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Abstract  

 

Chemo- and biosensors based on fluorescent conjugated polymers benefit from greater 

detection sensitivity due to amplification of the electronic perturbations produced by analyte 

binding. This amplification stems from the exciton-transporting properties of conjugated 

polymers. In the conventional sensor design paradigm, excitons migrate from the bulk of the 

polymer to the analyte binding sites which can be either fluorescence quenching sites (turn-off 

sensors) or lower energy fluorophores (turn-on sensors). In this dissertation, we proposed an 

alternative design paradigm when analyte binding creates a higher energy gap site in the polymer 

backbone. In the case of isolated polymer chains in dilute solution, these higher energy gap sites 

act as “roadblocks” for migrating excitons, effectively limiting the exciton migration length.  

This is responsible for an amplified enhancement of fluorescence of conjugated polymer sensors. 

As a proof of concept, we utilized this design principle to develop an amplifying turn-on sensor 

for organophosphorous warfare agents mimics, and demonstrated substantial signal gain and 

much broader analyte detection range relative to the corresponding small-molecule analogue. In 

addition, we utilized this novel “higher energy gap” control concept to develop an amplifying 

fluorescent conjugated polymer sensor for the detection of hydrogen sulfide. This new paradigm 

expands the generality and universality of the signal amplification concept in conjugated 

polymers, and can be used to design amplifying turn-on fluorescent sensors for various 

practically useful analytes. The last part of this dissertation focuses on the conceptual design of 

near infrared (NIR) conjugated polymers based on cyanine building blocks. We developed a 

synthetic approach to this class of fluorescent materials which can eventually become useful in 

biomedical and bioimaging applications.  
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Chapter 1. Amplifying Fluorescent Polymers 

1.1 Conjugated Polymers 

Conjugated Polymers (CPs) have received wide interest in the field of optoelectronic 

devices and chemical and biological sensors after the discovery by Shirakawa, Heeger and 

MacDiarmid in 1970 that polyacetylene (PA) dramatically increased the conductivity when 

subjected to oxidative doping via exposure to halogens.
1,2

 The main characteristics of CPs is the 

array of alternating single and double (or triple) bonds along the conjugated backbone. The 

extended over the large number of monomer units π-conjugation is responsible for their unique 

optical and electronic properties.
3
 The CPs are used in the photovoltaic cells

4
, light emitting 

diodes (OLED’s)
3
, bio- and chemical sensors

5 
(Figure 1.1). 

 

Figure 1.1. Examples of conjugated polymers for various practical applications. a) 

photovolatics,
4
 b) OLEd's

3
 c) Biosensors.

5 
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Conjugated Polymers provide an effective medium for the transport of excitons and 

charges (electrons and holes). Design of CP- based fluorescent chemo- and biosensors is a 

rapidly growing field, due to the unparalleled sensitivity and selectivity provided by CPs. The use 

of CPs in the sensory field is advantageous over using small molecule sensors due to the efficient 

energy migration from the bulk of CP to the analyte binding site. Analyte interaction at one 

binding site can affect the electronic and optical properties of the entire CP chain, which leads to 

the generation of a measurable amplified optical or electrochemical response.
6
 Conjugated 

polymers are used in the detection of various analytes ranging from explosives and biomolecules 

to toxic transition metal ions. 

In pristine (neutral sate) CPs have a direct band gap or energy gap between the valence 

band and conduction band which can be altered by chemical modification of the repeating unit of 

CP.
7
 Typically, after binding of an analyte with a receptor, a low energy gap is created at the 

binding site which is also known as a local minimum or defective site (Figure 1.2). 

 

Figure 1.2. Illustration of the mechanism of the exciton migration to the analyte binding site on 

the conjugated backbone, resulting in photonic signal amplification. 

 

Photoexcitation of CP results in the generation of excited states (excitons) that during 

their lifetime randomly migrate within the backbone of the polymer. These randomly walking 

excitons can sample around the backbone until they find a trapping or defective site. Eventually, 



3 

 

all these excitons end up at the local minimum, depopulating the conduction band and producing 

an amplified fluorescent signal (Figure 1.2).
8
  

Therefore, emission of CP is dominated by the excitation energy (excitons) migration to 

the local minima within the polymer band structures. For example, in case of poly(p-phenylene 

ethynylene) (PPE) polymer with a terminal anthracene fluorophore, the dominating longer 

wavelength emission was due to the energy migration to the anthracene group with a lower 

energy gap relative to the CP backbone band gap (Figure 1.3).
 9,10 

 

 

 

Figure 1.3. Bold traces show the absorption and the dashed traces are the emission spectra of the 

polymers. Red shifted emission of the polymer P-II was observed with introduction of an 

anthracene end group. (Reproduced with permission from ref. 10. Copyright © 1995, American 

Chemical Society.) 

 



4 

 

Similarly, for a complex ladder type polymer P-III the emission spectrum was found to 

be dominated by defective sites present in low concentrations (Figure 1.4). This kind of effect 

(red shifted emission) was likely due to the migration of excitons to the defective sites
 
which 

were created due to the incomplete cyclization in the process of the polymer preparation.
11 

 

Figure 1.4. Schematic representation of a ladder type polymer P-III. 

1.2 Signal Amplification 

The ability of CPs to produce amplified fluorescent signal after interacting with an 

analyte makes them an ideal platform for sensory applications. The amplification stems from the 

efficient energy transfer from the higher energy polymer π-conjugated backbone to a lower 

energy gap analyte binding site. Due to their ability to amplify analyte binding event, CPs are 

also referred to as amplifying fluorescent polymers (AFP’s).
12

 The new amplified signal obtained 

can be attenuation, or enhancement, or change in wavelength relative to the initial fluorescence 

of the CP. The increase in fluorescence intensity is referred to as “turn-on”, and decrease in the 

intensity as “turn-off” response whereas the new signal at different wavelength characterizes a 

ratiometric sensor.   
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Turn-off sensor functions by creating a fluorescence quenching site by analyte binding. 

For example, if initially CP is in the fluorescent state, an analyte interaction with one of many 

receptors that are wired in series results in fluorescence quenching.  

1.3 Signal Amplification via Turn-Off Mechanism 

The first example of signal amplification in CPs was demonstrated by Swager and co-

workers for the detection of paraquat, a powerful electron acceptor and fluorescence quenching 

agent acting based on an electron transfer mechanism.
13 

They demonstrated the signal amplification by fluorescence quenching mechanism using 

PPE possessing cyclophane as a repeating unit directly integrated into the polymer backbone and 

paraquat as a quencher, which is well known to bind with cyclophane. In addition to the polymer, 

a model compound or a small molecule containing a single cyclophane receptor was also studied 

in order to evaluate the signal amplification of CP and to understand the mobility of excitons in 

the polymer chain. Upon binding of the analyte (quencher) with receptor (cyclophane) in the 

small molecule sensor, fluorescence was partially quenched producing a lower magnitude turn-

off response. In contrast, in case of the CP, the excitons migration in the band gap upon 

encountering the quencher-bound receptor site produced fluorescence that was dramatically 

quenched relative to the response of the small molecule sensor (Figure 1.5). 

In that study, they also investigated the exciton lifetime which was ~0.6 ns and therefore 

during its lifetime the exciton could sample around 65 receptors producing a 65- fold increase in 

signal compared to the small molecule.
14

 Therefore, one binding of an analyte with receptor 

affected the energy distribution of the entire CP backbone via energy migration from the polymer 

backbone to the analyte bound site. 



6 

 

 

 

Figure 1.5. Demonstration of an amplified quenching in a CP (P-IV) by paraquat (PQ
2+

). 

Emission spectra of small molecule (top) and the P-IV (bottom) as a function of added PQ
2+

. 

(Reproduced with permission from ref. 1. Copyright © 2001, American Chemical Society.) 

 

CP based materials showed excellent chemosensory efficiency for the detection of 

electron-deficient analytes such as nitroaromatic compounds, which cause fluorescence 

quenching via the electron-transfer mechanism. Swager and the group synthesized an iptycene 

functionalized PPE polymer (P-V) spin casted to a thin film. The bulky iptycene groups 

prevented the polymer chains from aggregating and created substantial cavities (large internal 

free volume) for an analyte (TNT) to enter and bind producing a large decrease in the fluorescent 

response (Figure 1.6).
15 

Indeed, this polymer is now the best sensing material for TNT and other 

nitroaromatic explosives detection, and is a core of widely used commercially manufactured 

explosive detecting devices. 



7 

 

 

 
 

Figure 1.6. Decrease in fluorescence intensity of iptycene functionalized PPE polymer (P-V) 

after exposure of the polymer to TNT vapors. (Reproduced with permission from ref. 15. 

Copyright © 1998, American Chemical Society.) 

 

Nesterov
16

 and the group used molecular imprinting technique to create molecular shape 

specific cavities for analyte recognition and prepared a TNT-molecularly imprinted polymer 

(MIP) which upon exposure to TNT vapors showed significant decrease in the fluorescence 

intensity. The MIP polymers possess shape-selective cavities where TNT molecules can perfectly 

fit. As a result there was a decrease in the fluorescence intensity. In both cases, quenching 

behavior was observed due to the strong electron deficient nature of the nitroaromatic analytes 

(Figure 1.7). 

  

Figure 1.7. Polymer is fluorescent before binding with analyte (TNT) and then subsequently 

quenched after interacting with TNT vapor. (Reproduced with permission from ref. 16. 

Copyright © 2007, American Chemical Society.) 
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Swager
17

, Leclerc
18

, Xi
19

 and others have designed crown ether based conjugated 

polymers for the detection of small ions such as K
+
, Na

+
, Li

+
. Binding of these small ions with 

crown ethers results in the formation of π-stacked aggregates and consequent fluorescence 

quenching (Figure 1.8). 

 

Figure 1.8. K
+
-induced aggregation of a crown ether-functionalized polymer (P-VI). 

(Reproduced with permission from ref 17. Copyright © 2000, Wiley-VCH.) 

 

Detection of the larger metal ions such as Hg
2+

 and Pb
2+

 was done by Bunz
20

, Wang
21 

and 

others. For example, Wang and co-workers used thymine-functionalized CP which upon 

exposure to Hg
2+

, showed substantial fluorescence quenching. Similar to the case of smaller ions, 

the coordination of Hg
2+

 with thymine resulted in π- stacked polymer aggregates that lead to the 

quenching of the fluorescence of CP. Bunz and co-workers designed carbohydrate-functionalized 

water-soluble PPE polymer that upon coordination with Pb
2+

 also showed quenched fluorescence 

due to the similar analyte binding induced CP aggregation ( Figure 1.9).
22
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Figure 1.9. Thymine functionalized polythiophene polymer (left) and carbohydrate-

functionalized PPE polymer (right) showed strong fluorescent quenching upon interaction with 

analyte due to the analyte-induced polymer aggregation.(Reproduced with permission from ref. 

21, 22. Copyright © 2006, 2004, Wiley- VCH). 

 

1.4. Signal Amplification via FRET 

Fluorescence Resonance Energy Transfer (FRET) is a widely used technique in the 

detection of large biomolecules such as proteins, DNA, etc. CPs provide an excellent manifold 

for collecting and transport of excitons (an antenna effect). Therefore CPs act as excellent energy 

donors in the FRET-labeling biosensing. Due to electrostatic interaction between CP and 

chromophore labeled DNA, they form a dimer that leads to the efficient energy transfer from the 

CP to the chromophore-labeled DNA, producing a new signal.
23 
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Gaylord, Bazan and Heeger developed a method for the detection of specific DNA by 

using FRET (Figure 1.10).
24

 The system consists of three parts; a cationic conjugated 

poly(fluorene-cophenylene) polymer (P-IX), a probe peptide nucleic acid (PNA) strand labeled at 

the 5’ end with fluorescein which shows strong spectral overlap with the polymer and the target 

DNA strand. 

 

Figure 1.10. Schematic description of amplified fluorescent detection of a complimentary ssDNA 

strand (blue) by using FRET from CP (P-IX) (black) to fluorescein chromophore linked to a 

PNA reporter (red). Adding complementary DNA results in formation of a triplex where efficient 

FRET from CP to fluorescein produces an amplified fluorescent response; adding non-

complementary DNA (green) produces no response. (Reproduced with permission from ref. 24. 

Copyright © 2002, The National Academy of Sciences.) 

 

The donor polymer and fluorescein labeled PNA acceptor have spectral overlap required 

for efficient FRET but are not electrostatically attracted. However, when the DNA 

complementary to PNA is added, there is electrostatic attraction between the polymer and DNA 

as a result of which PNA labeled fluorescein becomes closer to the polymer. This brings them 

within the distance required for an efficient energy transfer from the polymer to fluorescein. Due 
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to this FRET, the emission from fluorescein was 25 times amplified relative to emission of the 

directly excited free fluorescein.  

In another work by Bazan and group, the conjugated polymer (P-IX) behaved as a light-

harvesting antenna unit which transferred excitation via FRET to a signaling fluorophore (Figure 

1.11).
25

 Figure A shows an efficient energy transfer after addition of a complementary target 

ssDNA to the fluorescein labeled ssDNA due to the formation of a double helix. The overall 

energy transfer from polymer through Fluorescein to Ethidium Bromide chromophore (EB) 

produces an amplified fluorescent signal. Figure B shows addition of a non-complementary 

ssDNA where base-pair hybridization does not occur and no EB intercalation and no energy 

transfer from the fluorescein labeled ssDNA to EB can be observed. 

 

 

Figure 1.11. Strong FRET upon addition of a complementary target ssDNA vs weak FRET when 

noncomplementary ssDNA is used. (Reproduced with permission from ref.25. Copyright © 

2004, American Chemical Society.) 

 

1.5. Turn-On Amplification: Biosensing 

Unlike intrinsically turn-on amplifying fluorescent CPs, quencher removal by analyte 

binding to produce an amplified turn-on response is a generally utilized strategy. Conjugated 
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Polymers with functionalized ionic chains (polyelectrolytes) are typically used in biosensing 

because of their improved solubility in aqueous medium. In a proof-of-concept demonstration, 

Whitten
26

 and co-workers have used biotin-functionalized methyl viologen (MV
2+

) adsorbed to 

the backbone that quenched the CP fluorescence which was recovered back after adding avidin. 

The original fluorescence quenching of the CP backbone was observed due to the electrostatic 

interaction between cationic MV
2+

 and the anionic polyelectrolyte (Figure 1.12). Upon the 

addition of avidin, the biotin-functionalized MV
2+

 was removed from CP thus restoring 

fluorescence of the CP. This scheme demonstrated signal amplification of up to 1,000,000 times 

(relative to the corresponding small molecule sensor). 

 

Figure 1.12. Whitten’s quencher-tether-ligand-based strategy to biosensing. Addition of avidin to 

a solution of conjugated polyelectrolyte and biotin-functionalized quencher resulted in a turn-on 

(fluorescence recovery) response. (Reproduced with permission from ref. 26. Copyright © 1999, 

The National Academy of Sciences.) 

 

In the quest to develop intrinsically amplifying turn-on CP-based sensors, two different 

groups, Swager
27 

and Wang
28

 designed conjugated polymers for fluoride ion sensing using turn- 

on mechanism. Wang used phenolic derivative of polyquinoline to detect fluoride ion that 

produced a 100 fold increase in a red shifted emission after exposure to fluoride ion (Figure 

1.13). 
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Figure 1.13. Wang’s polymer P X which showed increase in fluorescent intensity after addition 

of fluoride ion. (Reproduced with permission from ref. 28. Copyright © 2003, American 

Chemical Society.) 

  

Kim and Swager provided another example of signal amplification for the detection of 

fluoride. Their polymer was based on receptor having TIPS protected alcohol functionalized 

group that after interacting with analyte (TBAF) underwent cleavage of O-Si bond and 

subsequent formation of a highly emissive coumarin derivative (low energy defect site). The 

excitons formed upon backbone irradiation can find the defective site and migrate to that site 

producing an amplified signal at a different, higher wavelength relative to the initial polymer 

(Figure 1.14). 

  

Figure 1.14. Fluoride-induced lactonization of side chains on the polymer backbone producing 

emissive sites with a smaller energy gap that gave a new amplified emission, increasing with 

time. (Reproduced with permission from ref. 27. Copyright © 2003, Wiley- VCH.) 
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1.6. Energy Transfer 

The increased sensitivity (amplification) in amplifying fluorescent conjugated polymers is 

observed due to the CP ability to serve as an efficient manifold for the transport of excitons. In 

dilute solutions the efficient energy transfer in CP from the backbone to the binding site can 

occur intramolecularly by two different interplaying pathways: through-space Förster-type 

mechanism and/or through-bond (Dexter) Exchange Mechanism.
29

 

The Förster energy transfer mechanism is a radiationless transition occurring through 

Coulombic interactions between electronic transition dipoles on donor and acceptor moieties. 

When this mechanism is operational, there is no need to have chemical bonding between the 

donor and acceptor chromophores, but there should be a significant overlap between the donor 

emission and acceptor absorption spectra. The rate of energy transfer by the Förster mechanism 

depends upon the distance (R) between the donor and acceptor moieties as a reciprocal sixth 

power ( i.e kET ~1/R
6
). 

29
 

In contrast, in the Dexter-mechanism the donor and acceptor moieties should be 

chemically bonded, meaning that the donor and acceptor should exhibit substantial overlap 

between MOs centered on donor and acceptor moieties, or have an array of interconnecting 

chemical bonds facilitating such an orbital interaction. The rate of the energy transfer by Dexter 

exchange mechanism shows exponential decrease with increasing distance between the donor 

and acceptor moieties, i.e kET ~ exp(-βR), where β is an attenuation coefficient, which depends 

upon the extent of electronic interaction between the donor and acceptor units.
30

 In CPs, both 

mechanisms play an important role, with the role of the Dexter exchange mechanism increasing 

with increasing electronic delocalization in CPs. 
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1.7 Research Focus of This Dissertation 

Photoexcitation of CP creates an excited state (exciton) that during its lifetime can move 

freely along the CP backbone until it finds a trapping lower energy site. As the exciton finds a 

lower energy site, it radiatively (or radiativelessly) deactivates to the ground state producing an 

amplified fluorescent signal in both turn-on and turn-off sensing schemes. In all the examples 

shown above, the amplification was obtained due to the migration of excitons from the higher 

energy gap CP backbone to a lower energy gap analyte-bound site. It is obvious that the energy 

migration is possible only from the higher to lower energy sites and not in the opposite direction. 

