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ABSTRACT 

In situ atomic force microscopy (AFM) characterizations and lithography can be 

applied to investigate the orientation, reactivity and stability of protein molecules adsorbed 

on nanostructures of self-assembled monolayers at near-physiological conditions.   

Automated nanografting was used to fabricate regular arrays of nanopatterns of ω-

functionalized n-alkanethiols with designated terminal chemistries. After writing 

nanopatterns, protein binding occurs selectively on carboxylate-terminated nanopatterns via 

covalent bonds that are formed using N-ethyl-N'(dimethylaminoporpyl)-carbodiimide and N-

hydroxysuccinimide activation.  The amine groups of lysine residues of proteins bond 

covalently to nanopatterns of carboxylate-terminated alkanethiol self-assembled monolayers, 

to form a robust surface attachment for sustained contact-mode AFM imaging during 

biochemical reactions.  Staphylococcal protein A (SpA) furnishes a generic foundation for 

binding immunoglobulins for nanometer scale sandwich assays.   

The self-assembly of α,ω-alkanedithiols onto Au(111) was investigated using AFM.  

When SAMs of 1,8-octanedithiol or 1,9-nonanedithiol are grown naturally from solution, 

different surface orientations are observed in comparison to methyl-terminated n-

alkanethiols.  Local views from AFM images reveal a layer of mixed orientations in which 

the majority of α,ω-alkanedithiol molecules adopt an orientation parallel to the surface with 

both thiol endgroups bound to Au(111).  Results from AFM studies reveal that the 

chemisorption of thiol endgroups of dithiols inhibits the phase transition from a lying-down 

to a standing orientation during natural self-assembly. 

Another method for producing protein nanostructures is particle lithography. 

Monodisperse mesospheres can be applied to rapidly prepare millions of exquisitely uniform 

nanometer-sized structures of proteins on flat surfaces using conventional benchtop 



 xi

chemistry steps of mixing, centrifuging, evaporation and drying.  The natural self-assembly 

of monodisperse spheres provides a high throughput and efficient route to prepare circular 

geometries over millimeter scale areas.  The spontaneous assembly of silica or latex 

mesospheres into organized crystalline layers on flat substrates supplies a structural frame to 

direct the placement of proteins.  Nanopatterns of ferritin, apoferritin, immunoglobulin G and 

bovine serum albumin were produced with particle lithography. The applicability of particle 

lithography to generate arrays of protein nanostructures on surfaces such as mica(0001), 

glass and Au(111) was demonstrated. The morphology and diameter of the protein 

nanostructures can be tailored by selecting the ratios of protein-to-particles and the diameters 

of spheres.
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CHAPTER 1.  INTRODUCTION 
 

Methods of atomic force microscopy (AFM) and particle lithography can be applied to 

engineer protein surfaces for nanoscale surface investigations.  Specific reactions with protein 

can be accomplished on nanografted patterns using surface activation chemistry to provide new 

approaches for in situ investigations of protein binding at the molecular level.  Natural 

assemblies of template mesospheres combined with solution based deposition can be employed 

to produce nanostructured protein films over large surface areas.  

Scanning probe lithography (SPL) provides a way to design the chemistry of surfaces at 

the nanoscale to furnish nondestructive conditions for in situ studies of biomolecules.  The best 

choice for an SPL method for patterning should be chosen according to the type of binding 

chemistry desired for linking proteins to surfaces.  Chapter two provides a contemporary review 

of scanning probe investigations with protein nanopatterning, with an emphasis on reports 

which use nanopatterns of self-assembled monolayers (SAMs) for protein adsorption.  Chapter 

two summarizes the key differences in the mechanisms for writing nanopatterns of self-

assembled monolayers (SAMs), the type of molecules to be written and the nature of the 

substrate.  The writing mechanisms for bias-induced nanolithography, catalytic probe 

lithography, dip pen nanolithography and nanografting with SAMs are described, reviewing 

examples from literature reports.  Examples are provided for applications of SPL that have been 

used for protein investigations, with a comprehensive discussion of nanografting; the method 

chosen for studies in this dissertation.  An AFM tip can be applied as a tool for both fabrication 

and characterization, to create highly controllable test structures for protein binding studies.  

The capabilities for superb control of writing parameters with piezoscanners (such as force, 

speed, density and direction) enable reproducible fabrication of arrays of SAM nanopatterns 
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with well-defined shapes, sizes and spatial arrangement.  Nanostructures of SAMs with reactive 

head groups establish the surface sites for protein adsorption.  Molecular scale views of 

structural changes when proteins bind to surfaces can be achieved using in situ AFM in liquids. 

  A critical requirement for investigations of biochemical activities of proteins at the 

molecular level is the ability to position and interrogate biological molecules with high spatial 

precision.  Chapter three addresses the mechanics of automated nanografting with SAMs and 

demonstrates results for various writing strategies when using an AFM tip to write patterns of n-

alkanethiol SAMs.  Strategies are described for programming the tip translation to improve the 

uniformity, alignment and geometries when writing SAM nanopatterns. 

Unlike n-alkanethiols, molecules of α,ω-alkanedithiols spontaneously self assemble on 

Au(111) in a lying down configuration with both thiol groups attached to the substrate.  Thiol-

terminated surfaces with α,ω-alkanedithiol molecules are important because the free thiol group 

can be used for further chemical reactions.  Nanografting can produce nanostructures of 

standing-up α,ω-alkanedithiol molecules.  For nanografted dithiols, molecules self-assemble on 

very small areas of freshly exposed gold produced by a scanning AFM tip, with one sulfur 

group attaching to the gold substrate.  The other thiol end group is presented at the surface of the 

patterns.  The spatial confinement assembly mechanism of nanografting prevents the molecules 

from assembling in a lying-down position, to produce an upright configuration.  In chapter four, 

AFM investigations are used to derive an assembly model for 1,8-octanedithiol and 1,9-

nonanedithiol during natural self assembly and compared to spatially-constrained assembly of 

nanografting. 

  Nanoscale protein assays can be designed and monitored using in situ AFM.  Physical 

adsorption of receptor proteins on biochip surfaces is not sufficiently robust to enable 
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continuous contact-mode AFM imaging.  Strategies for covalent attachment of proteins on 

surfaces hold promise for more efficient biosensor surfaces as described in chapter five.  

Chemical activation of reactive head groups of SAMs such as carboxylates (using EDC and 

NHS reagents) enables mild conditions for tethering proteins to nanopatterns via covalent 

bonds.  Further steps of biochemical reactions can be accomplished in an AFM liquid cell after 

nanografting, for in situ experiments.  The selectivity of nanopatterns of SAMs and the coupling 

chemistry are important for adhesion of proteins to biochip or sensor surfaces.  Successive AFM 

images of surface changes for the nanopatterns were captured after each step of a protein 

binding assay.  Chapter five demonstrates and extends the in situ capabilities of AFM for 

detecting and visualizing biomolecular interactions on surfaces. 

The potential for high-throughput protein analysis lies in designing high-density arrays 

of proteins.  Particle lithography holds promise for reproducibly generating nano-sized features 

over large surface areas for high-throughput applications.  Particle lithography provides a rapid 

method for preparing millions of exquisitely uniform nanostructures of proteins on flat surfaces 

as demonstrated in chapter six.  High throughput production of nanopatterns can be achieved 

using conventional benchtop chemistry steps of mixing, centrifuging, drying and rinsing.  

A number of advancements were achieved for applying AFM for molecular-scale studies 

of surface reactions with proteins and SAMs.  Parameters of AFM-based nanografting were 

improved to achieve better control of pattern shape, size, spacing and chemistry.  Chemical 

methods for activating SAMs using EDC and NHS coupling were extended and tested for 

molecular-level surface investigations.  Nanografting and chemical activation methods were 

integrated with SPL, to develop nanoscale protein assays.  The nanometer scale protocols 

provide insight into protein binding and protein-protein interactions.  New methods for 
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producing nanopatterns of ferritin, apoferritin, BSA and IgG molecules using particle 

lithography were developed using both conductive and insulating surfaces.  The new SPL 

methods provide groundwork which can be generally applied for studies with new systems of 

proteins and other biomolecules. 
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*CHAPTER 2.  NANOLITHOGRAPHY: TOWARDS FABRICATION OF 
NANODEVICES FOR LIFE SCIENCES 

                         
2.1  Introduction: Engineering Surfaces at the Nanoscale  

Tools for nanofabrication have begun to provide important contributions for life sciences 

investigations, for developing biochip and biosensing technologies, as well as in supplying basic 

research in protein-protein interactions and protein function.  Scanning probe microscopes 

(SPMs) supply tools for visualization, physical measurements, and precise manipulation of 

atoms and molecules at the nanometer scale. Nanoscale studies can facilitate the development of 

new and better approaches for immobilization and bioconjugation chemistries, which are key 

technologies in manufacturing biochip and biosensing surfaces.   

Protein patterning is essential for the integration of biological molecules into miniature 

bioelectronic and sensing devices.  To fabricate nanodevices for the life sciences it is often 

necessary to attach biomolecules to surfaces with retention of structure and function.  For 

example, controlling the interaction of proteins, biomolecules, and cells with surfaces is 

important for the development of new biocompatible materials.  Precisely engineered surfaces 

can be used for the exploration of biochemical reactions in controlled environments.  Spatially 

well-defined regions of surfaces can be constructed with reactive or adhesive terminal groups 

for the attachment of biomolecules. Micropatterning of proteins has been applied for biosensors 

and biochips.2-5 Direct applications of protein patterning include biosensing, medical implants, 

control of cell adhesion and growth, and fundamental studies of cell biology.6-8 Protein 

patterning has been accomplished at the micrometer level using microcontact printing,9-14 

photolithography,15-17 and microfluidic channels.18, 19 Thus, capabilities for micrometer scale 
                                                 
Reproduced with permission from Wiley-VCH: Ngunjiri, J. N.; Li, J.-R.; Garno, J. C., Chapter 
3, Nanodevices for the Life Sciences. Wiley-VCH: Weinheim, 2006. 
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methods for controlling the spatial arrangements of biomolecules have been well-established 

and offer valuable new research capabilities for life science investigations.  Collectively, these 

techniques provide a means for assembling proteins at a size scale of hundreds of nanometers or 

larger.    

To progress to even smaller size scales, AFM-based lithography can be applied to 

pattern surfaces at nanometer dimensions.  Scanning probe lithography (SPL) provides versatile 

approaches for designing the chemistry of surfaces at the nanoscale.  Figure 2.1 shows the 

dimensions which can be achieved using various micro and nanopatterning methods.  Arrays of 

SAMs and proteins can be fabricated via SPL, with precise control over chemical functionality, 

shape, dimension, and spacing on the nanometer length scale.  Combined with the capabilities 

for high-resolution imaging and characterization, scanning probe microscopy (SPM) enables a  

  

  

 

 

 

 

 

 

 

 

 
 
Figure 2.1  Overview of the hierarchy of dimensions which can be achieved using various 
micro and nanopatterning methods. 
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molecular level approach for directly investigating changes that occur on surfaces during 

biochemical reactions. The tools of SPL are accessible to investigators across a broad range of 

disciplines and do not require costly instrument modifications.  

Cutting-edge research has begun to apply nanolithography for studying proteins on 

surfaces, possibly at the level of single molecule detection.  At this time, nanodevices 

constructed by SPM-based lithography are being conceptualized and to the best of our 

knowledge, SPL has not yet been applied for making nanodevices.  Readers are referred to 

recent reviews which discuss potential nanoscale devices.20, 21  Although there are also many 

studies which investigate peptides, DNA and cells we will limit the focus of this chapter to 

studies which apply nanoscale lithography to proteins, and applications for nanoscale protein 

assays.  This chapter will provide an overview of advances in the application of nanolithography 

using scanning probe microscopy and latex particle lithography for protein patterning.  

Beginning with a general introduction of the chemistry for immobilization of proteins on 

surfaces, the application of self-assembled monolayers (SAMs) for coupling proteins to surfaces 

will be presented.  Nanolithography methods including bias-induced lithography, AFM-based 

force-induced nanolithography, “Dip-Pen” nanolithography (DPN) and latex particle 

lithography will be described, including examples of protein nanopatterning.  The chapter will 

conclude with discussion of nanoscale detection of protein binding and future directions with 

cantilever array technology. 

2.2  Immobilization of Biomolecules for Surface Assays 

A number of factors need to be considered for choosing a successful protein 

immobilization strategy, such as the efficiency and rate of binding, potential side reactions, and 

the strength and resilience of the attachment.  For protein assays, the binding site recognized by 
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immunoglobulin G (IgG) on an antigen is relatively small; consisting of only 5-6 amino acids or 

several sugar residues.  The recognition element is referred to as an antigenic determinant or 

epitope.  Proteins must be attached in such an orientation that their active sites or binding 

domains are accessible for binding, and not buried or blocked by the surface.  The binding site is 

only a small part of the total surface area of the protein.  Adsorption on a surface may impair or 

prevent the protein’s activity.  The eventual orientation of proteins on surfaces is determined by 

multiple factors such as the type of binding, the positions and composition of external residues 

on the protein surface, the isoelectric point of the protein, and the pH of buffers used during 

application.   

Proteins have a three-dimensional structure which is critical to their function and 

activity.  Most proteins have both positively and negatively charged regions that interact with 

surfaces.  Upon encountering a surface, intramolecular forces within proteins can be disrupted, 

causing the proteins to unfold and become denatured.  Some proteins are known to lose activity 

when bound to a solid surface, due to a loss of tertiary structure. For example, the strong 

polarization forces at metal surfaces along with ionic or covalent interactions on many inorganic 

metal oxides and semiconductor surfaces may cause denaturation of biomolecules.22 For 

retention of activity, chemistries for protein arrays should permit the immobilization of proteins 

on surfaces such that perturbation to the native 3-D structure is minimized.  Using a spacer or 

linker molecule on the sensor surface often enables biomolecules to retain their functionality 

and 3-D structure.  The tools of organic chemistry provide a wealth of chemical strategies and 

binding motifs for conjugating biomolecules such as proteins to solid surfaces.23, 24  
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2.3  Strategies for Linking Proteins to Surfaces  

Increasingly, researchers have begun to use the self-assembly of functionalized 

alkanethiol and alkylsilane molecules as model surfaces for protein binding.  The terminal 

moieties of self-assembled monolayer (SAM) surfaces mediate the type of binding, such as 

through electrostatic interactions, covalent binding, molecular recognition or via specific 

interactions (Figure 2.2).  The following sections will introduce representative examples of 

chemical immobilization strategies which have been applied for protein patterning.    

     

 

 

 

 

 

Figure 2.2 Strategies for linking proteins to surfaces include electrostatic interactions, covalent 
bonding, antigen-antibody recognition, and biotin-streptavidin specific interactions. 
 

2.3.1  Electrostatic Immobilization 

The strategy of functionalizing a surface through electrostatic assembly is often used to 

immobilize biomolecules on surfaces.  Electrically charged amino acids are found mostly on the 

exterior of proteins and can mediate assembly on charged surfaces.  Proteins contain both 

positively and negatively charged domains that interact with surfaces via long-range 

electrostatic forces.  The electrostatic attraction between oppositely charged molecules is 

nonspecific, and surfaces are negatively or positively charged, depending on the solution pH.      

Electrostatic binding is physically mediated and proteins often retain their activity after 

immobilization.  It is a direct, simple method for attaching proteins to surfaces without requiring 

multiple steps for chemical activation.  Binding is reversible, since certain buffers and 
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detergents can remove proteins from nanopatterns.  However, a potential disadvantage of 

electrostatic immobilization is that the resulting orientation of proteins on surfaces is random, 

electrostatic-mediated binding does not provide a means for directing the protein assembly in a 

designed conformation.  Representative examples of chemistries for the electrostatic 

immobilization of proteins which have been applied for nanopatterning proteins are summarized 

in Table 2.1.  For example, alkanethiols or alkylsilanes terminated with functional groups, such 

as NH2 or COOH, have been used to immobilize biomolecules through electrostatic interactions.  

2.3.2  Covalent Immobilization   

Covalent immobilization is important for applications in which displacement or 

desorption of proteins can be a problem.  Covalent bonds occur when two molecules share 

atoms and form the strongest chemical bonds for surface immobilization.  The methods of 

covalent attachment are boundless, thousands of proteins have been immobilized on hundreds of 

different solid supports for affinity-capture assays.23 The best choice for covalent 

immobilization will depend on the functionalities of both the protein and the surface.  Several 

amino acids provide suitable functional groups for covalent modification. Common functional 

groups of amino acids used for covalent immobilization include: amino groups from the side 

chains of lysine and the N-terminus; carboxyl groups from the C-terminus, aspartic and 

glutamic acids; sulfhydryl groups of cysteine; hydroxyl groups of serine and threonine; and the 

phenyl groups of phenylalanine and tyrosine.  Since proteins typically present a number of these 

groups, the chemical nature of the solid surface becomes a primary consideration.  A specific 

chemical reaction is chosen to activate the surface, and then proteins are immobilized upon 

exposure to the active surface groups.  Examples of chemistries for covalent immobilization of 

proteins include activation of surface hydroxyl groups, carboxyl groups and amines.  Also, 
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bifunctional crosslinking reagents such as glutaraldehyde have been used to covalently couple 

proteins to various surfaces.  Further examples of covalent immobilization chemistries are listed 

in Table 2.1. 

   Table 2.1 Strategies used to immobilize proteins applied for nanopatterning proteins 

 

Type of 
Interaction Surface Derivatization Proteins 

Studied Surface 
SPL  

method Dimensions Ref 

chemisorption 
S-Au attachment of C-terminal thiol 
groups 

bundle 
metalloproteins Au(111) nanografting 100 nm 80 

chemisorption gold surface thiolated collagen Au(111) DPN 30-50 nm 92 

covalent 
3-mercapto-1-propanal patterns in a 
decanethiol resist lysozyme, IgG Au(111) nanografting 40 – 350 nm 74 

covalent 
mercaptohexadecanoic acid passivated 
with EG3-SH, then activated to form 
aldehyde groups 

elastin-like 
polypeptide  Au(111) DPN 200 nm dots 

91 

covalent 1,2-diols cleaved to produce aldehydes 
acetylcholine 
esterase - insulin Au(111) nanografting 50-200 nm 79 

covalent and 
specific  

EDC activation of mixed hydroxyl and 
carboxyl SAMs, then biotin-
streptavidin binding 

anti-IgG, protein 
G Au(111) uCP 10 micron 10 

electrostatic 
mercaptohexadecanoic acid SAM 
decanethiol resist lysozyme Au(111) nanografting 100-400 nm 74 

electrostatic 
mercaptohexadecanoic acid and 
dodecanethiol SAMs lysozyme Au(111) natural 

assembly  < 1 micron 1 

electrostatic 
mercaptohexadecanoic acid 
passivated with ethylene glycol SAM 

rabbit IgG, 
lysozyme Au(111) DPN 100 - 350 nm 86 

electrostatic mercaptohexadecanoic acid 

mouse anti-p24 
IgG   
HIV-1 p24 
antigen Au(111) DPN 60 nm 108 

electrostatic gold surface cytochrome c Au(111) DPN 200 nm dots 87 

electrostatic 
mercaptoundecanoic acid passivated 
with octanethiol and glycol SAMs 

rabbit IgG  
anti-rabbit IgG Au(111) nanografting 500 nm - 1µm 78 

electrostatic 

mercaptohexanol, mercaptopropionic 
acid, N-(mercapto)hexylpyridinimum 
bromide thiols in matrix terminated 
with hexa(ethylene glycol) resist 

lysozyme, bovine 
carbonic 
anhydrase, rabbit 
IgG Au(111) nanografting 200 – 400 nm 77 

electrostatic 
and specific 

biotin-streptavidin on 
mercaptohexadecanoic acid, with 
oligoethylene glycol SAM passivation  biotinylated BSA Au(111) DPN 100 - 230 nm 89 

physical 
adsorption PDMS stamping onto glass surfaces 

rabbit IgGs, BSA, 
Avidin glass uCP 40-100 nm 138 

physical 
adsorption nickel oxide surface 

ubiquitin and 
thioredoxin 

nickel 
oxide DPN 80 nm 95 

physical 
adsorption 

direct writing on bare gold; passivation 
with  PEG 

lysozyme, rabbit 
IgG Au(111) DPN 45 - 200 nm 94 

physical 
adsorption direct writing on modified SiO2 

IgG, anti-rabbit 
IgG SiO2 DPN 55-550 nm 93 

specific 
avidin-biotin oligo-(ethylene glycol) SAM 

avidin – biotin-
BSA Si(111) 

bias-induced 
SPL 90 nm 66 

specific 
avidin-biotin 

oxidized regions of poly(methyl 
methacrylate) layer spin-coated onto 
p-doped silicon wafer 

biotin IgG  - 
avidin Si wafer 

bias-induced 
SPL 0.5 - 1.5 µm 61 

specific 
maleimide-
cysteine 

maleimide substituted SAM as ink for 
specific immobilization of cysteine-
labelled biomolecules 

virus capsid 
particles Au(111) DPN 150 nm 

90 
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An important factor to be considered in covalent attachment of proteins is the possibility 

of chemically altering the protein in such a way that its reactivity is reduced.  For example, 

covalent approaches may be hindered by competing side reactions.  It is possible that groups 

associated with the active site or binding site of a protein could be involved in the reaction.  In 

addition, chemical cross-linking within protein domains could occur, causing damage to the 

protein’s tertiary structure.  

2.3.3  Molecular Recognition and Specific Interactions   

Highly specific interactions between binding pairs can be used effectively for protein 

immobilization.  Examples include affinity capture ligands such as biotin-streptavidin binding 

and molecular recognition through antigen-antibody binding.  Such affinity ligands require 

either physical or covalent immobilization of one moiety of the affinity pair onto the surface.  

Small-molecule receptors such as biotin offer viable strategies for the immobilization of 

proteins.  Further examples are listed in Table 2.1.  A strong advantage of specific 

immobilization is to provide a means for directing the protein assembly in a designed 

conformation.  The orientation of proteins on surfaces can be designated by selectively targeting 

certain amino acid residues of the protein for specific coupling.  

2.3.4  Nonspecific Physical Adsorption to Surfaces   

By far, the most widely used method of protein immobilization for protein arrays uses 

nonspecific adsorption of proteins dried on solid supports.  Forces which nonspecifically  

influence the binding of proteins to almost any substrate includes ion bridging, hydration forces, 

hydrophobic forces, and short range attractive or repulsive forces.  This approach produces 

randomly oriented proteins, some of which may be denatured.  Surface assays typically include 

a blocking step, such as with the adsorption of bovine serum albumin (BSA) to prevent 
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nonspecific binding of proteins.  BSA is a globular serum protein which is often used in 

bioassays to backfill uncovered areas of surfaces where proteins did not attach. 

2.4  Self-assembled Monolayer Chemistry  

Self-assembled monolayers (SAMs) provide a chemical method for creating well-

defined surfaces with controllable surface functionality.25  Due to their stability, ease of 

preparation and well-ordered surface structures, SAMs of alkanethiols and alkylsilanes provide 

excellent models for studying protein binding, since layers of defined thickness and designed 

properties can be generated.26, 27 Thiol endgroups of n-alkanethiols bond via chemisorption to 

metal surfaces.  SAM surface properties can be flexibly controlled by changing the functional 

(head) groups of the alkyl chain (Figure 2.3), also, these end groups can be used for further 

chemical reactions.  The acidity, adhesion, wetting and structural properties of surfaces can be 

modified by choosing specific chemical headgroups (such as NH2, OH, COOH, CH3, glycol, 

etc.).28, 29 For example, surfaces can be made hydrophilic by introducing SAMs with polar 

moieties such as hydroxyl or carboxyl groups. Non-polar functionalities such as methyl-

terminated groups yield hydrophobic surfaces.  The preparation, characterization, and properties 

of SAMs have been described and reviewed previously.29-33 SAMs have promising applications 

in biosensing, corrosion inhibition, lubrication, surface modification, and molecular device 

fabrication.  This section will introduce the chemistry and structure of SAMs of alkanethiols and 

alkylsilanes, (Figure 2.3) which are often applied for nanolithography with proteins. 

Close-packed n-alkanethiol SAMs can be readily prepared with high reproducibility to 

present functional groups such as alkyls, amides, esters, alcohols, etc. on surfaces of gold or 

coinage metals.  Typically, alkanethiol SAMs are formed by soaking gold thin films in dilute 

(0.1 - 1.0 mM) solutions of thiols dissolved in solvents such as 2-butanol, hexane or ethanol.  
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Typically, substrates can be stored in a thiol solution for 1-7 days at room temperature to ensure 

the formation of mature monolayers.  Alkanethiols on Au(111) form a close packed, 

commensurate (√3x√3)R30° lattice on Au(111) surfaces.34-37 In surface assemblies of 

alkanethiol SAMs, according to studies by IR, near-edge X-ray absorption fine structure 

(NEXAFS) spectroscopy, and grazing incidence X-ray diffraction (GIXD), the alkyl chains of 

thiol molecules are tilted approximately 30° from surface normal (Figure 2.3A).37-39 The sulfur 

atoms of alkanethiol molecules are considered to bind at the triple hollow sites of Au(111) 

lattices.30   

Figure 2.3 General structural features of self-assembled monolayers of [A] n-
alkanethiols/Au(111) and [B] n-alkylsilanes/Si(111). 

 
STM and AFM studies have confirmed the long-range order and periodicity of 

alkanethiol monolayers and have provided a direct view of defects such as domain boundaries, 

etch pits, steps and dislocations within SAM films.30, 40 Scanning probe microscope images 

visualize the intricate details of the surface topography of SAMs.  Figure 2.4 displays a typical 

topographic view of an octadecanethiol SAM/Au(111) acquired in ethanol by AFM.  These 

molecular landscapes may appear somewhat rough, because at the atomic scale most surfaces 

are not truly smooth and flat, and contain defects.  Considering that the height of gold steps is 
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~0.25 nm, the overall surface roughness of the underlying gold substrates for these images is 

less than 1 nm.  The monolayer surfaces consist of domains of closely packed thiol molecules 

decorated with etch pits.  Readers are referred to several works using STM for a more detailed 

discussion of the morphology and packing of n-alkanethiol SAMs.30, 40-42  

 

Figure 2.4 Contact mode AFM topographs of an octadecanethiol self-assembled monolayer on 
Au(111).  [A] Terrace arrangement of flat gold steps coated with octadecanethiol SAM (400 x 
400 nm2). [B] Zoom-in view displays etch pits (80 x 80 nm2). 
 

