 patients’ sera recognized the protein, a 50% 

drop in allergen recognition as compared to nArt v 1.   

More recent work has shown that glycosylation of the natural Art v 1 protein contributes 

to the thermal stability of the allergen in that it aids in the complete refolding of the glycoprotein 

after heat denaturization, something that the recombinant allergen could not replicate.20  

Razzera and co-workers reported, after comparing NMR chemical shifts of the recombinant and 

naturally glycosylated Art v 1, that the carbohydrates in the polyproline domain affect the 

defensin domain in the natural molecule (Figure 1.11).21  These results, in combination with the 

findings of Himly and Oberhuber et al.,17, 27 strongly suggest that, for a significant group of 

patients, the involvement of post-translational modification and the resulting carbohydrates are 

crucial in the formation of IgE binding epitopes of Art v 1.   
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Figure 1.11  NMR solution structure of Art v 1.  a) Defensin domain in dark blue, intermediate 
region in blue, and polyproline domain in light blue.  b) Ribbon illustration of Art v 1.  Reprinted 
with permission from Elsevier. 
 

1.7 A Related Allergen from Ambrosia 

 Altmann and coworkers recently characterized a new allergen, Amb a 4 (Figure 1.12), 

from ragweed (Ambrosia artemisiifolia).31  The isolated ragweed pollen protein consisted of a 

defensin-like domain with a 50% homology to Art v 1 (Table 1.3).  The C-terminal 

hydroxyproline-rich domain contained small amounts of the single hydroxyproline-linked β-

arabinoside residues also found in Art v 1.  The recombinant ragweed protein reacted with the 

sera of more than 30% of weed pollen allergic patients. 

 

Figure 1.12 Cartoon representations of Art v 1 and Amb a 4 
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Table 1.3  Proline-rich domains of Art v 1 and Amb a 4. 

 56 61 71 81 91 101 

Art v 1 SPPGA TPAPPGAAPP PAAGGSPSPP ADGGSPPPPA DGGSPPVDGG SPPPPSTH 

Amb a 4 -NPGP PPGAPKGKAP APSPPSGGGA PPPSGGEGGD GPPPPEGGEGG GGDGGGE 

 

1.8 Arabidopsis CLV3 Glycopeptide: Another β-L-Arabinoside of Hyp 

 CLAVATA3 (CLV3) is a glycopeptide gene secreted from Arabidopsis thaliana plants.32  

The CLV3 gene is expressed in the shoot apical meristem (SAM), which continuously produces 

organs for the plants, and is a key component in the regulation of stem cell renewal and 

differentiation.33  Overexpression in the CLV3 gene can lead to developmental retardation.32  It 

has been reported that the mature CLV3 peptide found in CLV3-overexpressing Arabidopsis 

plants feature a 13 amino acid peptide.34  This peptide features a trans-4-hydroxyproline at the 

seventh residue (Hyp7) that is attached to three L-arabinose residues via β-1,2-linkages (Figure 

1.13). In testing the restrictions of stem cell activity by synthetic peptides varying in the number 

of carbohydrates attached to Hyp7, it was found that the biological activity increased with the 

length of the arabinose chain.   

 

Figure 1.13 CLV3 
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1.9 Closing Comments  

 Small amounts of Art v 1 have been isolated from the pollen of Artemisia vulgaris.  The 

isolation and chemical characterization of the allergenic epitope of Art v 1, however, is not 

practical through extraction and partial degradation of the natural protein.  There is much 

difficulty in obtaining pure compounds due to the heterogeneous nature of the glycoprotein.  

Chemical degradation techniques typically lead to a complex mixture of amino acids.  In order to 

clearly identify the carbohydrate motif that contributes to the epitopes of Art v 1, homogenous 

compounds of monomer, dimer, trimer, and tetramer must be obtained by way of chemical 

synthesis.  This dissertation describes our efforts to synthesize homogenous oligomers of 

hydroxyproline β-arabinosides.  The following chapters will present the synthetic methods, 

challenges, and triumphs we’ve endured upon our path to this goal. 
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CHAPTER 2: SYNTHESIS OF A MONOMER OF 4-O-[β-L-ARABINOFURANOSYL]-(2S,4R)-
4-HYDROXYPROLINE 

 
 

2.1 Importance of Arabinosides 

Both enantiomers of arabinose exist in nature.  β-Linked homopolymers of D-arabinose 

can be found in the cell wall of Mycobacterium tuberculosis and Mycobacterium leprae (Figure 

2.1),35 while the L-form is an important component of plant cell walls.36  As described in Chapter 

1, we are specifically interested in contiguous β-L-arabinofuranosides of hydroxyproline, a motif 

that is found in mugwort pollen.  We believe this constitutes a significant allergenic epitope of 

the Art v 1 glycoprotein.  The chemical synthesis of arabinosides, to further investigate their 

biological significance, has therefore become an important endeavor.    

 

Figure 2.1 Arabinofuranosyl residues found in the cell wall of mycobacterium                          

2.2 Challenge of β-Arabinoside Synthesis 

Methods for the stereoselective introduction of furanosides are not as well developed as 

for their pyranoside counterparts.37  The key issue pertaining to the formation of glycosidic 

bonds is the α/β selectivity at the anomeric carbon.  Two major factors that influence this 
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stereochemistry are highlighted in Figure 2.2 and will be discussed in more detail in the 

following sections. 

 

Figure 2.2 Factors that influence stereochemistry in glycosylation. a) The anomeric effect, 
although strong for pyranoses, offers little selectivity for its furanose counterpart.  b) 
Neighboring group participation favors the 1,2-trans-glycoside. 

 

2.2.1 The anomeric effect 

  The anomeric effect is a stereoelectronic effect that describes the tendency of incoming 

substitutents on the anomeric carbon of a pyranose ring to prefer the axial orientation.  This 

effect is typically used by carbohydrate chemists to control the stereoselectivity of a 

glycosylation reaction.   

The anomeric effect is well understood and controlled for pyranoses that have a strong 

conformational preference for a chair (Scheme 2.1),38 but the effect is weak for furanoses and 

by itself is not sufficient to influence α/β selectivity.39  Furanoses may have up to 20 low energy 

twist and envelope conformations, while able to adopt an infinite number of conformations 

differing slightly from those ideal conformations.40 These numerous low energy conformations 

can lead to many different transition states during glycosylation that does not bias the anomeric 

selectivity.  If the conformations were more rigid, it might be possible to have more 

stereocontrol.     

  
 
Scheme 2.1 Stereoselectivity utilizing the anomeric effect 
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 The Magnusson group published a paper in 1994 detailing the anomeric effect in 

conformationally restricted furanosides.39  They chose a furanose that was fused, at C-3 and C-

4, with a norbornane ring system (Scheme 2.2).  The rigidity of the norbornane ring restricts the 

conformational flexibility of the furanose ring.  With all the carbons in one plane, the only two 

conformations allowed would be those with the oxygen either above (oE) or below (Eo) the plane 

of the ring.  Upon O- and S-furanosylation of this fused ring system, they found that the 

anomeric substituent did indeed favor what they called the “pax” conformation, which is the 

pseudo-axial conformation.  This work showed that with strict conformational control of the 

furanose ring, one can control the stereoselectivity of the furanosylation by invoking the 

anomeric effect. 

 

Scheme 2.2 Conformational restriction leading to increased anomeric effect in furanoside 

2.2.2 Neighboring group participation 

Neighboring group participation (Scheme 2.3), a phenomenon widely used to good 

advantage by carbohydrate chemists to control stereoselectivity at the anomeric carbon, heavily 

favors the formation of the 1,2-trans product. Scheme 2.4 shows the glycosylation of Fmoc-

protected hydroxyproline allyl ester (4) with a sulfoxide donor 7 having a participating pivaloyl 

group at C-2 giving the only the trans product 8.38    Unfortunately for us, this would lead to the 

formation of the α-arabinoside.   
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Scheme 2.3 Neighboring group participation 

 

Scheme 2.4 Stereocontrol via neighboring group participation 

2.3 Previous Efforts to Produce β-Arabinosides 

Amongst some of the earliest work in the effort to obtain 1,2-cis-arabinosides, 

Claudemans and coworkers employed glycosyl halides (e.g., 10) which were masked at C-2 by 

a nonparticipating group, viz a benzyl ether, for the synthesis of 9-β-D-arabinofuranosyladenine 

(11) (Scheme 2.5).41  They later reported that, mechanistically, the glycosylation exhibited both 

SN1- and SN2-type properties and, regardless of the configuration of the C-1 halide, having a 

nonparticipating group at C-2 gave the more stable trans ion pair which would yield the cis-

product.42  Furthermore, the rate of glycosylation was increased with each hydroxyl group 

having been protected as an “armed”43 benzyl ether as opposed to a more electron withdrawing 

species.44  

 

Scheme 2.5 Early efforts to obtain 1,2-cis-arabinosides 



20 
 

 Prandi and coworkers published papers in 2000 showcasing 1,2,5-orthoester 13 in the 

synthesis of a penta-arabinofuranoside of the mycobacterial cell wall (Scheme 2.6).45  The 

orthoester intermediate 13 can be converted to either a glycosidic donor 12 or acceptor 14.  The 

stereoselectivity of the subsequent glycosylation reaction is controlled by the protecting group at 

C-2.  α-Arabinosidic linkages (viz, 15) could be made with a participating C-2 acetate, while β-

linkages (viz, 16) are accessed through a para-methoxybenzyl (PMB) ether at C-2. 

 

Scheme 2.6 Use of 1,2,5-orthoester as donor and acceptor 

Intramolecular aglycon delivery (IAD) is a more recent approach to synthesize 1,2-cis-

glycosides (Scheme 2.7).  In this method, the glycosyl acceptor is first tethered to the protecting 

group at C-2.  Activation of the anomeric leaving group, along with subsequent formation of the 

oxacarbenium ion, allows for the delivery of the tethered nucleophile from the same face to form 

the new glycosidic bond.   Prandi’s use of a PMB ether (Scheme 2.6) at C-2 to facilitate an 

intramolecular aglycon delivery to give only the β-linked polysaccharides is an example of this 

strategy. 
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Scheme 2.7 Intramolecular aglycon delivery  

 More recently, Shinohara et al. reported on the synthesis of Arabidopsis CLV3 

glycopeptide utilizing IAD for the installation of its β-arabinofuranosidic linkages.34  The CLV3 

peptide is a 13 amino acid glycopeptide containing a β-L-triarabinosylated hydroxyproline 

(Scheme 2.8, 22).  The three arabinose residues are linked to one another via β-1,2-linkages.  

Nα-Fmoc hydroxyproline benzyl ester (18) and thioglycoside donor 17 were treated with DDQ to 

give the mixed acetal 19 in 74% yield.  Activation of the anomeric thio leaving group gave the β-

glycoside 20 in 82% yield.  This process is repeated twice more to give the protected Hyp 

triarabinofuranoside 22.  Incorporation of the synthetic glycopeptide into the 13 amino acid chain 

was done by solid phase peptide synthesis.  Comparison of the mono-, di-, and 

triarabinosylated CLV3 peptides showed that increased arabinosylation corresponded to 

increased biological activity.  

 

Scheme 2.8 Synthesis of CLV3 glycopeptide utilizing IAD 
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 Lowary’s group showed that β-arabinofuranosides could be made with high 

stereoselectivity through a 2,3-anhydro sugar intermediate 24 (Scheme 2.9).46  Transformation 

of a thioglycoside triol 23 into a 5-benzoyl-2,3-epoxide donor 24 was achieved in one step.  

Subsequent activation of the leaving group and addition of an alcohol nucleophile gave 

glycosides 25 with good β-selectivity.  However, increasing the steric bulk of the alcohol 

nucleophile led to lower β-selectivity.  Acceptors bearing electron withdrawing protecting groups 

also suffered a slight loss in selectivity. Nonetheless, upon treatment of the epoxide 26 with 

LiOBn in benzyl alcohol and sparteine (27), the β-arabinoside 28 could be obtained in desired 

regioselectivity and great yield. 

 

Scheme 2.9 stereoselective β-arabinosylation through a 2,3-anhydro sugar intermediate 

Boons and co-workers devised a practical approach to the stereoselective synthesis of 

β-L-arabinofuranosides.47  Bearing in mind that furanosides have many low energy 

conformations, the Boons group sought to lock the thioglycoside donor into a conformation that 

would favor nucleophilic attack from the β-face.  Using density functional theory (DFT) quantum 

mechanical calculations, the optimized geometries of the arabinofuranosyl oxacarbenium ion 

were found to be the 3E and E3 conformations (Figure 2.3a).  The E3 conformation permits a 

staggered relative orientation of the substituents for the 1,2-cis attack and thus would favor the 

formation of a β-glycoside.  In order to apply the principle of conformational restraint, they 

employed a 3,5-O-di-tert-butylsilane protecting group that gave a [6,5] bicyclic molecule (Figure 
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2.3b), in which the 6-membered ring would be a chair, locking the furanose ring in the desired 

E3 conformation.   

 

Figure 2.3  a) In the 3E conformation, the C-2 substituent is axial, resulting in steric interactions 
that favor alpha attack.  The E3 conformation allows the C-2 substitutent to be in a pseudo-
equatorial orientation, favoring a beta attack at the anomeric carbon. b) C-3 and C-5 alcohols 
protected as a silyl acetal.   
 

With the thioglycoside donor 29 in-hand, Boons’ group investigated several different 

glycosyl acceptors (Table 2.1, Entries 1-3).  For most pyranose derivatives with a free primary 

alcohol at C-6 (Entries 1 and 2), activation of the donor with NIS/AgOTf provided excellent 

selectivity ranging from 15:1  β/α  to 100% β, along with good chemical yields, ranging from 

82% to 95%.  In the one case where the overall yield was only 69%, β-selectivity was 100% (not 

shown).  Pyranoses with a secondary C-3-OH acceptor (e.g., Entry 3) were also studied under 

the same activation conditions.  Stereoselectivity in these reactions slipped to 8:1 β/α, while the 

yields were in the mid-80’s.   
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Table 2.1 Selected examples of glycosylation with L-arabinosyl donors.  Reagents and  
conditions: NIS/AgOTf, DCM, -30 °C 

 

 DONOR ACCEPTOR β/α ratio / 

YIELD 

GLYCOSIDE 

 

 

1 

 

 

 

29 

 

 

30 

 

     

   β/α = 15/1 

91% 

 

31 

 

 

2 

 

 

29 

 

 

32 

 

 

        β only 

94% 

 
33 

 

 

3 

 

 

29 

 

 

34 

 

β/α = 8/1 

82% 

 

 

 

35 

 

4 

 

 

36 

 

 

30 

 

β/α = 3/1 

88% 
 

37 

 

5 

 

 

 

36 

 

 

32 

 

β/α = 2/1 

85% 
 

38 
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In order to prove that the conformationally restricted donor 29 was responsible for the 

excellent β-selectivity, the same primary alcohols mentioned above were reacted with a 2,3,5-

tri-O-benzylated  thioglycoside  donor 36 (Entries 4 & 5).  Although the chemical yield remained 

good, as expected, the β/α ratio dropped significantly (Entries 1 vs 4, 2 vs 5).  This provides 

empirical proof of the effectiveness of conformational control in the synthesis of β-

arabinofuranosides. 

Crich and co-workers simultaneously developed a similar approach to assemble the β-D-

arabinofuranothioglycosyl donor, but first investigated a 3,5-O-benzylidene protected donor (39, 

Figure 2.4) since the six membered ring had provided good conformational control in the case of 

pyranoses (e.g., glycosylations with 40).48  Unfortunately, in the case of furanosides, donor 39 

was difficult to synthesize and found to not be as stable as the silylene protected donor.    In 

addition   to   being   less   stable, the benzylidene-protected thioglycoside 39 gave rise to lower 

β:α selectivity and typically poor yields.49   

 

Figure 2.4 Benzylidene method adapted for β-D-arabinofuranoside formation  
 

Since a more robust protecting group was needed, Crich and coworkers chose to move 

ahead with the 3,5-O-(di-tert-butyl-silane) arabinofuranoside donor 29 (Scheme 2.10).  The list 

of acceptors they employed included methanol, cyclohexanol, and pyranoses with free primary 

or secondary alcohols.  Based on their success with the synthesis of β-thiomannopyranosides,50 

they also decided to investigate the sulfoxide method51 for the formation of β-

arabinofuranosides.  It was interesting that activation of the thioglycoside donor 29 (Scheme 

2.10) with NIS/AgOTf and reaction with cyclohexanol provided a β/α  ratio of only 1.5:1 (41), 
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while activation of the corresponding sulfoxide donor 42 with Tf2O  and reaction with 

cyclohexanol provided a β/α  ratio of 10:1. 

 

Scheme 2.10 Sulfide and sulfoxide donors. a) cyclohexanol, NIS/AgOTf, CH2Cl2 -30 °C  RT, 
b) Tf2O -78°C, 30 min, then cyclohexanol 

  Other activators were also employed, but in the end the NIS/AgOTf combination 

employed by Boons and co-workers still gave the best β/α ratio when it came to using the L-

arabinofuranothioglycoside as donor.  Other methods of activation that did not prove useful 

were believed to be less successful because the activators did not completely convert the 

donors into glycosyl triflates, a hypothesis that was supported by low-temperature NMR 

experiments.49  A point to bear in mind is that only L-arabinosides were activated with 

NIS/AgOTf.  The D-thioarabinosides in this study were activated in other ways. 

Crich concurred with Boons’ hypothesis that the intermediate in the glycosylation is most 

likely the oxacarbenium ion in the E3 conformation.  Since the publication of these two key 

papers, Lowary and co-workers have reported a crystal structure of a 3,5-O-(di-tert-butyl-silane) 

arabinofuranoside derivative  in which the furanose ring is in an E4 conformation (Figure 2.5).52  

 
Figure 2.5 Crystal structure of 3,5-O-(di-tert-butyl-silane) arabinofuranoside derivative. Reprint 
with permission from IUCr.  
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Zhu, the first author on the 2007 paper from the Boons group, is now at University 

College, Dublin.  The Zhu Group’s goal, in a more recent paper, was to directly compare the 

NIS/AgOTf activation for glycosylation with L- and D-arabinofuranosyl donors (Table 2.2), 

something that neither the Boons nor Crich groups had done.53 3,5-O-(Di-tert-butyl-silane)-D-

arabinothiofuranoside (ent-29) was used as the donor while several sugars with free primary 

and secondary alcohols were used as acceptors.  Some of these acceptors were a lot like the 

ones that were used by Crich.  Glycosylation of the primary alcohols proceeded in good yields 

(78% to 90%), with β/α ratios in the range of 2:1 to as high as 6:1.  Glycosylation of secondary 

alcohols gave comparable β/α ratios, but the yield dropped slightly (not shown).  Zhu concluded 

that, given the state-of-the-art for the synthesis of β-D-arabinosides, this can still be regarded as 

an efficient glycosylating agent.  

Table 2.2  Selected comparisons of L- vs D-arabinofuranosyl donors.17 

DONOR ACCEPTOR β:α ratio / 

YIELD 

GLYCOSIDE 

 

 

29 

 

 

30 

 

β:α = 15:1 

91% 
 

31 

 

 

ent-29 

 

 

30 

 

β:α = 8:1 

83% 

 

 

43 
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(Table 2.2 continued) 

DONOR ACCEPTOR β:α ratio / 

YIELD 

GLYCOSIDE 

 

 

29 

 

 

44 

 

β only 

95% 

 

45 

 

 

ent-29 

 

 

44 

 

β:α = 5:1 

90% 

 

 

45 

 

2.4 Current Investigation 

 Scheme 2.11 shows a tetramer of hydroxyproline-β-arabinoside (1).  Retrosynthetic 

analysis shows that we must first prepare the monomer, which in turn requires us to prepare a 

donor and acceptor for glycosylation.  In light of published results described above, we chose to 

adopt the Crich/Boons approach of using a conformationally restricted donor for the synthesis of 

our β-glycosides.   