Therefore, in order for this amplification mechanism to be operational, the interaction between 

the receptor and analyte must create a lower energy site where the energy migration takes place 

producing an amplified signal. 

An alternative and previously unexplored paradigm arises when an analyte binding with 

receptor creates a higher energy gap site on the CP backbone. It is well known that excitons 

can’t funnel down to a higher energy site from a lower energy CP backbone, it is 

thermodynamically impossible. Our research focused on a possibility to produce signal 

amplification upon the creation of a higher energy gap site on the CP backbone after interaction 

of a receptor and an analyte. This stemmed from the idea that the higher-energy site would act as 

a “roadblock”, which decreases the exciton migration efficiency and lowers excitons migration 

length thus resulting in the increasing fluorescent intensity of the CP. Overall, such amplification 

of relatively minor changes at the electronically interacting higher-energy receptor upon reacting 

with analyte would be an excellent manifestation of the generality and universality of conjugated 

polymers as a platform for fluorescent chemosensor development (Figure 1.15). 
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Figure 1.15. Illustration of decreasing exciton diffusion length due to a higher energy gap 

“roadblock” site.  

To the best of our knowledge, there are no previous examples demonstrating this type of 

signal amplification mechanism. Usually turn-on response CP based sensors are obtained by 

removing the quenching site due to analyte binding. However, in our approach the signal 

amplification is obtained by the inverse electronic control, i.e. instead of funneling of excitons to 

the lower- energy site, the excitons are localized in the CP backbone. 

In order to obtain the turn-on signal amplification via inverse electronic control, the 

interaction of a receptor and an analyte needs to create a new chromophore that will be higher in 

energy (blue shifted) relative to the initial interacting receptor. This would create “roadblocks” 

for exciton migration in the CP backbone and as a result the excitons formed due to 

photoexcitaton of CP get more localized, as their migration length would be essentially restricted 

by the newly created “roadblock” site.  

When poly(p-phenylene vinylene) (PPV) is used as a CP, the newly created high band 

chromophore needs to absorb in the blue-green region (300-500 nm) of spectrum in order to 

satisfy requirement to be of higher energy than the CP itself. Coumarin, Benzothiazole and their 

derivatives are commonly used high-energy-gap chromophores in the detection of various 

analytes. Similarly, naphthalene also falls in the same category, therefore we decided to use 
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naphthalene as a receptor (chromophore) because it would be synthetically easier to functionalize 

for the incorporation into a CP backbone compared to benzothiazole and/or coumarin. The 

properly functionalized naphthalene would be a co-monomer to be used in the synthesis of a 

conjugated polymer, i.e poly(p-arylene vinylene). Functionalized naphthalene would act as a 

receptor unit where analyte binding would produce electronic perturbation at the backbone and 

this polymer would be used in the study of signal amplification phenomena. 

The second chapter focuses on a proof-of-concept development of the signal amplifying 

polymer functioning on the principle of creating a higher energy gap site. The amplification is 

obtained due to the incorporation of a higher energy gap chromophore and resulting localization 

of excitons. From the practical standpoint, this polymer would be a good prototype of a sensor 

for the detection of toxic organophosphates warfare agents. 

The third chapter focuses on applying the same concept of the higher energy gap signal 

amplification for the preparation of CP that would detect hydrogen sulfide (H2S). H2S is a toxic 

gas which is a third endogenous gas after nitric oxide (NO) and carbon monoxide (CO). 

Therefore, there is always a need of developing a chemosensor that shows better sensitivity and 

selectivity for this wide-spread analyte. 

The fourth chapter focuses on the synthesis and studies of the novel Near-IR (NIR) 

conjugated polymers based on cyanine dyes that have potential applications for biosensing. 

Potential application of these NIR CPs in the biomedical field could stem from their cationic 

nature which increases the probability of binding with negatively charged biomolecules such as 

DNA. The electrostatic interaction could lead to the feasible detection of biomolecules such as 

proteins and DNA due to signal amplification in the CP based schemes. In addition, there is 
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always a better need of NIR chromophores and fluorophores for medical research as there is a 

much lower interference from cells and tissues in the NIR region. 
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Chapter 2. “Higher Energy Gap” Control in Fluorescent Conjugated Polymers: Turn-On 

Amplified Detection of Organophosphorous Agents 

2.1. Introduction 

Fluorescent conjugated polymers (CPs) deliver a convenient and versatile platform for the 

design of fluorescent chemo- and biosensors. The significance of this class of organic materials 

for sensing applications largely stems from the intrinsic amplification of analyte binding events 

which is related to the efficient photoexcitation energy migration from the bulk of the polymer to 

the sites where analyte binding occurred. After the amplification phenomenon had been first 

reported by Swager in 1995, it became an important design paradigm in developing numerous 

fluorescent sensors for a broad range of analytes.
1,2

 The amplification can be particularly 

significant in aggregates and thin films of conjugated polymers where it is facilitated by efficient 

intermolecular exciton migration by through-space dipole – induced dipole (Förster-type) 

mechanism due to the multitude of close intermolecular contacts.
3
 Significant amplification can 

also be achieved in dilute solutions of conjugated polymers where it originates from 

intramolecular energy migration through the combination of Förster and through-bond Dexter-

type exchange mechanisms.
4
 Although amplification as high as 1,000,000 times was reported 

with strongly quenching analytes for conjugated polymers in dilute solutions,
5
 typically it ranges 

from a few tens to a few hundreds times.
3
 Most commonly, the amplification was encountered 

and studied in the case of turn-off sensors where non-specifically interacting analytes quench 

fluorescent emission of the polymers through photoinduced electron transfer mechanism (typical 

analytes in such a case are nitroaromatic explosives, quinones, gold nanoparticles, etc.),
6
 or by 

inducing polymer aggregation.
7
 The same approach can be used in the design of turn-on sensors  

“Reproduced in part with permission from: Pangeni, D.; Nesterov, E.E. Macromolecules 2013, 46, 7266-

7277. Copyright © 2013, American Chemical Society.” 
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with operating principle based on the removal of a CP-attached quencher through the interaction 

with analyte. Since many practically important analytes do not act as CP fluorescence quenchers, 

the photonic amplification schemes which utilize Fluorescent Resonance Energy Transfer 

(FRET) effect for turn-on or ratiometric sensing of various non-quenching analytes (such as 

DNA and other biomolecules) have been developed.
8-10

 Although FRET-based design has been 

successfully implemented for a variety of analytes, it has a number of intrinsic limitations, such 

as relative complexity of the sensing scheme, the necessity to employ chromophores with 

spectral characteristics matching the FRET requirements, as well as the need to functionalize one 

of the components of the sensor (or the CP itself) with a FRET acceptor fluorophore. A backward 

effect (“interrupted” FRET) in design of a pseudoratiometric sensor was also recently reported.
11

  

 A different paradigm to achieve turn-on amplification involves incorporation of an 

analyte-specific receptor electronically coupled to the band structure of the polymer π-electron 

conjugated system. Such design benefits from the efficient through-bond (by Dexter exchange 

mechanism) energy transfer which is independent on spectral overlap that controls the efficiency 

of FRET, and therefore would work in the situations where a FRET-based design would be 

inefficient. An excellent example of this approach is an amplified turn-on CP-based fluoride 

sensor developed by Kim and Swager, where fluoride-mediated cyclization of a pendant non-

fluorescent precursor yielded a highly emissive low-energy coumarin chromophore electronically 

coupled to the CP backbone (Figure 2.1A). Indeed, such polymer demonstrated approximately 

100-times amplification of fluoride detection (relative to the small-molecule receptor itself).
12 

Although this approach can lead to amplifying ratiometric fluorescent sensors, it is not 

widely used, possibly due to the fact that it is intrinsically limited to a relatively small subset of 

analytical reactions that yield high quantum yield fluorophores which are bathochromically 
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shifted relative to the CP backbone, i.e. generate a lower energy gap strongly fluorescent site 

(Figure 2.1A). This lower gap site acts as a trap for the randomly migrating excitons and 

produces a new higher wavelength emission band.  

 

 

Figure 2.1. A) Schematic energy diagram illustrating the concept of amplified turn-on fluorescent 

sensing through the formation of a lower energy gap fluorophore and an example of CP turn-on 

sensor for fluoride detection developed by Kim and Swager.
12

 B) Schematic diagram of the 

“higher energy gap” control of CP fluorescence: an analyte (red circle) binding creates a higher 

energy gap unit in the CP backbone which decreases the length of exciton migration in the 

polymer, therefore causing increase of the intensity of fluorescent emission.   

Although exciton migration to a lower energy gap or quenching site represents a well-

understood mechanism to utilize the amplification phenomenon, one can envision an alternative 

mechanism leading to amplifying turn-on fluorescent sensors in situations where a reaction with 

analyte produces a hypsochromically shifted chromophore. Within this paradigm, analyte binding 

to a receptor chromophore electronically coupled to the CP band structure creates a higher energy 

gap site on the CP backbone (Figure 2.1B).  This higher energy gap site cannot act as an acceptor 

of the migrating excitons generated in the bulk of the CP. However, this perturbed site would act 

as a “roadblock” for the excitons and hinder their random migration along the CP backbone. This 
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“roadblock” effect would be operational because of the fine balance between two mechanisms 

responsible for exciton migration in an isolated conjugated polymer chain: through-space Förster 

and through-bond Dexter mechanisms. The higher energy “roadblock” site would predominantly 

affect the through-bond migration, and the exciton in principle still would be able to bypass the 

“roadblock” by through-space hopping. However, loss of the through-bond component would 

make bypassing the higher energy “roadblock” less favorable, and thus of a lower probability to 

happen. One seemingly counterintuitive consequence of the limiting intramolecular exciton 

migration is that in some cases this should enhance fluorescent intensity of the CP chromophore. 

Indeed, it is well known that fluorescence efficiency of CPs can be reduced due to the increased 

mobility of excitons which upon their migration encounter low-energy defect sites within isolated 

polymer chains and dissipate their energy radiationlessly. Typical on-chain fluorescence-

quenching defects may include conformational defects, chemically oxidized species (or 

molecular oxygen bound sites), as well as transient defects such as triplet states, photogenerated 

free charge carriers, or charge-separated states, etc.
13

 Therefore, restricting exciton migrating 

ability should result in decreasing the probability for the exciton quenching through encounter 

with such on-chain quenching sites, and increasing fluorescence efficiency of CP. Such 

fluorescent intensity enhancement was experimentally observed in cases where exciton migration 

in CPs was intentionally restricted by decreasing π-electron conjugation across the polymer 

backbone.
14

 Importantly, such enhancement should occur independent on whether the reaction 

with analyte produces fluorescent or non-fluorescent chromophore – a major advantage over the 

conventional scheme relying on formation of a lower energy gap highly fluorescent unit. Since 

the fluorescence enhancement is directly related to exciton migration in the conjugated polymer, 

one would expect similar kind of signal gain as in the cases of amplifying polymers utilizing 
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migration to a lower energy gap unit. Another characteristic feature of this mechanism is that, at 

least at low analyte concentrations, formation of the higher energy gap site is not expected to 

change wavelength of the CP emission (as long as the exciton delocalization length does not 

exceed the distance between the “roadblock” sites, which may only happen at unrealistically high 

conversion at high analyte concentrations). Thus, this “higher energy gap” electronic control 

effect would result in an amplified turn-on response on the otherwise small electronic 

perturbation at the receptor site. Overall, such amplification of a relatively minor electronic 

perturbation at the higher-energy receptor upon reacting with analyte would be an excellent 

manifestation of the generality and universality of conjugated polymers as a platform for 

amplifying fluorescent chemosensors. Surprisingly, to the best of our knowledge, this natural 

counterpart to the traditional “lower energy gap” paradigm has not been experimentally 

demonstrated. 

To test this hypothesis, we decided to utilize a naphthalene based hydroxy oxime 

chromophore 1 as an analytical receptor (Scheme 2.1). This compound was recently developed 

by Rebek as a small-molecule detector for organophosphorous chemical warfare agents.
15

 

Reaction with organophosphate reagents results in a facile conversion of the oxime 1 into the 

corresponding isoxazole 2. Both the oxime 1 (λmax(abs) 354 nm, λmax(em) 392 nm) and product 

isoxazole 2 (λmax(abs) 326 nm, λmax(em) 361 nm) are higher energy gap chromophores compared 

to typical fluorescent CPs (such as poly(p-phenylene vinylene), PPV, λmax(em) >500 nm
16

). 

Importantly, product isoxazole chromophore 2 possesses a noticeably higher energy gap relative 

to the oxime 1 as can be judged from the hypsochromic shifts of both absorption and emission 

maxima in the 1 to 2 conversion.  
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Scheme 2.1. Reaction of DCP with hydroxy- oxime 1 produces isoxazole 2. Chemical structures 

of small molecule M1 and polymer P1. 

 

Therefore, incorporation of such a chromophore into a PPV backbone would yield an 

excellent system for the experimental testing of the “higher energy gap” control hypothesis. In 

addition, the practical importance of a rapid and robust detection of low concentrations of 

organophosphates – simple chemicals which can be readily manufactured and belong to the class 

of the most dangerous chemical warfare agents, cannot be overestimated.
17

 Numerous sensors for 

chromogenic and fluorogenic detection of organophosphates have been reported to date,
18

 

however they are mostly based on small molecules, and do not benefit from the possibility of 

signal amplification stemming from the use of conjugated polymers. Therefore, we decided to 

prepare a poly(arylene vinylene) conjugated polymer P1 based on the receptor chromophore 1, 

and test in detail the “higher energy gap” control paradigm in designing a turn-on amplifying 

sensor, as well as to determine the extent of signal gain stemming from using the polymer as 

opposed to using a small molecule counterpart M1.   
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2.2 Synthesis 

Preparation of the polymer P1 required designing a synthetic strategy toward the 

naphthalene oxime 1 functionalized with appropriate “handles” for incorporation into the CP 

backbone. The synthesis of dibromo monomer 6 started with bromination of the commercially 

available 6-bromo-2-naphthol to yield tetrabromoketone 3 which upon reduction with SnCl2 in 

acetic acid gave 1,3,6-tribromo-2-naphthol 4 (Scheme 2.2). Further selective reduction of 4 with 

SnCl2 in refluxing ethanol yielded 3,6-dibromo-2-naphthol 5 in 51% overall yield. Increased 

nucleophilicity of carbon 1 in the naphthalene ring enabled selective installation of an aldehyde 

group via Reimer-Tiemann reaction to give the required monomer 6 in 58% yield. 

 

Scheme 2.2. Preparation of monomers 6 and 8. 

In our synthetic design, we decided to use the aldehyde 6 as a monomer for 

polymerization, instead of converting 6 to the corresponding oxime monomer first, as high 

nucleophilicity of the oxime would likely make it incompatible with metal-catalyzed conditions 

required for subsequent polymerization. We chose Suzuki coupling for the preparation of the 

precursor polymer P2 as this reaction requires mild reaction conditions. This determined the 
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second co-monomer – trans-bis-vinylboronate 8 (Scheme 2.2), which was prepared in a good 

yield by using ZrCp2HCl catalyzed hydroboration of the precursor bis-acetylene 7.
19

 The choice 

of tetradecyl solubilizing groups was dictated by the need to incur enough solubility to the 

polymer P1 in common organic solvents.  

Preparation of the precursor polymer P2 was carried out by emulsion polymerization at a 

water-organic interface, and furnished the required polymer in 50% yield as a dark-red solid 

material (Scheme 2.3). GPC characterization of the polymer (THF, calibrated vs. polystyrene 

standards) revealed number-average molecular weight Mn 10 kDa, with polydispersity 1.7. Post-

polymerization conversion of P2 into the target hydroxy oxime polymer P1 was accomplished by 

the reaction with excess hydroxylamine hydrochloride, and furnished yellow-green polymer P1 

which was found moderately soluble in common organic solvents such as CH2Cl2.  

 

Scheme 2.3. Preparation of small molecule sensor M1 and polymers P1 and P3. 
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Completeness of the conversion of aldehyde to oxime was confirmed by 
1
H NMR 

monitoring which showed disappearance of the two distinct signals at 13.81 and 10.84 ppm 

(corresponding to naphthol OH and aldehyde protons in P2, respectively), and appearance of the 

new signals corresponding to the hydroxy oxime functionality. 

As a reference compound, we also prepared a small-molecule counterpart M1. In its 

preparation, we used Suzuki coupling of the dibromide monomer 6 with two equivalents of the 

vinylboronate compound 9, which in turn was prepared via ZrCp2HCl-catalyzed hydroboration of 

phenylacetylene (Scheme 2.3). Precursor aldehyde 10 was converted to the target hydroxy oxime 

M1 using the same procedure as for the polymer P1. In addition, we prepared polymer P3 (by 

emulsion polymerization of dibromide 5 and diboronate 8) which was structurally similar to P1 

but lacked oxime functionality, to use in control experiments (vide infra). 

2.3. Spectroscopic Properties 

The extended electronic delocalization in P1 was evident upon comparison of UV/vis 

absorption spectra of dilute solutions of P1 and its small-molecule counterpart M1 (Figure 2.2). 

P1 exhibited a substantial bathochromic shift of 95 nm of the maximum in the absorption 

spectrum (λmax 426 nm for P1 vs. λmax 331 nm for M1). The main absorption band of M1 showed 

a distinct vibronic structure, whereas P1 showed a featureless band characteristic of poly(arylene 

vinylene) polymers. Also in agreement with the high π-electron delocalization in P1, its 

fluorescence spectrum was 80 nm bathocromically shifted relative to M1 (λmax 524 nm for P1 vs. 

