
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009

Achiral, Chiral, and Protein Separations with
Molecular Micelles Using Chromatographic
Techniques
Candace Ayanna Luces
Louisiana State University and Agricultural and Mechanical College, cluces1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Luces, Candace Ayanna, "Achiral, Chiral, and Protein Separations with Molecular Micelles Using Chromatographic Techniques"
(2009). LSU Doctoral Dissertations. 1974.
https://digitalcommons.lsu.edu/gradschool_dissertations/1974

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1974?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1974&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


ACHIRAL, CHIRAL, AND PROTEIN SEPARATIONS WITH MOLECULAR 
MICELLES USING CHROMATOGRAPHIC TECHNIQUES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Dissertation 
 
 

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

 
 

in 
 
 

The Department of Chemistry 
 
 
 
 
 
 
 
 
 

by 
Candace Luces 

B.S. Claflin University, 2003 
December, 2009 

 
 
 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To The Almighty God for His continuous favor and many blessings as well as my 
parents, Sandra and Mervyn, for their guidance and support. 



 iii

ACKNOWLEDGEMENTS 
 

My achievements and journey throughout my graduate school career would not have possible 

without the guidance and support of these people. 

Dr. Isiah M. Warner, for his support, guidance, wisdom and mentorship.  Thank you for 

believing in me even when I did not believe in myself.  I will be forever grateful for you 

instilling the qualities and knowledge that I need to become a great scientific researcher. I could 

not have asked for a better mentor and friend. 

Dr.  Garno, Dr. Cook, Dr. Watkins, and Dr. McMillin, for helpful comments and suggestions 

as well as their time during my matriculation at LSU.  

Dr. Sayo O. Fakayode, Dr. Mark Lowry, Dr. Bilal El-Zahab, Dr. Kristin Fletcher, for 

meaningful scientific discussions, and taking time to review my manuscripts and dissertation. 

Dr. David Ross and Dr. Laurie Locascio, for the allowing me to conduct part of my research 

work in your laboratory and for everything you taught me. National Institute of Standards of 

Technology, also for giving me permission to perform experiments at your facility. 

My Family, for your love, prayers and support. I would not have made it without you, I love 

you! 

Dr. Alicia Williams Snearl, for our many scientific discussions and for your excellent editing 

skills. Your support, encouragement and words of wisdom will never be forgotten. You are 

definitely my best friend.  

Williams Family, for adopting me and welcoming me into your family and home.  You made it 

easier being away from my own family and you never let me spend a holiday alone. 

Warner Research Group, for making my days and nights in the lab enjoyable as well as for our 

many insightful discussions.  



 iv

TABLE OF CONTENTS 
 
DEDICATION.………...……………………………………………………...……………. ii 
 
ACKNOWLEDGEMENTS.…………………….…………….…………...…..……….....iii 
 
LIST OF TABLES……………...…………………………………………..…………..….. viii 
 
LIST OF FIGURES……………………………………………………………..…….…… ix 
 
LIST OF ABBREVIATIONS………………………………………………………....…. xvi 
 
ABSTRACT………………………………………………………………............…………xix 
 
CHAPTER 1. INTRODUCTION……………………………………..................……… 1  

1.1 Chirality.………………………………………………..…...........................… 1 
1.2 Chiral Selectors……………………………………………………….…. …………. 3 

                        1.2.1    Surfactants and Micelles………….…………………………………… 3 
1.2.2    Molecular Micelles…………………………………………….……… 5 

1.3       Proteins………………………………………………………………………... 7 
1.3.1    Effective Net Charge of a Protein…………………………………….. 8 

1.4       Analytical Separation Techniques…………………………………………….. 9 
1.4.1    Capillary Electrophoresis………………………………………….…... 10 
1.4.2    Micellar Electrokinetic Chromatography……………………………... 13 
1.4.3    Capillary Electrochromatography…………………………………….. 17 

1.4.3.1    Polyelectrolyte Multilayer Coatings………………………… 21 
1.4.3.2    PEM Coatings Used in OT-CEC……………………………. 22 

  1.4.3.2.1   Protein Separations with PEM Coatings…..……… 23 
  1.4.3.2.2   Chiral Separations with PEM Coatings…………... 25 

1.4.4    Experimental Design………………………………………………….. 25   
1.5       Moving Boundary Electrophoresis……………………………………………. 26 

1.5.1    Gradient Elution Moving Boundary Electrophoresis…………………. 27 
1.6 Scope of Dissertation………………………………………………………….. 28 
1.7       References……………………………………………………………………... 31 

 
CHAPTER 2.  SEPARATION OF CHIRAL ANALYTES USING  

                   POLYELECTROLYTE MULTILAYER COATINGS IN OPEN  
                        TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY... 36 

2.1 Introduction.....................................................................................................… 36 
2.2 Materials and Methods.……………………………………………………….. 39 

2.2.1 Materials………………………………………………………........... 39 
2.2.2 Instrumentation………………………………………………………... 39 
2.2.3 Synthesis of Molecular Micelles….………………………………....... 40 
2.2.4 Sample, Buffer, and Polymer Preparation…………………………... 40 
2.2.5 PEM Coating Procedure…..…………………………………….…….. 41 



 v

2.3 Results and Discussion……………………………………………………..…. 41 
2.3.1 Comparison of the Separation of BNP in an Uncoated Capillary   

versus a PEM Coated Capillary………….........................................…. 41 
2.3.2 Effect of Temperature on the Separation of Labetalol and BNP……… 42 
2.3.3 Effect of Voltage on the Separation of Labetalol and BNP……..…….. 44 
2.3.4 Effect of Anionic Polymer Type on Separation of BNP……………… 44 
2.3.5 Effect of Anionic Polymer Concentration on the Separation of BNP.... 46 
2.3.6 Effect of the Number of Bilayers on the Separation of Labetalol…….. 47 
2.3.7 Effect of Variation of the Cationic Polymer on the Resolution of 

BNP…………………………………………………………………… 47 
2.3.8 Effect of Variation of the Cationic Polymer on the Resolution of 

BOH…………………………………………………………………… 48 
2.3.9 Effect of Variation of the Cationic Polymer on the Resolution of 

Labetatol………………………………………………………………. 49 
2.3.10 Investigation of the Reproducibility of a PEM Coated Capillary……... 50 

2.4 Concluding Remarks..………………………………………………………… 51 
2.5 References……………………………………………………………………... 53 

 
CHAPTER 3.  BASIC PROTEIN SEPARATIONS USING PEM COATINGS                  
                        WITH MOLECULAR MICELLES IN OPEN TUBULAR 
                        CAPILLARY ELECTROCHROMATOGRAPHY……………….. 55 
 3.1 Introduction…………………………………………………………………… 55 
 3.2 Materials and Methods……………………………………………………….. 59 
  3.2.1 Materials……………………………………………………………… 59 
  3.2.2 Instrumentation………………………………………………………. 60 
  3.2.3 Synthesis of Molecular Micelles……………………………………… 60 
  3.2.4 Sample and Buffer Preparation……………………………………….. 61 
  3.2.5 PEM Coating Procedure………………………………………………. 62 
  3.2.6 Experimental Design Procedure and Data Analysis………………….. 62 
 3.3 Results and Discussion……………………………………………………….. 63 
  3.3.1 Separation of Four Basic Proteins Using a PEM Coated Capillary…… 63 

3.3.2 Influence of Temperature, Voltage, and pH on Protein  
Resolution…………………………………………………………….. 72 

3.3.3 Effect of the Number of Bilayers and Cationic Polymer 
Concentration on Protein Resolution…………………………………. 73 

  3.3.4 Effect of Cationic Polymer Type on Protein Resolution……………… 74 
  3.3.5 Reproducibility of a PEM Coated Capillary………………………….. 77 

3.3.6 Influence of the Thickness of the Cationic Polymer Layer in PEM 
Coating on Protein Separations……………………………………….. 78 

  3.3.7 Effect of Anionic Polymer Type on Protein Resolution……………… 80 
  3.3.8 Influence of Anionic Polymer Order in PEM Coatings on Protein 
   Separations……………………………………………………………. 80 
 3.4 Concluding Remarks………………………………………………………….. 83 
 3.5 References…………………………………………………………………….. 84 
 
 



 vi

CHAPTER 4.   ACHIRAL AND CHIRAL SEPARATIONS USING   
MICELLAR ELECTROKINETIC CHROMATOGRAPHY, 
POLYELECTROLYTE MULTILAYER COATINGS, AND                   
MIXED MODE SEPARATION TECHNIQUE WITH              
MOLECULAR MICELLES………….…………..………………….. 87 

4.1 Introduction…………………………………………………………..……….. 87 
4.2 Materials and Methods…………………………………………………..……. 90 

4.2.1 Materials……………………………………………………..………... 90 
4.2.2 Instrumentation………………………………………………...........… 91 
4.2.3 Synthesis of Molecular Micelles……………………………................ 91 
4.2.4 Sample and Buffer Preparation………………………………………... 92 
4.2.5 Micellar Electrokinetic Chromatography Procedure………………….. 93 
4.2.6 Polyelectrolyte Multilayer Coating Procedure………………………... 93 
4.2.7 Mixed Mode Separation Technique…………………………………… 93 

4.3 Results and Discussion………………………………………………………... 94 
4.3.1 Effect of Concentration of Poly-L-SUG on the Separation of  

8 Achiral Alkyl Aryl Ketones Using MEKC………………………….. 94 
4.3.2 Effect of Concentration and Bilayer Number of Poly-L-SUG on the 

   Separation of 8 Achiral Alkyl Aryl Ketones Using PEM Coating…… 94 
4.3.3 Effect of Concentration of Poly-L-SUG and Voltage on the 

Separation of 8 Achiral Alkyl  Aryl Ketones Using Mixed Mode 
Separation  Technique………………………………………………….96 

4.3.4 Effect of the Separation Mode on the Resolution of the Chiral 
Benzodiazepine, Temazepam…………………………………………. 98 

4.3.5 Influence on the Polymer Concentration on the Resolution of  
Aminoglutethimide Using Mixed Mode Separation Technique…….. 101 

4.3.6 Optimum Separation Conditions of Three Chiral Analytes (Benzoin, 
Benzoin Methyl Ether and Coumachlor) Using MEKC, PEM Coatings 
And Mixed Mode Separation Technique……………………………… 103 

 4.4 Concluding Remarks………………………………………………………….. 103 
 4.5 References…………………………………………………………………….. 104  

 
CHAPTER 5.  ACIDIC PROTEIN SEPARATIONS USING 
        POLYELECTROLYTE MULTILAYER COATINGS IN OPEN    
               TUBULAR CAPILLARY ELECTROCHROMATOGRAPY AND  
      GRADIENT ELUTION MOVING BOUNDARY         
           ELECTROPHORESIS…………….…………………………………… 107 
 5.1 Introduction…………………………………………………………………… 107 
 5.2 Materials and Methods……………………………………………………….. 109 
  5.2.1 Materials……………………………………………………………… 109 
  5.2.2 Instrumentation………………………………………………………. 110 
  5.2.3 Synthesis of Molecular Micelles……………………………………… 111 
  5.2.4 Sample and Buffer Preparation……………………………………….. 112 
  5.2.5 PEM Coating Procedure………………………………………………. 112 
  5.2.6 Fluorescent Labeling of the Acidic Proteins………………………….. 112 
 5.3 Results and Discussion……………………………………………………….. 113 



 vii

5.3.1 Influence of pH of the Background Electrolyte on the Separation of 6 
Acidic Proteins Using PEM Coated Columns with UV Detection...….. 113 

5.3.2 Influence of the Number of Bilayers on the Separation of 6 Acidic 
Proteins Using PEM Coated Columns with UV Detection…………… 114 

5.3.3 Influence of pH of the Background Electrolyte on the Separation of 3 
Acidic Proteins Using PEM Coated Columns with LIF Detection….... 116 

5.3.4 Influence of Internal Diameter and Effective Length on the  
Separation of 3 Acidic Proteins Using PEM Coated Columns with 
LIF Detection…………………………………………………………. 118 

5.3.5 Separation of 3 Acidic Proteins Using GEMBE………………………. 119 
 5.4 Concluding Remarks………………………………………………………….. 120 
 5.5 References…………………………………………………………………….. 122 
 
 
CHAPTER 6.  CONCLUSIONS AND FUTURE STUDIES……………………… 124 
 
APPENDIX: LETTER OF PERMISSION…………...……………………….. 128 
 
VITA…………………………………………………………………………………………. 130 



 viii

LIST OF TABLES 
Table                          Page 
 
 1.1 Proteins Investigated………………………………………………………………………9 

 2.1 Run-to-Run Reproducibility: Conditions: Same as in Figure 2.13..……………………..52 
 
2.2 Column-to-Column Reproducibility: Conditions: Same as in Figure 2.13……………...52 
 
3.1 Design variables used in box behnken design………...…………………………………63 
 
3.2 Experimental parameters and resolution values for poly-L-glutamic acid-lysine as   
 the cationic polymer in the PEM coating……………………………………...…………68 
 
3.3 Experimental parameters and resolution values for poly-L-lysine-serine as the   
 cationic polymer in the PEM coating ……………………………………………………69 
 
3.4 Experimental parameters and resolution values for poly-L-lysine as the cationic   
 polymer in the PEM coating……………………………………………………………..70 
 
3.5 Experimental parameters and resolution values for poly-L-ornithine as the cationic  
 polymer in the PEM coating……………………………………………………………..71 
 
3.6 Optimum conditions for each cationic polymer used in the PEM coating 
  (* indicates migration time of the last peak)………………………….…………………77 
 
4.1 Optimum separation conditions of three chiral analytes using MEKC, PEM coatings 
 and mixed mode separation technique. Conditions: All PEM coatings were 
 constructed using  0.5% (w/v) PDADMAC.  Temperature: 15 ºC; Buffer: 
 50 mM phosphate, pH 7.5;  Analyte concentration: 0.2 mg/ml, Capillary Length:  
 57 cm total  (50 cm effective length);  Capillary I.D.: 50 µm; Injection: 5 psi 
 for 5 s; Detection: 254 nm; Analyte: Benzoin, Benzoin Methyl Ether 
  (BME), Coumachlor……………………………………...……………………………104 
 
 
 
 
 
 
 



 ix

LIST OF FIGURES 
Figure                          Page 
 
1.1 Examples of two different types of chiral molecules……………………………………..2 

1.2 Three-point interaction rule……………………………………………………………….4                         

1.3 Structure of a surfactant molecule………………………………………………………...4 

1.4 Illustration of different stages of surfactant molecules in an aqueous environment. (A) 
 Low concentration of surfactant molecules; (B) Higher concentration of surfactant 
 molecules; (C) CMC………………………………………………………………………5 
 
1.5 Representation of structures of micelles…………………………………………………..6 

1.6 Representative molecular structure of poly-L-SULV……………………………………..6 

1.7 Structure of a protein…………….………………………………………………………..7 

1.8 Structure of lysozyme (reproduced from reference 31)…………………………………...8 

1.9 Schematic diagram of CE instrumentation………………………………………………11 

1.10 Electrical double layer…………………………………………………………………...12 

1.11 Analyte migration (cationic, neutral, anionic) in CZE…………………………………..13  

1.12 Illustration of the MEKC technique……………………………………….……………..14 

1.13 Schematic of the 3 types of CEC stationary phases……………………………………...19 

1.14 Schematic representation of a PEM coating……………………………………………..22  
 
1.15 Illustration of GEMBE technique………………………………………………………..29   
 
2.1 Molecular structures of the chiral analytes investigated: (A) BNP; (B) BOH…………..39 
  (C) Labetalol 
 
2.2 Comparison of the separation of BNP in an uncoated capillary versus a PEM   
 coated capillary: Conditions: Cationic polymer: 0.02% (w/v) poly-L-ornithine;   
 Anionic polymer: 0.5% (w/v) poly-L-SULA; Temperature: 15 °C; Voltage: 30   
 kV; Number of bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm   
 i.d.; Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in   
 MeOH:H2O (50:50); Detection: 220 nm…………………………………………………42 
 
2.3 Effect of temperature on the separation of labetalol enantiomers: Conditions:   
 Cationic polymer: 0.02% (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v)   



 x

 poly-L-SULA; Temperature: 15 °C, 25 °C, 35 °C; Voltage: 30 kV; Number of   
 bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100   
 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL Labetalol in MeOH:H2O  
 (50:50); Detection: 220 nm…………………………………….………………..……….43 
 
2.4 Effect of temperature on the separation of BNP: Conditions: Same as in Figure 2.3…...43 
 
2.5 Effect of voltage on the separation of labetalol enantiomers: Conditions: Cationic   
 polymer: 0.02% (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v) poly-L-  
 SULA; Temperature: 15 °C; Voltage: 15 kV, 20 kV, 30 kV; Number of bilayers:   
 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100 mM   
 Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL Labetalol in MeOH:H2O   
 (50:50); Detection: 220 nm…………………………………………………………..…..45 
 
2.6 Effect of voltage on the separation of BNP: Conditions: Cationic polymer:  
 0.02%  (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v) poly-L-SULA;   
 Temperature: 15 °C; Voltage: 15 kV, 20 kV, 30 kV; Number of bilayers: 4;   
 Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100 mM    
 Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in MeOH:H2O    
 (50:50); Detection: 220 nm………………………………………………………………45 
 
2.7 Comparison of the effect of poly-L-SULV and poly-L-SULA on the separation of   
 BNP: Conditions: Cationic polymer: 0.02 % (w/v) poly-L-ornithine; Anionic   
 polymer: 0.5% (w/v), poly-L-SULV/SULA; Voltage: 30 kV; Temperature: 15 ˚C;   
 Number of bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.;   
 Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in   
 MeOH: H2O (50:50); Detection: 220 nm…...……………………………………………46 
 
2.8 Effect of the concentration of poly-L-SULA on the separation of BNP    
 enantiomers: Conditions: Cationic polymer: 0.02 % (w/v) poly-L-ornithine;   
 Anionic polymer: 0.25%, 0.5%, 0.75% (w/v) poly-L-SULA; Voltage: 30 kV;   
 Temperature: 15 ˚C; Number of bilayers: 4; Capillary: 57 cm (50 cm effective   
 length) × 50 µm i.d.; Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte:   
 0.2 mg/mL BNP in MeOH: H2O (50:50); Detection: 220 nm…………………………...47 
 
2.9 Effect of the number of bilayers on the separation of Labetalol enantiomers:   
 Conditions:  Cationic polymers: 0.02% (w/v), poly-L-glutamic acid-lysine;   
 Anionic polymer: 0.5% (w/v) poly-L-SULA; Voltage: 30 kV; Temperature: 15   
 ˚C;  Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Capillary: 57 cm (50 cm   
 effective length) × 50 µm i.d.; Detection: 220 nm; Analyte: 0.2 mg/mL labetalol,   
 MeOH: H2O (50:50)…………………………………………………………………......48 
 
2.10 Effect of variation of the cationic polymer on the resolution of BNP enantiomers:   
 Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer: 0.5% (w/v), poly-  
 L-SULA; Temperature: 15 ˚C; Voltage: 30 kV; Number of bilayers: 4; Capillary:   
 57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100 mM Tris/10 mM Borate;   
 (pH 10.2); Analyte: 0.2 mg/mL BNP in MeOH: H2O (50:50); Detection: 220 nm…..…49    



 xi

 
2.11 Effect of variation of the cationic polymer on the resolution of BOH enantiomers:  
 Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer: 0.5% (w/v), poly-  
 L-SULA; Voltage: 30 kV; Temperature: 15 ˚C; Number of bilayers: 4; Capillary:   
 57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100 mM Tris/10 mM Borate;   
 (pH 10.2); Analyte: 0.2 mg/mL BOH in MeOH: H2O (50:50);  Detection: 220 nm….…50 
 
2.12 Effect of variation of the cationic polymer on the resolution of labetalol    
 enantiomers: Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer:   
 0.5% (w/v) poly-L-SULA; Temperature: 15 ˚C; Voltage: 30 kV; Number of   
 bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100   
 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL, MeOH: H2O (50:50);   
 Detection: 220 nm………………………………………………………………………..51 
 
2.13 Investigation of the run-to-run reproducibility of a PEM coated capillary:    
 Conditions: Total number of runs: 350; Cationic polymer: 0.02% (w/v) poly-L-  
 ornithine; Anionic polymer: 0.5% (w/v) poly-L-SULA; Number of bilayers: 4;   
 Temperature: 15 °C; Voltage: 30 kV; Capillary: 57 cm (50 cm effective length) ×   
 50 µm i. d.; Buffer: 100 mM Tris/10 mM Borate (pH 10.2); Analyte: 0.2 mg/ml   
 Labetalol MeOH: H2O (50:50); Detection: 220 nm……………………………………..52 
 
3.1 Representative molecular structures of polymers used in PEM coatings: A:   
 Anionic polymer: (I) Poly-L-SULV; (II) Poly-L-SULA; (III) Poly-SUS (*    
 indicates the chiral center) B: Cationic Polymers: (I) Poly-L-lysine     
 hydrobromide; (II) Poly-L-ornithine hydrobromide; (III) Poly-L-glutamic acid-  
 lysine hydrobromide; (IV) Poly-L-lysine-serine hydrobromide…………………………61 
 
3.2 Protein separations in an uncoated capillary: Conditions: Bare Capillary    
 (reverse polarity);  Analytes: 1. α-chymotrypsinogen A; 2. ribonuclease A; 3.   
 lysozyme; 4. cytochrome c; Temperature: 15 ºC; Voltage: 15 kV.  Buffer: 20 mM   
 phosphate, pH 4………………………………………………………………………….64 
 
3.3 Separation of basic proteins using an uncoated capillary and PEM coated    
 capillaries: Conditions: Coating: (A): uncoated capillary (normal polarity) (B):   
 0.5 bilayers (reverse polarity); (C): 1.5 bilayers (reverse polarity); (D) 2.5 bilayers  
 (reverse polarity); Cationic Polymer: 0.03% (w/v) poly-L- ornithine; Anionic   
 Polymer: 0.5% (w/v) poly-L-SULA;  Analytes: 1.α-chymotrypsinogen A; 2.   
 ribonuclease A; 3. lysozyme; 4 .cytochrome c; Buffer: 20 mM phosphate, pH 4;   
 Analyte concentration: 0.5 mg/ml; Capillary length: 37 cm total (30 cm effective   
 length); Capillary i.d.: 50 µm; Temperature: 15 ºC; Voltage: 15 kV;  Injection: 5   
 kV for 5 s;  Detection: 214 nm……………………………………………………….…..66 
 
3.4  Resolution values obtained for various cationic polymer used in PEM coatings:   
 Conditions:  Cationic Polymer: (A) poly-L-glutamic acid-lysine; (B) poly-L-  
 lysine-serine; (C) poly-L-lysine; (D) poly-L-ornithine; Anionic Polymer: 0.5%   
 (w/v) poly-L-SULA; Analytes: 1. α- chymotrypsinogen A;  2. ribonuclease A; 3.   
 lysozyme; 4. cytochrome c. All other conditions same as in Figure 3.3. [Rs1   



 xii

 indicates the resolution between peaks 1 and 2; Rs2 indicates the resolution   
 between peaks 2 and 3, and Rs3 indicates the resolution between peaks 3 and 4]…….…67 
 
3.5 Response surface plots of design variables: A: Influence of temperature and   
 voltage on protein resolution: Conditions:  A: Coating: 1.5, 2.5, 3.5 bilayers of   
 0.01% (w/v), 0.02% (w/v), 0.03% (w/v) poly-L-glutamic acid-lysine; Anionic   
 Polymer: 0.5% (w/v) poly-L-SULA; Analytes: 1. α-chymotrypsinogen A; 2.   
 ribonuclease A; 3. lysozyme; 4. cytochrome c; Temperature: 15 ºC, 25 ºC, 35 ºC;   
 Voltage: 15 kV, 20 kV, 30 kV. All other conditions same as in Figure 3.3. B:   
 Effect of the Number of Bilayers and Cationic Polymer Concentration on Protein   
 Resolution: Conditions:  Same as in A…………………………………………….…….73 
 
3.6 Protein separations obtained using (A) poly-L-glutamic acid-lysine, (B) poly-L-  
 ornithine, (C) poly-L-lysine-serine and (D) poly-L-lysine as the cationic polymer   
 in PEM coating: Conditions: Coating: (A) 2.5 bilayers of 0.02% (w/v) poly-L-  
 glutamic acid-lysine; (B) 2.5 bilayers of 0.03% (w/v) poly-L-ornithine, (C) 2.5   
 bilayers of 0.02% (w/v) poly-L-lysine-serine, (D) 2.5 bilayers of 0.02% (w/v)   
 poly-L-lysine; Analytes: 1.α-chymotrypsinogen A; 2. ribonuclease A; 3.lysozyme;  
 4. cytochrome c;  All other conditions same as in Figure 3.3 and are all completed  
 in the reverse polarity mode on the CE instrument………………………………………76 
 
3.7 Influence of cationic layer thickness on protein separations: Conditions: Coating:   
 2.5 bilayers; Cationic Polymer: 0.03% (w/v) poly-L-ornithine with 0.1 M NaCl;   
 Anionic Polymer: 0.5% (w/v) poly-L-SULA. (A) 2 minutes, (B) 5 minutes, (C) 15  
 minutes, (D)  30 minutes, (E) 45 minutes.  Analytes: 1. α-chymotrypsinogen A; 2.  
 ribonuclease A; 3. lysozyme; 4. cytochrome c; All other conditions same as in   
 Figure 3.3 and are all completed in the reverse polarity mode on the CE    
 instrument………………………………………………………………………………..79 
 
3.8       Influence of anionic polymer on protein separations: (A) Poly-SUS, (B) Poly-L- 
            SULA, (C) Poly-L-SULV, (D) First bilayer: anionic polymer, Poly-L-SULA; 
            Second bilayer: anionic polymer, Poly-L-SULV; (E) First bilayer: anionic polymer, 
            Poly-L-SULV; Second bilayer: anionic polymer, Poly-L-SULA: Conditions: 2.5 
            bilayers; Cationic Polymer: 0.03% (w/v) poly-L-ornithine; Anionic Polymer:  
            0.5% (w/v) Analytes: 1. α- chymotrypsinogen A; 2. ribonuclease A;  3. lysozyme;  
            4. cytochrome c;  All other conditions same as in Figure 3.3 and are all completed 
            in the reverse polarity mode on the CE instrument………...…...……………………..…81 
 
4.1 Structures of analytes; A. Chiral analytes; B: Achiral aryl ketones……………………..91 
 
4.2  A. Structural representation of (I) Poly-SUG and (II) Poly-L-SULV 
 B. Structural representation of PDADMAC…………………………………………..…92 
 
4.3        Influence of poly-SUG concentration on the separation of 8 aryl ketones using  
             MEKC: Conditions: A: 0.25% (w/v) p-SUG; B: 0.5% (w/v) p-SUG; C: 0.75%  
            (w/v) p-SUG; D: 1.00% (w/v) p-SUG Buffer: 100mM Tris, pH 10; Analyte 
            concentration: 0.1mg/ml, Capillary Length: 57cm total (50 cm effective length); 
            Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 15kV, Injection: 5psi for 5s; 



 xiii

             Detection: 220nm; Analytes: 1. Acetophenone, 2. Propiophenone, 3. Butyrophenone, 
             4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. Octanophenone, 8.  
             Decanophenone……...................................................................................................…..95 
 
4.4        Effect of concentration of poly-L-SUG on the separation of 8 achiral alkyl aryl  
             ketones  using PEM coatings. Conditions: PEM Coating: 2 Bilayers; 0.5%w/v 
             PDADMAC; A.0.25%; B. 0.5% C. 1.00% (w/v) poly-SUG ; Buffer: 100 mM 
             Tris, pH 10; Analyte concentration: 0.1 mg/ml; Capillary Length: 57 cm total  
            (50 cm  effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;  Voltage: 
             15 kV; Injection: 5 psi for 5 s; Detection: 254 nm ; Analytes: 1. Acetophenone, 2. 
             Propiophenone, 3. Butyrophenone, 4.Valerophenone, 5. Hexanophenone, 6. 
             Heptanophenone, 7. Octanophenone, 8. Decanophenone…………..…………………...96 
 
4.5        Influence of bilayer number on the separation of 8 aryl ketones using PEM coatings. 
             Conditions: A: 2 bilayers; B: 3 bilayers; C: 4 bilayers; Coating: 0.5% (w/v) 
             PDADMAC and 0.5% (w/v) p-SUG; Buffer: 100 mM Tris, pH 10; Analyte  
             concentration: 0.1 mg/ml,  Capillary Length: 57 cm total (50 cm effective length); 
             Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 15 kV, Injection: 5 psi for 5 s;  
             Detection: 220 nm; Analytes: 1. Acetophenone, 2. Propiophenone, 3. Butyrophenone, 
             4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. Octanophenone, 8.  
            Decanophenone…………………………………………………………………….….....97 
 
4.6        Influence of poly-SUG concentration on the separation of 8 aryl ketones using 
             mixed mode separation technique. Conditions: All PEM coatings were constructed 
             using 2 bilayers of 0.5% PDADMAC and 0.5% p-SUG (A-D); A: MEKC: 0.25% 
             (w/v) p-SUG; B: MEKC: 0.5% (w/v) p-SUG; C: MEKC: 0.75% (w/v) p-SUG; 
             D: MEKC: 1.00% (w/v) p-SUG; Buffer: 100 mM Tris, pH 10; Analyte 
             concentration: 0.1 mg/ml, Capillary Length: 57 cm total (50 cm effective  
             length); Capillary I.D.: 50 µm; Temperature: 15 ºC;  Voltage: 15 kV, Injection:  
            5 psi for 5 s; Detection: 220 nm; Analytes: 1. Acetophenone, 2. Propiophenone,  
            3. Butyrophenone, 4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 
            7. Octanophenone, 8. Decanophenone…………………………..…………………….....99 
 