 

Scheme 2.11 Retrosynthetic analysis of tetramer 
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The synthesis of the donor begins with a variation on the Guthrie-Smith method54 for the 

synthesis of peracylated arabinofuranose (Scheme 2.12).55 This “general” method was also 

adopted by Crich.  Commercially available L-arabinose (46) is present in solution as an 

equilibrium mixture of the linear and cyclic (both furanose and pyranose) forms.  Low 

concentrations of HCl are generated in situ with acetyl chloride and methanol; these reaction 

conditions lock the arabinose into the methyl furanoside form.  In order to obtain this kinetic 

product, the reaction must be stopped at three hours to prevent equilibration to the unwanted 

methyl pyranosides.  The triol 47 was esterified with acetic anhydride in pyridine to give the 

2,3,5-O-acylated methyl furanoside 48.  Treatment of the methyl glycoside in acetic anhydride 

with acetic acid, followed by sulfuric acid, gave the anomeric acetate 49.  Work up with several 

washes of NaHCO3 is crucial as the excess acetic acid side product is extremely hard to 

remove.  We believe compound 49 to be mostly α-furanoside due to neighboring group 

participation of the C-2 acetate.  Unfortunately, due to the many low energy conformations of 

this compound,37 the NMR spectra were complex and thus an α:β ratio was not determined.  

 

Scheme 2.12 Peracylated arabinofuranoside synthesis 

 With compound 49 in hand, the next step was to form the thioglycoside donor (Scheme 

2.13).  Upon coordination of boron trifluoride to the oxygen of the anomeric acetate, an 

oxacarbenium ion is formed that undergoes nucleophilic attack by thiocresol to give 

thioglycoside 50.  The apparent singlet assigned to the anomeric proton confirms the formation 

of the α-anomer, the major product.  The β-anomer (not shown in scheme) is hardly visible in 

NMR spectra, suggesting <10%.  Temperature control during this glycosylation is crucial to limit 

the formation of unwanted side products.  It is also important that BF3.OEt2 is added slowly to 
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the reaction mixture over a span of 10 to 15 minutes.  The median yield for this reaction, under 

these optimal conditions, is 66% and reproducible on multigram scale. 

 

Scheme 2.13 Preparation of bicyclic silyl acetal donor 

Methanolysis of the acetate esters, followed by work-up with an acidic resin, afforded 

compound 51.    The triol was dissolved in a 5:1 ratio of CH2Cl2/DMF with 2,6-lutidine as 

base/buffer.  The dimethylformamide is essential to fully dissolve the very polar triol.  After 

cooling to 0 °C, di-tert-butylsilyl-bis-triflate was added slowly and the reaction was allowed to 

warm up to room temperature overnight.  While the 54% yield of silyl acetal 52 is modest, the 

purity of the compound obtained is evidenced by the NMR spectra. 

We originally attempted benzylation of the C-2 alcohol in compound 52 with sodium 

hydride and benzyl bromide according to Crich/Boons (Scheme 2.14),47, 49 but this combination 

of reagents gave us product mixtures in which most components were more polar than the 

starting material.  Upon isolation of these side products, it was apparent that the tert-butyl silyl 

group was being cleaved from one of the oxygens, presumably due to adventitious sodium 

hydroxide.  Around this time, a new paper was published by the Zhu group.53 Interestingly, a 

change was noted in the procedure for the benzylation reaction.  Silver(I) oxide in 

dichloromethane is now used as the reagent/solvent in place of NaH in THF.  When we 

contacted Zhu about the new procedure, he also cited problems with the cleavage of the silyl 
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acetal as the reason for the change.  In this improved strategy, the silver polarizes the C-Br 

bond of the benzyl bromide, facilitating nucleophilic attack by the secondary alcohol of the 

arabinoside without subjecting the silyl protecting group to harsh, basic conditions.  Compound 

29 was the first glycosyl donor prepared in our lab for hydroxyproline arabinosylation.   

 

Scheme 2.14  Benzylation of C-2 alcohol 

 Synthesis of the glycosyl acceptor was accomplished in one step from commercially 

available Boc-L-trans-4-hydroxyproline (53).  The carboxylic acid functionality was converted to 

the corresponding cesium salt, which reacts with allyl bromide to give the allyl ester 54 (Scheme 

2.15).  We chose these protecting groups based on how we would like to deprotect them 

downstream.  The Boc carbamate would be easily removed by trifluoroacetic acid and is 

orthogonal to the allyl ester, which could be removed in a mild manner by palladium (0).56 

 

Scheme 2.15  Preparation of hydroxyproline acceptor 

While synthesis of the hydroxyproline acceptor is straightforward, we anticipated that it 

would likely give us problems in glycosylation due to its poor nucleophilicity.   Aside from the 

secondary alcohol being hindered, the pyrrolidine ring is in a Cγ-exo conformation due to 

gauche interactions between the substituents (Figure 2.6).57  This places the hydroxyl 

functionality in a pseudo-axial orientation, favored by a hyperconjugative interaction between 

the axial hydrogens at Cβ and Cδ and the alcohol at Cγ.58  These effects contribute to the 

overall poor nucleophilicity of the alcohol. 
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Figure 2.6 Hyperconjugation via σσ* interaction 

2.4.1 Glycosylation with the conformationally-restricted glycosyl donor 

 In our first attempt at the glycosylation of hydroxyproline we followed the procedure 

published by Crich, wherein the glycosyl donor was ent-29 (derived from D-Ara) and the 

glycosyl acceptor was cyclohexanol (Scheme 2.16).  N-Iodosuccinimide was used as the 

activator to form the oxacarbenium ion, followed by the addition of silver triflate to form the 

anomeric triflate.  The six-membered silyl acetal ring should serve to lock the furanose into the 

conformation that favors β-attack.  The reaction is messy, however, with a plethora of side 

products.  Monitoring of the reaction and separation of compounds is also hampered by the fact 

that product 55 is not very UV active.   Due to low concentrations of analyte in the test tubes 

after flash chromatography, anisaldehyde staining, which is generally used to detect sugar 

molecules, is not sufficiently sensitive.  Portions of α- and β-anomers collected, even after flash 

chromatography, are still rather crude.  We have isolated pure β-glycoside in milligram 

quantities by normal phase HPLC that has enabled 1H, 13C, COSY, HSQC, and HMBC NMR 

spectra to be acquired.  While we do believe that there is a slight preference for the formation of 

the β-glycoside, the poor overall yield (~12% after HPLC) and stereoselectivity ultimately led us 

to investigate other glycosidic donors.  We were, however, able to fully assign all protons and 

carbons in the NMR spectra (Table 2.3). 
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Scheme 2.16 Glycosylation of hydroxyproline with silyl acetal donor 

NMR resonance assignments are based on the information obtained from one-pulse 13C 

and 1H experiments as well as COSY, double-quantum filtered COSY, 135° DEPT, TOCSY, and 

HSQC.  These assignments are summarized in Table 2.3. 

 

(a) The Proline Domain 

 Due to the rotational isomerization of the molecule, a 2:1 ratio of rotamers can be seen 

in the 13C and 1H NMR spectra.  The 13C resonances at 118.7 (118.3) ppm  correlate to a single 

carbon, which is secondary according to the 135 ° DEPT spectrum.  Correlation between this 

carbon and resonance 5.21-5.35 ppm leads to assignment of these signals to the terminal =CH2 

of the allyl ester.  The COSY spectrum shows correlation of the signals arising from these 

olefinic CH2 to a multiplet at 5.85-5.96 ppm, which was therefore assigned as the C-H of the 

monosubstituted alkene.  This proton is further coupled to two protons of signals 4.55-4.69 ppm 

in the COSY 1H spectrum, which is the allylic CH2, as supported also by the 13C 135 ° DEPT 

spectrum.  The TOCSY spectrum shows correlation between all five protons. 

 Multiplets at 2.08-2.15 ppm and 2.35-2.49 ppm can be attributed to a pair of 

diastereotopic protons with rotational isomerization peaks identifiable by the HSQC spectrum.  

The chemical shifts would suggest that they are the beta protons of the proline.  As expected, 
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the beta proton signals showed correlation with two other proton signals at 4.40 ppm and 4.29 

ppm in the 1H-1H COSY spectrum, that were assigned to Hα (showed no other cross peak) and 

Hγ respectively.  The Hγ showed further correlation with a pair of diastereotopic protons (3.58-

3.69 ppm) (who are also correlated with each other) assigned to Hδ.  The HSQC spectrum 

confirms that they are connected to a single carbon.  TOCSY spectrum shows correlation 

between all six protons of the pyrolidine ring spin system. 

 The 13C resonances at 172.7 (172.4) ppm can be assigned to the ester carbonyl 

functionality of the Boc group.  The quaternary carbon of the tert-butyl group can be assigned to 

the 13C resonances at 80.2 (80.1) ppm, and 135° DEPT spectra shows those  resonances to be 

missing.  The primary carbons of the tert-butyl group can be assigned to the 13C resonances at 

28.2 (28.4) ppm, and the HSQC spectra confirms that there are 3 protons connected to each at 

1.38 (1.45) ppm on the 1H spectrum. 

(b) The Arabinose Domain 

 The anomeric proton signal can be confidently assigned to the resonance at 4.97 (4.93) 

ppm.  The coupling constant here is 5.3 Hz, and is in the expected range for β-anomers of 

arabinosides (c.f., 3J12= 1-3 Hz for α-arabinosides).10 There are two doublets for H1, as a 

consequence of the rotational isomerization of the molecule.  The anomeric signal is in 

correlation with one other proton at 3.90 ppm (COSY), which we assign as H2.  The TOCSY 

spectrum shows correlation between the anomeric proton, H2, and four other signals.  Two of 

these signals, 4.30 ppm and 3.88 ppm, show correlations to the same carbon in the 13C-1H 

HSQC spectrum; they are diastereotopic H5 protons of the arabinose ring.  The remaining two 

signals, 3.59 ppm and 4.28 ppm, are assigned to H4 and H3 respectively. 

 The aromatic protons can easily be assigned to the multiplet at 7.29-7.40 ppm.  HSQC 

data shows five distinct carbon peaks ranging from 127.7-128.3 ppm, along with a quaternary 
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carbon at 137.7 ppm, that directly correlate to the aromatic carbons of the benzyl group.  One of 

the two benzyl CH2 signals can be seen clearly in the 1H NMR spectra with a coupling constant 

of 12.2 Hz.  TOCSY shows correlation between all aromatic protons and even long range cross 

peaks with the benzyl CH2. 

 The two singlets at 0.99 ppm and 1.07 ppm, with a total of 18 Hs, can be assigned to the  

protons of the two tert-butyl groups of the silyl acetal.  The resonances 27.1 ppm and 27.5 ppm 

in the 13C spectra can be assigned to the primary carbons of the tert-butyl group, while the 

quaternary carbons are at 20.1 ppm and 22.6 ppm. 

Table 2.3  Chemical Shifts for β-Glycoside 55β.  
 

L -Ara 1H ppm 13C ppm 

H1 4.97 (4.93) 99.2 (100.0) 

H2 3.90 80.7 

H3 4.31 78.4 

H4 3.59 73.6 (73.4) 

H5 3.88, 4.31 68.4 

CH2Ph 4.69-4.80 71.8 (71.9) 

SitBu2 0.99, 1.07 20.1 (4°), 22.6 (4°),  
27.1 (1°), 27.5 (1°) 

CH2Ph 7.29-7.40 127.7, 127.8, 127.9, 
128.0, 128.4, 137.7 (4°) 

   

Hyp   

Hα 4.36-4.44 58.1 (57.7) 

Hβ 2.08-2.15,  
2.35-2.42 (2.43-2.49) 

37.6 (36.8) 

Hγ 4.30 75.2 

Hδ 3.64 51.1 (51.6) 

Boc (tert-butyl) 1.38 (1.45) 80.2 (80.1) (4°) 
28.2 (28.4) (1°) 

COOR - 153.7 (154.2), 172.7 (172.4) 

CH2CH=CH2 4.55-4.69 65.5 (65.6) 

CH2CH=CH2 5.85-5.96 131.7 (131.9) 

CH2CH=CH2 5.21-5.35 118.7 (118.3) 

 
*Values in parentheses relate to the minor rotamer about C(=O)N bond of the carbamate. 
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Crich’s glycosylation of cyclohexanol with a sulfoxide donor (Scheme 2.10, 42) gave an 

average yield but great diastereoselectivity.  With the Taylor Group’s past experience with 

sulfoxide donors,38 this was the next logical approach.  Developed by Kahne and coworkers in 

1989,59 the sulfoxide method has proven useful in the glycosylation of sterically hindered 

nucleophiles.  The sulfoxide donor 42 was made by oxidation of the sulfide donor 29 with m-

CPBA, after which we were able to separate the pair of diastereomers (Scheme 2.17).  

Unfortunately, the same problems that plagued the sulfide glycosylation still existed, and we 

were not able to acquire better yields or selectivity under these conditions. 

 

 

Scheme 2.17 Glycosylation of hydroxyproline with sulfoxide donor 

We also briefly investigated a method that would give absolute β-selectivity in 

glycosylation.  Intramolecular aglycon delivery (IAD) allows for the tethering of the nucleophile to 

the O-2 substitutent in a process that would only allow for the formation of a 1,2-cis-glycoside.  

As described in Section 2.3, Prandi published a paper in 2000 that utilizes this method for the 

construction of β-arabinofuranosides that used a para-methoxybenzyl ether as the tethering 

agent (Scheme 2.18, vide supra).45a Efforts to synthesize 56 with para-methoxybenzyl bromide 



37 
 

and sodium hydride in THF were unsuccessful due to silyl acetal cleavage.    A recent 

publication by the Ito group gave us another avenue to explore the concept of IAD through the 

formation of a 2-napthyl ether.60  Compound 57 has been synthesized in our lab in modest yield.  

The bulkiness of the naphthylmethyl group makes for a difficult nucleophilic attack by the 

secondary alcohol.  We had synthesized enough of compound 57 that it was possible for us to 

move on to the next step of tethering the hydroxyproline nucleophile with DDQ, although the 

instability of the silyl acetal functionality concerned us relating to future reactions.  

 

Scheme 2.18 Intramolecular aglycon delivery strategies 

 Ito and coworkers have shown that a 3,5-O-tetra-i-propyldisiloxanylidene protection was 

optimal in giving β-selectivity when applied to arabinofuranosides.61  This method, much like the 

silyl acetal employed by Boons and Crich, used the conformational restriction of the eight 

membered disiloxane ring to promote the synthesis of the β-anomer.  We decided to try this 

method in the hope that the eight membered disiloxane ring would be more robust under both 

basic and glycosylating conditions.  Treatment of thioglycoside triol 51 in amine base and 1,3-

dichloro-1,1,3,3-tetraisopropyldisiloxane gave the bicyclic donor 58 in modest yield (Scheme 

2.19).  Much to our dismay, the eight membered disiloxane ring was no more stable than the 
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six-membered silyl acetal ring.  Subsequent exposure to sodium hydride again showed the 

cleavage of the 3,5-O-protecting group and compound 59 was obtained in unsatisfactory yield.   

 

Scheme 2.19 Preparation of disiloxane donor 

2.4.2 Conformationally unrestrained donor 

 We decided to test a fully benzylated thioglycoside donor (compound 60, Scheme 2.20) 

to confirm our suspicion that the labile silyl protecting groups were the cause of our low yields.  

Compound 51 was transformed into the tri-O-benzyl arabinofuranothioglycoside 60 using 

standard methods (benzyl bromide, NaH, DMF) in great yield.  The success of this benzylation 

reaction reinforced our hypothesis about the shortcomings of the 3,5-O-silyl protecting groups.  

Just to be thorough, we also made the corresponding sulfoxide 61 in good yield. 

 

Scheme 2.20 Preparation of two conformationally unrestrained donors 

Lowary and coworkers, in their synthesis of a naturally-occurring, highly branched 

arabinofuranosyl hexasaccharide, had reported a surprising highly stereoselective synthesis of 

β-arabinofuranosides.62  Using N-iodosuccinimide and silver triflate as activator, the 

hexasaccharide 63 was obtained in high yield and with 100% β-selectivity (Scheme 2.21).  The 

authors reported that careful control of temperature is critical as an increase in side products 
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was observed when the reaction was run at -40 or 0 oC.  We employed this procedure in the 

hope of finding similar success for our purpose. 

 

Scheme 2.21 Low temperature glycoysylation method 

To our delight, reaction of thioglycoside 60 with our hydroxyproline acceptor  gave a 

reasonable yield (60%) with an average β:α ratio of 4:1 (Scheme 2.22), a significant 

improvement relative to Scheme 2.16 in both aspects.  Also important is the fact that we are 

able to separate the α- and β-anomers by means of flash chromatography, an added bonus that 

would save us much time and grief as compared to HPLC.  Careful upscaling of this reaction 

has allowed us to do the glycosylation on a multigram level, and we are able to obtain 

spectroscopically pure β-glycoside up to a gram at a time.  Further advantages of this route 

include saving one linear step in the overall synthesis while also substituting for two reactions 

that gave typical yields of ~35% (silyl acetal protection, benzyl ether protection) with a single 

protection step that yields up to 90% (benzylation). The tri-O-benzylated arabinofuranosides are 

robust and can withstand a variety of acidic and basic conditions.  Down the line, the 

perbenzylated arabinosides can be deprotected by a single hydrogenolytic step to remove all 

benzyl ethers.   
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Scheme 2.22 Glycosylation of hydroxyproline with benzylated sulfide donor 

 We also applied the sulfoxide method to making our β-arabinosides of hydroxyproline 

(Scheme 2.23).  The sulfoxide donor 61 is activated by triflic anhydride and a sterically hindered 

amine base acts as a buffer for the reaction.  The sulfoxide glycosylation gave similar yields but 

offered far superior selectivity (25:1 β:α by integration of anomeric proton) than its sulfide 

counterpart.  However, the reaction was plagued by side products that are indistinguishable 

chromatographically from our wanted compounds.  Moreover, the stability of the triflic 

anhydride, even when left unopened, is a deterrent for this reaction compared to the relatively 

stable NIS/AgOTf.  This practical application, in combination with the extra step required to form 

the sulfoxide, led us to favor the sulfide donor 60 for the large scale preparation of the β-

monomer.  β-Glycoside 64β has been fully characterized by mass spectromery, 1H, 13C, and 2-

D NMR spectra. 

 

Scheme 2.23 Glycosylation of hydroxyproline with benzylated sulfoxide donor 
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2.5 Experimental Section 

General methods: All reactions were performed under a dry nitrogen atmosphere unless 

otherwise noted. Reagents were obtained from commercial sources and used directly; 

exceptions are noted. Diisopropylethylamine, triethylamine, and pyridine were dried and distilled 

from CaH2 and stored over KOH pellets. Ethanol and methanol were distilled from Mg turnings 

and stored over 3 Ǻ molecular sieves. Flash chromatography was performed using flash silica 

gel (32-63 μ) from Dynamic Adsorbents Inc. Reactions were followed by TLC on precoated 

silica plates (200 μm, F-254 from Dynamic Adsorbents Inc.). The compounds were visualized by 

UV fluorescence or by staining with ninhydrin, KMnO4, or 10% sulfuric acid in ethanol stains. 