Similar to alkanethiols, the chain length and terminal moieties of alkylsilane SAMs can 

be tailored to meet experimental requirements; however the properties of alkylsilane assemblies 

are quite different from SAMs of alkanethiols.  SAMs of alkylchlorosilanes, alkylalkoxysilanes, 

and alkylaminosilanes require hydroxylated surfaces to form polysiloxane, which is connected 

to surface silanol groups (-SiOH) through a network of Si-O-Si bonds.  Substrates on which 

silane SAMs have been prepared include silicon oxide, aluminum oxide, quartz, glass, mica, 

zinc selenide,  and germanium oxide.33  High-quality alkylsilane SAMs are not as simple to 

produce as thiol SAMs, because of the need to carefully control the presence of water in 

solutions.  Reproducibility can be a problem, since the quality of the monolayers formed is very 
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sensitive to reaction conditions.  Silane monolayers on mica typically consist of domains 

separated by boundaries. Within domains, silane molecules form structures without long-range 

order or periodicity.43-45 The headgroups of silane SAMs cross-link into a Si-O network, and the 

chains tilt ~ 15° from surface normal (Figure 2.3B).43, 44  

SAM surfaces can be engineered to avoid non-specific protein adsorption, yet make 

specific interactions with targeted proteins to be assayed, by choosing the appropriate buffered 

conditions as well as an effective matrix layer, resistive to protein adsorption (such as glycol-

terminated SAMs).  Very few surfaces resist protein adsorption, and it remains a challenge to 

understand the mechanisms that contribute to protein resistance or adhesion to surfaces.  To 

prepare monolayers that resist protein adsorption, Whitesides,46-49 Mrksich,50  and Grunze51 

have conducted systematic studies of functionalized SAMs to determine the molecular 

characteristics that impart resistance to protein adsorption.  The factors which determine the 

resistance to protein adsorption were found to include characteristics such as the hydrophilicity 

of the terminal group, lateral packing density, the presence of hydrogen bond accepting groups 

and the absence of hydrogen bond donor groups, and terminal groups with overall electrical 

neutrality. Approaches which use chemical methods for the activation of SAM surfaces are 

beginning to gain importance for the surface coupling of biomolecules.  Thus far, most reactions 

for the surface activation of SAMs for protein adsorption have been accomplished after the 

SAM has been formed with monolayers terminated with carboxyl, amino or hydroxyl groups.  

Hundreds of synthetic pathways can be applied for in situ activation chemistry, including 

reagents such as N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC) and dithiobis (succinimidyl undecanoate) (DSU).11, 52  
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2.5  Methods for Nanolithography with Proteins  

With the invention and continuing development of scanning probe instruments, such as 

the scanning tunneling microscope (STM) 53 and the atomic force microscope (AFM),54 surface 

changes became evident when too much force was applied by an AFM tip, or if the applied bias 

voltages exceeded certain thresholds using STM or conductive AFM imaging.  Researchers 

began experimenting to deliberately and selectively control these alterations.   

 
 
 
 
 
 
 
 
 
 
 

Figure 2.5  Schematic representations of three AFM-based nanofabrication techniques; [A] 
bias-induced lithography; [B] force-induced nanolithography (nanografting); [C] Dip-Pen 
Nanolithography (DPN) – Figure C reproduced with permission from Science.55 
 

Molecules of SAMs can be written precisely on surfaces using a variety of different 

scanning probe lithography (SPL) methods.  Figure 2.5 illustrates the fabrication principles of 

the three most predominant SPL methods applied for patterning proteins.  SPL provides flexible 

and convenient approaches to construct SAM nanopatterns with designated functionalities in 

selected nano-sized areas.  These nanoengineered surfaces can then be used to selectively 

immobilize desired proteins through covalent, electrostatic or specific recognition approaches.   

A common feature of all SPL methods is that an SPM tip is used as a tool for both 

nanofabrication and characterization of surfaces.  A helpful analogy for describing SPL methods 

with SAMs is an SPM tip (pen) which writes with molecules (ink) on various surfaces (paper).  

SPL provides exquisite control of surface chemistry including parameters such as the spatial 
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arrangement, chemical composition, and the written density of molecular ligands.  The shape 

and dimensions of the tip dictate the detailed resolution of written nanostructures – SAM 

patterns as small as 5 nm have been reported, and it has become routine to achieve patterns of 

20-50 nm (or larger).  Since the dimensions of proteins range from tens to hundreds of 

nanometers, SPL methods are ideally suited for surface studies of protein binding.  Particle 

lithography is another promising method for protein nanopatterning, which can produce arrays 

of protein nanostructures.  Table 2.2 provides a comparison of approaches which have been 

successfully applied for protein patterning.  The next sections of this chapter will present further 

details of these nanolithography methods, including nanografting,56 bias-induced 

lithographies,57 dip-pen nanolithography,55 and latex particle lithography.58  

As a tool for high-resolution characterization, the same SPM tips used to write 

nanopatterns on surfaces are also used to explore the morphology of nanopatterns after protein 

adsorption.  Both AFM and STM are highly suitable, established methods for visualizing 

surfaces with high resolution.  AFM and STM and have emerged as significant and powerful 

techniques for imaging surfaces at the molecular scale.  Unlike electron microscopy methods 

which require high vacuum environments and conductive coating of specimens, in situ 

AFM/STM experiments can be accomplished under physiological conditions in aqueous 

buffered environments.  SPM provides exquisite resolution for the detailed characterization of 

molecular structures, has versatility in imaging modes, and can be used for local modification of 

surfaces by lithography  

Topographic images provide direct visualization of changes on surfaces after proteins 

bind to nanopatterns.  Commercial advances continue to improve SPM resolution by providing 

consistently higher quality probes at lower cost and by the on-going development of imaging 
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modes for viewing chemical contrast differences for surfaces.  AFM imaging modes can be 

applied for probing friction, softness, surface charge, polarizability, magnetic domains and 

viscoelasticity at the atomic scale.  

     Table 2.2 Comparison of methods applied for nanopatterning proteins. 

2.5.1  Bias-induced Nanolithography of SAMs  

When an electric field is applied at elevated bias voltages between a conductive SPM tip 

and sample, local chemical or physical changes occur in the area under the tip.  Depending on 

the nature of the surface and environmental conditions (ambient vs. UHV), the “bias-induced” 

changes may result from electrochemistry (oxidation) at either the tip or sample  which occurs 

from electric field effects;59 or the changes may result from ohmic heating, which induces 
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evaporation or desorption of organic layers.60, 61 This section will describe the method of bias-

induced lithography and then present an example of bias-induced nanofabrication applied for 

protein nanopatterning.  Figure 2.5A displays the general principle of bias-induced lithography.  

For bias-induced SPL, short (microsecond to millisecond) pulses of bias voltage are applied 

between a conductive SPM tip placed very near but not in contact with the surface.  The size of 

the surface features are determined by the duration and magnitude of the electric field, and also 

by the dimensions of the area probed by the SPM tip.  Often, with bias-induced oxidation, the 

chemical changes produced by an electric field do not manifest height changes, and thus are not 

detectable by topographic imaging.  However, SPM imaging modes which display contrast 

between different terminal groups, such as force modulation, lateral force imaging, and 

current/electrical force images can clearly differentiate areas that are modified based on 

chemical changes.   

Bias-induced lithography is emerging as a flexible and convenient means for 

nanofabrication of designed surface components, using either silane or thiol SAMs. 

Requirements for bias-induced nanofabrication include a conductive or semi-conductive 

substrate and a conductive SPM probe.  To prepare conductive AFM tips, a thin film of metal 

(usually gold) is sputter-coated onto the surface of probes pre-coated with a precursor binding 

layer of chromium or titanium.  Conductive tips and cantilevers comprised of doped silicon 

exhibit sufficient electrical conductivity for bias-induced modification of surfaces without 

requiring metal coatings.  Bias-induced SPL methods are now accessible techniques for most 

SPM users, as a result of improvements in instruments and in the quality, cost and availability of 

commercial AFM probes, which now include coatings of cobalt, diamond-like carbon, doped 

diamond, platinum, platinum/iridium, tungsten carbide, titanium nitride, and nickel. 
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Researchers have begun to apply biased-induced SPL to pattern proteins.  Bias-induced 

lithography was used directly for protein patterning by attachment of IgG-biotin to an array of 

30 dot patterns generated using 1 ms voltage pulses (40V – 80V).62 The substrate was a 

poly(methyl methacrylate) PMMA layer spin-coated on polished p-doped silicon wafer.  

Differences in hydrophobicity between the patterned areas and the substrate provided a driving 

force for the selective electrostatic deposition of proteins on nanopatterns.   

After reaction with avidin-FITC, micron-sized patterned regions could then be imaged 

by fluorescence microscopy. To further extend the capabilities of bias-induced lithography for 

patterning SAMs with designated surface chemistries, methods which include replacement or 

addition of new molecules from solution have recently been developed.57  After voltage pulsing, 

small areas of the surface were exposed for adsorption of new molecules using bias-induced 

replacement lithography.63-65 In another approach, bias conditions which selectively oxidize 

SAM terminal groups (tip-induced electrooxidation) were used to generate surface oxides of 

SAMs.  Oxidized areas were then used to chemically attach new molecules with desired 

functional groups.59, 66  Nanopatterned protein arrays were fabricated by Cai et al. using bias- 

induced oxidation followed by protein adsorption (Figure 2.6).67  Bias-induced SPL was applied 

to oxidize the headgroups of monolayers of α-hepta(ethylene glycol) methyl ω–undecenyl ether 

on Si(111) substrates.  Bursts of 1 microsecond pulses of +17 V were applied to the sample, to 

generate rows of spots (90 nm diameter) separated by ~ 270 nm.  The nanopatterned templates 

were then used to attach avidin followed by biotinylated bovine serum albumin.  Although bias-

induced lithography has not yet been widely applied for nanopatterning proteins, the newly 

introduced capabilities of customizing chemistry by tethering coupling agents to oxidized 

surfaces holds promise for new applications of bias-induced lithography in future investigations.  
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Figure 2.6 More than one hundred protein dot arrays produced by bias-induced nanofabrication.  
[A] AFM height and [B] friction image of nanoholes produced by bias-induced nanofabrication 
after treatment with EDAC/avidin (4 × 4 µm2).  The lines provide a reference for corresponding 
features.  The dots are approximately 90 nm in diameter.  [C] Topography and [D] friction 
images of the same area after incubation with biotinylated-BSA. [E] After the nanopatterns of 
biotinylated-BSA were reacted with avidin a positive height was observed for the nano-dot 
arrays. Reproduced with permission from J. Am. Chem. Soc.67  
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2.5.2  Force-induced Nanolithography of SAMs  

Nanofabrication of SAMs can be accomplished by applying mechanical force to an 

AFM tip during scans.  An intrinsic advantage of AFM instruments is the superb control of 

forces applied between the tip and sample, ranging from pico to nanonewtons.  For high-

resolution and faithful imaging of surface topography it is critical to apply minimal, non-

destructive forces.  When too much force is applied by an AFM tip, areas of the surface can be 

swept clean or “nanoshaved.”60 Nanografting was first invented in 1997, and combines 

nanoshaving with the simultaneous replacement of matrix SAM molecules by the self-assembly 

of new molecules.56, 68 A broad range of thiolated molecules have been nanografted to provide 

tremendous flexibility in choosing the desired molecular lengths and terminal groups for 

experimental designs.69-73 This section will describe the procedure for nanografting SAMs, 

present an example using automated nanografting with SAMs, and then review examples which 

apply force-induced lithography (nanografting) for protein patterning.   

Nanografting (Figure 2.5B) is accomplished in dilute SAM solutions containing the 

selected molecule to be patterned by exerting a high local force on an AFM tip, pushing through 

the matrix SAM to contact the underlying gold surface.  During scanning, pressure between the 

tip and surface displaces the SAM matrix molecules underneath the tip.  As matrix molecules 

are removed, new thiol molecules from solution immediately adsorb onto the uncovered areas of 

the substrate to form nanopatterns, following the scanning track of the tip.  SPM controllers can 

be programmed for automated lithography, to rapidly and consistently generate desired surface 

arrangements of arrays of SAM nanopatterns.74  Commercial instruments typically include 

software with capabilities to control the length, direction, speed, bias pulse duration, residence 

time, and the applied force of the scanning motion of the SPM tip, analogous to a pen-plotter.  
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Automated SPL offers tremendous advantages for the speed and reproducibility of 

nanopatterning, and can produce highly sophisticated pattern arrangements and geometries, with 

superb precision and reproducibility for the alignment, spacing and shapes of nanopatterns.  

Examples of SAM nanopatterns generated by force-induced AFM-based lithography 

(nanografting) are shown in Figure 2.7.  

 The AFM contact-mode topograph (Figure 2.7A) displays sixteen nanopatterns of 11-

mercaptoundecanoic acid (11-MUA) written within a resist of octadecanethiol.  The 

corresponding frictional force image (Figure 2.7B) more clearly displays the arrangement and 

shapes for the nanopatterned array of circular designs.   

 

Figure 2.7  Nanopatterned array generated by automated nanografting. [A] Topography and [B] 
corresponding friction images (1.0 x 1.0 µm2) of nanopatterns of 11-mercaptoundecanoic acid 
grafted in octadecanethiol/Au(111).  [C] Design of nanopatterned (100 nm) ring elements.  [D] 
Close-up view of four patterns; [E] Zoom-in view of a single pattern (250 x 250 nm2). [F] Cross 
section taken along the line in E. 
 

Nanografting was executed using a programmable computer module interfaced to the 

AFM controller for translating the tip rapidly and uniformly across the surface to create 
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designed arrangements of nanopatterns. (Controllers from RHK Technology, Troy, MI)  A 

computer script (written in-house) was used to apply a higher load on the tip to inscribe the 

pretzel-shaped designs.  Each design was generated by writing four 100 nm diameter rings as in 

Figure 2.7C.  The rings were inscribed by outlining each circle three times with the AFM tip, 

beginning with the bottom ring and moving in a clockwise direction around the center 

intersection.  It required approximately three minutes to complete the entire 4 × 4 array, (~ 12 

seconds to write each pattern).  After nanografting, AFM images were acquired under normal 

imaging conditions using minimal force.  Figure 2.7D displays a close-up view of four 

nanopatterns, exhibiting nearly perfect alignment and symmetry.  The high-resolution topograph 

of a single nanopattern in Figure 2.7E reveals the exquisite capabilities of AFM-based 

nanolithography to write and visualize surface details.  The height difference between the ODT 

nanopattern and the 11-MUA matrix SAM is indicated by the cursor profile (Figure 2.7F) to be 

approximately 0.7 ± 0.1 nm, in close agreement with the theoretical height difference (0.7 nm).  

The line width of the rings is approximately 10 nm.  Commercial silicon nitride cantilevers with 

an average spring constant of 0.58 N/m were used for both imaging and lithography (Veeco 

Probes, Santa Barbara, CA).  The patterning and imaging experiments for Figure 2.7 were 

conducted in situ, in a liquid environment. 

Typically, it requires less than one minute to fabricate individual nanopatterns using 

force-induced SPL such as nanoshaving and nanografting.  Hundreds of nanopatterns can be 

written during an experiment without evidence of tip damage, provided that a minimal threshold 

force is applied.  The fabrication forces used for force-induced SPL typically range from 2 to 30 

nN, depending on the system under investigation and the geometries and spring constants of the 

cantilevers.  Of course, if far too much force is applied the tip or substrate can be damaged, so it 
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is critical to determine the minimum force for nanofabrication with each experiment.  

Commercially available soft Si3N4 cantilevers have mostly been used for nanofabrication by 

mechanical force, with force constants ranging from ~ 0.03 N/m to 2.0 N/m.  When imaging in 

liquid, the total force applied typically is less than 1 nN, to prevent damage to substrate layers.   

The first studies using nanografting to immobilize proteins were conducted in 1999 by 

Gang-Yu Liu and co-workers using either electrostatic or covalent interactions to immobilize 

lysozyme, rabbit immunoglobulin G (IgG) and bovine serum albumin (BSA) on SAM 

nanopatterns.75  Since then, a growing number of investigators have taken advantage of the 

flexibility of nanografting in liquids for surface studies with biomolecules.  The typical general 

steps of an in situ protein binding experiment are (1) to fabricate nanopatterns of adhesive 

tethering molecules, (2) bind proteins to these nanopatterns, and then (3) test the activity of the 

immobilized proteins by introducing a second antibody or protein which will bind specifically to 

the surface-bound protein. 

An important advantage of nanografting is the capability to conduct experiments in situ, 

viewing the successive changes in surface topography after the steps of nanopatterning SAMs, 

rinsing, and introducing buffers and proteins.  With in situ nanografting, the protein patterns are 

not subjected to air exposure, and remain in a carefully controlled environment by rinsing and 

exchanging solutions within the liquid cell.  As molecules bind to nanopatterns, sequential real 

time AFM images expose reaction details at a molecular level, uncovering critical details of the 

adsorption of proteins to nanostructured surfaces.  Figure 2.8 illustrates the basic steps of an in 

situ protein adsorption experiment using nanografting.  In the initial investigations of protein 

immobilization on nanografted SAMs, Liu used functionalized alkanethiol SAMs to mediate 

electrostatic and covalent binding of IgG and lysozyme.75   
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Figure 2.8   Steps for nanopatterning proteins using force-induced lithography. [A] A flat area 
is chosen for writing nanopatterns, by imaging at low, non-destructive forces.  [B] 
Nanofabrication is accomplished by applying higher force to write new SAM molecules. [C] 
Proteins are introduced by exchanging liquids. [D] Protein nanostructures can be characterized 
under low force.  
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   The reactivity and stability of protein nanopatterns was studied in further reports, and 

included investigation of the retention of specific activity of the immobilized proteins for 

binding antibodies.76, 77  Protein patterns sustained washing with buffer and surfactant solutions 

and were stable for at least 40 hours of AFM imaging.  The smallest protein feature yet 

produced by nanografting is a 10 x 150 nm2 line containing three proteins.75, 77   

The first in situ antigen-antibody binding AFM experiment with nanofabricated SAMs 

was conducted using nanografting to direct protein immobilization.76  The activity of covalently 

immobilized rabbit IgG was tested by reactivity toward mouse anti-rabbit IgG. AFM topographs 

of protein binding on nanografted patterns of an aldehyde-terminated SAM are shown in Figure 

2.9.  Several aldehyde-terminated nanopatterns, a1–a5, were first grafted into a dodecanethiol 

SAM matrix.  The depth of these patterns measured 0.8 ± 0.2 nm, and images display dark 

contrast where the rectangular patterns were inscribed (Figure 2.9A).  After injecting rabbit IgG 

and rinsing with a surfactant solution, selective adsorption was observed on all six nanopatterns 

(Figure 2.9B) in which the bright contrast indicates heights taller than the matrix SAM.  In the 

next step, mouse anti-rabbit IgG was introduced (Figure 2.9C) showing further height increases.  

By comparing the height of nanopatterns before and after secondary IgG binding, it was 

observed that immobilized IgG may adopt various configurations (Figure 2.9G). 

Several investigators have applied nanografting to write nanopatterns for protein 

immobilization.  Abell et al. conducted a side-by-side comparison of protein adsorption on 

multifunctionalized surfaces at the nanoscale using nanografting.  Protein adsorption on three 

differently charged linkers nanografted within a hexa(ethylene glycol) terminated alkanethiol 

resist SAM, was monitored in situ by AFM at various pH values.78 The adsorption of proteins  
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Figure 2.9  The steps of protein binding and molecular recognition with nanografted patterns 
captured by AFM topographic images. [A] Five nanopatterns of 3-mercapto-1-propanal were 
written in a dodecanethiol SAM. [B] The image contrast changed after rabbit IgG bound 
covalently to the aldehyde-terminated nanopatterns. [C] After introducing mouse anti-rabbit 
IgG, the patterns display further height changes, indicating the antibody binds specifically to the 
protein nanopatterns.  Cursor traces across pattern a2 indicate the height changes [D] after 
nanografting; [E] after injecting IgG; [F] after introducing anti-rabbit IgG. [G] Map for 
understanding the evolution of molecular height changes during the steps of this in situ 
experiment.  Reproduced with permission from Biophys J.76 
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onto nanografted patterns (400 × 400 nm2) of 6-mercaptohexan-1-ol (MCH), n-(6-mercapto 

hexyl) pyridinium bromide (MHP), and 3-mercaptopropionic acid (MPA), was studied with 

lysozyme, IgG and carbonic anhydrase II.  They conclude that in addition to the overall charge 

of protein molecules, the charge of local domains of the proteins plays a role in immobilization.  

In the same paper, Abell used nanografting to assemble multilayered protein G/IgG/anti-IgG 

nanostructures through electrostatic interactions, as a potential means to orient IgG molecules 

for antibody-based biosensor surfaces. 

Using force-induced SPL methods of nanografting and nanoshaving, Porter et al. 

compared three approaches for protein patterning.79  They successfully combined force-induced 

SPL with immobilization of IgG via EDC activation of 11-mercaptoundecanoic acid; through 

direct adsorption of Fab'-SH fragments to nanoshaved regions of an EG3-OMe matrix; and 

through chemisorption of a disulfide coupling agent, dithiobis(succinimidyl undecanoate).  

Ducker et al. applied nanografting to immobilize insulin and acetylcholinase esterase on 

nanografted 1,2-diols which were activated by sodium periodate to produce aldehyde groups.80 

Retention of catalytic activity for demonstrated for nanopatterned enzymes.  Nanografting was 

applied to directly pattern designed metalloproteins by Au-S chemisorption by Scoles et al.81  

The bundle protein structure was designed to present the C-termini of three helices, terminated 

with D-cysteine residues for assembly in a vertical orientation, normal to the Au(111) substrate.  

A potential disadvantage for nanografting is that exchange takes place between solution 

molecules and the surface matrix SAM for some systems of alkanethiols.  Natural self-exchange 

is an issue particularly when nanografting longer chain thiols into a shorter chain matrix layer, 

thus it is important to use very dilute (< 0.1 mM) solutions for nanografting.  Exchange can be 
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detected within 2-4 hours (depending on the age of the matrix SAM) when molecules from 

solution adsorb onto defect sites and at step edges.  

Although not yet practical for high throughput applications and manufacturing, 

combining SPL with protein immobilization enables new approaches for directly investigating 

changes that occur on surfaces during biochemical reactions.  Nano-engineered surfaces are 

useful for viewing antigen-antibody binding at the nanometer scale, to assess the specificity of 

selective binding, and to evaluate protein orientation and the accessibility of ligands for binding.  

Advantages of force-induced SPL include the ability to precisely produce nanometer-sized 

patterns of bioreceptors and to successively image and conduct fabrication in situ, within well-

controlled environments.  For protein nanopatterning, force-induced SPL can be applied to 

either directly write proteins on surfaces via nanoshaving, or can be applied to write molecules 

for attaching proteins to surfaces through electrostatic, covalent or specific binding chemistries.  

2.5.3 Dip-Pen Nanolithography of SAMs and Proteins 

Dip-pen nanolithography (DPN), developed by Chad Mirkin et al. in 1999, has emerged 

as an important and versatile method for producing multicomponent arrays of SAM 

nanopatterns, as well as other molecules and nanomaterials.82 This section will describe the 

DPN nanofabrication method and then present examples of DPN applied for protein 

nanopatterning.  Protein nanopatterning has been accomplished by several different approaches 

via DPN.  For SAM molecules written directly by DPN, proteins may be attached to 

nanopatterns through electrostatic, covalent or specific interactions on nanopatterns after surface 

passivation.  Another strategy is to use surface activation of nanopatterned amine, carboxylate 

or hydroxyl groups for protein immobilization.  Direct writing of proteins has also been 

accomplished by DPN using modified AFM tips.  In DPN, an AFM tip (pen) is coated with a 
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molecular “ink” to write on clean gold substrates or “paper” under ambient conditions in air.55, 83 

Ink molecules migrate from the coated AFM tip through a capillary meniscus to the substrate by 

diffusion (Figure 2.5C).  Capillary transport of molecules from the AFM tip to the substrate can 

be used to directly write arrays of SAM nanopatterns.  Additional mechanical force is not 

applied to the AFM tip or “pen.”  When an AFM tip is used in air to image a surface, the narrow 

gap between the tip and surface forms a tiny capillary meniscus from the condensation of water.  

Nanopatterns such as individual lines, dots, grids and arrays of alkanethiols have been written 

on bare gold surfaces.55, 84, 85 The size of the water meniscus that bridges the tip and substrate 

depends on the tip shape and the relative humidity.86 In DPN, the meniscus is used to transport 

molecules from the tip to the surface.  The resolution of DPN depends on several parameters, 

such as the geometry of the AFM tip, the humidity of the ambient environment, as well as by 

the duration in which the inked tip is placed in contact with the surface – typically on the order 

of approximately 1 to 10 seconds.  With commercial cantilevers, DPN routinely generates 

feature sizes down to 15 nm.  

Protein arrays were produced with DPN by patterning 16-mercaptohexadecanoic acid 

(MHA) for immobilizing lysozyme and IgG through electrostatic interactions by Mrksich et al. 

 (Figure 2.10).87 After writing MHA dots (diameter 100-350 nm) the gold surface was 

passivated with 11-mercaptoundecyl-tri(ethylene glycol).  The MHA patterns were exposed to 

proteins by immersing substrates in a solution containing the desired protein.  The arrays were 

then rinsed with buffer and imaged in air by tapping mode AFM.  Reaction of IgG patterns with 

rabbit antibody and with mixtures of proteins was also studied, using AFM to investigate and 

detect nonspecific binding to nanopatterns and to passivate areas of the substrate. 
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Figure 2.10  Snapshots of protein patterns generated by DPN captured ex situ by tapping mode 
AFM images in air, and corresponding AFM height profiles. [A] MHA dot array written by 
DPN after rabbit IgG adsorption; [B] Same IgG array after treatment with a mixture of 
lysozyme, retronectin, goat/sheep anti-IgG, and human IgG.  No height change or non-specific 
adsorption is detected. [C] A rabbit IgG array before and [D] after treatment with a mixture 
containing lysozyme, goat/sheep anti-IgG, human anti-IgG, and rabbit anti-IgG.  The height of 
the nanopatterns increased from 6.5 ± 0.9 to 12.1 ± 1.3 nm indicating the binding of anti-IgG 
onto IgG nanopatterns. Reproduced with permission from Science.87 
 

In another study, Choi et al. immobilized cytochrome C through electrostatic adsorption 

on nanopatterns of MHA written by DPN.88  The areas surrounding the MHA nanopatterns were 

passivated with octadecanethiol.  Covalent attachment of synthetic peptides was accomplished 

by Ivanisevic and Cho using DPN.89  First, nanopatterns of amine-terminated silane molecules 

(3-aminopropyl-triethoxysilane) (APTES) were written on SiOx surfaces by DPN.  Next, the 

heterobifunctional cross-linker N-hydroxysuccinimide ester (SMPB) was conjugated to the 
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APTES nanopatterns.  In the final step, a TAT peptide was covalently linked to SMPB via a 

cysteine residue in the peptide sequence. 