4.7        Influence of applied voltage on the separation of 8 aryl ketones using mixed mode  
             separation technique. Conditions: All PEM coatings were constructed using 2 bilayers  
             of 0.5% PDADMAC and 0.5% p-SUG; MEKC: 1.00% (w/v) poly-SUG; Buffer: 
            100 mM Tris, pH 10; Analyte concentration: 0.1 mg/ml, Capillary Length: 57 cm  
             total (50 cm  effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 
            A. 15 kV, B. 20 kV, C. 30 kV Injection: 5 psi for 5 s; Detection: 220 nm; Analytes:  
            1. Acetophenone, 2. Propiophenone, 3. Butyrophenone, 4. Valerophenone, 
            5. Hexanophenone, 6. Heptanophenone, 7. Octanophenone, 
            8. Decanophenone…………………………………………………………………...….100 
 
4.8       Influence of separation mode on the resolution of temazepam. Conditions: A.   
 PEM coatings: 2 bilayers of 0.5% (w/v) PDADMAC and 0.75% (w/v) p-SULV;   
 B. MEKC: 1.00% (w/v) p-SULV; C: Mixed mode: PEM Coating: 2 bilayers of   
 0.5% (w/v) PDADMAC and 0.75% (w/v) p-SULV and MEKC: I. 0.25% (w/v);   
 II. 0.5% (w/v); III. 0.75% (w/v); IV. 1.00% (w/v) poly-L-SULV; Buffer: 50 mM   



 xiv

 phosphate, pH 9.2; Analyte concentration: 0.2 mg/ml, Capillary Length: 57 cm   
 total (50 cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;    
 Voltage: 30 kV, Injection: 5 psi for 5 s; Detection: 254 nm………………………....…101 
 
4.9 Influence of poly-L-SULV concentration in the mobile phase on the resolution of   
 aminoglutethimide using mixed mode separation technique. Conditions: All PEM   
 coatings were constructed using 2 bilayers of 0.5% (w/v) PDADMAC and 0.75%   
 (w/v) p-SULV (A-D).  A. Mixed Mode: MEKC: 0.25% (w/v) p-SULV; B. Mixed   
 Mode: MEKC: 0.5% (w/v) p-SULV; C. Mixed Mode:, MEKC: 1.00 %(w/v) p-  
 SULV; D. Mixed Mode: MEKC: 1.50% (w/v) p-SULV Buffer: 50 mM    
 phosphate, pH 7.5; Analyte concentration: 0.2 mg/ml, Capillary Length: 57 cm   
 total (50 cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;    
 Voltage: 30 kV, Injection: 5 psi for 5 s; Detection: 254 nm………………………...….102 
 
5.1 Representative molecular structures of compounds used for protein separations:   
 A: Anionic polymer: (I) Poly-L-SULV; (II) Poly-L-SULA; (* indicates the chiral   
 center; B: Cationic Polymer:  Poly-L-ornithine hydrobromide; C: 5-   
 Iodoacetamidofluorescein (5-IAF)…………………………………………………..….111 
 
5.2 Influence of pH on the separation of 6 acidic proteins using PEM coated columns   
 and UV detection. Conditions: Number of Bilayers: 2 bilayers; Cationic Polymer:   
 0.03% (w/v)  poly-L-ornithine, Anionic Polymer: 0.5% (w/v) poly-L-   
 (I)SULA/(II)SULV; Buffer: 40 mM phosphate; pH (A) 7; (B) 8; (C) 9; Analyte   
 concentration: 0.5 mg/ml; Capillary length: 50 cm total (40 cm effective length);   
 Capillary i.d.: 50 µm; Injection: 0.5 psi for 5 s; Temperature: 15 ˚C, Voltage : 15   
 kV. Detection: 200 nm; Analytes: 1. Myoglobin, 2. α-lactalbumin, 3.    
 Deoxyribonuclease; 4. β-lactoglobulin A,  5. β-lactoglobulin B, 6. Albumin….…...….114 
 
5.3 Influence of the number of bilayers on the separation of 6 acidic proteins using   
 PEM coated columns and UV detection. Conditions: Number of Bilayers: (A) 1   
 bilayer; (B) 2 bilayers; (C) 3 bilayers; Cationic Polymer: 0.03% (w/v)  poly-L-  
 ornithine, Anionic polymer: 0.5% (w/v) poly-L-(I)SULA/(II)SULV; Buffer: 40   
 mM phosphate, pH 8; Analyte concentration: 0.5 mg/ml; Capillary length: 50 cm   
 total (40 cm effective length); Capillary i.d.: 50 µm; Injection: 0.5 psi for 5 s;   
 Temperature: 15 ˚C, Voltage : 15 kV, Detection: 200 nm; Analytes: 1.    
 Myoglobin, 2. α-lactalbumin, 3. Deoxyribonuclease, 4. β-lactoglobulin A,  5. β-  
 lactoglobulin B, 6. Albumin………………………………………………….…………115 
 
5.4 Influence of pH of the background electrolyte and internal diameter on the   
 separation of 3 acidic proteins using PEM coated columns with LIF detection.   
 Conditions: Number of Bilayers: 2 bilayers; Cationic Polymer: 0.03% (w/v)  poly-  
 L-ornithine, Anionic Polymer: 0.5% (w/v) poly-L-SULA; Buffer: 40 mM    
 phosphate pH (A) 10, (B) 9, (C) 8, (D) 8; Capillary length: 50 cm total (40 cm   
 effective length); Capillary i.d.: (A-C) 50 µm, (D) 30 µm; Injection: 0.5 psi for 5   
 s; Temperature: 15 ˚C, Voltage : 15 kV, Analytes: 1. β-lactoglobulin A,  2. β-  
 lactoglobulin B, 3. Albumin………………………..……………………………….…..117 
 



 xv

5.5 Influence of effective length of the capillary on the separation of 3 acidic proteins   
 using PEM coated columns with LIF detection. Conditions: Number of Bilayers:   
 2 bilayers; Cationic Polymer: 0.03% (w/v)  poly-L-ornithine, Anionic Polymer:   
 0.5% (w/v) poly-L-SULA; Buffer: 40 mM phosphate pH 8; Capillary length: (A)   
 10 cm (short-end injection); (B) 30 cm, (C) 40 cm effective length, (50 cm total   
 length); Capillary i.d.: 30 µm; Injection: 0.5 psi for 5 s; Temperature: 15 ˚C,   
 Voltage : 15 kV Analytes: 1. β-lactoglobulin A,  2. β-lactoglobulin B, 3. Albumin.…..119 
 
5.6 Influence of applied voltage on the separation of 3 acidic proteins using PEM   
 coated columns using GEMBE. Conditions: Number of Bilayers: 2 bilayers;   
 Cationic Polymer: 0.03% (w/v) poly-L-ornithine; Anionic Polymer: 0.5% (w/v)   
 poly-L-SULA; Buffer: 40mM phosphate, pH 8; Voltage: (A) 300, (B) 700, (C)   
 1000 V; Capillary length: 3 cm, 30 µm I.D; Starting Pressure: 3000 Pa; Step   
 interval: 5; Analytes: 1: β-lactoglobulin A; 2. β –lactoglobulin 
  B; 3. Albumin…………………………………………………………………….……121 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xvi

LIST OF ABBREVIATIONS 
 
Abbreviation    Name 
 
5-IAF     5-Iodoacetamidofluorescein  

BENZ     benzoin 

BGE     background electrolyte 

BME     benzoin methyl ether 

BNA     1,1΄-binaphthyl-2,2΄-diamine 

BNP     1,1΄-bi-2-naphthyl-2,2΄-dihydrogen phosphate 

BOH     1,1΄-bi-2-naphthol 

CE     capillary electrophoresis 

CEC     capillary electrochromatography 

CGE     capillary gel electrophoresis 

CIEF     capillary isoelectric focusing 

CITP      capillary isotachophoresis 

CZE     capillary zone electrophoresis 

CMC     critical micelle concentration 

COUM    coumachlor 

CPL     4-chlorophenol 

CZE     capillary zone electrophoresis 

DCC     dicyclohexylcarbodiimide 

EOF     electroosmotic flow 

GEMBE    gradient elution moving boundary electrophoresis 

GC     gas chromatography 

HCl     hydrochloric acid 



 xvii

HPLC     high performance liquid chromatography 

MBE     moving boundary electrophoresis 

MEKC     micellar electrokinetic chromatography 

LZP     lorazepam 

MS     mass spectrometry 

NaOH     sodium hydroxide 

NHS     N-hydroxysuccinimide 

OT-CEC    open-tubular capillary electrochromatography 

OXP     oxazepam 

PC-CEC    packed column capillary electrochromatography 

PDADMAC    poly (diallyldimethylammonium chloride) 

PEM     polyelectrolyte multilayer coatings 

pI     isoelectric point 

poly-L-glutamic acid-lysine  poly (L-glutamic acid-lysine hydrobromide) 

poly-L-lysine    poly (L-lysine hydrobromide) 

poly-L-lysine-serine    poly (L-lysine-serine hydrobromide) 

poly-L-ornithine   poly (L-ornithine hydrobromide) 

Poly-L-SULA    poly (sodium N-undecanoyl-L-leucylalanate) 

Poly-L-SULV    poly (sodium N-undecanoyl-L-leucylvalinate) 

Poly-SUS    poly (sodium N- undecylenic sulfate) 

PSS     poly ( styrene sulfonate) 

RSD     relative standard deviation 

SDS     sodium dodecyl sulfate 

SFC     supercritical chromatography 



 xviii

SiO-     deprotonated silanol groups 

THF     tetrahydrofuran 

TLC     thin layer chromatography 

TRIS     tris(hydroxymethyl)aminomethane 

TZP     temazepam 



 xix

ABSTRACT 
 

In this dissertation, several chromatographic techniques were developed for separation of 

proteins as well as achiral and chiral compounds.  Firstly, polyelectrolyte multilayer (PEM) 

coatings were used to separate chiral analytes and proteins of pharmaceutical and biomedical 

interests.  Coating polymers used in PEM coatings are instrumental in analyte separation. 

Therefore, the effect of changing four different cationic polymers, (poly-L-lysine, poly-L-

ornithine, poly-L-lysine-serine, and poly-L-glutamic acid-lysine) and three anionic polymers 

(sodium poly (N-undecanoyl-L-leucyl-alaninate) (poly-L-SULA), sodium poly (N-undecanoyl-L-

leucyl-valinate) (poly-L-SULV) and sodium poly (undecylenic sulfate) (poly-SUS)) were 

investigated. The simultaneous effects of cationic polymer concentration, number of bilayers, 

temperature, applied voltage, and pH of the background electrolyte on the separation on these 

analytes were analyzed using a Box Behnken experimental design.  In addition, the influence of 

NaCl on the column reproducibility was investigated.  Secondly, mixed mode separation using a 

combination of micellar electrokinetic chromatography (MEKC) and PEM coatings was used for 

the separation of achiral and chiral analytes.  In this study, it was observed that achiral and 

separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very 

similar aryl ketones and 5 chiral compounds when the molecular micelles (sodium poly (N-

undecanoyl-L-glycinate) (poly-SUG)) and poly-L-SULV were used.   However, when mixed 

mode separation was introduced, baseline resolution was achieved for all analytes.  In the last 

study of this dissertation, PEM coatings were constructed using molecular micelles in open 

tubular capillary electrochromatography (OT-CEC) and gradient elution moving boundary 

electrophoresis (GEMBE) for protein separations.  In OT-CEC, proteins were detected using 

both ultra violet (UV) and laser induced fluorescence (LIF) detection, while only LIF detection 

was used with the GEMBE technique.  The effects of bilayer number, type of molecular micelle 
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as well as pH of the background electrolyte on the separation of 6 acidic proteins were analyzed 

using ultra violet (UV) detection in OT-CEC.    In addition, internal diameter and the effective 

length of the capillary were studied to investigate their influence on protein separations with LIF 

detection.  High resolution protein separations were achieved using PEM coatings, therefore, 

these conditions were also used for protein separations with the GEMBE technique. 
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CHAPTER 1 
 

 INTRODUCTION 
 

1.1 Chirality 

 A chiral molecule has a non-superimposable mirror image and all forms are known as 

enantiomers or optical isomers.  While chiral molecules, also known as optically active 

molecules, have the ability to rotate the plane of polarized light in equal but opposite directions, 

the molecules will have identical physical properties in an achiral environment [1].  Optically 

active molecules that rotate plane polarized light to the left are called levorotatory (L) (-) and 

those that rotate plane polarized light to the right are termed dextrorotatory (D) (+) [2, 3].  

Scientist, Louis Pasteur, was the first to demonstrate chirality when he separated chiral crystals 

of sodium ammonium tartrate using a hand lens and a pair of tweezers [4, 5].  Pasteur reported 

that each crystal presented levorotatory or dextrorotatory behavior when placed under polarized 

light [5].  

 A chiral molecule is any molecule that contains either a tetrahedral carbon atom, with 

four different groups at each bond, or a plane/axis of asymmetry, as illustrated in Figure 1.1 [7].  

The stereochemical configuration of an asymmetric carbon is denoted by either R (right or 

rectus) or S (left or sinister).  When the priority of each bonded group is in a clockwise direction, 

it is called R configuration.  Conversely, if the priority is in a counterclockwise direction, it is 

denoted as S [2, 3, 6].  When there are equal amounts of each enantiomer in a mixture, they do 

not rotate plane polarized light.  Such mixed are called racemic mixtures and are described as 

optically inactive and are denoted by (±).  This phenomenon occurs as a result of continuous 

rotation of molecules in each direction [8].  As one molecule rotates in the clockwise direction, 

another rotates in the counterclockwise direction.  Chiral enantiomers have the same physical 

properties, such as melting and boiling points.  However, enantiomers of the same drug can have 
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different effects in the human body since the body can metabolize these isomers through 

different pathways.  One enantiomer of a drug may have therapeutic effects, however, the other 

enantiomer may have detrimental or undesired effects.                             

                                   
                                                        

                                        BNP                                         Benzoin 
                                 (asymmetric plane)                      (asymmetric atom) 
Figure 1.1 Examples of two different types of chiral molecules 

One widely known example that illustrates the importance of the separation of chiral drugs is the 

thalidomide tragedy [7].  In 1956, thalidomide was given to pregnant women in the racemic form 

to help lessen symptoms associated with morning sickness.  However, it was later discovered 

that only the (R)-(+)-enantiomer was a sedative while, the (S)-(-) enantiomer caused severe birth 

defects in thousands of babies [3, 16].  There are many other drugs that exhibit different 

pharmacokinetic behavior, and as a result, the United States Food and Drug Administration has 

recommended that the pharmacological and toxicological activity of each isomer be investigated 

and documented. Therefore, interest in methods to separate chiral analytes has grown to address 

these problems [1, 3, 9, 10].   

 In order to achieve chiral separation, enantiomers must be placed in a chiral environment.  

This is generally achieved through the use of a chiral selector or a chiral discriminating agent 

capable of differentially interacting with the individual enantiomers.  There are two separation 

methods in which chiral separation can be achieved: indirect and direct.  In the indirect 

separation method, the chiral selector interacts with the enantiomers by forming a covalent bond, 

whereas in direct separations a complex is formed between the isomers and the chiral selector 



 3

and no covalent bond is formed.  Each case results in the formation of two non-superimposable 

isomeric compounds [2].  For the studies presented in this dissertation, the direct separation 

method is employed. 

 Although numerous reports have described the separation of enantiomers using a variety 

of chiral selectors, the mechanism involved in chiral discrimination has yet to be fully 

understood.  Separation scientists view the “three point rule” as the basis of chiral discrimination 

[11, 12]. The “three point rule” describes three simultaneous interactions between one 

enantiomer and the chiral selector and at most, two interactions between the other enantiomer 

and the chiral selector.  These interactions may be hydrophobic interactions between the polymer 

core and the chiral analyte, electrostatic interactions, or hydrogen bonding between the analyte 

and head group of the polymer.  In addition, several other interactions may occur due to ion-

dipole bonds, Van der Waals forces and π-π interactions. The differences in these interactions 

results in the resolution of two isomers.  Each enantiomer interacts with the chiral selector in a 

unique way because of spatial restraints.  The mechanism supporting the three point rule is 

illustrated in Figure 1.2.   

1.2. Chiral Selectors 

 Several chiral selectors have been used in capillary electrophoresis (CE) separations,  

including bile acids [13], crown ethers [14, 15], polysaccharides [16], proteins [17, 18], 

cyclodextrins [19, 20], and molecular micelles [21, 22, 23].  Though each chiral selector 

previously mentioned has many advantages, this dissertation reports the use of molecular 

micelles for each chromatographic technique used.   

1.2.1 Surfactants and Micelles 

 Surfactants, also referred to as amphiphiles, consist of a hydrophilic polar head group and 

a long hydrophobic hydrocarbon tail (Figure 1.3).  If the head group of the surfactant is 
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positively charged, it is said to be cationic, conversely, an anionic surfactant contains a 

negatively charged head group. When the surfactant molecule has both positive and negative 

charges, it is termed zwitterionic, while, surfactants with no charge are called nonionic [24, 25].    

 

    Enantiomers                     Chiral Selector 

Figure 1.2 Three-point interaction rule  

                                      

   Hydrophobic Tail Group                      Hydrophilic Head Group 

Figure 1.3 Structure of a surfactant molecule 

 When low concentrations of surfactant molecules are placed in an aqueous environment, 

hydrophobic tail groups position themselves inwards while the hydrophilic head groups are 

positioned outwards to interact with the aqueous surroundings (Figure 1.4A).  At higher 

concentrations, the surfactant molecules begin to aggregate (Figure 1.4B).  As the surfactant 

concentration increases to a concentration known as the critical micelle concentration (CMC), 

these molecules form organized assemblies known as micelles (Figure 1.4C).  The hydrophobic 
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tail is turned to the inside of the micelle, therefore, having limited solvent accessibility and the 

hydrophilic head groups create the outer surface of the micelle.    

 

                                 (A)                                        (B)                                      (C) 

Figure 1.4 Illustration of different stages of surfactant molecules in an aqueous environment. 
(A) Low concentration of surfactant molecules; (B) Higher concentration of surfactant 
molecules; (C) CMC 
 
 The CMC of each surfactant is different and can be determined using several methods 

however, the most commonly used is surface tension measurements.   This technique, first 

introduced by Du-Nouy in 1919, involves increasing the surfactant monomer concentration until 

there is no change in the surface tension of the solution [26].  At the CMC, the number of 

surfactant molecules that are aggregated (aggregation number, n) are commonly between 50 and 

100 [26].   

1.2.2 Molecular Micelles 

 When surfactants are polymerized at concentrations at or above the CMC, the aggregates 

are termed molecular micelles.  The resulting polymer, thought to resemble a conventional 

micelle, is preferred over the unpolymerized micelles for several reasons.  Molecular micelles 

have no CMC and, thus, can be used at very low concentrations. Furthermore, the covalent bonds 

formed during the polymerization process eliminate the dynamic equilibrium between monomer 

and micelle.  As a result, experimental parameters such as pH and concentration of added 

organic solvent, known to disrupt the formation of conventional micelles, do not destroy 

molecular micelles [22, 23, 27]. The structures of a conventional micelle and a molecular micelle 
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are illustrated in Figure 1.5.  Molecular micelles can be used for achiral, chiral, and protein 

separations, which will be discussed in subsequent chapters of this dissertation. The structure of 

a commonly used molecular micelle, sodium poly(N-undecanoyl-L-leucyl-valinate) (poly-L-

SULV) (Figure 1.6) consists of an amino acid polar head group and a hydrophobic hydrocarbon 

tail.  The hydrophobic core has the ability to solubilize non-polar analytes, a good characteristic 

for separation science. 

 

                               conventional micelle                              molecular micelle 

Figure 1.5 Representation of structures of micelles 

 

 

Figure 1.6 Representative molecular structure of poly-L-SULV 



 7

1.3 Proteins 

 Proteins are large globular structures found in all living cells that are primarily comprised 

of amino acids. Proteins are responsible for approximately 50% of the body’s dry weight and are 

the major component in all of human and animal tissues.  The primary structure of a protein may 

consist of a linear sequence of amino acids along a protein chain which contains disulfide (-S-S) 

bridges as demonstrated in Figure 1.7.  The unique properties of a protein are due to the amino 

acid arrangement, if one amino acid is changed, the overall characteristics of the protein will be 

different [28].   Characteristics such as solubility can influence blood flow and result in health 

complications in humans and animals [28].   

 

Figure 1.7 Structure of a protein 

 Proteins are biomolecules of great interest as biomarkers for diseases, markers for stage 

development of organisms, and as food additives [29].  Cytochrome c, a protein biomarker for 

disease, is an indictor of apoptosis.  Ribonuclease A reveals the presence of kidney disease and 

α-chymotrypsinogen A is a major protein found in cancerous cells in the prostate.  Another 

protein, lysozyme, found in saliva, is also a biomarker for intestinal inflammation [29].  A 

structural representation of lysozyme is illustrated in Figure 1.8.  These proteins are separated as 

test mixtures in Chapter 3.  Many studies have been dedicated to the separation and identification 

of milk proteins such as α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, bovine serum 

albumin (BSA) because of immunogenic properties [30]  These bovine whey proteins (discussed 
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in Chapter 5) are also widely used as test mixtures for many techniques to determine the quality 

of nutrients in processed milk [30].   

 

Figure 1.8 Structure of lysozyme [31] 

1.3.1 Effective Net Charge of a Protein 

 The overall net charge of a protein is determined by its tertiary structure which is the sum 

of the amino acid charges, as well as the metal ions and cofactors.  Gao et. al was one of the first 

to conduct experiments to determine the effective net charge of proteins using CE [32].  The 

authors determined the charge of a native protein by observing the migration time of the 

modified form of the same protein in CE.  The effective net charge of a protein is also 

determined by its environment since the proteins associate with counterions in solution.  In 

protein separations, the isoelectric point of a protein, commonly referred to as pI, is an important 

factor because it determines protein migration.  At this point, the concentrations of both cationic 

and anionic forms of the protein components are equal [33].  When the pI of the protein is 

greater than the pH of the background electrolyte, the protein is positively charged under those 

experimental conditions.  However, when the opposite is true and the pI of the protein is less 
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than the pH, its charge is negative.  Table 1.1 summarizes the molecular weights and pIs of the 

proteins investigated in Chapters 3 and 5. 

Table 1.1 Proteins Investigated 

Proteins            Molecular Weight (Da)         pI 

α -chymotrypsinogen A                              25, 656                                  9.10 

Lysozyme                                                    14, 300                                 10.7 

Ribonuclease A                                           13, 700                                  9.45 

Cytochrome c                                              12, 327                                  10.0 

Albumin                                                       66, 000                                 4.90 

Deoxyribonuclease I                                    31, 000                                 6.70 

β- lactoglobulin A                                        18, 276                                 5.10 

β- lactoglobulin B                                        18, 276                                 5.20 

Myoglobin                                                   17, 000                                  7.20               

α- lactalbumin                                              14, 200                                 4.50 

1.4 Analytical Separation Techniques 

 Several analytical techniques, such as high performance liquid chromatography (HPLC), 

thin layer chromatography (TLC), gas chromatography (GC), supercritical chromatography 

(SFC), and CE have been used to separate chiral compounds [3, 34, 35].  GC is only applicable 

for the separation of volatile compounds, while HPLC has been one of the most popular methods 

to separate chiral drugs.  The advantages of HPLC include its ability to be used on the 

preparative scale, as well as its low detection limit, and high injection volume.  However, CE has 

emerged as one of the leading separation techniques since high separation efficiencies are 

achieved with relatively low consumption of analyte and chiral selector.  In addition, CE has the 

added advantages of a relatively simple method development and short analysis times [35, 36].   
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1.4.1 Capillary Electrophoresis  

 There are many modes of CE and each will be briefly described. Capillary zone 

electrophoresis (CZE), the simplest and most commonly used mode, performs separations based 

on differences in the charge to size ratio as well as the differences in electrophoretic mobilities of 

analytes [3, 35].  Capillary isoelectric focusing (CIEF) is used to separate proteins and peptides 

based on their pI.  Capillary isotachophoresis (CITP) uses a combination of two electrolytes for 

analytes to migrate at the same velocity.  Capillary gel electrophoresis (CGE) uses a porous gel 

matrix to separate analytes according to their charge and size [35, 36].  Micellar electrokinetic 

capillary electrochromatography (MEKC) and capillary electrochromatography (CEC) are hybrid 

techniques that combine the benefits of electrophoresis and chromatography to separate charged 

and neutral analytes [35 - 37].  MEKC and CEC are the chosen modes of separation for the 

studies presented in this dissertation. 

 CE affords high resolution separation of both small and large molecules such as achiral 

and chiral drugs, pesticides, dyes, vitamins and inorganic acids, among others [36].  The 

separation mechanism is based on differences in the electrophoretic mobilities of analytes when 

an electric field is applied.  Jorgenson and Lukacs [38] were among the first to achieve high 

resolution separations of small analytes in narrow bore fused silica capillaries.  CE demonstrates 

several advantages when compared to other separation techniques.  These advantages include a 

simple automated instrumentation, which results in high efficiencies and analyte resolution with 

small sample and reagent consumption.  In addition, various modes of CE offer different analyte 

selectivity.   

 The simple instrumentation of CE (Figure 1.9) includes silica capillary, photodiode 

detector, UV lamp, sample and buffer reservoirs, a cathode and anode, high voltage power 

supply, and a computer for recording data.   For CE separations, both ends of the narrow bore 
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fused silica capillary are placed in the inlet and outlet reservoirs, which also contain the 

electrodes connected to the high voltage power supply.  After the capillary is filled with buffer, 

the inlet is then placed into the sample reservoir to inject the analyte.  In order to initiate sample 

migration, the inlet reservoir replaces the sample reservoir and an electric field is applied.  The 

sample ions then move through the capillary past the detection window.  At this point, the data in 

the form of electropherograms are recorded and displayed on the computer.  

 

Figure 1.9 Schematic diagram of CE instrumentation  

 The movement of both charged and neutral analytes through the capillary is due to the 

electroosmotic flow (EOF).  The EOF is originated from the electrical double layer that is 

formed when the negatively charged inner capillary wall (SiO-) and the positive ions 

(counterions) of the background electrolyte interface.  The positively charged ions (cations) are 

held adjacent to the inner capillary wall by electrostatic interactions forming the stern layer.  Not 

all ions are held at the walls, some are able to move throughout the capillary, forming the diffuse 

layer.  The electrical double layer is illustrated in Figure 1.10.  For separations to occur, an 
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electric field is applied, which results in the cations of the diffuse layer to be drawn towards the 

cathode causing movement of the bulk solution.    

 

Figure 1.10 Electrical double layer 

 The EOF is described by the following equations: 

                                                           EOF = (ε ζ /η) E                                                                1.1 

                                                            µEOF = (ε ζ /η)                                                                 1.2 

where, υ is the velocity of the EOF, ε  is the dielectric constant of the BGE, ζ is the zeta potential 

(potential across the layers depending on thickness of diffuse layer and the surface charge), η is 

the solvent viscosity, E is the applied electric field, and µ is the mobility of the EOF.   At low pH 

values, the EOF is suppressed by the protonation of the SiO- groups which, results in a decreased 

ζ.  Conversely, at high pH values the opposite is true.    

 In CZE, charged analytes migrate through the capillary at a velocity based on  

electrophoretic mobility, as well as the charge to size ratio, while the migration of neutral 

analytes depends on the EOF.  Overall, the EOF causes all analytes (charged or neutral) to 

migrate in the same direction.  This relationship is given by the equation: 

                                                       µapp
 = µe + µEOF                                                                      1.3 

where, µapp
 is apparent mobility of the analyte,  µe is the electrophoretic mobility of the analyte, 

and  µEOF  is the electrophoretic mobility of the BGE.  The charge of an ion determines the size 
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of its electrophoretic mobility and order in which it migrates through the capillary.  The first 

species to elute are the cations since their electrophoretic mobility is in the same direction as the 

EOF.  Next, the neutral species elutes with the EOF.  It should be noted that neutral species are 

not separated using CZE.  Finally, the anionic species migrate toward the cathode.  Anions are 

the last to elute because their electrophoretic mobility is in the opposite direction to the EOF.  

The magnitude of the EOF is greater than the electrophoretic mobility of the anionic species.  

Furthermore, larger species have a greater electrophoretic mobility than smaller species of the 

same charge.  A schematic of the elution order of charged and neutral species in CZE is 

illustrated in Figure 1.11. 

 

 

 

 

 

Figure 1.11 Analyte migration (cationic, neutral, anionic) in CZE  

1.4.2 Micellar Electrokinetic Chromatography 

 Unlike CZE, MEKC can be used to separate charged as well as neutral analytes.  Terabe 

was the first to introduce MEKC in the 1980s when he placed surfactants in the BGE 

(pseudostationary phase) at concentrations higher than the CMC to ensure micelle formation [39, 

40].  The authors reported the separation of 14 phenols using sodium dodecyl sulfate (SDS) 

micelles.   In MEKC, the separation mechanism is based on differences in the analytes’ 

electrophoretic mobility and the partitioning of analytes in the micellar pseudostationary phase. 

For neutral species, only the analyte partitioning is applicable for separations.  Other interactions 

between the analyte and the pseudostationary phase include hydrophobic, ionic, dispersive and 
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electrostatic interactions as well as hydrogen bonding.  A schematic representation of the MEKC 

technique is shown in Figure 1.12.  Conventional micelles [41, 42, 43] have been used for 

several separations in MEKC, however, the dynamic equilibrium between the surfactant 

monomers and micelles results in thermodynamic instability [44].  Molecular micelles can be 

used to overcome these limitations and are commonly used as the pseudostationary phase in 

MEKC.  Molecular micelles eliminate the dynamic equilibrium between monomer and micelle 

and results in more stable, rigid structures with controlled sizes.  These rigid structures are useful 

when organic modifiers are added to the BGE for enhanced separations.  Traditionally, organic 

modifiers are known to disrupt the micellar configuration in conventional micelles.  Other 

advantages of molecular micelles over conventional micelles include their use at low 

concentrations which results in minimal Joule heating.  Molecular micelles were described 

briefly in Section 1.2.2. 