NMR spectra were recorded on Bruker DPX-250, AV-400-liquid, or Varian 700 MHz 

spectrometers. Proton NMR data is reported in ppm downfield from TMS as an internal 

standard. Disodium 3-trimethylsilyl-1-propane-sulfonate (DSS) was used to reference 1H NMR 

spectra run in D2O. High resolution mass spectra were recorded using either time-of-flight or 

electrospray ionization.   

2.5.1 Experimental procedures 

(2.1) 

Peracylated-α-L-Arabinoside (49). L-Arabinose (5.0 g, 33.3 mmol, 1 equiv.) was dissolved in 

methanol (100 mL) and treated with a solution of acetyl chloride (2.5 mL) in methanol (30 mL) at 

rt under N2.  The mixture was stirred for 3 h, during which time the solid completely dissolved.  

The reaction was quenched dropwise with pyridine.  The solvent was evaporated, followed by 

azeotroping with DCM to give the methyl arabinoside as a mixture of anomers.  The crude 

product was dissolved in pyridine (40 mL) and cooled to 0 °C, after which acetic anhydride (20 
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mL) was added and the reaction was stirred overnight at rt.   The solvent was evaporated and 

the mixture was diluted with CH2Cl2 (250 mL), washed with water (250 mL), 1 M HCl (250 mL), 

sat. NaHCO3 (250 mL), and brine (250 mL).  The organic phase was filtered through MgSO4 

and concentrated to give the triacetate.  The crude product was dissolved in acetic anhydride 

(80 mL) and cooled to 0 °C.  Acetic acid (20 mL) was added dropwise.  After 15 min, sulfuric 

acid (5 mL) was added dropwise.  The mixture was warmed to rt while stirring for approximately 

2 h.  The solution was poured over a mixture of ice (50 g), CH2Cl2 (250 mL) and sat’d aq. 

NaHCO3 (200 mL).  The organic layer was separated and washed again with several volumes of 

sat’d aq. NaHCO3, filtered through MgSO4, and concentrated to give the crude peracylated 

furanoside as a light oil (9.071 g, 85%; 3 steps).   

(2.2) 

p-Cresyl 2,3,5-O-acetyl-1-thio-α-L-arabinofuranoside (50).  A solution of 49 (4.47 g, 14 mmol, 

1.0 equiv.) and p-thiocresol (2.64 g, 21 mmol, 1.5 equiv.) in dry CH2Cl2 (60 mL) was cooled to 0 

°C under N2.  Boron trifluoride diethyl etherate (1.0 mL, 1.17 g, 8.1 mmol, 0.5 equiv.) was added 

dropwise and the mixture stirred for 5 h under N2 at 0 °C.  The reaction was quenched with Et3N 

(4 mL) and concentrated.  The mixture was diluted with EtOAc (150 mL) and washed with H2O 

(150 mL) and brine (150 mL).  The organic layer was filtered through MgSO4 and concentrated.  

The residue was purified by flash chromatography eluting with 3:1 Hex/EtOAc to give 50 as a 

light colored oil (3.54 g, 66 %). Rf 0.25 (3:1 Hexanes/EtOAc). [α]D
25 -170.2 (c = 1, CH2Cl2). 

1H 

NMR (400 MHz, CDCl3) δ 2.10 (s, 3H), 2.11 (s 3H), 2.13 (s, 3H), 2.34 (s, 3H), 4.28 (dd, J = 12.1, 

5.5 Hz, 1H), 4.39 (dd, J = 12.1, 3.6 Hz, 1H), 4.48 (app. q, J = 4.7 Hz, 1H), 5.07 (d, J = 5.5 Hz, 

1H),  5.27 (s, 1H), 5.47 (s, 1H), 7.13 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 7.8 Hz, 2H); 13C NMR (100 
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MHz, CDCl3) δ 20.7 (3C), 21.1, 62.8, 77.2, 79.9, 81.4, 91.2, 129.6, 129.8, 132.7, 138.1, 169.6, 

170, 170.5; HRMS (ESI) calcd for C18H21O7SNa (M+Na)+: 405.0978; obsd: 405.0985.    

(2.3) 

p-Cresyl 3,5-O-(Di-tert-butylsilylene)-1-thio-α-L-arabinofuranoside (52).   Thioglycoside 

triacetate 50 (694 mg, 1.8 mmol) was dissolved in MeOH (15 mL).  Sodium methoxide (200 μL, 

25% in MeOH) was added and stirred under N2 overnight.  Amberlite® IR-120 acid resin was 

added portionwise while stirring until solution was neutralized, after which it was filtered and 

rinsed with MeOH, and concentrated.  The crude triol 51 (363 mg, 1.4 mmol, 1.0 equiv.) was 

suspended in a mixture of dry CH2Cl2 (13 mL) and DMF (2.5 mL) and cooled to 0 °C under N2.  

2,6-Lutidine (762 μL, 705 mg, 6.6 mmol, 4.7 equiv.) and di-tert-butylsilyl bis-

(trifluoromethanesulfonate) (545 μL, 741 mg, 1.7 mmol, 1.2 equiv.) were then added 

sequentially.  The mixture was stirred overnight under N2 at room temperature.  The mixture 

was concentrated and the residue diluted with EtOAc (30 mL) and washed with H2O (30 mL) 

and brine (30 mL).  The organic layer was filtered through MgSO4 and concentrated.  The 

residue was purified by flash chromatography eluting with 15:1 Hex/EtOAc to give 52 as an 

amorphous colorless solid (297 mg, 53%). Rf 0.49 (3:1 Hexanes/EtOAc). [α]D
25 -181.0 (c = 1.0, 

CH2Cl2). 
1H NMR (400 MHz, CDCl3) δ 1.00 (s, 9H), 1.08 (s, 9H), 2.33 (s, 3H),  3.58 (d, J = 4.2 

Hz, 1H), 3.87-3.98 (m, 2H), 4.02 (app. t, J = 8.3 Hz, 1H), 4.14 (app. q, J ~ 5 Hz, 1H), 4.35 (dd, J 

= 8.3, 4.2 Hz, 1H), 5.27 (d, J = 5.9 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H); 

13C NMR (100 MHz, CDCl3) δ 20.1, 21.1, 22.7, 27.1, 27.5, 67.4, 73.7, 80.6, 77.4, 91.5, 129.8, 

130.3, 132.3, 137.9; HRMS (ESI) calcd for C20H33O4SSi (M+H)+: 397.1863; obsd: 397.1856. 
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(2.4) 

p-Cresyl 2-O-Benzyl-3,5-O-(di-tert-butylsilylene)-1-thio-α-L-arabinofuranoside (29).  Compound 

52 (400 mg, 1.1 mmol, 1 equiv.) was dissolved in dry CHCl2 (11 mL) and stirred under N2.  

Benzyl bromide (240 μL, 345 mg, 2.0 mmol, 2 equiv.) was added, followed by Ag2O (714 mg, 

3.1 mmol, 3 equiv.).  The mixture was stirred for 3 d, filtered through an inch of silica and 

washed with CHCl2, and concentrated.  The residue was purified by flash chromatography 

eluting with 120:1 Hex/Ether  60:1 Hex/EtOAc to give 29 as a colorless solid (336 mg, 64%). 

Rf 0.62 (3:1 Hexanes/EtOAc). [α]D
25 -129.93 (c = 1, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 0.97 

(s, 9H), 1.06 (s, 9H), 2.28 (s, 3H), 3.84-3.98 (m, 3H), 4.12 (app. t, J = 8.4 Hz, 1H), 4.31 (dd, J = 

8.2, 4.1 Hz, 1H), 4.72 (d, J = 12.0 Hz, 1H), 4.81 (d, J = 12.0 Hz, 1H), 5.34 (d, J = 5.2 Hz, 1H), 

7.05 (d, J = 7.9 Hz, 2H), 7.26-7.40 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 20.2, 21.2, 22.7, 27.2, 

27.6, 67.4, 72.2, 73.8, 81.4, 86.8, 90.3, 127.9, 128.1, 128.5, 129.8, 130.6, 132.3, 137.71, 

137.74; HRMS (ESI) calcd for C27H39O4SSi (M+H)+: 487.2333; obsd: 487.2324. 

(2.5) 

p-Cresyl 2-O-Benzyl-3,5-O-(di-tert-butylsilylene)-1-thio-α-L-arabinofuranoside S-Oxide (42).  A 

solution of 3-chloroperoxybenzoic acid (63.5 mg, 77 wt %, 2.8 mmol, ~1.2 equiv.) in dry CH2Cl2 

(1 mL) was added dropwise to a solution of compound 29 (116 mg, 0.24 mmol, 1 equiv.) in dry 

CH2Cl2 (4 mL) at -80 °C under Argon and stirred.  The reaction mixture was gradually warmed to 

room temperature over 2 h.  The solution was diluted with CH2Cl2 (30 mL), washed with sat’d aq 

NaHCO3 (30 mL), filtered through MgSO4, and concentrated.  The residue was purified by 

column chromatography, eluting with 10:1 Hex/EtOAc to afford 42 as a colorless gel (68 mg, 
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57%) and a mixture of diastereomers varying in their configuration at sulfur.  Diastereomer A: Rf 

0.42 (3:1 Hexanes/EtOAc). [α]D
25 101.4 (c = 1, CHCl3).  

1H NMR (400 MHz, CDCl3) δ 1.00 (s, 

9H), 1.05 (s, 9H), 2.40 (s, 3H), 3.89 (app. t, J = ~10 Hz, 1H), 3.99-4.05 (td, J = 10, 5.0 Hz, 1H), 

4.22 (dd, J = ~10, 7.2 Hz, 1H), 4.30 (d, J = 11.4 Hz, 1H), 4.35 (dd, J = 9.0, 5.0 Hz, 1H), 4.57-

4.59 (m, 1H), 4.58 (d, J = 11.4 Hz, 1H), 4.65 (d, J = 5.1 Hz, 1H), 6.98 (app. t, J = 3.6 Hz, 2H), 

7.25-7.27 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) 

δ 20.2, 21.4, 22.6, 27.1, 27.4, 67.4, 72.0, 77.0, 78.5, 82.0, 99.3, 124.4, 127.7, 127.9, 128.2, 

129.9, 136.2, 137.3, 141.7; HRMS (ESI) calcd for C27H39O5SSi (M+H)+: 503.2282; obsd: 

503.2298; Diastereomer B: Rf 0.33 (3:1 Hexanes/EtOAc). [α]D
25 -178.6 (c = 1.35, CHCl3).  1H 

NMR (400 MHz, CDCl3) δ 0.95 (s, 9H), 1.05 (s, 9H), 2.40 (s, 3H), 3.78-3.84 (m, 1H), 3.86 (app. 

t, J = ~9.4 Hz, 1H), 4.20 (app. t, J = 8.2 Hz, 1H), 4.30 (dd, J = 8.6, 4.5 Hz, 1H), 4.35 (app. t, J = 

6.4 Hz, 1H), 4.58 (d, J = 11.7 Hz, 1H), 4.63 (d, J = 5.6 Hz, 1H), 4.76 (d, J = 11.7 Hz, 1H), 7.23-

7.36 (app. m, 7H), 7.52 (d, J = 8.1 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 20.0, 21.5, 22.6, 27.0, 

27.4, 67.3, 72.3, 76.9, 81.1, 81.5, 98.2, 125.6, 128.0, 128.1, 128.4, 129.9, 136.4, 137.3, 142.3; 

HRMS (ESI) calcd for C27H39O5SSi (M+H)+: 503.2282; obsd: 503.2294. 

(2.6) 

N-tert-Butoxycarbonyl-trans-4-hydroxy-L-proline allyl ester (54).  To a suspension of Boc-Hyp-

OH (53) (1.77 g, 7.7 mmol, 1.0 equiv.) in dry MeOH (16 mL) was added cesium carbonate (1.37 

g, 4.2 mmol, 0.55 equiv.).  The mixture was stirred under N2 for 1.5 h during which time the 

reaction mixture became a homogeneous solution.  The solvent was evaporated, and the 

residue dissolved in dry DMF (10 mL) and treated immediately with allyl bromide (1.2 g, 0.86 

mL, 9.9 mmol, 1.3 equiv.).  The mixture was stirred overnight at RT under N2.  The mixture was 

diluted with EtOAc (150 mL) and washed with H2O (150 mL) and brine (150 mL).  The organic 
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layer was filtered through MgSO4 and concentrated.  The residue was purified by flash column 

chromatography, eluting with 2:1 EtOAc/Hex to give the ester 54 as a light oil (1.86 g, 89%). Rf 

0.34 (2:1 EtOAc/Hex). [α]D
25 -65.0 (c 1.0, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 1.40 (1.46)* (s, 

9H),   2.03-2.10 (m, 1H), 2.25-2.35 (m, 1H), 2.96 (s, 1H), 3.44-3.65 (m, 2H), 4.40-4.48 (m, 2H), 

4.56-4.71 (m, 2H), 5.25 (app. t, J = ~11.3 Hz, 1H), 5.35 (dt, J = 17.1, 3.8, 1.2 Hz, 1H), 5.87-5.95 

(m, 1H); 13C NMR (100 MHz, CDCl3) δ 28.2 (28.3), 39.1 (38.3), 54.6, 58.0 (57.7), 65.6, 69.1 

(69.8), 80.5 (80.2), 118.8 (118.3), 131.6 (131.8), 154.1 (154.6), 172.9 (172.6); HRMS (ESI) 

calcd for C13H21NO5Na (M+Na)+: 294.1312, obsd: 294.1320. 

* values in parentheses signifiy a second signal due to a minor rotamer 

(2.7) 

Nα-tert-Butyloxycarbonyl-trans-4-hydroxy-4-O-[2-O-Benzyl-3,5-O-(di-tert-butylsilylene)-L-

arabinofuranosyl]-L-proline Allyl Ester 55.  A solution of compounds 29 (219 mg, 0.45 mmol, 1.0 

equiv.) and 54 (250 mg, 0.92 mmol, 2.0 equiv.) in dry CH2Cl2 (30 mL) were added to a flask 

containing activated 4 Å crushed molecular sieves under N2.  The suspension was stirred for 

~20 min at RT then cooled to -65 °C (ethylene glycol and dry ice).  The temperature dropped to 

-30 °C and NIS (173 mg, 0.68 mmol, 1.5 equiv.) was added, followed by a solution of AgOTf (57 

mg, 0.22 mmol, 0.5 equiv) in toluene (0.6 mL) as the temperature continued to drop to -65 °C.  

The suspension was stirred for 1 hr during which it was allowed to gradually warm to RT.  

Solution continued to stir until room temperature was reached.  After ~20 mins at room 

temperature, the reaction was quenched with Et3N, filtered, and concentrated.  The residue was 

diluted with EtOAc (50 mL) and washed with sat’d aq. Na2S2O3 (50 mL) and brine (50 mL), 
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filtered through MgSO4, and concentrated.  The residue was purified by column 

chromatography, eluting with 10:1 Hex/EtOAc to afford crude 55 as a colorless oil (147 mg, 

51%) as a mixture of anomers and rotamers.  Crude compound 55 was subjected to HPLC, 

eluting with 20% EtOAc in Hexanes at 13.0 mL min-1
 on a 21 mm silica column detecting with 

UV at 254 nm. RT (α) = 13 min, RT (β) = 23 min; β-anomer: Rf 0.30 (3:1 Hexanes/EtOAc).  1H 

NMR (400 MHz, CDCl3) δ 0.99 (s, 9H), 1.07 (s, 9H), 1.38 (1.45)* (1 s, 9H), 2.08-2.15 (m, 1H), 

2.35-2.42 (2.43-2.49) (m, 1H), 3.58-3.69 (m, 3H), 3.86-3.91 (m, 2H), 4.26-4.32 (m, 3H), 4.36-

4.44 (m, 1H), 4.56-4.73 (m, 3H), 4.79 (d, J = 12.2 Hz, 1H), 4.97 (4.93) (d, J = ~5.3 Hz, 1H), 5.24 

(app. t, J = 11.6 Hz, 1H), 5.32 (ddd, J = 17.2, 5.9, 1.3 Hz, 1H), 5.85-5.96 (m, 1H), 7.29-7.40 (m, 

5H); 13C NMR (100 MHz, CDCl3) δ 20.1, 22.6, 27.1, 27.5, 28.2 (28.4), 37.6 (36.8),  51.1 (51.6), 

58.1 (57.7), 65.5 (65.6), 68.4, 71.8 (71.9), 73.6 (73.4),  75.2, 78.4, 80.2 (80.1), 80.7, 99.2 

(100.0), 118.7 (118.3), 127.7, 127.8, 127.9, 128.0, 128.4, 131.7 (131.9), 137.7, 153.7 (154.2), 

172.7 (172.4); HRMS (ESI) calcd for C33H52NO9Si (M+H)+: 634.3406; obsd: 634.3408. 

* values in parentheses signifiy a second signal due to a minor rotamer 

(2.8) 

p-Cresyl 2,3,5-O-Benzyl-1-thio-α-L-arabinofuranoside (60).  Triol 51 (1.91 g, 7.5 mmol, 1.0 

equiv.) was dissolved in dry DMF (15 mL) and cooled to 0 °C under N2.  Benzyl bromide (5.3 

mL, 7.61 g, 44.5 mmol, 6.0 equiv.) and NaH (1.78 g, 60% dispersion, 44.5 mmol, 6.0 equiv.) 

were added sequentially.  The reaction mixture was allowed to warm to RT while it stirred under 

N2 for 3 h.  The reaction was quenched with sat’d NaHCO3 (150 mL) and extracted with CH2Cl2 

(150 mL).  The organic layer was washed with H2O (150 mL) and brine (150 mL), filtered 

through MgSO4, and concentrated.  The residue was purified by flash chromatography eluting 

with 20:1  10:1  1:2 Hex/EtOAc to give 60 as a clear gel (3.26 g, 84%; 2 steps). Rf 0.46 (3:1 
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Hexanes/EtOAc). [α]D
25 -107.9 (c = 1.0, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H),   

3.63 (dd, J = 10.8, 4.7 Hz, 1H), 3.68 (dd, J = 10.8, 3.9 Hz, 1H), 4.03 (app. q, J = 3.3 Hz, 1H), 

4.11 (t, J = 2.9 Hz, 1H), 4.36-4.38 (m, 1H), 4.48-4.65 (m, 6H), 5.53 (d, J = 2.0 Hz, 1H), 7.10 (d, J 

= 7.8 Hz, 2H), 7.26-7.35 (m, 15H), 7.41 (d, J = 7.8 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 21.2, 

69.1, 72.7, 72.3, 73.4, 80.5, 83.5, 88.4, 90.6, 127.6, 127.7, 127.8, 127.9, 127.9, 128.0, 128.3, 

128.4, 128.5, 129.7, 131.0, 132.0, 137.4, 137.8, 138.2; HRMS (ESI) calcd for C33H34NaO4S 

(M+Na)+: 549.2070; obsd: 549.2067. 