The molecular recognition-mediated, stepwise fabrication of patterned protein 

nanostructures was accomplished by Zauscher and colleagues using DPN.90  First, a self-

assembled monolayer (SAM) of 16-mercaptohexadecanoic acid (MHA) was patterned on gold 

by dip-pen nanolithography (DPN), shown in Figure 2.11.  Next, the surrounding regions were 

passivated with a protein-resistant oligoethylene glycol-terminated alkanethiol SAM, (11-

mercaptoundecyl-tri(ethylene glycol) (EG3-SH).  Nonspecific adsorption of proteins on the 

background was prevented by passivation with EG3-SH.  In the third step, an amine-terminated 

biotin derivative was covalently conjugated with the MHA nanopatterns through a reaction with 

N-hydroxysuccinimide (NHS) and 1-ethyl-3-(dimethylamino)propyl carbodiimide (EDAC). The 

surface was then incubated with streptavidin in a fourth step, mediated by molecular recognition 

between biotin and streptavidin. In the final step, protein nanopatterns were fabricated by 

molecular recognition-mediated immobilization of biotinylated protein (BSA) in solution.  This 

method provides a generic platform for immobilization of biotin-tagged molecules mediated by 

biospecific interactions of biotin-streptavidin ligands.  

For the specific immobilization of cysteine-labeled cowpea mosaic virus capsid 

particles, Mirkin and co-workers applied DPN to write a mixture of two dialkyl disulfides as 

ink.91 The areas surrounding the nanopatterns were passivated with penta(ethylene glycol) 

groups. The density of maleimide groups provided efficient thiol capture through Michael 

addition of the thiol from cysteine residues of engineered CPMV particles to the nanopatterned 

maleimide groups. 
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Figure 2.11  Nanopatterns of biotin-BSA imaged by tapping mode AFM.  [A(i)] An array of 
144 dots written by DPN; [A(ii)] Zoom-in view of the area within the frame, showing the size of 
the dots.  [B] 3D dot array with 1 micron features.  Reproduced with permission from Nano 
Letters.90 

 
Surface activation of nanopatterns of MHA written by DPN was used by Zauscher and 

co-workers to fabricate nanostructures of stimulus-responsive elastin-like polypeptide (ELP).92 

First patterns of MHA were written directly using DPN.  The surface was then passivated with 

11-mercaptoundecyl-tri(ethylene glycol).  Next, the COOH groups of the nanopatterned MHA 

were reacted with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(dimethylamino)propyl 

carbodiimide (EDAC), to covalently conjugate ELP to the surface.  ELP was end-grafted to the 

surface through an amine group to dictate the surface orientation. 

Mirkin and colleagues have presented several studies with direct writing of proteins 

using DPN.  Thiolated collagen was used as ink for direct-writing of collagen nanopatterns on 
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gold substrates.93 Using a modified AFM tip, IgG was written directly on either negatively 

charged SiO2 or on aldehyde-modified SiO2 surfaces by DPN.94  Tips were coated with 2-

[methoxypoly(ethyleneoxy)propyl]trimethoxysilane (Si-PEG), which forms a biocompatible and 

hydrophilic surface layer on AFM tips for protein inking.  Protein arrays of IgG and lysozyme 

were nanopatterned by direct-writing using metallized AFM tips (gold) with a thioctic acid 

coating, for protein adsorption.95 Humidity is a critical variable in transporting proteins from 

tips to a surface, for direct-writing of proteins; optimum results were obtained in a glove box at 

80-90% humidity to achieve consistent transport properties.  Direct writing of proteins on nickel 

oxide surfaces also was accomplished using tips modified with nickel.  For direct-write DPN, 

AFM tips were coated with ~ 5 nm of nickel  to facilitate transfer of histidine-tagged proteins 

(ubiquitin and thioredoxin) as inks.96  High humidity enabled diffusion from the tip to the 

surface and also served to minimize the denaturation of protein structures on nickel substrates.  

Oxidized nickel has a high affinity for polyhistidine residues, and patterns could not be 

generated for protein inks without histidine tags.  The binding activity of the nanopatterns was 

investigated by reaction with fluorescently labeled antibodies, indicating that surface structures 

remained active for fluorescent labeling. 

Another strategy for DPN nanopatterning is accomplished by combining bias-induced 

electrochemistry and DPN.97 Electrochemical “Dip-Pen” nanolithography (E-DPN) was used to 

immobilize histidine-tagged proteins on nickel substrates.98 Silicon AFM probes were coated 

with polyhistidine-tagged peptides, proteins and free-base porphyrins for nanopatterning.   By 

applying a negative bias (-2 to -3V) to the coated AFM tips, nanopatterns could be written on 

nickel surfaces using tapping-mode AFM.  Without an applied potential, protein deposition was 

not observed.  
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DPN provides methods for directly writing chemical inks on surfaces for complex, 

multi-step fabrication of nanostructures of proteins.  Chemical reagents can be delivered directly 

to nanosized areas of a surface, and then the surrounding uncovered areas can be passivated 

with resistive SAMs.  The DPN method is amenable to conducting experiments at ambient 

temperatures in air, and ink transfer is facilitated by controlling humidity.  After each reaction 

step, samples can be characterized ex situ by AFM imaging.  Different molecules can be 

deposited by exchanging tips to produce multi-component arrays of nanopatterns.  For protein 

nanopatterning, DPN can be applied to either directly write proteins on surfaces using modified 

tips or to nanopattern SAM molecules for attaching proteins to surfaces through electrostatic, 

covalent or specific binding.  

2.5.4 Latex Particle Lithography with Proteins 

Particle or nanosphere lithography is an approach for nanopatterning which uses 

physical adsorption of materials to surfaces.    Monodisperse latex particles self-assemble into 

periodic structures on flat surfaces, which have then be used as structural templates or 

photomasks for defining the deposition of proteins or other materials.  The latex particles are 

removed by various approaches, such as calcination, solvent dissolution, or simple rinsing with 

water.  Particle lithography has been successfully applied for patterning metals, sols, polymers, 

and inorganic materials.99-103 Researchers have also applied colloidal lithography with latex 

beads as photomasks, to construct functional surfaces for selective protein adsorption on 

lithographically defined regions.103, 104 This section will describe a method of particle 

lithography which can be applied directly for controlling the organization of proteins on 

surfaces through physical adsorption.58 
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Figure 2.12 Fabrication steps for creating arrays of protein nanostructures via particle 
lithography. [A] Monodisperse latex particles are mixed with protein; [B] The mixture is 
deposited on a flat surface such as mica(0001); [C] After the droplet dries, an ordered crystalline 
layer is formed; [D] Latex are removed by rinsing with deionized water, leaving a layer of 
protein nanostructures on the surface. 
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Particle lithography can be used to construct arrays of protein nanostructures on 

surfaces, with superb control of the distribution of proteins within a single layer over micron-

sized areas.58  An outline of the steps for patterning proteins using latex particle lithography is 

shown in Figure 2.12.  First, the protein and latex are mixed together in an aqueous solution.  

For best results, the solution containing protein and latex should be allowed to remain at room 

temperature for time intervals not longer than 4 h. (To maintain protein activity the solutions 

should be freshly prepared, and to minimize contaminants, the latex particles should be 

prewashed to ensure that the particles are free of surfactants).  In the second step, a small 

volume (10 microliters/cm2) of the colloidal suspension is deposited at the center of the 

substrate surface, using a pipette. The liquid spreads out into a thin layer across the surface as it 

dries.  The protein and latex mixture forms ordered assemblies supported by mica or gold.  

During drying, the convective motion of water as it evaporates pulls the latex together into 

close-packed assemblies.  After the deposits have dried, the latex is rinsed away with deionized 

water to leave a single layer of protein nanostructures on the surface. The assembly of latex 

particles and the protein nanostructures can be characterized using AFM throughout the 

fabrication process.  Example images of BSA arrays formed from 500 nm and 200 nm diameter 

spheres are shown in Figures 2.13A and 13B, respectively.   

The 2-D AFM topographs reveal an organized arrangement of circular dark holes, 

(uncovered areas of mica) surrounded by clusters of BSA.  The periodicity of the resulting 

nanopatterns depends on the separation of latex spheres, which is observed to be 10-15% 

smaller than the original latex diameters.  This is likely attributable to the shrinking and 

deformation of latex particles during drying.  Using 500 nm particles, the ratio of BSA:latex was 

55,000:1 which roughly corresponds to a single layer of proteins encapsulating a sphere.  For 
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the 200 nm particles, the ratio of BSA:latex was 9000:1, also corresponding to a monolayer 

shell.  The ratios for successful lithography have ranged from approximately half of monolayer 

coverage of spheres to that of two layers, yielding different distributions and surface 

morphologies.  Particle lithography uses mild conditions (ambient temperatures, buffers), yet 

provides nanometer-level control of the spatial distribution of proteins organized within a single 

surface layer. Particle lithography was also successfully applied for nanopatterning rabbit IgG.58  

Both IgG and BSA nanopatterns retained the ability to bind corresponding specific antibodies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.13  Periodic arrays of BSA nanostructures generated with latex nanoparticle 
lithography. [A] BSA nanopatterns from 500 nm particles, using a BSA-to-latex ratio of 
55000:1.  The corresponding cursor indicates the periodicity of the BSA nanostructures is 422 ± 
33 nm. [B] BSA nanostructures generated using 200 nm particles and a BSA-to-latex ratio of 
9000:1.  The periodicity of the BSA nanostructures measured 179 ± 21 nm. 
 

Particle lithography is a highly reproducible and robust method for patterning proteins, 

and serves as an excellent starting point for continuing to develop more complex bioassays with 

different surfaces and proteins.  Using latex particles to control the arrangement of proteins on 

surfaces is a practical technology which is amenable to microspotting or immersion methods 

used for protein microarrays and biochips.  Latex bead immobilization has been applied in 
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spotting solutions to create microarrays for detection of antibodies.105 Particle lithography offers 

the advantages of nanometer precision and high throughput, since a small vial of solution can 

produce hundreds of replicate samples.  Future investigations will address the suitability of 

particle lithography to other surfaces and to other proteins, for application in surface-bound 

immunoassays. 

2.6  Detection of Protein Binding at the Nanoscale 

Nanoengineering approaches for the development of nanoscale bioassays capitalize on 

the unique in situ and high-resolution capabilities of SPM.  Designed surfaces can be created 

with precisely placed proteins, which are subsequently monitored during the binding of 

secondary antibodies.  SPM can be applied directly for detection, measuring changes in the 

heights of nanopatterns with protein binding.  The height changes indicate the side-on or end-on 

orientation of immobilized proteins (Figure 2.14).75  In some investigations, fluorescent labels 

were conjugated to antibodies for microscopic examination of samples.  Optical microscopy can 

detect changes in fluorescence after antigen-antibody binding.  

An important question to address is whether or not the tagging entity hinders the affinity 

and efficiency of antigen-antibody binding.  Many fluorescent dyes currently used are 

hydrophobic, which substantially decreases the solubility of protein-dye conjugates.  This could 

adversely influence signal intensity for fluorescent detection.106 Nanoscale studies can be 

applied to refine critical parameters used to link and organize proteins on surfaces of biochips 

and biosensors.  SPM images of protein binding can be beneficial for evaluating the 

effectiveness of different bioconjugation chemistries for biomarkers.   
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Figure 2.14  Nanografted patterns of aldehyde-terminated SAMs were used to covalently 
immobilize proteins via imine bonds. [A] Nanopattern of 3-mercapto-1-propanal (150 × 150 
nm2) written in decanethiol; [B] after in situ immersion in buffer containing rabbit IgG; [C] 
combined cursor profiles for lines in A and B. [D] Nanografted rectangle of mercaptodecanal 
(340 × 300 nm2) written in hexanethiol; [E] after immersion in lysozyme solution; [F] 
Corresponding cursor profiles across D and E. The ellipsoidal lysozyme and Y-shaped IgG 
molecules may adopt various orientations, as shown in the schematics above the cursor plots.  
Reproduced with permission from Langmuir.75 
 

At the core of biosensing is detection of biomolecular binding events with high 

selectivity and sensitivity.  Typically, bioassays for surface-bound proteins are not as sensitive 

as approaches which use solution chemistry, due in part to the accessibility of molecules for 

binding.  Pressing the limits of protein patterning to the nanometer scale will furnish direct 

views of the differences in immobilization chemistries.  Conventionally, biosensors and 

biochips rely on microspotting or solution deposition to place proteins on various surfaces, 

without control of the placement and arrangement of target proteins.  There is a requirement for 

efficient yet mild immobilization chemistries which preserve tertiary structure and maximize the 

activity of fragile biomolecules.  
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Biomolecules immobilized on a surface serve as the receptor and in some cases as the 

signal transducer in biosensors.  Therefore, the placement of biological ligands in precisely 

defined locations can increase the density of sensor elements and lead to improved detection 

limits with molecular-level control of the surface reactivity.107, 108  As a proof-of-concept, 

Wolinsky and Mirkin have reported a nanometer-scale antibody array prepared by DPN to test 

for the presence of the human immunodeficiency virus type 1 (HIV-1) in blood samples.109  The 

HIV-1 antibodies were immobilized on the MHA nanopatterns for hybridizing (HIV-1 p24) 

antigen and bound proteins. With a nanoarray of 100 nm features written by DPN, the three-

component sandwich assay exceeded the limit of detection of conventional enzyme-linked 

immunosorbent assay (ELISA) based immunoassays by 1000-fold.  

2.7  Future Directions 

It can be anticipated that array-based technologies in proteomics including protein-based 

biochip and biosensing devices will significantly advance biotechnology, clinical diagnostics, 

tissue engineering, and targeted drug delivery.110-112 Ultra small protein patterns can be used in 

biosensing, control of cell adhesion and growth, and in biochip fabrication.6, 7, 113 Methods of 

high-throughput protein analysis offer immense potential for fast, direct and quantitative 

detection, including the possibility of screening thousands of proteins within a single sample to 

test for protein, ligand, and drug interactions.  Improved binding to surfaces onto which capture 

proteins are arrayed and improved sensitivity of detection are technical challenges advancing 

protein microarray technology.  The next sections will first discuss the motivation for advancing 

beyond microtechnology to the nanoscale frontier and then describe new technologies which are 

being developed for multiplexing AFM systems for parallel processes.  
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2.8  Advantages of Nanoscale Detection 

Tools for nano- and microfabrication will provide important contributions in developing 

biochip and biosensing technologies, as well as supply basic research in protein-protein 

interactions.  With the rapid progress in development of large sets of characterized antibodies, 

protein and antibody arrays will provide tremendous advantages for diagnostics and medical 

science.  Miniaturization provides rewards of reduced quantities of analytes and reagents, 

increased density of sensor and chip elements, and more rapid reaction response.108, 114-116 

Multiplex screening of many interactions in a parallel fashion reduces analysis time and gives 

insight into the multiplicity of factors involved in diseases.   Protein microarrays used in 

experiments based on AFM detection may soon reach capabilities for routinely achieving single 

molecule detection. 

Nanotechnology offers advantages not only for array production but also for sample 

detection for bioarrays.  In the nanoscale size regime, material properties are different than at 

macroscopic scales, exhibiting phenomena such as electromagnetic field enhancement, narrow 

emission band fluorescence, surface plasmon resonance, and conductivity and signal 

amplification.  These properties enable new signaling and recognition capabilities for use in 

sensor systems.  For example, bioconjugates of nanoparticles and quantum dots may provide 

improved stability and sensitivity for quantitative fluorescence detection with advantages over 

the conventional approach of fluorescent staining which suffers from the disadvantage of 

photobleaching.117 With regard to biomolecule detection, new strategies based on functionalized 

metal nanoparticles, in combination with magnetic detection have been reported, using 

superparamagnetic beads coated with antibodies for detection.118  
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2.9  Development of Cantilever Arrays  

   Using SPM-based nanofabrication, the single pen-and-ink approach is far too slow for 

cost-effective manufacturing of protein arrays.  AFM-based lithography offers the ultimate 

capabilities for nanometer-scale control of surfaces with extremely high spatial precision, 

however, it has the limitation of relatively low throughput by fabricating each pattern 

individually.  If higher throughput can be accomplished for nanoscale biochips, such arrays 

would offer immense capabilities.  Miniaturization of protein sensing to nanodimensions will 

require techniques for rapid, efficient and high-throughput writing of biomolecules and SAMs.  

New designs for AFM probe arrays are being developed which will provide parallel and 

multiplexing capabilities for surface characterization and fabrication.  Readers are referred to 

two recent reviews which detail the developments in multiple probe systems.82, 119   

Successful lithography with probe arrays has been demonstrated by several researchers, 

and representative examples are summarized in Table 2.3.  Initial designs of tip arrays used 

feedback from a single cantilever for operation. This can sometimes be problematic for 

lithography because of variations in tip geometries and difficulties for precise alignment.120  

Micromachined arrays of cantilevers operated in parallel (2×1, 5×1, 10×1, 32×1 and 50×1) were 

used for bias-induced oxidation of silicon as reported by Quate, et al.120-122 Proof-of-concept 

experiments were presented for operation of parallel AFM probes for bias-induced lithography 

using as many as 50 probes.  Arrays with integrated z-axis control were found to improve the 

quality and reproducibility of writing.  There are several approaches for control and actuation of 

individual probes within cantilever arrays, including piezoelectric sensing,122-124 optical 

interferometric detection,125 thermal actuation of bimetallic tips,126-130 and conductivity sensing 

of tip-surface contact.131 
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Table 2.3  Examples of AFM probe arrays which have been successfully demonstrated for    
AFM imaging/lithography applications. 

 
 

Year Array 
size 

Tip actuation method Application  Citation 

1995 2×1 integrated piezoelectric 
sensor and piezoresisitive 
sensor for both tips 

parallel constant-force AFM 
imaging 

139  

1995 2×1 
5×1 

single tip feedback  
(piezoresistive levers) 

bias-induced oxidation of silicon 
(100-200 nm line patterns) 

119    

1996 2×1 integrated piezoelectric 
actuators for each tip 

bias-induced oxidation of silicon 
(micron patterns) 

121   

1998 10×1 
32×1 
50×1 

thermal actuation of 
individual probes, 
piezoresisitive sensors and 
integrated ZnO actuators. 

bias-induced oxidation of silicon 
(1.1 micron line patterns), and 
parallel AFM imaging 

120   

1999 5×5 integrated piezoresistive 
sensing using 5 actuators 

multiplexed AFM imaging 134   

2000 2×1 thermal bimorph actuator, 
metal-oxide-semiconductor 
electronics 

AFM imaging with constant 
height mode, tapping mode, 
constant force mode 

126   

2000 2×4 piezoresistive deflection 
sensors 

parallel AFM imaging 123   

2000 32×32 thermal actuation, corner 
sensors for z-feedback 
control of entire chip 

data storage read/write 
operations 

135, 136  

2001 5×1 optical interferometric 
detection 

parallel AFM imaging, constant 
height mode 

124  

2002 2×2 
2×7 

piezo-resisitive sensing with 
integrated electrical 
interconnects 

parallel contact-mode imaging of 
large sample areas 

122 
 

2002 8×1 
32×1 

single tip actuation & 
optical deflection feedback 

DPN with octadecanethiol/gold 131   

2003 8×1 single tip actuation & 
optical deflection feedback 

DPN with sol inks for chemical 
sensing 

133 

2003 10×1 Conductivity-based sensing 
of tip-surface contact 

simultaneous DPN writing with 
eight probes 

130  

2004 10×1 integrated thermal actuation 
of probes with piezoresistive 
stress sensors 

parallel constant-force AFM 
imaging 

127  

2004 12×1 thermal actuation of 
bimetallic probes, 
piezoresisitive Wheatstone 
bridge detection 

AFM imaging and force-distance 
measurements 

125   

2004 10×1 individual tip control by 
thermal actuation of 
bimorph probes

simultaneous DPN writing with 
ten probes 

128, 129   
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Dip-Pen Nanolithography (DPN) has been advanced to parallel processes through the 

use of one-dimensional cantilever arrays.132, 133 Control of the horizontal and vertical 

movements of AFM probes can be achieved using the laser signal feedback of a closed-loop 

AFM scanner.  Using an eight-cantilever array, a miniaturized combinatorial chemical sensor 

was produced with DPN by writing multiple inks as sensor elements.134 Also, examples have 

been reported using tip arrays for simultaneously writing multiple patterns of octadecanethiol 

using DPN.129-131 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15   The “millipede” array of 1024 cantilevers.  [A] Photo of the entire  chip; [B] SEM 
images of cantilevers of the 32 x 32 array; [C] A single cantilever with integrated silicon tip.  
Reproduced with permission from J. MEMS.135 
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Two-dimensional cantilever arrays have been developed and tested, including designs 

which combine passive (feedback from deflection of a single tip) and active control through 

actuation of multiple tips.136  A group at IBM has implemented an addressable 32 x 32 probe 

array designed for high density data storage.135, 137 The “millipede” array format with 1024 

cantilevers measures 3 x 3 mm and each cantilever is assigned to read and write 100 x 100 µm2 

areas.  The millipede approach is not based on individual z-feedback for each cantilever; 

feedback control is applied for the whole chip.  This design requires stringent control of tip 

fabrication parameters via micromachining to generate uniform probe dimensions (Figure 2.15). 

Although the Millipede design is intended for read/write data storage, other applications can be 

envisioned using scanning probe lithography. 

2.10  Concluding Remarks 

Fundamental understanding of the interactions of protein binding to substrates or 

antibodies is essential for developing workable technologies for life sciences.  The new 

capabilities to study and control processes on the nanometer scale are emerging as valuable 

assets in both fundamental and applied research.  At present, SPM and SPL are primarily used 

as research tools in laboratories rather than as tools for manufacturing.  However in the future, 

nanoscale technology in manufacturing is predicted to bring an even greater impact and benefit 

to society than present-day microfabrication technologies.  Potential applications include the 

development of a new generation of chemical and biosensors, biochips, and molecular 

electronic devices.  We anticipate that nanoscale research will define new directions in areas 

such as biosensing, biomimetic surfaces for drug delivery and biomolecule-based electronics.  

This chapter has provided insight on the tremendous versatility of several new SPL methods 

applied for protein nanopatterning.  In addition, there are many new nanofabrication methods 
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being developed which may be suitable in the future for engineering surfaces for nanoscale 

protein assays.   

Applying the in situ tools of lithography with proteins will enable systematic evaluation 

of the differences in bioaffinity for various chemical immobilization strategies, with direct 

views of how the morphology and geometry of nanoengineered surfaces direct and influence the 

binding of antibodies and proteins.  Conceptually, by arranging and orienting proteins on well-

defined surfaces, the selectivity and sensitivity of surface-based protein assays can be 

substantially improved.  These studies will facilitate the development of new and better 

approaches for immobilization and bioconjugation chemistries, which are key technologies used 

in manufacturing biochip and biosensing surfaces.  
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*CHAPTER 3. ACHIEVING PRECISION AND REPRODUCIBILITY FOR WRITING 
PATTERNS OF n-ALKANETHIOL SAMS WITH AUTOMATED NANOGRAFTING 

 
3.1  Introduction 

Automated scanning probe lithography (SPL) combined with high-resolution AFM 

imaging furnish valuable new tools for nanoscale research, enabling control of parameters such 

as the size, arrangement, geometry, spacing, the packing density, and the composition of 

nanopatterned test elements.  Automated SPL offers tremendous advantages for the speed and 

reproducibility of nanopatterning and can produce highly sophisticated pattern arrangements 

and geometries with superb precision for writing nanopatterns.74 Nanopatterned arrays of self-

assembled monolayers written by nanografting69, 138 furnish 2-D planar test platforms for further 

measurements of surface properties,139 and can also serve as a foundation for bottom-up 

assembly of complex nanostructures of polymers,140 metals,141 and proteins.76, 142, 143 At present, 

scanning probe microscopes (SPM) and scanning probe-based lithography are primarily used for 

laboratory research investigations rather than as tools for manufacturing.  However in the future, 

nanoscale technology in manufacturing is predicted to bring an even greater impact and benefit 

to society than present-day microfabrication technologies.144, 145 Potential applications include 

the development of a new generation of chemical and biosensors, biochips, and molecular 

electronic devices.146, 147  

Nanografting was first introduced in 1997 by Xu et al. for writing nanopatterns of self-

assembled monolayers (SAMs).138 Since then, a broad range of thiolated molecules have been 

                                                 
Reproduced with permission from John Wiley & Sons Inc.: Ngunjiri, J. N.; Kelley, A. T.; 
Lejeune, Z. M.; Li, J.-R.; Lewandowski, B. R.; Serem, W. K.; Daniels, S. L.; Lusker, K., 
Achieving Precision and Reproducibility for Writing Patterns of n-alkanethiol Self-assembled 
Monolayers with Automated Nanografting. Scanning 2008, 30, (1). 
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nanografted which provide flexibility in choosing the desired molecular lengths and terminal 

groups for experimental designs.69-73 Nanografting is an AFM-based lithography method which 

applies mechanical force to an AFM tip to inscribe patterns of thiolated molecules (ink) within a 

matrix SAM.  To accomplish nanografting, the AFM tip is completely submerged in a liquid 

containing the ink molecules for writing and AFM characterizations are accomplished in situ 

without exchanging tips.  Instruments for AFM have remarkable capabilities for controlling the 

force applied to the tip, ranging from pico to nanonewtons.  When low forces are used for AFM 

imaging (<1 nN) the SAM surfaces are not disturbed and can be characterized with high 

resolution using contact mode imaging.  However, when higher forces are applied to the tip, 

areas of the matrix SAM are shaved from the surface, which enables fresh molecules from 

solution to immediately self-assemble onto the uncovered areas following the track of the 

scanning tip.  By returning to low force the same tip can be used to characterize the 

nanostructures. 