 

 

 

 

 

 

 

Figure 1.12 Illustration of the MEKC technique  

 Separation of charged and neutral analytes can be influenced by the BGE concentration, 

pH of BGE, operating temperature, applied voltage, micelle size and charge, BGE modifiers and 

molecular micelle concentration.   These experimental parameters are important to the separation 

and migration of analytes in the capillary using MEKC.  For example, when an anionic 
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molecular micelle is used, there are increased interactions between the analyte and micelle; 

therefore the migration time of the analyte through the capillary is increased.  This phenomenon 

can be explained because the electrophoretic mobility of an anionic micelle is in the opposite 

direction of the EOF.  The magnitude of the EOF is greater than the electrophorectic mobility of 

the anionic micelle, therefore, the micelles and analyte migrate towards the cathode. 

 The major goal in separation science is the resolution of the analyte of interest.  Baseline 

resolution has a value of 1.5 which is dependent on the efficiency and migration time, as well as 

the selectivity of the separation technique.  The effectiveness of the column in separating the 

analyte is determined by the equation 1.4: 

                                                                        K = cs/cm                                                                                               1.4 

 where K is the partition coefficient, cs is the molar concentration of the analyte in the 

pseudostationary phase and cm is the analyte concentration in the mobile phase.  The capacity 

factor is the ratio of the molar concentration of the analyte in the pseudostationary phase to the 

molar concentration of the analyte in the mobile phase. This relationship is given by equation 

1.5: 

                                                                 k΄ = (tr – to)    =  K (Vs/Vm)                                         1.5                        
to(1-tr/tm) 

                                                                        
where k΄ is the capacity factor, tr and to are the retention time of the analyte and neutral marker, 

tm is the retention time of the micelle, K is the partition coefficient, Vs is the volume of the 

micellar phase and Vm is the volume of the mobile phase.  Less hydrophobic analytes have little 

interaction with the pseudostationary phase and are the first to elute while more hydrophobic 

analytes interact longer and elute last.  The selectivity, α, is the ratio at which these two types of 

analytes are retained by the column given by equation 1.6 

                                                               α = k΄2/  k΄1                                                                  1.6 
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where k΄1 is the first peak to elution and k΄2 is the second.  A selectivity value of 1 indicates no 

separation.  For optimum separations, the peaks are sharp and symmetrical in shape. The 

mathematical representation of peak shape is described in terms of peak efficiency or the number 

of theoretical plates, N: 

                 N = 5.54 (tn /w1/2)2                                                           1.7 

where tn is the elution time for peak n, and w1/2 is the peak width at half height.  Optimizing the 

capacity factor, k΄, the selectivity, α, and the peak efficiency, N will all improve the resolution 

between the analyte of interest. Resolution, Rs, is given by equation 1.8: 

                Rs = (N1/2) (α – 1) (   k΄2  )  (1 - (to / tm))                                       1.8 
                                                            4          α     k΄2 + 1    1 - (to / tm) k΄1                                      
 

The symbol representations are the same as listed in earlier equations.  A simplified version of 

equation 1.8 used in experimental calculations is given by equation 1.9. 

                                                          Rs = 2(t2 – t1)                                                                      1.9 
                                                                  w1 + w2         
 
 where w1 and w2 are the width at baseline of the first and second peaks. 

 Wang and Warner [45] were among the first to synthesize and demonstrate the use of 

sodium poly ( undecenyl-L-valinate) (poly-L-SUV) for the separation of chiral analytes.  Since 

then, MEKC with molecular micelles has been used to separate a number of achiral and chiral 

analytes [3, 21-23, 46-48, 67, 78, 79].  Williams et al. [46] used multivariate analysis for 

optimization in MEKC to separate the  two (2) chiral binaphthyl derivatives (±)-1,1’-bi-2-

naphthyl-2,2’-dihydrogen phosphate (BNP) and (±)1,1’-bi-2-naphthol (BOH) using poly-L-

SULV.  In addition, the chiral compounds, benzoin, hydrobenzoin, coumachlor, warfarin, 

lorazepam, and temazepam were also separated.  Furthermore, four achiral analytes were 

separated using MEKC with sodium poly(N-undecylenic sulfate)(poly-SUS) [46].  Numerous 

other achiral and chiral analytes have been separated using MEKC by other separation scientists.  
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Akbay et al. [47] employed MEKC to separate seven benzodiazepines and seven alkyl phenyl 

ketones using pseudostationary phases comprised of the polymers of sodium 10-undecenoyl-L-

leucinate (SUL) and SUS [47].  Rizvi et al. [48] used three sulfate head group bearing chiral 

surfactants and three carboxylate head group bearing chiral surfactants to separate basic and 

neutral chiral compounds.  The authors revealed that various surfactants showed superiority in 

different environments [48].  MEKC experiments are reported in Chapter 4 of this dissertation. 

1.4.3 Capillary Electrochromatography 

 Like MEKC, capillary electrochromatography (CEC) is a hybrid technique of CE and 

HPLC that can be used to separate both charged and neutral analytes.  Advantages of this 

technique include high selectivity and peak efficiency.  Unlike MEKC, CEC involves the 

incorporation of a stationary phase within the capillary. The separation mechanism is based on 

differences in the electrophoretic mobilities of the analytes, as well as the analyte partitioning 

into the stationary phase.  In the case of neutral species, partitioning is the only mechanism of 

separation.  CEC is similar to CZE in terms of EOF generation and high peak efficiencies, 

however, it is widely known that the separation of basic analytes, such as proteins, has been a 

problem for CZE users.  Protein separations carried out in an unmodified silica capillary exhibit 

poor reproducibilities.  Adsorption of proteins to the capillary wall may be due to electrostatic 

interactions, hydrogen bonding, hydrophobic patches, and biospecfic sites. As a result, several 

problems including peak tailing, unstable base lines, irreproducibility from run to run, low peak 

efficiency and irreversible sample adsorption may occur [49, 50].  For chiral separations in CEC, 

selectivity can be enhanced by altering the stationary phase to support chiral interactions. 

 CEC is a versatile technique that has attracted the interest of separation scientists in 

recent years as an alternative to CZE. The CEC technique was first introduced by Pretorius et al. 

[51] in 1974, when hydrodynamic pumping was replaced with electrokinetic pumping.   Next, 
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Jorgenson and Lukacs used CEC to separate 2-methylanthracene and perylene in a packed CEC 

column [52].  As in MEKC, CEC separations are based on analyte interaction with the micellar 

phase for both charged and neutral analytes.  When the species is charged, the analytes’ 

electrophoretic mobility is also a factor in separation [53].  The capacity factor, k΄CEC, has been 

expressed in several ways [54-56], however, one commonly used mathematical expression is 

given in equation 1.10: 

                       k΄CEC = k΄ - (µe / µeof)                                                          1.10 
                                                                     1 + (µe / µeof) 
 

This equation combines both the electrophoretic and chromatographic mechanisms of CEC. k΄ is 

the retention resulting from the chromatography factor, µe is the electrophoretic mobility of the 

analyte and, µeof is the magnitude of the EOF.  When neutral species are being investigated, µe is 

zero. 

 There are three main modes of CEC: packed column CEC (PC-CEC), monolithic 

columns and open tubular-CEC (OT-CEC) (Figure 1.13).  In PC-CEC, the stationary phase is 

prepared by packing the capillary, usually 50 -100µm internal diameter (ID) with a silica-based 

packing material, i.e. octadecyl silica beads.  Some expertise is required to successfully pack 

these columns because of the small inner diameter.  For column packing, the ends of the 

capillary are burned to prepare a frit.  Then, the packing material, i.e. the stationary phase is 

pumped into the column with high pressure.  Finally, another frit and a detection window are 

prepared [55].  There are several problems associated with using PC-CEC, such as the formation 

of bubbles within the column and the difficulties in maintaining stable frits.  These problems can 

negatively affect chromatographic separations [35, 53, 54].  

 Monolithic CEC columns are prepared by in situ polymerization of organic species or 

sol-gel materials.  After preparation, monolith columns consist of a uniform macroporous  
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Figure 1.13 Schematic of the 3 types of CEC stationary phases  

stationary phase [57, 58].  These stationary phases may be constructed using organic materials, 

silica sol gel, and immobilized particles.  Free radical or UV initiation are commonly used to 

polymerize monomers of the organic porous monolith columns.  Hydrolysis and 

polycondensation reactions form porous networks of silica gel when sol-gel monoliths are 

prepared.  Immobilized particle monoliths are constructed using a method similar to PC-CEC. 

First, the organic polymers or sol-gels are packed into the capillary and retained using frits, 

which are burnt into the end of the capillary.  Then, the packing material is polymerized by 

pumping organic based monomers mixed with porogenic solvent through the capillary.  

Monolith columns offer some advantages over PC-CEC since the stationary phase can be 

tailored to alter analyte selectivity.  In addition, column preparation is simpler.  

 Preparation of OT-CEC involves coating polymers onto the inner wall of the capillary, 

thus alleviating the problems with packing and unstable frits as in PC-CEC. In OT-CEC, the 

stationary phase is adsorbed to the capillary wall and the mobile phase, which flows through the 

column, is driven by the EOF.  Therefore, there is no pressure drop within the capillary and the 
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EOF produces a flat flow profile. The coating must be stable in order to achieve successful 

chromatographic separations. The stationary phase can be prepared adsorption, where the 

stationary phase can either be dynamically or physically adsorbed to the capillary wall to shield 

the negatively charged silanol groups with a layer of the coating material [54, 59].  In a 

dynamically coated capillary, the adsorption of the coating material to the capillary wall is 

relatively weak, and the coating material is placed in the running buffer to ensure the coating 

remains stable.  On the other hand, if the adsorption of the coating polymer is strong, that is, it is 

physically adsorbed to the wall, then the addition of the coating material to the running buffer is 

not necessary [54, 59]. Covalent bonding and/or crosslinking is another method of forming a 

stationary phase for CEC separations. This approach offers a long capillary lifetime but it is 

laborious and time consuming to prepare [60]. There are some disadvantages associated with the 

use of CEC, such as a low phase ratio and decreased surface area, however, the formation of 

porous silica layers [61] and chemical bonding after etching [62] and sol gel [63] are all 

techniques used to increase the phase ratio, loading capacity, and the surface area of the capillary 

[64].   

 Advantages of using OT-CEC include coating small ID columns, which results in high 

peak efficiencies.  Furthermore, when high voltages are applied, joule heating is minimal.  

However, coating small ID capillaries results in low sample capacity, which may compromise 

analyte resolution.  Also, covering the silanol groups on the inner capillary wall may result in a 

low EOF.  Pesek et al. increased the surface area by etching and then chemically modifying a 

20µm ID capillary by the silanization/hydrosilation method to separate lysozyme and 

cytochrome c [65]. Constantin and Freitag developed novel stationary phases for use in OT-CEC 

where various Cn (n = 6, 8, 16) polymers were used as the stationary phase in order to separate 

different charged biological molecules [66].  
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1.4.3.1 Polyelectrolyte Multilayer Coatings 

 Dynamic coatings are adsorbed to the capillary wall by electrostatic interactions and 

hydrogen bonding. One widely used coating constructed by a physical adsorption process is a 

polyelectrolyte multilayer (PEM) coating.  PEM coatings are formed from multiple electrostatic 

interactions and ion exchange that result in a stable coating [23, 67].  A PEM coating is 

constructed by alternately exposing the hydrophilic inner wall of a silica capillary first to cationic 

and then anionic polymers. The combination of each polymer is called a bilayer (Figure 1.14).  

Decher et al. [68, 69] were among the first to prepare PEM coatings by using oppositely charged 

polymers.  The authors suggested that deposited polymers primed the surface for polymers of the 

opposite charge.  Dubas and Schlenoff [70] formulated a mathematical interpretation of this 

phenomenon given by equation 1. 11: 

                                     Pol- M+
(m) + Pol+ A-

(aq) ↔ Pol- Pol+
(m) +  M+

(aq) + A-
(aq)                       1.11 

 where Pol+ and Pol- are the charged segments of the polymers, M+ and A- represent the salt 

counterions, and m is the surface region.  The charges on a polymer are balanced by the 

oppositely charged polymer or by salt ions present within the multilayer.  Intrinsic compensation 

occurs when the positive charges on one polymer is counterbalanced by the negative charges on 

another polymer.  Extrinsic compensation results from the balancing of polymer charges by 

additive salt ions.  The net charge of the multilayer is determined by the charge of the outermost 

polymer.  

 PEM coatings are simply constructed by using multiple rinse functions of the CE 

instrument, however, its internal structure is not fully understood. Dubas and Schlenoff [70] 

have reported that the multilayers are interpenetrating, stratified structures.  Furthermore, each 

layer may penetrate up to four layers from its original deposition [71].  The addition of salt to the 

coating polyelectrolytes may influence the morphology and surface roughness of PEM coatings.   
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Figure 1.14 Schematic representation of a PEM coating   
  

Salt additives have also been reported to increase PEM thickness, which results in increased 

analyte resolution and peak efficiency.  The thickness of PEM layers can also be increased by 

increasing the concentrations of the coating polymers, increasing the number of bilayers, and 

increasing the rinse time of the polymer deposition.   

1.4.3.2 PEM Coatings Used in OT-CEC 

In the past, CE separations using MEKC resulted in two main problems; large amounts of 

chiral selector were required to achieve separation and MEKC could not be coupled to a mass 

spectrometer (MS).  The presence of the chiral selector in the running buffer has the tendency to 

foul the ionization source [67].  PEM coatings have been viewed as a great alternative to MEKC 

because they are constructed using a simple rinse procedure requiring less chiral selector than in 

MEKC separations.  Also, PEM coated separations have the ability to be coupled with the MS 

detector (CE/MS) [67].  PEM coatings are amendable to successful separations of numerous 

compounds and offer several advantages over other stationary phases because a wide range of 

coating polymers of different structural and chemical properties can be used [72].  These 

polymers include those that are commercially available or polymers that are synthesized in 
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research laboratories, e.g. our molecular micelles [21, 23, 45, 46].  Polymers used in PEM 

coatings may affect the resolution, selectivity, and retention time of the analytes because the 

interactions between the PEM coating and analyte may vary.   

 The outermost layer of the PEM coating can be altered to reduce analyte adsorption and 

enhance separation.  The charge of the outer layer also determines the direction and magnitude of 

the EOF.  The EOF is normal (anode to cathode) when the last layer of the PEM coating is 

negatively charged and the EOF is reversed (cathode to anode) when the last layer is positively 

charged.   

1.4.3.2.1 Protein Separations with PEM Coatings  

 Katayama et al. first demonstrated PEMs using OT-CEC in 1998 when acidic proteins 

and amino acids were separated using multilayers of polybrene and dextran sulfate [73, 74].  

Although the authors referred to the coating as successive multiple ionic-polymer layer (SMIL) 

coating, the structure and formation was very similar to PEM coatings.   This stable coating was 

independent of pH and reduced or eliminated protein adsorption to the capillary wall, a problem 

in conventional CE.  Protein separations are achieved by two mechanisms, the coating 

suppresses protein adsorption to the capillary wall by electrostatic repulsion of like charges 

between proteins and polymers as well as protein interactions with the stationary phase.  Proteins 

have been successfully separated using PEM coated columns and the mechanisms of separation 

are based on differences in protein-PEM interactions [75].  The overall charge of the last layer of 

PEM coatings and the net charge of proteins play an important role in protein adsorption and 

interaction with PEM coatings.  Salloum and Schlenoff [75] have investigated protein adsorption 

onto PEM coatings as well as the influence of surface charge, ionic strength, and thickness of the 

PEM coating on protein-PEM interactions.  Results from that study indicated that the last layer 

of PEM coatings determines how proteins adsorb and interact with the coating.  Furthermore, the 
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net surface charge of PEM coatings can be tailored so as to allow or retard protein adsorption.  

Protein adsorption on oppositely-charged surfaces is due to electrostatic interactions, whereas 

adsorption on like-charged surfaces can be attributed to non-electrostatic interactions [75].  

Salloum and Schlenoff [75] have also demonstrated that proteins can be adsorbed and interact 

within the multilayers of PEM coatings if proteins and PEM coatings are of opposite charge.  

However, when proteins are of the same charge as PEM coatings, interactions occur at the 

surface layer regardless of PEM coating thickness.  PEM coatings used in this dissertation 

employed protein-PEM interactions at the surface of the multilayer. 

 Several studies involving separations of cationic proteins using a positively charged wall 

coating have been previously performed [29, 72, 75].  Wang and Dubin [72] have investigated 

the influence of an immobilized adsorbed coating using poly(dimethyldiallyammonium chloride) 

(PDADMAC) as the coating polymer for the separation of cationic proteins.  Results indicated 

that high molecular weight polymers at high ionic strengths provided optimal coating conditions.  

In addition, the authors reported that the coating polymer formed loops and tails, which were 

important for the reversal of the EOF and provided a stationary phase for protein interactions as 

well as increased the stability and efficiency of the coated column [72].  Graul and Schlenoff 

[49] used PDADMAC and poly (styrene sulfonate) (PSS) as polyelectrolytes in PEM coatings 

for the separation of four basic proteins.  Also, the authors investigated the influence of the 

number of bilayers on protein resolution and reported that the use of 6.5 bilayers improved 

protein resolution [49].    Protein separations using PEM coatings are demonstrated in Chapters 3  

and 5 of this dissertation.  Several commercially available cationic polymers are investigated for 

use in protein separations.  The importance of bilayer number and PEM coating thickness are 

highlighted to illustrate their influence on protein separations. In addition, the introduction of 

PEM coatings constructed with molecular micelles is demonstrated for the first time. 
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1.4.3.2.2 Chiral Separations with PEM Coatings  

 Mayer and Schurig [76] were among the first to report chiral separations using OT-CEC 

with Chiralsil-Dex as the stationary phase.  PEM coatings with chiral cationic and anionic 

polymers have been used to separate a number of chiral analytes. Rmaile and Schlenoff used the 

polymers, poly-L-lysine and poly-L-glutamic acid, among others, to resolve some chiral probes 

such as ascorbic acid and a chiral viologen [77].  In our laboratory, Kamande et al. used poly-L-

lysine hydrobromide and poly-L-SULA to separate three binaphthyl derivatives and two β-

blockers.  These columns have remarkable reproducibility and stability for over 290 runs.  In 

addition, the coupling of PEM coated columns to MS was reported for the first time [78].  It is 

not necessary for both polymers to be chiral in order to separate chiral analytes.  For example, 

Kapnissi et al. optimized several experimental parameters using PEMs generated with achiral 

PDADMAC and chiral poly-L-SULV to resolve chiral analytes. In this study the authors created 

up to a 12 bilayer capillary using ionic liquids as additives [79].  Usually, PEM coated capillaries 

are stable and robust.  For example Kapnissi et al. demonstrated a coating that was able to 

withstand over 200 runs with a relative standard deviation (RSD) of the EOF of less than 1% 

[67].  Chapters 2 and 4 illustrate chiral separations using PEM coatings. 

1.4.4 Experimental Design   

 Experimental design uses statistical methods to design experiments that provide the 

optimum conditions for a desired result [80].  In CE, the optimization of separation parameters to 

achieve high resolution separations in a reasonable analysis time continues to be an active area of 

research [81, 82].  Examples of such parameters (design variables) include the choice and 

concentration of the cationic and anionic polymer, as well as the applied voltage, temperature, 

BGE pH, and the number of bilayers in the PEM coating.  The conventional approach to 

optimizing a PEM coating can be a tedious process since only one parameter is usually changed 
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at a time.  In recent studies, experimental design and multivariate analysis have been widely used 

to simultaneously optimize separation parameters, leading to higher resolution in relatively short 

analysis times [46, 83–88]. Previously in our research group, Williams et al. reported the use of 

experimental design and multivariate analysis for the optimization of separation parameters to 

predict the migration time, resolution, and resolution per unit time of several chiral and achiral 

analytes using MEKC [46].  Experimental design has also been used to optimize the separation 

conditions of two different stationary phases for the separation of four basic peptides in OT-CEC 

[83].  Yang et al. [84] have used experimental design, specifically central composite design, in 

CEC to simultaneously optimize the separation parameters of 11 nucleosides and nucleobases in 

Cordyceps sinensis, a traditional Chinese medicine. 

 Box Behnken experimental design uses the simultaneous variation of separation 

parameters at three levels [80].  For example, if temperature is chosen as a design variable, the 

three levels investigated may be 15˚C, 20˚C, 25˚C.  Surface response plots demonstrate the 

relationship between the design variables and the desired result (response).  In chapter 3 of this 

dissertation, a Box Behnken experimental design is used to optimize separation parameters using 

four different chiral cationic polymers and the anionic molecular micelle, poly-L-SULA for PEM 

coatings in the OT-CEC separation of four basic proteins: a-chymotrypsinogen, lysozyme, 

ribonuclease A, and cytochrome c. The design variables investigated included the type and 

concentration of polymers, applied voltage, temperature, BGE pH, as well as the number of 

bilayers.   

1.5 Moving Boundary Electrophoresis 

 Tiselius et al. [89, 90] was the first to demonstrate moving boundary electrophoresis 

(MBE) in 1937.  MBE is described as electrophoresis of a free solution in which all analyte ions 

move at the same rate through the separation channel to create a sharp moving boundary.  These 
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manuscripts included the separation of colloids with the implementation of a new experimental 

setup called the Tiselius apparatus.  The Tiselius apparatus includes a U-shaped cell filled with 

buffer solution and an inlet and outlet electrode.  More recently, Harmon et al. [91] used Tiselius 

apparatus for electrophoretically mediated microanalysis (EMMA) to separate leucine 

aminopeptidase.  The authors reported that the MBE technique provided greater sensitivity when 

compared to the original EMMA method.  Gao et al. [92] used MBE for the development of 

frontal analysis continuous capillary electrophoresis (FACCE) to investigate the interactions of 

proteins to polyelectrolytes.  The authors introduced the use of continuous sampling when a 

voltage is applied to eliminate the need for sample injection.  Advantages of this technique were 

reported to be the integration of sample introduction and sample separation.    

1.5.1 Gradient Elution Moving Boundary Electrophoresis 

 Controlling the bulk flow in CE is an important parameter to investigate in order to 

enhance separations.  Bulk flow control can be accomplished through establishing hydrodynamic 

or electrokinetic gradients.  Kok hydrodynamically controlled the bulk flow in a CE system to 

reduce zone broadening with off column detection [93].  Also, Culbertson et al. [94] 

demonstrated the use of a pressure induced counterflow to control the migration of different 

species in a separation channel.  The authors reported increased peak efficiencies and analyte 

resolution due to higher analyte retention in the separation channel.  Peak efficiencies can also be 

increased by applying an external voltage.  Polson et al. [95] controlled the EOF in a 

microfluidic device by applying an external potential of ≤120 V, which resulted in peak 

efficiencies over 40 times of other published values.   

 Recently, Shackman et al. [96] implemented a new technique, gradient elution moving 

boundary electrophoresis (GEMBE).  In this method, analytes are separated by applying a 

controlled hydrodynamic counterflow that is varied with time.  GEMBE promotes high 
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resolution separations in short, narrow separation microchannels.  GEMBE has the advantage of 

allowing continuous sample injection into the separation channel which eliminates conventional 

injection methods such as electrokinetic and hydrodynamic injections.  Experiments using 

GEMBE are performed by carefully controlling a hydrodynamic counterflow, which allows 

analytes to enter the separation channel.  Separations are achieved due to differences in the 

electrophoretic mobilities of the analytes. Therefore, only analytes with an electrophoretic 

mobility that is greater than the counterflow will enter the separation channel.    

 GEMBE instrumentation is illustrated in Figure 1.15.  For GEMBE separations, short 

fused silica capillaries with 5 mm detection windows are used.  One end of the capillary is placed 

into a 360 µm hole in the analyte reservoir with an electrode.  The other end of the capillary is 

attached to a polypropylene syringe that contains ~1 mL of buffer.  The syringe is grounded and 

connected to a ±69 kPa (10 psi) precision pressure controller, which used helium as the gas 

supply.  The syringe plunger accommodates a high voltage supply and controls the pressure.  All 

experiments are performed on a fluorescence microscope with 10 × objective (numerical 

aperature, NA = 0.3), Hg arc lamp, color CCD camera, (DXC-390, Sony, New York, NY) and 

appropriate fluorescence filter sets.  Instrumental control and data acquisition uses Java 5.0 

software.  Raw data are transformed using Savitzky Golay smoothing [96].  

1.6 Scope of Dissertation 

 This dissertation includes enhanced achiral, chiral, and protein separations using different 

chromatographic techniques, valuable to the pharmaceutical and biomedical industries.  The 

versatility of PEM coatings are demonstrated for a wide range of analytes.  Mixed mode 

separation is demonstrated for the first time with PEM coatings and molecular micelles. In 

addition, novel PEM coatings are applied for protein separation using OT-CEC and GEMBE. 

 Four cationic polymers are used to optimize chiral and protein separations with PEM  
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coatings in Chapters 2 and 3.  Cationic polymers used in PEM coatings may affect the resolution, 

selectivity and retention time of the analytes being studied.  In these chapters, the effect of 

changing four different cationic polymers, poly-L-lysine, poly-L-ornithine, poly-L-lysine-serine, 

and poly-L-glutamic acid-lysine, on the separation of two binaphthyl derivatives, one β-blocker, 

and four basic proteins (α-chymotrypsinogen A, lysozyme, ribonuclease A, and cytochrome c) 

was investigated.  The anionic polymers used were poly-L-SULA, poly-L-SULV and sodium 

poly (undecylenic sulfate) (poly-SUS).  The simultaneous effects of cationic polymer 

concentration, number of bilayers, temperature, applied voltage, and pH of the BGE on the 

separation of the chiral analytes, as well as the four basic proteins were analyzed using a Box 

Behnken experimental design.  The influence of NaCl on the run-to-run reproducibility was 

investigated for PEM coatings containing each cationic polymer. 

 

 

Figure 1.15 Illustration of GEMBE technique   
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 Chapters 4 and 5 involve novel applications of PEM coatings for achiral, chiral and 

protein separations.  Mixed mode separation using a combination of MEKC and PEM coatings is 

reported for the separation of achiral and chiral analytes in Chapter 4.  Many analytes are 

difficult to separate by MEKC and PEM coatings alone.  Therefore, the implementation of a 

mixed mode separation provides several advantages for overcoming the limitations of these well-

established methods.  In this study, achiral and chiral separations using MEKC and PEM 

coatings individually, were investigated using the molecular micelles (sodium poly (N-

undecanoyl-L-glycinate) (poly-SUG) and poly-L-SULV.  The molecular micelle concentration 

and bilayer number were varied to optimize these separations.  The separation of achiral and 

chiral compounds from different compound classes demonstrates the versatility of this mixed 

mode approach.  

 In Chapter 5, PEM coatings were constructed using molecular micelles in OT-CEC and 

GEMBE for acidic protein separations.  In OT-CEC, proteins were detected using both ultra 

violet (UV) and laser induced fluorescence (LIF) detection, while only LIF detection was used 

with the GEMBE technique.  PEM coatings were constructed using the cationic polymer, poly-L-

ornithine and the molecular micelles, poly-L-SULA and poly-L-SULV.  Experimental variables, 

including bilayer number, type of molecular micelle, as well as pH of the BGE were studied for 

the separation of 6 acidic proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, albumin, 

myoglobin, and deoxyribonuclease I). The influences of pH of the background electrolyte, 

internal diameter, and the effective length of the capillary on the separation of three fluorescently 

labeled proteins were investigated using LIF detection.  Protein separations using the new 

GEMBE technique was demonstrated for the first time.  Different voltages were applied to a 

3cm, 30µm capillary to investigate the influence on protein separations using PEM coatings and 

GEMBE.   
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CHAPTER 2 
 

SEPARATION OF CHIRAL ANALYTES USING POLYELECTROLYTE 
MULTILAYER COATINGS IN OPEN TUBULAR CAPILLARY 

ELECTROCHROMATOGRAPHY 
 
2.1 Introduction 

 Chiral separations have captured the attention of the pharmaceutical, biomedical and 

environmental industries primarily because the interactions and behavior of the individual 

enantiomers have not been fully explored and there are thousands of chiral drugs in circulation 

[1].  One widely known example that illustrates the importance of the separation of chiral drugs 

is the thalidomide tragedy.  In the 1960’s thalidomide was given to pregnant patients in the 

racemate form to help lessen symptoms associated with morning sickness.  However, it was later 

discovered that only the (R)-(+)-enantiomer was a sedative while, the (S)-(-) enantiomer caused 

horrible birth defects [2, 3, 7].  There are many other drugs that exhibit different pharmacokinetic 

behavior, and since then the United States Food and Drug Administration has recommended that 

the pharmacological and toxicological activity of each isomer be investigated and documented. 

Therefore, interest in methods to separate chiral analytes became more pressing.  

 In order to achieve chiral separation, enantiomers must be placed in a chiral environment. 

This is generally achieved through the use of a chiral selector or chiral discriminating agent able 

to differentially interact with the individual enantiomers.  Molecular micelles are commonly used 

chiral selectors.  Isiah M. Warner’s research group at Louisiana State University has been one of 

the leaders in the use of molecular micelles for capillary electrophoresis enantioseparations due 

to their stability, rigidity and controllable sizes [4-8]. Molecular micelles are prepared by 

polymerizing surfactants at sufficiently high concentrations for micelles to form. The resulting 

polymer, thought to resemble a conventional micelle, is preferred over the unpolymerized 

micelles because molecular micelles have no critical micelle concentration. Therefore, molecular 
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micelles can be used at concentrations lower than the monomers’ critical micelle concentration.  