λmax 444 nm for M1); in addition, P1 showed five times higher fluorescence quantum yield. Both 

absorption and fluorescent spectroscopic characteristics of P1 were in the range expected for 

typical PPV polymers.   
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An unusual spectroscopic feature of M1 was that the wavelength of its main UV/vis 

absorption band maximum (331 nm) was below that of the parent compound 1 (λmax(abs) 354 

nm). One would expect that extended via the two styryl groups π-electron delocalization in M1 

would result in a bathochromic shift of the absorption band, and therefore the actually observed 

hypsochromic shift was counterintuitive. Closer inspection of the UV/vis absorption spectrum of 

M1 revealed a low-intensity shoulder at around 400 nm (Figure 2.2). This shoulder could 

originate from an electronically delocalized chromophore but the low intensity (extinction 

coefficient around 6000 M
–1

 cm
–1

 at 400 nm) likely indicates a partially forbidden electronic 

transition. In such a case, M1 would contain two weakly interacting individual chromophores: a 

naphthalene-localized higher-energy chromophore, and a lower-energy chromophore resulting 

from the extended π-electron delocalization. It appears that the lower-energy partially forbidden 

transition in the delocalized chromophore becomes essentially allowed in the polymer P1 and 

corresponds to its main absorption band (Figure 2.2).  

 

 

Figure 2.2. Absorption (solid traces) and fluorescence (dashed traces) spectra of 9.5 µM solutions 

of CP P1 and small-molecule counterpart M1 in DMF (concentration of P1 is based on repeating 

unit).  Dashed green trace corresponds to an excitation spectrum of M1. For P1 ɛ = 33900 M
–1

 

cm
–1

 at λmax 426 nm; emission λmax 524 nm, quantum yield Φ = 0.11; for M1 ɛ = 47000 M
–1

 cm
–1

 

at λmax 331 nm; emission λmax 444 nm, quantum yield Φ = 0.02.   
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Despite apparently weak electronic coupling between the two electronic transitions in 

M1, the striking similarity between absorption and excitation spectra pointed out the very 

efficient energy transfer between the higher- and lower-energy chromophores. While better and 

more accurate understanding of the spectroscopic features of M1 requires further study, 

comparison between the spectra of M1 and P1 indicated an efficient electronic delocalization 

through the naphthalene units in P1 which is an important requirement for unhindered 

intramolecular exciton migration by through-bond mechanism.   

2.4. DCP Sensing Studies 

 Since actual organophosphorous agents are highly toxic, a common test compound used 

to mimic them is diethylchlorophosphate (DCP) which has similar reactivity but lacks the 

efficacy of the warfare agents. We first studied the reaction of DCP with M1. Unexpectedly, we 

could not observe any reaction upon adding together solutions of DCP and M1 in a non-polar 

solvent (CH2Cl2), even in the presence of excess triethylamine base. This could be due to the 

thermodynamically unfavorable equilibrium of the hydroxy oxime – isoxazole transformation in 

this case, possibly because of the poor stabilization of ionic phosphate by-product by the non-

polar solvent. 

 After having tried different combinations of solvents, we found that isoxazole formation 

occurred readily and completely when a DCP solution in CH2Cl2 was added to a solution of M1 

in DMF, with no external base present. Indeed, after letting to sit for 30 min, pouring the reaction 

mixture into an aqueous NaHCO3 solution followed by extraction with CH2Cl2 produced 

isoxazole product in quantitative yield as was monitored by 
1
H NMR spectroscopy (Figure 2.3).  

 



32 

 

 

Figure 2.3. 
1
H NMR spectra (in acetone-D6, 400 MHz)) of M1 (bottom) and the product after 

treatment of DMF solution of M1 with DCP in CH2Cl2 followed by pouring in aqueous NaHCO3 

and extraction with CH2Cl2 (top).   

The completeness of the hydroxy oxime to isoxazole conversion was evident from 

disappearance of the two singlets at 11.96 and 10.94 ppm (OH and N-OH), and downfield shift 

of the =C-H singlet from 9.29 to 9.63 ppm. The isoxazole product was found not very stable and 

readily convertible back to M1 by hydrolysis in acidic conditions; indeed if the isoxazole 

containing reaction mixture was poured into water (instead of aqueous NaHCO3 solution), only 

starting M1 was detected by 
1
H NMR.   

We then proceeded to study the response of CP P1 in reaction with DCP. Addition of 

small amounts of DCP (as solutions in CH2Cl2) to a dilute solution of polymer P1 in DMF 

produced a pronounced spectroscopic response (Figure 2.4). In UV/vis absorption spectrum, 

there was a small hypsochromic shift of the absorption band maximum at higher DCP 

concentrations along with a hypsochromic shift of the long wavelength onset of the spectra, 

which indicated an overall small increase in the CP energy gap upon increasing density of the 

transformed hydroxy oxime sites in the CP chain. 
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Figure 2.4. Absorption (top) and fluorescence (bottom) spectra of 9.5 µM solutions of M1 and 

P1 in DMF (concentration of P1 is based on repeating unit) upon addition of the increasing 

concentration DCP solutions in CH2Cl2. For fluorescence spectra, excitation wavelength was 310 

nm for M1 and 400 nm for P1. The spectra were acquired in 30 min after addition of DCP. 

The relatively insignificant changes in the UV/vis absorption spectra (particularly at the 

low concentrations of DCP) were consistent with only a minor change in the electronic structure 

of CP P1 upon hydroxy oxime to isoxazole conversion. This minor effect was expected since 

such a conversion could not strongly affect the energy gap of P1 which is mainly controlled by 

the extended electronic delocalization through the polymer chain which remains decoupled from 

the changes in the naphthalene-centered chromophore (see discussion about the spectroscopic 

features of M1 above). In stark contrast to the insignificant changes in absorption spectrum, 

addition of DCP produced a significant enhancement of the fluorescence intensity without 
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causing a wavelength shift, in excellent agreement with our initial “higher energy gap control” 

hypothesis.  

Although quantitative kinetic studies on the reaction of polymer P1 with DCP were not 

possible (as fluorescence quantum yield of P1 varies with changing conversion), it was clear that 

the reaction was relatively fast, as intensity of the fluorescent band would stop growing in about 

20 min after addition of DCP (Figure 2.5).  

 

Figure 2.5. . Normalized fluorescence intensity (F/F0) vs. time in reaction of DCP with polymer 

P1 and small-molecule sensor M1 in DMF (100 l of a 0.2 mM stock solution of DCP in CH2Cl2 

was added to 2 ml of 10 M solution of P1 or M1 in DMF).  The lines show exponential fit to 

the experimental data using first-order kinetic treatment (R
2
 0.93 for both M1 and P1, first-order 

rate constant for M1 kobs = 0.66 min
–1

). 

 

In the case of polymer P1, adding increasing concentrations of DCP produced steady 

increase in the fluorescent intensity (Figure 2.4). In contrast, the fluorescent intensity of the 

small-molecule counterpart M1 initially increased upon addition of lower concentrations of DCP 

(up to an equimolar amount of added DCP), however, the intensity dropped precipitously at 

higher DCP concentrations (Figure 2.4). The reason for this drop is unclear at this time, and 

could possibly be related to secondary reactions of the isoxazole unit with excess DCP.  
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Further comparison between the fluorescent responses of P1 and M1 on DCP addition 

revealed striking differences related to the effect of signal amplification in the case of CP (and 

the lack of amplification in the case of M1). Upon excitation at the wavelength of the main 

absorption band (310 nm), the small-molecule sensor M1 showed a relatively narrow analyte 

detection range with the maximum level of detectable DCP concentrations roughly coinciding 

with the solution concentration of M1 (which reflected 1:1 stoichiometry of the hydroxy oxime 

reaction with DCP), with a rapid drop of the fluorescent signal after adding more than equimolar 

amount of DCP. Excitation of M1 at the wavelength of the lower-energy absorption shoulder 

(possibly corresponding to the π-electron delocalized chromophore) produced overall very low 

quantum yield fluorescence, with a very insignificant response on added DCP (Figure 2.6). 

 

Figure 2.6 A) Fluorescence spectra of 9.5 M solution of M1 in DMF acquired at 400 nm 

excitation upon addition of the increasing concentration DCP solutions in CH2Cl2.  The spectra 

were acquired in 30 min after addition of DCP.  B) Dependence of fluorescent response of small-

molecule sensor M1 on excitation wavelength (310 nm vs. 400 nm).  The traces show change in 

integrated fluorescence intensity of 9.50 M solution of M1 upon addition of increasing 

concentrations of DCP.  The intensity is expressed as a ratio of integrated area of a fluorescent 

band at each DCP concentration divided by the area of the fluorescent band in the absence of 

DCP (F/F0).  The plot uses logarithmic scale for DCP concentration axis. 
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In contrast, the same concentration solution of polymer P1 showed a steadily increasing 

fluorescent response in the very broad range of analyte concentrations ranging a few orders of 

magnitude from high nanomolar to high millimolar concentrations. This can be best seen in 

Figure 2.7, which shows fluorescent response on added DCP and utilizes a logarithmic scale for 

the DCP concentration axis. Such a broader analyte detection range is a clear advantage of CP 

based detection schemes. The enhanced DCP sensitivity of P1 due to signal amplification is 

clearly evident from the much lower DCP concentration required to achieve a noticeable 

fluorescent response in the case of P1 as compared to using solutions of M1 with exactly the 

same concentration (Figure 2.7). One can estimate that P1 is at least 20-30 times more sensitive 

than the small-molecule counterpart M1, the number which represents its intrinsic amplification. 

This signal gain estimate is in agreement with previously reported values for other CP-based 

schemes in dilute solutions.
3,20

 

 

Figure 2.7. Change in integrated fluorescence intensity of 9.50 µM solutions of polymers P1 and 

P3, and small-molecule sensor M1 upon addition of increasing concentrations of DCP. The 

intensity is expressed as a ratio of integrated area of a fluorescent band at each DCP 

concentration divided by the area of the fluorescent band in the absence of DCP (F/F0). The plot 

uses logarithmic scale for the DCP concentration axis. 
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The amplified response polymer P1 showed on addition of DCP prompted us to check if 

such a response was specifically associated with formation of isoxazole units within the CP 

chain, as other alternatives such as hydroxyl group phosphorylation by DCP, or electrophilic 

aromatic substitution in the naphthalene unit could potentially be involved. Polymer P3 with the 

same structure as P1 but without the oxime group in the naphthol unit was prepared and studied 

in reaction with DCP exactly in the same conditions that were used with the polymer P1.  

Although P3 did show some response (Figure 2.8), the response was of much lower magnitude 

than the response obtained with CP P1 (Figure 2.7). Most likely, the response of P3 was due to 

phosphorylation of the hydroxyl group by DCP. Such phosphorylation could either directly affect 

the electronic gap of the naphthol chromophore, or preclude possible fluorescence quenching via 

excited-state intramolecular proton transfer (ESIPT)
21

 which is often encountered due to the high 

acidity of photoexcited naphthols. Irrespective of what caused the response, the magnitude of the 

response was minor and not comparable to the magnitude of the response observed with CP P1. 

Thus, the amplified turn-on response observed for P1 was indeed due to the formation of the 

higher energy gap isoxazole units electronically coupled to the polymer band gap. 

 

Figure 2.8. Fluorescence spectra of 9.5 M solutions of P3 in DMF (concentration based on 

repeating unit) upon addition of the increasing concentration DCP solutions in CH2Cl2.  The 

spectra were acquired in 30 min after addition of DCP. 
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Signal amplification in chemosensors based on dilute solutions of CPs stems from one-

dimensional exciton migration in isolated polymer chains. Since much higher efficiency of 

exciton migration can be achieved in thin films of conjugated polymers (where exciton migration 

occurs as a three-dimensional process due to involvement of the intermolecular Förster-type 

mechanism), this typically means much higher signal amplification in thin film CP-based sensors 

relative to the CP sensors operating in dilute solutions (although restricted analyte diffusion often 

limits practical applications of thin-film CP sensors). The increased amplification reflects a 

higher probability for a three-dimensionally walking exciton to visit a quenching or a lower 

energy gap site generated by the analyte binding. In contrast to conventional amplifying CP 

sensors with operating principle based on exciton migration to a quenching site or a lower energy 

gap chromophore, fundamental feature of the turn-on fluorescent sensors described herein is that 

thin films of such sensors should display no response, or even a turn-off response on the same 

analytes that cause amplified turn-on response with dilute solutions of the sensor. The lack of 

response in the case of the “higher energy gap” control mechanism is directly related to the 

enhanced exciton migration efficiency in thin films. Indeed, generating a “roadblock” (higher 

energy gap site) in the CP thin film will have little effect on exciton migration length as the 

exciton can effectively bypass the “roadblock” through intermolecular “hopping”. Thus, 

amplified turn-on fluorescent response in dilute solutions, and lack of response (or even turn-off 

fluorescent response) in thin films can be predicted as a definitive characteristic feature of the 

“higher energy gap” control mechanism.  

Thin films of CP P1 could be readily prepared by spin-casting from a solution of this 

polymer in chloroform, and the absorption and fluorescence spectra of thin films were similar to 

the corresponding spectra in dilute solutions (Figure 2.9). DCP has relatively high vapor pressure 
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(0.1 mm Hg at room temperature), therefore exposure of thin films to DCP vapor was carried out 

by placing the films in a closed vial with a drop of DCP at the bottom. Exposure of the films to 

DCP did not produce turn-on response, instead we observed significant drop of the fluorescent 

intensity even after short-time DCP exposure (Figure 2.9). 

 

Figure 2.9. Absorption (dashed traces) and fluorescence (solid traces) spectra of a thin film of P1 

before and after exposure for 1 min to saturated vapor of DCP at room temperature.  

This observation clearly indicated that the reaction of P1 with DCP did happen in the 

solid state (despite potential complications due to a limited analyte diffusion in the film, or 

restricted chemical reactivity in the solid state) and was in exact agreement with the initial 

prediction; therefore it serves to support the involvement of the “higher energy gap” control 

mechanism which is responsible for turn-on signal amplification in dilute solutions. It may be 

possible to vary the extent of intermolecular exciton migration in thin films by incorporating 

steric spacers in the CP backbone to reduce intermolecular separation between individual chains. 

When the intermolecular exciton migration is substantially diminished, one can expect re-

emergence of the amplified turn-on response in thin film. This will be tested in the future studies. 
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2.5.Conclusions 

We designed and demonstrated the principle of the “higher energy gap” control of 

fluorescence intensity in amplifying conjugated polymers. This novel concept relies on 

shortening exciton migration length within the polymer conjugated backbone by generating 

higher energy gap sites which act as “roadblocks” for the migrating excitons. The shorter exciton 

migration length causes an increase in fluorescent intensity (turn-on response), and the 

amplification of such a response is an intrinsic feature of CP-based sensors. We illustrated this 

concept by preparation of an amplifying turn-on chemosensor for the detection of 

organophosphorous nerve agent mimics. The sensor showed both substantial signal gain and 

broad analyte detection range when compared to an analogous small-molecule sensor. The 

fundamental feature of the “higher energy gap” control mechanism (which contrasts it with 

previously developed amplification schemes) is that amplified turn-on response can only be 

achieved in dilute solutions of CP sensors, and not in thin films. Although photonic amplification 

in dilute solutions of CPs is intrinsically limited by one-dimensional nature of exciton diffusion, 

the current study developed an important concept which adds to the universality of the signal 

amplification phenomenon in CPs and can be used in the design of efficient turn-on amplifying 

sensors for other practically important analytes. Additional experimental studies on various 

factors capable of influencing the amplification, as well as gaining deeper understanding of the 

nature and origin of the “higher energy gap” control phenomenon are required to optimize the 

performance of these materials in chemosensing and will be done in future studies. 
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Chapter 3. “Higher Energy Gap” Control Principle in the Design of an Amplifying 

Fluorescent Sensory Polymer for H2S Detection 

3.1. Introduction 

The use of the “higher energy gap” control paradigm to obtain an amplified signal in 

chemosensing applications of fluorescent conjugated polymers was discussed in chapter 2. As a 

proof of concept, we used a hydroxy oxime poly(p-arylene vinylene) polymer. In order to provide 

further experimental support for this concept, this chapter describes our attempts towards another 

example of the signal amplification by using the same “higher energy gap” mechanism for the 

detection of hydrogen sulfide. 

 Hydrogen sulfide (H2S) is well known as toxic gas with an unpleasant smell which 

happens to be the third endogenous gas after nitric oxide (NO) and carbon monoxide (CO).
1,2

 

H2S is involved in wide range of physiological functions such as modulation of cardiovascular 

system, respiratory system, gastrointestinal system and endocrine system.
3
 The abnormal level of 

H2S is associated with a number of health conditions such as Alzheimer’s disease, Diabetes and 

Downs syndrome.
5,6

 Therefore, it is very important to quantitatively and accurately detect this 

small molecule at ultra-low concentrations as well as in a broad range of concentrations. The 

current methods for the detection include colorimetric analysis
7
, gas chromatography

8
, 

gravimetry
9
 and using of fluorescent probes

10
 and they often require damaging and/or destruction 

of living tissues or cells. 

The use of fluorescent probes for the detection of H2S has gained more popularity than 

the other methods because fluorescent detection is very reliable, fast, selective and sensitive. The 

chemical strategies to the development of fluorescent probes are very similar, and they usually 

start with a non-fluorescent or masked fluorophore which, upon exposure to H2S, is converted to 

a fluorescent moiety. Typical chemical transformations used in detection are azide to amine 
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reduction, nucleophilic addition of H2S to the fluorophore and reduction of nitro to amine group 

of the fluorophore in the presence of H2S.  

Chang and co-workers used an azide masked rhodamine fluorophore in the closed lactone 

form which is not fluorescent. Upon exposure to the source of H2S, the azide was reduced to 

amine, as a result the lactone ring opened up and became fluorescent.
9
 This probe was also 

selective as it did not show any response towards other biological thiols such as cysteine and 

gluthathione, however it took almost an hour to reach the highest level of fluorescence intensity. 