Due to their stability, ease of preparation and well-ordered surface structures, SAMs of 

n-alkanethiols furnish excellent models for studying molecular binding, since layers of defined 

thickness and designed properties can be generated.26, 27 The endgroups of n-alkanethiols bond 

via thiol chemisorption to metal surfaces.  The properties of SAM surfaces can be flexibly 

controlled by changing the functional (head) groups of the alkyl chain; also these functional 

groups can be used for further chemical reactions.  The acidity, adhesion, wetting and structural 

properties of surfaces can be modified by choosing specific chemical headgroups (such as NH2, 

OH, COOH, CH3, glycol, etc.).28, 29 The preparation, characterization, and properties of SAMs 

have been described and reviewed previously.29-33  
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Several other approaches for writing nanopatterns of  n-alkanethiol SAMs have been 

developed with SPM, such as Dip-Pen Nanolithography (DPN),85, 148-150 bias-induced 

replacement lithography,151, 152 bias-induced oxidation,66, 67, 153 and catalytic probe 

lithography.154 The nature of the desired surface chemistry dictates which scanning probe 

lithography (SPL) approach is most suitable and convenient for investigations.  All SPL 

methods use an SPM tip as a tool for nanofabrication; a suitable analogy is to describe the tip as 

a “pen” for writing nanopatterns.  The “inks” for writing are self-assembled monolayers or other 

molecules, and various substrates provide the “paper” for nanolithography.  The dimensions of 

the AFM tip determine the resolution of writing, patterns as small as 3 × 5 nm2 have been 

reported.138  Commercial AFM instruments furnish software with capabilities to control the 

length, direction, speed, bias pulse duration, residence time, and the applied force for the motion 

of the AFM tip.  Thus, SPL can be completed with little instrument modification.  For example, 

DPN and catalytic probe lithography are achieved by using a coated AFM tip.  To accomplish 

oxidation or replacement lithographies, a conductive probe is used to apply elevated bias 

voltages.  Nanografting is accomplished in dilute solutions of thiol inks by applying greater 

force to the AFM tip for writing nanopatterns.  Details about the writing strategies and 

mechanisms for various SPL methods have been previously reviewed.151, 155-157 

Nanografting provides significant advantages for in situ investigations, since the steps of 

characterization and writing are accomplished in liquids without exchanging AFM tips.  The 

successive changes in surface topography can be viewed after each step: nanopatterning SAMs, 

rinsing, and introducing new adsorbates.  With in situ nanografting, the SAM patterns remain in 

a carefully controlled environment and solutions within the liquid cell can be exchanged by 

rinsing to introduce new reagents for chemical reactions.  Another important advantage of 
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conducting experiments in liquid media is the dramatic increase in the resolution of AFM 

imaging.  By imaging in liquid media the strong capillary interactions between the tip and 

sample which are present in ambient air can be reduced or eliminated.158-160 Binding between 

molecules is a nanometer-sized phenomena, thus intuitively, a close-up view of molecules on 

surfaces furnishes a fresh perspective on how reactions occur.  Nanografted patterns can be 

incubated with desired nanomaterials or molecules, and the progressive changes in height and 

surface morphology of the nanostructures provides insight about surface reactions and 

mechanisms.  In situ investigations with nanografting have been reported for adsorption of 

proteins,76, 142, 143, 161-165 electroless deposition of copper on nanografted gradients of 

carboxylate-terminated SAMs,141 and for pattern transfer reactions with polymers.140  

Despite the intrinsic in situ advantages and capabilities for high spatial resolution, 

nanografting has not yet become widely applied for surface investigations as compared to other 

ambient ex situ writing methods.  The complexity of imaging in liquids requires advanced skills 

and training for experimentalists.  This report will provide strategies and technical details for 

automated writing of SAM nanopatterns by nanografting.  A few key experimental parameters 

can be systematically optimized for nanografting to enable exquisite control of pattern 

geometry, pitch and reproducibility at the nanoscale.  

3.2  Materials and Methods 

3.2.1  Materials.  

Alkanethiol compounds such as hexanethiol, decanethiol, dodecanethiol, 

hexadecanethiol, octadecanethiol (ODT), 11-mercaptoundecanol (11-MUD), 11-

mercaptoundecanoic acid (11-MUA) and 16-mercaptohexadecanoic acid (16-MHA) were 

obtained from Sigma Aldrich (St. Louis, MO, USA) and used without further purification.  
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Ethanol (200 proof) was purchased from AAper Alcohol and Chemical Co. (Shelbyville, KY, 

USA).  Self-assembled monolayers were prepared by immersing gold substrates in ethanolic 

solutions (0.01 mM) of n-alkanethiols for at least 12 h.   For AFM imaging, the sample surfaces 

were rinsed with fresh ethanol and placed into an AFM cell holder assembly.  The sample 

surfaces were not exposed to air for more than a few minutes, to minimize surface oxidation.  

Two types of atomically flat gold substrates were used for experiments.  Flame-annealed gold-

coated mica substrates with 150 nm gold films were obtained from Agilent Technologies, Inc. 

(Chandler, AZ).  However, Figures 3.4, 3.5, and 3.6M were produced using template-stripped 

gold films.166, 167 The AFM tips for several experiments (Figures 3.4A, 3.4B, 3.4C, 3.6E, 3.6F) 

were coated with octadecyltrichlorosilane (OTS) purchased from Gelest, Inc, (Morrisville, 

PA).160 A hydrophobic coating of OTS is often helpful for preventing contamination of the tip 

by removed matrix molecules.  The tips were exposed for 45 min to UV light (254 nm) to 

remove impurities.  The cantilevers were then immersed in a solution of OTS (1 mM) in a 7:3 

mixture of hexadecane:chloroform for 1 h followed by chloroform rinsing.  The tips were then 

dried in air and stored until needed. 

3.2.2  Atomic Force Microscopy  

Atomic force microscope (AFM) images were acquired using either a hybrid SPM 

system from RHK Technologies, Inc. (Troy, MI) with a PicoSPM scanner (XPMPro v.1.2.1.0) 

or with an Agilent 5500 AFM/SPM system with Picoscan v5.3.3 software.  All of the images 

presented in this article were acquired using contact mode in ethanol solutions.  Images were 

acquired with 256 lines/frame, with the exception of Figures 3.2A, 3.4, 3.6E and 3.6F which 

were acquired with 512 lines/frame.  The scan rate for acquiring images ranged from 1.2 to 2.5 

µm/s.  Oxide-sharpened Si
3
N

4 
probes (MSCT-AUHW) from Veeco Probes (Santa Barbara, CA) 
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were used to pattern the alkanethiol monolayers on gold.  The probes have V-shaped cantilevers 

and relatively low force constants (kavg = 0.5 N/m), and the same probes were used for both 

fabrication and imaging procedures.  The imaging and writing forces were calculated from 

corresponding force-distance curves using the manufacturer’s reported values for the spring 

constant.  The values include both the capillary/meniscus contribution and the force of 

cantilever bending.  Images were processed using Gwyddion, which is available on the internet, 

free of charge (http://gwyddion.net).  

Figure 3.1  Steps for nanografting. [A] A flat area is selected by imaging under low force, the 
tip and surface are immersed in a solution of thiol (ink) molecules; [B] Nanopatterns are written 
by applying greater force; [C] The nanografted patterns can be characterized in situ by returning 
to a low force setpoint. 

 
3.2.3  Nanografting   

Nanografting with SAMs is achieved by applying mechanical force to an AFM tip while 

scanning (Figure 3.1).  Writing is accomplished in dilute SAM solutions (0.003 – 0.01 mM) 

containing the selected ink molecule to be patterned by exerting a high local force on an AFM 

tip, pushing through the surface monolayer to contact the underlying gold surface.  When the tip 

is rastered across the surface under high force, the molecules underneath the tip are shaved away 

and replaced by molecules from solution.  When the matrix SAM molecules are removed, new 

thiol molecules from solution immediately adsorb onto the uncovered areas of the substrate to 
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produce designed nanopatterns, following the scanning track of the tip.  The inscribed patterns 

can then be characterized in situ without exchanging tips by returning to low force (< 1 nN). 

3.3  Results 

3.3.1  Automated Writing via Nanografting  

  Controllers for AFM can be programmed for automated nanografting, to rapidly and 

consistently generate desired surface arrangements of SAM nanopatterns.74  Commercial 

instruments typically provide software with capabilities to control the length, direction, speed, 

bias pulse duration, residence time and the applied force of the scanning motion of the SPM tip, 

analogous to a pen-plotter.  Example arrays of square nanopatterns written by nanografting are 

presented in Figure 3.2.  The topographs display 1.4×1.4 µm2 and 1×1 µm2 views of nanopattern 

arrays in Figures 3.2A and 3.2D, respectively.   

  By changing the length of the alkane chains of the ink molecules, the height of the 

nanopatterns can be tailored to be shorter (Figure 3.2A) or taller (Figure 3.2D) than the 

surrounding areas of the matrix SAM.  The patterns of 11-mercaptoundecanol (11-MUD) are 

0.5 ± 0.3 nm shorter than the surrounding octadecanethiol (ODT) matrix (Figure 3.2B), in 

agreement with the theoretically predicted differences in monolayer thickness as depicted in the 

model (Figure 3.2C).  The height of the terrace steps of the underlying gold substrate are clearly 

visible in the AFM images, and furnish an internal reference for height calibration.  The holes 

and valleys between terrace domains are common defects of naturally formed gold surfaces.  

There are three patches of matrix areas which exhibit a brighter contrast at the center and 

bottom right of the image in Figure 3.2A.  The bright bands were introduced artificially by the 

image processing algorithm for slope subtraction.  
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Figure 3.2  Example arrays of nanografted patterns that are either shorter or taller than the 
matrix SAM. [A] AFM topograph of 150 nm square patterns; [B] Cursor profile for the line 
across three squares in A; [C] Structural model for nanografted patterns. [D] Array of 100 nm 
square patterns; [E] Cursor profile for the white line in D; [F] Model of molecular heights. 
 
   The 150 nm square patterns are spaced at 200 nm intervals horizontally and 200 nm 

pitch vertically between rows.  Note that the color of the nanografted squares is homogeneous, 

which is evidence that the ODT matrix layer has been entirely replaced by the shorter ink 

molecules of 11-MUD.  Each square was written using a simple raster pattern, with a single 
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sweep over the surface from bottom to top at 5 nN of applied force.  Writing the 16 patterns of 

the entire array was completed within 10 min. 

 An example array of nanopatterns with a positive height with respect to the matrix is 

presented in Figure 3.2D, for a 1×1 µm2 view.  Each square measures 100 ± 5 nm and patterns 

are spaced at 100 ± 5 nm pitch in the horizontal direction and 200 ± 5 nm distance in the vertical 

direction between rows.  The array of square nanopatterns was written using an applied force of 

6 nN.  A similar writing strategy (a single raster scan from bottom to top) was applied to 

produce the positive-height array, requiring 25 seconds to write each pattern.  The patterned 

molecules of 16-mercaptohexadecanoic acid (16-MHA) are 0.4 ± 0.2 nm taller than the 

dodecanethiol (DDT) matrix SAM (Figures 3.2E and 3.2F).  The shapes of the nanopatterns are 

square and regular, as evident in the representative cursor profile across one row of patterns.  

 Even smaller nanopatterns of filled circles (diameter 45 ± 5 nm) of 11-mercapto- 

undecanoic acid (11-MUA) were inscribed within a matrix monolayer of ODT (Figure 3.3).   

The patterns are spaced at 30 ± 5 nm horizontally and vertically.  The AFM topography and 

frictional force images (350×350 nm2) reveal differences in height and surface chemistry for the 

4×4 array of patterns, sited on a fairly flat terrace area.  Six concentric circular step edges are 

visible at the right and bottom edges of the topograph (Figure 3.3A).  Etch pits and the fine 

details of the lacey contours of the step edges can be resolved, disclosing typical landmarks of a 

natural SAM surface on Au(111).  The height difference between the matrix and patterns 

measures 0.7 ± 0.3 nm as indicated in the representative line profile across the third row of 

patterns (Figure 3.3C).  The expected difference in thickness between ODT and 11-MUA is 0.7 

nm.  A few bright spots are visible on the surface of half of the nanopatterns in the topography 

image.  The heights of the spots are identical to the thickness of the surrounding matrix and are 
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likely attributable to incomplete removal of the matrix SAM within the nanopatterns.  The 

frictional force image also discloses tiny dark or bright spots within the otherwise bright 

contrast of the circular nanopatterns, suggesting that the surface chemistry of the patterned areas 

is not completely homogeneous.  An outline of the path of the AFM tip is shown in Figure 3.3D, 

with the position of the pickup and landing point of the writing area at the right of each pattern.  

A corresponding small protrusion at the edges of the patterns that were written is also evident in 

the topography and friction images (Figures 3.3A-3.3B).  The writing path was outlined 

manually by directing the motion of an optical mouse to generate a computer drawing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Nanografted array of filled circle patterns. [A] Topography image of 16 filled circle 
patterns; [B] corresponding friction image; [C] cursor profile along the third row of patterns; 
[D] graphic design for writing the array.  

Once a single pattern was traced, the same outline was copied and pasted fifteen times 

within the 2-D grid of a computer drawing board. (PicoLith beta version 0.4.5, Agilent 



 60

Technologies, Inc.)  Such a method of filling the pattern by drawing circles using hand was not 

100 % effective for removing all of the matrix molecules within the pattern during nanografting. 

3.3.2  Line Resolution of Nanografting 

To investigate the resolution of nanografting line patterns, an array of nine Mickey 

mouse patterns was produced (Figure 3.4).  The design enables multiple measurements of the 

linewidths of nanografted rings for evaluating the resolution of writing, as well as for assessing 

the capabilities for reproducibly inscribing adjacent rings in close proximity.  A SAM of 

dodecanethiol formed on template-stripped gold was used as the matrix monolayer (paper) and 

the patterns were written with hexanethiol (ink).  The topograph (1.5×1.5 µm2) exhibits fairly 

large flat terraces, ranging from 200-700 nm in lateral dimensions (Figure 3.4A).  Natural 

landmarks of SAMs/Au(111) such as etch pits are clearly visible within the in situ topograph, 

verifying that a sharp AFM tip persists after writing the patterns using 4.8  nN applied force.  

The circles range from 40 to 210 nm in diameter, and are spaced 220 ± 5  nm horizontally and 

200 ± 5 nm vertically.  A zoom-in view of the center pattern is presented in Figure 3.4B and the 

corresponding frictional force image is shown in Figure 3.4C.   

The matrix and patterns are terminated with methyl groups, so the friction image 

displays only a small difference in contrast due to edge effects.  The depth of the line patterns 

measures 0.7 ± 0.2  nm (Figure 3.4D) in close agreement with the expected 0.6 nm height 

difference between dodecanethiol and hexanethiol SAMs.  The AFM tip (pen) is not lifted from 

the surface when outlining the circles; instead the traces are connected together as mapped in 

Figure 3.4E.  All nine patterns were written in less than 2 min.  The “ears” of the mouse patterns 

were formed by writing four concentric circles in a bullseye target arrangement, with an 

interpattern spacing of 11 ± 2 nm.   
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Figure 3.4  Mouse ear designs produced by nanografting. (A) AFM topograph of concentric 
rings written with hexanethiol ink within a dodecanethiol SAM; (B) Zoom-in view of a single 
set of patterns; (C) corresponding frictional image for B; (D) cursor plot for the line in B; (E) 
writing path of the designed nanopatterns.  

 
The “face” of the pattern was produced by writing seven concentric circles at 12 ± 2 nm 

intervals.  The diameter of the smallest circle at the center of the designs measured 23 ± 2 nm.  

Each circle was outlined twice by the AFM tip to produce a linewidth of 8 ±1 nm.  

Nanografted letter patterns written with a positive height with respect to the matrix were 

generated in Figure 3.5.  In this example, the ink molecules were 16-MHA written within a 

dodecanethiol SAM with an applied force of 7 nN.  The wide view topograph (Figure 3.5A) 

displays four writing areas within the 11×11 µm2 frame.  The underlying substrate (template-

stripped gold) exhibits flat triangular facets, often viewed for Au(111) surfaces.  Dark defect 

holes with a depth of ~ 1.4 nm are present, and contaminants are visible at the bottom left of the 

image.  This example illustrates the practical aspects of nanografting, it is helpful to navigate 

around defect areas to locate atomically flat and defect-free areas for nanoscale writing.  

Although nanografted patterns can be successfully inscribed on rougher substrates, flat surfaces 

without defects provide improvement for the resolution of topographic images. 
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Figure 3.5  Nanoscale graffiti written by nanografting. [A] Topographic (11 × 11 µm2) view of 
multiple written areas; [B] Zoom-in view of the central area; [C] corresponding frictional force 
image for B. 

 
To resolve height differences of a few angstroms for nanografted patterns, it is helpful to 

have a narrower color scale for image contrast.  Zooming in to view the central set of patterns, 

(Figures 3.5B and 3.5C) the writing fidelity and reproducibility achievable with nanografting is 

showcased in the 2.4 × 1.8 µm2 view.  The height of the patterns is 0.4 ± 0.1 nm, and each 100 

nm letter is spaced at 50 nm intervals.  The entire set of patterns was written within 3 min.  Each 

letter was outlined three times by the AFM tip to produce a 50 nm linewidth.  The friction image 

displays uniform contrast for the patterns, which is evidence that the matrix molecules were 

fully replaced by ink molecules.   

3.3.3  Range of Pattern Geometries 

A variety of geometries can be designed and written by nanografting, several examples 

are displayed in Figure 3.6.  Cross-shaped patterns of 11-mercaptoundecanol (11-MUD) 

inscribed within a taller octadecanethiol SAM are presented in Figures 3.6A and 3.6B.  Both the 

topography and frictional force image clearly reveal the location of the 300 nm crosses 

displayed with dark contrast in comparison to the surrounding matrix.  The 11-MUD pattern is 
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0.4 ± 0.2 nm shallower than the matrix as measured with a representative cursor line across the 

top arm of the cross on the right (Figure 3.6C).  The arms of the crosses measure 100 nm 

laterally, and were traced by a left-right raster pattern advancing 2 nm increments between 

linesweeps.  The pattern for writing is traced in Figure 3.6D.  The patterns were written in less 

than two min using a writing speed of 0.5 µm/s and an applied force of 5 nN. 

 Filled circles of hexanethiol were written within a dodecanethiol SAM (Figure 3.6E). 

The four patterns (130 nm diameter) are spaced 50 ± 5 nm apart vertically and horizontally, and 

are located on triangular shaped terraces of ultraflat Au(111).  The AFM topograph reveals that 

the patterns are darker than the surrounding dodecanethiol SAM; the circles were filled by 

outlining six concentric rings.  A zoom-in topographic view of the bottom left pattern (Figure 

3.6F) reveals faint tracks of matrix which were not completely replaced.  The cursor profile in 

Figure 3.6G shows a height of 0.3 ± 0.1 nm above the matrix, which is in agreement with the 

theoretical difference between hexanethiol and dodecanethiol (0.4 nm).  The Picolith design for 

the patterns (Figure 3.6H) was executed twice to produce the four patterns, using an applied 

force of 4.8 nN and writing speed of 0.1 µm/s. 

 Ring patterns of 16-mercaptohexadecanoic acid (16-MHA) with successively decreasing 

sizes were nanografted (Figure 3.6I) within a dodecanethiol matrix SAM.  The diameters of the 

rings within the three rows of patterns from left to right are 125 nm, 90 nm, 70 nm, and 50 nm 

with an approximate error term of ± 5 nm.  The array was written in 75 seconds on a naturally 

formed gold film on mica, and despite the defects one can clearly distinguish the locations of the 

ring patterns in the both topography and frictional force (Figure 3.6J) images.  The patterns are 

spaced at 80 nm intervals horizontally, and the vertical distance between rows ranges from 40 to 

90 nm.  The line width for the rings ranges from 20 to 30 nm.  The brightest contrast in the 
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friction image represents carboxylate-terminated areas written with 16-MHA ink.  The friction 

image also reveals small bright spots scattered throughout all areas of the sample.  The tiny 

spots indicate the position of etch pits in the methyl-terminated SAM matrix.  The etch pits are 

not observed in the topography image because of the color saturation, but were evident with 

zoom views of individual patterns (data not shown).  The friction contrast of the etch pits is 

lighter than the nanopatterned areas, which is evidence that the spots are not caused by surface-

solution exchange reactions.  

When exchange occurs after extended immersion in the imaging media (> 4 h) the height 

changes from exchanged molecules will become clearly apparent in the topography images.  

The force applied to the AFM tip for writing was 4.2 nN, and each ring was outlined multiple 

times.  The rings are 0.5 ± 0.1 nm taller than the matrix, as viewed with a representative cursor 

line profile in Figure 3.6K.  This measurement matches the expected thickness difference 

between 16-MHA (1.9 nm) and dodecanethiol (1.5 nm).  As the tip is placed on or lifted from 

the surface, the up/down movement of the AFM tip is often non-linear, and systematically 

produces a writing track at the edge of each pattern as observed for the nanografted rings.  A 

sketch of the writing map is presented in Figure 3.6L, with arrows to pinpoint the start and stop 

positions at the right of each ring.  Five rectangular patterns of 16-MHA were nanografted 

within a dodecanethiol SAM on template-stripped gold (Figure 3.6M).  Fine details of the 

surface morphology are visible within the larger 2 × 2 µm2 frame (acquired in situ in ethanol), 

because of the sharp color saturation obtained when using an ultraflat surface.    
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Figure 3.6  Patterns with varied geometries and molecular inks written by nanografting. [A] 
Cross patterns of 11-mercaptoundecanol nanografted within octadecanethiol; [B] corresponding 
frictional image; [C] cursor profile for A; [D] design for writing the cross patterns. [E] Filled 
circles of hexanethiol fabricated in dodecanethiol; [F] close-up view (topography) of a single 
pattern; [G] cursor profile for E; [H] PicoLith sketch for writing the circle patterns. [I] Array of 
ring patterns using 16-mercaptohexadecanoic acid as ink within a dodecanethiol SAM; [J] 
corresponding friction image; [K] height profile across three rings in I; [L] map of the tip 
trajectory for writing the rings. [M] Rectangular stripes of 16-mercaptohexadecanoic acid 
nanografted into a dodecanethiol SAM; [N] friction image for M; [O] line profile across the 
patterns in M; [P] Picolith outline for writing the patterns.  
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The vertical length of the rectangles measures 850 ± 40 nm; and the horizontal widths of 

each pattern from left to right are 170 ± 7 nm, 150 ± 4 nm, 125 ± 15 nm, 110 ± 15 nm, and 90 

±15 nm respectively.  The lines were written by a single pass of the AFM tip using a horizontal 

raster pattern (150 linesweeps) from top to bottom with interpattern spacing (left to right) of 120 

nm, 160 nm, 160 nm, and 150 nm.  The probe was picked up and placed on the surface once for 

each rectangle, thus the AFM tip was not lifted during the writing process when inscribing the 

rectangular patterns.  When acquiring the AFM topography image, a few linespikes were 

produced in the image where the tip intersects the top of the patterns.  The linespikes are caused 

by stick-slip adhesion of the tip to the surface.  The friction image (Figure 3.6N) provides a 

distinct view of the pattern geometries, the areas of bright contrast indicate the carboxylate-

terminated regions of nanografted 16-MHA. Notice the bright spots throughout areas of the 

surrounding matrix monolayer, which identify the locations of etch pits for the dodecanethiol 

SAM.  Linespikes are not detected in the simultaneously acquired frictional force image.  The 

height of the 16-MHA patterns above the matrix measures 0.4 ± 0.2 nm (Figure 3.6O) which is 

in agreement with the expected theoretical height difference.  The graphic design used to 

generate the set of patterns is shown in Figure 3.6P.  

3.4  Discussion 

Automated nanografting offers advantages for the speed and reproducibility of 

nanopatterning, and can produce sophisticated pattern arrangements and geometries. The 

precision and reproducibility of nanografting for the alignment, spacing and shapes of 

nanopatterns is superb, due to the exquisite control of small forces with piezoscanners.  The 

geometry and fidelity for reproducibly writing patterns depends on the fabrication and 
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experimental parameters.  To achieve high resolution at the nanoscale, the force, speed and the 

scan direction for writing need to be optimized for each experiment. 

3.4.1  In situ Determination of the Threshold Force for Writing   

Automated SPL rapidly achieves sophisticated pattern shapes, high precision and 

reproducibility for the alignment, spacing and geometry of nanopatterns.  Instrument controllers 

for AFM can be interfaced with a programmable scanning module for automated lithography.74 

Commercially available soft Si3N4 cantilevers have mostly been applied for nanografting n-

alkanethiol SAMs, with force constants ranging from 0.03 to 2.0 N/m.  Although substantial 

improvements have been made in recent years for the manufacturing processes for AFM tips, 

the spring constants of individual AFM probes can vary widely for microfabricated levers.168-170 

The variations in tip geometry/sharpness as well as differences in surface adhesion for different 

monolayers makes it necessary to derive the optimized fabrication force for each experiment.  A 

rapid and systematic approach for finding the threshold force is to write a number of small 

patterns with successively increasing applied force.  The optimized force is chosen by imaging 

the patterns and selecting the minimum force which produces a distinct nanopattern.  The 

chosen threshold force can then be used to write hundreds of nanopatterns during an experiment 

without evidence of tip damage.  Certainly if too much force is applied for writing then the tip 

or substrate can be damaged.  The fabrication forces used for nanografting typically are greater 

than 1 nN, dependent upon the system under investigation and the geometries and spring 

constants of the cantilevers.  For the examples presented in Figures 3.2-3.6, the fabrication 

forces ranged from 2 to 10 nN.  In contrast, for characterizing surfaces with nondestructive 

forces in liquid, the total force applied for imaging is typically less than 1 nN to prevent damage 

to the sample. 
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3.4.2  Optimization of the Writing Speed for Nanografting   

Among the parameters for successful nanografting, the speed of tip translation does not 

strongly influence nanopattern quality when writing with n-alkanethiol inks.69 Dense patterns 

can be nanografted over a relatively wide range of writing speeds.  For the most part, slower tip 

movement has not produced observable changes for patterns of n-alkanethiol SAMs.  A general 

rule of thumb is that whatever writing speeds are suitable for imaging (0.1-0.5 um/s) will also 

work well for nanografting. 