In addition, molecular micelles contain covalent bonds which eliminate the dynamic equilibrium 

between micelles and surfactant monomers [1, 4, 5].   

 Capillary electrochromatography (CEC), a hybrid technique, combines the benefits, 

selectivity and efficiency, of electrophoresis and chromatography to separate charged and neutral 

analytes [9, 10, 11].  CEC is a versatile technique that has attracted the interest of separation 

scientists in recent years as an alternative to capillary zone electrophoresis.  The separation of the 

analytes being investigated is based on electrophoretic mobility and their partitioning into the 

stationary phase.  Neutral analytes are separated through interactions with the stationary phase 

which is adsorbed to the capillary wall, while charged analytes are separated due to their 

differences in charge and size as well as partitioning behavior [12].   

 In one type of CEC, open tubular capillary electrochromatography (OT-CEC), the 

stationary phase is adsorbed to the capillary wall and the mobile phase, which flows through the 

column, is driven by the electroosmotic flow (EOF) [13-15].  The chiral selector used as the 

stationary phase in chiral separations is an important part of achieving optimal separations. 

Coating the inner wall of a capillary can change the selectivity and control the EOF.  Dynamic 

coatings are adsorbed to the capillary wall by electrostatic interactions and hydrogen bonding 

[6]. One widely used coating constructed by a physical adsorption process is polyelectrolyte 

multilayer (PEM) coating.   

 A PEM coating is formed by alternately exposing the hydrophilic inner wall of a silica 

capillary first to cationic and then anionic polymers. The combination of each is called a bilayer. 

The mechanism of a PEM coating formation is via ion exchange that results in stable coatings 

[16].  PEM coatings have been created as an alternative to micellar electrokinetic 

chromatography (MEKC) because the use of MEKC results in two main problems. The MEKC 
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technique requires large amounts of chiral selector to achieve separation which is significantly 

reduced by using PEM coatings.  Another main drawback of this technique is its inability to be 

coupled to a mass spectrometer (MS) because the presence of the chiral selector in the running 

buffer has the tendency to foul the ionization source [16].  PEM coatings are constructed using a 

simple rinse procedure and the columns can be coupled with MS detectors (CE/MS) [6, 16]. 

Usually, PEM coated capillaries are stable and robust and can be used to separate various chiral 

analytes [16-19].    

  Cationic polymers used in PEM coatings may affect the resolution, selectivity and 

retention time of the analytes being studied.  The objective of the research demonstrated in this 

chapter is to investigate the effect of changing four different cationic polymers, poly-L-lysine, 

poly-L-ornithine, poly-L-lysine-serine, and poly-L-glutamic acid-lysine, on the separation of 

three chiral analytes.  The choice of coating polymers can influence selectivity, resolution and 

migration time. These optically pure cationic polymers are commercially available and exhibit 

different structural properties and hydrophobicities. The most hydrophobic cationic polymer is 

poly-L-glutamic acid-lysine and the least hydrophobic cationic polymer is poly-L-ornithine.  The 

anionic polymers used were poly (sodium N-undecanoyl-L-leucyl-alaninate) (poly-L-SULA), 

poly (sodium N-undecanoyl-L-leucyl-valinate) (poly-L-SULV).  The molecular micelles poly-L-

SULA and poly-L-SULV were used in the chiral studies since previous studies in our laboratory 

have shown that dipeptide surfactants resulted in better chiral separation than monopeptide 

surfactants when developing PEM coatings.  Also, poly-L-SULA has been shown to have great 

selectivity for the binaphthyl derivatives.  The effect of cationic polymer, applied voltage, 

temperature, concentration of anionic polymer and the number of bilayers on the separation and 

resolution of the chiral analytes is also investigated.  The test analytes were 1,1΄-bi-2-naphthyl-

2,2`-dihydrogen phosphate (BNP), (±)-1,1`-bi-2-naphthol (BOH), and labetalol.  
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2.2. Materials and Methods 

2.2.1 Chemicals 

 The cationic polymers poly-L-lysine hydrobromide, poly-L-ornithine hydrobromide, 

poly-L-glutamic acid-lysine hydrobromide and poly-L-lysine-serine hydrobromide were 

purchased from Sigma Chemical Company (St. Louis, MO), along with the enantiomerically 

pure chiral analytes (±)-1,1`-bi-2-naphthyl-2,2`-dihydrogen phosphate (BNP), (±)-1,1`-bi-2-

naphthol (BOH), and labetalol.  The molecular structures of the chiral analytes are illustrated in 

Figure 2.1.  The chemicals used to synthesize surfactant monomers, N-hydroxysuccinimide, 

undecylenic acid, dicyclohexylcarbodiimide and sodium bicarbonate, were purchased from Fluka 

(Milwaukee, WI).  The dipeptides (L,L)-leucyl-alaninate and (L,L)-leucyl-valinate were 

purchased from Bachem Bioscience, Inc. (King of Prussia, PA).  Sodium hydroxide, ethyl 

acetate, methanol, and tetrahydrofuran were purchased from Sigma-Aldrich (Milwaukee, WI).  

The compounds used in the background electrolyte, tris(hydroxymethyl)aminomethane (Tris), 

phosphoric acid, sodium phosphate dibasic and sodium borate, were purchased from Fisher 

Scientific (Fair Lawn, NJ).  All materials were used as received without any further purification. 

 

 

 

 
       (A)                                                 (B)                                                       (C) 
 
Figure 2.1 Molecular structures of the chiral analytes investigated: (A) BNP; (B) BOH 
                        (C) Labetalol 
 
2.2.2 Instrumentation 

 Separation of the chiral analytes was conducted on a Hewlett-Packard 3D CE instrument 

(model G1600AX) from Agilent (Palo Alto, CA), which uses the HP ChemStation software to 
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process and analyze the experimental data obtained.  The analytes were detected at 220 nm using 

a UV diode array detector. The temperature was varied from 15 °C to 35 °C, the applied voltage 

ranged from 15 kV to 30 kV and the analytes were injected by pressure at 30 mbar for 3 s. Fused 

silica capillary columns purchased from Polymicro Technologies (Phoenix, AZ), with a total 

capillary length of 58 cm (50 cm effective length) and a 50 µm internal diameter were used for 

all separations.  

2.2.3 Synthesis of Molecular Micelles 

 The chiral molecular micelles poly-L-SULA, and poly-L-SULV were synthesized 

according to the procedure outlined by Wang and Warner [20].  Briefly, undecylenic acid 

(UDC), dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) were combined 

with ethyl acetate in a round bottom flask.  The mixture was left to stir for 16 hours.  Then, the 

solution was filtered to remove the by-product, dicyclohexylurea and ethyl acetate was removed 

through rotary evaporation.  Hot isopropanol was used to recrystalize the solution and placed in 

the freezer overnight.  For purification, the slurry was washed with cold isopropanol and then 

dried for a two days using the lyophilizer.  For synthesis of the surfactant monomer, the NHS 

ester is added to a solution containing sodium bicarbonate, deionized water, THF and the 

respective dipeptide amino acid.  After removing THF with the rotary evaporator, dilute HCl was 

used to precipitate the surfactant monomer.  The sodium salt of the monomer was formed by 

reacting the monomer with an equal amount of sodium bicarbonate.  Irradiation of 100 mM 

solutions of the each surfactant monomer was achieved by using 60Co γ-ray source for seven 

days.  

2.2.4 Sample, Buffer, and Polymer Preparation 

 Stock solutions of the chiral analytes were prepared in a 50:50 methanol/ deionized water 

mixture.  The analyte concentration was held constant at 0.2 mg/mL.  The BGE used for chiral 
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separations consisted of 100 mM Tris and 10 mM sodium borate. A concentration of 0.1 M 

NaOH was used to adjust the pH of the buffer to 10.2.  Before use, the buffers were sonicated for 

15 minutes and filtered using a 0.45 µm polypropylene nylon filter.  The cationic polymers used 

varied in concentration from 0.02% to 0.1% (w/v) and the anionic surfactant ranged from 0.25% 

to 0.75% (w/v). 

2.2.5 PEM Coating Procedure 

 An untreated fused silica capillary was used for each PEM coating. All rinses were 

performed using the rinse function of the CE with applied pressure.  First, the capillary was 

deprotonated by flushing with 1 M NaOH for 30 minutes followed by a 15 minute deionized 

water rinse.  The first layer of the PEM coating was introduced to the capillary by flushing with 

the cationic polymer for 5 minutes followed by a 5 minute deionized water rinse. Then, the 

anionic polymer was flushed through the column for 5 minutes followed by a 5 minute deionized 

water rinse.  The rinses with the cationic and anionic polymers were repeated until the desired 

number of bilayers was accomplished.  The number of bilayers varied from 2 to 4 bilayers 

resulting in overall negative charge for the coating for the chiral analytes.  

2.3 Results and Discussion 

2.3.1 Comparison of the Separation of BNP in an Uncoated Capillary versus a PEM 
         Coated Capillary 
 
 PEM coatings play an instrumental role in the separation of chiral analytes. Previous 

studies have shown that the binaphthyl derivative, BNP was successfully resolved using a PEM 

system created by 4 bilayers of 0.02% poly-L-lysine and 0.25% poly-L-SULA [18].  Using these 

parameters as a starting point, studies were performed to investigate the chiral selectivity of 

poly-L-ornithine, which is less hydrophobic than poly-L-lysine and the results are shown in 

Figure 2.2.  BNP is an atropisomer since it has a chiral plane of symmetry instead of an 

asymmetric carbon.  BNP was injected into an unmodified silica capillary and, as expected, the 
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enantiomers were not resolved because there was no chiral selector present. However, when 

BNP was injected into a capillary coated with 4 bilayers consisting of 0.02% poly-L-ornithine 

and 0.5% poly-L-SULA, baseline separation was achieved because the chiral selectivity of the 

system was enhanced.  The migration time of BNP was longer in the PEM coated capillary 

because BNP, which is anionic under the experimental conditions, interacted with the 

hydrophobic core of the stationary phase. Similar results were obtained with other polymers 

(results are not shown).  To optimize the separation achieved, the effects of voltage and 

temperature were investigated along with the effect of changing the cationic polymer and anionic 

polymer.  

 

Figure 2.2 Comparison of the separation of BNP in an uncoated capillary versus a PEM  
  coated capillary: Conditions: Cationic polymer: 0.02% (w/v) poly-L-ornithine;  
  Anionic polymer: 0.5% (w/v) poly-L-SULA; Temperature: 15 °C; Voltage: 30  
  kV; Number of bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm  
  i.d.; Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in  
  MeOH:H2O (50:50); Detection: 220 nm 
 
2.3.2 Effect of Temperature on the Separation of Labetalol and BNP 

 In order to optimize separations, a PEM coating consisting of 4 bilayers was constructed 

to investigate the effect of temperature on the separation of the enantiomers of labetalol (Figure 

2.3) and BNP (Figure 2.4) by varying the temperature from 15 °C to 35 °C. As temperature 
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increased, migration time and resolution decreased for each analyte. Because of a decrease in 

velocity, as temperature decreased, the analytes migration times slowed and each enantiomer 

interacted longer with the stationary phase resulting in increased resolution. 

 

Figure 2.3 Effect of temperature on the separation of labetalol enantiomers: Conditions:  
  Cationic polymer: 0.02% (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v)  
  poly-L-SULA; Temperature: 15 °C, 25 °C, 35 °C; Voltage: 30 kV; Number of  
  bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100  
  mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL Labetalol in MeOH:H2O 
  (50:50); Detection: 220 nm 
 
 

 
 
Figure 2.4 Effect of temperature on the separation of BNP: Conditions: same as in Figure 2.3 
       

mA

-5 0
5

10 15 

-2.5 0
2.5 5
7.5 10 

min2 4 6 8 10 12 14 
0

5

10 15 

Rs = 1.5 

Rs = 1.17 

Rs = 0.77 

15 °C 

25 °C 

35 °C 

 mAU 

-5 0
5

10 15 20 

-5 0
5

10 

min5 10 15 20

0

5
10 15 20 

Rs = 1.73 

Rs = 1.53 

Rs = 1.17 

15 °C

25 °C

35 °C



 44

2.3.3 Effect of Voltage on the Separation of Labetalol and BNP 

 The effect of voltage on the separation of labetalol (Figure 2.5) and BNP (Figure 2.6) was 

investigated using a 4 bilayer PEM coated capillary to further optimize the separation of these 

analytes.  The voltage was varied from 15 kV to 30 kV, using a 100 mM tris/10 mM borate, pH 

10.2 running buffer.  As expected, an increase in voltage to 30 kV resulted in a reduction in 

migration time for both labetalol and BNP.  The resolution and peak efficiency were greater at 

higher voltages because the velocity of the analytes increased. At 15 kV, some peaked tailing 

was observed since the analyte interacted longer with the stationary phase causing some band 

broadening.  This is corrected by increasing the temperature or voltage.  As shown previously, 15 

˚C was the optimum temperature, therefore an increase in voltage made the migration time faster 

and decreased band broadening. The remaining separations used 30 kV as the optimum voltage.  

2.3.4 Effect of Anionic Polymer Type on the Separation of BNP 

 An important consideration in this study is the choice of the anionic polymer used in a 

PEM coating.  In this investigation, PEM coatings using 0.25% (w/v) poly- L-SULV or poly-L-

SULA were studied.  Poly-L-SULV is known as a versatile chiral selector and it has been used to 

separate a wide range of chiral compound classes.  However, poly-L-SULA has been shown to 

be highly selective for the binaphthyl derivatives.  In this study, a 4 bilayer coating consisting of 

0.02% (w/v) poly-L-ornithine as the cationic polymer with either 0.25% (w/v) poly-L-SULV or 

0.25% (w/v) poly-L-SULA as the anionic polymer for the separation of BNP.  Representative 

electropherograms are shown in Figure 2.7.  As seen in Figure 2.7, the migration time of BNP 

was faster using poly-L-SULV.  However, the resolution of the enantiomers of BNP improved 

when poly-L-SULA was used as the anionic polymer, and only partial separation was obtained 

using poly-L-SULV. Therefore, poly-L-SULA was selected as the anionic polymer for all other 

PEM investigations. 
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Figure 2.5 Effect of voltage on the separation of labetalol enantiomers: Conditions: Cationic  
  polymer: 0.02% (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v) poly-L- 
  SULA; Temperature: 15 °C; Voltage: 15 kV, 20 kV, 30 kV; Number of bilayers:  
  4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100 mM  
  Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL Labetalol in MeOH:H2O  
  (50:50); Detection: 220 nm 

 

 

Figure 2.6 Effect of voltage on the separation of BNP: Conditions: Cationic polymer:  
  0.02%  (w/v) poly-L-ornithine; Anionic polymer: 0.5% (w/v) poly-L-SULA;  
  Temperature: 15 °C; Voltage: 15 kV, 20 kV, 30 kV; Number of bilayers: 4;  
  Capillary: 57 cm (50 cm effective length) × 50 µm i.d.; Buffer: 100 mM   
  Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in MeOH:H2O   
  (50:50); Detection: 220 nm 
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Figure 2.7 Comparison of the effect of poly-L-SULV and poly-L-SULA on the separation of  
  BNP: Conditions: Cationic polymer: 0.02 % (w/v) poly-L-ornithine; Anionic  
  polymer: 0.5% (w/v), poly-L-SULV/SULA; Voltage: 30 kV; Temperature: 15 ˚C;  
  Number of bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d.;  
  Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL BNP in  
  MeOH: H2O (50:50); Detection: 220 nm     
 
2.3.5 Effect of Anionic Polymer Concentration on the Separation of BNP                      
 
 The effect of concentration of the anionic polymer, poly-L-SULA, was investigated to 

optimize separation efficiency.  Previous studies have shown that an increased number of 

bilayers increased resolution due to increased analyte-PEM coating interactions.  The results of 

the bilayer study are shown later, but 4 bilayers were expected to increase resolution for this 

particular study with BNP as the test analyte.  Increasing the anionic polymer concentration is 

also expected to increase the PEM coating thickness, therefore, increasing analyte-PEM 

interactions. Figure 2.8 illustrates the electropherograms obtained when the concentration of 

poly-L-SULA was varied from 0.25% to 0.75% (w/v).  The elution time of BNP was consistent 

for 0.25% and 0.5% (w/v) poly-L-SULA, and increased with 0.75% (w/v) poly-L-SULA.  The 

highest resolution (RS = 2.17) was observed when PEMs created using either 0.5% or 0.75% 

(w/v) poly-L-SULA.  It is advantageous to minimize the amounts of reagents used, therefore, 

0.5% poly-L-SULA was selected as the optimal concentration for the remaining studies. 
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Figure 2.8 Effect of the concentration of poly-L-SULA on the separation of BNP   
  enantiomers: Conditions: Cationic polymer: 0.02 % (w/v) poly-L-ornithine;  
  Anionic polymer: 0.25%, 0.5%, 0.75% (w/v) poly-L-SULA; Voltage: 30 kV;  
  Temperature: 15 ˚C; Number of bilayers: 4; Capillary: 57 cm (50 cm effective  
  length) × 50 µm i.d.; Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Analyte:  
  0.2 mg/mL BNP in MeOH: H2O (50:50); Detection: 220 nm   
 
2.3.6 Effect of the Number of Bilayers on the Separation of Labetalol  

 The effect of the number of bilayers on the resolution and analysis time of labetalol was 

investigated.  A bilayer in a PEM coating consists of one layer of a cationic polymer, in this case 

poly-L-ornithine, and one layer of an anionic polymer, poly-L-SULA.  The coating used for these 

investigations consisted of 2, 3 and 4 bilayers. Previous investigations by Dubas and Schlenoff 

showed that an increase in the number of bilayers results in an enhanced film thickness [22]. 

This theory is supported by the results obtained in the electropherograms shown in Figure 2.9,  

where, as the number of bilayers increased from 2 to 4, the resolution and selectivity of labetalol 

increased.  Also, the migration time increased as the bilayer number increased. 

2.3.7 Effect of Variation of the Cationic Polymer on the Resolution of BNP  

 Another important factor in the investigation of PEM coatings is the cationic polymer 

used.  Three cationic polymers were used in the separation of BNP: poly-L-lysine-serine, poly-L-
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ornithine, and poly-L-lysine.  While poly-L-lysine-serine, the most hydrophobic polymer, 

produced the shortest retention time, complete resolution of BNP enantiomers was achieved 

using poly-L-ornithine, the least hydrophobic polymer. Poly-L-glutamic acid-lysine was used as 

the cationic polymer to resolve BNP however, due to instability with the PEM coating, the 

separation was unsuccessful.  

 

Figure 2.9 Effect of the number of bilayers on the separation of Labetalol enantiomers:  
  Conditions:  Cationic polymers: 0.02% (w/v), poly-L-glutamic acid-lysine;  
  Anionic polymer: 0.5% (w/v) poly-L-SULA; Voltage: 30 kV; Temperature: 15  
  ˚C;  Buffer: 100 mM Tris/10 mM Borate; (pH 10.2); Capillary: 57 cm (50 cm  
  effective length) × 50 µm i.d.; Detection: 220 nm; Analyte: 0.2 mg/mL labetalol,  
  MeOH: H2O (50:50) 
 
2.3.8 Effect of Variation of the Cationic Polymer on the Resolution of BOH 

 BOH is partially anionic under these experimental conditions and more hydrophobic than 

BNP. The cationic polymer in the PEM coating was also varied in order to investigate its 

influence on the separation of BOH.  The electropherograms showing resolution and retention 

times are shown in Figure 2.11.  A close inspection of Figure 2.11 shows optimal separation of 

BOH enantiomers was obtained when poly-L-ornithine was used to generate the PEM coating. 

Changes in migration time and resolution as the cationic polymer was varied are consistent with 
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Figure 2.10 Effect of variation of the cationic polymer on the resolution of BNP enantiomers:  
  Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer: 0.5% (w/v), poly- 
  L-SULA; Temperature: 15 ˚C; Voltage: 30 kV; Number of bilayers: 4; Capillary:  
  57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100 mM Tris/10 mM Borate;  
  (pH 10.2); Analyte: 0.2 mg/mL BNP in MeOH: H2O (50:50); Detection: 220 nm                         
 

those observed in the separation of BNP.  The reduction in peak efficiency of BOH relative to 

BNP may be the result of the higher hydrophobicity of BOH.  Perhaps because of stronger 

interactions with BOH, the use of poly-L-glutamic acid-lysine, the most hydrophobic of the four 

cationic polymers, resulted in the slowest migration time.  This supposition is supported by the 

observation of increased peak tailing when poly-L-glutamic acid-lysine is used to create the PEM 

coating.  

2.3.9 Effect of Variation of the Cationic Polymer on the Resolution of Labetalol 
 
 Figure 2.12 are the electropherograms attained when the enantiomers of labetalol was 

separated to investigate the effect of varying the cationic polymer.  Contrary to separations of 

binaphthyl derivatives, enantiomers of labetalol were baseline resolved when poly-L-glutamic 

acid-lysine was used as the cationic polymer in the PEM coating.  However, it should be noted 

that the slight decrease in resolution achieved with the poly-L-ornithine coating was far 

outweighed by the reduction in analysis time and improvement in peak shape compared to poly-
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L-glutamic acid-lysine coatings.    Trends in labetalol migration time were similar to those 

observed for the binaphthyl derivatives as the cationic polymer was changed. 

 

 

 

 

 

 

 

Figure 2.11 Effect of variation of the cationic polymer on the resolution of BOH enantiomers:  
  Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer: 0.5% (w/v), poly- 
  L-SULA; Voltage: 30 kV; Temperature: 15 ˚C; Number of bilayers: 4; Capillary:  
  57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100 mM Tris/10 mM Borate;  
  (pH 10.2); Analyte: 0.2 mg/mL BOH in MeOH: H2O (50:50);  Detection: 220 nm  
 

2.3.10 Investigation of the Reproducibility of a PEM Coated Capillary 

 The reproducibility of a PEM coating plays an important role in the determination of the 

column performance and stability.  For all stability studies, the temperature and the voltage were 

maintained at 15 ˚C and 30 kV, respectively.  Stability and reproducibility studies performed 

using a capillary coated with 4 bilayers of 0.02% (w/v) poly-L-ornithine and 0.5% (w/v) poly-L-

SULA.  The electropherograms in Figure 2.13 show the first, fourth, and sixth run on the same 

capillary.  Table 1 demonstrates the excellent run-to-run reproducibility of the EOF.   In order to 

demonstrate superior coating stability, the same PEM coated column was used over a period of 

five days (350 runs) to separate labetalol.  Following each run the capillary was flushed with 100 

mM Tris/10 mM borate buffer, pH 10.2, for 1 minute and the running buffer was replaced after 

20 runs to maintain a stable current.   
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Figure 2.12 Effect of variation of the cationic polymer on the resolution of labetalol   
  enantiomers: Conditions: Cationic polymer: 0.02% (w/v); Anionic polymer:  
  0.5% (w/v) poly-L-SULA; Temperature: 15 ˚C; Voltage: 30 kV; Number of  
  bilayers: 4; Capillary: 57 cm (50 cm effective length) × 50 µm i.d; Buffer: 100  
  mM Tris/10 mM Borate; (pH 10.2); Analyte: 0.2 mg/mL, MeOH: H2O (50:50);  
  Detection: 220 nm    
 
The column was able to endure over 350 runs with a %RSD of the EOF of 0.63%. 

 The determine column-to-column reproducibility, the separation of labetalol was 

performed on five different columns using the same type of PEM coating.  Five consecutive runs 

were used to obtain the %RSD for each of the five columns investigated.  Table 2 shows the 

%RSD values of the EOF for the five columns investigated to be 0.91%.  

2.4 Concluding Remarks  

 In this study, novel PEM coatings were constructed using four different cationic 

polymers: poly-L-ornithine, poly-L-lysine, poly-L-lysine-serine and poly-L-glutamic acid-lysine. 

0.5% poly-L-SULA was chosen as the optimal concentration and molecular micelles to be used 

as the anionic polymer in the PEM coatings studied.  As previously stated, it was shown that the 

resolution of labetalol increased with increasing number of bilayers.  Poly-L-ornithine gave the 

best resolution for both BNP and BOH when compared to the other cationic polymers while 

poly-L-glutamic acid-lysine showed the best resolution of labetalol.  The PEM coated column 
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endured over 350 runs and the %RSD of the run-to-run reproducibility of the EOF was 0.63% 

with 4 bilayers.  The %RSD of the column-to-column reproducibility of the EOF was 0.91% 

with 4 bilayers.  In the future, the effect of the concentration of the cationic polymers will be 

investigated and also the separation of more chiral analytes will be explored 

                  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13 Investigation of the run-to-run reproducibility of a PEM coated capillary:   
  Conditions: Total number of runs: 350; Cationic polymer: 0.02% (w/v) poly-L- 
  ornithine; Anionic polymer: 0.5% (w/v) poly-L-SULA; Number of bilayers: 4;  
  Temperature: 15 °C; Voltage: 30 kV; Capillary: 57 cm (50 cm effective length) ×  
  50 µm i. d.; Buffer: 100 mM Tris/10 mM Borate (pH 10.2); Analyte: 0.2 mg/ml  
  Labetalol MeOH: H2O (50:50); Detection: 220 nm 
 

Table 2.1 Run-to-Run Reproducibility: Conditions: Same as in Figure 2.13 
Number of Columns 1 
Column Endurance 

(total number of runs) 
> 350 

Consecutive Runs 5 
%RSD of EOF 0.63 

 
 
Table 2.2 Column-to-Column Reproducibility: Conditions: Same as Figure 2.13 

Number of Columns 5 
Consecutive Runs 5 

%RSD of EOF 0.91 
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CHAPTER 3 
 

BASIC PROTEIN SEPARATIONS USING PEM COATINGS WITH MOLECULAR 
MICELLES IN OPEN TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY* 

 
 
3.1 Introduction 
 
 It is well established that the separation of relatively large basic molecules, such as 

proteins and peptides, are problematic when using capillary zone electrophoresis (CZE) [1-4].  

Proteins are generally difficult to separate in capillary electrophoresis (CE) because of structural 

similarities, chemical properties, and adsorption to the negatively charged walls of the capillary 

under conditions where the proteins are cationic.  Thus, protein adsorption due to electrostatic 

interactions and/or hydrogen bonding, may cause several problems such as peak tailing, unstable 

baselines, poor run-to-run reproducibility, low peak efficiencies, and low sample recovery [5, 6].     

 Capillary electrochromatography (CEC) has been employed to overcome the above cited 

problems through prevention of sample adsorption as well as providing other beneficial 

interactions [5, 6, 23, 30].  CEC is a versatile combination of CE and high performance liquid 

chromatography (HPLC) that has attracted the interest of separation scientists in recent years.  

This is likely because the CEC method successfully combines the selectivity of HPLC and the 

efficiency of CE, allowing the separation of charged, as well as neutral analytes [7, 8].  In 

general, separation of charged analytes using CEC is based on combined differences in 

electrophoretic mobility and partitioning into the stationary phase.  In contrast, neutral analytes 

are separated solely through interactions with the stationary phase coating on the capillary wall 

[8].  For protein separations using CEC, the stationary phase has three main functions.  It is used 

to coat the silanol groups at the capillary wall, hence, minimizing protein adsorption on the 

negatively charged walls.  Secondly, the stationary phase can control or modify the EOF. 

*Reprinted by permission of Electrophoresis 
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Finally, the stationary phase provides a medium for protein interactions. 

 Stationary phases for open tubular capillary electrochromatography (OT-CEC), one form 

of CEC, have been prepared using several different approaches.  These include covalent bonding 

and/or crosslinking [10], formation of porous silica layers [11], chemical bonding after etching 

[12], sol gel [13] and adsorption [9].  In the case of adsorption, the stationary phase can either be 

dynamically or physically adsorbed to the capillary wall in order to effectively shield the 

negatively charged silanol groups with a layer of the coating material [9, 14].  In a dynamically 

coated capillary, the adsorption of the coating material to the capillary wall is relatively weak, 

and thus the coating material is placed in the running buffer to ensure the stability of the coating.  

In contrast, if the adsorption of the coating material is strong, i.e. it is strongly physically 

adsorbed to the wall, then the addition of the coating material to the running buffer is not 

necessary [9, 14].  One of the most stable coatings, obtained by a physical adsorption process, is 

a polyelectrolyte multilayer (PEM) coating, particularly when a molecular micelle is used as the 

anionic phase [7, 15, 17].   

PEM coatings are constructed by use of several electrostatic interactions involving ion 

exchange, often resulting in extremely stable coatings [15-20].  A PEM coating is formed by 

alternately rinsing the anionic inner wall of a silica capillary, first with cationic polymers 

followed by anionic polymers.  The combination of one cationic layer and one anionic layer is 

referred to as a bilayer [15, 19, 21, 22].  PEM coatings offer several advantages over other 

stationary phases because a wide range of coating polymers of different structural and chemical 

properties can be used [23].  These polymers include those that are commercially available or 

polymers that are synthesized in research laboratories, e.g. our molecular micelles [24-33].  

Polymers used in PEM coatings may affect the resolution, selectivity and retention time of the 

analytes because the interactions between the PEM coating and analyte may vary.  Furthermore, 
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several studies have also proven that PEM coatings are robust and stable over a wide pH range 

[14, 16, 18, 20]. 