Wang and co-workers developed a dansyl fluorophore with sufonyl azide which was converted to 

sulfonylamide upon exposure to H2S.
10 

As a result, there was a significant increase in the 

fluorescence almost instantaneously and the probe was also selective towards other biological 

thiols and did not undergo displacement reactions with amino groups or other nucleophilic 

anions nor it reacted with reducing species, even at very high concentrations (Figure 3.1). 

 

Figure 3.1. Fluorescent H2S probes based on reduction of azide to amino group by H2S.  
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The other commonly used method is the nucleophilic addition of H2S to the probe which 

results in cyclization generating a fluorescent unit. He, Jiao and co-workers used this approach to 

convert non-fluorescent 1,3,5-triaryl-2-pyrazoline and BODIPY moieties into fluorophores upon 

exposure to H2S.
11

 

 Xian and co-workers used the nucelophilic addition strategy to develop a sensor using a 

non-fluorescent fluorescein chromophore masked by an ester group with a disulfide linkage. 

Upon exposure to H2S, the nucleophilic substitution between H2S and disulfide bond of the 

masked fluorescein probe created an intermediate, which spontaneously underwent cyclization by 

cleaving the masked ester moiety and regaining its fluorescence (Figure 3.2).
12

 This is a turn-on 

sensor but the detection time was slow and it was not selective with respect to other biological 

thiols such as cysteine derivatives. Similarly, Chen and co-workers reported a NIR based 

fluorescent probe using a nitro group functionalized Cyanine-7 dye that was converted to a 

fluorescent amine compound when exposed to H2S.
13

  

 
Figure 3.2. An example of Nucleophilic addition of H2S to a non-fluorescent probe to generate a 

fluorescent species. 

 

One more example of fluorescent H2S sensor has been recently reported by Guo and co-

workers. They used a hybrid chromophore of coumarin and an indolenium block called (CouMC) 

to achieve ratiometric H2S sensing. This probe was fast and selective with respect to other 

biological thiols and more importantly, it could be used in vivo imaging, e.g. imaging of H2S in 



48 

 

mitochondria. Upon addition of H2S, the fluorescence from the merocyanine decreased whereas 

there was an increase in emission from the coumarin part of the molecule (Figure 3.3).
14

 

 

 

 

 

Figure 3.3. Proposed H2S sensing reaction mechanism of CouMC probe and ratiometric 

fluorescence (left) and absorbance (right) response upon addition of H2S. (Reproduced with 

permission from ref. 14. Copyright © 2013, Wiley- VCH.) 

 

All the examples described above were small-molecule sensors. However, to the best of 

our knowledge, there was no conjugated polymer based sensor for the detection of H2S. There is 

an advantage of using CP based sensors over small molecule sensors because of signal 

amplification intrinsic to the conjugated polymers. Therefore, we designed an H2S sensor using 

naphthalene based spiropyran conjugated polymer. We decided to incorporate this chromophore 

in a poly(arylene vinylene) backbone to be used as an H2S amplifying fluorescent sensor. First, 

this would be a practical CP based sensor for the detection of H2S, and second, even more 

important, would be another example to demonstrate the generality of the “higher energy gap” 
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concept for obtaining signal amplification. The excitons produced by photoexcitation of the CP 

walk randomly along the conjugated backbone. Upon exposure to H2S, the ring opens up as 

shown in Figure 3.4 causing conversion of the low-gap spyropyran unit into a higher-energy gap 

ring opened chromophore. 

 

 Figure 3.4. Proposed reaction mechanism for the detection of H2S using fluorescent CP. 

The higher energy gap chromophore in the polymer would act as a “roadblock” for 

randomly migrating excitons, thus causing their localization. The exciton localization is expected 

to produce enhanced fluorescence, according to the “higher energy gap” concept described in 

detail in chapter 2. 

3.2. Synthesis 

The monomer 15 is a versatile monomer that would be used in the synthesis of all the 

polymers as one of the co-monomers. All the measurements and studies would be performed in 

solution, therefore it is very important to have a good solubility of the polymers. 

The required co-monomer 15 was prepared by following the Scheme 3.1. The synthesis 

began with the preparation of the tri(ethylene glycol) tosylate 11 and bromination of the 

commercially available hydroquinone to afford 12. Reaction between 11 and 12 yielded 

dibromide 13 which was then subjected to Sonogashira coupling with TMS-acetylene and 

subsequent acetylene deprotection to afford 14. Finally, hydroboration of bis-acetylene 14 was 

carried out in presence of HZrCp2Cl catalyst to afford monomer 15. 
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Scheme 3.1. Synthesis of the monomer 15.  

Preparation of polymer P4 was attempted using two methods, first using the pre-

functionalized monomer 20a or b and second using post-functionalization of the aldehyde 

polymer P5. 

In the first approach, the commercially available tetramethylindolenium salt 17 and 2,5-

dibromobenzaldehyde 19 were refluxed in ethanol with catalytic amount of pyridine to afford the 

monomer 20a. For increased aqueous solubility, the sulfonated indolenium compound 18
16

 was 

condensed with aldehyde 19 using the same procedure. The merocyanine (MC) monomer 20a or 
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20b was then co-polymerized with monomer 15, but the polymerization was not successful, 

producing only degradation products (Scheme 3.2).  

 

Scheme 3.2. Attempted synthesis of polymer P4 using pre-functionalized monomer. 

The reaction time and conditions were varied, still the polymerization was not successful, 

most likely because MC-monomers (20a or b) were not stable in the reaction conditions used in 

Suzuki coupling. In order to test stability of the compound 20a in such conditions, it was 

subjected to Sonogashira coupling with TMS-acetylene which resulted only in the degradation 

products, thus proving the futility of further attempts to use this route. Since the MC-monomer 
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was unstable in Suzuki or Sonogashira coupling using palladium catalyst, the post-

polymerization functionalization method was attempted. First, aldehyde functionalized polymer 

P5 was synthesized using Suzuki coupling conditions followed by post-polymerization treatment 

with compound 17 or 18 in the presence of catalytic amount of pyridine in the mixture of n- 

butanol and chloroform as a solvent (Scheme 3.3). 

 

Scheme 3.3. Attempted synthesis of polymer P4 using post-functionalization method. 

Initially, the polymer P5 was prepared from monomers 19 and 15 (taken in 1:1 ratio) 

using Suzuki coupling reaction conditions. The polymer P5 obtained was characterized by GPC 

which showed number average molecular weight Mn 15 kDa. The polymer was found sufficient 

soluble for characterization by 
1
H NMR spectroscopy which did show an aldehyde peak at 10.4 

ppm. The post-polymerization functionalization using 17 or 18 attempted in n-butanol and 

chloroform mixture resulted in the recovery of the starting aldehyde polymer P5. Since the 

reaction was carried out in heterogeneous conditions, aldehyde polymer did not completely 

dissolve that could have some impact on the course of the reaction.  



53 

 

In order to increase solubility of the polymer P5 in organic solvents, the fraction of the 

solubilizing groups was increased. Thus, a mixture of 25% of 19, 25% of 13 and 50% of 15 was 

subjected to Suzuki polymerization conditions to afford a well-soluble polymer P5 with average 

molecular weight Mn 10 kDa, according to GPC analysis (Scheme 3.3). Finally, polymer P5 was 

subjected to post-polymerization functionalization with 18 in mixture of chloroform and n-

butanol (1:1) in presence of catalytic amount of pyridine. However, numerous attempts using 

different bases such as pyridine, piperidine, NaOH, diisopropylamine were not successful. 

Depending upon the reaction time either starting material (P5) or products of polymer 

degradation were recovered. 

Even after several attempts to synthesize the desired polymer P4 using different methods 

such as pre-functionalized monomer, post-functionalization of aldehyde polymer P5, the polymer 

could not be obtained. In the first method, the MC monomer was not stable under palladium 

catalyzed reaction conditions whereas in the second, the post-functionalization was not 

successful. Therefore, the synthetic scheme needed to be changed to obtain the polymer that 

would show response to H2S.  

After screening some monomers, we decided to build the spiropyran functionalized 

conjugated polymer using previously synthesized monomer compound 6. Preparation of polymer 

P7 started with Suzuki coupling of monomers 6 and 15 using Pd(PPh3)4 as a catalyst in mixture 

of EtOH, H2O and Toluene as a solvent and SDS as a surfactant (Scheme 3.4) to afford an 

aldehyde polymer P6 (Mn 6kDa by GPC vs. polystyrene standards). The polymer P6 was 

subjected to condensation with 18 to afford polymer P7. 



54 

 

 

Scheme 3.4. Synthesis of the Polymer P7. 

An alternative polymer P8 was synthesized using Sonogashira coupling reaction 

conditions (Scheme 3.5). The polymer P8 was characterized by 
1
H NMR and number average 

molecular weight of 20 kDa was found by GPC (vs. polystyrene standards).   

 

Scheme 3.5. Synthesis of the Polymer P8. 

3.3. Spectroscopic Characterizations 

 The absorbance and emission spectra of different polymers are shown in Figure 3.5. The 

P5- polymer showed absorbance maximum at 450 nm and emission maximun at 575 nm whereas 

the napthyl-aldehyde polymer P6 had absorbance maximum at 420 nm and emission maxium at 
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580 nm. The polymer P8 had absorbance maximum at 440 nm and emission maximum at 500 

nm.  

 

Figure 3.5. Absorption and Emission spectra of different CPs to be used in H2S sensing. 

 

The polymers P7 and P8 were used to study their response to H2S addition. The stock 

solution of the polymers were prepared in DMSO and then diluted with methanol because these 

polymers did not dissolve in methanol. NaSH dissolved in MeOH was used as an H2S source for 

the studies. All these measurements were carried out as preliminary tests, therefore actual 

concentrations of the samples were not determined. 

As can be seen from Figure 3.6, there was a significant increase in the fluorescence 

intensity after addition of H2S to a solution of the polymer P7 whereas in the case of P8, there 

was a small decrease in the intensity. The decrease in the fluorescence intensity of P8 was likely 

due to dilution of the sample whereas the increase in the intensity of P7 was most likely due to 

the formation of a higher energy gap chromophore in good agreement with the original 

hypothesis. As expected, the polymer P8 did not produce an appreciable response on exposure to 
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H2S because there was no creation of a “higher energy gap” chromophore in the polymer 

backbone that could acts as a “roadblock” for exciton migration. As a result, there was almost no 

change in fluorescence of the polymer P8 after exposure to an H2S source. 

 

Figure 3.6. Change in Fluorescence intensity of polymers P7 and P8 after addition of NaSH in 

MeOH. The left graph corresponds to polymer P7 and the right graph corresponds to polymer P8. 

 

3.4. Future Work 

The future studies will require synthesizing a water soluble polymer analogue of P7 so 

that all the measurements could be carried out in aqueous medium which would make it a good 

candidate for in vivo applications. More accurate quantitative studies and detailed 

characterization (using time resolved spectroscopic techniques) will be required to undoubtfully 

establish “the higher energy gap” paradigm as a general and universal concept in amplifying 

fluorescent conjugated polymers. 



57 

 

3.5. References 

[1]  Obermajer, N.; Wong J. L.; Edwards, P. R.; Chen, K.; Scott, M.; Khader, S.; Kolls, J, K.; 

Odunsi, K.; Billiar, T. R.; Kalinski, P. Induction and stability of human Th17 cells require 

endogenous NOS2 and cGMP-dependent NO signaling. J. Exp. Med. 2010, 10, 1433-

1445. 

[2]  Morita, T.; Perrella, A. M.; Lee, E. M.; Kourembanas, S. Smooth muscle cell-derived 

carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA 1995, 92, 

1475-1479. 

[3]  Lefer, D. J. A new gaseous signaling molecule emerges: Cardioprotective role of 

hydrogen sulfide. Proc. Natl. Acad. Sci. USA 2007, 104, 17907-17908. 

[4]  Martelli, A.; Testai, L.; Bresch, C. M.; Blandizzi, C.; Virdis, A.; Teddei, S.; Calderone, 

V. Hydrogen Sulphide: Novel Opportunity for Drug Discovery. Med. Res. Rev. 2012, 6, 

1093-1130. 

[5]  Kamoun, P.; Belardinelli, M. C.; Chabli, A.; Lallouchi, K.; Chadefaux-Vekemans, B. 

Endogenous hydrogen sulfide overproduction in Down syndrome. Am. J. Med. Genet. 

Part A 2003, 116, 310-311. 

[6]  Eto, K.; Asada, K.; Arima, K.; Makifuchi, T.; Kimura, H. Brain hydrogen sulfide is 

severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun. 2002, 293, 

1485-1488. 

[7]  Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Ros-Lis, J. V.; Benito, A.; Soto, J. A 

New Chromo-chemodosimeter Selective for Sulfide Anion. J. Am. Chem. Soc. 2003, 125, 

9000-9001. 

[8]  Bérubé, R. P.; Parkinson, D. P.; Hall, R. E. A Measurement of reduced sulphur 

compounds contained in aqueous matrices by direct injection into a gas chromatograph 

with a flame photometric detector. J. Chromatogr. A 1999, 830, 485-489. 

[9]  Lippert, R. A.; Elizabeth, J.; New, J. E.; Chang, J. C. Reaction-Based Fluorescent Probes 

for Selective Imaging of Hydrogen Sulfide Living Cells. J. Am. Chem. Soc. 2011, 113, 

10078-10080. 

[10]  Kumar, N.; Bhalla, V.; Kumar M. Recent developments of fluorescent probes for the 

detection of gasotransmitters (NO, CO, H2S). Coord. Chem. Rev. 2013, 257, 2335-2347. 

[11]  Qian, Y.; Karpus, J.;  Kabil, O.; Zhang, S. Y.; Zhu, H. L.; Banerjee, R.; Zhao, J.; He, C. 

Selective fluorescent probes for live-cell monitoring of sulphide. Nat. Commun. 2011, 2, 

495-499. 

[12]  Liu, C.; Pan, S.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. 

Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angew. Chem. 

Int. Ed. 2011, 50, 10327–10329. 

http://www.sciencedirect.com/science/article/pii/S0021967398008826
http://www.sciencedirect.com/science/article/pii/S0021967398008826
http://www.sciencedirect.com/science/article/pii/S0021967398008826


58 

 

[13]  Wang, R.; Yu, F.; Chen, L.; Chen, H.; Wang, L.; Zhang, W. A highly selective turn-on 

near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells. 

Chem. Commun. 2012, 48, 11757-11759. 

[14]  Chen, Y.; Zhu, C.; Yang, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z. 

A Ratiometric Fluorescent Probe for Rapid Detection of Hydrogen Sulfide in 

Mitochondria. Angew. Chem. Int. Ed. 2013, 52, 1688–1691. 

[15]  Chan, Y. P.; Fan, L.; You, Q.; Chan, W. H.; Lee, W. M. A.; Shuang, S. Ratiometric pH 

responsive fluorescent probes operative on ESIPT. Tetrahedron 2013, 69, 5874-5879. 

[16]  Richard, J. A.; Massonneau, M.; Renard, Y-P.; Romieu, A. 7-Hydroxycoumarin-

Hemicyanine Hybrids: A New Class of Far-Red Emitting Fluorogenic Dyes. Org. Lett. 

2008, 10, 4175-4178. 



59 

 

Chapter 4. Polycyanines – Near-Infrared Fluorescent Conjugated Polymers 

4.1. Introduction 

Near Infrared (NIR) fluorescent materials have gained interest as fluorescent tags for 

bioimaging and chemosensing and also for use in NIR organic light emitting diodes 

(OLED’s).
1,2,3 

It is always desirable to have a fluorophore that absorbs and emits in the 650 to 

1100 nm wavelength range because of the better spectral separation from autofluorescence and 

low light scattering of cells and tissues in biosensing and bioimaging applications.
4
 Similarly, 

these far-red or NIR emitting fluorophores are of great interest in the field of OLEDs because of  

their potential applications in photodynamic therapy, night vision, defense security and 

telecommunications.
5
 

Conjugated polymers have gained popularity as NIR materials because of the ease of 

altering their chemical and photophysical/spectroscopic properties which can be done by 

changing the band gap of the materials. Various factors such as resonance effect, planarity, 

interchain and bond length alternation also play a significant role in tuning the band gap. To 

obtain far-red or NIR absorption and emission, there are two different methods that have been 

utilized. One well-known strategy is elongation of the π-electron system of polymethine dyes by 

increasing the number of methine units, whereas another approach includes incorporation of 

alternating donor (D) and acceptor (A) units in the conjugated backbone of CP.
6,7,8

 

NIR emitting polymers have been demonstrated by using 2,1,3-benzoselenadiazole 

(PCPDTBSe).
9
 Anderson also used a similar approach using a D-A-D scheme to synthesize NIR-

CPs (LBPP-1) with an emission band at 950 nm and showed potential use of this polymer in 

fabricating solar cells.
10

 CPDT-based polymer was developed that provides dual functions as a  

low-gap polymer for NIR photovoltaics and light-emitting diodes (Figure 4.1).
21
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Figure 4.1. Representation of NIR- conjugated polymers for potential use in fabricating OLEDs 

and photovoltaic cells. 

Different small molecule dyes with π-electron systems have been widely explored and 

used to reach the far red region, e.g cyanines, phthalocyanines and porphyrin derivatives, 

functionalized BODIPY’s and squaraines.
11

 Along the same line, there are multiple examples of 

conjugated polymers to obtain NIR absorption and emission. Usually dyes like squaraines and 

oxazines and functionalized BODIPY are used to achieve spectral properties in the far-red to NIR 

region. Zhu, Cheng et al. synthesized and studied fluorescent properties of NIR emissive 

polymers incorporating BODIPY and binapthyl units that would be useful in biological and 

cellular imaging.
12

 Lambert and his group synthesized polysquaraine NIR CPs by condensation 

of squaric acid with electron rich aromatic co-monomers and studied their spectral properties 

which showed absorption in the red to near infrared (NIR) region with narrow NIR fluorescence 

(Figure 4.2).
13 
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Figure 4.2. Incorporation of red-fluorescent dyes in constructing NIR conjugated polymers. 