3.4.3  Design Parameters for Tip Translation   

Writing at the nanoscale with an AFM tip is analogous to digging a trench of molecules; 

the removed material can pile up on the sides of the nanopatterns.  Therefore, when designing 

the parameters for tip translation a practical strategy is to translate the tip to push material to 

both sides of the pattern for clean removal of the matrix SAM.  Depending on the solvent 

chosen for imaging, the shaved molecules eventually dissolve in the liquid imaging media after 

sweeping the surface a few times with the AFM tip at reduced force.  The images presented in 

Figure 3.2-3.6 evidence clean removal of the matrix and replacement with ink molecules from 

solution.  Nanografting is not the best approach for writing micron-sized patterns of SAMs, 

because for larger patterns the shaved molecules can persist and re-adsorb at the edges to form 

thick borders. (data not shown)  However, nanografting is an excellent choice for writing SAM 

patterns that are smaller than one micron, as viewed in the examples.  Dozens of small patterns 

can be rapidly inscribed with various shapes and arrangements. 

Mechanical parameters to consider are the nonlinearity of piezoceramic scanners, 

hysteresis and electronic drift.  When voltage is applied to a single segment of a piezotube 

scanner, the movement of the tip follows a linear trajectory.  However, when voltages are 
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applied to two segments simultaneously the tip is often moved unpredictably to different 

positions, such as for triangulating vector movements.  The problems in nanoscale translations 

result from mechanical imperfections in the manufactured sizes of scanner segments.   If 

voltages are applied to the scanner simultaneously for the x and y directions, this will often 

produce distortions and misalignment of nanopatterns.  Thus, to optimize pattern geometries and 

arrangements, it is a good strategy to program separate movements to define displacements in 

either the x or y direction individually.  Another strategy to incorporate when defining the 

writing parameters is to program brief pauses after translating the tip between rows and columns 

of patterns. There are nanoscopic displacements of the cantilever as the piezoscanner is 

momentarily relaxed.  The array in Figure 3.2D displays an example where the bottom row of 

nanopatterns is slightly out of alignment with the upper three rows.  The rows of patterns were 

written from left to right, beginning with the bottom row and proceeding to the top.  The registry 

of the bottom row is offset approximately 50 nm compared to the upper three rows of squares 

caused by relaxation of the lever position.  The example in Figure 3.2A, on the other hand, is 

nearly perfectly aligned for all four rows and columns because the programmed parameters 

issued a brief pause (5 s) before beginning the writing operations. 

Another imperfection introduced with nanografting is apparent when the tip is picked up 

or placed on the surface.  In the process of writing stray lines may be produced at the corners of 

patterns, which are caused by the tilt of the cantilever under pressure.  As the tip is picked up or 

placed on the sample there is often a nonvertical sliding motion produced as an artifact of open 

loop scanners.  This becomes apparent by viewing the writing tracks at the locations where the 

tip was picked up or removed from the surface (Figure 3.6J).  These artifacts can be prevented 

by changing the lithography parameters to use a slower speed for approaching or lifting the tip 



 70

from the surface, and by choosing a minimal threshold force for writing. When the force is 

optimized nearly perfect shapes can be nanografted, even when using an open-loop scanner for 

feedback control. 

3.4.4  Nanografting Gradient Patterns 

It was previously established that nanografted patterns of n-alkanethiols form dense 

close-packed structures with crystalline order.138 Periodic lattices were revealed by zooming-in 

for molecular views of the surfaces of nanografted patterns.  The AFM images revealed a two-

dimensional periodic structure with a lattice constant of 0.5 nm, which is consistent with the 

well-known (√3×√3)R30° structure of alkanethiol SAMs where hydrocarbon chains are close-

packed and tilted ~27° with respect to the surface normal.  Depending on the sharpness of the 

AFM probe, gradient patterns of a mixture of matrix and ink molecules can be nanografted by 

changing the spacing between linesweeps.141  The array of nanopatterns in Figure 3.2D was 

written with successive changes in line spacing between rows.  The distance between horizontal 

linesweeps was programmed to be different for each row, from top to bottom with 5, 3, 2 and 1 

nm increments between linesweeps in the y direction.  No differences in the heights of the 

patterns were observable from row to row, because there is sufficient writing density to produce  

dense patterns.  However, when such patterns are further reacted with biomolecules or metals 

the nanoscale gradients become apparent by differences in adsorption.141     

3.5  Advantages of the In Situ Approach of Nanografting   

A significant advantage of using nanografting for AFM investigations is the ability to 

conduct experiments in situ, successively viewing changes for nanofabricated structures with 

high resolution in liquid media.  Analogous to time-lapse photography, after writing 

nanopatterns further reactions can be conducted selectively on spatially defined regions of the 
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surface with nanoscale control of the reactivity of SAM headgroups.  The surrounding areas of a 

matrix SAM can be chosen to provide non-reactive or insulating headgroups to spatially direct 

reactions to occur only for the nanografted areas.140  Within the liquid cell, solutions can be 

introduced with fresh reagents and molecules for surface confined reactions.  Sequential real-

time AFM images display reaction steps at a molecular level, providing details of the adsorption 

and conformational changes that take place over time.76 An important criteria for in situ 

investigations with AFM is to use highly dilute solutions for reactions.  Since there is no need to 

generate milligram quantities of products on surfaces when studying nanoscale phenomena, the 

reactions for AFM experiments require picomolar to nanomolar concentration levels.  As an 

example, for reactions with n-alkanethiol SAMs, introducing solutions at millimolar 

concentrations will potentially cause problems with surface exchange reactions, in which 

molecules from solution change place with matrix molecules to form a mixed monolayer on the 

surface.  For nanoscale investigations the reagents need to be scaled to dilute regimes to provide 

optimized conditions to control surface reactions.  Consequently, as a benefit, very small 

amounts of reagents are needed to conduct reactions in an AFM liquid cell. 

3.6  Applications of Nanografting   

Nanografting has mainly been applied for fundamental studies of surface chemistry, 

assembly mechanisms, kinetics and properties of thin films.171  Nanografted patterns of SAMS 

can be applied as reference structures for measuring the dimensions of the tip apex in situ.172 

Also, SAM patterns produced by nanografting can serve as a molecular ruler for local 

measurements of the thickness of films.173-175 The desorption and stability of nanografted 

patterns over time has been investigated for different spacer lengths of n-alkanethiol SAMs.69 

Bottom-up assembly has been accomplished to produce 3-D nanostructures by reactions with 
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octadecyltricholorosilane,140 and electroless deposition of copper has been achieved selectively 

on SAM nanopatterns.141 An emerging area of research is enabled for molecular-level 

investigations of biochemical reactions with nanografted protein structures, in which 

nanopatterns are monitored during in situ protocols in aqueous buffers. 76, 142, 143, 161-165, 176 

Nanografted arrays offer potential as a convenient test platform to define the chemistry and 

placement of nanomaterials on surfaces.  Designed 2-D arrays of patterns of SAMs with tunable 

dimensions can be applied with AFM measurements of surface properties such as friction and 

elasticity.139 Well-defined nanostructures provide precise reproducible dimensions for multiple 

measurements, and enable tunable material compositions for studies of size-dependent 

properties.174  Advancement of viable nanotechnologies will require a thorough understanding 

of properties at the molecular scale, and AFM-based lithographies such as nanografting furnish 

a practical toolkit for nanoscale research.   

3.7  Future Prospectus 

Methods of SPL are becoming indispensable for fundamental investigations of the 

interrelations between chemical structure and properties of thin film materials.  Nanografted 

patterns of SAMs provide 2-D planar test platforms for studies of size-dependent physical 

properties.  In nanometer-scale structures, size effects give rise to novel electronic, magnetic, 

and optical properties which occur at length scales between 1 and 150 nm.  When nanografting 

n-alkanethiol SAMs, surfaces can be designed to anchor materials such as DNA, proteins, 

polymers, metals, organic molecules and polymers for the bottom-up assembly of 

nanomaterials.  Writing individual patterns may not be a practical strategy for manufacturing 

devices, in which millions of structures may be needed for a single memory chip or circuit 

design.  The serial nature of SPL is problematic for future applications, which will require high 
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throughput and speed.  This problem has been addressed by the on-going development of arrays 

of multiple probes for parallel writing, as well as by increasing the speed of writing processes.  

Prototype arrays of 1024177 and 55,000178 AFM probes have been developed for high throughput 

nanopatterning.  Scanning probe lithography approaches such as nanografting with self-

assembled monolayers extends beyond simple fabrication of nanostructures to enable control of 

the surface composition and reactivity at the nanoscale.   
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CHAPTER 4.  SELF-ASSEMBLY OF α,ω-ALKANEDITHIOLS ON Au(111) 

4.1  Self-Assembly of n-alkanethiols Versus α,ω-alkanedithiols on Au(111)  

Methyl-terminated n-alkanethiols have been widely studied and are known to form 

ordered commensurate monolayers for a range of experimental conditions (e.g. concentration, 

immersion intervals).  Self-assembled monolayers (SAMs) with sulfur headgroups have not 

been as extensively characterized.  Monolayers of n-alkanethiols on coinage metal surfaces such 

as gold have promising applications as lithographic resists,179-183 and chemical/biological 

sensors.184-190 Dithiol SAMs are promising materials for wires in molecular electronic 

devices191-194 or can provide linker groups for attaching nanoparticles to surfaces.195-202  Upon 

immersion of a gold substrate into a thiol solution, the -SH endgroups of n-alkanethiol 

molecules bind spontaneously to metal surfaces by chemisorption to form densely-packed 

monolayers.203-205 Molecules within n-alkanethiol SAMs typically adopt a standing-up 

configuration to form a close-packed monolayer, presenting various headgroups at the surface.  

The basic structure of an n-alkanethiol SAM consists of three parts: the sulfur endgroup, the 

carbon backbone, and the headgroup.  The endgroup is composed of thiol molecules for 

chemisorptive attachment to metal surfaces.206  A thiol group is located at the terminus of an 

alkane chain (backbone) of the molecules.  The carbon chain is capped with a headgroup (esters, 

alkyls, hydroxyls, carboxylates, amides, etc.).  The length of the alkane chain and the nature of 

the SAM headgroup largely determines surface properties such as wettability.207-209 Readers are 

directed to previous reports for details regarding synthesis, preparation, and characterization of 

n-alkanethiol SAMs.210 

From the perspective of the molecular formula, α,ω-alkanedithiol molecules should  

form SAMs presenting a free SH group at the surface.  However, this assumes that the 
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molecules attach to gold through only one sulfur in an upright configuration.  Ultrahigh vacuum 

scanning tunneling microscopy (UHV-STM) studies211-213 reveal that n-alkanedithiol SAMs 

prepared either from a vapor phase deposition or from immersion in  ethanolic solutions 

predominantly assemble with a lying-down configuration on gold.  Because of the affinity for 

chemisorption to gold, most α,ω-alkanedithiol molecules assemble with a side-on orientation 

without free thiol groups presented at the surface.  Monolayers of α,ω-alkanedithiols are not 

densely-packed and are less ordered than methyl-terminated n-alkanethiol SAMs, because the 

molecules bind to the surface through both endgroups in a lying-down orientation.  Interactions 

between the thiol groups and gold have an important role in the self-assembly of α,ω-

alkanedithiol molecules.  In contrast, methyl-terminated n-alkanethiols form SAMs with the 

single thiol endgroup chemisorbed to Au(111) with the carbon chains oriented in an upright 

configuration.  According to previous studies, the alkyl chains of n-alkanethiol SAMs tilt 

approximately 30° with respect to the surface normal.214-220  Thiol endgroups of SAMs are 

thought to bind to the triple hollow sites of Au(111) lattice by chemisorption.203, 221, 222 The self-

assembly of n-alkanethiol SAMs on bare gold is reported to occur in two phases.  A mobile 

physisorbed phase forms when thiol molecules initially make contact with the surface, in which 

the backbone of the molecules are oriented parallel to the plane of the substrate in a lying-down 

configuration.  However, over time n-alkanethiol molecules rearrange into a standing upright 

orientation with the molecular backbone tilted 30o from surface normal.  The mature crystalline 

phase forms an enthalpy favorable, close-packed commensurate (√3 x √3)R30o  configuration 

with respect to the Au(111) lattice.   

For certain applications of α,ω-alkanedithiols, a standing-up configuration of the 

molecules within the SAMs to present a thiol headgroup at the surface is compulsory.  In an 
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upright orientation, the free thiol is available for further chemical reactions.  For example, 

catalysis or oxidation reactions with the thiol group will produce a sulfonate-terminated surface 

that can react to form hybrid multilayer assemblies.173, 223, 224  The upright orientation offers a 

route to form stable multilayer structures with S-S bonds for interlayer covalent linkages.  

Considerable research effort has been invested to gain better control for constructing thiol-

terminated surfaces with the favored standing-up conformation.  One reported approach used 

alkanedithiols with a rigid molecular backbone containing either aromatic rings or double/triple 

bonds in the molecular linker.225-227 The inflexible nature of conjugated structures prohibits the 

twisting of the backbone and thus makes it difficult for both ends of dithiol molecules to have 

good contact or to simultaneously interact with the gold surface.  

A second approach for preparing thiol-terminated surfaces was to induce exchange 

reactions by soaking a previously formed SAM into an alkanedithiol solution.  In this method, a 

standing-up configuration for α,ω-alkanedithiols is obtained through a replacement reaction that 

occurs with a previously formed n-alkanethiol SAM after immersion in a dithiol solution.228, 229  

Exchange reactions can produce domains of upright dithiols on gold because the matrix n-

alkanethiol SAMs can sterically prevent the incoming dithiol molecules from lying-down to 

form a side-on configuration.  Exchange reactions prefer to initiate at surface defects sites, such 

as step edges and domain boundaries. Therefore, the “exchange” approach does not provide 

precise control of the location and geometry of dithiols in the resulting dithiol SAM. 

A third approach follows a stepwise protection/deprotection strategy to prepare SAMs 

presenting thiols at the interface.230-233 One of the thiol groups is first protected by thioacetyl or 

thioester groups. After the organothiolate adlayer is formed, the protected thiolate group can be 

restored to –SH under controlled conditions, such as by immersion in a sodium hydroxide 
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solution.  This strategy involves extra steps for sample preparation and requires delicate control 

of acid/base deprotection chemistry.  

Writing nanopatterns of dithiol SAMs via nanografting provides an approach for 

presenting free thiols at surfaces, since thiol adsorption on gold during nanografting follows a 

different reaction pathway due to the effects of spatial confinement.171 For self-assembly during 

nanografting, very small areas of freshly exposed gold are produced by scanning with a high 

force applied to the AFM tip.  The transient reaction environment is sufficiently small to prevent 

the molecules from assembling in a lying-down position.  The surrounding matrix areas are 

surrounded and spatially confined by thiol SAMs.  The confined area uncovered by the AFM tip 

has dimensions less than the molecular length of the thiols, therefore the ink molecules in 

solution do not have sufficient room to assemble in a lying-down configuration.  Thus, the 

initial physisorbed phase is bypassed and molecules assemble directly onto gold with the 

favored standing-up configuration during nanografting.  

4.2  Results and Discussion 

Approaches which are most commonly applied to prepare α,ω-alkanedithiol SAMs are 

vapor phase deposition211 and solution immersion,230 which produce films with the molecular 

backbone oriented parallel to the substrate.  Nanografting is a new strategy for surface self-

assembly which bypasses the formation of an intermediate (lying-down) phase to directly 

produce an upright molecular configuration.171  In these investigations, nanografting is applied 

as a means to produce densely-packed, well-ordered layers with a single thiol endgroup attached 

to the surface.  Due to a different assembly mechanism, nanografting generates patterns of α,ω-

alkanedithiols presenting free –SH groups at the interface.  In addition, nanografted patterns can 

be used to determine the orientation of naturally-formed SAMs of 1,8-octanedithiol and 1,9-

nonanedithiol.  Local AFM views of nanografted patterns enable a side-by-side comparison of 
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the morphology of different SAM headgroups, and provide an internal height reference for 

measuring differences in molecular thickness.    

4.2.1  Naturally Grown 1,8-octanedithiol SAMs Characterized by AFM.   

The surface of a naturally grown dithiol SAM after one week of immersion in 1,8-

octanedithiol (0.02 M) is viewed in Figure 4.1. The AFM topograph (Figure 4.1A) reveals 

predominantly flat matrix areas interspersed with nanoscopic protruding islands, and the 

underlying triangular shapes of terraces of Au(111) are apparent.  The bright spots exhibit 

relatively uniform sizes, suggesting regular vertical and lateral dimensions for the protrusions.  

A cursor profile (Figure 4.1B) corresponding to the line drawn across two of the small islands 

indicates that the protrusions are about 0.8 nm taller than the surrounding matrix areas. The 

height for the islands corresponds closely to the expected theoretical difference in thickness 

between a standing-up (1.3 nm) versus a lying-down (0.4 nm) orientation for 1,8-octanedithiol.  

The protrusions cover approximately 7 % of the surface of Figure 4.1A.  The theoretical 

dimensions for the molecular diameter assumes an all-trans alkyl chain (0.4 nm) and the 

thickness of an upright 1,8-octanedithiol layer (1.3 nm) relies on the assumption that molecules 

have the same orientation as 1-octanethiol in which the hydrocarbon backbone tilts ~30° from 

the surface normal.  The dimensions are calculated by considering that 1,8-octanedithiol has an 

all-trans configuration for the alkyl chain and that the terminal thiol group of dithiol molecules 

is not bulkier than methyl functionalities as for n-alkanethiols.  

Nanografting was accomplished in situ to measure the thickness of the naturally formed 

1,8-octanedithiol SAM.  The surface of the 1,8-octanedithiol SAM was immersed in a dilute 

decanethiol solution (ink molecules for writing) within the AFM liquid cell assembly.  A 
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rectangular pattern (200 × 300 nm2) of decanethiol was nanografted within the 1,8-octanedithiol 

SAM for a one week sample (Figure 4.1C).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.1 Surface morphology of naturally formed 1,8-octanedithiol. [A] Topograph; [B] 
Cursor profile for the line in A; [C] Square pattern (200 x 300 nm2) of decanethiol nanografted 
within a SAM of 1,8-octanedithiol; [D] Corresponding cursor profile; [E] Proposed model for 
the SAM thickness. 

 
The surface of the pattern exhibits a smooth morphology typical of n-alkanethiol SAMs. 

The established dimensions of decanethiol provide a height reference or molecular ruler for 

nanoscale measurements.  The height of the decanethiol nanopattern is 0.9 ± 0.2 nm taller than 
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the surrounding areas of 1,8-octanedithiol as shown by the representative cursor line profile in 

Figure 4.1D.  

The thickness typical of a decanethiol SAM is 1.3 nm and the expected height for a 

lying-down orientation of 1,8-octanedithiol is 0.4 nm.  The difference measured by nanografting 

decanethiol as a reference height matches well with the expected thickness for a side-on 

orientation of the 1,8-octanedithiol molecule for the matrix areas, as represented in the 

molecular model of Figure 4.1E.  The nanografting measurements confirm that most of the areas 

of the naturally grown 1,8-octanedithiol SAM are composed of lying-down molecules, with the 

protrusions corresponding to isolated areas of standing molecules.  Two distinct conformations 

are visible in Figure 4.1A, a lying-down orientation in which both sulfur atoms attach through 

chemisorption onto Au(111), interspersed with islands of upright molecules that attached 

through a single sulfur endgroup. 

Combining the results from AFM using both high-resolution imaging and 

nanolithography establishes that 1,8-octanedithiol molecules assemble predominantly with a 

lying-down orientation for a naturally grown SAM.  Images acquired for a sample prepared with 

12 h immersion in 1,8-octanedithiol exhibited a similar morphology of mixed phases (data not 

shown).  The results are in good agreement with previous studies of the same system with other 

techniques.234  For example, structures of a 1,8-octanedithiol SAM prepared from one-day 

immersion in a 1 mM ethanolic solution were investigated using an ultrahigh vacuum scanning 

tunneling microscope (UHV-STM).  It was observed that dithiol molecules within the 1,8-

octanedithiol SAM were arranged with the molecular axis parallel to the gold surface.  

However, in our investigations, both lying-down and standing-up orientations of 1,8-

octanedithiol molecules in the monolayer are clearly revealed in high-resolution AFM images of 
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Figure 4.1. The coexistence of the lying-down orientation with the nearly upright conformation 

is evident after intervals of either 12 h or extended immersion (7 days) and the surface 

morphology was not observed to rearrange into a densely-packed layer over time. 

4.2.2  Nanografting of 1,8-octanedithiol.   

A square nanopattern of 1,8-octanedithiol was written within a matrix of hexanethiol 

(Figure 4.2). A flat terrace area of the hexanethiol SAM is displayed in the topography images 

before (Figure 4.2A) and after (Figure 4.2B) nanografting a pattern of 1,8-octanedithiol.  The 

characteristics typical of the surface of an n-alkanethiol SAM such as etch pits are observed 

throughout areas of the surface for Figure 4.2A, where relatively broad flat terrace domains 

were chosen for writing.  As an internal reference for z calibration, the heights at the edge of the 

Au(111) steps measure 0.23 nm, also the distinct outline of the square-shaped terraces provide 

landmarks for in situ imaging.  The surrounding areas of the hexanethiol SAM exhibit a smooth 

surface and thus the features of the underlying substrate such as the Au(111) steps are clearly 

visible.   

The same area is shown in Figure 4.2B after a square pattern was nanografted.  The 

topography of the patterned area has a rougher morphology, and there are several bright spots of 

adsorbate molecules attached to the nanopattern.  The brighter contrast of the square indicates 

that the pattern is taller than the hexanethiol monolayer.  The trace and retrace friction images 

acquired simultaneously with the topographic image of Figure 4.2B are presented in Figures 

4.2C and 4.2D, respectively.  The friction images furnish evidence that the functionality 

exposed on the surface of the pattern is different than the surrounding SAM.  In comparison to 

the surrounding methyl-terminated matrix, the patterned area of dithiol SAM exhibits a 

difference in contrast for the two images, indicating greater frictional force between the 
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headgroups of the dithiols and the AFM tip while the tip is scanning in contact mode.  

Compared to the methyl headgroup of a hexanethiol SAM, the -SH group is more hydrophilic 

due to higher polarity.  The silicon nitride AFM tip is also relatively hydrophilic, therefore a 

higher frictional force between the -SH head group of dithiols and the AFM tip results from the 

stronger hydrophilic-hydrophilic adhesive interactions.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2  Selected area of a SAM of hexanethiol before and after nanografting. [A] AFM 
topograph of hexanethiol/Au(111); [B] Same area after writing a square pattern of 1,8-
octanedithiol by nanografting; [C] Corresponding frictional force trace and [D] Retrace images. 

  
Patterns written by nanografting provide a molecular ruler for locally comparing the 

thickness differences of SAMs.  A close-up view (500 × 500 nm2) of the same square pattern of 

Figure 4.2 is displayed in Figure 4.3.  The fine details of the edges of the square pattern are 

visible for the zoom-in image.   

The clustered morphology of the surface of the thiol-terminated pattern is visible and 

distinctive differences are revealed when compared side-by-side with the surrounding methyl-
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terminated areas of hexanethiol matrix (Figure 4.3A). A representative cursor line was drawn at 

a flat edge of the square pattern to measure the height difference between the nanografted 1,8-

octanedithiol pattern and hexanethiol SAM (Figure 4.3B). The pattern measures 0.4 ± 0.2 nm 

taller than the hexanethiol monolayer, which matches a standing orientation for 1,8-

octanedithiol.  The theoretical height difference between hexanethiol and 1,8-octanedithiol is 

0.3 nm, assuming an  orientation with an all-trans alkyl chain tilted ~30 degrees from surface 

normal (Figure 4.3C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Close-up view of the 1,8-octanedithiol pattern. [A] Zoom-in view of the pattern 
surface; [B] Selected cursor for the line in A; [C] proposed model. 
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These results demonstrate that with nanografting, dithiol molecules are directed to 

assume an upright configuration.  Due to an effect of spatial confinement, when nanografting 

the molecules adsorb to the surface immediately following the track of the AFM tip in a 

standing orientation.171  During writing, there is not sufficient substrate area exposed for dithiol 

molecules to assemble in a lying-down orientation, therefore the assembly mechanism when 

nanografting occurs in a single step.  Without a lying-down step during molecular assembly, 

there is no opportunity for both sulfur groups to bind to gold.  If the 1,8-octanedithiol molecules 

had assembled in a lying-down orientation, the nanopattern would be shorter than the 

hexanethiol matrix with a depth of 0.5 nm.  Thus the spatial confinement effect of nanografting 

can be used to engineer an upright orientation of 1,8-octanedithiol molecules.   

4.2.3  Nanoshaving of 1,9-nonanedithiol.   

To corroborate the observations for 1,8-octanedithiol SAMs, AFM characterizations 

were accomplished for a naturally-formed monolayer of 1,9-nonanedithiol prepared by 3 days of 

immersion in a 0.02 mM ethanol solution (Figure 4.4). A surface composed of mixed phases is 

viewed in the AFM topographs of Figures 4.4A and 4.4B, with random bright islands scattered 

throughout the surface.  The height of the protrusions measures 0.9 ± 0.1 nm above the matrix 

areas of the SAM, and the taller features cover approximately 6 % of the surface (Figure 4.4B). 

Nanoshaving was used to measure the thickness of the 1,9-nonanedithiol SAM.156  A selected 

area of the SAM can be shaved away by applying a higher force (0.5 nN) and sweeping the tip 

across the region several times.   A rectangular area of the substrate (300 x 340 nm2) is exposed 

in Figure 4.4C which is easily distinguished from the surrounding areas of 1,9-nonanedithiol.  