(2.9) 

p-Cresyl 2,3,5-O-Benzyl-1-thio-α-L-arabinofuranoside S-Oxide 61.  A solution of 3-

chloroperoxybenzoic acid (283 mg, 77 wt %, 1.3 mmol, 1.2 equiv.) in dry CH2Cl2 (4 mL) was 

added dropwise to a solution of compound 60 (555 mg, 1.1 mmol, 1.0 equiv.) in dry CH2Cl2 (16 

mL) at -78 °C under N2 and stirred.  The reaction mixture was gradually warmed to RT over 1.5 

h.  The solution was diluted with CH2Cl2 (70 mL), washed with sat’d NaHCO3 (70 mL), filtered 

through MgSO4, and concentrated.  The residue was purified by column chromatography, 

eluting with 3:1 Hex/EtOAc to afford 61 as a colorless gel (429mg, 75%) and essentially a single 

diastereomer (uneven mixture in which the amount of minor isomer is negligible).  Major 

diastereomer: Rf 0.19 (3:1 Hexanes/EtOAc). [α]D
25 +30.1 (c 1.0 , CH2Cl2).  

1H NMR (400 MHz, 

CDCl3) δ 2.39 (s, 3H), 3.53  (dd, J = 10.6, 5.5 Hz, 1H), 3.60 (dd, J = 10.6, 4.8 Hz, 1H), 4.15 (dd, 

J = 5.5, 2.8 Hz, 1H), 4.37-4.51 (m, 6H), 4.59 (d, J = 11.8 Hz, 1H), 4.63 (d, J = 1.8 Hz, 1H), 4.74 

(app. t, J = ~2.4 Hz, 1H), 7.20-7.32 (m, 17H), 7.57 (d, J = 8.1 Hz, 2H); 13C NMR (100 MHz, 

CDCl3) δ 21.5, 69.1, 71.9, 72.2, 73.3, 83.3, 83.9, 84.4, 102.0, 124.8, 127.7, 127.9, 128.0 (2 

signals), 128.4 (2 signals), 128.5, 129.9,  137.3, 137.4, 137.9, 138.7, 141.8; HRMS (ESI) calcd 

for C33H35O5S (M+H)+: 543.2160; obsd: 543.2206.  
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(2.10) 

Nα-tert-Butyloxycarbonyl-trans-4-hydroxy-4-O-[2,3,5-O-Benzyl-L-arabinofuranosyl]-L-proline 

Allyl Ester (64).  A solution of compounds 60 (1.17 g, 2.2 mmol, 1.0 equiv.) and 54 (0.688 g, 2.5 

mmol, 1.1 equiv.) in dry CH2Cl2 (40 mL) was stirred with activated 4 Å molecular sieves (3.5 g) 

under N2 for ~30 min at RT.  The suspension was cooled to -78 °C (acetone/dry ice) and then 

NIS (0.747 g, 3.2 mmol, 1.5 equiv.) and AgOTf (0.285 g, 0.55 mmol, 0.5 equiv.) were added.  

The reaction was allowed to gradually reach 0 °C over 1.5 h, at which time it was quenched with 

Et3N (3 mL) and filtered.  The filtrate was diluted with EtOAc (150 mL) and washed with 10% 

aqueous Na2S2O3 (2 x 200 mL) and brine (200 mL).  The organic layer was filtered through 

MgSO4 and concentrated.  The residue, determined to be a 4:1 β:α ratio by NMR, was purified 

by column chromatography, eluting with 3:1 Hex/EtOAc to afford 64β (the β-anomer) (0.732 g, 

50%, 2:1 ratio of rotamers)  as an orange oil.  Rf 0.56 (1:1 Hexanes/EtOAc). [α]D
25 +17.9 (c 1.0, 

CH2Cl2). 
1H NMR (400 MHz, CDCl3) δ 1.37 (1.44)* (s, 9H),   1.96-2.07 (m, 1H), 2.27-2.37 (m, 

1H), 3.44-3.67 (m, 4H), 4.03-4.12 (m, 3H), 4.25-4.71 (m, 10H), 4.96 (4.92) (d, J = 3.2 Hz, 1H), 

5.20-5.34 (m, 2H), 5.86-5.91 (m, 1H), 7.28-7.33 (m, 15H); 13C NMR (100 MHz, CDCl3) δ 28.3 

(28.4), 37.4 (36.5), 50.7 (51.4), 58.1 (57.8), 65.6 (65.7), 72.0, 72.4, 73.3, 75.5, 80.1, 80.3, 82.7, 

83.8, 83.9, 99.0 (99.9), 118.8 (118.4), 127.6, 127.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 

128.5; 131.7 (131.9), 137.4, 137.9, 138.1, 153.7 (155.4), 172.7 (172.4). HRMS (ESI) calcd for 

C39H48NO9 (M+H)+: 674.3324, obsd: 674.3343. 

* values in parentheses signifiy a second signal due to a minor rotamer 
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(2.11) 

Nα-tert-Butyloxycarbonyl-trans-4-hydroxy-4-O-[2,3,5-O-Benzyl-L-arabinofuranosyl]-L-proline 

Allyl Ester (64) – Sulfoxide method.  A solution of compound 61 (133 mg, 0.25 mmol, 1.0 equiv.) 

and 2,4,6-tri-tert-butyl pyridine (121 mg, 0.49 mmol, 2 equiv.) (TTBP) in dry CH2Cl2 (5 mL) was 

stirred with activated 4Å molecular sieves (500 mg) under N2 for ~30 min at RT.  The 

suspension was cooled to -78 °C (acetone/dry ice) and then triflic anhydride (49 µL, 82 mg, 0.29 

mmol, 1.2 equiv.) was added, followed by compound 54 (66 mg, 0.24 mmol, 1.0 equiv.).  The 

reaction was allowed to gradually reach -30 °C over 2 h, at which time it was quenched with 

Et3N (3 mL), filtered, and concentrated.  The residue, determined to contain a 25:1 β:α ratio of 

64 by NMR, was purified by column chromatography, eluting with 3:1 Hex/EtOAc to afford the β-

anomer 64β (84 mg, 51%)  as an orange oil.     
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2.5.2 Spectra 
Compound 50 (Scheme 2.11) - 1H NMR spectrum 
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Compound 50 (Scheme 2.11) – 13C NMR spectrum 
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Compound 52 (Scheme 2.11) - 1H NMR spectrum 
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Compound 52 (Scheme 2.11) – 13C NMR spectrum 
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Compound 29 (Scheme 2.12) - 1H NMR spectrum 
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Compound 29 (Scheme 2.12) – 13C NMR spectrum 
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Compound 42a (Scheme 2.15) - 1H NMR spectrum 
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Compound 42a (Scheme 2.15) – 13C NMR spectrum 
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Compound 42b (Scheme 2.15) - 1H NMR spectrum 
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Compound 42b (Scheme 2.15) – 13C NMR spectrum 
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Compound 54 (Scheme 2.13) - 1H NMR spectrum 

 

 



62 
 

Compound 54 (Scheme 2.13) – 13C NMR spectrum 

 

 



63 
 

Compound 55β (Scheme 2.14) - 1H NMR spectrum 
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Compound 55β (Scheme 2.14) – 13C NMR spectrum 
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Compound 60 (Scheme 2.18) - 1H NMR spectrum 
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Compound 60 (Scheme 2.18) – 13C NMR spectrum 
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Compound 61 (Scheme 2.18) - 1H NMR spectrum 
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Compound 61 (Scheme 2.18) – 13C NMR spectrum 
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Compound 64β (Scheme 2.20) - 1H NMR spectrum 
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Compound 64β (Scheme 2.20) – 13C NMR spectrum 
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CHAPTER 3: SYNTHESIS OF OLIGOMERS OF 4-O-[β-L-ARABINOFURANOSYL]-(2S,4R)-4-
HYDROXYPROLINE 

 
 With the completion of the monomeric β-arabinoside of hydroxyproline in Chapter 2, we 

moved forward with the assembly of its oligomers.  We expected the peptide bond formations to 

be increasingly difficult due to the gradual accumulation of size in the building blocks and the 

associated increase in steric demands.  We considered a variety of peptide coupling reagents 

known for their efficiency in reactions involving prolyl amino components.  There is an inherent 

challenge in the coupling of a sterically hindered proline amino component. Fortunately, proline 

carboxyl components are generally not expected to undergo racemization at C-α, which allowed 

us to broaden our scope in coupling reagent selection.   

3.1 Previous Syntheses of Glycoclusters 

 There is an abundance of literature detailing synthetic glycocluster peptides.63  A 

glycocluster is an array of carbohydrate groups that are present in close proximity as a result of 

primary sequence or backbone conformation.  The “glycoside cluster effect” was introduced by 

Lee’s group to describe the clustering effect that carbohydrate groups exhibit when interacting 

with protein receptors.64  While many types of carbohydrate clusters exist, it is the contiguous O-

glycosylated amino acid cluster that is the focus of the present work.  From our perspective, the 

most relevant solution phase synthesis of these glycoclusters has been in the area of mucins.    

The mucin MUC1, a cancer biomarker, is a highly O-glycosylated molecule found on the 

epithelial cells of the stomach, lungs, eyes, and other major organs.65  In 1998, the Kunz group 

reported the synthesis of a diglycohexapeptide and a diglycodecapeptide in the investigation of 

the MUC1 core related glycopeptides (Figure 3.1).66    These glycopeptides represent two 

sequences that are prominently found in MUC1 and which are repeated throughout the 

molecule.  Both glycopeptides feature adjacent serine and threonine residues O-glycosylated by 

α-N-acetyl galactosamine.  The clustered glycopeptide fragment 69 was synthesized by 
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fragment condensation of Fmoc-[O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)]-

L-Ser-OH (67) and H-[O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy-α-D-galactopyranosyl)]-L-Thr-Ala-

OHep (68) (Scheme 3.1).67  N-Hydroxybenzotriazole (HOBt) and 1-ethyl-3-(3-

dimethyllaminopropyl)carbodiimide hydrochloride (EDC) were employed to give the resulting 

tripeptide in 48% yield.     

 

Figure 3.1  MUC1 core related diglycohexapeptide and diglycodecapeptide 

 

Scheme 3.1 Fragment condensation using HOBt and EDC 

 The Danishefsky group published a paper in 1998 detailing the synthesis of a 

glycocluster in the TN and TF (Thomsen-Friedenreich) tumor-associated antigens (Figure 3.2) 

where the N-acetyl galactosamine moiety is α-linked to a serine or threonine residue.68  The 

glycosylated amino acids were each unmasked at the N- or C-terminus and condensed to 

obtain the diglycodipeptide (74/75) and, subsequently, the triglycotripeptide cluster (78/79) 

(Scheme 3.2).  The use of N-isobutyloxyl-carbonyl-2-isobutyloxy-1,3,-dihydroquinone (IIDQ) 

gave great yields in the synthesis of the TN cluster.  However, the bulkier residues, glycosylated 

by disaccharides in the TF antigen, required the use of HATU/HOAt as the reactions were 

reported as being “sluggish” with IIDQ.68  This observation was pertinent to us as the 

http://en.wikipedia.org/wiki/Thomsen-Friedenreich_antigen
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serine/threonine galactosides have the advantage of being primary amine nucleophiles, thus 

providing steric advantages in peptide coupling relative to our hydroxyproline arabinosides.  In 

light of this precedent for addressing the steric challenges, we considered that HATU was a 

strong candidate for the formation of our oligomers. 

 

Figure 3.2 TN and TF antigen 
 

 

Scheme 3.2 Synthesis of a triglycotripeptide cluster (TN only) 

 Contiguous O-glycosylated amino acid motifs have also been synthesized using solid 

phase peptide synthesis (SPPS) by the Barany group to prepare mucin-like glycopeptides69 and 

glycopeptide sequences from α-dystroglycan,70 an extracellular glycoprotein that controls 
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muscle function.  However, the most relevant SPPS study was reported by the Schweizer 

group.71  Owens et al. investigated the conformational effects of contiguous O-galactosylation of 

trans-L-hydroxyproline (details will be more closely examined in Chapter 4).  A per-

galactosylated nonapeptide (83) was prepared by solid phase synthesis using Fmoc-Rink 

Amide resin; when the peptide is cleaved from the resin it affords a C-terminal amide (84) 

(Scheme 3.3).  The hydroxyproline galactoside donor was reportedly prepared in one step from 

commercially available β-D-galactose pentaacetate (80) and Fmoc-Hyp-OH (81) giving the 1,2-

trans-glycoside as the only product.  For each on-resin peptide coupling, three equivalents of 

acid 82 was used in combination with four equivalents of O-(benzotriazol-1-yl)-N,N,N',N'-

tetramethyluronium tetrafluoroborate (TBTU) and eight equivalents of diisopropylethyl amine 

(DIEA).  The authors were able to prepare the nonaglycopeptide (84) for their structural studies.  

However, no yields were reported. 

 

Scheme 3.3 Solid phase peptide synthesis of a nonaglycopeptide 
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We concluded at the outset that solid phase synthesis was not a realistic route for us 

due to the high stoichiometry of monomer necessary to carry out each of the cycles.  While the 

galactose pentaacetate donor used by Schweitzer et al. is commercially available, our 

arabinofuranoside donor is not.  The difficulty of synthesizing β-L-arabinosides of 

hydroxyproline, as outlined in Chapter 2, rendered us unwilling to sacrifice the precious material 

in these excess quantities.  Our plan was to utilize the latest advances in solution phase peptide 

coupling strategies in order to obtain these synthetically challenging glycopeptide clusters in 

optimal yield and purity. 

3.2 Dimer Synthesis 

Retrosynthetically, it is obvious that we must derive the free carboxylic acid (86) and 

prolyl amine (87) from our hydroxyproline arabinoside monomer for diglycodipeptide (85) 

assembly (Scheme 3.4).  Our choice of deprotection methods should look to leave the non-

targeted protecting groups unaffected, as well as preserving the ever important O-glycosidic 

linkage. 

 

Scheme 3.4 Retrosynthetic analysis of dimer 

 Treatment of compound 64β (Scheme 3.5) with trifluoroacetic acid afforded the 

secondary amine 87.  When the reaction was carried out at room temperature, we isolated small 

amounts of a prolyl species lacking the carbohydrate moiety.  To minimize cleavage of the O-

glycosidic linkage, we therefore removed the Boc-carbamate at 0 °C.  While the amine salt is 

typically not purified any further due to its high polarity, we found it beneficial to submit the 
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residue to flash chromatography prior to the coupling reaction.  Proton and 13C NMR spectra of 

compound 87 saw the disappearance of the second set of peaks present in the spectra of 64β 

as a consequence of rotational isomerization, thus confirming that the two species observed in 

the spectra of 64β were indeed assignable to carbamate rotamers. 

 

Scheme 3.5 Boc deprotection of monomer 

Our initial motivation to mask the acid as an allyl ester was the established ease of 

deprotection under mild or neutral conditions (Scheme 3.6).  Deallylation of the allyl ester with 

10 mol % of palladium (0) and an allyl scavenger could be achieved in excellent yield as shown 

by the groups of Zhang and Kunz.72  We chose tetrakis(triphenylphosphine)palladium(0) and 

morpholine as the reaction conditions because the scavenger and its allylated counterpart could 

be purified from the product through simple extraction using dilute HCl.  The product, however, 

could not be rendered free from residual catalyst, as evidenced by the distinct gold color which 

carried into the dimeric product of coupling.  The high polarity of the free acid also made 

purification by flash chromatography difficult.  In search of an ester cleavage protocol free of 

byproducts, we decided to try mild basic hydrolysis using aqueous tetrabutylammonium 

hydroxide (TBAH) in THF (Scheme 3.7).73  The product of this reaction was colorless and was 

not subjected to flash chromatography despite it being not completely free of byproducts. 

 

Scheme 3.6 Known methods of allyl ester deprotection 
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Scheme 3.7 Deallylation of monomer  

 We tried a variety of coupling reagents in the synthesis of the clustered diglycodipeptide.  

We first looked at bromo-tris-pyrrolidinophosphoniumhexafluorophosphate (PyBrOP) for our 

coupling due to its efficiency in the difficult coupling of the dipeptide of α-aminoisobutyric acid 

(Aib) (88) (Scheme 3.8).74  Aib is a sterically hindered α-methylalanyl residue that can affect the 

conformation75 of a peptide as well as its pharmacological activity.  The coupling of Boc-Aib-OH 

(89) and H2N-Aib-OMe (90) was carried out using PyBrOP and 4-dimethylaminopyridine 

(DMAP) to give a 77% yield of the hindered dipeptide 88.  Previous methods using pivaloyl 

chloride and NMM, which constructed the dipeptide by way of a mixed anhydride, gave only 

54% of product.76  Considering that both our nucleophile and carboxylate are also fairly 

hindered, we chose PyBroP as our first coupling reagent.       

 

Scheme 3.8 Difficult coupling of a dipeptide of aminoisobutyric acid 

  Coupling of acid 86 and amine 87 with PyBrOP (Scheme 3.9) yielded unsatisfactory 

results.  Thin layer chromatography (TLC) showed an array of products and the diglycodipeptide 

(85) was isolated in only 11% yield.  Unreacted amine and acid starting materials were evident 

by TLC.  Frerot et al. showed that addition of DMAP to peptide coupling reactions can improve 

yields when used in combination with PyBrOP.74  PyBrOP is known to facilitate the formation of 
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anhydrides77 while DMAP promotes the aminolysis of these anhydrides (Scheme 3.10).   

Unfortunately, the isolated yields of 85 were not much better than coupling without DMAP.   

 

Scheme 3.9 Fragment condensation of dimer with PyBrOP 

 

Scheme 3.10 Mechanism of PyBrOP/DMAP mediated coupling 

 Given the inefficiency of PyBroP, we moved to a coupling reagent that would generate a 

less sterically hindered activated species.    Carpino and coworkers published a paper in 1990 

detailing a new peptide coupling strategy involving the use of stable amino acid fluorides (e.g., 

91) as key intermediates (Scheme 3.11).78  An amino acid fluoride has an advantage over its 

chloride counterpart due to the smaller size of the leaving halide.  Moreover, amino acid 

chlorides have shown lability in reactions involving acid side chains containing tert-butyl esters 

wherein formation of the cyclic anhydride 94 and tert-butyl chloride (95) side products are 

observed.79  This instability is not limited to tert-butyl esters, however, as β-1-adamantyl ester, 
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NεBoc-lysine, and tert-butyl ethers of hydroxyl-bearing amino acids also undergo unwanted 

transformations under coupling conditions involving acid chloride intermediates.  Amino acid 

fluorides do not undergo this process, most likely due to the stronger C-F bond character as 

compared to its C-Cl counterpart,80 while being comparable in reactivity toward amine 

nucleophiles.81       

 

Scheme 3.11 Classical preparation of acid fluorides; acid chloride side reactions  

 Amino acid fluorides were classically synthesized using cyanuric fluoride in pyridine 

(Scheme 3.11).82  More recently, tetramethylfluoroformamidinium hexafluorophosphate (TFFH) 

(Scheme 3.12), a much milder reagent relative to cyanuric fluoride, was used to convert Fmoc 

amino acids to acid fluorides.83  Acid fluorides can be generated by treatment of the 

corresponding acid with TFFH within 15 minutes, with more hindered amino acids taking up to 

two hours.  While these compounds are stable enough to be isolated, peptide coupling reactions 

can be subsequently carried out in one pot by adding the amine nucleophile and a hindered 

amine base after formation of the acid fluoride.   