Cyanine dyes have gained more popularity for the applications in NIR region because of 

their broad wavelength tunability, high to moderate quantum yields and large molar extinction 

coefficients. These dyes have been known for more than 100 years. They are characterized by 

two heterocyclic units connected by a polymethine bridge having an odd number of carbons, 

where the two terminal heterocyclic units can be identical or different. Generic cyanine dyes 

consist of two nitrogen centers, one of which is positively charged and is linked by a conjugated 

chain of carbon atoms to the other neutral nitrogen (Figure 4.3). The spectral properties of 

cyanine dyes can be tuned from the visible region to far-red or NIR by changing the bridge length 

and heterocyclic units.
3,14

 

 

Figure 4.3. Generic structure and examples of the most common heterocyclic components found 

in cyanine dyes. 
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Cyanine dyes in solution are known to form aggregates characterized by distinct 

spectroscopic properties. There are a variety of factors that contribute to the formation of cyanine 

aggregates, such as solvent polarity, concentration, temperature, pH and ionic strength.
18

 The 

molecules of cyanine dyes may aggregate in parallel fashion (plane-to-plane stacking) to form 

sandwich- type or H-aggregates which results in the hypsochromically shifted absorption bands 

relative to the monomer molecule. In contrast, J- aggregates result from head-to-tail (end-to-end) 

stacking and produce bathochromically shifted absorption bands relative to the monomer. This 

type of change in spectral properties has wide range of applications in many different areas such 

as photography, photodynamic therapy, optoelectronics, and photoelectric cells.
14

  

As their ground and excited state geometries are close to each other, cyanine dyes exhibit 

narrow absorption and fluorescence bands with relatively small Stokes shifts. Although the π- 

conjugated electrons in the cyanine dyes appear to be mostly delocalized within the polymethine 

bridge, the terminal heterocyclic aromatic moieties also participate in the π-electron 

delocalization.
15

  

For example, increase in conjugation length with accompanying bathochromic spectral 

shifts were observed when naphthalene aromatic termini (as in benzindocyanine compounds) 

were used instead of benzene units (as in indocyanine dyes) (Figure 4.4).
16

 Encouraged by this 

observation, we hypothesized that linking indocyanines as monomeric units into a polycyanine 

chain would produce fluorescent CPs with extended π- electron delocalization, therefore shifting 

their absorption and emission into NIR region.
19

 Due to the relative conformational flexibility 

around the bonds that interconnect the adjacent monomeric repeating units, photophysical 

properties of such polymers could be very sensitive to the environment, making them highly 
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attractive for sensing applications. In addition to that, these positively charged cyanine polymers 

would be an ideal candidate for the detection of negatively charged biomolecules such as DNA.
 

 

Figure 4.4. Chemical structures of Benzindocyanine and Indocyanine dyes and their 

spectroscopic characterization in methanol.
16, 20 

4.2. Design and Synthesis 

The design and initial synthesis of the poly(cyanine) P9 was started by a former group 

member Dr. Jinwoo Choi. The Yamamoto polymerization conditions were used in the synthesis 

of the polymer and monomers and its precursors were synthesized as shown in Scheme 4.1. 

 

Scheme 4.1. Earlier reaction scheme for the synthesis of the poly(cyanine) polymer, P9. 
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The synthesis of polymer started with commercially available 4-iodoaniline which was 

converted to 4-iodophenylhydrazine 22. The hydrazine was condensed with isopropyl methyl 

ketone and methylated with CH3I to afford 23 followed by condensation with malonaldehyde 

bis(phenylimine) monohydrochloride to yield monomer 24 with two iodo “handles” for further 

polymerization. The Yamamoto polymerization using stoichiometric Ni(cod)2 was carried out to 

afford the poly(cyanine) P9. The polymer obtained was dark blue powder as expected for a NIR 

material and had fairly good solubility in polar aprotic solvents like DMF, DMSO or in 

Methanol. The polymer showed reasonable thermal stability in solid state. Indeed, there was no 

substantial degradation found in TGA studies until 200 
ο
C, and DSC measurements showed a 

broad endothermic peak centered around 95 
ο
C. This phase transition could be due to melting of 

the polymer in a broad temperature range (Figure 4.5) 
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Figure 4.5. TGA and DSC measurements for polymer P9 prepared as outlined in Scheme 4.1. 

Data were acquired at the heating rate of 10 
ο
C min

-1
 in N2 atmosphere. 

 

Due to the charged nature of the molecule of P9, it was difficult to determine its 

molecular weight using GPC because it did not pass through the column when DMF was used to 

dissolve the cyanine polymer and also as an eluent for the chromatography. Therefore, we 
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decided to prepare well-defined oligomers such as dimer and tetramer of the monomer 24 in 

order to study the π-electron delocalization and to determine the effect of increasing molecular 

length on the spectroscopic properties.  

The novel compounds monomer 30, dimer 31 and tetramer 34 of cyanine dyes were 

synthesized from commercially available starting material biphenylbenzimine dihydrochloride 

25. The synthesis of the oligomers of the cyanine dye is outlined in the Scheme 4.3 whereas the 

synthesis of the required intermediates is outlined in Scheme 4.2. 

 

Scheme 4.2. Synthesis of the intermediates. 

The biphenylbenzimine hydrochloride 25 was first converted to bis-hydrazine 26 and then 

condensed with excess isopropyl methyl ketone to afford 27 followed by N-methylation to afford 

28. Condensation of 17 with malonaldehyde bis(phenylimine) monohydrochloride in acetic 

anhydride and acetic acid afforded 29, a half dye. These two compounds 28 and 29 were the main 

intermediates for the synthesis of oligomers and were used in a newly designed synthesis of the 

polymer (Scheme 4.4). 
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Scheme 4.3. Synthesis of Monomer, Dimer and Tetramer 

Condensation between 29 and 17 afforded the monomer 30 whereas condensation of 28 

(1eqv) and 29 (2eqv) yielded the dimer 31. The synthesis of the monomer and the dimer was 

straightforward, on the other hand for the synthesis of tetramer 34 a few more intermediates were 

required. First, 29 was condensed with 1 eqv of 28 to afford 32, and 28 was then reacted with 2 

eqv of malonaldehyde bis(phenylimine) monohydrochloride to afford second intermediate 33. 

Finally, intermediates 33 and 32 were condensed together to afford tetramer 34 (Scheme 4.3). 
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Scheme 4.4. Synthesis of polymer P9. 

The synthesis of the polymer was relatively simple and was done in one step under basic 

conditions. The condensation of 1eqv of 28 with 1eqv of malonaldehyde bis(phenylimine) 

monohydrochloride in the presence of potassium carbonate in acetic anhydride at 140 
ο
C for 2 h 

afforded P9 as a dark blue powder.  

4.3. Spectral Properties 

The cyanine polymer P9 optical spectra were significantly broadened as compared to the 

monomer 30 and appeared to consist of at least two overlapping bands. The first absorbance band 

at 625 nm was similar to the monomer 30 whereas the second band at 750 nm was red shifted by 

almost 100 nm (Figure 4.6 and Table 4.1). Similarly, the emission also showed dual bands, first 

at 650 nm and the second band at 700 nm. 

Table 4.1.Spectroscopic properties of cyanine oligomers and polymer P9 in DMSO  

 Monomer (30) Dimer(31) Tetramer(34)  Polymer  P9 

Absorption ( λmax) 620 nm 700 nm 680 nm 625 nm,750 nm 

Emission ( λmax) 650 nm 660 nm 675 nm 650 nm, 700 nm 

ɛ, M-1
 cm

-1
 1.5x10

5
 1.1x10

5
 1.0x10

5
 0.5x10

5
 

Quantum yield, % 38% 2% 0.2% 0.1% 
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Figure 4.6. Normalized absorption and emission spectra of the monomer 30, dimer 31, tetramer 

34 and polymer P9 in DMSO.  

As expected, fluorescent bands of the polymer were red shifted compared to the monomer 

because of the increase in π-conjugation length. Similarly, fluorescent spectrum of the cyanine 

polymer P9 showed bathochromic shifts of 25 nm or 30 nm compared to dimer 31 or tetramer 

34, respectively. The origin of the dual band of these cyanines is currently not clear. It is known 

the oligomeric and polymeric cyanine dyes are prone to aggregate in solution resulting in 

production of both hypsochromically and bathochromically shifted new bands due to the 

formation of H and J aggregates, respectively. This kind of aggregation pattern is greatly affected 

by concentration of the sample, as with concentration increase, intensity of J and H aggregate 

bands tend to increase. In order to gain a deeper knowledge of the origin of the dual bands, 

absorption spectra of cyanine oligomers and polymer were obtained at different concentrations, 

from a very dilute to a highly concentrated sample (Figure 4.7). As can be seen from the 

normalized absorption graphs below, there was no change in the shape of the absorption bands, 
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from this it can be concluded that the dual bands were intrinsic to the molecules, and not 

originating from intermolecular aggregation. 

Normalized Absorption 

Wavelength (nm) 

Figure 4.7. Normalized UV/Vis Absorption spectra of Monomer, Dimer, Tetramer and Polymer 

P9 at concentrations ranging from 100uM to 0.01uM. 

 From this experiment, one can conclude that, although cyanine dyes are traditionally 

known to produce aggregates, the red shifted emission observed was due to the increase in the 

conjugation length from the monomer to the polymer. Another important observation was that 

wavelength did not show any further bathochromic shift upon moving from tetramer to the 
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polymer. This probably indicated that conjugation length in the poly(cyanine) polymers is limited 

by no more than 4 repeating units. 

 4.4. 
1
H-NMR Studies 

Variable temperature NMR: At low or room temperature, NMR spectra of the polymer P9 

were not very clear as the aromatic protons were overlapping with each other which made the 

spectra difficult to interpret. However, at the elevated temperature (around 40°C and higher) in 

DMSO, as shown in the Figure 4.8, an acceptable spectrum of polymer P9 was obtained. The 

chemical shift of the aromatic protons of the cyanine polymer was very similar to the chemical 

shift of the analogous signals in the monomer 30.  

 

Figure 4.8. Variable- temperature 
1
H NMR spectra of cyanine polymer P9. The top spectra is 

obtained after cooling the sample from 100 °C to RT. 
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Comparison between the NMR spectra of monomer and polymer: The polymethine bridge 

protons (δ 8.3, 6.6, 6.25 ppm) were observed in both monomer 30 and cyanine polymer P9 at the 

same chemical shift whereas aromatic protons were slightly downfield shifted in P9 compared to 

monomer 30 (Figure 4.9). Integration of the aromatic protons of the polymer showed two fewer 

protons in the aromatic region compared to the monomer as these two positions were used to 

form the polymer chain. On the other hand, comparison of the NMR spectrum of the polymer 

with shorter oligomers showed distinctly different spectra, neither matching the aromatic protons 

nor polymethine bridge. From this observation, it can be concluded that polymer P9 was at least 

larger than the tetramer 34. 

 

Figure 4.9. Comparison of 
1
H NMR spectra of monomer 30 and cyanine polymer P9. 

 

Diffusion NMR. The lack of consistent information about the chain length from either GPC or 

NMR studies lead us to rely upon the diffusion NMR to estimate the relative size of the polymer 
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and compare the value to the tetramer and dimer. Diffusion pulse-gradient NMR can allow 

determination of diffusion coefficient. The diffusion coefficient provides further information 

about the size of the molecule, as the bigger the molecule, the smaller the diffusion constant and 

vice versa. The correlation between the molecular size and experimental diffusion constant can 

be seen from the Table 4.2. 

Table 4.2. Diffusion coefficient of cyanine oligomers and polymer P9 in DMSO 

 Monomer(30) Dimer(31) Tetramer (34) Polymer P9 

Diffusion Coefficient 3.815x10
-10

m
2
/s 1.711x10

-10
m

2
/s 1.408x10

-10
m

2
/s 6.814x10

-11
m

2
/s 

 

 According to the data in Table 4.2, one can conclude that the polymer showed diffusion 

coefficient approximately 6 times smaller than the diffusion coefficient of the monomer. This 

kind of measurement is usually performed for bigger molecules (such as DNA and proteins), 

although it can also be used for organic polymers to estimate the relative size. The significant 

difference in diffusion coefficients of polymer P9 and oligomers indicated that the polymer was 

at least larger than the largest oligomer (tetramer 34). Thus, this data was consistent with 

polymeric nature of P9. 

4.5 Conclusions 

 After comparison of the optical properties, NMR spectra and Diffusion coefficient of 

cyanine polymer P9 and related oligomers one can conclude that polymer was indeed larger than 

the tetramer, the longest of the prepared oligomers. More importantly, independent of how much 

the molecular length was extended, the absorption and emission spectra of the polymer P9 did 

not show much difference relative to the tetramer 34, and could not be shifted further to the NIR 

region. Nevertheless, the polymer P9 did show some electronic delocalization (and far-red 
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spectroscopic properties). This principle should enable using such polymers as amplifying 

scaffold to construct NIR fluorescent amplifying chemo and biosensors. This and other 

opportunities should be studied as part of the future research program. 
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Chapter 5. Experimental Details 

5.1.General Procedures 

All reactions were performed under an atmosphere of dry nitrogen, except those that required 

Schlenk techniques, which were performed under an atmosphere of ultrapure argon.  

Chromatographic separations were carried out on silica gel (EMD, 60 Å, 40-63 µM, pH 6.8-7.0) 

slurry packed into glass columns.  Toluene, hexane, dichloromethane and THF were dried by 

passing through columns of activated alumina, and N,N-dimethylformamide (DMF) was dried by 

passing through a column of molecular sieves using a PS-400 Solvent Purification System from 

Innovative Technologies, Inc. The water content in the solvents was confirmed by coulometric 

titration (using a DL32 coulometric titrator from Mettler Toledo).  High purity Pd(PPh3)4 was 

obtained from Strem Chemicals, Inc., while all other reagents were obtained from Sigma-Aldrich 

and Alfa Aesar and used as received.  
1
H NMR spectra were recorded at 400 MHz, unless noted 

otherwise, and are reported in parts per million downfield from tetramethylsilane.  UV-Visible 

spectra were recorded either on a Varian Cary 50 (solutions) or an Agilent Cary 5000 (thin films) 

spectrophotometer.  Fluorescence studies were carried out using a PTI QuantaMaster4/2006SE 

spectrofluorimeter.  Absolute quantum yields were determined using a “small” integrating sphere 

from PTI interfaced with the spectrofluorimeter.  GPC analysis of polymers was performed with 

Agilent 1100 chromatograph equipped with two PLgel 5 m MIXED-C and one PLgel 5 m 

1000 Å columns connected in series, using THF as a mobile phase, and calibrated against 

polystyrene standards.  Thin-film samples for spectroscopic studies were prepared using Laurell 

Technologies WS-400B-6NPP spin processor.  High-resolution mass spectra were obtained at the 

Mass Spectrometry Facility at LSU Chemistry Department using an ESI-TOF method with peak 

matching protocol to determine the mass and error range of the molecular ion 
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5.2. Synthetic Details 

1,3,6-Tribromo-2-napthol (4) was prepared following the modified literature procedure.
1
  A 

mixture of 10.0 g (0.045 mol) of 6-bromo-2-napthol and 22.0 g (0.22 mol) of potassium acetate 

was dissolved in 75 ml of glacial acetic acid upon slight heating and 37.2 g (12.0 ml, 0.22 mol) 

of liquid Br2 was added slowly to the solution. The reaction mixture was stirred for 3 h at room 

temperature that resulted in the formation of yellow precipitate of compound 3. The solid 

precipitate was collected by filtration and washed with water. It was dissolved in 150 ml of 

glacial acetic acid and 40.0 g (0.22 mol) of SnCl2 (anhydrous) was added to the solution, and the 

resulting mixture was stirred for 10 h at room temperature. The reaction mixture was poured into 

200 ml of 20% HCl and the solid precipitate was collected by filtration and dried in vacuo to 

afford 15.0 g of 4 as a colorless solid which was used in the next step without further 

purification.  
1
H NMR (CDCl3, 250 MHz)  7.97 (s, 1H), 7.94 (d, J = 9.2 Hz, 1H), 7.88 (d, J = 

2.0 Hz, 1H), 7.65 (dd, J1 = 9.2, J2 = 2.0 Hz, 1H), 6.24 (s, 1H). 

 

3,6-Dibromo-2-napthol (5) was prepared following the modified literature procedure.
1
  A 

solution of 15.0 g (0.04 mol) of 4 and 20.0 g (0.11 mol) of anhydrous SnCl2 in 110 ml of ethanol 

– conc. HCl (10:1) mixture was refluxed for 4 h.  After cooling to room temperature, the reaction 

mixture was poured into ice-cold water, which yielded a colorless precipitate.  The precipitate 

was collected by filtration, dissolved in dichloromethane and dried over Na2SO4.  Concentration 

in vacuo afforded 7.0 g (51% over two steps) of 5 as a colorless fluffy solid, mp. 121-123 °C.  
1
H 

NMR (CDCl3) δ 7.94 (s, 1H), 7.85 (s, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.51 (dd, J1 = 8.9, J2 = 1.8 

Hz, 1H), 7.35 (s, 1H), 5.70 (broad s, 1H). 
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3,6-Dibromo-2-hydroxy-1-napthaldehyde (6). A mixture of 5.0 g (0.016 mol) of 5, 5.3 g (0.13 

mol) of NaOH, 6 ml of chloroform and 7 ml of water was stirred upon heating at 75 °C for 18 h.  