The clean removal of 1,9-nonanedithiol adsorbates from the nanoshaved area is confirmed in the 

corresponding frictional force image (Figure 4.4D) which evidences a brighter contrast for the 
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nanoshaven pattern.  The thickness of the SAM can be measured directly by acquiring a cursor 

profile across the edges of the nanoshaved region, referencing the uncovered area of the 

substrate as a baseline.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 4.4 Nanoshaving of 1,9-nonanedithiol. [A] Topographic view before fabrication (2 x 2 
µm2); [B] Zoom in view of A (0.9 x 0.9 µm2);  [C] After shaving a 300 x 340 nm2 pattern;  [D] 
Friction image for B; [E] Corresponding profile for the line in B; [F] Proposed model for 
mixture of surface orientations of 1,9-nonanedithiol. 
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The morphology of the underlying template-stripped gold surface has small irregular 

terraces, therefore the placement of the representative cursor line was chosen to provide a 

relatively even background.  Two different heights are displayed in the corresponding cursor 

plot (Figure 4.4E) measuring 1.3 ± 0.1 nm and 0.4 ± 0.1 nm, which correspond well with the 

predicted dimensions for upright and lying-down orientations of 1,9-nonanedithiol, respectively.   

As with the previous example of 1,8-octanedithiol SAM formed spontaneously by 

natural self-assembly, SAMs of 1,9-nonanedithiol adopt both lying-down and standing-up 

orientations on gold, with a predominance of lying-down molecules.  Thus, as for 1,8-

octanedithiol SAMs, for naturally-formed SAMs of 1,9-nonanedithiol, both of the thiol 

endgroups chemisorb to the surface and lock the molecules in a side-on orientation.  A model is 

proposed showing the dimensions and different orientations (Figure 4.4F) observed for 1,9-

nonanedithiol molecules.  The height of the protrusions measures 1.0 ± 0.2 nm, which matches 

with the expected thickness difference between the upright and lying-down phases (1.0 nm).  

4.2.4  Nanografting Dodecanethiol into a SAM of 1,9-nonanedithiol.   

Nanografting was accomplished within a SAM of the mixed phases of 1,9-nonanedithiol 

using dodecanethiol as ink molecules for writing (Figure 4.5A). The morphology of the 300 x 

300 nm2 pattern appears smooth and even for the area written with methyl-terminated 

dodecanethiol, providing a side-by-side view to compare the surfaces of a methyl-terminated 

SAM versus the surrounding 1,9-nonanedithiol matrix.  The thickness of a densely-packed 

dodecanethiol SAM is 1.5 nm, which would be expected to be 1.1 nm taller than the lying-down 

phase of 1,9-nonanedithiol which covers most of the areas of the surface surrounding the 

pattern.  The cursor profile (Figure  4.5B) displays a thickness difference of 1.0 ± 0.2 nm, which 
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matches the expected theoretical height difference between a lying-down alkane chain and 

upright orientation of dodecanethiol of the pattern. 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5 Nanografted pattern of dodecanethiol within a 1,9-nonanedithiol matrix. [A] 
Topograph of a 300 x 300 nm2 pattern; [B] simultaneously acquired friction image. 
 

4.2.5  Natural Versus Spatially Constrained Self-assembly of α,ω-alkanedithiols.   

The natural and spontaneous self-assembly process for α,ω-alkanedithiols begins in a 

similar manner as for n-alkanethiols, with molecules attaching to the surface in a lying-down 

mobile phase.  However, for α,ω-alkanedithiols at this initial stage both ends of the molecule 

chemisorb to the Au(111) substrate and thus trap the molecules in a lying-down orientation.  

Over time, more molecules attach to the surface via chemisorption until there is no longer 
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sufficient room for molecules to assemble in a fully-stretched, lying-down configuration with 

the backbone of the molecule oriented parallel with the surface.  However, due to the 

randomness of spontaneous adsorption there are still pinhole areas of the surface which are 

uncovered.  At a later stage of self-assembly the dithiol molecules attach between the adsorbed 

side-on molecules at the pinhole sites of uncovered gold, adopting a standing orientation.  This 

description of natural self-assembly for α,ω-alkanedithiols fits well with the observations of 

Figure 4.1 and Figure 4.4 which reveal the coexistence of both lying-down and standing-up 

phases.  The initial adsorption step with a lying-down orientation for α,ω-alkanedithiols favors 

both ends of the molecules binding to gold forming alkanedithiolates.  The additional binding of 

a thiolate (20 k cal/mol) dramatically stabilizes the lying-down phase and thus increases the 

activation energy barrier for transformation to a standing-up conformation.  As a result, a further 

transition beyond the intermediate phase is inhibited and dithiol molecules remain in a lying-

down configuration for the resulting alkanedithiol monolayer. 

When n-alkanethiols assemble naturally, there is a phase transition from a physisorbed 

side-on orientation with the backbone of the molecule oriented along the surface, to a 

chemisorbed standing orientation in which the molecules adopt an upright and tilted 

configuration.  In the case of self-assembly during natural growth of n-alkanethiols, monothiol 

molecules go though multiple steps to form a densely-packed commensurate SAM.235, 236 

Molecules initially adsorb to the surface with the molecular axis of the hydrocarbon chains 

oriented parallel to the substrate.  The physisorbed or lying-down phase is observed to be 

mobile because it rearranges over time as surface coverage increases.  When the surface density 

of the lying-down phase reaches near saturation coverage, continuous collisions of thiols from 

solution induce a lateral pressure, which leads to a two-dimensional phase transition.  The thiol 
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molecules rearrange into a standing-up configuration with the hydrocarbon axis tilted 

approximately 30° with respect to the surface normal.  The energy barrier of the phase transition 

for organothiols with only one thiol endgroup is moderate, thus even at room temperature thiol 

molecules can readily convert from a lying-down to an upright monolayer.  On the other hand, 

for α,ω-alkanedithiol molecules the formation of alkanedithiolates with both –SH groups 

chemisorbed to gold stabilizes and anchors the lying-down phase to the surface, which increases 

the activation barrier between the two intermediate states (lying-down and standing-up).  

Therefore, a kinetic trap inhibits the phase transition and results in a percentage of dithiol 

molecules persisting in a lying-down configuration.   

The spatially constrained self-assembly of α,ω-alkanedithiols is the same as for n-

alkanethiols during nanografting.  The mechanical process of writing with nanografting enables 

the molecules to bypass the lying-down phase and assemble immediately into a standing 

configuration because there is insufficient space on the surface for the molecules to assemble on 

the surface in lying-down orientation.171  A key element of nanografting is that n-alkanethiols 

chemisorb spontaneously to surfaces in an upright arrangement to form a crystalline phase, due 

to a mechanism of spatial confinement.  A kinetic Monte Carlo model of natural and 

nanografted deposition of n-alkanethiols on gold surfaces was developed by Ryu and Schatz, 

which reproduces experimental observations for the variation of SAM heterogeneity with AFM 

tip writing speed.210 The speed of the AFM tip influences the composition of the monolayers 

formed along the writing track.  Nanografting can be performed routinely in thiol solutions with 

concentrations as dilute as 1 µM.  Therefore, using nanografting in liquid media, single layer 

nanopatterns of α,ω-alkanedithiols molecules can be written directly on gold with a standing-up 

configuration using a lower concentration than that required in a natural growth process. 
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4.3  Summary  
 

For naturally grown α,ω-alkanedithiols from ethanol solutions, the resulting SAM is 

composed of lying-down dithiol molecules with isolated islands of upright molecules.  The 

chemisorption of both -SH groups locks the lying-down phase on the surface and prevents the 

transition from a lying-down to standing upright configuration.  Thus, the “mobile” phase of 

physisorption typically observed with n-alkanethiols was not observed for the natural self-

assembly of α,ω-alkanedithiols.  After 7 days immersion, the lying-down orientation of 1,8-

octanedithiol was observed to persist and did not rearrange into a standing-up configuration.  

High-quality thiol-terminated SAMs can be written directly on gold by nanografting, even from 

simple α,ω-alkanedithiols without rigid backbones. Using 1,8-octanedithiol and 1,9-

nonanedithiol as examples, SAMs were prepared by both natural growth and a new approach of 

nanografting with spatially confined self-assembly. High-resolution AFM characterizations 

demonstrate that molecules of nanografted SAM patterns of α,ω-alkanedithiols are densely 

packed with a preferred standing-up conformation, which generates a surface presenting free –

SH groups.   

4.4  Methods 

4.4.1  Materials  

Reagents such as decanethiol, hexanethiol, 1,8-octanedithiol, 1,9-nonanedithiol were 

purchased from Sigma Aldrich (St. Louis, MO, USA) and used as received.  Ethanol (200 proof) 

was purchased from Aaper Alcohol and Chemical Co. (Shelbyville, KY, USA).  Two types of 

atomically flat gold substrates were used for experiments.  Flame-annealed gold-coated mica 

substrates with 150 nm gold films were obtained from Agilent Technologies, Inc. (Chandler, 

AZ).   However, Figure 4.4 was produced using template-stripped gold films.166, 167 
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4.4.2  Preparation of Self-Assembled Monolayers   

Monolayers were prepared by immersion of Au(111)/mica substrates in ethanolic 

solutions of desired thiols for at least 12 h.  Glassware used for preparing SAMs was cleaned in 

piranha solution and rinsed with deionized water followed by ethanol.  To minimize 

photooxidation of SAMS, the containers were wrapped with aluminum foil and stored in the 

dark at room temperature.  The surfaces were rinsed with ethanol and then immersed in clean 

ethanol solutions within a liquid cell for AFM imaging.  

4.4.3  Atomic Force Microscopy  

Topography and friction images were obtained using a model 5500 AFM/SPM operated 

with Picoscan v5.3.3 software, from Agilent Technologies, Inc. (Chandler, AZ).  Picolith beta 

version 0.4.5 software was used to apply force and to position the AFM tip for nanografting.  

Gwyddion software was used for image procession, which is freely available on the internet 

(http://gwyddion.net/).  The instrument has an optical-deflection configuration in which the tip 

is mounted on the piezotube scanner for imaging.  Images were acquired using contact-mode 

AFM in ethanol.  Oxide-sharpened silicon nitride probes (MSCT-AUHW) with an average force 

constant of 0.5 N/m were used for imaging writing nanopatterns (Veeco Probe Store, Santa 

Barbara, CA). 

4.4.4  Nanografting   

Nanografting was applied to write nanopatterns of n-alkanethiol and α,ω-alkanedithiol 

SAMs (Figure 4.5).69, 138 The imaging media contains fresh “ink” molecules for writing in situ.  

Both the AFM tip and sample are submerged in dilute ethanolic solutions containing the ink 

molecules selected for writing.  First, the surface is characterized under low force (less than 1 

nN) to identify a flat area for nanofabrication (Figure 4.6A).  A flat area is helpful for clearly 
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distinguishing the thickness differences for molecular height measurements.  With low force the 

sample can be characterized without modifying the surface.  To accomplish writing, the force 

applied to AFM-probe is increased (2-20 nN).  Under higher force, the tip is pushed through the 

matrix monolayer to shave away selected areas, and ink molecules from solution immediately 

assemble onto the surface following the scanning track of the AFM tip.  The same probe can 

then be used for imaging the SAM nanopatterns by returning to a low force setpoint.  Depending 

on the choice of molecules, nanografting can generate patterns of various thickness.  

Nanografting provides capabilities to fabricate thiol-terminated SAMs combined with other 

advantages such as high spatial resolution, flexibility to introduce multiple components of thiols 

on the same surface, enabling one to modify the fabricated nanostructures in situ and providing 

well-defined placement and geometries for constructing SAM patterns.69 

 

 
Figure 4.6  Steps for nanografting. [A] Characterization of the SAM using low force; [B] 
Writing step with high force applied to the AFM tip while scanning; [C] Returning to low force, 
the nanopattern can be characterized in situ. 
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*CHAPTER 5.  APPLYING AFM-BASED LITHOGRAPHY FOR NANOSCALE 
PROTEIN ASSAYS 

 
5.1 Introduction 

  Imagine the tremendous revolution in medical diagnostics if we had the capabilities to 

screen thousands of proteins in an immunosensing array, using a single drop of serum and a 

biochip the size of the head of a pin!  Scientists have begun to explore the frontier of nanoscale 

chemistry to attain the ultimate miniaturization for protein assays using atomic force 

microscopy (AFM).  Of course, we have a long way to go before we achieve such futuristic 

technology. At this point, researchers have begun to develop analytical methods for detecting 

proteins using nanoscale surface assays.  This article describes recent efforts at developing 

nanoscale protein assays with AFM-based lithography.   

  There are many practical reasons for developing protein assays at the nanoscale.  New 

information can be gained from nanoscale studies to address fundamental questions about 

protein binding and biological function. Adhesion (e.g. protein–protein, protein–nucleic acid, 

and between small molecule), elasticity and morphology (visualization of the arrangement and 

the orientation of biomolecules with molecular resolution) data can be obtained over time. 

Moreover, these data sets can provide crucial information regarding multiprotein assemblies that 

have not yet been obtained using microarrays.  Miniaturization provides rewards such as 

reduced quantities of analytes and reagents, increased density of sensor and chip elements and 

faster reaction response.  Array-based technologies in proteomics, including protein-based 

                                                 
Reproduced with permission from the American Chemical Society: Ngunjiri, J. N.; Garno, J. C., 
AFM-Based Lithography for Nanoscale Protein assays. Analytical Chemistry 2008, 80, (1). 
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biochip and biosensing devices, will significantly advance biotechnology, clinical diagnostics, 

tissue engineering and targeted drug delivery.   

  The reliability, selectivity and sensitivity of protein biosensors and biochips greatly 

depend on the affinity and viability of surface-bound biological components.  One of the 

analytical challenges with current technology for biochips and biosensors is that surface-bound 

bioassays usually are just not as sensitive as solution chemistry methods. One problem is that 

some of the proteins become denatured when bound to a surface, which makes it difficult to 

predict how much of the surface is still viable for binding. Another  problem  is that confining 

molecules to a surface may reduce the accessibility of binding sites.237   

  Nanoscale assays provide tremendous new possibilities for directly detecting and 

visualizing the binding of antibodies to immobilized protein layers in situ, analogous to time-

lapse photography.  In nanoscale protein assays, AFM can be applied as a tool for both 

fabrication and characterization.  Nanostructures written by an AFM tip provide highly 

controllable test environments for exquisite images of protein binding. AFM can be used for not 

only close-up views of structural changes when proteins bind to surfaces but also for exploring 

the surface chemistry of selected nanoscale areas by using advanced imaging modes to acquire 

information with simultaneously acquired channels of phase or frictional force images.   

5.2  Chemistry of SAMs 

  Self-assembled monolayers (SAMs) such as alkanethiols on atomically flat gold surfaces 

or alkylsilanes on glass, mica, or silica surfaces have been applied successfully for linking 

proteins to surfaces.238  The first step in designing a surface-bound bioassay is to choose the 

appropriate chemistries for attaching proteins to surfaces.  Unfortunately, when proteins bind 

randomly and non-specifically to surfaces during drying denaturation can occur.237, 239, 240  For 
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many proteins, the structure and activity can be destroyed by the drying step during 

microspotting.  To maximize the binding activity of proteins for surface assays, gentle 

chemistries are required that preserve tertiary structure of fragile biomolecules A spacer or 

linker molecule that attaches proteins to a surface can enable proteins to retain their 

functionality.241, 242 Close-packed monolayers of SAMs can be easily prepared and offer a wide 

variety of functional groups to bind proteins (Figure 5.1A).  The chemical and physical 

properties of various of ω-functionalized monolayers such as alkyls, amides, esters, alcohols and 

nitriles have been studied on flat gold surfaces.31, 243 Thus, a broad range of SAM molecular 

head groups are available for designing linker chemistries.  When proteins are immobilized on 

SAMs, the linker groups can mimic the role of a biological membrane for preserving protein 

structure.244, 245  

Figure 5.1 Structures of n-alkanethiol self-assembled monolayers. [A] Side view; [B] Surface 
of an octadecanethiol SAM imaged in ethanol by AFM. 
 
  An AFM topography image is essentially a map of surface heights.  The color scales for 

AFM topographs in this article show bright areas for tall features and dark areas for short 

features.  Few surfaces are truly flat from an atomic perspective.  To assess whether or not an 
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AFM image has high resolution, look for defects and sharp details at the edges of surface 

features.  A high resolution AFM image should disclose naturally produced defects of a real-

world surface such as pinholes, scars or missing atoms. An example image of an 

octadecanethiol SAM is shown in Figure 5.1B which exhibits surface features characteristic of 

n-alkanethiol SAMs. Although the surface appears to be bumpy and rough, in actuality the step-

like terraces are only 0.25 nm high. Notice the irregular contours of the edges of the terraces, 

details that can only be observed with a sharp AFM tip.  The small holes scattered over the 

surface are etch pits, which are produced by surface reconstruction and are a characteristic 

landmark of a high resolution image of a SAM.222 Such high-resolution topography image of a 

SAM can be routinely acquired using AFM in liquid environments. 

  The properties of SAMs enable control of the functional groups present on the surface; 

therefore, these molecules are good model systems for nanofabrication and for studies of protein 

adsorption.  Nanofabricated SAM surfaces can be designed to avoid random protein adsorption, 

yet enable highly specific interactions with the proteins to be assayed.  This design can be 

accomplished by surrounding nanopatterns of adhesive SAMs with a matrix which resists 

protein adsorption, such as ethylene-glycol or hydroxyl-terminated alkanethiols.246-248  Few 

surfaces resist the adsorption of proteins, and it remains a major research focus to understand 

the mechanisms that contribute to protein resistance or adhesion.249, 250  

5.3  AFM-Based Lithography with SAMs 

 For AFM imaging, a microfabricated sharp probe is rastered across the sample to profile 

the surface topography.251-253 A laser is focused on the back of the cantilever and deflected to a 

four-segment photosensitive detector. As the surface is scanned in contact mode, the tip moves 

up or down according to surface roughness.  The changes in position of the reflected laser spot 
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incident on the four segments provide a way to continuously monitor the deflection of the tip.  

As the position of the focused laser spot shifts up or down, images of topography are generated; 

the left and right movements of the laser spot correspond to frictional forces which cause 

torsional twisting of the cantilever.  An electronic feedback loop maintains constant deflection 

of the tip, to control of the force applied during scans. Height and friction data are collected 

line-by-line to generate maps or images of the surface. 

Concurrent with the invention of AFM and scanning tunneling microscopy (STM), 

researchers noticed that the surfaces under investigation were accidentally altered under certain 

conditions. Essentially, scanning probe lithography (SPL) was brought about by the 

development of well-controlled “damage” to surfaces.  SPL methods selectively and 

intentionally change the surface chemistry of small areas under the tip of an AFM or STM 

instrument.  Bias-induced nanolithography,254, 255 dip-pen nanolithography (DPN),256 catalytic 

probe lithography154 and nanografting56, 257 are types of SPL with different writing mechanisms.  

The height and surface chemistry of nanopatterns can be tailored by the selection of molecules 

to be patterned, with designated chain lengths and surface groups.  The mechanism for writing 

with bias-induced nanolithography is thought to involve surface electrochemistry.  A conductive 

AFM or STM tip is required and writing is accomplished by applying pulses of elevated bias 

voltage (between 2 – 20 V) between the tip and surface (Figure 5.2A, left).  The substrates must 

be conductive or semiconductive, and are coated with an insulating SAM layer (Figure 5.2A, 

middle).  The surface in contact with the tip becomes oxidized under elevated bias, which then 

provides a reactive site for attaching new molecules to nanopatterns.  An example of bias-

induced lithography is shown in a frictional force image (Figure 5.2A, right) that reveals rows of 

90 nm dot patterns, which were written within a silane SAM on a silicon surface.254 



 98

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2 Mechanisms for scanning probe lithography methods with SAMs. [A] Bias-induced 
nanolithography;254 [B] Catalytic probe lithography;154  [C]  Dip-Pen Nanolithography 
(DPN);256  [D] Force-induced nanolithography (nanografting).  Images were reproduced with 
permission from references cited. 
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  The nanopatterns were generated by applying 17 V pulses of 2 µs duration at 270 nm 

intervals.  The dots are composed of carboxylic acid groups produced by oxidizing the methyl 

head groups of the silane SAM.  Often, nanopatterns written with bias-induced lithography do 

not produce height changes so that surface modifications cannot be detected with topographic 

imaging. However, the differences are easily distinguishable in frictional force images which 

sensitively detect nanoscale changes in surface chemistry. 

  A tip is used as a “pen” and is coated with a molecular “ink” for writing on clean 

substrates in air (Figure 5.2B, left;).256, 258 The writing mechanism of DPN involves transfer of 

molecules to the surface through a nanoscopic meniscus that forms between the tip of the atomic 

force microscope and the substrate.  A water meniscus forms when an AFM tip is placed on the 

surface for a certain amount of time under humid conditions.  The resolution of written patterns 

depends on the amount of time the tip is held in contact with the surface and the size of the 

AFM tip.256  After writing nanopatterns using DPN, an uncoated AFM tip can be used to 

characterize the structures that were written.   

  The time-dependency for writing with DPN is demonstrated by frictional force images 

of patterns written with an atomic force microscope tip coated with n-alkanethiol molecules 

(Figure 5.2B).  As the duration of contact between the tip and surface is increased, the circular 

patterns become larger.  The DPN patterns also demonstrate that there are differences in 

diffusion properties for different SAM molecules. Three dark spots of ODT in the center image 

were written with tip-contact durations of 2, 4, and 16 minutes (min) from left to right, 

respectively (Figure 5.2B middle).  The white spots in the image were written with 16-

mercaptohexadecanoic acid with tip-surface contact of 10, 20 and 40 s, respectively (Figure 
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5.2B, right).259  Protein patterns have been written using DPN by directly writing proteins as a 

molecular ink260-262 or by adsorbing proteins onto SAM patterns written by DPN.263, 264  

  A newly emerging technique known as catalytic-probe lithography offers exciting 

possibilities for SPL.  Similar to DPN, a coated atomic force microscopy tip is coated to write 

patterns; however, the tip coating is a catalytic agent that reacts with the head groups on a SAM 

(Figure 5.2C, left).  As the tip touches areas of the surface, the molecular coating of the tip 

induces a catalytic reaction to write nanopatterns by chemically changing the terminal groups of 

the SAM (Figure 5.2C, middle and right).  154 An atomic force microscope tip coated with an 

acidic SAM induced hydrolysis of silyl ether head group of the example nanopattern written 

with catalytic-probe lithography in the frictional force image in Figure 5.2C.  

Nanografting uses force to inscribe patterns within a matrix SAM while the tip is 

immersed in a solution containing the molecules for writing (Figure 5.2D, left).  Instruments for 

AFM have tremendous capabilities for controlling the force applied to the tip, ranging from 

piconewtons to nanonewtons.  When low forces are used for AFM imaging (<1 nN) the SAM 

surfaces are not disturbed and can be characterized with high resolution.  However, when high 

forces are applied to the tip, areas of the matrix SAM are shaved from the surface.  Fresh 

molecules from solution immediately assemble onto the shaved areas, following the track of the 

scanning tip.  By returning to low force, the same tip can be used to characterize the 

nanostructures.   

A topographic AFM image of a single square nanopattern (100 x 100 nm2) written by 

nanografting is displayed in (Figure 5.2D, middle).  To fabricate the nanopattern, the tip was 

swept 50 times, across the pattern at a force of 3 nN, advancing 2 nm between each sweep.  It 

took only 30 s to write the nanopattern.  The brighter colors surrounding the nanostructure 
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correspond to tall regions of the sample that are covered with a 16-mercaptohexadecanoic acid 

(MHA) SAM whereas the dark color indicates shallow regions which are covered with 

dodecanethiol.  A frictional force image acquired simultaneously with topography displays 

differences in surface chemistry for the nanopattern as shown in the bottom right panel of Figure 

5.2D, right.  The color scales for friction images depend on the surface frictional forces 

interacting with the AFM tip and are unrelated to molecular heights.  In this example, the 

carboxylate groups of the nanopattern exhibits colors that are brighter than the surrounding 

methyl groups of the dodecanethiol matrix.  

 A useful analogy is that the tip is like a “pen” for writing on surfaces.  Molecules of 

SAMs are the “ink” and various surfaces are “paper”. A comparison for the different 

mechanism for writing nanopatterns of SAMs is presented in Figure 5.  When choosing a 

suitable SPL method, researchers need to consider what types of surface functionalities are 

desired, the imaging medium, and the nature of the surfaces under investigation (Table 5.1).  

 The capabilities of SPL enable researcher to advance beyond imaging for nanoscale 

experiments; spatial parameters can be engineered with nanometer precision for placing 

molecules of well-defined composition.  Modern scanning probe microscope instruments 

provide programs for directing the scanner movement to write complicated designs, with 

excellent control for variables such as the force, speed, bias voltage, residence time and 

direction of movement of an AFM tip.  Automated SPL provides superb control for rapidly and 

reproducibly writing arrays of nanopatterns of SAMs.  Parameters such as the size, 

arrangement, geometry, spacing, the packing density and composition of patterned test 

elements of SAMs can be systematically varied for nanoscale protein assays.  Patterns of 
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various sizes, arrangements and geometries require only the creativity and ingenuity of the 

experimentalist.    

 
Table 5.1 Comparison of SPL methods used for writing nanopatterns of SAMs. 

 

  Example arrays of nanopatterns written with automated nanografting are shown in 

Figure 5.3; 11-MUA was used as the ink molecules and ODT as the matrix SAM.  The array 

was written within a 1 x 1 µm2 area, and each design consists of four rings that are inscribed 

symmetrically around a common focal point. The in situ AFM topography images were 

acquired in ethanol immediately after writing the nanopatterns without changing tips.  High-

resolution AFM images display etch pits and features of the underlying gold terraces, even after 

writing nanopatterns; this shows that the tip was not been broken or damaged during 

nanografting.  The individual rings are 100 nm in diameter and were produced by outlining a 

circle pattern three times with the tip. In Figure 5.3A, the dark contrast of the ring indicates that 

the molecules of the patterns are shallower than the surrounding ODT. The patterns were written 

 Bias-induced 
Nanolithography 

Dip-Pen 
Nanolithography 

Catalytic Probe 
Nanolithography 

Nanografting 

Pen conductive AFM 
tip (metal-coated) 

coated AFM tip Catalyst coated 
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at 100 nm spacing in the x and y directions. The close-up image in Figure 5.3B, reveals the 

intricate details of the geometry and fidelity for reproducibly writing a complicated pattern of 

rings.   