 

Scheme 3.12 Preparation of TFFH 

 Initial use of TFFH in generating the acyl fluoride of our acid 86 for coupling with the 

amine monomer 87 gave an increased yield when compared to coupling with PyBroP (Scheme 

3.13).  Chemical yields ranging from 18-26% were obtained using TFFH.  Thin layer 

chromatography showed that significant amounts of unreacted acid and amine monomers were 
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present, in common with couplings using PyBrOP.  This led us to believe that not all acid 

monomer was converted to the acyl fluoride 96 or, perhaps once formed, the intermediate 

underwent hydrolysis by adventitious water.  While reaction with TFFH gave yields significantly 

better than PyBrOP, the results were still unsatisfactory. 

 

Scheme 3.13  Fragment condensation to produce dimer with TFFH 

 Peptide coupling reagent O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HATU) has been widely used for amide formation in biologically 

interesting, complex molecules.84  HATU has proven to be superior to its HBTU counterpart85 

due to the neighboring group effect of the aromatic nitrogen (Figure 3.3b).86  Carpino has shown 

that the true form of HATU/HBTU to be the guanidinium salts (N-form) as opposed to the 

uronium salts (O-form),87 which was previously believed to be the case.  The O-isomers have 

been shown to be more reactive than the N-form.    

 

Figure 3.3 a) Guanidinium and uronium salts of HATU and HBTU, b) Neighboring group effect  

Scheme 3.14 shows the possible pathways of peptide coupling using HATU.  Initially, 

the deprotonated acid nucleophile attacks the electrophilic carbon to form the O-acyl urea, 
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which can immediately couple with the amine nucleophile to give the resulting peptide and urea 

by-product.  At least two other pathways can transpire after initial activation: 1) the O-acyl urea 

can be displaced by another molecule of the carboxylate to form a symmetrical anhydride, 2) 

formation of the activated ester.  The leaving group of either of the intermediates can be 

displaced by the amine nucleophile to give the desired peptide product.   

 

Scheme 3.14 Pathways of amide formation using HATU 

 Chemical yields of diglycodipeptide (85), obtained using HATU as the coupling reagent 

(Scheme 3.15), were immediately better than any reagent we have used previously.  Yields of 

45-50% were achieved when the reaction was run at room temperature.  When the reaction was 

initiated in an ice bath, then allowing the mixture to warm to room temperature overnight as the 

ice melted, the percent yield was reduced (~25%).  This prompted us to investigate the effects 

that increasing the temperature might have on this coupling reaction.  Interestingly enough, mild 

heating of the reaction vessel (30 °C) gave higher percent yields (50-60%).  Further increase in 

temperature did not show any improvement in chemical yield.  Optimization of this reaction 

condition has allowed us to obtain the dimer in amounts practical for the further synthesis of 

larger oligomers.  The diglycodipeptide has been fully characterized by mass spectrometry, 1H 

and 13C NMR, and 2-D NMR experiments.    Structural studies will be elaborated in Chapter 4. 
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Scheme 3.15 Fragment condensation to produce dimer using HATU 

3.3 Oligomer Synthesis 

 In the preparation of the trimer 99, we were faced with two possible paths to reach the 

glycopeptide: a [2+1] or a [1+2] coupling strategy.  The [2+1] coupling would place the steric 

bulk of an extra hydroxyproline arabinoside residue on the free acid 97 in favor of a less 

sterically hindered amine nucleophile 87, while the [1+2] strategy would feature a bulkier prolyl 

nucleophile 98 coupling to a less sterically hindered acid 86 (Scheme 3.16). 

 

Scheme 3.16 [2+1] and [1+2] Trimer coupling strategy 

 Free acid 97 and amine 98 were prepared from diglycodipeptide 85 (Scheme 3.17).  

Tetrabutylammonium hydroxide was again used to hydrolyze the allyl ester to avoid the need for 
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chromatography as the polarity of free dimer acid 97 is higher than that of its monomer 

counterpart.  The heightened polarity likely also accounts for the less than quantitative yields as 

the dimer acid has a higher affinity for the aqueous layer during work-up.  The free amine 98 

could still be obtained quantitatively with 50% TFA in dichloromethane at 0 °C.   

 

Scheme 3.17 Preparation of dimer building blocks 

 The [2+1] coupling of dimer acid 97 and monomer amine 87 gave the triglycotripeptide 

99 in ~35% yield (Scheme 3.18).  Alternatively, the [1+2] coupling of monomer acid 86 and 

dimer amine 98 gave a similar yield.  In this instance, raising the temperature slightly did not 

improve the yield in a noticeable fashion.     

 

Scheme 3.18 Fragment condensation to produce trimer 

 Confronted with low yields for the construction of the triglycotripeptide, we chose not to 

use it as a precursor to the tetramer.  Instead, the alternate path of a [2+2] coupling, utilizing two 

dimer building blocks which could be synthesized in reasonable quantities, was pursued.  Thus, 

free acid dimer 97 was coupled to dipeptide amine 98 to afford the glycotetrapeptide in 49% 



84 
 

yield (Scheme 3.19).  Mass spectrometry, proton, and carbon NMR confirmed the formation of 

the tetramer (100). 

 

Scheme 3.19 Fragment condensation to produce tetramer 

3.4 Oligomer End-Capping 

 With monomer, dimer, trimer, and tetramer in hand, we began preparations to “end-cap” 

the glycopeptides.  At this stage, the N- and C-termini were masked as a Boc carbamate and an 

allyl ester respectively.  In order to better mimic the extended peptide, we sought to cap both 

termini as amides before committing to the global deprotection of the benzyl ethers of the 

carbohydrate moieties (Scheme 3.20). 

 

Scheme 3.20 End-capping of glycopeptides 

 Starting with monomer 64β, the carbamate was deprotected, as before, using TFA in 

dichloromethane (Scheme 3.21).  Installation of the acetamide with acetic anhydride and 

diisopropylethyl amine gave compound 101 in 69% yield over two steps.  Subsequent 

deprotection of the allyl ester was carried out under the hydrolysis conditions described 
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previously.  The C-terminal methyl amide was formed using 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC)/HOBt and methylamine hydrochloride under basic conditions to afford the 

fully end-capped monomer 102 in satisfactory yield.   

 

Scheme 3.21 Monomer end-capping 

 Dimer 85 was treated in a similar fashion to form acetamide 103, albeit in slightly lower 

yield, over two steps (Scheme 3.22).  Upon deallylation of the free acid, however, we saw a 

significant drop in yield when using EDC/HOBt as the coupling reagent in the formation of the N-

methyl amide (104).  Furthermore, NMR showed that the products obtained were of much lower 

purity.  This problem was rectified by using HATU as the coupling reagent and acetonitrile as 

the solvent.  Quality fully end-capped dimer 104 could be obtained in 73% yield over two steps. 

 

Scheme 3.22 Dimer end-capping  

Installation of the N- and C-terminal amides on the trimer and tetramer proved not to be 

trivial.  Poor yields (trimer: 18% over 4 steps; tetramer: not obtained) forced us to modify our 

strategy to include end-caps prior to peptide coupling and/or glycosylation.  This strategy has 

the potential to be more convergent, decreasing four linear steps in the overall oligomer 
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synthesis.  This approach called for the preparation of oligomer-specific glycosidic building 

blocks (Scheme 3.23, 105 and 106), as well as two new glycosyl acceptors (107 and 108).   

 

Scheme 3.23 Oligomer-specific glycosidic building blocks 

 
3.5 Pre-End-Capped Glycosides 

Glycosyl acceptors 107 and 108 can both be constructed in one step from commercially 

available N-acetyl trans-4-hydroxyproline (109) and N-Boc-trans-4-hydroxyproline (53) 

respectively (Scheme 3.24).  Treatment of Ac-Hyp-OH with dicyclohexylcarbodiimide (DCC) and 

4-DMAP in methanol/dichloromethane affords acceptor 107 in 66% yield.  The N-methyl amide 

acceptor 108 could be obtained in quantitative yield using freshly recrystallized methylamine 

hydrochloride, HATU, and triethylamine in acetonitrile (Scheme 3.24).   

 

Scheme 3.24  Pre-end-capped glycosyl acceptors 
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 Glycosylation of Ac-Hyp-OMe (107) with thioarabinoside donor 60 proved to be high-

yielding relative to Boc-Hyp-OAll (Scheme 3.25).  While the β:α ratio suffered slightly (3:1 as 

opposed to 4:1), the overall yield of the target β-glycoside was significantly higher (83% vs 

60%).  The compromise in selectivity in lieu of percent yield did lead to a higher overall yield for 

the β-glycoside.     

  

Scheme 3.25 Preparation of pre-end-capped monomers 

Glycosylation of Boc-Hyp-NHMe (108) with donor 60 under standard conditions gave the 

methylamide building block 106 in 70 % yield, 2.7:1 β:α ratio.  A huge drawback of this reaction 

is the insufficient polarity differences between the α- and β-anomers.  The Rf values of the two 

diastereomers were nearly indistinguishable, which made separation by flash chromatography 

all but impossible.  We require these building blocks to be synthesized on gram-scale, thus the 

tedious separation of the anomers by HPLC was impractical.  Hence, for this particular building 

block, we chose to install the methyl amide post-glycosylation on the β-monomer 86 (Scheme 

3.26).  This transformation can be carried out in two steps from 64β to give 106 in good yield. 

 

Scheme 3.26 Alternate strategy for preparation of C-terminal amide glycoside 



88 
 

 Synthesis of the end-capped triglycotripeptide began with coupling of compound 110 

and 87 to give the glycodipeptide building block 111 in 60% yield (Scheme 3.27).  The allyl ester 

of the diglycodipeptide was hydrolyzed to reveal the free acid dimer 112.  The N-methyl amide 

monomer 106 was cleaved of its Boc carbamate by TFA in dichloromethane to afford the end-

capped free amine 113.  Compounds 112 and 113 were coupled under standard conditions to 

give the fully end-capped trimer 114 in 35% yield. 

 

Scheme 3.27 Pre-end-capped trimer synthesis 

 For the synthesis of the fully end-capped tetramer, we chose again to pursue a [2+2] 

route.  The N-terminus-capped dimer building block could be formed by the coupling of 

compounds 86 and 113 under standard conditions (Scheme 3.28).  The Boc carbamate (115) is 
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subsequently removed to give the free amine 116) which is then coupled to free acid dimer 112 

with HATU to give the fully end caped tetramer product 117. 

 

Scheme 3.28 Pre-end-capped tetramer synthesis 

3.6 Global Deprotection           

 Global debenzylation of all end-capped compounds was carried out using palladium on 

carbon (Pd/C) and hydrogen gas in methanol (Scheme 3.29).  This process gave quantitative 

yields for all oligomers in an overnight reaction.  For the larger oligomers, higher loadings of 

Pd/C were useful.  After filtering off the catalyst, small impurities could be washed away by 

dissolving the highly polar products in water and extracting with immiscible organic solvents 

(ethyl acetate, chloroform, dichloromethane).  Lyophilization of the aqueous layer overnight 

afforded the end-capped glycopeptides with fully deprotected arabinoside domains as 

amorphous solids.        
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Scheme 3.29 Global debenzylation 

3.7 Experimental Section 

General methods: as stated in chapter 2. 

3.7.1 Experimental procedures 

(3.1) 

Nα-tert-Butyloxycarbonyl-trans-4-hydroxy-4-O-[2,3,5-O-Benzyl-L-arabinofuranosyl]-L-proline 

(86)  A solution of compound 64β (662 mg, 1.0 mmol, 1.0 equiv.) in THF (8 mL) was treated 

with 40% aqueous tetrabutylammonium hydroxide (2.0 mL,  796 mg, 3.0 mmol, 3.0 equiv.) and 

stirred at RT for 1.5 h.  The solvent was evaporated and the residue dissolved in EtOAc (45 mL) 

and washed with 1M HCl (50 mL).  The aqueous portion was back extracted with EtOAc (3 x 25 

mL).  Organic portions were combined, filtered through MgSO4, and concentrated.  The crude 

acid 86 (quantitative) was used in the next reaction without further purification. 

trans-4-Hydroxy-4-O-[2,3,5-O-Benzyl-L-arabinofuranosyl]-L-proline Allyl Ester (87).    

Compound 64β (144 mg, .21 mmol, 1 equiv.) was dissolved in dry CH2Cl2 (2.5 mL) and stirred 
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under N2.  The mixture was cooled to 0 °C and treated with TFA (1 mL) and thioanisole (25 µL, 

27 mg, 0.21 mmol, 1.0 equiv.).  The mixture was stirred at 0 °C for 30 min, warmed to RT over 

the next 2.5 h, and concentrated.  The residue was purified by flash column chromatography, 

starting with 2:1 EtOAc/Hex and flushing with 4:1 CH2Cl2/MeOH to give 87 as a light brown oil 

(107 mg, 73%).   

Diglycodipeptide (85). 87 (56 mg, .08 mmol, 1 equiv.) and 86 (62 mg, 0.10 mmol, 1.2 equiv.) 

were suspended in dry CH2Cl2 (3 mL).  The mixture was cooled to 0 °C and DIEA (53 µL, 40 mg, 

0.30 mmol, 3.7 equiv.) and HATU (48 mg, 0.13 mmol, 1.5 equiv.) were added successively.  

The reaction was heated to 30 °C while stirring under N2 overnight.  Upon completion, the 

mixture was diluted with CH2Cl2 to 25 mL total volume, washed with 1M HCl (2 x 20 mL), sat’d 

NaHCO3 (20 mL), and brine (20 mL).  The organic layer was filtered through MgSO4 and 

concentrated.  The residue was purified by flash column chromatography, eluting with 1.5:1 

Hex/EtOAc  1.5:1 EtOAc/Hex to give title compound 85 as a light oil (58 mg, 60%). Rf 0.56 

(2:1 EtOAc/Hex). [α]D
25 +30.1 (c 1.0, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 1.35 (1.30)* (s, 9H),   

1.96-2.13 (m, 2H), 2.17-2.37 (m, 2H), 3.40-3.75 (m, 8H), 3.90-4.27 (m, 6H), 4.38-4.72 (m, 18H), 

4.88 (5.08) (s {d, J = 4.0 Hz}, 1H), 4.99 (app. t, J = ~4.3 Hz, 1H), 5.20 (app. d, J = 10.4 Hz, 1H), 

5.29 (app. d, J = 16.9 Hz, 1H), 5.82-5.91 (m, 1H), 7.25-7.33 (m, 30H); 13C NMR (100 MHz, 

CDCl3) δ t-Boc (28.4, 28.5)*, C-β (35.3, 35.5, 36.0, 36.6), C-δ (50.3, 51.0, 51.6, 51.7), C-α (56.6, 

56.8, 57.8, 58.0),  CH2CH=CH2 (65.7, 65.9), OCH2Ph (72.0-72.8, 73.4, 73.5), furanose C5 73.3, 

C-γ (73.8, 74.3), (CH3)3C- (75.5, 76.8), furanose C2,3,4 (79.8-84.2), furanose C1 (98.5, 99.3, 

98.9, 101.3), CH2CH=CH2 (118.4, 118.7), aromatic CH (127.7-128.6), CH2CH=CH2 (131.8, 

131.9), aromatic -C- (137.4-138.2), NCOOR (153.7, 154.2), COR (171.4, 171.6, 171.4, 171.5); 

HRMS (ESI) calcd C70H80N2O15Na for (M+Na)+: 1211.5456; obsd: 1211.5412. 

*signals in parentheses signify pairs of rotamers. 
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(3.2) 

Dimer acid (97). A solution of compound 85(180 mg, 0.15 mmol, 1.0 equiv.) in THF (3 mL) was 

treated with a 40% aq. solution of tetrabutylammonium hydroxide (296 µL, 160 mg, 0.45 mmol, 

3.0 equiv.) and stirred at RT under N2 for 2 h.  The solvent was evaporated, the residue 

dissolved in EtOAc (20 mL) and washed with 1M HCl (15 mL).  The aqueous layer was back-

extracted with EtOAc (3 x 10 mL).  The organic portions were combined, filtered through MgSO4 

and concentrated.  The crude acid 97 was obtained in quantitative yield and submitted to the 

next step without further purification.   

Triglycotripeptide (99). Compounds 87 (48 mg, 0.07 mmol, 1.0 equiv.) and 97 (81 mg, 0.07 

mmol, 1.0 equiv.) were suspended in dry CH2Cl2 (3 mL).  Diisopropylethylamine (37 µL, 30 mg, 

.21 mmol, 3.0 equiv.) and HATU (40 mg, 0.1 mmol, 1.5 equiv.) were added successively.  The 

reaction mixture was stirred for 21 h under N2.  The mixture was diluted with CH2Cl2 to a total 

volume of 25 mL, washed with 1M HCl (2 x 20 mL), sat’d NaHCO3 (20 mL), and brine (20 mL).  

The organic layer was filtered through MgSO4 and concentrated.  The residue was purified by 

flash column chromatography, eluting with 1.5:1 Hex/EtOAc  1.5:1 EtOAc/Hex  1:2 

EtOAc/Hex to give the title compound 99 as a light oil (42 mg, 35%).  Rf 0.62 (2:1 EtOAc/Hex).  

[α]D
25 42.6 (c 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3) δ 1.34 (1.33)* (s, 9H), 1.75-1.80 (m, 1H), 

1.90-2.00 (m, 1H),  2.04-2.34 (m, 4H), 3.06-3.67 (m, 8H), 3.84-4.13 (m, 12H), 4.38-4.72 (m, 

27H), 4.84 (d, J = 4.2 Hz, 0.5H), 4.87 (d, J = 4.1Hz, 0.5H), 4.92 (d, J = 3.8, 0.5H), 5.09 (d, J = 

2.8 Hz, 0.5H), 5.15 (d, J = 2.1 Hz, 0.5H), 5.16 (d, J = 4.0 Hz, 0.5H), 5.19-5.30 (m, 2H), 5.81-

5.91 (m, 1H), 7.28-7.33 (m, 45H); 13C NMR (100 MHz, CDCl3) δ 28.5 (t-Boc CH3), (34.9, 35.1, 
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35.5, 35.7, 36.0, 36.3) (C-β), (50.0, 50.1, 50.5, 50.7, 51.6, 51.9) (C-δ), (56.6, 56.8, 56.9, 57.0, 

57.9, 58.1) (C-α), 65.7 (CH2CH=CH2), (72.0-72.7) (OCH2Ph), (73.1, 73.3) (furanose C5), (73.61, 

73.7, 74.5) (C-γ), (79.6, 79.7) (Boc (CH3)3C-), (79.9-84.2) (furanose C2,3,4), (98.2, 98.6, 98.9, 

101.0) (furanose C1), 118.4 (CH2CH=CH2), (127.8-128.4) (Ar 3° CH), 131.8 (CH2CH=CH2), 

(137.5-138.2) (Ar 4° -C-), (153.8, 154.2) (NCOOtBu), (170.8, 170.8, 171.0, 171.1, 171.4, 171.5) 

(COR); HRMS (ESI) calcd C101H112N3O21Na for (M+Na)+: 1726.7759; obsd: 1726.7750. 

*Signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond 

(3.3) 

Dimer amine 98. Diglycodipeptide 85 (168 mg, .14 mmol, 1 equiv.) was dissolved in dry CH2Cl2 

(3 mL) and stirred under N2.  The mixture was cooled to 0 °C and treated with TFA (1.5 mL).  

The mixture was stirred at 0 °C for 3 h and concentrated to give compound 98 in quantitative 

yield.  The residue was submitted to the next step without further purification. 