 Protein separations are achieved by suppressing protein adsorption to the capillary wall 

due to electrostatic repulsion of like charges between proteins and polymers as well as protein 

interactions with the stationary phase.  The interactions between proteins and PEM coatings have 

become an area of growing interest, especially in bio-analytical chemistry.  Proteins have been 

successfully separated using PEM coated columns and the mechanisms of separation are based 

on differences in protein-PEM interactions [34].  The overall charge of the last layer of PEM 

coatings and the net charge of proteins play an important role in protein adsorption and 

interaction with PEM coatings.  Salloum and Schlenoff [34] have investigated protein adsorption 

onto PEM coatings as well as the influence of surface charge, ionic strength, and thickness of the 

PEM coating on protein-PEM interactions.  Results from that study showed that the last layer of 

PEM coatings determines how proteins adsorb and interact with the coating.  Furthermore, the 

net surface charge of PEM coatings can be tailored so as to allow or retard protein adsorption.  

Protein adsorption on oppositely-charged surfaces is due to electrostatic interactions, whereas 

adsorption on like-charged surfaces can be attributed to non-electrostatic interactions [34].  In 

addition, Salloum and Schlenoff [34] have also demonstrated that proteins can be adsorbed and 

interact within the multilayers of PEM coatings if proteins and PEM coatings are of opposite 

charge.  However, when proteins are of the same charge as PEM coatings, interactions occur at 

the surface layer regardless of PEM coating thickness [34]. 

 Several studies involving the separations of cationic proteins using a positively charged 

wall coating have been previously performed [5, 6, 23, 34, 35]. Wang and Dubin [23] have 

investigated the influence of an immobilized adsorbed coating using 

poly(dimethyldiallyammonium chloride) (PDADMAC) as the coating polymer for the separation 
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of cationic proteins.  Results indicated that high molecular weight polymers at high ionic 

strengths provided optimal coating conditions.  In addition, the authors reported that the coating 

polymer formed loops and tails which were important for the reversal of the EOF and provided a 

stationary phase for protein interactions as well as increased the stability and efficiency of the 

coated column [23].  Graul and Schlenoff [5] have used PDADMAC and poly (styrene sulfonate) 

(PSS) as polyelectrolytes in PEM coatings for the separation of four basic proteins.  Also, the 

authors investigated the influence of the number of bilayers on protein resolution and reported 

that the use of 6.5 bilayers improved protein resolution [5].      

 The optimization of separation parameters to achieve high resolution separations in a 

reasonable analysis time continues to be an active area of research [36-38].  Examples of such 

parameters include the choice and concentration of the cationic and anionic polymer, as well as 

the applied voltage, temperature, background electrolyte pH, and the number of bilayers in the 

PEM coating.  The conventional approach to optimizing a PEM coating can be a tedious process 

since only one parameter is usually varied at a time.  In recent studies, experimental design and 

multivariate analysis have been widely used to simultaneously optimize separation parameters, 

leading to higher resolution in relatively short analysis times [26, 39-44].  We have previously 

reported the use of experimental design and multivariate analysis for the optimization of 

separation parameters to predict the migration time, resolution, and resolution per unit time of 

several chiral and achiral analytes using micellar electrokinetic chromatography [26].  We also 

previously used experimental design to optimize the separation conditions of two different 

stationary phases for the separation of four basic peptides in OT-CEC [39].  Yang et al. [44] have 

used experimental design, specifically central composite design, in CEC to simultaneously 

optimize the separation parameters of 11 nucleosides and nucleobases in Cordyceps sinensis, a 

traditional Chinese medicine.  
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 In the study reported in this chapter, a Box Behnken experimental design is used to 

optimize separation parameters using four different chiral cationic polymers and the anionic 

molecular micelle, poly-L-SULA for PEM coatings in the OT-CEC separation of four basic 

proteins: α-chymotrypsinogen, lysozyme, ribonuclease A and cytochrome c.  The cationic 

polymers investigated were poly-L-glutamic acid-lysine, poly-L-lysine-serine, poly-L-lysine, and 

poly-L-ornithine.  The anionic polymers were the chiral molecular micelles sodium poly(N-

undecanoyl-L-leucyl-alaninate) (poly-L-SULA), sodium poly(N-undecanoyl-L-leucyl-valinate) 

(poly-L-SULV) as well as the achiral molecular micelle sodium poly(undecylenic sulfate) (poly-

SUS).  The effects of the type and concentration of polymers, applied voltage, temperature, 

background electrolyte pH, as well as the number of bilayers on the resolution of the four basic 

proteins were investigated.  In addition, the influence of added NaCl to the PEM coatings and the 

effect of PEM coating thickness on the reproducibility of protein separations were investigated.   

3.2 Materials and Methods 

3.2.1 Materials 

 The cationic polymers, poly-L-glutamic acid-lysine hydrobromide, poly-L-lysine-serine 

hydrobromide, poly-L-lysine hydrobromide, and poly-L-ornithine hydrobromide, as well as the 

proteins, α-chymotrypsinogen A (type II from bovine pancreas), lysozyme (from chicken egg 

white), ribonuclease A (from bovine pancreas), and cytochrome c (from bovine pancreas) were 

purchased from Sigma Chemical Company (St. Louis, MO).  The chemicals used to synthesize 

surfactant monomers N-hydroxysuccinimide, undecylenic acid, chlorosulfonic acid, 

dicyclohexylcarbodiimide, and sodium bicarbonate were purchased from Fluka (Milwaukee, 

WI).  The dipeptides (L,L)-leucyl-alaninate and (L,L)-leucyl-valinate were purchased from 

Bachem Bioscience, Inc. (King of Prussia, PA). Sodium hydroxide, ethyl acetate, and 

tetrahydrofuran were purchased from Sigma-Aldrich (Milwaukee, WI).  The background 
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electrolyte, sodium phosphate dibasic, methanol, and acetone were purchased from Fisher 

Scientific (Fair Lawn, NJ).  All materials were used as received. 

3.2.2 Instrumentation 
 
 The protein separations were conducted using a Beckman P/ACE MDQ capillary 

electrophoresis system, equipped with a photodiode array detector (Fullerton, CA).  A fused 

silica capillary, with an internal diameter of 50µm was purchased from Polymicro Technologies 

(Phoenix, AZ). The total length of the capillaries used in this study was 37cm (30cm effective 

length).  The temperatures used in this study were varied from 15°C to 35°C using a liquid 

coolant.  The applied voltage ranged from 15kV to 30kV.  The analytes were detected at 214 nm 

and the samples were injected using 5kV for 5s.  

3.2.3 Syntheses of Molecular Micelles 

 The chiral molecular micelles poly-L-SULA and poly-L-SULV used in the PEM coating 

were synthesized according to a procedure previously described by Wang and Warner [27] and 

in chapter 2.  The achiral molecular micelle, sodium poly(undecylenic sulfate), (poly-SUS) was 

synthesized according to the procedure previously reported by Shamsi et al [45].  Briefly, in a 

round bottom flask, chlorosulfonic acid, undecenyl alcohol and pyridine were combined and 

refluxed for 3 hours.  Then, a solution of sodium hydroxide and sodium carbonate in deionized 

water was added to the flask and stirred for 16 hours.  To isolate the SUS monomer, n-butanol 

and pyridine were evaporated using the rotary evaporator and dessicator.  Hot isopropanol was 

then added to the resulting solution followed by overnight refrigeration.  The following day, 

purification was completed with a cold isopropanol rinse and the sample was then dried on the 

lyophilizer.  Polymerization of the monomers at a concentration of 100mM was achieved using a 

60Co γ-ray irradiation source.  Representations of the chemical structures of the molecular 

micelles as well as the chiral cationic polymers used in this study are presented in Figure 3.1. 
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Figure 3.1 Representative molecular structures of polymers used in PEM coatings: A:  
  Anionic polymer: (I) Poly-L-SULV; (II) Poly-L-SULA; (III) Poly-SUS (*   
  indicates the chiral center) B: Cationic Polymers: (I) Poly-L-lysine    
  hydrobromide; (II) Poly-L-ornithine hydrobromide; (III) Poly-L-glutamic acid- 
  lysine hydrobromide; (IV) Poly-L-lysine-serine hydrobromide 
 

3.2.4 Sample and Buffer Preparation 

 The pH of the background electrolyte (20mM phosphate buffer) was adjusted using 1M 

HCl.  The buffer was filtered using a 0.45µm polypropylene nylon filter and sonicated for 15 

minutes before use.  Protein stock solutions were prepared in 20mM phosphate buffer at pH 3, 4, 

and 5.  All protein analyte concentration were set at 0.5mg/mL.  The cationic polymers, poly-L-

glutamic acid-lysine hydrobromide, poly-L-lysine-serine hydrobromide, poly-L-lysine 

hydrobromide, and poly-L-ornithine hydrobromide (Figure 3.1) varied in concentration from 

0.01% to 0.03% (w/v) in deionized water.  The concentrations of the anionic molecular micelles, 
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poly-L-SULA, poly-L-SULV, and poly SUS were held constant at 0.5% (w/v) in deionized water 

for studies. 

3.2.5 Polyelectrolyte Multilayer Coating Procedure 

 A fused silica capillary was deprotonated by flushing the capillary with 1M NaOH for 30 

minutes followed by a 15 minute deionized water rinse.  The first layer of the PEM coating was 

obtained by rinsing the capillary with the cationic polymer for 10 minutes, followed by a 5 

minute deionized water rinse.  Then, the anionic polymer was rinsed through the column for 5 

minutes, followed by a 5 minute deionized water rinse. Unless otherwise noted, alternate 5 

minute rinses with the cationic and anionic polymers were repeated to obtain the desired number 

of bilayers.  The number of bilayers were varied from 1.5 to 3.5, and the outermost layer of the 

PEM coating was maintained to achieve a positive charge.  All rinses were performed using the 

rinse function of the CE instrument, with applied pressure of 20psi.  All experiments run with 

PEM coated capillaries were completed in reverse polarity. 

3.2.6 Experimental Design Procedure and Data Analysis 

 In general, the usual goal of a separation is to achieve baseline resolution (Rs1 = 1.5) with 

minimum analysis time.  Traditionally, routine optimization of separation parameters in 

chromatography involves a variation of one parameter at a time with numerous trials, which may 

only result in local optimum conditions.  In contrast, the use of experimental design enables the 

determination of global optimum separation conditions, since all the parameters are 

simultaneously optimized.  Separation parameters such as the cationic polymer, cationic polymer 

concentration, number of bilayers, temperature, applied voltage, and background electrolyte pH 

may significantly influence the resolution and migration time of analytes in OT-CEC.  In this 

study, a Box Behnken experimental design was used to simultaneously optimize these 

parameters (design variables) for protein separations.  Box Benken experimental design was 
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selected as the design technique, since it requires relatively few experiments for optimization.  

This approach was used to study the design variables at three levels (low, medium, and high), 

allowing investigation of the primary and interactive effects on protein resolution (response).  

The design variables and the levels used for this optimization are shown in Table 3.1.   

Table 3.1 Design variables used in box behnken design 
 

 

 

 

 

 

 

 
 A total of 43 experiments were conducted for each polymer under a variety of 

experimental conditions.  The experimental design and data analysis were performed using The 

Unscrambler (CAMO, Corvallis, OR, version 9.1) chemometric software.  Reproducibility 

studies were performed for each cationic polymer and the experiments were completed in 

triplicate under optimum separation conditions. 

3.3 Results and Discussion 

3.3.1 Separation of Four Basic Proteins Using a PEM Coated Capillary 

 The primary aims of this study were to minimize the adsorption of proteins onto the 

capillary wall during the separation process by using a PEM coated capillary, and secondly to 

influence protein separations by providing a stationary phase for protein interactions.  In figure 

3.2, the separation of proteins in an uncoated capillary performed in reverse polarity resulted in 

poor reproducibility, poor peak efficiency, and peak tailing.   As the protein injection number 

increased, the quality of the protein separations decreased.  Figure 3.3 illustrates the advantage of 
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using PEM coated columns in the separation of basic proteins (α-chymotrypsinogen A, 

ribonuclease A, lysozyme, and cytochrome c) as compared with an uncoated capillary column.   

 

Figure 3.2 Protein separations in an uncoated capillary: Conditions: Bare Capillary   
  (reverse polarity);  Analytes: 1. α-chymotrypsinogen A; 2. ribonuclease A; 3.  
  lysozyme; 4. cytochrome c; Temperature: 15 ºC; Voltage: 15 kV.  Buffer: 20 mM  
  phosphate, pH 4 
 
In contrast to an uncoated column (Figure 3.3A), better resolution, higher peak efficiency, and 

greater reproducibility were obtained when PEM coated capillaries were used for protein 

separations.  Figure 3.3B shows the results obtained when one layer of 0.03% (w/v) poly-L-

ornithine was used to coat the capillary wall.  This 0.5 bilayer coating provided a reversal of 

EOF since the overall charge on the capillary wall was positive.  Separation of α-

chymotrypsinogen A and ribonuclease A (peaks 1 and 2) improved as compared to the uncoated 

capillary.  However, lysozyme and cytochrome c (peaks 3 and 4) were only partially separated.  

There was in fact an increase in the retention time of the protein mixture corresponding to 

decreased electroosmotic mobility.  Good run to run reproducibility was attained using 0.5 

bilayer coated column.  The addition of the molecular micelle, poly-L-SULA in Figure 3.3C 

produced increased resolution of peaks 3 and 4 (lysozyme and cytochrome c) as compared to 0.5 

bilayers (no molecular micelle) in Figure 3B.  Figure 3.3C and 3.3D illustrates protein 

separations using 1.5 and 2.5 bilayers respectively, obtained with 0.03% (w/v) poly-L-ornithine 

as the cationic polymer and 0.5% (w/v) poly-L-SULA as the anionic polymer.  Increasing 
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resolution between peaks 3 and 4 as the number of bilayers increased (Figure 3.3B-3.3D) results 

from increased interaction of peak 4 (cytochrome c) with the stationary phase. 

 The separation of these four proteins in OT-CEC was further optimized using a Box 

Behnken design with four different PEM coatings in which the cationic polymer was varied and 

the anionic polymer, poly-L-SULA, was held constant.  The resolution results for various 

separation conditions with the four cationic polymers are shown in Figure 3.4 (Tables of 

resolution values of each cationic polymer are reported in Tables 3.2 - 3.5).   

Resolution (Rs) values were calculated for each experiment using the equation:  

    Rs = [2(t2 – t1)/(w1 + w2)]                                                              (1) 

where, t1 and t2 are the elution times of the first and second peak, and w1 and w2 are the baseline 

widths of each peak.  Three resolution values were calculated for each experimental run.  The 

resolution between peaks 1 and 2 was termed Rs1, peaks 2 and 3, Rs2, and peaks 3 and 4, Rs3 

respectively.  All investigated cationic polymers successfully resolved all four proteins. 

However, the use of poly-L-glutamic acid-lysine (Figure 3.4A) generally resulted in higher 

resolution for the four proteins.  Poly-L-lysine-serine (Figure 3.4B) and poly-L-ornithine (Figure 

3.4D) have similar protein resolution capabilities, while the lowest protein resolution was 

obtained when poly-L-lysine was used as the cationic polymer for the PEM coating (Figure 

3.4C). 

 Response surface plots for the influence of temperature and voltage on protein resolution 

using poly-L-glutamic acid-lysine as the cationic polymer and poly-L-SULA as the anionic 

polymer in the PEM coating were generated and the results are shown in Figure 3.5.  In general, 

increasing the temperature resulted in faster migration times due to an increase in the 

electroosmotic mobility.   
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Figure 3.3 Separation of basic proteins using an uncoated capillary and PEM coated   
  capillaries: Conditions: Coating: (A): uncoated capillary (normal polarity) (B):  
  0.5 bilayers (reverse polarity); (C): 1.5 bilayers (reverse polarity); (D) 2.5 bilayers 
  (reverse polarity); Cationic Polymer: 0.03% (w/v) poly-L- ornithine; Anionic  
  Polymer: 0.5% (w/v) poly-L-SULA;  Analytes: 1.α-chymotrypsinogen A; 2.  
  ribonuclease A; 3. lysozyme; 4 .cytochrome c; Buffer: 20 mM phosphate, pH 4;  
  Analyte concentration: 0.5 mg/ml; Capillary length: 37 cm total (30 cm effective  
  length); Capillary i.d.: 50 µm; Temperature: 15 ºC; Voltage: 15 kV;  Injection: 5  
  kV for 5 s;  Detection: 214 nm 
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Figure 3.4 Resolution values obtained for various cationic polymer used in PEM coatings:  
  Conditions:  Cationic Polymer: (A) poly-L-glutamic acid-lysine; (B) poly-L- 
  lysine-serine; (C) poly-L-lysine; (D) poly-L-ornithine; Anionic Polymer: 0.5%  
  (w/v) poly-L-SULA; Analytes: 1. α- chymotrypsinogen A;  2. ribonuclease A; 3.  
  lysozyme; 4. cytochrome c. All other conditions same as in Figure 3.3. [Rs1  
  indicates the resolution between peaks 1 and 2; Rs2 indicates the resolution  
  between peaks 2 and 3, and Rs3 indicates the resolution between peaks 3 and 4] 
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Table 3.2 Experimental parameters and resolution values for poly-L-glutamic acid-lysine as  
  the cationic polymer in the PEM coating 
 
No. Temp Volt Bilayers [Polymer] pH EOF MT1 MT2 MT3 MT4 Rs1 Rs2 Rs3 

 (˚C) (kV)  (%w/v)          
1 15 15 2.5 0.02 4 5.45 9.93 11.42 17.21 19.75 7.42 20.92 7.83 
2 35 15 2.5 0.02 4 4.10 7.43 8.55 13.26 16.45 3.75 11.58 5.68 
3 15 30 2.5 0.02 4 2.59 4.50 5.13 7.99 8.52 5.69 18.54 2.90 
4 35 30 2.5 0.02 4 1.87 3.71 5.65 0.00 0.00 9.29 0.00 0.00 
5 15 20 1.5 0.02 4 4.53 8.22 9.51 16.62 17.18 3.53 12.04 0.86 
6 35 20 1.5 0.02 4 3.28 6.41 7.26 10.36 12.00 1.71 6.33 2.83 
7 15 20 3.5 0.02 4 4.57 8.16 9.18 13.79 16.39 1.52 4.09 1.71 
8 35 20 3.5 0.02 4 3.35 7.14 8.29 0.00 0.00 1.65 0.00 0.00 
9 15 20 2.5 0.02 3 3.68 7.86 9.08 12.37 0.00 5.95 6.96 0.00 

10 35 20 2.5 0.02 3 2.49 5.85 6.67 9.34 0.00 5.07 10.33 0.00 
11 15 20 2.5 0.02 5 4.37 7.00 7.89 12.20 12.86 6.78 21.68 3.62 
12 35 20 2.5 0.02 5 3.38 4.96 5.55 8.28 0.00 4.58 13.36 0.00 
13 15 20 2.5 0.01 4 4.34 7.67 8.66 12.83 15.43 1.81 5.06 3.04 
14 35 20 2.5 0.01 4 3.38 6.94 7.89 0.00 0.00 1.31 0.00 0.00 
15 15 20 2.5 0.03 4 4.34 7.72 8.84 13.99 14.78 3.86 14.41 1.89 
16 35 20 2.5 0.03 4 3.15 5.91 6.90 11.03 14.37 2.73 7.27 5.03 
17 25 15 1.5 0.02 4 4.37 7.93 9.21 15.14 18.30 2.33 9.03 3.09 
18 25 30 1.5 0.02 4 1.97 3.71 5.88 6.74 0.00 4.11 1.44 0.00 
19 25 15 3.5 0.02 4 5.29 10.59 12.07 18.73 24.09 1.56 5.20 3.14 
20 25 30 3.5 0.02 4 2.41 5.13 9.69 0.00 0.00 8.24 0.00 0.00 
21 25 15 2.5 0.02 3 4.04 9.11 10.49 14.51 0.00 5.21 11.78 0.00 
22 25 30 2.5 0.02 3 1.83 4.04 4.66 6.38 0.00 4.07 7.17 0.00 
23 25 15 2.5 0.02 5 4.89 7.52 8.42 13.58 15.46 3.62 14.55 3.43 
24 25 30 2.5 0.02 5 2.13 3.32 3.77 6.17 6.40 2.81 12.07 0.88 
25 25 15 2.5 0.01 4 5.12 9.86 11.25 0.00 0.00 1.84 0.00 0.00 
26 25 30 2.5 0.01 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
27 25 15 2.5 0.03 4 4.57 8.09 9.28 14.18 16.02 7.32 14.95 5.00 
28 25 30 2.5 0.03 4 2.22 4.44 7.02 8.25 0.00 7.55 2.55 0.00 
29 25 20 1.5 0.02 3 3.02 6.77 7.82 10.19 0.00 5.76 9.91 0.00 
30 25 20 3.5 0.02 3 2.95 6.64 7.63 10.49 0.00 4.62 10.96 0.00 
31 25 20 1.5 0.02 5 3.87 6.10 7.03 12.21 13.56 3.41 10.12 2.06 
32 25 20 3.5 0.02 5 4.14 6.21 6.94 10.86 17.90 3.93 13.79 12.92 
33 25 20 1.5 0.01 4 3.44 5.96 6.86 11.10 12.04 6.59 12.43 3.55 
34 25 20 3.5 0.01 4 4.07 8.32 9.54 0.00 0.00 1.40 0.00 0.00 
35 25 20 1.5 0.03 4 2.96 4.75 5.28 7.13 7.30 4.65 13.35 1.16 
36 25 20 3.5 0.03 4 3.64 6.48 7.33 11.02 12.77 2.00 7.21 2.33 
37 25 20 2.5 0.01 3 3.02 6.64 7.66 10.49 0.00 5.52 12.47 0.00 
38 25 20 2.5 0.01 5 4.00 6.44 7.43 13.26 15.73 3.07 8.88 2.75 
39 25 20 2.5 0.03 3 3.11 6.84 7.88 10.87 0.00 7.03 13.83 0.00 
40 25 20 2.5 0.03 5 3.93 6.18 7.03 12.67 15.08 3.17 5.30 1.30 
41 25 20 2.5 0.02 4 3.33 6.13 6.87 10.11 11.32 5.56 11.87 3.59 
42 25 20 2.5 0.02 4 3.30 5.82 6.67 10.13 11.48 3.99 9.32 3.94 
43 25 20 2.5 0.02 4 3.41 5.85 6.70 10.13 11.68 3.84 11.16 4.13 
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Table 3.3 Experimental parameters and resolution values for poly-L-lysine-serine as the  
  cationic polymer in the PEM coating  
 
No. Temp Volt Bilayers [Polymer] pH EOF MT1 MT2 MT3 MT4 Rs1 Rs2 Rs3 
 (˚C) (kV)  (%w/v)          

1 15 15 2.5 0.02 4 4.59 7.58 8.49 11.34 12.49 5.21 11.34 5.11 
2 35 15 2.5 0.02 4 5.62 12.24 14.68 27.58 0.00 2.21 7.21 0.00 
3 15 30 2.5 0.02 4 2.05 3.09 3.40 4.44 4.60 3.83 10.87 1.42 
4 35 30 2.5 0.02 4 3.03 3.86 6.55 0.00 0.00 9.84 0.00 0.00 
5 15 20 1.5 0.02 4 3.08 4.41 4.75 5.97 6.15 3.52 10.27 1.58 
6 35 20 1.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 15 20 3.5 0.02 4 5.15 8.62 8.96 9.43 10.46 0.83 0.72 3.02 
8 35 20 3.5 0.02 4 3.70 12.64 15.27 0.00 0.00 1.36 0.00 0.00 
9 15 20 2.5 0.02 3 3.97 9.44 11.05 16.42 0.00 7.43 15.74 0.00 

10 35 20 2.5 0.02 3 2.15 5.08 5.69 7.17 0.00 3.15 6.21 0.00 
11 15 20 2.5 0.02 5 4.74 7.06 7.89 10.42 13.23 1.98 1.69 1.27 
12 35 20 2.5 0.02 5 4.11 5.71 6.04 13.60 0.00 0.59 7.04 0.00 
13 15 20 2.5 0.01 4 3.37 5.11 5.61 7.81 7.98 4.97 9.33 0.61 
14 35 20 2.5 0.01 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15 15 20 2.5 0.03 4 3.22 4.36 5.27 6.90 7.01 9.19 12.41 0.93 
16 35 20 2.5 0.03 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
17 25 15 1.5 0.02 4 3.89 6.18 6.84 9.91 10.17 2.70 8.16 0.62 
18 25 30 1.5 0.02 4 1.83 2.77 3.08 4.43 0.00 2.26 7.82 0.00 
19 25 15 3.5 0.02 4 4.76 8.19 9.51 17.51 0.00 1.38 6.26 0.00 
20 25 30 3.5 0.02 4 2.23 4.65 0.00 0.00 0.00 0.00 0.00 0.00 
21 25 15 2.5 0.02 3 4.73 14.48 18.47 0.00 0.00 6.69 0.00 0.00 
22 25 30 2.5 0.02 3 1.96 4.93 5.94 9.54 0.00 4.10 11.26 0.00 
23 25 15 2.5 0.02 5 5.88 9.08 10.20 14.46 18.65 1.97 3.20 2.07 
24 25 30 2.5 0.02 5 2.43 3.64 5.36 8.29 0.00 3.06 1.60 0.00 
25 25 15 2.5 0.01 4 8.13 11.97 13.47 15.20 0.00 0.89 0.78 0.00 
26 25 30 2.5 0.01 4 1.86 3.40 4.87 0.00 0.00 6.00 0.00 0.00 
27 25 15 2.5 0.03 4 3.81 6.15 6.83 9.36 9.64 4.89 13.52 1.38 
28 25 30 2.5 0.03 4 1.83 2.79 3.08 4.15 0.00 3.80 13.70 0.00 
29 25 20 1.5 0.02 3 2.98 6.40 7.52 10.59 0.00 6.39 12.52 0.00 
30 25 20 3.5 0.02 3 2.93 6.50 7.48 10.36 0.00 5.55 11.46 0.00 
31 25 20 1.5 0.02 5 2.14 6.33 7.56 11.24 0.00 1.82 5.77 0.00 
32 25 20 3.5 0.02 5 2.89 3.83 4.10 5.15 6.21 1.98 7.13 6.79 
33 25 20 1.5 0.01 4 2.78 4.18 4.60 6.10 6.19 4.88 17.61 0.68 
34 25 20 3.5 0.01 4 3.04 5.66 6.60 0.00 0.00 1.56 0.00 0.00 
35 25 20 1.5 0.03 4 3.06 5.04 5.55 7.41 0.00 2.34 3.32 0.00 
36 25 20 3.5 0.03 4 3.35 6.00 6.51 10.15 0.00 0.60 3.66 0.00 
37 25 20 2.5 0.01 3 3.15 7.12 8.24 11.91 0.00 7.04 11.96 0.00 
38 25 20 2.5 0.01 5 6.33 11.10 13.10 0.00 0.00 0.65 0.00 0.00 
39 25 20 2.5 0.03 3 3.21 7.29 8.51 12.23 0.00 4.56 9.70 0.00 
40 25 20 2.5 0.03 5 5.25 9.07 10.48 12.79 0.00 0.77 0.93 0.00 
41 25 20 2.5 0.02 4 3.58 9.31 12.17 0.00 0.00 3.20 0.00 0.00 
42 25 20 2.5 0.02 4 3.84 8.72 10.53 0.00 0.00 2.21 0.00 0.00 
43 25 20 2.5 0.02 4 3.65 8.75 10.49 0.00 0.00 3.20 0.00 0.00 
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Table 3.4 Experimental parameters and resolution values for poly-L-lysine as the cationic  
  polymer in the PEM coating  

 
No. Temp Volt Bilayers [Polymer] pH EOF MT1 MT2 MT3 MT4 Rs1 Rs2 Rs3 

 (˚C) (kV)  (%w/v)          
1 15 15 2.5 0.02 4 4.80 7.28 7.98 10.59 11.15 4.27 8.76 2.23 
2 35 15 2.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 15 30 2.5 0.02 4 2.25 3.45 3.83 5.22 5.33 3.93 12.25 0.94 
4 35 30 2.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 15 20 1.5 0.02 4 4.01 4.82 5.03 6.24 7.41 0.84 4.29 3.21 
6 35 20 1.5 0.02 4 1.93 3.50 3.64 4.50 5.32 0.64 3.97 3.65 
7 15 20 3.5 0.02 4 3.61 5.72 6.38 8.79 9.01 5.59 12.42 1.33 
8 35 20 3.5 0.02 4 3.22 5.22 5.83 8.07 0.00 1.95 5.97 0.00 
9 15 20 2.5 0.02 3 3.43 6.73 7.54 9.64 0.00 4.30 8.79 0.00 