Figure 5.3 Nanopatterns of SAMs written with automated nanografting. [A] AFM topography 
image of four pretzel designs written with 11-MUA ink into a matrix octadecanethiol SAM; [B] 
Close-up view of a single pattern; [C] friction image for B; [D] cursor profile for the white line 
in B. [E] An array of sixty four rings of 16-MHA written within a matrix of 11-MUD; [F] zoom-
in view of nine patterns; [G] corresponding friction image for F; [H] cursor plot for the line in F; 
[I] Proposed model for pattern heights in A and B. [J] Model for the patterns in  E and F. 
 

Bright colors in the frictional force image of Figure 5.3C, are the carboxylate-

terminated; the dark matrix indicates the methyl-terminated ODT. The height difference 

between the ODT matrix and the 11-MUA rings is 0.7 ± 0.1 nm, as measured in the cursor 

profiles in Figure 5.3D.  This agrees closely with the theoretical height difference of 0.7 nm 
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shown in the model (Figure 5.3I).  The resolution of nanografting determined from the line 

width of the rings is ~10 nm, according to the cursor measurements.  

Sixty-four ring patterns of MHA were written in only 3 min within a matrix SAM of 11-

mercaptoundecanol (11-MUD) using automated nanografting (Figure 5.3E). The bright rings in 

the topography images indicate that molecules of the patterns are taller than the surrounding 

matrix areas. The nanostructures are nearly perfectly aligned at such small dimensions, even 

when using a scanner with open-loop feedback (Figure 5.3F); a close up image of 9 

nanopatterns shows reproducibility and precise alignment of the 50 nm diameter rings. The 

cursor profiles display a height difference of 0.6 ± 0.1 nm between the 11-MUD matrix SAM 

and the 16-MHA rings; this corresponds well with the expected theoretical height difference of 

0.6 nm (Figure 5.3H).  In the friction image (Figure 5.3G), the contrast changes clearly 

distinguish the differences in terminal groups; the carboxylate-terminated rings are bright, 

whereas the matrix areas of the hydroxyl-terminated 11-MUD SAM are dark.  

5.4  Attaching Proteins for Nanoscale Assays  

  Nanografted patterns of SAMs can be used to anchor proteins for in situ assays.  

Typically, the dimensions of an atomic force microscope tip are tens of nanometers.  However, 

depending on the applied force and the geometry of asperities on the tip apex, the actual 

physical area of contact between the tip and surface may be much smaller; the smallest feature 

yet produced by nanografting is a 2 x 4 nm2 dot of ~ 32 thiol molecules.265 Because protein 

dimensions are on the order of tens to hundreds of nanometers, the nanopatterns produced by 

SPL are an ideal size for defining the placement of proteins on surfaces.  The terminal moieties 

of nanopatterns mediate the type of binding for proteins, such as covalent,266, 267 electrostatic,268 

specific interactions254 or molecular recognition.264 Lithography parameters can be used to 
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precisely control the arrangement and density of SAM binding sites at the nanometer level, in 

which areas of protein-adhesive terminal groups are written within a resistive matrix SAM.   

  Several of the initial nanoscale studies using nanografted SAM patterns for protein 

immobilization were conducted in 1999 by Liu and co-workers.269  Since then, a growing 

number of investigators have taken advantage of the flexibility of SPL with SAMs and 

developed new techniques to probe the chemistry of biomolecular interactions.162, 270 In the 

initial investigations of protein immobilization on nanografted SAMs, Wadu-Mesthrige and Liu 

used different functional groups of nanopatterned alkanethiol SAMs to mediate the electrostatic 

or covalent binding of immunoglobulin G (IgG) and lysozyme.265   

  The reactivity and stability of protein nanopatterns was also investigated, demonstrating 

the retention of specific binding activity of the immobilized proteins for antibodies.265, 268  

Protein patterns remained attached to nanopatterns, even after rinsing with buffer and surfactant 

solutions, and were stable for at least 40 hours (h) of AFM imaging.  The smallest pattern of 

proteins produced by nanografting is a 10 x 150 nm2 line containing three proteins.268  A key 

advantage of the nanografting protocol is the ability to conduct experiments in situ, and 

visualize the successive changes in surface topography after the steps of nanopatterning SAMs, 

rinsing, and introducing buffers or protein solutions.  The protein patterns remain immersed in 

an aqueous buffer throughout the experiment.   

  Microscale assays with biochips required that either the protein or antibody be 

immobilized on a surface.271, 272 One such strategy is the sandwich assay for protein detection.  

A target protein or antibody is attached to a surface, and then, a solution containing tagged 

molecules is introduced.  Tags include nanoparticles, fluorescent markers, quantum dots, 

radiolabels, and other nanomaterials.  After binding to the surface, antibodies are sandwiched 
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between the marker molecules and the surface-bound proteins.  The proteins are visualized by 

optical or fluorescence microscopy using labeled detection antibodies, or by chemically labeling 

proteins before applying them to arrays.   

  A good starting point for developing nanoscale protein assays is to investigate well-

known model protein systems and surface immobilization chemistries.  This is considered a 

“top-down,” approach for nanotechnology, because the same conditions used for macroscopic 

assays are diluted to the nanoscopic regime.  A practical protein for nanoscale assays is 

staphylococcal protein A (SpA), which has a molecular weight of 42,000 and an estimated 

Stokes radius of 4.0 nm.273 Many immunological methods have been developed and refined with 

the use of SpA as a reagent, including immunoprecipitation techniques and sandwich 

immunoassays.  The amino acid sequence of SpA is composed of five homologous 

immunoglobulin binding domains.  Purified SpA is known to bind at least two IgG molecules, 

and the affinity constant is ~108 L /mol for human or rabbit IgG.274 Protein A has a highly 

stable 3D structure over a wide range of temperature and pH conditions.  We have chosen to 

investigate surface reactions with SpA because it provides a generic foundation for binding a 

broad range of IgG interactions. 

 Proteins can be covalently linked to nanopatterns by using 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxy-succinimide (NHS) 

activation of SAM carboxylic acid head groups.275 The activation of 11-MUA surface 

carboxylic acid is achieved by immersing the substrate in an aqueous NHS/EDC mixture for 30 

min.  Initially, the EDC converts the carboxylic acid groups into a reactive O-acylisourea 

intermediate that is unstable in aqueous solution, and does not have a sufficient lifetime for a 

two-step conjugation procedure.   
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Usually, EDC and NHS are used together in a 1:1 ratio to generate an activated complex 

with a more stable reactive intermediate (N-succinimidyl ester) to give a greater reaction yield. 

Cross-linking occurs during the 30 min incubation at room temperature.  The resulting NHS-

ester can interact via a nucleophilic substitution reaction with accessible α-amine groups present 

on the N-termini of proteins or the ε-amines on lysine residues.  The proteins are covalently 

attached to the nanopatterns by forming a Schiff’s base linkage to make complexes with the 11-

MUA carboxylic acid groups (Scheme 5.1). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 5.1 Reaction sequence of the activation of 11-MUA carboxylate groups for 
immobilization of SpA.  

 
For an in situ protein patterning experiment, 16 square nanopatterns (100 x 100 nm2) of 

11-MUA were written within ODT arranged in a 4 x 4 array (Figure 5.4A).  The nanopatterns 

are spaced only 50 nm apart within each row, and the rows are spaced vertically at 100 nm 
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intervals.  The geometry of each of the nanopattern is neatly square and regular at nanoscale 

dimensions, as evident in the friction image (Figure 5.4B).  There are a few additional marks 

and line patterns caused by the tip. These small patterns are written by the slight twist of the tip 

as higher force is applied during writing.  To achieve symmetrical square nanopatterns, the tip 

orientation must be well-aligned with the surface at the nanoscale, and the scanner must be 

precisely calibrated.  If the tip is slightly tilted, then patterns will be written as parallelograms or 

rectangles rather than as squares.   

Piezoceramic tube scanners are subject to the effects of drift, hysteresis and non-

linearity.276 These imperfections influence the alignment and spacing for arrays of nanopatterns 

written with SPL.  Also, the tip shape can affect the outcome when writing nanopatterns.   

 
Figure 5.4 Nanoscale protein assay for the adsorption staphylococcal protein A on SAM 
nanopatterns.  [A] An  array of 11-MUA squares written in an ODT matrix; [B] corresponding 
friction image; [C] cursor plot along the line in A. [D] Same area after adsorption of SpA; [E] 
friction image for D; [F] Cursor measurement for height changes in D.  
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For the AFM images in Figure 5.4, the end of the tip has multiple asperities and a double tip 

artifact is observed. At the top left corner of each pattern, tiny dot patterns (15-20 nm) are 

produced by the second tip scratching the surface under high force.  These smaller nanopatterns 

are clearly distinguishable in the frictional force image. 

The difference in height between 11-MUA nanopatterns and ODT measures 0.7 ± 0.2 

nm shown by the cursor profile for the white line (Figure 5.4C).  After nanografting, a 1:1 

aqueous solution of 0.2 M EDC and 0.05 M NHS was introduced into the atomic force 

microscope cell to react for 30 min.  The cell was then rinsed twice with phosphate buffered 

saline, and a solution of 0.05 mg/mL SpA solution was introduced and incubated for 30 min. 

Finally, the cell was rinsed with water and ethanol to completely remove any unreacted protein.  

The tip used for this experiment was precoated with with octadecyltrichlorosilane to minimize 

tip-sample interactions and improve resolution.160   

After the steps of chemical activation and protein immobilization, the same array of 

nanostructures were imaged in ethanol with AFM (Figure 5.4D).  All of the steps of 

nanografting, EDC/NHS activation of carboxylate groups and protein adsorption were 

accomplished in situ with the same AFM tip, and the entire experiment was completed in ~3 h.  

The SpA molecules bind selectively onto the surfaces of 11-MUA nanopatterns, forming a 

single layer.  After protein adsorption, the changes in surface morphology and chemistry are 

visible in the Figures 5.4D, and 5.4F, respectively.  The contrast of the patterns in the frictional 

force image has changed, because soft and sticky proteins have friction and adhesive properties 

that are markedly different than the surfaces of 11-MUA patterns.  The changes in height after 

protein adsorption can be measured with cursor profiles (Figure 5.4F).  An average change in 

height of 4.0 ± 0.5 nm was measured, which corresponds to a “side-on” (3.5 nm thick) 
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orientation of SpA on the surface.  Interestingly, the smaller nanopatterns at the left corners of 

the array elements do not exhibit SpA adsorption.  Experiments in progress indicate that longer 

immersion intervals are needed for protein adsorption to take place on such small nanopatterns. 

  During successive in situ steps of an AFM-based nanoscale assay, changes in the height 

and morphology of protein nanopatterns can be monitored.  As molecules bind to nanopatterned 

areas with well-defined chemistries, sequential real time AFM images reveal reaction details at 

a molecular level, providing a direct visualization of biochemical reactions.  An additional 

advantage of an in situ AFM approach for protein assays is that environments can be well 

controlled by using aqueous buffers and temperature stages.  Typically, only single layers of 

proteins attach to nanopatterns.  High-resolution AFM images can even resolve the different 

orientations of proteins on nanopatterns by using height measurements.  For example, height 

changes were used to determine whether the immobilization chemistry resulted in a side-on or 

end-on orientation for IgG molecules.268   After sweeping the surface with the tip and imaging 

the protein patterns for 4 h, the proteins did not detach and were not swept away by the scanning 

motion of the tip. This robust attachment enables additional experimental steps, such as 

introducing peptides, antibodies, DNA or proteins. 

Of course, there are a few experimental limitations. The immobilization chemistries that 

work best for nanoscale experiments should proceed under aqueous conditions to preserve 

protein activity.  Also, investigations should be completed by using very dilute protein solutions 

to regulate the reaction rate so it transpires over time intervals of 20-30 min.  One concern is 

that the motion and force of the scanning tip can sweep away adsorbates or perturb the reaction.  

To address this issue, the immobilization chemistry must be sufficiently robust to enable 

continuous imaging and scanning by the tip.  Imaging in liquids facilitates the use of small 
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imaging forces, (0.05-0.2 N/m) because the adhesive interactions between the tip and sample are 

minimized.277, 278 An intrinsic advantage of using AFM instruments is that forces can be 

controlled precisely on the order of piconewtons to nanonewtons. 

  In another example eight patterns of 11-MUA were written within an ODT-matrix SAM 

(Figure 5.5A).  The topographic image does not exhibit sharp contrast, because the dark circular 

pits (defects in the underlying gold film) limit the range of contrast that can be digitally 

displayed.  The simultaneously acquired frictional force image (Figure 5.5B) for the same area 

more clearly displays the geometries of the two rows of 100 × 90 nm2 rectangular nanopatterns, 

which are horizontally spaced at 75-, 75- and 50- nm intervals from left to right.  In the vertical 

direction, the rows are precisely spaced 65 nm apart.  A few stray marks written on the left sides 

and above the top row are evident, caused by the tip during approach and retract cycles.   

 After the patterns were incubated in EDC/NHS solution for 30 min, SpA was introduced 

within the liquid cell, then the cell was rinsed several times with deionized water.    After SpA 

adsorption, the heights of the patterns changed (Figure 5.5C).    

Figure 5.5  Successive AFM views of the steps of a nanoscale protein assay. [A] Topography 
image of 11-MUA nanopatterns nanografted within ODT; [B] friction image for A; [C] after 
SpA adsorption; [D] after binding IgG. [E] Combined cursor profiles for A, red line at the 
bottom; B, green line at the center; C, topmost black line. 
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The nanopatterns have brighter contrast than the matrix SAM, which indicates tall 

surface features.  The proteins have a strong interaction with the tip operated in contact mode, 

and this interaction produces line spikes in the horizontal direction along the path of the 

scanning tip.  Next, rabbit IgG was introduced to the liquid cell, which enables viewing the 

surface changes.  After 30 min of incubation with IgG, the patterns became slightly taller and 

wider (Figure 5.5D).  The tip-surface adhesion also changed, because the patterns no longer 

display line spikes which are cause by stick-slip interactions. A more quantitative nanoscale 

measurement is presented in the combined cursor profile for lines drawn across the two top-

right nanopatterns in Figure 5.5A, 5.5C, and 5.5D.  Successive changes in the nanopatterns 

heights after each step of the protein binding assay can be measured with angstrom precision 

during the in situ experiment.  The height increased by 3.0 ± 0.4 nm after SpA adsorption and 

by 3.6 ± 0.4 nm after binding IgG; this is consistent with the expected protein dimensions for a 

single layer of proteins.        

5.5  Future Directions  

Nanoscale studies with proteins facilitated by SPL will assist in the development of 

approaches for immobilization and bioconjugation chemistries, which are key to manufacturing 

biochips and biosensing surfaces.  Current technology can produce microscale topologies for 

surfaces, however, to realize further miniaturization at the nanoscale will require revolutionary 

new methods, such as SPL.  The serial nature of SPL may be problematic for applications that 

require high throughput.  Prototype arrays of 1024177 and 55,000178 AFM probes have been 

developed for high throughput nanopatterning. At this time, nanoscale studies with AFM enable 

new approaches to refine critical parameters used to link and organize proteins on surfaces of 

biochips and biosensors.  With in situ AFM characterizations, the orientation, reactivity and 
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stability of protein molecules adsorbed on nanostructures of SAM can be monitored with 

successive time-lapse images using near-physiological conditions.  These new investigations 

provide groundwork for advancing biotechnology towards the nanoscale, and furnish molecular-

level information through the visualization of biomolecular reactions on surfaces.   
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*CHAPTER 6.  CONTROLLING THE SURFACE COVERAGE AND ARRANGEMENT 
OF PROTEINS USING PARTICLE LITHOGRAPHY 

 
6.1  Introduction  

Patterning proteins is important for emerging nanoscale biological and medical 

applications.279, 280  There are few tools for writing or inscribing structures at the nanoscale, and 

this problem has been approached using electron or ion beam lithography techniques, reactive 

ion etching systems, high-powered lasers and clean rooms.  Such methods are costly, require 

special skills, equipment or facilities and are not readily accessible to an average laboratory.  

There is a need for economical methods which can reproducibly create organized arrays of 

nanomaterials with high throughput and low-cost.  Particle lithography provides an approach for 

rapidly preparing millions of exquisitely uniform nanometer-sized structures on flat surfaces 

using conventional benchtop chemistry - mixing, centrifuging, evaporation and drying.  Particle 

lithography, which is often referred to as nanosphere lithography uses submicron-sized spherical 

particles as a mask or template to produce nanostructures on surfaces. This technique has been 

successfully applied to produce arrays of polymers,281-284 proteins,285-288 metals,289-297 vertical 

nanorods/pillars,298, 299 carbon nanotubes,300 and self-assembled monolayers.301-303  Robust, 

regular arrays of nanostructures can be reproducibly generated with well-defined dimensions, 

thickness and arrangement, even for fragile biological systems such as proteins.   

Protein patterning is a critical technology for the integration of biomolecules into 

miniature biological-electronic devices.  Direct applications of protein patterning are found in 

biosensing, medical implants, control of cell adhesion and growth, and for fundamental studies 

of cell biology.304, 305 Surface-bound arrays of protein patterns have been applied for antibody 
                                                 
Ngunjiri, J. N.; Daniels, S. L.; Li, J.-R.; Serem, W. K.; Garno, J. C., Controlling the surface 
coverage and arrangement of proteins using particle lithography. Nanomedicine 2008. 
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screening,306, 307 testing protein activities,308 and for analysis of antibody-antigen interactions.309 

Proteins such as bovine serum albumin (BSA), immunoglobulin G (IgG) and staphylococcus 

protein A have been patterned with particle lithography.287, 288 

Understanding the interactions of protein binding to substrates or antibodies provides 

essential groundwork towards developing new technologies for biosensing.  Immobilized 

biomolecules on surfaces serve as the receptor and in some cases as the signal transducer in 

biosensors and biochips.  Surface-bound arrays of protein nanostructures provide a test platform 

that is readily probed using AFM.  Using AFM for analysis enables label-free detection of 

pathogens and provides a means to monitor molecular interactions in real-time under 

physiological solutions.310, 311 Detection for AFM is based on high-resolution imaging, as well 

as force and height measurements, and therefore does not require signal amplification which can 

introduce error.  For protein studies, the drying step can cause denaturation of a portion of the 

surface-bound proteins.  Also, proteins tend to aggregate and form multilayers when dried.  The 

random, irregular distribution and surface coverage of proteins and problems with denaturation 

are detrimental for quantitation with surface-based assays. Therefore, the placement of 

biological ligands in precisely defined locations can increase the density of sensor elements and 

lead to improved detection limits and molecular-level control of the surface reactivity.109, 312 

Miniaturization of protein arrays provides high array densities, which dramatically reduce the 

quantities of analytes and sample volumes required for analysis.   

6.2  Materials and Methods 

6.2.1  Materials and Reagents  

Ferritin and apoferritin were obtained from MP Biomedical Inc. (Solon, OH).  Bovine 

serum albumin (BSA) and rabbit immunoglobulin G (IgG) were purchased from Sigma 
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Biochemicals (St. Louis, MO, USA) and used without further purification. Monodisperse latex 

and silica spheres were acquired from Duke Scientific (Palo Alto, CA).  Hydrogen peroxide 

(30%), sulfuric acid (95.5%) were acquired from Sigma-Aldrich (Saint Louis, MO).  

6.2.2  Preparation of Substrates   

Three different substrates were used for AFM investigations.  Ruby muscovite mica was 

acquired from S&J Trading Inc. (Glen Oaks, NY).  Pieces of mica (1×1 cm2) were cut and 

cleaved immediately before depositing sample solutions.  Gold thin films (150 nm) evaporated 

on mica substrates were obtained from Agilent Technologies, Inc. (Chandler, AZ).  A 

previously reported procedure for preparing ultraflat gold films on glass slides was applied to 

prepare template-stripped surfaces.313  Round glass cover slides, diameter 12 mm were obtained 

from Ted Pella Inc. (Redding, CA).  Glass slides were cleaned for 30 minutes by immersion in 

piranha solution, a 3:1 mixture of sulfuric acid and 30% hydrogen peroxide. (Caution: Piranha 

solution is highly exothermic and corrosive.)  Next the slides were rinsed with deionized water 

and dried in air.  For particle lithography, a volume of protein/mesosphere solution was 

deposited and dried on the cleaned slides. 

6.2.3  Atomic Force Microscopy   

Images were acquired using an Agilent 5500 AFM/SPM system equipped with Picoscan 

v5.3.3 software.  An ambient environment was used for AC (tapping) mode imaging.  

Rectangular silicon nitride cantilevers (NSC 14/Al, resonance frequency 160 kHz, spring 

constant 5 N/m) from MikroMasch (Portland, OR) and silicon AFM probes (Tap 150AL, 

resonance frequency 150 kHz, spring constant 5 N/m) with an aluminum reflex coating from 

Budget Sensors (Redding, CA) were used for AFM imaging.   
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6.3  Particle Lithography with Proteins  

Arrays of protein patterns were prepared by mixing aqueous solutions of proteins with 

monodisperse spheres of silica or latex at various ratios.  A 10 µL drop of the mixture was 

deposited on a flat surface and dried at room temperature (Figure 6.1A).  Surface coverage 

could be tuned to form at least one layer of spheres and varied between 1 and 4% wt/volume 

depending on the diameter of the particles.   

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.1  Steps of particle lithography with proteins. 

 

The monodisperse spheres form a structural template which directs the placement of 

proteins on surfaces.  During the drying step, mesospheres spontaneously assemble into a close-

packed crystalline layer with the proteins surrounding the base of the spheres.  The final step is 

to remove the particles by rinsing the sample surface with deionized water (Figure 6.1B).  The 

larger spheres are easily displaced by rinsing the sample; however the proteins remain attached 

to the surface to form symmetric circular patterns surrounding the template spheres.  
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6.4  Results and Discussion  

For particle lithography, the natural self-assembly of monodisperse mesospheres furnish 

a structural template to guide and direct the placement of proteins on surfaces.  Because the 

spheres have the same diameter, a close-packed hexagonal arrangement of latex or silica 

particles is produced when aqueous solutions are dried on atomically flat surfaces (Figure 6.2).  

The tightly packed mesospheres do not fully cover the surface; areas between spheres provide a 

conduit for aqueous protein solutions to gravitate to the surface.  The model proteins chosen for 

our investigations are highly soluble in water.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2 Example structural template formed by particle lithography with 300 nm latex 
mesospheres.  
 

The proteins are carried with the water meniscus during ambient drying, to form regular, 

evenly distributed arrays of protein nanostructures at the base of the template particles.  The 

mesospheres provide a structural template which masks spherical areas of the surface.  After the 

templates are rinsed away, the protein nanostructures can be applied for surface investigations 

and assays.  Ferritin and apoferritin,314, 315 BSA,316 and IgG317 were chosen as model proteins for 

AFM investigations with particle lithography because of their well studied physical and 
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chemical properties.  The direction for future investigations with the selected model proteins 

will be to image surface changes when binding secondary biomolecules to nanostructure arrays 

for fundamental analysis of protein interactions and events mediated by molecular recognition. 

6.4.1  Films of Ferritin Formed by Direct Deposition at Different Concentrations 

Ferritin forms the primary complex for the uptake and storage of iron in mammals.  The 

shape of ferritin is nearly spherical with a diameter of 10-12 nm.318, 319  The protein structure 

consists of 24 subunits forming a shell containing up to 4500 iron(III) ions.314 Ferritin is a 

promising component for engineering diverse nanomaterials due to its catalytic,315, 320-322 

magnetic,323-325 and electrical 326, 327 properties.  The protein shell or cage of ferritin has been 

used in synthetic reactions with various metal ions, to form inorganic nanoparticles of materials 

such as Fe3O4, Co3O4, Mn3O4, CoPt, Pd, Ag, CdS and CdSe.328 Monitoring levels of ferritin is 

required for diagnosis and treatment of anemia and complications which affect iron deficiency 

or iron metabolism.  For AFM and surface investigations a problem is presented for controlling 

the distribution and surface coverage for studies of biomolecular reactions on various substrates.  

Methods of sample preparation which enable control of surface coverage are useful for a range 

of bioanalytical applications.  The process of drying, surface forces, and intermolecular 

attractive interactions tend to pull proteins together into tightly packed aggregates.  

An example is presented in Figure 6.3 for solutions of ferritin dried on mica under 

ambient conditions.  Nearly monolayer coverage (84%) is achieved in Figure 6.3A, disclosing 

tightly-packed assemblies of ferritin spheres.  The sample was prepared by drying a 10 µL drop 

of an aqueous solution of ferritin (0.5 mg/L) on a 1×1 cm2 piece of freshly cleaved mica.  The 

dark areas are uncovered areas of the substrate.  For the examples in Figure 6.3, the AFM tip is 

unable to penetrate between proteins that are packed closely together. Thus, imaging and 
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measurements are limited to interrogating the exposed upper surface of the clusters. By diluting 

samples (0.2 mg/mL) lower surface coverage (36%) is achieved; however the proteins still tend  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 6.3  Aggregated domains of ferritin formed naturally on mica(0001). [A] High surface 
coverage produced with 0.5 mg/ml; [B] Lower coverage (0.2 mg/ml); [C] Combined line 
profiles for A and B. 
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to cluster together (Figure 6.3B).  With an incomplete surface layer, there are only a few 

individual protein spheres visible between the larger domains of ferritin aggregates.   A 

combined plot of the height of the protein layer is displayed for Figures 6.3A and 6.3B, with red 

and blue line profiles, respectively (Figure 6.3C).  For both samples, the height measured 11 ± 2 

nm, in close agreement with the known dimensions of ferritin (12 nm) obtained from x-ray 

crystallography.329 

Aggregation is not simply a problem for AFM surface investigations.  Scaling up from 

the nanoscale to microarrays, the self-aggregation of protein layers affects the sensitivity and 

reliability of bioassays and biosensor surfaces.  The sensing elements of biochips and biosensors 

are composed of an adsorbed layer of biomolecules or proteins for selective reaction with 

targeted analytes.  For surface assays, detection is mediated by molecular recognition.  Thus, if 

the target sites of immobilized proteins are inaccessible or masked by neighboring proteins, then 

the necessary binding reactions cannot take place.  Inherently, surface bound assays are often 

less sensitive than solution-based assays due to the effects of crowding and self aggregation.  

6.4.2  Nanopatterns of Ferritin Produced on Mica, Gold and Glass Substrates 

Patterns of ferritin molecules can be formed on various surfaces using particle 

lithography.  The natural self-assembly of mesospheres provide a structural template to tune the 

surface coverage of proteins.  Ferritin molecules can be organized into arrays of ring structures, 

as demonstrated for surfaces of mica, template-stripped gold and glass (Figure 6.4).  