Tetraglycotetrapeptide 100.  Compounds 97 (145 mg, 0.13 mmol, 1 equiv.) and 98 (170 mg, 

0.14 mmol, 1.1 equiv.) were suspended in dry CH2Cl2 (5 mL).  HATU ( 50 mg, 0.13 mmol, 1.0 

equiv.) and DIEA (110 µL, 82 mg, 0.63 mmol, 5.0 equiv.) were added successively.  The mixture 
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was stirred for 18 h under N2.  Upon completion, the solvent was evaporated and the residue 

diluted with EtoAc (30 mL), washed with 1M HCl (30 mL), sat’d NaHCO3 (30 mL), and brine (30 

mL).  The organic layer was filtered through MgSO4 and concentrated.  The residue was purified 

by flash column chromatography, eluting with 1.5:1 Hex/EtOAc  1:1 Hex/EtOAc  1:1.5 

Hex/EtOAc  1:2 Hex/EtOAc to give the title compound 100 as a light oil (138 mg, 49%). Rf 

0.80 (2:1 EtOAc/Hex). [α]D
25 +42.2 (c 1.0, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 1.30 [1.26]* (s, 

9H), 1.70-2.30 (m, 8H), 3.08-3.66 (m, 16H), 3.76-4.20 (m, 15H), 4.23-4.67 (m, 31H), 4.76-5.10 

(anomeric signals, 4H), 5.18 (d, J = 10.4 Hz, 1H), 5.27 (d, J = 17.3 Hz, 1H), 5.78-5.88 (m, 1H), 

7.26-7.31 (m, 60H); 13C NMR (100 MHz, CDCl3) δ (28.5, 29.7) (Boc CH3), (34.8, 35.0, 35.1, 

35.3, 35.4, 35.9, 36.2) (C-β), (50.0, 50.1, 50.2, 50.4 50.5, 50.8, 51.6, 52.1) (C-δ), (56.7, 56.8, 

57.0, 57.1, 57.2, 57.9) (C-α),  (65.8) (CH2CH=CH2), (72.0-72.6) (OCH2Ph), (73.2, 73.3, 73.4) 

(furanose C5), (73.8, 74.0, 74.1, 74.3) (C-γ), (79.6, 79.7) (Boc (CH3)3C-), (79.9-84.3) (furanose 

C2,3,4), (98.0, 98.1, 98.3, 98.6, 98.9, 99.2, 99.4, 100.8) (furanose C1), (118.5, 118.6) 

(CH2CH=CH2), (127.8-128.7) (Ar CH), 131.8 (CH2CH=CH2), (137.5-138.2) (Ar -C-), (153.9, 

154.2) (NCOOtBu), (170.4, 170.5, 170.7, 170.9, 171.4) (COR); HRMS (ESI) calcd 

C132H145N4O27Na for (M+Na)+: 2242.0067; obsd: 2243.0072. 

*signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond. 

(3.4) 

N-Acety-L-trans-4-hydroxy-L-proline methyl ester (105).  Dicyclohexylcarbodiimide (119 mg, 

0.58 mmol, 1.0 equiv.) and 4-DMAP (18 mg, 0.15 mmol, 0.25 equiv.) were added sequentially to 

a suspension of Ac-Hyp-OH (109) (100 mg, 0.58 mmol, 1.0 equiv.) in dry MeOH (2 mL) and 

CH2Cl2 (2 mL).  The mixture was stirred overnight under N2 after which the solvent was 
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evaporated.  The residue was triturated with CH2Cl2 and filtered to remove dicyclohexylurea.  

The filtrate was concentrated and purified by flash column chromatography, eluting with 

CH2Cl2/MeOH (14:1  10:1) to give compound 105 as an amorphous solid (71 mg, 66%).  Rf 

0.33 (10:1 CH2Cl2/MeOH).  [α]D
25 -89.9 (c 1.0, CH2Cl2). 

1H NMR (400 MHz, CDCl3) δ 2.03-2.10 

(2.15-2.23) (m, 1H), 2.07 (1.96)* (s, 3H), 2.26-2.32 (2.41-2.47) (m, 1H), 3.51 (app. d, J = 11.2 

Hz, 1H), 3.72 (3.77) (s, 3H), 3.74-3.79 (m, 1H), 4.52-4.57 (4.45) (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 22.2 (21.6), 38.0 (39.7), 52.3 (52.7), 55.9 (54.5), 57.5 (58.8), 70.1 (68.5), 170.0 

(170.7), 173.0 (172.7); HRMS (ESI) calcd for C8H14NO4 (M+H)+: 188.0917, obsdd: 188.0919.   

*signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond. 

(3.5) 

N-Acetyl-trans-4-hydroxy-4-O-[2,3,5-O-benzyl-L-arabinofuranosyl]-L-proline Methyl Ester.  A 

solution of compounds 60 (342 mg, 0.65 mmol, 1.0 equiv.) and 105 (124 mg, 0.66 mmol, 1.0 

equiv.) in dry CH2Cl2 (40 mL) was stirred with activated powdered 4Å molecular sieves (1.0 g) 

under N2 for ~30 min at RT.  The suspension was cooled to -78 °C (acetone/dry ice) and then 

NIS (231 mg, 1.0 mmol, 1.5 equiv.) and AgOTf (83 mg, 0.32 mmol, 0.5 equiv.) were added.  The 

reaction was allowed to gradually reach 0 °C over 1.5 h, at which time it was quenched with 

Et3N (2 mL) and filtered.  The filtrate was diluted with EtOAc (50 mL) and washed with 10% 

aqueous Na2S2O3 (50 mL) and brine (50 mL).  The organic layer was filtered through MgSO4 

and concentrated.  The residue, determined to be a 3:1 β:α ratio by NMR, was purified by 

column chromatography, eluting with 3:1 Hex/EtOAc to afford 107 (317 mg, 83%)  as an orange 

oil.  Rf 0.34 (8:1 EtOAc/Hex). [α]D
25 39.2 (c 0.5, CH2Cl2).   

1H NMR (400 MHz, CDCl3) δ 2.02-

2.08 (2.10-2.17)* (m, 1H), 2.03 (1.84) (s, 3H), 2.31-2.40 (m, 1H), 3.41 (dd, J = 10.6, 3.6 Hz, 1H), 
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3.49-3.52 (m, 2H), 3.71 (3.75) (s, 3H), 3.72-3.74 (m, 1H), 4.07-4.14 (m, 3H), 4.29-4.43 (m, 1H), 

4.48-4.73 (m, 7H), 4.90 (4.98) (d, J = 3.6 (4.0) Hz, 1H), 7.27-7.36 (m, 15H); 13C NMR (100 MHz, 

CDCl3) δ 22.3 (21.5), 36.0 (38.0), 52.3 (52.7), 52.8 (50.6), 57.5 (58.8), 71.9 (72.2), 72.5 (72.4), 

72.7 (73.1), 73.4 (73.3), 76.3, 80.1, 82.4, 84.2 (83.9), 100.5 (99.1), 127.8, 127.9, 128.0, 128.1 

(2c), 128.4, 128.5, 128.6, 137.6, 137.8 (137.9), 138.1 (2c), 169.3, 172.7 (172.6); HRMS (ESI) 

calcd for C34H40NO8 (M+H)+: 590.2748, obsd: 590.2758.   

*signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond 

(3.6) 

HATU (50 mg, 0.13 mmol, 1.5 equiv) and triethylamine (62 µL, 45 mg, 0.45 mmol, 5 equiv.) 

were added to a solution of compounds 86 (56 mg, 0.09 mmol, 1 equiv.) and methylamine 

hydrochloride (12 mg, 0.18 mmol, 2 equiv.) in acetonitrile under an atmosphere of N2.  The 

mixture was stirred for 18 h and the solvent evaporated.  The residue was diluted with EtOAc 

(30 mL), washed with 1 M HCl (30 mL) and aq. NaHCO3 (30 mL), filtered through MgSO4, and 

concentrated.  The residue was purified by flash column chromatography, eluting with 8:1 

EtOAc/Hex to give the amide product 108 as a light oil (40 mg, 70%).  Rf 0.32 (8:1 EtOAc/Hex). 

[α]D
25 19.6 (c 1.0, CH2Cl2).   

1H NMR (400 MHz, CDCl3) δ 1.44 (1.38)* (s, 9H), 2.08 (br s, 1H), 

2.43 (2.32) (br s, 1H), 2.78 (2.77) (s, 3H), 3.43-3.47 (3.75-3.78) (m, 2H), 3..52 (app d, J = 3.3 

Hz, 2H), 4.06-4.31 (m, 5H), 4.50-4.70 (m, 6H), 4.97 (s, 1H), 6.57 (5.74) (s, 1H), 7.26-7.36 (m, 

15H); HRMS (ESI) calcd for C37H46N2O8 (M+H)+: 647.3327, obsd: 647.3323.   

*signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond. 
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(3.7) 

N-Acetyl-trans-4-hydroxy-4-O-[2,3,5-O-benzyl-L-arabinofuranosyl]-L-proline Methyl Amide 

(102). A solution of compound 110 (121 mg, 0.21 mmol, 1.0 equiv.) in dry THF (4 mL) was 

treated with a 40% aq. solution of tetrabutylammonium hydroxide (401 µL, 160 mg, 0.62 mmol, 

3.0 equiv.) and stirred at RT under N2 for 1.5 h.  The solvent was evaporated and the residue 

dissolved in EtOAc (25 mL), washed with 1M HCl (25 mL).  The aqueous layer was back-

extracted with EtOAc (10 mL).  The organic portions were combined, filtered through MgSO4 

and concentrated.  The crude acid was obtained in quantitative yield and submitted to next step 

without further purification.   

A suspension of the free acid (56 mg, 0.10 mmol, 1.0 equiv.) and methylamine hydrochloride (8 

mg, 0.10 mmol, 1.0 equiv.) in dry CH2Cl2 was cooled to 0 °C while stirring under N2.  

Diisopropylethylamine (19 μL, 14 mg, 0.11 mmol, 1.1 equiv.) was added, followed by EDC (21 

mg, 0.11 mmol, 1.1 equiv.) and HOBt (17 mg, 0.13 mmol, 1.3 equiv.).  The ice bath was then 

removed and the reaction was left to stir overnight.  The mixture was diluted with CH2Cl2 (25 

mL) and washed with 1 M HCl (25 mL), sat’d NaHCO3 (aq.) (25 mL), and brine (25 mL).  The 

organic layer was filtered through MgSO4 and concentrated.  The residue was purified by flash 

column chromatography, eluting with 19:1 CH2Cl2/MeOH to give compound 102 (35 mg, 61%) 

as an oil.  Rf 0.49 (10:1 CH2Cl2/MeOH). [α]D
25 20.6 (c 1.0, CH2Cl2).  

1H NMR (400 MHz, CDCl3) δ 

2.02 (1.84)* (s, 3H), 2.04-2.07 (m, 1H), 2.53 (dt, J = 13.0, 5.1 Hz, 1H), 2.72 (2.77) (d, J = 4.8 Hz, 

3H), 3.36 (3.43 ) (dd, J = 11.6 (12.7), 4.6 (4.1) Hz, 1H), 3.53-3.56 (m, 2H), 3.61 (dd, J = 10.7, 

5.8 Hz, 1H), 4.07-4.11 (m, 3H), 4.39-4.44 (app. p, J = 5.4 Hz, 1H), 4.48-4.73 (m, 7H), 4.94 

(4.99) (d, J = 3.8 Hz, 1H), 7.26-7.35 (m, 15H); 13C NMR (100 MHz, CDCl3) δ 22.5, 26.2, 34.2, 

52.9, 58.37, 72.1, 72.5, 72.7, 73.3, 76.3, 80.1, 82.7, 84.2, 127.7, 127.9, 128.0, 128.1, 128.4, 
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128.5, 128.5, 137.6, 137.9, 138.1, 170.5, 171.4; HRMS (ESI) calcd for C34H41N2O7 (M+H)+: 

589.2908, obsd: 589.2913. 

*Signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond.  Interestingly, the 13C spectrum only displayed signals for one species. 

(3.8) 

N-Acetyl-4-O-[L-arabinofuranosyl]-trans-4-hydroxy-L-proline Methyl Amide (118). Palladium on 

carbon (10% w/w, 45 mg) was added to a solution of compound 102 (35 mg, 0.06 mmol) in 

MeOH (2 mL).  The suspension was stirred under an atmosphere of  H2 gas for 18 h.  Upon 

completion, the mixture was filtered through Celite® and concentrated to give the triol 118 (19 

mg, quantitative).  [α]D
25 25.6 (c 0.5, MeOH).  1H NMR (400 MHz, CD3OD) δ 2.08 (1.93)* (s, 3H), 

2.03-2.10 (2.13-2.19) (m, 1H), 2.47-2.53 (2.59-2.64) (m, 1H), 2.73 (2.77) (s, 3H), 3.34 (s, 1H), 

3.56 (dd, J = 11.6, 7.1 Hz, 1H), 3.68-3.78 (m, 3H), 3.85-3.91 (m, 1H), 3.96 (dd, J = 7.8, 4.6 Hz, 

1H), 4.41 (4.51) (t, J = 8.0 (7.7) Hz, 1H), 4.45-4.47 (m, 1H), 4.99 (4.95) (d, J = 4.6 (4.5) Hz, 1H); 

13C NMR (100 MHz, CD3OD) δ 21.0 (20.2), 25.0 (25.1), 36.5 (38.4), 53.5 (51.7), 59.0 (60.1), 

63.9 (63.8), 75.0 (74.4), 76.4, 77.2, 83.0, 101.2 (100.7), 171.2 (171.6), 173.7 (173.5); HRMS 

(ESI) calcd for C13H23N2O7 (M+H)+: 319.1500, obsd: 319.1486.   

*Signals in parentheses refer to the minor conformation arising from restricted rotation about the 

prolyl peptide bond.  
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(3.9) 

Fully deprotected diglycodipeptide 104. The methyl amide 108 (199 mg, 0.31 mmol, 1 equiv.) 

was dissolved in dry CH2Cl2 (5 mL) and cooled to 0 oC under an atmosphere of N2.  

Trifluoroacetic acid (1.6 mL) was then added and the mixture stirred for 3 h at 0 oC and 

concentrated.  The free amine was submitted to the next reaction without further purification.    

The acid 110 (94 mg, 0.14 mmol, 1 equiv.) and amine 113 (104 mg, 0.14 mmol, 1 equiv.) were 

dissolved in dry CH2Cl2 and stirred under N2.  The coupling reagent HATU (93 mg, 0.21 mmol, 

1.5 equiv.) was added and the reaction stirred for 15 min, after which DIEA (102 mg, 137 µL, 

0.79 mmol, 5.5 equiv.) was added to the mixture.  The reaction was (mildly) heated to 30 oC and 

stirred for 18 h.  The mixture was diluted with CH2Cl2 (25 mL), washed with 1 M HCl (25 mL) and 

brine (25 mL), filtered through MgSO4, and concentrated.  The residue was purified by flash 

column chromatography, eluting with 14:1 CH2Cl2/MeOH to give the dimer 104 as a cloudy oil 

(86 mg, 55%). 

Palladium on carbon (20 mg, 10% w/w) was added to a solution of compound 104 (19 mg, 

0.018 mmol) in MeOH (1 mL).  The suspension was stirred under an atmosphere of H2 gas for 

18 h.  Upon completion, the mixture was filtered through Celite® washing well with MeOH, and 

concentrated.  The residue was dissolved in H2O (10 mL) and washed with CH2Cl2 (3 x 10mL) to 

remove organic impurities.  The aqueous layer was lyophilized to give the fully deprotected 

dimer 119 (10 mg, quantitative) as an amorphous solid. [α]D
25 +30.8 (c 0.5, MeOH).  1H NMR 

(400 MHz, CD3OD) δ 2.00-2.11 (m, 2H)*, 2.06 (s, 3H), 2.44-2.49 (m, 1H), 2.58-2.63 (m, 1H), 

2.73 (s, 3H), 3.55-3.61(m, 2H), 3.69-3.78 (m, 7H), 3.89-3.99 (m, 4H), 4.12 (d, J = 11.1 Hz, 1H), 
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4.46 (t, J = 8.1 Hz, 1H), 4.52 (br s, 1H), 4.76 (t, J = 8.1 Hz, 1H), 5.01 (d, J = 4.2 Hz, 1H), 5.04 (d, 

J = 4.4 Hz, 1H); 13C NMR (100 MHz, CD3OD) δ 20.8, 25.0, 35.6, 36.1, 52.4, 53.5, 56.9, 59.4, 

74.9, 75.2, 76.2, 76.7, 77.3, 77.4, 83.0, 83.1, 100.9, 101.0, 170.7, 171.9, 173.4; HRMS (ESI+) 

calcd for C23H38N3O13 (M+H)+: 564.2399, obsd: 564.2390.   

*Product is predominantly a single species in solution thus minor rotamer not reported. 

(3.10) 

Fully deprotected triglycotripeptide 120. The acid 112 (156 mg, 0.14 mmol, 1.0 equiv.) and 

amine 113 (94 mg, 0.14 mmol, 1.0 equiv.) were dissolved in dry CH2Cl2 (5 mL) and stirred under 

N2.  The coupling reagent HATU (82 mg, 0.22 mmol, 1.5 equiv.) was added and the reaction 

stirred for 15 min, after which DIEA (124 µL, 92 mg, 0.71 mmol, 5.0 equiv.) was added to the 

mixture.  The reaction was stirred at rt for 21 h.  The mixture was diluted with EtOAc (25 mL), 

washed with 1 M HCl (25 mL), sat’d NaHCO3 (25 mL) and brine (25 mL), filtered through MgSO4 

and concentrated.  The residue was purified by flash column chromatography, eluting with 19:1 

CH2Cl2/MeOH to give the protected trimer 114 as a light oil (81 mg, 35%).  

Palladium on carbon (100 mg, 10% w/w) was added to a solution of compound 114 (11 mg, 6.8 

µmol) in MeOH (1.5 mL).  The suspension was stirred under an atmosphere of H2 gas for 24 h.  

The mixture was filtered through Celite®, washing well with MeOH, and concentrated.  The 

residue was dissolved in H2O (10 mL) and washed with CH2Cl2 (3 x 10 mL) to remove organic 

impurities.  The aqueous layer was lyophilized to give the fully deprotected trimer 120 in 

quantitative yield (5.5 mg). [α]D
25 -17.4 (c 0.1, MeOH).  1H NMR (400 MHz, CD3OD) δ 2.01-2.17 
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(m, 3H), 2.11 (s, 3H), 2.47-2.66 (m, 3H), 2.75 (s, 3H), 3.58-3.66 (m, 3H), 3.69-3.78 (m, 10H), 

3.86-4.01 (m, 6H), 4.15 (d, J = 11.5 Hz, 1H), 4.26 (d, J = 11.1 Hz, 1H),  4.48 (t, J = 8.5 Hz, 2H), 

4.53 (br s, 2H), 4.60 (br s, 1H),  4.79 (t, J = 8.3 Hz, 1H), 5.02 (d, J = 4.4 Hz, 1H), 5.04 (app t, J = 

4.8 Hz, 2H); 13C NMR (100 MHz, CD3OD) δ 24.1, 28.6, 37.5, 37.7, 38.5, 55.4, 55.5, 56.4, 59.6, 

60.2, 62.4, 63.2, 65.9, 65.9(5), 66.0, 72.5, 74.4, 77.1, 77.1(5), 77.2, 78.8, 78.8(2), 78.9, 79.0, 

79.0(3), 79.3, 84.6, 84.6(7), 84.7, 102.7, 102.8, 102.9, 173.8, 174.6, 174.8, 175.5, 176.5; HRMS 

(ESI+) calcd for C33H52N4O19 (M+H)+: 809.3299, obsd: 809.3314.   