10 35 20 2.5 0.02 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
11 15 20 2.5 0.02 5 4.32 5.64 6.01 7.91 10.16 1.94 4.85 4.54 
12 35 20 2.5 0.02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
13 15 20 2.5 0.01 4 3.13 4.42 4.73 5.82 6.06 2.49 8.02 1.65 
14 35 20 2.5 0.01 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15 15 20 2.5 0.03 4 3.37 4.01 4.21 5.02 5.76 0.75 2.98 2.18 
16 35 20 2.5 0.03 4 2.32 2.77 2.92 3.48 4.08 0.94 3.37 2.84 
17 25 15 1.5 0.02 4 4.20 6.01 6.55 8.99 9.51 1.99 4.76 1.01 
18 25 30 1.5 0.02 4 1.95 2.84 3.07 3.99 4.25 1.07 3.22 1.31 
19 25 15 3.5 0.02 4 4.27 6.77 7.53 10.66 11.42 2.95 10.20 1.93 
20 25 30 3.5 0.02 4 2.12 2.62 2.80 3.50 4.29 1.23 5.20 3.24 
21 25 15 2.5 0.02 3 3.81 7.82 8.79 11.38 0.00 3.81 8.40 0.00 
22 25 30 2.5 0.02 3 1.74 3.48 3.93 5.06 0.00 3.97 7.07 0.00 
23 25 15 2.5 0.02 5 4.76 6.60 7.22 10.96 0.00 1.23 4.18 0.00 
24 25 30 2.5 0.02 5 1.74 2.59 2.87 4.14 0.00 2.87 10.00 0.00 
25 25 15 2.5 0.01 4 4.89 6.86 7.47 10.25 14.28 1.60 7.28 4.16 
26 25 30 2.5 0.01 4 1.68 2.43 2.63 3.36 3.49 2.63 8.19 1.27 
27 25 15 2.5 0.03 4 4.37 6.25 8.41 0.00 0.00 1.58 0.00 0.00 
28 25 30 2.5 0.03 4 2.23 3.63 4.93 6.34 0.00 1.49 1.58 0.00 
29 25 20 1.5 0.02 3 2.77 5.59 6.27 8.05 0.00 4.12 9.19 0.00 
30 25 20 3.5 0.02 3 2.69 4.84 5.31 6.43 0.00 2.39 4.47 0.00 
31 25 20 1.5 0.02 5 3.72 4.50 4.72 5.90 7.35 1.59 6.49 4.90 
32 25 20 3.5 0.02 5 3.18 5.50 6.56 0.00 0.00 1.90 0.00 0.00 
33 25 20 1.5 0.01 4 2.23 3.06 3.27 3.95 4.03 2.66 7.32 0.87 
34 25 20 3.5 0.01 4 3.19 5.13 5.68 0.00 0.00 1.11 0.00 0.00 
35 25 20 1.5 0.03 4 3.33 5.74 6.42 9.87 11.29 1.12 5.39 2.09 
36 25 20 3.5 0.03 4 3.42 6.08 6.94 11.02 14.71 1.21 5.13 3.25 
37 25 20 2.5 0.01 3 2.59 4.90 5.46 6.79 0.00 3.97 7.47 0.00 
38 25 20 2.5 0.01 5 3.37 4.06 4.25 5.41 6.60 0.69 2.73 1.17 
39 25 20 2.5 0.03 3 2.49 4.70 5.18 6.44 0.00 3.17 6.92 0.00 
40 25 20 2.5 0.03 5 2.98 3.72 3.89 4.83 5.92 0.50 2.05 1.24 
41 25 20 2.5 0.02 4 3.13 3.93 4.20 5.38 7.03 1.43 5.29 3.78 
42 25 20 2.5 0.02 4 3.30 4.58 4.79 6.05 8.55 0.54 4.26 3.17 
43 25 20 2.5 0.02 4 3.19 3.20 3.29 4.24 5.45 0.53 2.60 1.86 
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Table 3.5 Experimental parameters and resolution values for poly-L-ornithine as the cationic 
  polymer in the PEM coating  
 
No. Temp Volt Bilayers [Polymer] pH EOF MT1 MT2 MT3 MT4 Rs1 Rs2 Rs3 

 (˚C) (kV)  (%w/v)          
1 15 15 2.5 0.02 4 4.84 7.45 8.20 11.09 11.30 6.14 23.12 1.07 
2 35 15 2.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 15 30 2.5 0.02 4 2.23 3.41 3.77 5.13 5.18 5.17 11.01 0.37 
4 35 30 2.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 15 20 1.5 0.02 4 3.57 5.56 6.16 8.45 8.54 6.18 12.92 0.49 
6 35 20 1.5 0.02 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7 15 20 3.5 0.02 4 3.89 6.23 6.86 9.33 9.99 2.03 4.05 1.10 
8 35 20 3.5 0.02 4 3.27 7.30 8.97 0.00 0.00 1.61 0.00 0.00 
9 15 20 2.5 0.02 3 3.36 6.31 7.08 9.00 0.00 5.12 9.02 0.00 

10 35 20 2.5 0.02 3 2.75 5.86 6.60 8.78 0.00 2.02 4.66 0.00 
11 15 20 2.5 0.02 5 5.09 7.91 8.93 14.07 0.00 3.37 12.21 0.00 
12 35 20 2.5 0.02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
13 15 20 2.5 0.01 4 3.53 5.44 5.99 8.08 8.24 5.19 12.69 0.94 
14 35 20 2.5 0.01 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
15 15 20 2.5 0.03 4 3.62 5.80 6.46 8.92 9.18 7.28 14.40 1.47 
16 35 20 2.5 0.03 4 2.94 5.37 6.10 0.00 0.00 1.45 0.00 0.00 
17 25 15 1.5 0.02 4 3.99 6.34 7.05 9.67 9.93 5.84 16.17 1.47 
18 25 30 1.5 0.02 4 1.99 3.73 5.02 5.26 0.00 5.45 0.94 0.00 
19 25 15 3.5 0.02 4 4.36 7.32 8.28 11.93 12.16 4.53 10.60 0.57 
20 25 30 3.5 0.02 4 2.11 4.09 5.59 6.11 0.00 5.49 1.66 0.00 
21 25 15 2.5 0.02 3 3.04 7.81 8.88 11.57 0.00 5.60 11.83 0.00 
22 25 30 2.5 0.02 3 1.22 3.70 4.18 5.46 0.00 2.86 5.42 0.00 
23 25 15 2.5 0.02 5 6.22 10.02 11.37 0.00 0.00 1.49 0.00 0.00 
24 25 30 2.5 0.02 5 4.25 0.00 0.00 16.80 0.00 0.00 0.00 0.00 
25 25 15 2.5 0.01 4 4.00 6.47 7.22 10.14 10.22 6.06 15.08 0.39 
26 25 30 2.5 0.01 4 1.55 3.03 3.40 4.74 4.89 5.13 15.53 1.41 
27 25 15 2.5 0.03 4 4.07 6.73 7.53 10.15 11.01 5.75 15.42 4.42 
28 25 30 2.5 0.03 4 1.84 3.04 3.39 4.62 4.88 4.46 14.11 2.50 
29 25 20 1.5 0.02 3 2.81 5.50 6.23 8.09 0.00 7.97 13.55 0.00 
30 25 20 3.5 0.02 3 2.43 5.35 6.00 7.72 0.00 4.83 13.04 0.00 
31 25 20 1.5 0.02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32 25 20 3.5 0.02 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
33 25 20 1.5 0.01 4 2.95 4.70 5.36 7.56 7.82 6.70 17.02 1.62 
34 25 20 3.5 0.01 4 3.27 6.16 7.20 9.65 0.00 2.01 3.30 0.00 
35 25 20 1.5 0.03 4 3.26 5.31 5.77 8.05 8.40 0.88 3.73 0.76 
36 25 20 3.5 0.03 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
37 25 20 2.5 0.01 3 2.50 5.35 5.85 7.43 0.00 2.89 11.64 0.00 
38 25 20 2.5 0.01 5 4.73 8.10 9.57 0.00 0.00 2.50 0.00 0.00 
39 25 20 2.5 0.03 3 4.02 5.40 6.04 7.73 0.00 5.38 12.36 0.00 
40 25 20 2.5 0.03 5 4.60 8.07 9.52 0.00 0.00 1.59 0.00 0.00 
41 25 20 2.5 0.02 4 3.42 5.92 6.65 9.22 10.03 1.38 4.71 1.41 
42 25 20 2.5 0.02 4 3.45 6.07 6.83 9.81 10.90 1.18 5.04 1.72 
43 25 20 2.5 0.02 4 3.59 6.73 7.52 11.09 13.01 1.12 4.41 2.17 
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3.3.2 Influence of Temperature, Voltage and pH on Protein Resolution 

 Response surface plots for the influence of temperature and voltage on protein resolution 

using poly-L-glutamic acid-lysine as the cationic polymer and poly-L-SULA as the anionic 

polymer in the PEM coating were generated and the results are shown in Figure 5.  In general, 

increasing the temperature resulted in faster migration times due to an increase in the 

electroosmotic mobility.  Since the electroosmotic mobility increased, the interactions between 

the proteins and the stationary phase decreased, thereby, resulting in decreased resolution of 

proteins.  However, an increase in voltage reduced migration times for all four proteins and 

decreased the resolution of Rs2 and Rs3.  Conversely, separation at higher voltages resulted in 

higher resolution (Rs1) of peaks 1 (α-chmyotrypsinogen) and 2 (ribonuclease A).  Analysis of the 

response plot verifies that the separation at lower temperatures and lower voltages should result 

in higher resolution of the four proteins.   

 The influence of pH on protein separation was also investigated. The pH of the 

background electrolyte, 20mM phosphate, was varied at three pH values (3, 4, 5).  In general, a 

cationic outer layer at an acidic pH value is most effective for the electrophoretic separation of 

basic proteins due to reduced adsorption to the capillary wall.  The isoelectric point (pI) of the 

studied proteins ranged from 8 to 11.  Therefore, acidic pH values at which these proteins are 

cationic were chosen for investigation.  The highest resolution for all four proteins was achieved 

at pH 4 for all cationic polymers, while pH 3 allowed resolution of only three of the four 

proteins.  Cytochrome c (peak 4) could not be separated from lysozyme at pH 3. Separation of 

the four proteins at pH 5 was achieved only under specific conditions.  Hence, pH 4 was 

determined to be the optimum pH for these separations.  While this optimum will likely be 

different for different protein mixtures, the results from this model system indicate that the 

lowest pH is not always the optimum.  We speculate these results are due to the complex 
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interaction of both electrophoretic and chromatographic separation mechanisms involved in 

CEC.   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 3.5 Response surface plots of design variables: A: Influence of temperature and  
  voltage on protein resolution: Conditions:  A: Coating: 1.5, 2.5, 3.5 bilayers of  
  0.01% (w/v), 0.02% (w/v), 0.03% (w/v) poly-L-glutamic acid-lysine; Anionic  
  Polymer: 0.5% (w/v) poly-L-SULA; Analytes: 1. α-chymotrypsinogen A; 2.  
  ribonuclease A; 3. lysozyme; 4. cytochrome c; Temperature: 15 ºC, 25 ºC, 35 ºC;  
  Voltage: 15 kV, 20 kV, 30 kV. All other conditions same as in Figure 3.3. B:  
  Effect of the Number of Bilayers and Cationic Polymer Concentration on Protein  
  Resolution: Conditions:  Same as in A  
 
 
3.3.3 Effect of the Number of Bilayers and Cationic Polymer Concentration on 
 Protein Resolution  
 
 The response plot for the influence of the number of bilayers and cationic polymer 

concentrations on protein resolution, using poly-L-glutamic acid-lysine as the cationic polymer 

and poly-L-SULA as the anionic polymer in the stationary phase were generated (Figure 3.5B).  
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A bilayer in a PEM coating consists of one layer of a cationic polymer and one layer of the 

anionic polymer. The PEM coatings used in this study consisted of 1.5, 2.5, and 3.5 bilayers with 

the outer layer always cationic and run in reverse polarity.  Three methods of increasing the 

thickness of PEM coatings are 1) by increasing the rinse time of the coating polymers, 2) by 

increasing the number of bilayers used in the PEM coating, and 3) by increasing the 

concentration of the coating polymers.  In this study, the influence of the thickness of the PEM 

coating was investigated by increasing the number of bilayers.  When using the cationic polymer, 

poly-L-glutamic acid-lysine, Rs1 and Rs2 were noted to decrease as the number of bilayers 

increased.  However, an increase in the number of bilayers produces an increase in Rs3.  Overall, 

the use of 2.5 bilayers resulted in higher protein resolution.  Increasing the number of bilayers, 

increases protein resolution to a point (in this case 2.5 bilayers) and it is dependent on the 

proteins under investigation; however, having a PEM coating that is too thick may adversely 

affect protein separations through peak broadening. 

 The influence of the thickness of the PEM coating, by variation of the cationic polymer 

concentration used in PEM coatings on protein separations, was also investigated.  An increase 

in the cationic polymer concentration (poly-L-glutamic acid-lysine) resulted in an increase in the 

resolution of the four proteins (Rs1, Rs2 and Rs3).  It is suspected that as the concentration of poly-

L-glutamic acid-lysine increased to an optimum, the PEM coating thickness increased, thereby 

enhancing the protein interactions with the stationary phase.   

3.3.4 Effect of Cationic Polymer Type on Protein Resolution  
 
 An important factor in the investigation of PEM coatings is the choice of cationic 

polymer used in the stationary phase.  Separations performed using PEM coated capillaries may 

be affected by the properties of the cationic polymer, such as the molecular structure, molecular 

weight, ionic strength, and the hydrocarbon content of the polymers.  To investigate the 
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influence of cationic polymers in PEM coatings on these protein separations, poly-L-glutamic 

acid-lysine, poly-L-lysine-serine, poly-L-lysine, and poly-L-ornithine (Figure 3.1B) were used as 

cationic polymers in the stationary phase of the PEM coating.  These polymers vary widely in 

molecular structure, molecular weight, and hydrocarbon content. Based on the molecular 

structures, poly-L-ornithine has the least hydrocarbon content, followed by poly-L-lysine, poly-L-

lysine-serine, and poly-L-glutamic acid-lysine, with the most hydrocarbon content.   

 Figure 3.6 shows electropherograms for the highest resolution separation conditions 

obtained for each cationic polymer.  Overall, all cationic polymers achieved successful 

separations.  However, the use of poly-L-glutmatic acid-lysine, the highest hydrocarbon content 

polymer (Figure 3.6A), resulted in the highest resolution and highest peak efficiencies (N ≈ 

60,000) of the four proteins investigated.  Resolution values of Rs1 (7.42), Rs2 (20.92), and Rs3 

(7.83) are consistently higher than those obtained using other cationic polymers in the PEM 

coating.  These results may be attributed to stronger protein interactions between the highest 

hydrocarbon content and highest molecular weight cationic polymer and the proteins. Figure 

3.6B and 3.6C illustrate the protein separation obtained using poly-L-ornithine (Rs1 = 5.75, Rs2 = 

15.42, and Rs3 = 4.42) and poly-L-lysine-serine (Rs1 = 5.21, Rs2 = 11.34, and Rs3 = 5.11), 

respectively, as the cationic polymers.  These two polymers resulted in lower resolution values, 

as compared to the resolution obtained using poly-L-glutamic acid-lysine.  However, baseline 

resolution was obtained in a shorter migration time but with lower peak efficiency (N ≈ 50, 000).  

Figure 3.6D, is a presentation of the results of protein separations using poly-L-lysine as the 

cationic polymer, where the lowest resolution values (Rs1= 4.27, Rs2 = 8.76 and Rs3 = 2.23) and 

the lowest peak efficiencies (N ≈ 30,000) as compared to the other three cationic polymers were 

obtained.  The overall best separation conditions achieved using different cationic polymers is 

shown in Table 3.6, where two sets of optimum conditions are obtained for each  cationic  
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polymer.  Optimum conditions are defined as (a) the highest protein resolution achieved and (b) 

baseline resolution in the shortest migration time. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.6 Protein separations obtained using (A) poly-L-glutamic acid-lysine, (B) poly-L- 
  ornithine, (C) poly-L-lysine-serine and (D) poly-L-lysine as the cationic polymer  
  in PEM coating: Conditions: Coating: (A) 2.5 bilayers of 0.02% (w/v) poly-L- 
  glutamic acid-lysine; (B) 2.5 bilayers of 0.03% (w/v) poly-L-ornithine, (C) 2.5  
  bilayers of 0.02% (w/v) poly-L-lysine-serine, (D) 2.5 bilayers of 0.02% (w/v)  
  poly-L-lysine; Analytes: 1.α-chymotrypsinogen A; 2. ribonuclease A; 3.lysozyme; 
  4. cytochrome c;  All other conditions same as in Figure 3.3 and are all completed 
  in the reverse polarity mode on the CE instrument. 
 

In general, the highest resolutions were obtained at 15 ˚C, 15 kV, 20 mM phosphate, pH 4, 2.5 

bilayers and 0.02% (w/v) for each cationic polymer.  Clearly, the results of this study 

demonstrated that interactions occur between the stationary phase of the PEM coating and the 

proteins.  This is in agreement with previous studies where interactions of proteins and a 

stationary phase using PDADMAC in a PEM coated capillary were reported by Wang and Dubin 
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[23].  In addition, similar conclusions were drawn for the interactions of chiral molecules with 

PEM coatings of chiral stationary phases [7, 15, 37]. 

 
Table 3.6 Optimum conditions for each cationic polymer used in the PEM coating (* 
indicates migration time of the last peak) 
 

 Run time* 
(min) 

Temp 
(˚C) 

Volt 
(kV)

# 
Bilayers 

[Polymer] 
(%w/v) 

pH Rs1 Rs2 Rs3 

Poly-L-
glutamic 
acid- 
lysine 

(a) 19.20 
(b) 8.50 

15 
15 

15 
30 

2.5 
2.5 

0.02 
0.02 

4 
4 

7.42 
5.69 

20.92 
18.54 

7.83 
2.90 

Poly-L-
ornithine 

(a) 11.01 
(b) 4.88 

25 
25 

15 
30 

2.5 
2.5 

0.03 
0.03 

4 
4 

5.75 
4.46 

15.42 
14.11 

4.42 
2.50 

Poly-L-
lysine-
serine 

(a) 12.49 
(b) 6.15 

15 
15 

15 
20 

2.5 
1.5 

0.02 
0.02 

4 
4 

5.21 
3.52 

11.34 
10.27 

5.11 
1.58 

Poly-L-
lysine 

(a) 11.15 
(b) 6.06 

15 
15 

15 
20 

2.5 
2.5 

0.02 
0.01 

4 
4 

4.27 
2.49 

8.76 
8.02 

2.23 
1.65 

 

3.3.5 Reproducibility of a PEM Coated Capillary 

 The reproducibility of a PEM coating plays an important role in the determination of 

column performance and separation reproducibility.  Optimum conditions, where the highest 

resolution was obtained (Table 3.6a), were used to investigate the EOF reproducibility for each 

cationic polymer.  The concentration of the anionic polymer, poly-L-SULA, was held constant at 

0.5% (w/v). The protein separations were performed under optimum conditions for each polymer 

in triplicate and the percent relative standard deviation (%RSD) was calculated.  All cationic 

polymers demonstrated good run-to-run reproducibility with a %RSD of the EOF of less than 

3%.  

 Previous studies in our laboratory have shown that the presence of NaCl in the cationic 

polymer may significantly improve the reproducibility of successive experimental runs [15, 33].  

Therefore, reproducibility studies were also performed with 0.1M NaCl present in the cationic 
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polymer under previously established optimum conditions (Table 3.6).  As expected, the %RSD 

of the EOF improved to less than 1% for all four cationic polymers. 

3.3.6 Influence of the Thickness of the Cationic Polymer Layer in PEM Coating on 
 Protein Separations 
 
 The influence of the thickness of the cationic layer on protein separations was examined 

by varying the rinse time of the cationic polymer for the PEM coating from 2 to 45 minutes.  

Other separation parameters were held constant and the protein separations were performed 

under optimum conditions (Table 3.6a) using poly-L-ornithine as the cationic polymer in the 

PEM coating.  Figure 3.7A provides an illustration of the protein separation using a PEM coated 

capillary obtained by rinsing the capillary with the cationic polymer for 2 minutes.  Only peaks 1 

and 2 were fully resolved, while peaks 3 and 4 co-eluted.  Figures 3.7B and 3.7C illustrate the 

resolution obtained when the column was rinsed for 5 and 15 minutes, respectively.  Resolution 

values for 5 and 15 minute rinse times (Rs1 = 6.05, 6.44; Rs2 = 16.16, 17.22; Rs3 = 2.71, 3.11) 

were approximately the same for all proteins.  In addition, high peak efficiencies were obtained, 

and all four proteins were completely resolved within 13 minutes.  However, an increase in 

resolution and decrease in peak efficiency were observed when the cationic polymer was rinsed 

for 30 minutes (Figure 3.7D).  Furthermore, increasing the rinse time to 30 minutes resulted in 

increased migration times, with the last protein eluting at 18 minutes.   

 Figure 3.7E shows the result of the protein separation obtained when the last cationic 

layer of the PEM coating was rinsed with poly-L-ornithine for 45 minutes.  Evidently, no 

separation was achieved under these conditions and all protein peaks co-eluted with longer 

migration times of approximately 30 minutes.  It is clear from the result of this study that the 

rinse time of the cationic polymer layer has a significant influence on the thickness of the PEM 

coating, thus influencing the protein separation.  At relatively shorter rinse times, the amount of 

cationic polymer in the PEM coating is small, resulting in thinner PEM coatings. As a result, 
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weak protein-PEM coating interactions at the surface are observed.  The highest protein 

resolution and peak efficiencies with the shortest migration time were obtained using PEM 

coatings produced by rinsing the cationic polymer between 5-15 minutes.  At relatively longer 

rinse times (45 minutes), the coating is very thick, thereby, impeding flow in the capillary 

column and resulting in no protein separation.  These results further confirmed that the observed 

separations are a result of a CEC process since protein separation is determined by interactions 

with the stationary phase, i.e. the PEM coating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.7 Influence of cationic layer thickness on protein separations: Conditions: Coating:  
  2.5 bilayers; Cationic Polymer: 0.03% (w/v) poly-L-ornithine with 0.1 M NaCl;  
  Anionic Polymer: 0.5% (w/v) poly-L-SULA. (A) 2 minutes, (B) 5 minutes, (C) 15 
  minutes, (D)  30 minutes, (E) 45 minutes.  Analytes: 1. α-chymotrypsinogen A; 2. 
  ribonuclease A; 3. lysozyme; 4. cytochrome c; All other conditions same as in  
  Figure 3.3 and are all completed in the reverse polarity mode on the CE   
  instrument. 
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3.3.7 Effect of Anionic Polymer Type on Protein Resolution  

 The choice of anionic polymer is another important parameter to consider when using 

PEM coatings as the stationary phase in OT-CEC.  In this study, three different molecular 

micelles were used as anionic polymers to investigate their influence on protein separations.  

Poly-SUS is an achiral molecular micelle and poly-L-SULV and poly-L-SULA are dipeptide 

chiral molecular micelles that possess two chiral centers. Figure 3.8 shows the results obtained 

when columns were coated with 2.5 bilayers of 0.03% (w/v) poly-L-ornithine and 0.5% (w/v) of 

poly-SUS, poly-L-SULV, and poly-L-SULA, respectively.  In Figure 3.8A, the achiral poly-SUS 

was used as the anionic polymer and only partial separation was achieved for peaks three 

(lysozyme) and four (cytochrome c).  Figure 3.8B and 3.8C shows the use of the chiral molecular 

micelles, poly-L-SULA and poly-L-SULV, respectively.  Baseline resolution was attained using 

these two chiral molecular micelles; however, poly-L-SULV achieved higher peak efficiencies of 

the protein peaks and resulted in a reversal of the elution order of peaks three and four (Figure 

3.8C).  Use of poly-L-SULV (Figure 3.8C) resulted in higher Rs1 values but lower Rs2 and Rs3, 

as compared to poly-L-SULA (Figure 3.8B).  In contrast to poly-SUS and poly-L-SULA, 

cytochrome c eluted before lysozyme when poly-L-SULV was used.  These results also confirm 

protein interactions with the PEM coatings, i.e. CEC, since higher protein resolution was 

achieved when the chiral molecular micelles were used and also the elution order of cytochrome 

c and lysozyme were different when using a different chiral molecular micelle.  This suggests the 

possibility of chiral interactions between the proteins and the molecular micelles. 

3.3.8 Influence of Anionic Polymer Order in PEM Coatings on Protein Separations 
 
 The results of the influence of the anionic type on protein separation revealed that 

superior protein resolution was achieved using chiral molecular micelles and also that the elution 

order changed. 
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Figure 3.8 Influence of anionic polymer on protein separations: (A) Poly-SUS, (B) Poly-L- 

SULA, (C) Poly-L-SULV, (D) First bilayer: anionic polymer, Poly-L-SULA; 
Second bilayer: anionic polymer, Poly-L-SULV; (E) First bilayer: anionic 
polymer, Poly-L-SULV; Second bilayer: anionic polymer, Poly-L-SULA: 
Conditions: 2.5 bilayers; Cationic Polymer: 0.03% (w/v) poly-L-ornithine; 
Anionic Polymer: 0.5% (w/v) Analytes: 1. α-chymotrypsinogen A; 2. 
ribonuclease A;  3. lysozyme; 4. cytochrome c;  All other conditions same as in 
Figure 3.3 and are all completed in the reverse polarity mode on the CE 
instrument. 
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Therefore, further studies were performed using these anionic polymers.  Protein separations 

were performed using 2.5 bilayers of 0.03% (w/v) poly-L-ornithine as the cationic polymer.  

Figures 3.8B and 3.8C show baseline resolution of all four proteins when poly-L-SULA and 

poly-L-SULV chiral anionic molecular micelles were used as PEM coating materials.  However, 

as stated earlier, the use of poly-L-SULV as an anionic polymer resulted in higher protein peak 

efficiencies and a change in the elution order of cytochrome c and lysozyme. 

To further investigate the influence of anionic polymers on protein separation, PEM 

coatings were constructed using poly-L-SULA as the anionic polymer in the first bilayer, and 

poly-L-SULV in the second bilayer.  The results of the protein separation using this PEM coating 

are shown in Figure 3.8D.  The electropherogram shows that the protein elution order is in 

agreement with the results obtained with the use of only poly-L-SULV (Figure 3.8C), resulting in 

cytochrome c eluting before lysozyme.  In contrast, Figure 3.8E shows the results obtained when 

poly-L-SULV was used in the first bilayer of the PEM coating, and poly-L-SULA used as the 

anionic polymer in the second bilayer which resulted in lysozyme being eluted before 

cytochrome c. This elution order agrees with the results obtained when only poly-L-SULA was 

used in the PEM coating (Figure 3.8B).  Overall, it seems that when poly-L-SULA is the anionic 

polymer in the last bilayer of the PEM coating, cytochrome c elutes last and conversely, when 

poly-L-SULV is in the last bilayer, lysozyme elutes last.  In addition, reversal of the elution order 

of the last two proteins when the anionic polymer is changed shows that the layers of the PEM 

coatings are interpenetrating since like charged PEM coatings and proteins only interact at the 

surface.  It should not be overlooked that when the anionic polymer was changed in the last 

bilayer, the last layer of the PEM coating was in fact cationic (poly-L-ornithine).  Therefore, 

these results suggest that the underlying layers of the PEM coating are instrumental in achieving 

the selectivity of the coatings.  Furthermore, these results suggest that the type, as well as the 
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position of the anionic polymer in the PEM coating has a significant affect on protein-PEM 

interactions, resulting in differences in protein elution.  

3.4 Concluding Remarks  

 In this study, novel PEM coatings were constructed using four different cationic 

polymers: poly-L-glutamic acid-lysine, poly-L-lysine-serine, poly-L-ornithine, and poly-L-lysine 

and three anionic molecular micelles, poly-L-SULA, poly-L-SULV, and poly-SUS to separate 

four basic proteins (α-chymotrypsinogen, lysozyme, ribonuclease A and cytochrome c).  Several 

factors such as operating temperature, applied voltage, type and concentration of cationic 

polymer, and background electrolyte pH were optimized using a Box Behnken experimental 

design for protein separations.  Generally, all four cationic polymers successfully resolved all 

four proteins with different resolutions and migration times.  However, the use of the most 

hydrophobic polymer, poly-L-glutamic acid-lysine, in the PEM coating resulted in the highest 

resolution and poly-L-lysine the lowest.  The presence of the molecular micelle in the PEM 

coating enhanced the protein-PEM interaction and resulted in better protein separation than use 

of a simple cationic polymer alone.  Chiral molecular micelles (poly-L-SULA and poly-L-

SULV) resulted in higher protein resolution than an achiral molecular micelle (poly-SUS) as 

well as in different elution orders of the proteins investigated.  Clearly, the choice of both the 

cationic and anionic polymers used in a PEM coating has significant influence on protein 

separations since these polymers affect column selectivity.  This is due to different protein-PEM 

interactions when different stationary phases are used.  Definitive confirmation that these 

separations involve wall interactions, and thus a CEC process, is provided.  Overall, the 

experimental findings reported in this manuscript provide valuable new knowledge to the 

biotechnological arena that will aid in the optimization of different coatings for separation of 

additional protein mixtures. 
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CHAPTER 4 

ACHIRAL AND CHIRAL SEPARATIONS USING MICELLAR ELECTROKINETIC 
CHROMATOGRAPHY, POLYELECTROLYTE MULTILAYER COATINGS, AND 
MIXED MODE SEPARATION TECHNIQUES WITH MOLECULAR MICELLES  

4.1 Introduction 
 
 Chiral separations are important in the pharmaceutical, biomedical and environmental 

industries, primarily because the interactions and behavior of individual enantiomers have not 

been fully explored.  The importance of these studies is further magnified by the mass circulation 

of thousands of chiral drugs [1].  It is well established that enantiomers of the same drug may 

have very different clinical effects in the human body since the body metabolizes these isomers 

through different pathways. Many drugs exhibit dissimilar pharmacokinetic behavior [1].  As a 

result, the United States Food and Drug Administration requires that the pharmacological and 

toxicological activity of each isomer be investigated and documented. Therefore, the 

development of methods to separate chiral analytes continues to garner much attention.  

 In order to achieve chiral separations, enantiomeric interactions must occur in a chiral 

environment. This is generally achieved through the use of a chiral selector or chiral 

discriminating agent able to differentially interact with each individual enantiomer. Several 

chiral selectors have been used in capillary electrophoresis (CE) separations; these include bile 

acids [2], crown ethers [3, 4], polysaccharides [5], proteins [6, 7], cyclodextrins [8, 9] and 

molecular micelles [11, 12].  Our group is among the pioneers in the use of molecular micelles 

for CE enantioseparations.  Molecular micelles are prepared by polymerizing surfactants at 

sufficiently high concentrations for formation of micelles.  These resulting polymers are thought 

to resemble a conventional micelle and are preferred over unpolymerized micelles because 

molecular micelles have virtually no critical micelle concentration and, thus, can be used at 

concentrations below the CMC. In addition, the covalent bonds formed during the 
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polymerization process eliminate the dynamic equilibrium between monomer and micelle. 