After allowing to cool to room temperature, the reaction mixture was poured into 100 ml of 8% 

HCl and stirred for 30 min, and extracted with ethyl acetate (100 ml). The organic phase was 

washed successively with water, brine and dried over Na2SO4.  Concentration in vacuo afforded a 

crude product which was purified by column chromatography on silica gel (eluent CH2Cl2 – 

hexane 2:1). A fraction with Rf 0.50 afforded 1.2 g of the starting material 5, and a fraction with 

Rf 0.70 afforded 2.4 g (58%) of 6 as a yellow fluffy solid, mp. 151-152 °C.  
1
H NMR (CDCl3) δ 

13.78 (s, 1H), 10.74 (s, 1H), 8.25-8.19 (m, 2H), 7.91 (d, J = 2.0 Hz, 1H), 7.74 (s, 1H), 7.72 (dd, 

J1 = 9.1, J2 = 2.0 Hz, 1H). HRMS (ESI-TOF) m/e 327.8649 M
+
 (calcd. for C11H6Br2O2 

327.8735).   

1,4-diethynyl-2,5-bis(tetradecyloxy)benzene (7).  A mixture of 3.0 g (4.54 mmol) of S1, 1.2 g 

(1.7 ml, 11.4 mmol) of TMS-acetylene, 0.26 g (0.22 mmol) of Pd(PPh3)4, and 50 mg (0.22 

mmol) of CuI in 50 ml of toluene – i-Pr2NH (7:3) mixture was stirred in a sealed Air-free flask at 

70 °C for 15 h.  After allowing to cool to room temperature, the crude product was concentrated 

in vacuo and passed through a short plug of silica gel using chloroform as an eluent to afford 2.4 

g of a yellow solid.  The solid was dissolved in 50 ml of THF, and a solution of 2.0 g (35.0 

mmol) of KOH in 25 ml of methanol was added dropwise at 0 °C to the THF solution and the 

resulting mixture was stirred for 1 h.  The reaction mixture was poured into water and extracted 

with ethyl acetate.  The organic phase was washed with water, brine and dried over Na2SO4.  

Concentration in vacuo afforded a crude product which was purified by column chromatography 

on silica gel (eluent CH2Cl2 – hexanes 1:1) to afford 1.76 g (75% over 2 steps) of 7 as colorless 
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oil that slowly solidified into a sticky colorless solid, Rf 0.60.  
1
H NMR characterization was in 

agreement with the previously published data.
4
   

Bis-1,4-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-(1E)-ethenyl]-2,5-

bis(tetradecyloxy)benzene (8). A mixture of 1.0 g (1.8 mmol) of compound 7, 0.57 g (0.65 ml, 

4.5 mmol) of pinacolborane, 46 mg (0.18 mmol) of ZrCp2HCl in 20 ml of 1,2-dichloroethane 

was stirred in a sealed Air-free flask at 65 °C for 3 days. After allowing to cool to room 

temperature, the reaction mixture was poured into water and extracted with ethyl acetate. The 

organic phase was washed successively with water, brine and dried over Na2SO4. Concentration 

in vacuo afforded crude product as brown oil.  The crude product was purified by column 

chromatography on silica gel (eluent EtOAc – hexanes 1:4) to yield 0.8 g (50%) of 8 as a yellow 

solid, Rf 0.50, mp. 59-61 °C.  
1
H NMR (CDCl3) δ 7.71 (d, J = 18.6 Hz, 2H), 7.06 (s, 2H), 6.16 

(d, J = 18.6 Hz, 2H), 3.94 (t, J = 6.7 Hz, 4H), 1.90-1.70 (m, 4H), 1.48-1.15 (m, 68H), 0.93-0.85 

(m, 6H).  HRMS (ESI-TOF) m/e 807.6843 [M+H]
+
 (calcd. for C50H89B2O6 807.6845).  

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (9) was prepared following a modified 

literature procedure.
5
  A mixture of 0.5 g (4.9 mmol) of phenylacetylene, 0.8 g (0.9 ml, 6.37 

mmol) of pinacolborane, 70 mg (0.27 mmol) of ZrCp2HCl in 10 ml of 1,2-dichloroethane was 

stirred in a sealed Air-free flask at 65 °C for 2 days.  After allowing to cool to room temperature, 

the reaction mixture was poured into water and extracted with ether. The organic phase was 

washed successively with water, brine and dried over Na2SO4.  Concentration in vacuo afforded a 

crude oil product which was purified by passing through a short plug of silica gel using CH2Cl2 – 

hexanes (2:1) as an eluent to afford 0.8 g (70%) of compound 9 as yellow oil.  
1
H NMR 

characterization was in agreement with the previously published data.
6
 



79 

 

2-Hydroxy-3,6-di-(E)-styryl-1-napthaldehyde (10).  A mixture of 0.23 g (1.0 mmol) of 

compound 9, 0.15 g (0.45 mmol) of compound 6, 10 mg (8.7 mol) of Pd(PPh3)4, 0.31 g (2.25 

mmol) of K2CO3 and 50 mg (2.25 mmol) of sodium dodecyl sulfate (SDS) in 15 ml of a mixture 

of toluene – ethanol – water (1:4:10) was stirred at 1000 rpm in a sealed Air-free flask at 75 °C 

for 48 h.  After allowing to cool to room temperature, the reaction mixture was poured into water 

and extracted with ethyl acetate. The organic phase was successively washed with water, brine 

and dried over Na2SO4. Concentration in vacuo afforded crude product as a yellow solid which 

was purified by column chromatography on silica gel (eluent CH2Cl2 – hexanes 2:1) to afford 

120 mg (70%) of 10 as a bright-yellow solid, Rf 0.50, mp. 205-207 °C.  
1
H NMR (CDCl3) δ 

13.78 (s, 1H), 10.84 (s, 1H), 8.31 (d, J = 9.0, Hz, 1H), 8.26 (s, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.84 

(dd, J1 = 9.0, J2 = 1.8 Hz, 1H), 7.65-7.55 (m, 5H), 7.48-7.35 (m, 5H), 7.33-7.26 (m, 2H), 7.24 (s, 

2H).   

2-Hydroxy-3,6-di-(E)-styryl-1-napthaldehyde oxime (M1).  A mixture of 0.05 g (0.13 mmol) 

of 10, 0.03 g (0.5 mmol) of hydroxylamine hydrochloride, 5 ml of ethanol and 0.5 ml of pyridine 

was refluxed for 2 h. After allowing to cool to room temperature, the reaction mixture was 

poured into water and extracted with ethyl acetate. The organic phase was washed with water and 

dried over Na2SO4. Concentration in vacuo afforded 0.045 g (85%) of M1 as a bright-yellow 

solid powder, mp. 240-243 °C.  
1
H NMR (acetone-D6) δ 11.96 (s, 1H), 10.94 (s, 1H), 9.29 (s, 

1H), 8.27 (s, 1H), 8.23 (d, J = 8.2 Hz, 1H), 8.01 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.76-7.60 (m, 

5H), 7.53 (d, J = 15.0 Hz, 1H), 7.44-7.38 (m, 6H), 7.33-7.27 (m, 2H).  HRMS (ESI-TOF) m/e 

392.1644 [M+H]
+
 (calcd. for C27H22NO2 392.1645).   
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Polymer P2.  Polymerization was carried out using a literature procedure.
7
  A mixture of 50 mg 

(0.15 mmol) of 6, 128 mg (0.16 mmol) of 8, 20 mg (0.015 mmol) of Pd(PPh3)4, 230 mg (1.5 

mmol) of K2CO3, and 290 mg (1.5 mmol) of sodium dodecyl sulfate (SDS) in 30 ml of the 

mixture of water – toluene – ethanol (15:8:2) was stirred at 1000 rpm in a sealed Schlenk flask at 

75 °C for 72 h. After cooling down to room temperature, the reaction mixture was poured into 

acetone, centrifuged, and supernatant solution was discarded. The solid residue was washed with 

water, centrifuged and supernatant solution was discarded. Again, the solid was dissolved in 

chloroform and precipitated into methanol twice to afford solid polymer. Finally, the product was 

dried in vacuo to afford 60 mg (50%) of the polymer P2 as an orange powder, Mn 10 kDa, PDI 

1.7.  
1
H NMR (CDCl3) δ 13.81 (broad s, 1H), 10.84 (broad s, 1H), 8.32-8.26 (m, 2H), 7.95-7.50 

(m, 6H), 7.30-7.15 (m, 2H), 4.12 (broad s, 4H), 1.92 (broad s, 4H), 1.60-1.22 (m, 44H), 0.85 

(broad s, 6H). 

Polymer P1.  A mixture of 60 mg (0.08mmol) of polymer P2 and 100 mg (0.81 mmol) of 

hydroxylamine hydrochloride was dissolved in 10 ml of n-butanol – chloroform (1:1).  Pyridine 

(0.5 ml) was added and the resulting mixture was refluxed for 2 h. After allowing to cool down 

to room temperature, the reaction mixture was poured into methanol, centrifuged, and 

supernatant solution was discarded. The solid residue was dissolved in chloroform and 

precipitated into methanol.  The process was repeated twice and the resulting solid was dried in 

vacuo to afford 40 mg (50%) of polymer P1 as a yellow-green powder, Mn 10 kDa, PDI 1.5.  
1
H 

NMR (CDCl3) δ 11.28 (broad s, 1H), 9.16 (broad s, 1H), 8.15-8.06 (m, 2H), 7.95-7.60 (m, 7H), 

7.30-7.15 (m, 2H), 4.10 (broad s, 4H), 1.92 (broad s, 4H), 1.60-1.22 (m, 44H), 0.85 (broad s, 

6H). 
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Polymer P3 was prepared following the procedure described for the polymer P2.  A reaction of 

25 mg (0.08 mmol) of 5, 70 mg (0.09 mmol) of 8, 15 mg (0.012 mmol) of Pd(PPh3)4, 75 mg (0.8 

mmol) of K2CO3, and 80 mg (0.8 mmol) of sodium dodecyl sulfate in 15 ml of water – toluene – 

ethanol (15:8:2) mixture afforded 20 mg (25%) of the polymer P3 as a dark-green powder, Mn 5 

kDa, PDI 1.5.  
1
H NMR (CDCl3) δ 7.99 (broad s, 1H), 7.88-7.10 (m, 11H), 4.03 (broad s, 4H), 

1.88 (broad s, 4H), 1.60-1.10 (m, 44H), 0.87 (broad s, 6H). 

Reaction of M1 with DCP.  A solution of DCP in CH2Cl2 (0.5 ml of 0.01 mM stock solution) 

was added to 10 mg (0.025 mmol) of M1 in 4 ml of DMF, and the resulting mixture was left at 

room temperature for 30 min, followed by pouring into 8 ml of aqueous solution of NaHCO3.  It 

was extracted with CH2Cl2, and the organic phase was washed with water, and dried over 

Na2SO4.  Concentration in vacuo afforded a crude solid product which was passed through a 

short plug of silica gel using CH2Cl2 – hexanes (1:1) as an eluent.  The product was immediately 

analyzed by 
1
H NMR.  The analysis showed quantitative conversion to the corresponding 

isoxazole.   

Analytical studies in dilute solutions.  An aliquot of 2.0 ml of 10 M stock solution of polymer 

P1 (or P3, or small-molecule analogue M1) in DMF was added into separate vials. The 100 µl 

aliquots of stock solutions of DCP in CH2Cl2 (with concentration ranging from 10 µM to 0.1 M) 

were added into the polymer solutions to keep the total volume of the final solution at 2.1 ml.  

The final solutions were allowed to stay at room temperature for 30 min, and then were used to 

acquire UV/vis and fluorescence spectra.   

Analytical studies in thin film of P1.  A thin film of P1 was prepared by spin-casting from a 

solution in CHCl3 onto a 22×22 mm microscope glass cover slides at 1000 rpm in nitrogen 
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atmosphere. After UV/vis and fluorescence spectra have been acquired, a slide was placed on the 

wall inside a glass beaker containing a drop of DCP in the bottom.  The beaker was closed, and 

the slide was kept inside for 1 min, removed, and immediately used to acquire UV/vis and 

fluorescence spectra.   

Tri(ethylene glycol)-p-toluenesulfonate (11). A solution of 10.0 g (8.6 ml, 0.06 mol) of 

tri(ethylene glycol), 11.5 g (0.06 mol) of TsCl and 8.6 ml (0.06 mol) of triethylamine in 50 ml of 

dry DCM was stirred at room temperature for 12 h. The reaction mixture was poured into water 

and extracted with DCM followed by washing with water, NaHCO3 and brine. The organic phase 

was then dried over Na2SO4 and concentrated in vacuo to afford 15 g (66%) of 11 as  a colorless 

oil. 
1
H NMR (CDCl3) δ 7.79 (d, J = 9 Hz, 2H), 7.33 (d, J = 9 Hz, 2H), 4.15 (t, J = 9.6 Hz, 3H), 

3.68 (t, J = 9.6 Hz, 3H), 3.61-3.58 (m, 6H), 3.53-3.31 (m, 3H), 3.3 (s, 3H). 

1,4-Dibromo-2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene (13). A mixture of 2.0 g 

(0.074 mol) of 12, 9.5 g (0.03 mol) of 11, 4.1 g (0.03 mol) of K2CO3, 4.9 g (0.03 mol) of KI 

mixed in 100 ml of methyl ethyl ketone was refluxed for 2 days. After cooling to room 

temperature, the precipitate was removed by filtration and the liquid was concentrated in vacuo. 

The brown liquid obtained was then poured into aqueous NaHCO3 and extracted with DCM, 

washed with water and brine and the organic phase obtained was dried over Na2SO4. 

Concentration in vacuo afforded a crude product which was purified by column chromatography 

on silica gel (eluent CH2Cl2) to afford 2.5 g (60%) of 13 as a colorless solid, Rf 0.60, mp. 35-36 

ο
C. 

1
H NMR (CDCl3) δ 7.14 (s, 2H), 4.10 (t, J = 9.5 Hz, 4H), 3.88 (t, J = 9.6 Hz, 4H), 3.75-3.65 

(m, 4H), 3.58-3.55 (m, 4H), 3.39 (s, 3H). 
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1,4-Diethynyl-2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzene (14). A mixture of 1.72 

g (4.54 mmol) of 13, 0.73 g (0.9 ml, 7.45 mmol) of TMS-acetylene, 0.2 g (0.19 mmol) of 

Pd(PPh3)4, and 36 mg (0.19 mmol) of CuI in 30 ml of toluene – i-Pr2NH (7:3) mixture was 

stirred in a sealed Air-free flask at 70 °C for 15 h. After allowing to cool to room temperature, 

the crude product was concentrated in vacuo and passed through a short plug of silica gel using 

ethyl acetate as an eluent to afford 1.5 g of a yellow solid. The solid was dissolved in 100 ml of 

THF, and a solution of 1.4 g (25.0 mmol) of KOH in 50 ml of methanol was added dropwise at 0 

°C to the THF solution and stirred for 1.5 h. The reaction mixture was poured into water and 

extracted with chloroform. The organic phase was washed with water, brine and dried over 

Na2SO4. Concentration in vacuo afforded a crude product which was purified by column 

chromatography on silica gel (eluent ethyl acetate) to afford 0.8 g (60% over 2 steps) of 14 as 

colorless oil that slowly solidified into a sticky colorless solid, Rf 0.60.
 1

H NMR (CDCl3) δ 6.99 

(s, 2H), 4.15 (t, J = 9.7 Hz, 4H), 3.87 (t, J = 9.8 Hz, 4H), 4.16-4.13 (m, 4H), 3.67-3.65 (m, 8H), 

3.56-3.55 (s, 4H), 3.54 (s, 6H) 3.33 (s, 2H). 

2,2'-((1E,1'E)-(2,5-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-1,4-phenylene)bis(ethene-2,1-

diyl))bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (15). A mixture of 0.5 g (1.0 mmol) of 

compound 14, 0.3 g (0.36 ml, 2.5 mmol) of pinacolborane, 30 mg (0.1 mmol) of ZrCp2HCl in 15 

ml of 1,2-dichloroethane was stirred in a sealed Air-free flask at 65 °C for 3 days. After allowing 

to cool to room temperature, the reaction mixture was poured into water and extracted with ethyl 

acetate. The organic phase was washed successively with water, brine and dried over Na2SO4. 

Concentration in vacuo afforded crude product as brown oil.  The crude product was purified by 

column chromatography on silica gel (eluent EtOAc – hexanes 4:1) to yield 0.4 g (50%) of 15 as 

a yellow sticky solid, Rf 0.50. 
1
H NMR (CDCl3) δ 7.71 (d, J = 18.6 Hz, 2H), 7.1 (s, 2H), 6.15 (d, 
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J = 18.6 Hz, 2H), 4.15-4.13 (m, 4H), 3.90-3.87 (m, 4H), 3.78-3.69 (m, 18H), 3.57- 3.55 (m, 6H) 

1.31-1.25 (m, 12H). 

2,3,3-Trimethyl-3H-indole (16). A solution of 5 g (4.6 ml, 0.046 mol) of phenylhydrazine and 

4.1 g (4.8 ml, 0.04 mol) of 3-methylbutanone in 25 ml of acetic acid was refluxed for 3 h. After 

cooling to room temperature, the reaction mixture was neutralized to pH 7 using aqueous 

NaHCO3 and extracted with DCM. The organic phase was washed with water, brine and then 

dried over Na2SO4, and concentrated in vacuo to afford 6.5 g (88%) of 16 as a brown oil. 
 1

H 

NMR (CDCl3) δ 7.53 (d, J = 7.5 Hz, 1H), 7.32-7.28 (m, 2H), 7.19 (t, J = 14.2 Hz, 1H), 2.28 (s, 

3H), 1.30 (s, 6H). 

3-(2,3,3-trimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate, sodium salt (18). A solution of 

0.5 g (3.1 mmol) of 16 and 0.56 g (4.56 mmol) of 1,3-propane sultone in 5 ml of toluene was 

refluxed for 18 h. After cooling to room temperature, the crude product was concentrated in 

vacuo to afford red sticky solid. Further purification was carried by recrystallization from ethanol 

to afford 0.85 g (94%) of 18 as a red amorphous powder. 
1
H NMR characterization was in 

agreement with the previously published data.
8
 

(E)-2-(2,5-dibromostyryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (20a). A solution of 0.11 g 

(0.38 mmol) of 17, 0.1 g (0.38 mmol) of 19 and few drops of pyridine in 8 ml of ethanol was 

refluxed for 15 h. After cooling to room temperature, the crude product was concentrated in 

vacuo to afford a red solid. The red solid was then dissolved in chloroform, washed with water, 

brine and dried over Na2SO4 to afford 0.1 g (52%) of compound 20a as a red powder, mp 187-

193 
ο
C.