*Product is predominantly a single species in solution thus minor rotamer not reported. 

(3.11) 

Fully deprotected tetraglycotetrapeptide 1. The acid 112 (47 mg, 0.04 mmol, 1.0 equiv.) and 

amine 116 (71 mg, 0.06 mmol, 1.4 equiv.) were dissolved in dry CH2Cl2 (1.75 mL) and stirred 

under N2.  The coupling reagent HATU (17 mg, 0.04 mmol, 1.0 equiv.) was added and the 

reaction stirred for 15 min, after which DIEA (124 µL, 92 mg, 0.16 mmol, 4.0 equiv.) was added 

to the mixture.  The reaction was stirred at rt for 20 h.  The mixture was diluted with EtOAc (25 

mL), washed with 1 M HCl (25 mL) and brine (25 mL), filtered through MgSO4 and concentrated.  

The residue was purified by flash column chromatography, eluting with 19:1 CH2Cl2/MeOH to 

give the protected tetramer 117 as a light oil (14 mg, 15%).  

Palladium on carbon (25 mg, 10% w/w) was added to a solution of compound 117 (3 mg, 1.4 

µmol) in MeOH (0.6 mL).  The suspension was stirred under an atmosphere of H2 gas for 24 h.  
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The mixture was filtered through Celite®, washing well with MeOH, and concentrated.  The 

residue was dissolved in H2O (10 mL) and washed with CH2Cl2 (3 x 10mL) to remove organic 

impurities.  The aqueous layer was lyophilized to give the fully deprotected tetramer 1 in 

quantitative yield (1.5 mg). [α]D
25 +60.8 (c 0.075, MeOH).  1H NMR (400 MHz, CD3OD) δ 2.04-

2.19 (m, 4H), 2.09 (s, 3H), 2.47-2.67 (m, 4H), 2.76 (s, 3H), 3.59-3.65 (m, 4H), 3.73-3.79 (m, 

12H), 3.86-4.01 (m, 8H), 4.15 (app d, J = 11.5 Hz, 3H), 4.50 (t, J = 8.0 Hz, 4H), 4.56 (br s, 4H), 

5.04 (d, J = 4.5 Hz, 2H), 5.04 (d, J = 4.3 Hz, 4H); HRMS (ESI+) calcd for C43H67N5O25Na 

(M+Na)+: 1076.4017, obsd: 1076.3992.   

*Product is predominantly a single species in solution thus minor rotamer not reported. 
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3.7.2 Spectra 

Compound 85 (Scheme 3.15) - 1H NMR spectrum 
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Compound 85 (Scheme 3.15) – 13C NMR spectrum 
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Compound 99 (Scheme 3.18) - 1H NMR spectrum 
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Compound 99 (Scheme 3.18) – 13C NMR spectrum
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Compound 100 (Scheme 3.19) - 1H NMR spectrum
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Compound 100 (Scheme 3.19) – 13C NMR spectrum
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Compound 105 (Scheme 3.24) - 1H NMR spectrum
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Compound 105 (Scheme 3.24) – 13C NMR spectrum
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Compound 107 (Scheme 3.25) - 1H NMR spectrum
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Compound 107 (Scheme 3.25) – 13C NMR spectrum
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Compound 108 (Scheme 3.25) - 1H NMR spectrum
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Compound 102 (Scheme 3.21) - 1H NMR spectrum
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Compound 102 (Scheme 3.21) – 13C NMR spectrum
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Compound 118 (Scheme 3.29) - 1H NMR spectrum
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Compound 118 (Scheme 3.29) – 1C NMR spectrum
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Compound 118 (Scheme 3.29) – Dept 135 NMR spectrum
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Compound 118 (Scheme 3.29) – COSY NMR spectrum
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Compound 118 (S cheme 3.29) - NOSEY spectrum 
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Compound 118 (Scheme 3.29) - HSQC spectrum
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Compound 119 (Scheme 3.29) - 1H NMR spectrum
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Compound 119 (Scheme 3.29) – 1C NMR spectrum
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Compound 120 (Scheme 3.29) - 1H NMR spectrum
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Compound 120 (Scheme 3.29) – 13C NMR spectrum
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Compound 1 (Scheme 3.29) - 1H NMR spectrum
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Triglycotripeptide 99 
1:1 EtOAc/Hex; 5 mL/min; 1 cm silica column 

 

 

Tetraglycotetrapeptide 100 

2:1 EtOAc/Hex; 5 mL/min; 1 cm silica column
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CHAPTER 4:  STRUCTURAL STUDIES OF POLYPROLINE GLYCOSIDES 

4.1 Circular Dichroism 

4.1.1 Polyproline helices 

 Circular dichroism is a light absorption spectroscopy that gives information about the 

secondary structure composition of polypeptides and proteins.88  One such secondary structure 

found in proteins with recurring proline residues is the polyproline helix (Figure 4.1).  A 

polyproline type I (PPI) helical conformation is a right handed helix having cis prolyl amide 

bonds (ω = 0°).  The PPI helix features 3.3 residues per turn with dihedral angles of Φ = -75° 

and Ψ = +160° (Figure 4.2). A polyproline type II (PPII) helical conformation is a left handed 

helix featuring all trans-amide bonds (ω = 180°) and three amino acid residues per turn.89  Each 

residue in the PPII helix has dihedral angles of Φ = -75° and Ψ = +145°.90   

   

Figure 4.1 Polyproline type I and II helices 
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Figure 4.2 Phi (Φ), psi (Ψ), and omega (ω) backbone dihedral angles of peptides 

Twenty five percent of all residues in the PPII helix participate in nπ* interactions as 

reported by Bartlett et al.91  The nπ* interaction arises when a lone pair of electrons on a 

carbonyl oxygen (n) donates into the empty electrophilic π* orbital on the succeeding carbonyl 

carbon (Figure 4.3).  This electron delocalization event plays a crucial role in the conformational 

stability of proteins.  Proline is especially suited to be an acceptor in this interaction.  The psi 

angle of the PPII conformation is 145°, favorable for nπ* interaction (optimal Ψ = 150°).92  

This nπ* interaction, coupled with the fact that the trans-amide bond conformation is lower in 

energy compared to the cis, renders the PPII helix more commonplace than the PPI.  Sreerama 

and Woody estimated that 10% of all proteins may adopt the PPII conformation.93  Circular 

dichroism spectroscopy has demonstrated that the PPII conformation has its own distinct 

elliptical shape (Figure 4.4).94  

 

Figure 4.3  nπ* interaction in a proline tetramer.  
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Figure 4.4  CD Spectrum of Ac-(Pro)7-Gly-Tyr-NH2 taken at 5 °C.95 Reprint with permission from 
American Chemical Society. 

 
The PPII structure plays a vital role in numerous biological processes.  For example, in 

the plant kingdom, hydroxyproline-rich glycopeptides (HPRG) are responsible for a plant’s 

growth and defense, among other functions,96 and are known to adopt a PPII conformation in 

the cell wall.97   In the animal kingdom, PPII helices are widely found in collagen, the main 

component of connective tissues found in vertebrates.98  Interestingly, through use of 

computational protein modeling, Himly and coworkers predicted that the carboxyl terminal 

domain of Art v 1 would exhibit a left handed helical structure resembling collagen.17  Dedic et 

al. later confirmed that the CD spectra of Art v 1 was indeed similar to those of polyproline 

helices,99 although no (further) details of the spectra were provided. 

Proline-rich regions of peptides often contain many nonproline residues adjacent to one 

another.100  Kelly et al. conducted a “host-guest” study on the effect a non-proline residue has 

on the CD spectra of short polyproline compounds.95  “Guest” residues were inserted into a host 
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peptide known to adopt a PPII helix.  Alanine was employed due to its inclination to be in a PPII 

helical conformation.  The CD spectra of PPP, PAP, and PAAP were taken at 5 °C (Figure 4.5).  

The decrease in PPII helical content was found to be three percent between PPP and PAP and 

nine percent between PAP and PAAP.  The nonlinearity of the decreasing helical content 

suggests that a more pronounced decrease in PPII helical content may be detected in stretches 

with three or even four non-proline residues in a proline rich region.  Despite this decrease, it is 

apparent from the CD spectra that PAAP still 

showed significant PPII character. 

 

 

 
 
 

 
Figure 4.5 Host PPII helix sequence with insertion of guest amino acids. Reprint with permission 
from American Chemical Society 

 

Figure 4.6 shows the circular dichroism spectra of various H-(Pro)n-OH peptides as 

reported by Rothe et al.101  Synthetic oligomers of up to 40 unmodified proline residues were 

investigated.  The authors note that three consecutive Pro residues are required for PPII 

characteristics to be observed.  Moreover, the intensity of the maxima, namely the negative 

maxima at 206 nm, generally increased with the number of Pro residues.   
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Figure 4.6 CD spectra of synthetic polyproline peptides H-(Pro)n-OH101 

4.1.2 Effect of pH on peptide conformation 

The pH of a solution can be highly influential in the cis/trans isomerization of X-Pro 

bonds where there are ionic functional groups.102  The cis conformation allows for an 

electrostatic interaction between amino and carboxylate groups in the zwitterion (Figure 4.7), 

while the trans conformation is favored in acidic medium due to hydrogen bonding.  Thus, the 

impact of pH on the conformation of peptides having free termini would be measurable for short 

peptides (<3 residues) being that the two types of polyproline helices favor differing 

conformations of proline.103   
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Figure 4.7 Cis/Trans isomerization of Alanylproline 

This effect of pH, however, is not a factor with neutral glycopeptides that are end-capped 

with terminal amides.  We hypothesized that the CD spectra of our monomer and dimer would 

demonstrate little or no secondary structure. Helbecque et al., in their investigation of H-Gly-

(Pro)n-OH peptides, also noted that three proline residues were required for the PPII 

conformation (n = 3).103  Thus, the emergence of helical character started with the tetrapeptide 

(H-Gly-(Pro)3-OH).  However, examination of the CD spectrum of their trimer (H-Gly-(Pro)2-OH, 

Figure 4.8) shows some characteristics of the PPII elliptical curve, although not as intense as 

the larger oligomers.  Hence, we might expect some PPII helical content in our own trimer (Ac-

[(β-L-Araf)Hyp]3-NHMe) as all of our amino acids involved are prolyl amides and PPII helical 

formation is a local folding event.104  Being that the PPII conformation arises from the restricted 

set of the dihedral angles of an amino acid by the succeeding proline residue,105 we therefore 

fully expect the tetramer to exhibit PPII helical character. 

 

Figure 4.8 CD Spectra of H-Gly-(Pro)2-OH. Reprint with permission from John Wiley and Sons. 
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4.1.3 Glycosylated oligomers of proline 

The Schweizer group published a paper in 2010 detailing the conformation of contiguous 

β-O-galactosylated trans-4-hydroxyproline through analysis of far-ultraviolet circular dichroism 

spectra.71  As described in Chapter 3, model polyproline peptides were synthesized by solid 

phase peptide synthesis (Scheme 3.3).  Far-ultraviolet circular dichroism spectra of peptides Ac-

(Pro)9-NH2, Ac-(Hyp)9-NH2, and Ac-[(β-D-Gal)Hyp]9-NH2 (121-123) were recorded at 25 °C in 

water (Figure 4.9).  All peptides exhibited spectra characteristic of the PPII conformation,106 viz. 

positive maxima at 220-230 nm and negative maxima at 200-210 nm.94  The hydroxylated 

nonamer 122 had a more accentuated positive maxima and a depreciated negative maxima 

relative to the proline nonamer 121.  The glycosylated nonamer 123 exhibited both a weaker 

positive and weaker negative band compared to its hydroxyproline counterpart 122.  Owens et 

al. speculated that while the lowered positive and negative maxima of compound 123 may be 

attributed to a possible distortion of the PPII conformation, much like the PAAP model peptide, 

glycopeptide 123 was still considered to have significant PPII character.   

  

 

 

Figure 4.9 CD spectra of model peptides.  Reprinted with permission from American Chemical 
Society. 

 
The relative band strength (ρ) is defined as the ratio of the maximum positive ellipticity to 

the maximum negative ellipticity.107  Pysh attributed the increase or decrease in ρ to 

conformational differences or changes to solvent and carbonyl backbone interactions.106  



135 
 

Calculations show that a decreasing ρ value corresponds to an increasing solvent-carbonyl 

interaction.  Owens reported the ρ values of Ac-(Pro)9-NH2, Ac-(Hyp)9-NH2, and Ac-[(β-D-

Gal)Hyp]9-NH2 to be 0.06, 0.21, and 0.29 respectively.71  The consistent increase in ρ through 

the series of model peptides can be attributed to a decreasing solvation of the amide backbone.  

While the increase in ρ values can also indicate a destabilization of the PPII conformation, the 

authors hypothesized that hydration differences, or shielding of the amide carbonyl groups, was 

the primary reason for the significant differences in ρ values.   

Naziga et al., working in conjunction with the Schweizer group, recently reported that the 

conformation of glycosylated oligoprolines is highly influenced by solvent interactions.108  

Examining the same model peptides as Owens et al. (Figure 4.9, 121, 122, and 123),71 Naziga 

and coworkers used molecular modeling techniques to investigate the increase in thermal 

stability of glycosylated oligoprolines and the effect of temperature on the polyproline 

conformation.  Thermal melting experiments gave Tm values of 22, 38, and 70 °C for 

compounds 121, 122, and 123  respectively.71  While increased stability of the Hyp and 

glycosylated Hyp oligomers relative to  the unmodified proline oligomer can be attributed to a 

higher population of the trans isomer,109 it did not explain the Tm difference in Ac-(Hyp)9-NH2 and 

Ac-[(β-D-Gal)Hyp]9-NH2 as trans stabilization was not observed upon glycosylation of Ac-Hyp-

NHMe as a model compound.  Using molecular dynamics simulations, Naziga et al. reported 

that while sugar-sugar and sugar-backbone interactions may contribute to the stability of the 

PPII conformation, it was the interaction between the sugar and water molecules that was 

paramount to the increased stability of the glycosylated oligoprolines.108  The free energy 

difference between the Hyp and glycosylated Hyp oligomers was found to be 26 kcal mol-1 in 

explicit solvent (c.f., no estimated difference in implicit solvent where hydrogen bonding is not 

accounted for).      
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4.1.4 CD Spectra of Ara-Hyp glycopeptides  

 Circular dichroism spectra of the monomer 118, dimer 119, trimer 120, and tetramer (1) 

were taken in the far-ultraviolet region of the spectrum (190-240 nm).  The aqueous solutions of 

monomer, dimer, trimer, and tetramer showed a pH reading of 6.80, 7.38, 8.79, and 9.48 

respectively.  Circular dichroism data was recorded in water at 20 °C at a concentration of ~0.4 

mM.   

 Examination of the CD spectrum of our monomer showed that this compound is largely 

unordered, as we had expected (Figure 4.10).  While there seems to be a negative maxima at 

200 nm ([θ] = -3967 deg cm2 dmol-1), there is no defined maxima.  A PPII helix would feature a 

positive maxima around 220-230 nm, whereas the spectrum of the monomer never rises above 

zero deg cm2 dmol-1.  The CD spectrum of the monomer is akin to that of an unmodified proline 

dimer (Figure 4.9, n = 2) where H-(Pro)2-OH exhibits a negative maxima at around 210 nm but 

no positive maxima.101  This is consistent with previous work reporting that peptides with less 

than three residues do not exhibit the PPII conformation.101 

  

Figure 4.10 CD spectrum of Ac-([β-L-Araf]Hyp)-NHMe  
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 We fully expected that the CD spectrum of the dimer would be similar to that of the 

unordered monomer.  Surprisingly, a cursory glance at Figure 4.11 shows that the dimer does 

indeed exhibit order in its elliptical curve.  The peptide Ac-([β-L-Araf]Hyp)2-NHMe displayed both 

a positive band (λmax = 220 nm, [θ] = 2905 deg cm2 dmol-1) and a negative band (λmin = 199 nm, 

[θ] = -10423 deg cm2 dmol-1) that is characteristic of the PPII conformation.94  This is significant 

as previous studies on short polyproline peptides have shown that formation of the PPII helix 

began at three proline residues (H-Pro3-OH) (Figure 4.9, n = 3).101  It is tempting to suggest that 

this difference is due to the carbohydrate residues acting as a restrictive medium, thus giving 

more order to the prolyl component of the molecule.  Considering that polyproline helices are 

stabilized by the steric constraint of their pyrrolidine rings, we believe that the added bulk of the 

sugars might very well be contributing to their heightened structure.  

 

Figure 4.11  CD spectrum of Ac-([β-L-Araf]Hyp)2-NHMe  

 The CD spectra of both trimer and tetramer showed typical PPII-type helical structure 

(Figure 4.12).  Peptide Ac-([β-L-Araf]Hyp)3-NHMe showed a positive band at 222 nm ([θ] = 4207 

deg cm2 dmol-1) and a negative maxima at 203 nm ([θ] = -13352 deg cm2 dmol-1).  Peptide Ac-
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([β-L-Araf]Hyp)4-NHMe exhibited a positive band at 220 nm ([θ] = 3704 deg cm2 dmol-1) and a 

negative maxima at 200 nm ([θ] = -13816 deg cm2 dmol-1).   

 

 
Figure 4.12 CD spectrum of Ac-([β-L-Araf]Hyp)3-NHMe and Ac-([β-L-Araf]Hyp)4-NHMe  
 

 Figure 4.13 shows an overlay of the CD spectra of all four synthetic glycopeptides 

relative to one another.  Using the monomer as a baseline value, we can see that the intensity 

of the negative maxima increases with the length of the glycopeptide.  This is consistent with the 
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and negative bands.  This is likely due to the fact that the larger oligomers possess the 

necessary number of residues to form a proper PPII helix.     

 

Figure 4.13 CD Spectra of all four synthetic glycopeptides 

 The relative band strength (ρ value) of dimer, trimer, and tetramer are 0.28, 0.30, and 

0.27 respectively. While we anticipated a decrease in relative band strength with increasing 

residue count, this was not the case.  Instead, the ρ value increased slightly from dimer to 

trimer, with tetramer having the lowest ρ value of all three peptides.  However, we do not believe 

the differences in these values are significant.  The discrepancies in the ρ values are most likely 

due to common experimental error and it is probable that the PPII helical content of the three 

compounds are quite comparable to one another.  These values are also in agreement with the 

ρ value of the galactosylated hydroxyproline nonamer reported by Owens (ρ = 0.29).71   
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4.2 Nuclear Magnetic Resonance Spectroscopy  

4.2.1 Characterization of Ara-Hyp glycopeptides of nArt v 1 by Leonard et al. 

 Nuclear magnetic resonance spectroscopy was conducted on α-arabinosidase-treated 

nArt v 1.  Tables 4.1 and 4.2 show the chemical shifts for Hyp and β-Ara residues as reported 

by Leonard and coworkers.22  Three types of β-arabinoside residues were found for which 

distinct anomeric proton signals could be discerned around 5.10-5.12 ppm (Table 4.2).  This is 

consistent with the occurrence of three residues per turn in the PPII helix.  The 13C NMR signal 

for the anomeric carbon, which could not be differentiated for the three types, was found at 

100.9 ppm. For comparison, the C1 signal for α-Ara residues of nArt v 1 were found at 107-109 

ppm.  Typically, when substitutents on C1 and C2 are cis to one another, as is the case for β-

arabinosides,  the C1 resonances can be found between 100 to 105 ppm.110  The 13C chemical 

shifts are also in agreement with literature values reported from naturally occurring 

polysaccharide arabinans containing the β-Ara motif.111  Nuclear Overhauser effect (nOe) 

correlations between the anomeric proton of β-Ara and the γ-proton of Hyp support the linkage 

of the arabinoside.  Leonard et al. had reported the first 1H and 13C characterization of 

contiguous mono-β-arabinosides of hydroxyproline found in the carbohydrate region of nArt v 1. 