Experimental parameters such as pH and concentration of added organic solvent, known to 

disrupt the formation of conventional micelles, have been shown not to seriously damage 

molecular micellar interactions [1, 10, 11].   The addition of molecular micelles to a separation 

system may result in the resolution of a wide variety of compounds.  For example, Rizvi et al. 

investigated the separation of the β-blockers, labetalol, and nadalol by using variations of the 

chiral selector, polyalkenoxy amino acid polymers [1].  Also, Shamsi et al. used CE and resolved 

several different compound classes by using the versatile chiral selector, poly (sodium N-

undecanoyl-L-leucylvalinate) (poly-SULV) [11]. 

 The technique of CE has emerged as one of the leading separation approaches because 

high separation efficiencies are achieved with relatively low consumption of analyte and chiral 

selector. Thus, CE has the added advantages of relatively simple method development and short 

analysis times [14, 15].  Micellar electrokinetic chromatography (MEKC) and capillary 

electrochromatography (CEC) are hybrids of CE which combine the benefits of electrophoresis 

and chromatography to separate both charged and neutral analytes [13, 14, 15, 22].   In MEKC, a 

pseudostationary phase is created by the introduction of a surfactant at a concentration above the 

CMC, to the mobile phase.  Separation of both charged and neutral analytes are based on 

hydrophobic and ionic interactions of the analytes with micelles in the pseudostationary phase 

[17].  MEKC has been used to separate both achiral and chiral analytes [18, 19, 20].   

 The methodology of CEC combines both the selectivity of HPLC and the efficiency of 

CE [12, 23].  Separation is based on differences in electrophoretic mobilities and partitioning of 

the analytes into the stationary phase.  Neutral analytes are separated through interactions with 

the stationary phase which is adsorbed to the capillary wall, while charged analytes are separated 

due to differences in charge and size as well as partitioning behavior [23].  CEC has shown great 
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potential in the separation of both achiral and chiral analytes.  The stationary phase can be 

prepared by several methods including adsorption, where the stationary phase can either be 

dynamically or physically adsorbed to the capillary wall to shield the negatively charged silanol 

groups with a layer of the coating material [24, 25].  In one mode of CEC, open tubular capillary 

electrochromatography (OT-CEC), the stationary phase is adsorbed to the capillary wall and the 

mobile phase, which flows through the column, is driven by the electroosmotic flow (EOF).    

Several chiral selectors have been used as stationary phases in OT-CEC.  For example, Liu et al. 

used avidin, a basic protein, as the adsorbed stationary phase to separate a total of sixteen 

different enantiomers [4].  Another method of creating the stationary phase is dynamic coatings.  

Dynamic coatings are adsorbed to the capillary wall by electrostatic interactions and hydrogen 

bonding [12]. One widely used coating constructed by a physical adsorption process is a 

polyelectrolyte multilayer (PEM) coating.   

 A PEM coating is formed by alternately exposing the hydrophilic inner wall of a silica 

capillary first to cationic and then anionic polymers.  The combination of each is called a bilayer 

and the mechanism of a PEM coating formation is via ion exchange that results in stable coatings 

[33].  PEM coatings are constructed using chiral cationic and anionic polymers and have been 

used to separate a number of chiral analytes.  Rmaile and Schlenoff used the polymers poly-L-

lysine and poly-L-glutamic acid, among others, to resolve chiral probes such as ascorbic acid and 

a chiral viologen [34].  In our laboratory, Kamande et al. used poly-L-lysine hydrobromide and 

poly (sodium N-undecanoyl-L-leucyl-alaninate) (poly-L-SULA) to separate three binaphthyl 

derivatives and two β-blockers [35].  We note that it is not necessary for both polymers to be 

chiral in order to separate chiral analytes. For example, Kapnissi et al. optimized several 

experimental parameters using PEMs generated with achiral poly (diallyldimethylammonium 

chloride) (PDADMAC) and chiral poly (sodium N-undecanoyl-L- leucyl-valinate) (poly-L-
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SULV) to resolve chiral analytes.  In that study the authors created up to a 12 bilayer capillary 

using ionic liquids as additives [36].  

 In this chapter, the influence of separation mode (MEKC, PEM coatings and mixed mode 

separation technique) on the resolution of achiral and chiral analytes is investigated.  The effects 

of applied voltage, bilayer number, polymer concentration and polymer type on analyte 

separation were investigated.  The molecular micelles poly(N-undecanoyl-L-glycinate) (poly-

SUG) and (poly-L-SULV) were used for the achiral  and chiral separations respectively. 

4.2 Materials and Methods 

4. 2.1 Materials 

 The achiral cationic polymer, poly(diallyldimethylammonium chloride) (PDADMAC) 

was purchased from Sigma Chemical Company (St. Louis, MO).  The chemicals used to 

synthesize both achiral and chiral surfactant monomers, N-hydroxysuccinimide, undecylenic 

acid, dicyclohexylcarbodiimide, and sodium bicarbonate were purchased from Fluka 

(Milwaukee, WI).  The peptides leucine-valine and glycine were purchased from Bachem 

Bioscience, Inc. (King of Prussia, PA).  Sodium hydroxide, ethyl acetate, and tetrahydrofuran 

were purchased from Sigma-Aldrich (Milwaukee, WI). The buffer used in these experiments, 

were composed of sodium phosphate dibasic, monobasic sodium phosphate,sodium borate 

tris[hydroxymethyl]aminomethane, methanol, and acetone were purchased from Fisher Scientific 

(Fair Lawn, NJ).  The achiral alkyl aryl ketones, acetophenone, propiophenone, butyrophenone, 

valerophenone, hexanophenone, heptanophenone, octanophenone, decanophenone, as well as the 

chiral analytes, temazepam, benzoin, aminoglutethimide, coumachlor, and benzoin methyl ether 

were also purchased from Sigma (St. Louis, MO).  All materials were used as received without 

any further purifications.  The molecular structures of the analytes investigated are shown in 

Figure 4.1. 
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Figure 4.1  Structures of analytes; A. Chiral analytes; B: Achiral aryl ketones 
 

4.2.2 Instrumentation 
 
 A roll of fused silica capillary, with an internal diameter of 50µm was purchased from 

Polymicro Technologies (Phoenix, AZ).  A piece of this material with a total length of 60 cm (50 

cm effective length) was used for the experiments described in this manuscript.  All separations 

were conducted using a Beckman P/ACE MDQ capillary electrophoresis system, equipped with 

a photodiode array detector (Fullerton, CA).  Liquid coolant was used to maintain the 

temperature at 15°C.  The applied voltage ranged from 15kV to 30kV.  The achiral and chiral 

analytes were detected at 220nm and 254 nm. All analytes were injected using 0.5psi for 5s.  

4.2.3 Synthesis of Molecular Micelles 

 The achiral molecular micelle, poly-SUG as well as the chiral dipeptide molecular 

micelle poly-L-SULV were synthesized according to a procedure previously described by Wang 

and Warner [37].  Solutions containing 100 mM of the monomers were polymerized by use of a 
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60Co γ-ray irradiation source.  The molecular structures of the molecular micelles and the 

cationic polymer used in this study are illustrated in Figure 4.2. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.2 A. Structural representation of (I) Poly-SUG and (II) Poly-L-SULV 
   B. Structural representation of PDADMAC.  
 

4.2.4 Sample and Buffer Preparation 

 In all experiments, 1M NaOH and 1M HCl were used to adjust the pH of the background 

electrolyte.  Prior to use, all buffers were filtered using a 0.45 µm polypropylene nylon filter and 

sonicated for 15 minutes.  Solutions of 8 alkyl aryl ketones (0.1 mg/mL) were dissolved in 

MeOH for the achiral investigations and 0.2 mg/mL solutions were prepared in 50:50 
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methanol/water for use in the chiral studies. The achiral cationic polymer, PDADMAC was used 

at 0.5% (w/v) in deionized water. Achiral and chiral anionic molecular micelles (poly-SUG and 

poly-L-SULV) were varied from concentrations of 0.25% (w/v) to 1.50% (w/v) for all separation 

studies.  

4.2.5 Micellar Electrokinetic Chromatography Procedure 

 An untreated silica capillary is rinsed with 1M NaOH for 30 minutes to deprotonate the 

capillary wall followed by a 15 minute rinse with deionized water.  The background electrolyte is 

then flushed through the capillary for 5 minutes prior to analyte injection.  The capillary is rinsed 

with 0.1M NaOH for 2 minutes, deionized H2O for 2 minutes and the background electrolyte for 

5 minutes between each run. 

4.2.6 Polyelectrolyte Multilayer Coating Procedure 

 As in the MEKC procedure, a fused silica capillary is deprotonated with 1M NaOH for 

30 minutes followed by a 15 minute deionized water rinse.  A 20 minute rinse with the cationic 

polymer followed by a 5 minute rinse with deionized water initiates the first layer of the PEM 

coating.  To complete the bilayer, the anionic polymer is rinsed through the column for 5 

minutes, followed by a 5 minute deionized water rinse. All other bilayers were created with 

alternate 5 minute rinses of the cationic and anionic polymers.  The number of bilayers was 

varied from 2 to 4.  All rinses were performed using the rinse function of the CE instrument, with 

applied pressure of 20psi.   

4.2.7 Mixed Mode Separation Technique 

 The mixed mode separation method combines both the MEKC and PEM coatings 

procedures.  First, the PEM coatings are constructed with the desired coating polymer and 

polymer concentration as well as the number of bilayers needed for the study (Procedure outlined 

in Section 4.2.6).  Then, the respective molecular micelles are added to the mobile phase of the  



 94

coated capillary at the desired concentrations and various studies are completed. 

4.3 Results and Discussion 

4.3.1 Effect of Concentration of Poly-L-SUG on the Separation of 8 Achiral Alkyl Aryl   
         Ketones Using MEKC 
  
 To investigate the influence of molecular micelle concentration on the separation of 8 

achiral alkyl aryl ketones using MEKC, five different mobile phases were prepared.   The 

molecular micelle concentration was varied from 0.25% (w/v) to 1.00% (w/v) poly-SUG in 100 

mM Tris at pH 10 (results shown in Figure 4.3).  At 0.25% (w/v), only the first four aryl ketones, 

acetophenone, propiophenone, butyrophenone, and valerophenone were resolved with moderate 

peak shape and efficiency.  As the molecular micelle concentration increased to 1.00% (w/v), the 

resolution of the aryl ketones increased with a slight increase in migration time.  The elution 

order of these analytes is indicated in the figure with the least hydrophobic, acetophenone, 

eluting first and the most hydrophobic, decanophenone, eluting last.  All peaks were identified 

by spiking the concentration of one analyte at a time. At 1.00% (w/v) poly-SUG, the resolution 

of the first five analytes increased.  However, there was only partial separation of the last three 

aryl ketones.  The shapes and efficiencies of the latter peaks were due to the more hydrophobic 

aryl ketones being retained in the micellar phase longer than the aqueous phase.  Baseline 

resolution of all 8 aryl ketones was not achieved using these parameters in MEKC.    

4.3.2 Effect of Concentration and Bilayer Number of Poly-L-SUG on the Separation  
         of 8 Achiral Alkyl Aryl Ketones Using PEM Coatings 
 
 The influence of the anionic molecular micelle concentration, poly-SUG, on the 

resolution of the 8 aryl ketones was investigated with PEM coatings.  Different PEM coatings 

were constructed using 0.25% (w/v), 0.5% (w/v), and 1.00% (w/v) poly-SUG as the anionic 

layer.  The cationic layer was held constant using 0.5% (w/v) PDADMAC.  All concentrations of 

poly-SUG resulted in only partial separation of the aryl ketones (Figure 4.4).  The optimum 
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anionic polymer concentration was chosen to be 0.5% (w/v) poly-SUG since the highest 

resolution with a relatively short migration time was achieved (Figure 4.4B). 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Influence of poly-SUG concentration on the separation of 8 aryl ketones using 

MEKC: Conditions: A: 0.25% (w/v) p-SUG; B: 0.5% (w/v) p-SUG; C: 0.75% 
(w/v) p-SUG; D: 1.00% (w/v) p-SUG Buffer: 100mM Tris, pH 10; Analyte 
concentration: 0.1mg/ml, Capillary Length: 57cm total (50 cm effective length); 
Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 15kV, Injection: 5psi for 5s; 
Detection: 220nm; Analytes: 1. Acetophenone, 2. Propiophenone, 3. 
Butyrophenone, 4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. 
Octanophenone, 8. Decanophenone 

 
 Three different PEM coatings were achieved using 0.5% (w/v) PDADMAC and 0.5% 

(w/v) poly-SUG consisting of 2, 3 and 4 bilayers (Figure 4.5).  The influence of bilayer number 

on the separation of 8 aryl ketones was investigated.  The column coated with 2 bilayers resulted 

in partial separation of the aryl ketones within 10 minutes.  Even though the resolutions 

increased as the number of bilayers increased, there was still only partial separation (Rs < 1.5) of 
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the ketones using the 3 bilayer system with an elution time of 14 minutes and 20 minutes for the 

4 bilayer coating.  It has been well established in PEM coatings that an increase in the number of 

bilayers results in increased interactions between the analyte and the coatings which in turn 

results in higher resolutions.  As a result, it was concluded that baseline resolution of all 8 aryl 

ketones would not be possible using PEM coatings alone. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4 Effect of concentration of poly-L-SUG on the separation of 8 achiral alkyl aryl  
  ketones using PEM coatings. Conditions: PEM Coating: 2 Bilayers; 0.5%w/v  
  PDADMAC; A.0.25%; B. 0.5% C. 1.00% (w/v) poly-SUG ; Buffer: 100 mM  
  Tris, pH 10; Analyte concentration: 0.1 mg/ml; Capillary Length: 57 cm total (50  
  cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;  Voltage: 15 kV; 
  Injection: 5 psi for 5 s; Detection: 254 nm ; Analytes: 1. Acetophenone, 2.   
  Propiophenone, 3. Butyrophenone, 4. Valerophenone, 5. Hexanophenone, 6.  
  Heptanophenone, 7. Octanophenone, 8.Decanophenone 
 

4.3.3 Effect of Concentration of Poly-L-SUG and Voltage on the Separation of 8 Achiral      
         Alkyl  Aryl Ketones Using Mixed Mode Separation Technique 
  
 The use of MEKC and PEM coatings alone resulted in only partial separation of the 8 

alkyl aryl ketones.  Therefore, a different approach, i.e. mixed mode separation, was employed in 

order to achieve baseline resolution.  In mixed mode separation, the analytes are able to partition 
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Figure 4.5  Influence of bilayer number on the separation of 8 aryl ketones using    PEM 

coatings.Conditions: A: 2 bilayers; B: 3 bilayers; C: 4 bilayers; Coating: 0.5% 
(w/v) PDADMAC and 0.5% (w/v) p-SUG; Buffer: 100 mM Tris, pH 10; Analyte 
concentration: 0.1 mg/ml, Capillary Length: 57 cm total (50 cm effective length); 
Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 15 kV, Injection: 5 psi for 5 
s; Detection: 220 nm; Analytes: 1. Acetophenone, 2. Propiophenone, 3. 
Butyrophenone, 4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. 
Octanophenone, 8. Decanophenone 

 

into the stationary phase as well as the mobile phase.  Increased interactions between analytes 

and molecular micelles results in higher resolution.  In Figure 4.6, each capillary was coated with 

2 bilayers of 0.5% PDADMAC and 0.5% p-SUG (PEM coating), also, different concentrations 

of p-SUG were placed in the mobile phase. In Figure 4.6A, 0.25% p-SUG in the mobile phase 

resulted in the separation in seven (7) of the eight (8) aryl ketones.  As the concentration of the 

molecular micelle increased (figure 4.6B-4.6D), the resolution of the aryl ketones increased and 

all 8 ketones were baseline resolved.  Also, higher concentrations of poly-SUG provided longer 

migration times and higher peak efficiencies.  The electrophoretic mobility of anionic molecular 
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micelles is opposite to that of the EOF and the hydrophobic aryl ketones interact strongly with 

poly-SUG.  Therefore, the analytes are retained in the column longer, hence, longer migration 

times.  The optimum concentration of p-SUG was 0.75% (w/v) since the highest resolution in a 

reasonable migration time as well as higher peak efficiencies were obtained (Figure 4.6C). 

 The effect of voltage on the separation of 8 aryl ketones was also investigated.  The 

voltage was varied from 15kV to 30 kV (Figure 4.7).  As the voltage increased, the viscosity of 

the electrolyte increased and the analytes moved at a faster rate through the column.  At these 

separation conditions shorter migration times (18 minutes) and higher peak efficiencies were 

obtained when 30 kV was used (Figure 4.7C).   

4.3.4 Effect of the Separation Mode on the Resolution of the Chiral Benzodiazepine,     
         Temazepam  
 
 Due to the success of the mixed mode approach to the separation of achiral analytes, 

experiments were conducted to investigate its effect on chiral separation.  Each of the 3 

separation techniques were also applied to chiral analytes of different compound classes.  The 

results obtained using each separation mode for temazepam is shown in Figure 4.8.  In Figure 

4.8A, PEM coatings were constructed with 2 bilayers of 0.5% (w/v) PDADMAC and 0.75% 

(w/v) poly-L-SULV.  Only partial separation was achieved for temazepam (Rs = 0.39) in a 

migration time of 5 minutes.  Next, the separation of temazepam was investigated using four 

concentrations (0.25 - 1.00% (w/v)) of poly-L-SULV.  The technique used for this study was 

MEKC.   In Figure 4.8B, the highest resolution (Rs = 0.75) obtained when 1.00% (w/v) poly-L-

SULV was used is illustrated.  Examination of the electropherogram reveals an increase in 

resolution compared to PEM coatings as well as increases in peak efficiencies and migration 

times.  However, baseline resolution could not be achieved by using either method alone.  

Therefore, the mixed mode separation approach was employed to fully resolve this compound.   
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Figure 4.6 Influence of poly-SUG concentration on the separation of 8 aryl ketones using 

mixed mode separation technique. Conditions: All PEM coatings were 
constructed using 2 bilayers of 0.5% PDADMAC and 0.5% p-SUG (A-D); A: 
MEKC: 0.25% (w/v) p-SUG; B: MEKC: 0.5% (w/v) p-SUG; C: MEKC: 0.75% 
(w/v) p-SUG; D: MEKC: 1.00% (w/v) p-SUG; Buffer: 100 mM Tris, pH 10; 
Analyte concentration: 0.1 mg/ml, Capillary Length: 57 cm total (50 cm effective 
length); Capillary I.D.: 50 µm; Temperature: 15 ºC; Voltage: 15 kV, Injection: 5 
psi for 5 s; Detection: 220 nm; Analytes: 1. Acetophenone, 2. Propiophenone, 3. 
Butyrophenone, 4. Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. 
Octanophenone, 8. Decanophenone 
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Figure 4.7 Influence of applied voltage on the separation of 8 aryl ketones using mixed mode 

separation technique. Conditions: All PEM coatings were constructed using 2 
bilayers of 0.5% PDADMAC and 0.5% p-SUG; MEKC: 1.00% (w/v) poly-SUG; 
Buffer: 100 mM Tris, pH 10; Analyte concentration: 0.1 mg/ml, Capillary Length: 
57 cm total (50 cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC; 
Voltage: A. 15 kV, B. 20 kV, C. 30 kV Injection: 5 psi for 5 s; Detection: 220 nm; 
Analytes: 1. Acetophenone, 2. Propiophenone, 3. Butyrophenone, 4. 
Valerophenone, 5. Hexanophenone, 6. Heptanophenone, 7. Octanophenone, 8. 
Decanophenone 

 

In Figure 4.8C, the combination of 2 bilayers (PEM coating) on the capillary wall as well as 

varying concentrations (0.25 – 1.00% (w/v)) of poly-L-SULV in the mobile phase (MEKC) is 

illustrated.  As seen in figure 4.8C-I, the resolution of temazepam increased slightly to 0.76 when 

0.25% (w/v) was used.  When the concentration of poly-L-SULV increased from 0.5% (w/v) to 

1.00% (w/v) (Figure 4.8C-II-IV), the resolution of temazepam increased to 1.76.  The increase in 

resolution is to due to the increased partitioning and interactions (hydrogen bonding, dipole-

dipole, and dispersive) between temazepam and the chiral molecular micelle, poly-L-SULV 

which is located both in the stationary and mobile phases.  
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Figure 4.8 Influence of separation mode on the resolution of temazepam. Conditions: A.  
  PEM coatings: 2 bilayers of 0.5% (w/v) PDADMAC and 0.75% (w/v) p-SULV;  
  B. MEKC: 1.00% (w/v) p-SULV; C: Mixed mode: PEM Coating: 2 bilayers of  
  0.5% (w/v) PDADMAC and 0.75% (w/v) p-SULV and MEKC: I. 0.25% (w/v);  
  II. 0.5% (w/v); III. 0.75% (w/v); IV. 1.00% (w/v) poly-L-SULV; Buffer: 50 mM  
  phosphate, pH 9.2; Analyte concentration: 0.2 mg/ml, Capillary Length: 57 cm  
  total (50 cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;   
  Voltage: 30 kV, Injection: 5 psi for 5 s; Detection: 254 nm 
 
 
4.3.5 Influence of the Polymer Concentration on the Resolution of Aminoglutethimide         
         Using Mixed Mode Separation Technique 
 
 Examination of previous results suggest superiority of the mixed mode separation 

technique as compared to MEKC or PEM coatings alone in terms of analyte resolution.  In this 

study, the influence of polymer concentration in the mobile phase using the mixed mode 

technique was investigated.  The PEM coatings were first constructed using 2 bilayers of 0.5% 

(w/v) PDADMAC and 0.75% (w/v) poly-L-SULV.  Then, the concentration of poly-L-SULV in 

the mobile phase was varied from 0.25-1.5% (w/v).  The results obtained are shown in Figure 

4.9.  When 0.25% (w/v) poly-L-SULV was used, partial separation (Rs = 0.29) of 

aminoglutethimide was achieved within 10 minutes (Figure 4.9A).  Figure 4.9B shows an 
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increase in resolution (Rs = 0.75) when using 0.5% (w/v) poly-L-SULV in a similar elution time.  

As expected, when the concentration of poly-L-SULV in the mobile phase increased from 1.00- 

1.50% (w/v) (Figure 4.9C-D), the resolution (Rs = 1.40 – 1.68) as well as the migration time (13 

– 16 minutes) increased.  The optimum condition for separation (baseline resolution) was 

achieved when 1.5% (w/v) poly-L-SULV was used.  The presence of the molecular micelles both 

in the stationary and mobile phases plays a seminal role in increasing the polymer-analyte 

interactions, hence, increased resolution.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 Influence of poly-L-SULV concentration in the mobile phase on the resolution of  
  aminoglutethimide using mixed mode separation technique. Conditions: All PEM  
  coatings were constructed using 2 bilayers of 0.5% (w/v) PDADMAC and 0.75%  
  (w/v) p-SULV (A-D).  A. Mixed Mode: MEKC: 0.25% (w/v) p-SULV; B. Mixed  
  Mode: MEKC: 0.5% (w/v) p-SULV; C. Mixed Mode:, MEKC: 1.00 %(w/v) p- 
  SULV; D. Mixed Mode: MEKC: 1.50% (w/v) p-SULV Buffer: 50 mM   
  phosphate, pH 7.5; Analyte concentration: 0.2 mg/ml, Capillary Length: 57 cm  
  total (50 cm effective length); Capillary I.D.: 50 µm; Temperature: 15 ºC;   
  Voltage: 30 kV, Injection: 5 psi for 5 s; Detection: 254 nm  
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4.3.6 Optimum Separation Conditions of Three Chiral Analytes (Benzoin, Benzoin              
         Methyl Ether and Coumachlor) Using MEKC, PEM Coatings, and Mixed Mode     
         Separation Technique 
 
 Three additional chiral analytes were investigated to demonstrate the effectiveness of the 

mixed mode separation.  Table 4.1 is a compilation of the separation conditions that achieved the 

highest resolution for 3 chiral analytes using each separation mode.  Using MEKC, resolution 

values of 0.96, 0.78 and 1.26 were obtained for benzoin, benzoin methyl ether (BME) and 

coumachlor respectively.  The separation of benzoin and coumachlor occurred in approximately 

14 minutes, whereas BME had an elution time of 6.13 minutes.  Since baseline resolution could 

not be achieved using MEKC, further experiments were performed using PEM coatings to 

determine its influence on the resolution of these analytes.  However, the results obtained using 

PEM coatings were inferior to those of MEKC.  Though less molecular micelles were consumed, 

both resolution and migration times decreased using coated capillaries. Therefore, the mixed 

mode separation approach was implemented to overcome the limitations of each method when 

used separately.  As shown in Table 4.1, the resolution of each chiral analyte increased using 

mixed mode separation and all three analytes were baseline resolved within 9 minutes.  In 

addition, the capacity factors increased for all 3 analytes when the mixed mode separation was 

used and the selectivity attained was similar to those of MEKC.  These values are great 

indicators of the effectiveness of these chiral columns. 

4.4 Concluding Remarks 

 Mixed mode separation has been implemented to separate both achiral and chiral 

analytes.  This method can be employed to separate analytes of various compound classes that 

are difficult to resolve using MEKC or PEM coatings alone.  All results are indicative of an 

increase in resolution when mixed mode separation is used.  Baseline resolution was achieved 

for 8 achiral aryl ketones as well as temazepam, aminoglutethimide, benzoin, benzoin methyl 
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ether, and coumachlor.  Increasing the molecular micelle concentration in the mobile phase 

resulted in increased chiral resolution.  The separation conditions were optimized for the specific 

analytes investigated; however, mixed mode separation has the potential to be applied to a wide 

range of analytes.  The selectivity of the system can be tailored by altering the molecular 

micelles used, the bilayer number, as well as cationic and anionic polymer concentrations, 

among others.  Overall, this approach would be of great benefit for quick pharmaceutical 

screening as well as in areas that require the difficult separation of achiral or chiral analytes.   

 
Table 4.1 Optimum separation conditions of three chiral analytes using MEKC, PEM 
coatings and mixed mode separation technique. Conditions: All PEM coatings were constructed 
using 0.5% (w/v) PDADMAC.  Temperature: 15 ºC; Buffer: 50 mM phosphate, pH 7.5; Analyte 
concentration: 0.2 mg/ml, Capillary Length: 57 cm total (50 cm effective length); Capillary I.D.: 
50 µm; Injection: 5 psi for 5 s; Detection: 254 nm; Analyte: Benzoin, Benzoin Methyl Ether 
(BME), Coumachlor 
 

Separation Mode Analyte [Poly-L-SULV] 
(%w/v) 

Volt 
(kV) 

EOF 
(min) 

MT1 MT2 Rs1 K1 K2 α 

           
MEKC Benzoin 1.00 15 7.45 13.22 13.58 0.96 0.77 0.82 1.06 

3bilayers-PEM Benzoin 1.00 30 4.12 4.27 4.43 0.34 0.04 0.08 2.08 
2bilayers-MM Benzoin 0.75/1.50 30 3.34 7.26 7.51 1.50 1.17 1.25 1.06 

           
MEKC BME 1.00 30 3.04 6.00 6.13 0.78 0.97 1.01 1.04 

3bilayers-PEM BME 1.00 30 3.88 3.97 4.25 0.51 0.02 0.10 4.11 
3bilayers-MM BME 0.75/1.50 30 3.24 8.19 8.43 1.51 1.53 1.60 1.05 

           
MEKC Coumachlor 1.00 15 7.41 12.84 3.18 1.26 0.73 0.78 1.06 

3bilayers-PEM Coumachlor 0.75 30 4.20 6.13 6.80 0.82 0.46 0.62 1.35 
3bilayes-MM Coumachlor 0.75/1.50 30 3.25 6.77 6.99 1.52 1.08 1.15 1.06 
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CHAPTER 5 

ACIDIC PROTEIN SEPARATIONS USING POLELECTROLYTE MULTILAYER 
COATINGS IN OPEN TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY 

AND GRADIENT ELUTION MOVING BOUNDARY ELECTROPHORESIS 
         
5.1 Introduction 

 Proteins are biomolecules of great interest as biomarkers for diseases, markers for stage 

development of organisms, and additives to foods [1  Many studies have been dedicated to the 

separation and identification of milk proteins such as α-lactalbumin, β-lactoglobulin A, β-

lactoglobulin B, bovine serum albumin (BSA) because of immunogenic properties [1-3].   These 

bovine whey proteins are also widely used as test mixtures for many techniques to determine the 

quality of nutrients in processed milk [2, 4].  In this manuscript, this protein system was selected 

as a model for the development of a protein separation approach using CEC and gradient elution 

moving boundary electrophoresis (GEMBE). 

 Polyelectrolyte multilayer (PEM) coatings have been used in open tubular CEC (OT-

CEC) to separate a number of achiral [5, 6] and chiral analytes [7-9], as well as proteins [10-12].  

PEM coatings are constructed by alternating layers of cationic and anionic polymers on the inner 

walls of a deprotonated silica capillary.  Each layer of the cationic and anionic polymer is 

termed, a bilayer [5, 6].  Successful protein separations using PEM coatings are achieved through 

three major mechanisms.  Firstly, protein adsorption is reduced since the exposed negatively 

charged silanol groups are covered by the PEM coatings.  Secondly, these coatings are used to 

control or modify the EOF.  The third major use of PEM coatings is to provide a medium for 

protein interactions [10].   

 Both UV and LIF detectors may be employed in protein separations.  UV detectors are 

commonly used in CE for the detection of a wide range of analytes including proteins [13].  

Separations performed using UV detection are typically simple and require little or no analyte 
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derivations, pre-, on- or post-column [14].  Compared to other detection methods, UV detection 

is inexpensive, simple, and easily automated.  Wang et al. used CE with UV detection to achieve 

high resolution, fast separations of various proteins in capillaries coated with multilayers [14].  