 1
H NMR (CDCl3) δ 9.01 (s, 1H)  8.44 (d, J = 16 Hz, 1H), 8.25 (d, J = 16 Hz, 1H), 7.71-

7.65 (m, 1H), 7.64-7.60 (m, 3H), 7.55-7.50 (m, 2H), 4.62 (s, 3H), 1.90 (s, 6H). 
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(E)-3-(2-(2,5-dibromostyryl)-3,3-dimethyl-3H-indol-1-ium-1-yl)propane-1-sulfonate (20b). 

A solution of 0.083 g (0.28 mmol) of 18, 0.075 g (0.29 mmol) of 19 and few drops of pyridine in 

5 ml of ethanol was refluxed for 15 h. After cooling to room temperature, the crude product was 

concentrated in vacuo to afford a red solid. Further purification was carried out by 

recrystallization from ethanol to afford 0.85 g (45%) of compound 20b as a bright red powder, 

mp >400 
ο
C.

 1
H NMR (CDCl3) δ 9.01 (s, 1H)  8.44 (d, J =16 Hz, 1H), 8.25 (d, J =16 Hz, 1H), 

7.71-7.65 (m, 1H), 7.64-7.60 (m, 3H), 7.55-7.50 (m, 2H),  4.62 (s, 3H), 1.90 (s, 6H). 

5,8-Dibromo-1',3',3'-trimethylspiro[benzo[f]chromene-3,2'-indoline] (21). A solution of 0.1 g 

(0.3 mmol) of 18, 0.09 g (0.3 mmol) of 17a and few drops of pyridine in 10 ml of ethanol was 

refluxed for 3 h. After cooling to room temperature, the crude product was concentrated in vacuo 

to afford dark purple solid. Further purification was carried out by recrystallization from ethanol 

to afford 0.1 g (68%) of 21 as shiny colorless crystals, mp 171-175
ο
C.

 1
H NMR (CDCl3) δ 7.86 

(d, J = 8.8, 1H), 7.81 (d, J = 6.4 Hz, 2H), 7.57 (d, J = 8.6 Hz, 1H), 7.50 (d, J = 10.1 Hz, 1H) , 

7.19 (t, J = 15.7 Hz, 1H) , 7.0 (d, J = 7.0 Hz, 1H,), 6.87 (t, J =14.6 Hz, 1H), 6.55 (d, J =7.4 Hz, 

1H), 5.87 (d, J =10.7 Hz, 1H) , 2.71 (s, 3H), 1.34 (s, 3H), 1.23 (s, 3H).  

Attempted Synthesis of polymer (P4). A mixture of 30.0 mg (0.05 mmol) of 20a, 39.0 mg 

(0.051mmol) of 15, 75.0 mg (0.5 mmol) of K2CO3, 155.0 mg (0.05 mmol) of SDS, 10.0 mg 

(0.005mmol) of Pd(PPh3)4 in 15 ml of a mixture of water – toluene – ethanol (15:8:2) was stirred 

at 1000 rpm in a sealed Air-free flask at 75 °C for 72 h. The reaction mixture was then cooled to 

room temperature and poured into acetone and centrifuged. The liquid was decanted and the red 

solid precipitate did not dissolve in any organic solvents, i.e THF, DCM, CHCl3, DMSO, and 
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DMF. Similarly, polymerization between 20b and 15 using same reaction conditions and time 

was carried out, after the reaction was complete, a red insoluble powder was obtained. 

Aldehyde Polymer (P5). A mixture of 18.0 mg (0.068 mmol) of 19, 48.0 mg (0.07 mmol) of 15, 

96.0 mg (0.7 mmol) of K2CO3, 188.0 mg (0.07 mmol) of SDS, 10.0 mg (0.005 mmol) of 

Pd(PPh3)4 in 15 ml of a mixture of water – toluene – ethanol (15:8:2) was stirred at 1000 rpm in 

a sealed Air-free flask at 75 °C for 72 h. The reaction mixture was then cooled to room 

temperature and poured into acetone and centrifuged. The liquid was decanted and the red solid 

precipitate was partially dissolved in chloroform and then precipitated in methanol. The red solid 

obtained after second precipitation was dried in vacuo to afford 20 mg (40%) of polymer P5, Mn 

12 kDa, PDI 1.7. 
1
H NMR (CDCl3) δ 10.43 (s, 1H), 8.19 (s, 1H), 7.98-7.81 (m, 3H), 7.45-7.28 

(m, 2H), 4.32-4.0 (m, 4H), 3.98-3.78 (m, 8H), 3.60-3.49 (m, 4H), 3.39 (s, 6H). 

Conversion of Aldehyde Polymer (P5) to (P4). Aldehyde polymer P5 (8mg) was suspended in 

15 ml of n-butanol and chloroform mixture (1:1) and 10 mg (0.032 mmol, 20 eqv) of 18 was 

added and the resulting mixture was refluxed for 24 h. The reaction mixture was allowed to cool 

down to room temperature and concentrated in vacuo to afford dark brown red solid which was 

partially dissolved in chloroform. The colloidal solution was precipitated in methanol and dried. 

The solid obtained was mixture of starting aldehyde polymer and unidentified insoluble 

degradation product. 

Co-Aldehyde Polymer (P5). A mixture of 40.0 mg (0.15 mmol) of 19, 206.0 mg (0.33 mmol) of 

15, 122.0 mg (0.15 mmol) of 13, 200.0 mg (1.5 mmol) of K2CO3, 400.0 mg (1.5 mmol) of SDS, 

20.0 mg (0.015 mmol) of Pd(PPh3)4 in 32 ml of Toluene: H2O: EtOH (1:2:5) mixture was stirred 

in a sealed Air-free flask and heated at 75°C for 48 h. The reaction mixture was then allowed to 
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cool to room temperature, poured into acetone and centrifuged. The liquid was decanted and the 

red solid precipitate was washed with water and then centrifuged. The solid obtained was then 

dissolved in chloroform and then twice precipitated in methanol. The red solid obtained was 

dried in vacuo to afford 80 mg (50%) of polymer P5 as red solid, Mn 10 kDa, PDI 1.6.
 1

H NMR 

(CDCl3) δ 10.43 (1H, s), 8.19 (s, 1H), 7.98-7.81 (m, 3H), 7.45-7.28 (m, 2H), 4.30 (s, 4H), 3.98-

3.78 (m, 12H), 3.60-3.49 (m, 8H), 3.39 (s, 6H). 

Attempted Conversion of Aldehyde Polymer P5 to MC-Polymer (P4). Co-Aldehyde polymer 

P5 50 mg ( 0.01 mmol) was dissolved in 10 ml of n-butanol and chloroform mixture (1:1) and 35 

mg (0.1mmol, 10 eqv) of 18 was added and the resulting mixture was refluxed for 24 h. The 

reaction mixture was cooled down to room temperature and concentrated in vacuo to afford a red 

solid which was washed with methanol and dried. The solid obtained was the starting aldehyde 

polymer. The conversion of aldehyde polymer to MC-polymer was tried again with different 

bases such as piperidine, NaOH, TEA, Diisopropylethylamine, still the conversion was not 

successful. The reaction mixture was monitored every six hours for 36 h, and even after 36 h in 

some cases aldehyde polymer was obtained whereas in NaOH degraded polymer was obtained. 

Polymer (P6). A mixture of 100.0 mg (0.162 mmol) of 6, 39.5 mg (0.070 mmol) of 15, 4.0 mg 

(0.0035 mmol) of Pd(PPh3)4, 134.0 mg (0.97 mmol) of K2CO3, and 200.0 mg (0.69 mmol) of 

sodium dodecylsulfate (SDS) in 30 ml of a mixture of water – toluene – ethanol (15:8:2) was 

stirred at 1000 rpm in a sealed Air-free flask at 75 °C for 72 h. After cooling down to room 

temperature, the reaction mixture was poured into methanol, centrifuged, and supernatant 

solution was discarded. The solid residue was dissolved in chloroform and precipitated into 

methanol. The process was repeated two times to afford dark red solid polymer. Finally, the 
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product was dried in vacuo to afford 40 mg (50%) of the polymer P1, as a red solid, Mn 6 kDa, 

PDI 1.8. 
1
H NMR (CDCl3) δ 13.80 (broad s, 1H), 10.82 (broad s, 1H), 8.30-8.28 (m, 2H), 7.87-

7.59 (m, 6H), 7.12-7.11 (m, 2H), 4.33 (broad s, 4H), 4.01-3.63 ( m, 12H), 3.42 (s, 6H). 

Polymer (P7). Polymer P6 (10 mg) was dissolved in 10 ml of n-butanol and chloroform mixture 

(1:1) and 20 mg (0.05 mmol, 20eqv) of 18 was added and the resulting mixture was refluxed for 

24 h. The reaction mixture was cooled down to room temperature and concentrated in vacuo to 

afford a dark green solid. The solid was then washed with water and then dried in high vacuum to 

afford 5mg ( ~ 25%) of dark green crude polymer P1.
 1

H NMR (DMSO-d6) δ 8.6 (s, 1H), 8.51-

8.19 (m, 3H), 8.15-7.12 (m, 10H), 6.74-6.70 (m, 3H), 5.97 (s, 2H), 4.30 (m, 4H) 3.97-3.71 (m, 

20H), 1.9 (4H, m). 

Polymer (P8). A mixture of 20 mg (0.041 mmol) of 21, 20 mg (0.043 mmol) of 14, 5 mg of 

Pd(PPh3)4, and 1 mg of CuI in 12 ml of toluene – i-Pr2NH (7:3) mixture was stirred in a sealed 

Air-free flask at 70 °C for 18 h. After allowing to cool to room temperature, the crude product 

was poured into acetone and centrifuged. The liquid was decanted and the red solid precipitate 

was partially dissolved in chloroform and then precipitated in methanol. The yellow- green solid 

obtained after second precipitation was dried in vacuo to afford 15 mg ( 25%) of the polymer P8.
 

1
H NMR (DMSO-d6) δ 8.16-8.10 (m, 1H), 7.62-7.54 (m, 3H), 7.29 (s, 1H), 6.52 (s, 1H), 5.74 (s, 

2H), 4.20 (s, 4H) 3.76 (s, 6H), 3.63 (s, 6H), 3.50 ( s, 9H), 3.17 (s, 6H). 

 (4-Iodophenyl)hydrazine (22) was prepared following a general literature procedure.
9
 A 

solution of 2.0 g (9.1 mmol) of 4-iodoaniline in 40 ml of conc. HCl was prepared upon heating, 

and cooled down to 0 °C. An aqueous solution of 0.7 g (10.0 mmol) of NaNO2 was added 

dropwise, and the reaction mixture was stirred at 0 °C for 1 h. Then a solution of 12.3 g (54.4 
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mmol) of SnCl2×2H2O in 10 ml of HCl was added dropwise over 15 min that resulted in 

immediate formation of a beige precipitate. The resulting mixture was stirred for 3 h at 0 
o
C, and 

quenched with 50% NaOH aqueous solution until pH 14. The organic product was extracted with 

ethyl acetate, washed with water and dried over Na2SO4.Concentration in vacuo resulted in 1.14 

g (53%) of a crude product as a bright-beige solid, which was used for the next step without 

further purification. 
1
H NMR (250 MHz, CDCl3) δ 7.49 (d, J = 8.8 Hz, 2H), 6.62 (d, J = 8.8 Hz, 

2H), 5.25 (br. s, 1H), 3.65 (br. s, 2H). 

5-Iodo-1,2,3,3-tetramethylindolium iodide (23) was prepared following a literature 

procedure.
10

 A mixture of 1.08 g (4.6 mmol) of 22, 5 ml of acetic acid, and 0.42 g (0.52 ml, 4.9 

mmol) of isopropylmethyl ketone was refluxed for 3 h. The resulting solution was then diluted 

with water and NaHCO3 was added until pH 7. The crude indole compound was extracted with 

ethyl acetate, and the extract was concentrated in vacuo to yield a brown oil which was dissolved 

in 10 ml of methanol. Iodomethane (1.31 g, 9.2 mmol) was added and the resulting mixture was 

heated in a sealed tube at 110 °C for 24 h. The product precipitate was filtered, washed with 

chloroform and recrystallized from a mixture of DMSO and chloroform to afford 0.73 g (31%) of 

23 as a red solid. 
1
H NMR (250 MHz, DMSO-d6) δ 8.28 (d, J = 1.6 Hz, 1H), 8.00 (dd, J1 = 8.4, 

J2 = 1.6 Hz, 1H), 7.70 (d, J = 8.4Hz, 1H), 3.91 (s, 3H), 2.71 (s, 3H), 1.50 (s, 6H). 

2-[5-(1,3-Dihydro-5-iodo-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3-pentadienyl]-5-iodo-1,3,3- 

trimethyl-3H-indolium iodide (24) was prepared following the published general procedure.
11 

A mixture of 0.20 g (0.47 mmol) of 23, 0.054 g (0.24 mmol) of 3-anilinoacrolein anil and 0.23 g 

(2.35 mmol) of potassium acetate in 5 ml of acetic anhydride was refluxed for 30 min. The 

resulting green precipitate was collected by filtration, washed with cold ethanol, and 
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recrystallized from methanol to afford 0.10 g (60%) of 24 as green crystalline material, mp 273-

274 °C. 
1
H NMR (250 MHz, DMSO-d6) δ 8.32 (t, J = 13.0 Hz, 2H), 8.04 (s, 2H), 7.73 (d, J = 8.4 

Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.54 (t, J = 13.0 Hz, 1H), 6.25 (d, J = 13.0 Hz, 2H), 3.56 (s, 

6H), 1.67 (s, 12H). HRMS m/e 635.0419 ([M+H]+) (calcd for C27H29I2N2 635.0415). 

Cyanine polymer (P9). A mixture of 0.080 g (0.10 mmol) of 24, 8.8 mg (10 µl, 0.08 mmol) of 

1,5- cyclooctadiene (COD), 23.4 mg (0.15 mmol) of 2,2′-bipyridyl and 41.2 mg (0.15 mmol) of 

Ni(COD)2 in 12 ml of anhydrous DMF was stirred in a sealed Air-free flask at 65 °C for 24 h. 

After allowing to cool to room temp, most of DMF was removed in vacuo, and the product was 

precipitated into the mixture of methanol – hexane (1:9) to yield crude polymer as a dark-purple 

solid. The crude product was placed into a Soxhlet extractor, and extracted successively with 

chloroform, acetone and methanol. The methanol fraction yielded 40 mg (~60%) of cyanine 

polymer P9 as a dark-purple solid material. 

4,4'-Dihydrazinyl-1,1'-biphenyl (26). A heterogeneous mixture of 2 g (7.78 mmol) of 25 in 10 

ml of concentrated HCl was dissolved after adding 75 ml of boiling water, cooled down and a 

solution of 1.3 g (17.1 mmol) of NaNO2 in 10 ml of water was added dropwise at 0 
ο
C and stirred 

for an hour. A solution of 17.6 g (9.33 mmol) of SnCl2 in 20 ml of concentrated HCl was added 

to the reaction mixture and stirred for another 3 h at room temp. The reaction mixture was then 

neutralized to pH 12 -13 and filtered to afford 4 g of compound 26 as a yellow sticky solid (crude 

product) which was used in the next step without further purification. 
1
H NMR (DMSO- d6, 250 

MHz) δ 7.29 (d, J = 8.2 Hz, 4H), 6.77 (d, J = 8.4 Hz, 4H), 6.62 (s, 2H), 3.90 (s, 4H). 

1,1’, 2,2’,3,3,3’,3’-Octametamethyl-3H,3’H-5,5’-biindole-1,1’-diium iodide (28). A solution 

of 4 g (18.6 mmol) of 26, 2.4 g (3 ml, 28 mmol) of isopropyl methyl ketone in 20 ml of acetic 
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acid was refluxed at 120 
ο
C for 12 h. The reaction mixture was allowed to cool down to room 

temp and neutralized with NaOH to pH 12. The crude product was then extracted with ethyl 

acetate, washed with water, brine and dried over Na2SO4 and concentrated in vacuo to afford 1.6 

g (27%) of 27 as brown sticky oil. The oil was dissolved in 10 ml of methanol and 5.3 g (38 

mmol) of methyl iodide was added, purged with argon and heated at 110 
ο
C in a sealed tube for 

24 h. The reaction mixture was allowed to cool and the solid was separated by filtration and 

recrystallized using methanol to afford 0.35g (16%) of 28 as an off –white powder, mp 285-

289
ο
C. 

1
H NMR (DMSO- d6) δ 8.27 (s, 4H), 8.03 (s, 4H), 4.00 (s, 6H), 1.59 (s, 12H). 

1,3,3-Trimethyl-2-((1E,3E)-4-(N-phenylacetamido)buta-1,3-dien-1-yl)-3H-indol-1-ium 

iodide (29). A suspension of 0.25 g (0.83 mmol) of 1,2,3,3-tetramethyl-3H-indolium iodide and 

0.3 g (1.35 mmol) of malonaldehyde bis(phenylimine) monohydrochloride in 2 ml of acetic acid- 

acetic anhydride mixture (1:1) was heated for 0.5 h from room temp to 120 
ο
C. The reaction 

mixture was allowed to cool down to room temperature and precipitated twice in ether. The dark 

solid precipitate was dissolved in dichloromethane and centrifuged, the solid particles were 

removed and the liquid was concentrated in vacuo to afford 0.28 g (86%) of 29 as a dark brown 

solid, mp 200-205
ο
C .

 1
H NMR (DMSO-d6 ) δ 8.86 (d, J =11 Hz, 2H), 8.46 (m, 1H), 7.74-7.42 

(m, 7H), 6.80 (d, J =13 Hz, 1H), 5.45-5.42 (m, 1H), 3.75 (s, 3H), 1.87 (s, 3H), 1.64 (s, 6H). 