Table 4.1 NMR resonances of Hyp in Art v 1 22 

Hyp 

Chemical Shift (ppm) 

α β1 β2 γ δ1 δ2 

Type 1   1H 

Type 2   1H    

Type 3   1H 

                   13C 

4.837 2.547 2.000 4.581 4.035 3.729 

4.844 2.552 2.005 4.574 4.012 3.758 

4.831 2.531 2.001 4.580 4.028 3.722 

58.6 35.7 77.5 53.8 
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Table 4.2 NMR resonances of β-Ara in Art v 122 

β-Ara 

Chemical Shift (ppm) 

1 2 3 4 5a 5b 

Type 1   1H 

Type 2   1H    

Type 3   1H 

                   13C 

5.120 4.10 4.012 3.848 3.744 3.600 

5.108 4.069 3.991 3.840 3.734 3.577 

5.105 4.089 3.972 3.840 3.734 3.572 

100.9 77.2 75.3 82.8 64.1 

 

4.2.2 Characterization of synthetic Ara-Hyp glycopeptides 

Various 1H, 13C, and 2-D NMR spectra of Ac-([β-L-Araf]Hyp)-NHMe (118) in CD3OD 

were acquired.  Due to the rotational isomerization of the prolyl acetamide, an approximate 4:1 

ratio of rotamers is detected.  Examination of the NOESY spectrum (Figure 4.14) shows a 

correlation between the acetamide CH3 signal (2.08 ppm) of the major rotamer to the δ protons 

(3.73 ppm) of hydroxyproline, signifying that the preferred isomer is in the trans conformation.  

There is also correlation of the minor acetamide CH3 signal (1.93 ppm) to the minor α proton 

(4.52 ppm) of the prolyl ring.  For simplicity’s sake, we will assign only the major rotamer from 

here forth. 

The resonances at 4.99 ppm could be readily assigned to the anomeric proton of the 

arabinose residue, close to the ~5.11 ppm reported by Leonard,22  with the disparity between 

the numbers most likely due to the differing solvent used. The 13C-1H correlation spectrum 

(Figure 4.15, HSQC) revealed that the anomeric proton was attached to a 13C resonance at 

101.2 ppm, indicating the substitutents at C1 and C2 are cis.110   The J coupling constant of the 

anomeric signal was 4.6 Hz which is typical for β-arabinosides (c.f., J = 0-2 Hz for α-

arabinosides).  The COSY spectrum (Figure 4.16, p 144) shows a correlation of the anomeric 
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proton signal to a doublet of doublets at 3.96 ppm which we label H2.  Resonances at 3.88 and 

3.76 can be readily assigned to H3 and H4 respectively.  Two signals correlate to H4, which the 

HSQC spectrum reveals to be attached to the same carbon at 63.9 ppm (c.f., 64.1 ppm as 

assigned by Leonard in Art v 1), and is assigned as the diastereotopic H5 protons of the 

arabinose ring.   

 

 

Figure 4.14  NOESY spectrum of Ac-([β-L-Araf]Hyp)-NHMe  
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Figure 4.15 HSQC spectrum of Ac-([β-L-Araf]Hyp)-NHMe 

Multiplets at 2.06 and 2.50 ppm can be assigned to a pair of diastereotopic protons 

attached to a carbon that resonates at 36.5 ppm as seen in the HSQC spectrum.  These were 

assigned to Hβ of the proline ring, consistent with their chemical shifts.  The Hβ signals show 

correlations with two other signals in the COSY spectrum.  The first of the two signals was 

assigned to Hα (4.41 ppm), as evidence by its splitting into a triplet.  The second of these 

signals is Hγ (4.46 ppm) which was split into a multiplet as expected from its environment.  The 

Hγ resonance showed further correlation with a pair of diastereotopic protons at 3.72 ppm which 

are the Hδ signals.  Finally, the glycosidic linkage of hydroxyproline and arabinose was 

confirmed by an nOe between Hγ of Hyp (4.46 ppm) and the anomeric proton of β-Araf (4.99 

ppm). 
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Figure 4.16 COSY spectrum of Ac-([β-L-Araf]Hyp)-NHMe 

 Nuclear magnetic resonance spectra were acquired for the oligomers.  Figure 4.17 

shows a comparison of the 1H NMR spectra of the four compounds.  We have fully 

characterized the monomer and dimer using 1H, 13C, and 2D NMR experiments.  With each 

additional (β-L-Araf)Hyp residue added, however, the NMR spectra became increasingly more 

complex.  The spectral assignments of trimer and tetramer were made with only 1-D NMR 

experiments and by extrapolation from spectral assignments of monomer and dimer.   

To validate the number of residues, we compared the integration of C-terminal methyl 

amide (#H = 3 for all compounds, ~2.75 ppm) to the anomeric signal (#H = 1-4 for monomer, 
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dimer, trimer and tetramer, ~5.00 ppm).  The N-terminal acetamide could also be employed for 

this comparison, albeit some overlap with Hβ signal made this less straightforward than using 

the methyl amide.  Although the integration of the combined anomeric signals increased by one 

unit per added residue, additional anomeric peaks were not detected, signifying that all sugar 

residues are in a similar environment and conformation.  In the larger oligomers, rotational 

isomeric signals were less prominent than that of the monomer.  This is in contrast to the fully 

benzylated Boc-([β-L-Araf]Hyp)n-OAll peptides where each additional residue gave rise to a new 

pair of rotational isomeric signals, resulting in up to eight 13C signals for C1 in the fully protected 

tetramer (100, Scheme 3.19).  Our findings on the protected oligomers are in agreement with 

previous work on oligoprolines.112  It is possible that the carbohydrate residues are contributing 

to the reduced number of species of these larger compounds in solution.  Figure 4.17 shows the 

1H NMR spectra of 118, 119, 120, and 1 in CD3OD at 400 MHz (Next Page). 
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Figure 4.17 1H NMR of all four synthetic glycopeptides
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4.3 Enzyme Linked Immunosorbent Assays  

 In the spring of 2011, the first two synthetic glycopeptides were sent to the Altmann 

Group at BOKU in Vienna, Austria.  Ten milligrams each of monomer 117 and dimer 118 were 

provided by the Taylor Group for biological testing against antibodies specific for the 

carbohydrate region of Art v 1.  Enzyme linked immunosorbent assay (ELISA) experiments, 

used extensively for the detection of antibodies/antigens in serum samples, were employed to 

confirm the existence of glycan epitopes.  The Altmann group conducted cross-inhibition ELISA 

experiments, also known as competitive ELISA, to determine the IgG binding properties of the 

synthetic glycopeptides.   

First, various concentrations of monomer 117 and dimer 118 were incubated with rabbit 

serum containing only the anti-glycan IgGs.  This serum was then added to a microtiter plate 

bound with natural Art v 1 to allow for possible competitive binding to the antibody.  The plate 

was washed so that any unbound antibody was washed away.  The amount of remaining 

antigen still bound to the surface of the plate correlates directly to the binding capacity of the 

synthetic glycopeptides to the antibody generated against the carbohydrate region of the natural 

allergen.  The higher the percentage of antigen still present in the wells signifies a higher 

percentage of the synthetic glycopeptides binding to the antibody.   

In order to measure this displacement, the remaining bound anti-glycan IgGs were 

treated with an alkaline phosphatase-conjugated goat anti-rabbit IgG that is specific for the 

bound antigen.  The plate was washed again to remove any unbound antibody-enzyme 

conjugate.  Upon activation of the enzyme with 0.1% p-nitrophenyl phosphate (Scheme 4.1), a 

chromogenic substrate, and a 0.1 M diethanolamine (pH 9.8) buffer, the plate was read 

immediately at 405/620 nm with an SLT-spectra plate reader to obtain quantitative results on 
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the amount of antigen remaining.  Figure 4.18 shows the initial results of the ELISA inhibition 

experiment with the synthetic glycopeptides at millimolar concentration. 

 

Scheme 4.1 Activation of ALP with p-nitrophenyl phosphate 

 

Figure 4.18 ELISA inhibition experiments of synthetic glycopeptides 

 At the highest of concentrations (2 mM), the % inhibition for both the monomer and 

dimer were similar to one another, reaching 80% at ~0.5 mM; these initial results were 

encouraging.  Unfortunately, subsequent repeated assays with diluted samples showed 

inconsistencies (Figure 4.19).  The inhibition potency of monomer and dimer varied in the 

experiments for unexplained reasons.  However, in all three experiments presented here, 

monomer and dimer inhibit Art v 1 binding to a similar extent.  The results reported herein are 

unpublished work from the Altmann Group.113 
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Figure 4.19 Varied concentrations of synthetic glycopeptides in inhibition experiments 

4.4 Summary  

 It was the goal of this dissertation to find the minimal carbohydrate epitope of the Art v 1 

allergen.  A key intermediate in the assembly of relevant oligomers was a β-arabinoside of 

hydroxyproline, a 1,2-cis glycoside that is a challenge to synthetic organic chemistry.  Towards 

the synthesis of this intermediate, we prepared N-tert-butoxycarbonyl-trans-4-hydroxy-L-proline 

allyl ester (54) for glycosylation with p-cresyl 2-O-benzyl-3,5-O-(di-tert-butylsilylene)-1-thio-α-L-

arabinofuranoside (42).  Unfortunately, use of this conformationally restricted bicyclic donor 60 
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resulted in low yields and complex mixtures.  Instead, we employed p-cresyl 2,3,5-O-benzyl-1-

thio-α-L-arabinofuranoside (60), for glycosylation of hydroxyproline.  Using careful temperature 

control, we were able obtain the Ara-Hyp glycoside 64 with 4:1 β:α ratio in 60% yield.  Flash 

column chromatography could be used to separate the anomers. 

 

Scheme 4.2 Glycosylation of Boc-Hyp-OAll by sulfide donor 

 In preparing the oligomers of hydroxyproline arabinosides, we unmasked the N- and C-

termini of Boc-([β-L-Araf]Hyp)-OAll in independent experiments.  Coupling of the free acid and 

amine with HATU gave the Boc-([β-L-Araf]Hyp)2-OAll dimer (85) in 60% yield.  The trimer 99 

could be assembled by the coupling of Boc-([β-L-Araf]Hyp)-OH with H-([β-L-Araf]Hyp)2-OAll 

[1+2] or Boc-([β-L-Araf]Hyp)2-OH with H-([β-L-Araf]Hyp)-OAll [2+1], with each strategy affording 

chemical yields of ~35%.  Coupling of a Boc-([β-L-Araf]Hyp)2-OH and H-([β-L-Araf]Hyp)2-OAll 

gave the tetramer 100 in 49%. 

 

Figure 4.20 Protected oligomers 

 Installation of amide end-caps on Boc-([β-L-Araf]Hyp)-OAll gave Ac-([β-L-Araf]Hyp)-

NHMe in 42% yield over 4 steps.  Switching to a more convergent and higher yielding route, we 

chose to utilize pre-endcapped glycosidic building blocks for the preparation of end-capped 

oligomers.  Position-specific glycosidic building blocks Ac-([β-L-Araf]Hyp)-OMe (N-terminal) and 
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Boc-([β-L-Araf]Hyp)-NHMe (C-terminal) were prepared.  With this strategy, fragment 

condensation of end-capped building blocks afforded dimer 104, trimer 114, and tetramer 117 in 

48%, 35%, and 15% respectively.  Global debenzylation of the end-capped glycopeptides gave 

the four deprotected compounds in quantitative yield. 

 

Scheme 4.3 Global debenzylation  

 Circular dichroism data were obtained for the synthetic glycopeptides.  The monomer 

spectrum showed it to be unordered as expected.  Analysis of the CD spectra showed that the 

glycosylated proline oligomers exhibited characteristic polyproline II helical conformation.    

However, to our surprise, the dimer displayed order in its elliptical curve (λmax = 220 nm, λmin = 

199 nm).  The trimer (λmax = 222 nm, λmin = 203 nm) and tetramer (λmax = 220 nm, λmin = 200 nm) 

both exhibited significant PPII helical conformation. 

 Nuclear magnetic resonance spectroscopy was used to characterize all target 

glycopeptides.  1H, 13C, and various 2-D NMR were used to identify key resonances in the 

comparison of the synthetic glycopeptides with glycoprotein isolated from the natural allergen.   

 In closing, the synthesis and oligomers described herein enable the further study of this 

important class of compounds.  Our homogeneous compounds, characterized with the rigor of 

organic chemistry, lay the foundation for unambiguous biological studies that were not possible 
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with the trace amount of heterogeneous material available from degradation of the native Art v 1 

protein. 

4.5 Future Work 

 The obvious next step in the project is to conduct ELISA experiments on trimer and 

tetramer in varying concentrations.  With the completion of the CD experiments, trimer and 

tetramer are ready to be sent to Vienna.  Despite reproducibility issues, the fact that monomer 

and dimer have behaved similarly may suggest that the large oligomers will as well.  The 

direction of the project thereafter will be conditional upon those results.  In any event, we 

propose herein a plan for the continuation of the investigation of the carbohydrate epitope of Art 

v 1. 

4.5.1 Incorporation of the β-Ara-Hyp motif into longer pepitides 

 While we have synthesized the tetraproline component of the tail section of Art v 1, we 

do not yet know whether or not this is optimal, vis-à-vis biological response.  While the 

monomer and dimer seemed to be at least partially effective, it is possible that increasing the 

length of the peptide chain may be beneficial to the activity of the glycopeptides.  Table 4.3 

shows the amino acid sequence of the carbohydrate domain of   Art v 1.  Note that the proline 

residues typically follow a serine or alanine residue.  In fact, the amino acid sequence SPP is 

found thrice in this sequence and SPPPP twice.  The sequences APP and APPP are also 

found.  It is interesting as to whether or not an extended glycopeptide sequence, synthesized to 

include these serine and alanine residues, and perhaps more than one glycocluster, would have 

an effect on antibody binding.  If so, will an even longer sequence of the tail section of Art v 1 be 

worth investigating? 

Table 4.3 Amino acid sequence in the polyproline domain 

56-60 61-70 71-80 81-90 91-100 100-108 

SPPGA TPAPPGAAPP PAAGGSPSPP ADGGSPPPA DGGSPPVDGG SPPPPSTH 
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4.5.2 Antibody generation 

Glycosylated proteins have been known to have antigenic properties.114  Advances in 

carbohydrate research have further illuminated their potential as vaccines.115  However, the low 

immunogenicity of carbohydrate antigens continues to prove problematic.  Polysaccharides are 

T-cell independent, meaning they do not induce immunological memory. To this end, 

carbohydrate antigens have been coupled to carrier proteins to heighten their 

immunogenicity.116  

 Avery and Goebel first introduced the technique to enhance the immunogenicity of 

polysaccharide antigens.117 More recently, this hapten-carrier protein conjugate strategy has 

been regularly employed for bacterial carbohydrates.118  The covalent linkage of the 

polysaccharide and the carrier protein has been achieved by various techniques (i.e., 

carbodiimide coupling, reductive amination, etc).119   

Covalent linkages to our synthetic glycopeptides can be made by N-terminal 

conjugation. The free amine will be modified for attachment via a spacer unit bearing a 

carboxylic acid which permits conjugation (Figure 4.21).  The glycoprotein conjugate will then be 

used to raise a rabbit antiserum specific against the homogeneous, synthetic β-Ara-Hyp 

epitope.  Monoclonal antibodies generated using the glycoprotein conjugate can potentially be 

useful in screening for cross-reactivity in other plant allergens.  Finally, the glycoprotein 

conjugates can be used to determine binding affinities for rabbit and human IgG and IgE.  

  

Figure 4.21 Proposed conjugation of synthetic glycopeptides to carrier proteins 
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4.5.3 Effect of glycosylation on oligoproline conformation 

 The Taylor group has made fundamental contributions to conformational determinates in 

proline-containing peptides.57, 120  This dissertation opens the door to studies on consecutive 

proline residues as well as modified proline oligomers.  Molecular dynamics studies have shown 

the predominant conformation of end-capped oligoprolines to be trans,121 which indicates a PPII 

helix.  Utilizing NMR and circular dichroism spectroscopy, investigation of the twelve 

compounds in Table 4.4 would allow us to see the changes in their conformation with regards to 

number of proline residues and degree of post-translational modification.  This would give 

greater context to the results described in Section 4.14. 

Table 4.4 Target oligoproline compounds 

 

  

 

 

4.5.4 Synthetic glycopeptides as diagnostic tools 

 The development of modern diagnostic tools has been paramount in the identification of 

allergies.122  Two of the most commonly used screening methods are the skin prick test (SPT) 

and allergy blood tests.  In order to pinpoint the exact source of the allergen, investigations have 

focused on identifying cross-reactive pollens of the Asteraceae family.123  Pollen from ragweed, 

chrysanthemum, and dandelion may share similar epitopes (β-Ara-Hyp) with mugwort pollen.  

Further related plants such as feverfew and sunflower may also contain the β-Ara-Hyp epitope 

as these species all produce a homolog of Art v 1.  Most notably, the allergen of ragweed, Amb 

a 4, has 50% homology to Art v 1 and was found to contain small amounts of β-Ara-Hyp.31  

Furthermore, natural Art v 1 was found to inhibit IgE binding of Amb a 4.  In order to evaluate 
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the relevance of the β-Ara-Hyp epitope, we propose that a specific anti-β-Ara-Hyp serum be 

generated in order to screen a wide array of plant pollens.   

4.6 Experimental Section 

4.6.1 Circular dichroism spectroscopy 

 Sample compounds were lyophilized for 24 h prior to dilution to a concentration of 0.4 

mM with water.  The pH of the samples was determined at rt and found to be 6.80, 7.38, 8.79, 

and 9.48 for compounds 118, 119, 120, and 1 respectively.  Circular dichroism 

measurements were carried out using a JASCO J-815 spectrometer.  For analysis, 175 µL of 

the sample was loaded into a quartz cell with a path length of 0.1 cm.  The CD spectra were 

recorded at a scan rate of 20 nm per min, data pitch of 1.0 nm, and bandwith of 2.0 nm.  The 

accumulation of three scans was averaged for each sample, after which a blank of the solvent 

was subtracted.  The CD signal was converted to molar ellipticity per mean residue ([θ]) and the 

data was smoothed by application of the Savitzky-Golay algorithm. 

4.6.2 NMR spectroscopy 

 NMR spectra were obtained using a Bruker AV-400 or Varian 700 MHz spectrometer.  

Proton NMR data is reported in ppm downfield from TMS as an internal standard. Disodium 3-

trimethylsilyl-1-propane-sulfonate (DSS) was used to reference 1H NMR spectra run in D2O.  

Minor rotational isomers are reported in parentheses when significant amount exist.   
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