The results indicated the ability of on-line concentration with pH junctions for the detection of 

trace proteins.  Recently, Luces et al. used PEM coatings with UV detection to report the 

differences in protein selectivity for basic proteins when varying the coating polymers [10].  

Coated columns coupled with UV detection have been used to simultaneously separate both 

acidic and basic proteins and many papers have been published in this area [15-20].   

 Although, UV detection has been successfully used for many protein and peptide 

mixtures, it has proven to be troublesome for biological samples with concentrations in the sub-

µM ranges [21].  In contrast, LIF detection is by far the most sensitive detection mode used for 

CE affording the lowest LOD.    LIF enables the detection of few or even single molecules [21].   

Ramsay et al. detected attomolar, femtomolar, and zeptomolar protein concentrations by CIEF 

with LIF detection [22, 23].  Some proteins are fluorescent in their native state if their primary 

structure contains the amino acids tryptophan, tyrosine or phenylalanine [24].  It should be noted 

that the UV excitation required for these amino acids makes this method inconvenient, therefore, 

CE-LIF with native protein fluorescence is less common than LIF detection of derivatized 

proteins [25, 26].  In cases where proteins do not natively fluoresce, pre-[27], on- [28] or post-

column [29, 30] fluorescent derivatizations are necessary for use with LIF detection. 

 In pre-column derivatization, the most commonly used, proteins are labeled with a 

fluorescent dye before introduction to the capillary.   Covalent bonds may form between the dye 

and the amino, carboxylate, thiol, or other functional groups on the proteins [21].  There are 

currently many commercial dyes that are used to fluorescently label proteins through covalent 

bonds between the proteins’ reactive thiol groups of cystein residues and the dye.  Fluorescent 
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labeling to the thiol groups have proven to produce cleaner electropherograms when compared to 

other labeling groups [21]. Thiol labeling does not interfere with the charged groups on the 

protein i.e. –NH3
+ and –COO– and therefore maintains the net charge of the protein unaltered.   

 Protein separations using PEM coatings with LIF detection are not limited to only CE 

techniques; these coatings can also be used with GEMBE.  Shackman et al. were the first to 

demonstrate GEMBE, which promotes high resolution separations in short, narrow separation 

microchannels [31].  GEMBE has the advantage of allowing continuous sample injection into the 

separation channel which eliminates conventional injection methods such as electrokinetic and 

hydrodynamic injections.  Experiments using GEMBE are performed by carefully controlling a 

hydrodynamic counterflow, which allows analytes to enter the separation channel.  Separations 

are achieved due to differences in the electrophoretic mobilities of the analytes. Therefore, only 

analytes with an electrophoretic mobility that is greater than the counterflow will enter the 

separation channel.    

 In this manuscript, we report on protein separations using PEM coatings with UV and 

LIF detection in OT-CEC.  The influence of polymer type, bilayer number, pH of the 

background electrolyte, capillary effective length and internal diameter were investigated to 

determine their effect on protein resolution and migration time.  In addition, the application of 

PEM coated capillaries for protein separations using GEMBE with LIF detection was explored to 

demonstrate the coatings’ versatility. 

5.2 Materials and Methods 

5.2.1 Materials 

 The cationic polymer, poly-L-ornithine hydrobromide, as well as the proteins, α-

lactalbumin (bovine milk), β-lactoglobulin A (bovine milk), β-lactoglobulin B (bovine milk), 

albumin (chicken eggwhite), myoglobin (equine heart), and deoxyribonuclease I (bovine 
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pancreas) were purchased from Sigma Chemical Company (St. Louis, MO).  The chemicals used 

to synthesize surfactant monomers N-hydroxysuccinimide, undecylenic acid, chlorosulfonic acid, 

dicyclohexylcarbodiimide, and sodium bicarbonate were purchased from Fluka (Milwaukee, 

WI).  The dipeptide (L,L)-leucyl-alaninate was purchased from Bachem Bioscience, Inc. (King of 

Prussia, PA).  Sodium hydroxide, ethyl acetate, and tetrahydrofuran were purchased from Sigma-

Aldrich (Milwaukee, WI).  The background electrolyte, sodium phosphate dibasic, methanol, and 

acetone were purchased from Fisher Scientific (Fair Lawn, NJ).  All materials were used as 

received. 

5.2.2 Instrumentation 
 
 For OT-CEC separations, fused silica capillary (Polymicro Technologies; Phoenix, AZ) 

with a 5 mm detection window was used with at varying lengths (10 cm, 30 cm, 40 cm) and 

internal diameters (30 µm, 50 µm).  OT-CEC experiments were conducted using a Beckman 

P/ACE MDQ capillary electrophoresis system, equipped with a photodiode array detector and 

LIF detector (488 nm argon-ion laser) (Fullerton, CA).  For UV detection, the acidic proteins 

were detected at 200 nm.  All analytes were injected at 0.5 psi for 5 s.  Liquid coolant was used 

to maintain the temperature at 15 °C.  The applied voltage ranged from 15 kV to 30 kV.  For 

GEMBE separations, a 3 cm fused silica capillary with a 5 mm detection window was used.  One 

end of the capillary was placed into a 360 µm hole in the analyte reservoir with an electrode.  

The other end of the capillary was attached to a polypropylene syringe that contained ~1 mL of 

buffer.  The syringe was grounded and connected to a ±69 kPa (10 psi) precision pressure 

controller (Series 600, Mensor, San Marcos, TX), which used helium as the gas supply.  The 

syringe plunger accommodated the high voltage supply and controlled the pressure.  All 

experiments were performed on a fluorescence microscope (DMLB, Leica Microsystems, 

Bannockburn, IL), with 10 × objective (numerical aperature, NA = 0.3), Hg arc lamp, color CCD 
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camera, (DXC-390, Sony, New York, NY) and appropriate fluorescence filter sets. Instrumental 

control and data acquisition used Java 5.0 software (Sun Microsystems, Santa Clara, CA).  Raw 

data were transformed using Savitzky Golay smoothing.  

5.2.3 Synthesis of Molecular Micelles 

 The chiral dipeptide molecular micelles poly-L-SULA and poly-L-SULV were 

synthesized according to a procedure previously described by Wang and Warner [32].  60Co γ-

ray irradiation was used to polymerize 100 mM monomer solutions.  The molecular structures of 

the molecular micelles as well as the cationic polymer used in this study are presented in Figure 

5.1. 

 

Figure 5.1 Representative molecular structures of compounds used for protein separations:  
  A: Anionic polymer: (I) Poly-L-SULV; (II) Poly-L-SULA; (* indicates the chiral  
  center; B: Cationic Polymer:  Poly-L-ornithine hydrobromide; C: 5-  
  Iodoacetamidofluorescein (5-IAF) 
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5.2.4 Sample and Buffer Preparation 

 The pH of the background electrolyte for all studies was adjusted using 1 M NaOH and 1 

M HCl.  All buffers were filtered using 0.45 µm polypropylene nylon filters and sonicated for 15 

minutes before use.  Stock solutions of the acidic proteins were prepared in 40 mM phosphate 

buffer at pH 7, 8, 9, and 10.  The chiral cationic polymer, poly-L-ornithine hydrobromide, and 

the chiral molecular micelles (poly-L-SULA and poly-L-SULV) were set at concentrations of 

0.03% (w/v) and 0.5% (w/v) respectively.   

5.2.5 PEM Coating Procedure 

 The capillary walls were deprotonated using 1 M NaOH by flushing the capillary for 30 

minutes followed by a 15 minute deionized water rinse.  First, the cationic polymer was flushed 

through the capillary for 10 minutes followed by a 5 minute rinse with deionized water. The 

bilayer was completed by a 5 minute rinse with the anionic polymer, followed by a 5 minute 

deionized water rinse. Subsequent bilayers consisted of alternate 5 minute rinses of the cationic 

and anionic polymers; however, the last anionic layer was always flushed for 10 minutes.  All 

rinses were performed using the rinse function of the CE instrument, with applied pressure of 

20psi.  For the GEMBE technique, the capillary was coated using the CE instrument and then cut 

into 3 cm pieces. 

5.2.6 Fluorescent Labeling of the Acidic Proteins 
  
 5-Iodoacetamidofluorescein (5-IAF), a fluorescein derivative was chosen to fluorescently 

label the acidic proteins [Molecular Weight: 515.26; Excitation Wavelength: 490-495 nm; 

Emission Wavelength: 515-520 nm (green); Molar Extinction Coefficient at 492 nm: 80,000-

85,000 M-1 cm-1; Formula: C22H14INO6.  (Figure 5.1C) The required amount of each protein (1-

10 mg) was dissolved in 1 mL of 0.1 M phosphate buffered saline (PBS), 0.15 M NaCl, pH 7.2.  

A mass of 1 mg of 5-IAF was dissolved in 100 µl of DMF.  5-IAF was added to each protein 
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solution in a concentration 10 times the protein concentration. The reaction was then thoroughly 

mixed and allowed to react for 2 hours in the dark at room temperature. Then, the excess (free) 

dye was removed by use of a desalting column. Aliquots of fluorescently labeled proteins were 

stored at 4 oC in the dark. 

5.3 Results and Discussion 
 
5.3.1 Influence of the pH of the Background Electrolyte on the Separation of 6 Acidic 
         Proteins Using PEM Coated Columns with UV Detection 
 
 The purpose of this study was to investigate the effect of the pH of the background 

electrolyte on six (6) acidic proteins.  The results reported in this section were obtained using UV 

detection.  A 2 bilayer PEM coating was constructed using 0.03% (w/v) of poly-L-ornithine and 

0.5% (w/v) of poly-L-SULA and 0.03% (w/v) of poly-L-ornithine and 0.5% (w/v) of poly-L-

SULV (Figure 5.2).  The background electrolyte, 40 mM phosphate was prepared at three 

different pH levels, 7, 8, and 9.  Figure 5.2A, using poly-L-SULA, illustrates all proteins being 

eluted before 13 minutes when a pH 7 background electrolyte was used, however, myoglobin 

and α-lactalbumin (proteins 2 & 3) co-eluted.  Also, only partial separation was attained between 

β-lactoglobulin B and albumin.  When, poly-L-SULV was used as the anionic layer, also at pH 7, 

no resolution was attained between the last three proteins (β-lactoglobulin A, β-lactoglobulin B, 

and albumin).  At pH 7, proteins have a net negative charge; however, there may still be some 

areas of exposed positive charges.  Therefore, baseline resolution of the last three proteins may 

not have been achieved due to some adsorption to the capillary wall.  This hypothesis is 

consistent with the peak tailing observed in the electropherogram.  In Figure 5.2B, all 6 acidic 

proteins were baseline resolved within 17 minutes at pH 8 when both poly-L-SULA and poly-L-

SULV were used.  In both electropherograms, the efficiencies of deoxyribonuclease (peak 3) and 

albumin (peak 6) were low.  However, any increase in the analyte concentration resulted in co-

elution with the preceding peak.  At pH 9, myoglobin and α-lactalbumin co-eluted when both 
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poly-L-SULA and poly-L-SULV (Figure 5.2C) were used.  As indicated, when poly-L-SULA 

was used, broad protein peaks may demonstrate too many interactions with the PEM coating.  

All further experiments were performed using a 40 mM phosphate background electrolyte at pH 

8 as a result of baseline resolution for all proteins. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 Influence of pH on the separation of 6 acidic proteins using PEM coated columns  
  and UV detection. Conditions: Number of Bilayers: 2 bilayers; Cationic Polymer:  
  0.03% (w/v)  poly-L-ornithine, Anionic Polymer: 0.5% (w/v) poly-L-  
  (I)SULA/(II)SULV; Buffer: 40 mM phosphate; pH (A) 7; (B) 8; (C) 9; Analyte  
  concentration: 0.5 mg/ml; Capillary length: 50 cm total (40 cm effective length);  
  Capillary i.d.: 50 µm; Injection: 0.5 psi for 5 s; Temperature: 15 ˚C, Voltage : 15  
  kV. Detection: 200 nm; Analytes: 1. Myoglobin, 2. α-lactalbumin, 3.   
  Deoxyribonuclease; 4. β-lactoglobulin A,  5. β-lactoglobulin B, 6. Albumin 
 
5.3.2 Influence of the Number of Bilayers on the Separation of 6 Acidic Proteins Using  
         PEM Coated Columns with UV detection 
 
 Three different bilayer numbers were investigated using poly-L-ornithine as the cationic 

polymer with poly-L-SULA and poly-L-SULV (Figure 5.3) as the anionic polymers.  The bilayer 

numbers varied from 1 to 3.  When 1 bilayer was constructed using either one of the anionic 

polymers, complete resolution of the proteins was not achieved (Figure 5.3A).  It was suspected 
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that the exposed negatively charged silanol groups were not completely covered; therefore, 

yielding to protein adsorption to the capillary walls, was consistent with the observed low peak 

efficiency.  Also, the co-elution of myoglobin and α-lactalbumin as well as β-lactoglobulin B and 

albumin may indicate no or limited protein-PEM interactions.  When 2 bilayers were formed, 

baseline resolution was achieved when either anionic polymer was used to form the PEM 

coatings due to protein-PEM interactions [10] (Figure 5.3B).  When 3 bilayers were formed, 

current breakdown as well as irreproducible results was observed (Figure 5.3C).  Furthermore, 

peak identification was unattainable.  The optimum number of bilayers required for separating 

this protein system was determined to be 2 bilayers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3 Influence of the number of bilayers on the separation of 6 acidic proteins using  
  PEM coated columns and UV detection. Conditions: Number of Bilayers: (A) 1  
  bilayer; (B) 2 bilayers; (C) 3 bilayers; Cationic Polymer: 0.03% (w/v)  poly-L- 
  ornithine, Anionic polymer: 0.5% (w/v) poly-L-(I)SULA/(II)SULV; Buffer: 40  
  mM phosphate, pH 8; Analyte concentration: 0.5 mg/ml; Capillary length: 50 cm  
  total (40 cm effective length); Capillary i.d.: 50 µm; Injection: 0.5 psi for 5 s;  
  Temperature: 15 ˚C, Voltage : 15 kV, Detection: 200 nm; Analytes: 1.   
  Myoglobin, 2. α-lactalbumin, 3. Deoxyribonuclease, 4. β-lactoglobulin A,  5. β- 
  lactoglobulin B, 6. Albumin 
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5.3.3 Influence of pH of the Background Eectrolyte on the Separation of 3 Acidic Proteins 
         Using PEM Coated Columns with LIF Detection 
 
 Three acidic proteins, β-lactoglobulin A, β- lactoglobulin B and albumin were 

fluorescently labeled with 5-IAF.  These three proteins were chosen because they have free 

groups for labeling.  A required step when proteins have no free groups to label is denaturation to 

produce free groups.  Previous experiments revealed inferior resolution of denatured proteins 

when PEM coatings were used (results not shown).  Therefore, only proteins that did not require 

denaturation were labeled.  All results in this section were attained using the LIF detector in the 

CE instrument.  The PEM coating was created using 0.03% (w/v) poly-L-ornithine and 0.5% 

(w/v) poly-L-SULA.  The background electrolyte was used at three different pH values, 8, 9 and 

10.  Similar experiments were conducted using UV detection; however, the purpose here was to 

investigate the influence, if any, of the fluorescent dye.  All three proteins were baseline resolved 

within 14 minutes with pH 8 buffer (Figure 5.4C).  As seen with UV detection, protein resolution 

of the third protein (albumin) was lost at pH 9 (Figure 5.4B) and pH 10 (Figure 5.4A) buffer.  

High efficiency peaks were attained at all pHs investigated.  The other peaks observed in the 

electropherograms are associated with impurities and degradation products.  These peaks were 

also observed with UV detection; however, the peaks were several orders of magnitude larger 

using the more sensitive LIF detection method.  The optimum pH for the protein separations 

using both UV and LIF detection was 8.  It appears that the fluorescent dye, 5-IAF, did influence 

the migration time and resolution of the three proteins investigated through different protein-

PEM interactions.  The migration time of β-lactoglobulin A  was ~12 minutes without any 

fluorescent labeling decreased to ~4 minutes when it was labeled with 5-IAF.  Similar decreases 

in migration times were observed with β-lactoglobulin B and albumin.  In addition, increased 

protein resolution was evident the fluorescently labeled proteins.   
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Figure 5.4 Influence of pH of the background electrolyte and internal diameter on the  
  separation of 3 acidic proteins using PEM coated columns with LIF detection.  
  Conditions: Number of Bilayers: 2 bilayers; Cationic Polymer: 0.03% (w/v)  poly- 
  L-ornithine, Anionic Polymer: 0.5% (w/v) poly-L-SULA; Buffer: 40 mM   
  phosphate pH (A) 10, (B) 9, (C) 8, (D) 8; Capillary length: 50 cm total (40 cm  
  effective length); Capillary i.d.: (A-C) 50 µm, (D) 30 µm; Injection: 0.5 psi for 5  
  s; Temperature: 15 ˚C, Voltage : 15 kV, Analytes: 1. β-lactoglobulin A,  2. β- 
  lactoglobulin B, 3. Albumin 
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5.3.4 Influence of Internal Diameter and Effective Length of the Capillary on the  
         Separation of 3 Acidic Proteins Using PEM Coated Columns with LIF Detection 
 
 In this study, the effect of the internal diameter (ID) of the capillary was investigated.  

PEM coatings (2 bilayers) were constructed in two capillaries, 30 µm ID and 50 µm ID using 

poly-L-ornithine and poly-L-SULA.  The total length of both capillaries was 50 cm (40 cm 

effective length).  When 3 acidic proteins were injected into the 30 µm ID capillary, high 

efficiency and baseline resolved proteins were observed within 5 minutes (Figure 5.4D).  

However, similar experiments in the 50 µm ID capillary resulted in a longer separation time of 

13 minutes for baseline resolution of the proteins (Figure 5.4C).  The faster separation times 

obtained in the 30 µm ID capillary were due to the higher electric field, therefore resulting in 

faster elution through the capillary.  In both cases, the applied voltage was 30 kV.  Since electric 

field is influenced by voltage and the area of the capillary, a smaller area yields a higher electric 

field.  Special attention was given to achieving a more stable baseline, however, the 

electropherograms illustrated in Figure 4 were the best obtained.   

In order to observe the effect on protein resolution, three capillaries of varying effective 

lengths, 10 cm, 30 cm and 40 cm were coated with 2 bilayers of 0.03% (w/v) poly-L-ornithine 

and 0.5% poly-L-SULA.  Short-end injection was used to obtain a shorter elution time and also 

to overcome the constraints of the minimum capillary length possible in commercially available 

CE cartridges (Figure 5.5A).  In short-end injections, voltage is applied at the outlet of the 

capillary in reversed polarity to obtain the EOF moving in the direction of the detection window.  

Therefore, the effective length was 10 cm and the total capillary length, 40 cm.  Figure 5.5A 

shows very fast, complete resolution of the 3 acidic proteins within 2 minutes.  Again, this was 

the best baseline obtained after varying several parameters.  High efficiency and high resolution 

peaks were obtained within 5 minutes for acidic protein separations using a 30 cm (effective 

length) capillary (Figure 5.5B).  In Figure 5.5C, 3 proteins were separated with the longest 
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migration time of approximately 12 minutes.  In this system, the electric field was smaller; 

therefore, the analytes migrated through the column at a slower rate.  Also, as a result of 

increased protein-PEM interactions, protein peaks had lower efficiency than in Figure 5.5A and 

5.5B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5 Influence of effective length of the capillary on the separation of 3 acidic proteins  
  using PEM coated columns with LIF detection. Conditions: Number of Bilayers:  
  2 bilayers; Cationic Polymer: 0.03% (w/v)  poly-L-ornithine, Anionic Polymer:  
  0.5% (w/v) poly-L-SULA; Buffer: 40 mM phosphate pH 8; Capillary length: (A)  
  10 cm (short-end injection); (B) 30 cm, (C) 40 cm effective length, (50 cm total  
  length); Capillary i.d.: 30 µm; Injection: 0.5 psi for 5 s; Temperature: 15 ˚C,  
  Voltage : 15 kV Analytes: 1. β-lactoglobulin A,  2. β-lactoglobulin B, 3. Albumin;  
 
5.3.5 Separation of 3 Acidic Proteins Using GEMBE  
 
 GEMBE technique combines the electrophoretic migration of each analyte with the 

variation of the hydrodynamic bulk counterflow of the solution in short capillaries or 

microfluidic devices.  In general, high resolution separations are achieved using the GEMBE 
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technique.  Analytes with an electrophoretic mobility greater than the velocity of the counterflow 

will enter the separation channel.  As the velocity of the counterflow is varied, each analyte 

enters the separation channel at a different time.  To our knowledge, this is the first report of the 

use of GEMBE for protein separations.  PEM coatings were first constructed using the rinse 

function in the CE instrument.  After the coating was completed, the capillary was removed from 

the instrument and cut into 3 cm pieces to be used in the GEMBE setup.  The capillary was 

placed in the setup as described in Section 2.2.  Figure 5.6 illustrates the effect of voltage on 

protein separation using the GEMBE technique.  The sample was first introduced into the 

capillary with a starting pressure of 2000 Pa.  At intervals of 5 Pa, the sample moves through the 

capillary until it is captured by the CCD camera.  The voltage was varied from 300 V, 700 V, 

and 1000 V (Figure 5.6).  All three voltages provided a migration time of approximately 20 

minutes.  From these results, we can conclude that voltage did not have a significant influence on 

the protein separation time (migration time only varied by 1 or 2 minutes) .  Furthermore, the 

migration time of the proteins are considerably longer using PEM coatings with the GEMBE 

technique than PEM coatings with OT-CEC.  GEMBE usually provides fast separations, 

however, the migration times obtained in these experiments are increased due to increased 

protein-PEM interactions. 

5.4 Concluding Remarks  

 In this study, PEM coatings were constructed for use in OT-CEC and GEMBE. The PEM 

coatings consisted of 0.03% (w/v) poly-L-ornithine and 0.5% poly-L-SULA/SULV.  Both UV 

and LIF detection were used to observe protein separation.  It is evident that the fluorescent dye 

affected both protein resolution and migration time.  The anionic polymer, pH of background 

electrolyte, internal diameter of capillary, effective length of capillary, bilayer number and 

applied voltage were varied to optimize protein separations.  The results indicated that PEM 
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coatings constructed from 2 bilayers using the anionic polymer, poly-L-SULA and pH 8 

background electrolyte, provided high efficiency, high resolution protein separations.  The 

migration time of the proteins were considerably shorter in PEM coated capillaries in OT-CEC 

than with PEM coated capillaries using the GEMBE technique. Results indicate that PEM 

coatings can be coupled with the GEMBE technique, however, its presence increases the 

migration time in a usually fast separation method.  PEM coatings provide chromatographic 

interactions with the analytes in OT-CEC also seem to work in GEMBE.  Though, a coating that 

generally minimizes analyte-wall adsorption may be more suitable for GEMBE.  Overall, these 

studies prove the versatility of PEM coatings with applications for acidic protein separations in 

OT-CEC and the GEMBE technique as well as basic protein separations that has been previously 

published [10]. 

 
 

 
 
Figure 5.6 Influence of applied voltage on the separation of 3 acidic proteins using PEM  
  coated columns using GEMBE. Conditions: Number of Bilayers: 2 bilayers;  
  Cationic Polymer: 0.03% (w/v) poly-L-ornithine; Anionic Polymer: 0.5% (w/v)  
  poly-L-SULA; Buffer: 40mM phosphate, pH 8; Voltage: (A) 300, (B) 700, (C)  
  1000 V; Capillary length: 3 cm, 30 µm I.D; Starting Pressure: 3000 Pa; Step  
  interval: 5; Analytes: 1: β-lactoglobulin A; 2. β -lactoglobulin B; 3. Albumin 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE STUDIES 
 

 In this dissertation, achiral, chiral and protein separations with molecular micelles using 

chromatographic techniques are described.  These techniques include micellar electrokinetic 

chromatography (MEKC), open tubular capillary electrochromatography (OT-CEC), and 

gradient elution moving boundary electrophoresis (GEMBE).  Various molecular micelles, both 

achiral and chiral, were used for novel separations. PEM coatings with molecular micelles were 

used for the first time for protein separations.  In addition, the first use of the new GEMBE 

technique with molecular micelles for protein separations was also demonstrated.  The work 

completed in this dissertation should have a great impact on the pharmaceutical and 

biotechnological arenas.  Novel methods for protein and chiral separations will provide new 

insight into their interactions with PEM coatings as well as aid in optimization procedures.  The 

optimized separation conditions outlined in these chapters can serve as a template for the 

separation of other analytes.  A background and introduction of these techniques, as well as the 

molecular micelles used were detailed in Chapter 1.   

 In Chapter 2, chiral polymers were used to construct novel PEM coatings for the 

separation of three chiral analytes.  The cationic layer of these coatings consisted of one of four 

commercially available chiral polymers; poly-L-ornithine, poly-L-lysine, poly-L-lysine-serine 

and poly-L-glutamic acid-lysine. To complete the bilayer, the molecular micelles, poly-L-SULA 

and poly-L-SULV were synthesized in our laboratory.  After several experiments, 0.5% poly-L-

SULA was chosen as the optimal concentration and molecular micelle for the anionic polymer in 

the PEM coatings.  Increased resolution and migration time were observed when the bilayer 

number was increased.  The optimum cationic polymer used in PEM coatings was analyte 

dependent.  Poly-L-ornithine gave the best resolution for the two binaphthyl derivatives while, 
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poly-L-glutamic acid-lysine provided the best resolution for the β-blocker, labetalol.  Robust 

PEM coated columns endured over 350 runs and resulted in %RSDs of less than 1%.   

 PEM coatings used for protein separations are described in Chapter 3.  The cationic 

polymers, poly-L-glutamic acid-lysine, poly-L-lysine-serine, poly-L-ornithine, and poly-L-lysine 

as well as three anionic molecular micelles, poly-L-SULA, poly-L-SULV, and poly-SUS were 

used to separate α-chymotrypsinogen, lysozyme, ribonuclease A and cytochrome c.  

Experimental design, specifically Box Behnken was used to optimize the separation conditions.  

The conditions included operating temperature, applied voltage, type and concentration of 

cationic polymer, and background electrolyte pH.  Though all proteins were resolved using each 

cationic polymer, the use of poly-L-glutamic acid-lysine in the PEM coating resulted in the 

highest resolution and poly-L-lysine the lowest.  Chapter 3 demonstrated the importance of the 

use of molecular micelles in PEM coatings since inferior separations were achieved with only a 

cationic coating.  In addition, a comparison of using achiral or chiral molecular micelles in PEM 

coatings was performed.  Results showed that chiral molecular micelles, poly-L-SULA and poly-

L-SULV resulted in higher protein resolution than an achiral molecular micelle (poly-SUS).  The 

selectivity of PEM coatings was determined by the choice of polymers used which was displayed 

by the different elution orders of the proteins investigated.   

 In Chapter 4, a novel technique that combined PEM coatings and MEKC, mixed mode 

separation technique, was demonstrated to separate both achiral and chiral analytes.  Mixed 

mode separation technique is important for analytes that cannot be resolved by the use of MEKC 

or PEM coatings alone.  Studies revealed an increase in resolution when mixed mode separation 

was used.  Baseline resolution was achieved for 8 achiral aryl ketones as well as all five chiral 

analytes.  Increasing the molecular micelle concentration in the mobile phase resulted in 

increased chiral resolution.  Mixed mode separation technique can be used to separate a number 
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of achiral and chiral analytes from various compound classes.  The selectivity of the method can 

be tailored by changing the polymers used in the process.   

 Future experiments involving altering the cationic polymers used in PEM coatings may 

result in the resolution of additional analytes. These chiral cationic polymers may include poly-L-

glutamic acid-lysine, poly-L-lysine-serine, poly-L-ornithine, and poly-L-lysine.  In addition, it 

would be of great interest to determine the effect, if any, of using different molecular micelles for 

the mixed mode method since the selectivity and resolution will be altered. For example, coating 

the wall with a cationic polymer and poly-L-SULA and using poly-L-SULV in the MEKC phase, 

may increase chiral interactions.  In Chapter 3, the elution order of proteins was reversed when 

two polymers were used.  It is suspected that similar results may be revealed when applied to 

achiral and chiral analytes.  

 In Chapter 5, PEM coatings were constructed for use in OT-CEC and GEMBE.  For the 

first time in this dissertation LIF detection was used to observe protein separation.  A comparison 

between native proteins (UV detection) and derivatized proteins (LIF detection) was 

demonstrated.  Studies involving fluorescently labeled proteins illustrated increased resolution 

and migration time.  Separation parameters such as choice of anionic polymer, pH of background 

electrolyte, internal diameter of capillary, effective length of capillary, bilayer number and 

applied voltage were varied to optimize protein separations.  The optimum coating conditions for 

both native and derivatized proteins were 2 bilayers of poly-L-ornithine and poly-L-SULA.  The 

background electrolyte at pH 8 provided high efficiency, high resolution protein separations.  

PEM coatings coupled with GEMBE were also demonstrated for the first time.  The migration 

time of the proteins were considerably shorter in PEM coated capillaries in OT-CEC than with 

PEM coated capillaries using the GEMBE technique.  Generally, microfluidic devices are used 

for the GEMBE method.   
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 The main purpose of the coating in this case will be to prevent protein adsorption to the 

inner walls The next step in this study should involve constructing PEM coatings in a 

microfluidic device.  The PEM coatings should be thinner than those in a silica capillary due to 

the smaller micro channels.  A thinner PEM coating can be constructed by lower bilayer 

numbers, lower coating polymer concentrations, and shorter coating rinse times.  These coatings 

will provide less protein-PEM interaction, therefore shorter elution times.  These experiments 

will display the advantages of the GEMBE technique, i.e. fast, high resolution separations. 
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