 Compounds 30-34 were prepared by following a modified literature procedure.
12 

1,3,3-Trimethyl-2-((1E,3E,5E)-5-(1,3,3-trimethylindolin-2-ylidene)penta-1,3-dien-1-yl)-3H-

indol-1-ium iodide (monomer 30). A mixture of 50 mg (0.12 mmol) of 29 and 80 mg (0.12 

mmol) of 1,2,3,3-tetramethyl-3H-indolium iodide in 2 ml of acetic acid- acetic anhydride mixture 

(1:1) was heated for 2 h at 140 
ο
C, allowed to cool down to room temp and precipitated twice in 
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ether. The dark blue solid was dried in vacuo and was further dissolved in methanol and mixed 

with 2 ml of concentrated Bu4NI solution in acetone. The solution was precipitated in water to 

afford a dark blue powder which was dried in high vacuo to afford 40 mg (65%) of blue-green 

shiny crystals of 30, mp 171-172 
ο
C.

 1
H NMR (DMSO- d6) δ 8.32 (t, J =13.1 Hz, 1H), 7.62 (d, J 

= 11.7 Hz, 2H), 7.38-7.24 (m, 4H), 7.26-7.23 (m, 2H), 6.54 (t, J =12.4 Hz, 1H), 6.27 (d, J =13.6 

Hz, 2H), 3.59 (6H, s), 1.68 (s, 12H). 

Cyanine Dimer (31). A mixture of 50 mg (0.12 mmol) of 29 and 20 mg (0.06 mmol) of 28 in 2 

ml of acetic acid - acetic anhydride mixture (1:1) was heated for 2 h at 140 
ο
C. The reaction 

mixture was allowed to cool down to room temperature, precipitated in ether twice to afford blue 

solid which was dried in vacuo. The solid was further dissolved in methanol and mixed with 2 ml 

concentrated Bu4NI
 
in acetone and precipitated in water. The precipitate was dried in high 

vacuum to give 20 mg (33%) of 31 as a dark blue powder, mp 242-245
ο
C. 

1
H NMR (DMSO- d6) 

δ 8.31 (t, J =12 Hz, 2H), 7.97 (s, 1H), 7.76 (d, J = 9.6 Hz, 1H), 7.58-7.48 (m, 1H), 7.43-7.37 (m, 

3H), 7.24-7.20 (m, 1H), 6.52 (t, J = 12.5 Hz, 1H), 6.28-6.23 (m, 2H), 3.61-3.58 (m, 6H), 1.73 (s, 

6H), 1.65 (s, 6H). 

Intermediate (32). A mixture of 14 mg (0.033 mmol) of 29 and 20 mg (0.055 mmol) of 28 in 2 

ml acetic acid - acetic anhydride mixture (1:1) was heated for 2 h at 140 
ο
C. The reaction mixture 

was allowed to cool down to room temperature and precipitated in ether twice to afford blue 

solid. The precipitate was dried in high vacuum to give 24 mg of 32 (100%) as a blue amorphous 

powder.
1
H NMR (DMSO) δ 8.32-8.20 (m, 3H), 8.02-7.96 (m, 3H), 7.83-7.73 (m, 1H), 7.52-7.40 

(m, 3H), 7.29-7.25 (m, 1H), 6.55-6.50 (m, 1H), 6.36-6.22 (m, 2H), 3.99 (s, 3H), 3.62 (s, 6H), 

2.76 (s, 3H), 1.75-1.58 (m, 18H). 
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Intermediate (33). A mixture of 22 mg (0.06 mmol) of 28 and 15 mg (0.12 mmol) of 

malonaldehyde bis(phenylimine) monohydrochloride in 2 ml of acetic acid- acetic anhydride 

mixture (1:1) was heated for 2 h at 140 
ο
C and then precipitated in ether twice and dried in vacuo 

to afford 26 mg (81%) of 33 as a dark blue solid. 
1
H NMR (DMSO-d6) δ 8.86 (s, 1H), 8.50 (m, 

1H), 8.21 (s,1H), 7.96-7.79 (m, 1H), 7.77-7.60 (m, 1H), 7.59-7.42 (m, 5H), 6.80 (m, 1H), 5.48 

(m, 1H), 3.78 (s, 3H), 1.87 (s, 3H), 1.73 (s, 6H). 

Cyanine Tetramer (34).A mixture of 24 mg (0.036 mmol) of 32 and 14 mg (0.018 mmol) of 33 

in 2 ml of acetic acid - acetic anhydride mixture (1:1) was heated for 2 h at 140 
ο
C. The reaction 

mixture was allowed to cool down to room temperature, precipitated in ether twice and dried in 

vacuo. The solid was further dissolved in methanol and mixed with 2 ml of concentrated Bu4NI 

solution in acetone and precipitated in water. The precipitate was dried in high vacuo to give 13 

mg (40%) of 34 as a dark blue powder, mp > 380
ο
C. 

1
H NMR (DMSO-d6) δ 8.31 (t, J = 12.9 Hz, 

4H), 7.97 (s, 3H), 7.76 (d, J = 9.6 Hz, 3H), 7.58 (d, J = 8.8 Hz, 3H), 7.45-7.36 (m, 7H), 7.22-7.20 

(m, 2H), 6.57-6.49 (m, 1H), 6.27-6.23 (m, 4H), 3.65-3.55 (m, 12H), 1.73 (s, 18H), 1.65 (s, 9H). 

Cyanine (polymer) (P9). A mixture of 50 mg (0.083 mmol) of 29, 19 mg (0.083 mmol) of 

malonaldehyde  bis(phenylimine) monohydrochloride, 41 mg (0.41 mmol) of potassium acetate 

in 6 ml of acetic anhydride was refluxed at 140 
ο
C for 1 h. The dark-blue mixture was then 

precipitated twice in ether, dried in vacuo. The crude solid was dissolved in methanol and mixed 

with 2 ml of concentrated Bu4NI solution in acetone. The mixture was precipitated in water and 

dried in high vacuo to give 46 mg of polymer P9 as a dark blue powder. 
1
H NMR (DMSO- d6. , 

100°C) δ 8.28-8.24 (m, 2H), 7.97(broad s, 2H), 7.78 (broad s, 4H), 7.46-7.41 (m, 4H), 6.65-6.61 

(m, 1H), 6.33-6.25 (m, 2H), 3.69 (s, 6H), 1.80 (s, 12H). 
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Appendix A : NMR  of the Selected Compounds 

 



96 

 

 



97 

 

 



98 

 

 



99 

 



100 

 

 



101 

 



102 

 



103 

 

 



104 

 

 



105 

 

 



106 

 

 



107 

 

 

 



108 

 

 

 

 

 

 



109 

 

 



110 

 

 

 



111 

 

 



112 

 



113 

 

 

 

 



114 

 

 

 



115 

 

 
 



116 

 

 

 



117 

 

 

 

 



118 

 

 

 

 



119 

 



120 

 

 

 

 

 

  



121 

 

 



122 

 



123 

 

 
 



124 

 

 

 

 



125 

 

 



126 

 

Appendix B: Permission to Reuse Contents from Publications 

    

 

 

 

Title: Fluorescent Chemosensors 
Based on Energy Migration in 
Conjugated Polymers: The 
Molecular Wire Approach to 
Increased Sensitivity 

Author: Qin Zhou and Timothy M. 
Swager 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: Dec 1, 1995 

Copyright © 1995, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 

no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

  

javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


127 

 

from that source. 

      

  

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

    

 

 

 

Title: Method for enhancing the 
sensitivity of fluorescent 
chemosensors: energy migration 
in conjugated polymers 

Author: Qin Zhou and Timothy M. 
Swager 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: Jul 1, 1995 

Copyright © 1995, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

  

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


128 

 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

      

  

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

    

 

 

 

Title: Fluorescent Porous Polymer 
Films as TNT Chemosensors:  

Electronic and Structural Effects 

Author: Jye-Shane Yang and and 
Timothy M. Swager* 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: Nov 1, 1998 

Copyright © 1998, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following:   

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


129 

 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

      

  

Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

 

 

    

 

 

 

Title: Method for enhancing the 

sensitivity of fluorescent 
chemosensors: energy migration 
in conjugated polymers 

Author: Qin Zhou and Timothy M. 
Swager 

Publication: Journal of the American 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


130 

 

Chemical Society 

Publisher: American Chemical Society 

Date: Jul 1, 1995 

Copyright © 1995, American Chemical Society 
 

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

  

      

  
Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

 

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com


131 

 

    

 

 

 

Title: Method for enhancing the 
sensitivity of fluorescent 
chemosensors: energy migration 
in conjugated polymers 

Author: Qin Zhou and Timothy M. 
Swager 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: Jul 1, 1995 

Copyright © 1995, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

  

javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


132 

 

      

  
Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 
 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons ("John 

Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license consists of your 

order details, the terms and conditions provided by John Wiley and Sons, and the payment terms 

and conditions. 

All payments must be made in full to CCC. For payment instructions, please see information 

listed at the bottom of this form. 

License Number 3245471177408 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content publication Angewandte Chemie 

Licensed content title Ion-Specific Aggregation in Conjugated Polymers: Highly Sensitive 
and Selective Fluorescent Ion Chemosensors 

Licensed copyright line © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany 

Licensed content author Jinsang Kim,D. Tyler McQuade,Sean K. McHugh,Timothy M. Swager 

Licensed content date Oct 27, 2000 

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com


133 

 

Start page 4026 

End page 4030 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 2 

Original Wiley figure/table 
number(s) 

SCHEME 1 FIGURE 2 

Will you be translating? No 

Total 0.00 USD 
 

 

 

 

 

 

 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 
 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

 



134 

 

License Number 3245480033179 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Macromolecular Rapid Communications 

Licensed content title A Reversible and Highly Selective Fluorescent Sensor for 
Mercury(II) Using Poly(thiophene)s that Contain Thymine 
Moieties 

Licensed copyright line Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim 

Licensed content author Yanli Tang,Fang He,Minghui Yu,Fude Feng,Lingling An,Huan 
Sun,Shu Wang,Yuliang Li,Daoben Zhu 

Licensed content date Mar 2, 2006 

Start page 389 

End page 392 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 
number(s) 

FIG 1 

Will you be translating? No 

Total 0.00 USD 
 

 

 

 
 



135 

 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 
 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

License Number 3245480125006 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Chemistry - A European Journal 

Licensed content title Sugar–Poly(para-phenylene ethynylene) Conjugates as Sensory 

Materials: Efficient Quenching by Hg2 and Pb2 Ions 

Licensed copyright line Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim 

Licensed content author Ik-Bum Kim,Belma Erdogan,James N. Wilson,Uwe H. F. Bunz 

Licensed content date Nov 3, 2004 

Start page 6247 

End page 6254 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 



136 

 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 
number(s) 

FIG 2 

Will you be translating? No 

Total 0.00 USD 
 

 

 

 
 

    

 

 

 

Title: Fluorescein Provides a 
Resonance Gate for FRET from 
Conjugated Polymers to DNA 
Intercalated Dyes 

Author: Shu Wang,Brent S. Gaylord, 
and, and Guillermo C. Bazan* 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: May 1, 2004 

Copyright © 2004, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

  

 

javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


137 

 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

      

  
Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

 

 

 

 

OHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 
 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com


138 

 

License Number 3245480033179 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Macromolecular Rapid Communications 

Licensed content title A Reversible and Highly Selective Fluorescent Sensor for 
Mercury(II) Using Poly(thiophene)s that Contain Thymine 
Moieties 

Licensed copyright line Copyright © 2006 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim 

Licensed content author Yanli Tang,Fang He,Minghui Yu,Fude Feng,Lingling An,Huan 
Sun,Shu Wang,Yuliang Li,Daoben Zhu 

Licensed content date Mar 2, 2006 

Start page 389 

End page 392 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 
number(s) 

FIG 1 

Will you be translating? No 

Total 0.00 USD 
 

 

 

 



139 

 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 
 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

License Number 3245471177408 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Angewandte Chemie 

Licensed content title Ion-Specific Aggregation in Conjugated Polymers: Highly 

Sensitive and Selective Fluorescent Ion Chemosensors 

Licensed copyright line © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of 
Germany 

Licensed content author Jinsang Kim,D. Tyler McQuade,Sean K. McHugh,Timothy M. 
Swager 

Licensed content date Oct 27, 2000 

Start page 4026 

End page 4030 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 



140 

 

Portion Figure/table 

Number of figures/tables 2 

Original Wiley figure/table 
number(s) 

SCHEME 1 FIGURE 2 

Will you be translating? No 

Total 0.00 USD 
 

 

 

 

 

    

 

 

 

Title: Fluorescein Provides a 
Resonance Gate for FRET from 
Conjugated Polymers to DNA 
Intercalated Dyes 

Author: Shu Wang,Brent S. Gaylord, 
and, and Guillermo C. Bazan* 

Publication: Journal of the American 
Chemical Society 

Publisher: American Chemical Society 

Date: May 1, 2004 

Copyright © 2004, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 

no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

  

javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


141 

 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

      

  
Copyright © 2013 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.  
Comments? We would like to hear from you. E-mail us at customercare@copyright.com  

 

 

 

 

 

    

 

 

 

Title: “Turn-On” Conjugated Polymer 
Fluorescent Chemosensor for 
Fluoride Ion 

Author: Hui Tong,Lixiang Wang,*, Xiabin 
Jing, and, and Fosong Wang 

Publication: Macromolecules 

Publisher: American Chemical Society 

Date: Apr 1, 2003 

Copyright © 2003, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

javascript:history.back();
javascript:closeWindow();
http://www.copyright.com/
http://www.copyright.com/ccc/do/viewPage?pageCode=i3
mailto:customercare@copyright.com
javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


142 

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

 

If credit is given to another source for the material you requested, permission must be obtained 

from that source. 

  

      

  

 

 

 

 

 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 

javascript:history.back();
javascript:closeWindow();


143 

 

information listed at the bottom of this form. 

License Number 3245480366263 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Angewandte Chemie 

Licensed content title A Fluorescent Self-Amplifying Wavelength-Responsive Sensory 
Polymer for Fluoride Ions 

Licensed copyright line Copyright © 2003 WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim 

Licensed content author Tae-Hyun Kim,Timothy M. Swager 

Licensed content date Sep 23, 2003 

Start page 4951 

End page 4954 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 2 

Original Wiley figure/table 
number(s) 

FIG 1 AND 2 

Will you be translating? No 

Total 0.00 USD 
 

 

 



144 

 

 

    

 

 

 

Title: “Higher Energy Gap” Control in 
Fluorescent Conjugated 
Polymers: Turn-On Amplified 
Detection of Organophosphorous 
Agents 

Author: Deepa Pangeni and Evgueni E. 
Nesterov 

Publication: Macromolecules 

Publisher: American Chemical Society 

Date: Sep 1, 2013 

Copyright © 2013, American Chemical Society 
 

 

 

  Logged in as: 
 

  Deepa Pangeni 
 

  Account #: 
  3000674554 
 
 

 

  
  

 

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE 

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because 
no fee is being charged for your order. Please note the following: 

 Permission is granted for your request in both print and electronic formats, and 

translations. 

 If figures and/or tables were requested, they may be adapted or used in part. 

 Please print this page for your records and send a copy of it to your publisher/graduate 

school. 

 Appropriate credit for the requested material should be given as follows: "Reprinted 

(adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright 

(YEAR) American Chemical Society." Insert appropriate information in place of the 

capitalized words. 

 One-time permission is granted only for the use specified in your request. No additional 

uses are granted (such as derivative works or other editions). For any other uses, please 

submit a new request. 

  

javascript:goHome()
javascript:viewAccount();
javascript:openHelp();
javascript:doLogout();


145 

 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

JOHN WILEY AND SONS LICENSE 
TERMS AND CONDITIONS 

Oct 10, 2013 

 

 

 

This is a License Agreement between Deepa Pangeni ("You") and John Wiley and Sons 

("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The license 

consists of your order details, the terms and conditions provided by John Wiley and 

Sons, and the payment terms and conditions. 

All payments must be made in full to CCC. For payment instructions, please see 
information listed at the bottom of this form. 

License Number 3245480531026 

License date Oct 10, 2013 

Licensed content publisher John Wiley and Sons 

Licensed content 
publication 

Angewandte Chemie International Edition 

Licensed content title A Ratiometric Fluorescent Probe for Rapid Detection of Hydrogen 
Sulfide in Mitochondria 

Licensed copyright line Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, 

javascript:history.back();
javascript:closeWindow();


146 

 

Weinheim 

Licensed content author Yuncong Chen,Chengcheng Zhu,Zhenghao Yang,Junjie 
Chen,Yafeng He,Yang Jiao,Weijiang He,Lin Qiu,Jiajie Cen,Zijian 
Guo 

Licensed content date Jan 3, 2013 

Start page 1688 

End page 1691 

Type of use Dissertation/Thesis 
 

Requestor type University/Academic 

Format Print and electronic 

Portion Figure/table 

Number of figures/tables 1 

Original Wiley figure/table 
number(s) 

FIG 1 

Will you be translating? No 

Total 0.00 USD 
 

 



147 

 

The Vita 

 Deepa Pangeni was born in 1985 in Waling, Nepal. She graduated from High School in 

2002 and came to United States in 2003 to pursue Bachelor’s Degree in Biology at Hanover 

College, IN. During her first semester, she preferred Chemistry and Mathematics over Biology 

and eventually finished her Bachelors with double degree in Mathematics and Chemistry in 2007. 

She decided to pursue her PhD in Chemistry and attended Louisiana State University, LA in 

2007 and joined Dr. Evgueni E. Nesterov Lab in 2008 and started working in the field of 

synthesis and characterization of amplifying fluorescent conjugated polymers. Deepa is a 

candidate for the Doctor of Philosophy in Organic Chemistry which will be awarded in 

December 2013 with a dissertation entitled “Amplifying Fluorescent Conjugated Polymers.” 

  

 

 