Monodisperse spheres of colloidal silica (500 nm) were used as structural templates for the 

examples presented in Figure 6.4.  For AFM topographs, the shapes of individual ferritin 

adsorbates can be resolved with better resolution than the previous example of Figure 6.3, 

because at lower surface coverage the tip can probe between molecules to more accurately 
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profile the shape of the proteins.  Topographic images are a convolution of the tip geometry and 

the shape of the sample.  Lateral dimensions often are broader than the expected geometry for 

AFM topographs; however height measurements furnish reliable information to measure the 

diameters of protein particles.  

Successive zoom-in views of rings of ferritin on mica are viewed in Figures 6.4A-6.4C.  

Mica is commonly used for preparing biological samples with AFM, because of the hydrophilic 

nature of the surface.330 After mica is cleaved, clean and atomically flat surfaces are produced, 

with roughness less than 0.1 nm.  The flatness and hydrophilicity of the substrates provide an 

ideal platform for particle lithography.  The shapes and interpattern spacing are uniform and 

symmetric.  Since there are few defects on surfaces of mica, throughout broad areas of the 

surface the AFM images reveal long-range order and periodicity.  A few individual proteins are 

scattered in areas between the ring patterns, however no proteins are detected inside the rings.  

The rings encircle bare areas of the substrate which were uncovered when the silica 

mesospheres were rinsed away.  The displacement of template particles is complete, because the 

spheres are easily removed by the rinsing step.  The surface coverage of ferritin is 

approximately 17 % for the sample prepared on mica.  Each sample in Figure 6.4 was prepared 

at a ratio of 700 ferritin per silica sphere.  Approximately 6400 ferritin proteins would fully 

encapsulate a silica sphere; therefore the ratio corresponds to a fraction of a monolayer shell for 

producing ring nanostructures.  A close-up view (Figure 6.4B) reveals the hexagonal 

arrangement of the rings.  A further zoom-in view of a single pattern reveals the morphology 

and arrangement of individual ferritin particles that form the ring (Figure 6.4C).  The height of 

the rings measure 12 ± 1 nm, in close agreement with the expected diameter of ferritin.  The 

outer diameters of the rings measure 350 ± 20 nm (Figure 6.4D).  The center-to-center spacing 
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between rings measure 550 ± 30 nm, which corresponds well to the diameter for the template 

silica spheres. 

Conductive films of gold provide an electrode for electrochemistry-based measurements 

for biosensors and voltammetry studies.  Patterns of ferritin produced on surfaces of template-

stripped gold are shown with successive zoom views in Figures 6.4E, 6.4F and 6.4G.  Within 

the 4 x 4 µm2 area of Figure 6.4E there are 21 rings, in comparison to a density of 40 rings 

formed within the same size area of mica in Figure 6.4.  Approximately 12% of the surface is 

covered with ferritin for the gold substrate.  At the nanoscale, the surface of gold is rougher than 

mica, the roughness of the template-stripped film is approximately 0.6 nm.  Thus, a few defects 

such as cracks and domain boundaries are visible on bare areas of the surface.  The long-range 

order and periodicity of the arrays are affected by the roughness of the surface, producing a few 

imperfections in the shapes of nanopatterns. 

Gold surfaces are more hydrophobic than mica, which influences the ordering and 

packing density of silica spheres.  Fine details of the shape of the proteins within rings are 

revealed in zoom-in views (Figures 6.4F and 6.4G).  The diameter of the rings measures 200 ± 5 

nm and the height measures 11 ± 2 nm (Figure 6.4H).  There is a significant difference between 

the size of the ferritin rings formed on gold and mica, which is attributed to surface wettability.  

The hydrophilic surface of mica results in spreading of the protein rings to span a larger area. 

Nanopatterns of ferritin can also be formed on glass surfaces using particle lithography 

(Figures 6.4I, 6.4J, 6.4K).  Glass is an appropriate substrate for biosensing, due to the many 

possibilities for optical, microscopy and spectroscopy measurements.  There are approximately 

20 rings of ferritin within a 4 x 4 µm2 area (Figure 6.4I), approximately 19% of the surface is 

coated with protein.  Also, the shape of the rings is not as symmetric as for mica and gold  
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Figure 6.4 Arrays of ferritin rings produced on various surfaces using particle lithography; [A] 
Topograph (4 × 4 µm2) for nanostructures on mica(0001); [B] Zoom-in view (2 × 2 µm2); [C] 
Close-up of a single ferritin ring (0.45 × 0.45 µm2); [D] Cursor profile for B. [E] Arrays of 
ferritin rings on template-stripped gold (3.5 × 3.5 µm2); [F] Zoom-in view of E (1.7 × 1.7 µm2); 
[G] A single ring pattern from F (0.6 × 0.6 µm2); [H] Cursor profile for F. [I] Ferritin rings 
formed on glass (4 × 4 µm2); [J] Zoom-in view of I (1.7 × 1.7 µm2); [K] Close-up of a single 
ring from J (0.4 × 0.4 µm2); [L] line profile for J. 

 

surfaces; a number of rings formed on glass are incomplete with missing proteins.   Zooming-in 

for a close-up view (Figure 6.4J) the spacing between rings measures 600 ± 30 nm, which is 

wider than the 500 nm diameter of the silica mesosphere template.  The periodicity is influenced 

by a number of parameters such as surface treatment, roughness, hydrophobicity; however the 

surface coverage and periodicity can be optimized by changing the protein-to-particle ratios.  

The results of Figure 6.4 demonstrate that for different substrates the solution conditions need to 

be adjusted to optimize the density of nanostructures. By increasing the concentration of 

proteins a higher surface density can be produced.  A single ring structure is viewed in Figure 
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6.4K, showing the circular arrangement of proteins.  The size of ferritin adsorbates is actually 

quite uniform; the observed variances in height are caused by the pits and valleys of the rougher 

glass substrate, as well as the drying conditions of the sample.  The cursor profile indicates that 

the rings are 7 ± 2 nm in height, which is smaller than the expected 12.5 nm dimension of 

ferritin (Figure 6.4L).  The surface of glass is rougher than mica or gold, with an average 

roughness of 0.2 - 0.5 nm.  The roughness profile of the glass surface is evidenced by the jagged 

baseline of the cursor outline (Figure 6.4L).   

 In comparing the ring structures of ferritin produced using particle lithography for 

various surfaces, as one can expect there are distinct differences in the periodicity, geometry and 

surface coverage (Table 6.1).  Rings of proteins prepared on the hydrophilic surface of mica 

have larger diameters and more proteins surrounding each ring, whereas the nanopatterns 

formed on gold and glass have similar periodicity and ring diameters.  The factors which 

influence the pattern morphologies are the surface roughness and wettability.  During the drying 

step of particle lithography the amount of spreading at the macroscopic level affects the 

ordering and compactness at the nanoscale. 

Table 6.1  Comparison of nanopattern morphologies on various surfaces.  

 

 

substrate mica gold glass 

periodicity 600 ± 30 nm 650 ± 50 nm 650 ± 70 nm 

ring diameter 360 ± 20 nm 270 ± 20 nm 290 ± 10 nm 

number of proteins 
per ring 

15-18 10-13  9-11  

surface coverage 17 % 12 % 19 % 
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6.4.3  Rings of Apoferritin Produced on Surfaces of Glass 

The protein shell of ferritin without an iron core is known as apoferritin.  The shell or protein 

cage of apoferritin consists of the same 24 subunits as ferritin, with similar dimensions.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Nanopatterns of apoferritin molecules formed on glass. [A] Hexagonal arrangement 
of rings of apoferritin; [B] corresponding phase image; [C] cursor profile for the line in A. 
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Ring structures of apoferritin molecules were produced on glass substrates using 500 nm 

silica spheres as a template (Figure 6.5). An AFM topograph (Figure 6.5A) display well 

organized rings of apoferritin assembled in a hexagonal arrangement, with interpattern spacing 

matching the diameter of the templating silica spheres.  A few individual molecules of 

apoferritin are scattered across the surface between ring patterns, the approximate surface 

coverage of ferritin is 15%.  The ratio of apoferritin to silica spheres is 1000:1, approximately 

15% of the number of proteins for a full layer surrounding a 500 nm sphere.  In the 

corresponding phase image (Figure 6.5B) the soft and compressible areas of protein are distinct 

from the harder areas of the glass substrate. The morphologies of the individual proteins do not 

appear to be spherical; however, the shapes observed are an imaging artifact caused by the 

blunt, angular profile of the AFM tip.  Images produced by AFM are a convolution of the shape 

of the imaging probe and the sample morphology.   The height of the rings measure 12 ± 1 nm 

(Figure 6.5C), which is in close agreement with the known diameter of apoferritin (12 nm).  

6.4.4  Patterns of IgG Formed by Particle Lithography  

Antibodies such as IgG are used for a wide range of bioassays, such as for sandwich 

immunoassays.312, 331, 332 Molecules of IgG have a Y-shaped geometry with two antibody 

binding domains at the ends of a Y-like fork, which are spaced 14.5 nm apart, according to X-

ray diffraction studies.333, 334 The tail of the Y-shaped molecule contains one or more 

carbohydrate chains.  The distance between the two antibody-binding domains and the end of 

the carbohydrate domain is 8.5 nm.  The thickness of the molecule is 4.0 nm.  The hinge region 

at the center of the Y-shape link the amino acid chains together and is composed of disulfide 

bridges.  High throughput patterning of IgG can be accomplished using particle lithography.   

An AFM topographic view displays 130 rings of IgG within the 10 × 10 µm2 frame of Figure 
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6.6A, covering approximately 10% of the surface.  At this density, roughly 130 million rings 

were produced for a 1 × 1 cm2 sample. 

 
Figure 6.6 Ring patterns of IgG produced on mica.  Successive zoom-in topographs: [A] 10 × 
10 µm2 ; [B] 3 × 3 µm2 ; [C] 2 × 2 µm2 ; [D] 2 × 2 µm2 ; [E] phase image for D; [F] height 
profile for the line in D. 

 

The ratio of IgG:spheres is 3300:1, however, since IgG has a smaller surface area than 

ferritin, 20,000 proteins would be needed for an encapsulating shell layer.  In a close-up view 

(Figure 6.6B) the ring patterns exhibit a hexagonal packing arrangement, conforming to the 

periodicity and packing order of the structural template of 500 nm silica mesospheres.  The 

pores of the IgG rings pinpoint the uncovered areas of the substrate where silica mesospheres 

were displaced by a rinsing step.   

The proteins adsorb near the base of the spheres and are distributed evenly throughout 

the surface to form regular shapes and diameters.  A 3-D view reveals the uniformity of the 

pattern heights (Figure 6.6C).  The corresponding 2-D view (Figure 6.6D) and phase contrast 
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channel (Figure 6.6E) furnish details of the ring morphologies.  Phase images often display 

surface details that cannot be clearly resolved in height images.  Although the Y shape of IgG is 

not evident at this magnification, particles of individual proteins are apparent in the zoom views.  

The height of the rings of IgG measure 5 ± 1 nm (Figure 6.6F) which matches the dimensions 

for an IgG molecule which is lying flat on the surface.  

6.4.5  Effect of Protein-to-Particle Ratios 

Serum albumin is the most abundant protein found in plasma, and its affinity for binding 

materials has been well-studied.335, 336 For surface bioassays, a blocking step is important to 

prevent nonspecific binding of proteins.  Solutions of BSA are a common blocking reagent used 

to backfill uncovered areas of surfaces, applied for enzyme-linked immunosorbent assays 

(ELISA) and in agglutination assays.  To develop a generic approach for surface-bound protein 

assays, the practical step is to nanopattern BSA to prevent nonspecific binding of proteins.  

Therefore, BSA is a sensible choice for AFM surface investigations with nanopatterning. 

When changing the ratios of proteins to mesospheres, well-defined protein 

nanostructures are still produced, which generates differences in surface coverage and pattern 

morphologies.  An example in which the ratio of proteins to mesospheres was systematically 

changed is presented for BSA patterns formed on mica in Figure 6.7.  At a high BSA-to-latex 

ratio (13,600:1) AFM topographs reveal a continuous film of BSA with an organized 

arrangement of circular dark holes or pores (Figures 6.7A, 6.7B, 6.7C).  The areas between 

particles fill completely with proteins to encircle the bare cavities where the mesoparticles were 

displaced.  A honeycomb arrangement of pores within a film of BSA is displayed in Figure 

6.7A, produced using 300 nm latex spheres as structural templates.  The periodic arrangement of 

dark spots are uncovered areas of mica within a monolayer film of BSA.  The uncovered areas 
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can be used to deposit a second molecule, or these vacant areas can furnish an in situ landmark 

for monitoring changes in height after biochemical assays.  At a high ratio, the surface coverage 

of BSA is 83 % for Figure 6.7A.  In comparison, approximately 22,600 BSA molecules would 

be required to completely surround and encapsulate a single 300 nm latex sphere.  A close-up 

view of the surface (Figure 6.7B) displays the uniformity and periodicity of the patterned pores.  

There are 316 pores within the 6 × 6 µm2 area, which extrapolates to a surface density of 877 

million nanostructures produced with a single 10 µL drop of protein solution placed on a 1 × 1 

cm2 area of mica.  The even surface profile, symmetric patterns and regular spacing of pores is 

clearly viewed with a 3D representation in Figure 6.7C.    

The thickness of the protein film measures 3.8 ± 0.3 nm, matching the dimensions of a 

single layer of BSA (Figure 6.7D) in agreement with the 4.0 nm diameter of BSA obtained by x-

ray crystallography.337 The spacing between pores measures 270 ± 20 nm, which is 10% smaller 

than the expected 300 nm diameter of the latex spheres.  The periodicity of the resulting 

nanopatterns depends on the separation of latex spheres, which is observed to be 5–15% smaller 

than the latex diameters.  Since polystyrene latex are known to be deformable, the decrease in 

diameter is attributable to shrinking of latex particles when dried.287  

 By using a low BSA-to-latex ratio (6,800:1) ring-shaped nanopatterns of BSA were 

produced on mica(0001) with 300 nm latex (Figures 6.7E, 6.7F, 6.7G).  The ratio of 6,800:1 

corresponds to an incomplete shell of BSA encapsulating a 300 nm latex sphere, approximately 

half of a surrounding layer.  The proteins closely surround the base of the latex to leave pore-

shaped structures when the spheres are removed.  The surface areas between the rings are not 

completely filled at this lower protein ratio (Figures 6.7E, 6.7F).  A more ordered, tighter 

packing can be produced with changes in solution conditions.   
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Figure 6.7 The ratios of protein:latex determine the morphology of patterns. [A] AFM 
topograph (10 × 10 µm2) of pore-shaped structures produced at high ratio with 300 nm latex; 
[B] zoom-in view of pore structures (6 × 6 µm2); [C] View of the 3-D surface morphology; [D] 
cursor profile for the line in C.  At lower protein:latex ratio, ring-shaped structures were 
produced [E] using 300 nm spheres (4 × 4 µm2); [F] zoom-in view of hexagonal arrangementof 
rings (1 × 1 µm2); [G] view of a single ring of BSA; [H] line profile for G. 
 

The compact hexagonal arrangement of patterns is clearly viewed in the 4 × 4 µm2 

frame, with a few BSA scattered between rings.  The periodicity of the nanopatterns measures 

283 ± 16 nm which matches well with the expected 300 nm diameter of the latex templating 

particles.   

Approximately 26% of the surface is covered with rings of BSA, thus the surface 

coverage can be tuned by controlling the ratio of proteins and spheres.  A zoom-in topograph (1 

× 1 µm2) in Figure 6.7F displays a hexagonal arrangement of BSA rings. A few BSA clusters 

are attached to the surface between the ring-shaped nanostructures.  A 3D representation of a 

single ring clearly reveals the assemblies of BSA molecules (Figure 6.7G).  The height of BSA 

nanostructures can be measured by referencing the uncovered areas of mica as a baseline.  The 

height of the rings measure 3.7 ± 0.4 nm, matching the expected dimension of a single layer of 

BSA (Figure 6.7H).    
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Particle lithography provides a simple and effective approach for producing nanoscale 

protein structures.  Once the experimental conditions have been chosen, dozens of samples 

prepared with those conditions reveal similar morphologies.  The surface morphologies were 

highly consistent and reproducible for a given ratio and particle diameter.  All of the examples 

of protein nanopatterns presented exhibit circular or ring shaped nanostructures, when using 

solution-based approach for particle lithography.  These results are quite different from results 

cited from literature reports using methods of metal evaporation, which disclose triangular or 

pyramid nanostructures.  Our approach for solution particle lithography does not use a mask and 

evaporation of metals at high temperatures; rather the mesospheres serve as a structural template 

during ambient drying.  In solution, the proteins assemble surrounding the base of the latex or 

silica spheres when dried, conforming to the shape of the particle templates.  Therefore, the 

circular ring or pore morphologies are determined by the spherical shape of the mesospheres.   

6.5  Conclusion 

Particle lithography is a highly reproducible approach applying straightforward bench 

chemistry steps to prepare millions of individual protein nanostructures on surfaces.  Particle 

lithography provides a high throughput route to control the coverage and dimensions of surface 

structures of proteins at the scale of nanometers.  The generality of this approach was 

demonstrated with various surfaces (mica, gold, glass) and different proteins (ferritin, 

apoferritin, IgG, BSA).  By varying the ratio of proteins to mesoparticles, different pattern 

morphologies such as rings or pores are produced.  The arrangement of proteins reflects the long 

range order, dimensions and periodicity according to the hexagonal packing of templating 

mesospheres.   
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6.6  Future Perspective 

The examples presented with model proteins represent a solid beginning for 

development of more complex surface-bound bioassays.  Periodic arrays of nanostructures offer 

a valuable test platform for studies of surface chemistry at the nanoscale.  A number of possible 

experiments and potential applications are envisioned, since well-defined arrays of 

nanostructures enable precise reproducible dimensions for successive measurements.   As an 

example, for fundamental AFM investigations of reactions mediated by molecular recognition, 

the changes in the morphology of protein nanostructures can be monitored after chemical 

agents, nanoparticles or other small molecules are introduced to protein nanopatterns.  Well-

defined protein arrays offer precise reproducible surface features for multiple measurements.  

By performing experiments in aqueous buffers, studies of protein-DNA interactions and 

antigen-antibody binding can be accomplished by imaging the evolution of surface changes 

during biochemical reactions.  The particle templates used for preparing test platforms can be 

scaled to ever smaller dimensions, for studies of size-dependent properties at tens of 

nanometers, approaching single-molecule detection. 

6.7  Executive Summary   

There is a growing need for methods which can reproducibly create organized arrays of 

nanomaterials with high throughput and low-cost.  Particle lithography provides such an 

approach for rapidly preparing millions of exquisitely uniform nanometer-sized structures on 

flat surfaces using basic steps of benchtop chemistry.  Surface self-assembly is emerging as an 

indispensable approach for organizing materials at the molecular scale for practical reasons such 

as low cost, applicability to a wide range of nanomaterials, and capabilities for high throughput 

manufacture of regularly shaped surface structures.  Unlike methods of particle lithography with 
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metal evaporation which produce periodic arrays of triangular structures, solution-based particle 

lithography creates rings and pore shaped geometries.  Particle lithography provides a toolkit for 

fabricating protein nanopatterns on flat surfaces, providing superb control of the spacing and 

arrangement of nanostructures.  With particle lithography, chemists can inexpensively produce 

robust, regular nanostructures using the conventional tools of mixing, centrifuging and drying.  

With particle lithography, millions of nanostructures can be prepared on a range of different 

surfaces with relatively few defects and high reproducibility.  The nanopatterns may potentially 

be applied for engineering the surfaces of biochips and biosensors. 
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CHAPTER 7.  CONCLUSIONS AND FUTURE PROSPECTS 
 

7.1  Conclusions   
 

New methods of nanolithography applying scanning probe microscopy and latex particle 

lithography were developed and applied to refine critical parameters used to link and to organize 

proteins on surfaces.  The effectiveness of different bioconjugation chemistries were evaluated 

using protein binding experiments characterized by AFM.  A key advantage of in situ AFM 

investigations is the capability to accomplish experiments under physiological conditions in 

aqueous buffers with molecular resolution.  The versatility of nanografting with n-alkanethiol 

SAMs was demonstrated for protein nanopatterning, providing a systematic approach for 

directly viewing surface reactions with antibodies and proteins. 

Methods for automated nanografting were developed for producing arrays of SAM 

nanopatterns as a platform to define the adsorption of proteins.338 New protocols were 

developed for arranging and orienting proteins on arrays of SAM nanopatterns, towards 

improving the selectivity and sensitivity of surface-based protein assays.  Nanografting is a 

valuable tool for controlling parameters such as the size, arrangement, geometry, spacing, 

packing density and the composition of nanopatterned test elements.  Highly sophisticated 

arrangements and geometries were produced for n-alkanethiol nanopatterns using automated 

nanografting.  Nanoscale precision and high reproducibility was achieved for arrays of 

nanografted patterns of SAMs.339  

Nanografting provides a new self-assembly mechanism to direct the upright orientation 

of patterned α,ω-alkanedithiol molecules.340 Designed surfaces that present thiol groups are 

ideal for adsorption of proteins,339, 341 metal nanoparticles342 and for selective metal 

deposition.141  Chemical activation of SAM head groups was used to covalently attach proteins 
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to the nanostructure arrays for AFM investigations.  Covalent attachment of proteins on 

nanostructures using EDC and NHS coupling reagents was accomplished for the first time at the 

nanometer scale to activate carboxylate groups of an array of SAM nanopatterns.339  

Particle lithography was applied for high-throughput protein patterning to prepare 

millions of protein nanostructures on surfaces. The model proteins ferritin, apoferritin, IgG, and 

BSA were patterned on various surfaces such as mica, gold and glass, which illustrates the 

generality and reproducibility of the particle lithography.343 For lithography with monodisperse 

mesoparticles of latex or silica, straightforward bench chemistry steps of mixing, drying and 

rinsing provided exquisite control for the surface coverage and periodicity of protein arrays for a 

range of surfaces.  Periodic arrays of rings and pore shaped geometries were produced for 

protein-mesoparticle solutions, rather than the triangular structures more commonly reported to 

be formed with evaporative particle lithography of metals.  Parameters such as the size of the 

template mesoparticles and the ratio of particle to proteins were varied to produce desired 

surface structures.  Particle lithography with a low ratio of proteins to mesospheres produced 

ring patterns of a single layer of proteins.  At higher ratios of proteins to mesospheres, a 

monolayer of proteins with uncovered pore structures was produced.  Particle lithography is not 

only a high throughput method for nanostructuring surfaces, it is also time and cost efficient.  

Insight can be gained towards improving the reliability and sensitivity of biosensor or 

biochip surfaces for optimizing experimental conditions such as concentration, buffer pH, 

reaction time and fabrication parameters.  Few protein assays have been conducted using AFM, 

and this new direction holds promise for defining a new set of analytical methods for nanoscale 

investigations. 
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7.2  Future Prospectus 

The results presented in this dissertation are groundwork for future nanoscale protein 

assays.  Many new and exciting experiments are envisioned. For example, changes in 

morphology of proteins can be studied when chemicals, nanoparticles or other small molecules 

react with protein nanopatterns.  As the capabilities of AFM and SPL improve with innovations 

and technical improvements by SPM manufacturers, one can anticipate that the technical 

difficulties and skill requirements for nanoscale surface investigations will not be as prohibitive 

for accomplishing biochemical assays with AFM.   

Particle lithography is a rapid means to create protein nanostructures for in situ 

protocols, producing nanostructures which are amenable to even be used for micro scale 

fluorescence assays.  Particle lithography with SAMs followed by selective protein adsorption 

would provide a further protocol to be developed for protein nanopatterning.  Future directions 

will be to identify and develop assays of diagnostic importance, in which AFM provides the 

ultimate capabilities for small reagent volumes and molecular-level detection.  
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APPENDIX A. LITHOGRAPHY SCRIPT FOR WRITING AN ARRAY OF FILLED 
SQUARE PATTERNS 

 
Computer codes can be defined by the user to write different geometries using AFM-

based lithography.  The script commands enable users to assign designed parameters for 

writing such as writing speed (ss), applied force (wzdac), tip movement (pr), tip lift (pu), tip 

down (pd), define the z scale (szs), and counter functions (jnz) to repeat designs.  Once an IP 

address has been created with XPMPro software, the scripts can be executed to control the tip 

motion and force as desired by the user.  The control can then be returned to the imaging 

program to enable imaging. 

An example script is detailed for writing a 4 x 4 array of square nanopatterns (100 x 

100 nm2).  A topograph is presented showing 11-MUA squares written within an ODT 

matrix at a force of 3 nN. 

 

 

 

 

 

 

      

 
Figure A1.  An example scripts and image for writing an array of sixteen squares each 100 x 
100 nm2. [Left] the AFM tip raster over each square fifty times at a line interval of 2 nm; 
[Right] AFM topograph of the 11-MUA patterns (dark contrast) written within ODT SAM.  
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# squares4x4.lth 
# Array of 4x4 filled squares (100nm)   
# optimized for SPM100 AFM 
# takes about 5 minutes for this script 
 
1.0 szs 
1.0e-10 pushs 
250.0 zss 
0.0 sza 
0.0 wzdac  
pu 
5000.0 ss 
 
# equilibration square 
-8000.0 0.0 pr 
0.0 -8000.0 pr 
# 
8 diotake 
8 dioset 
20 
1.0 wzdac pd 
-1 + 
-30 jnz 
# lift pen and move to next pattern 
0.0 500.0 pr 
10.0 0.0 pr 
0.0 -500.0 pr 
10.0 0.0 pr 
-1 + 
-30 jnz 
 
0.0 3000.0 pr 
8 dioclr 
0 diotake 
 
# begin arrays from left to right  
8 diotake 
8 dioset 
 
 
 
 
 
 
 
 
 
 

4 
4 
# box 
50 
1.0 wzdac pd 
0.0 1000.0 pr 
10.0 0.0 pr 
0.0 -1000.0 pr 
10.0 0.0 pr 
 
0.0 wzdac pu 
-1000.0 0.0 pr  
0.0 1500.0 pr 
-1 + 
-52 jnz 
 
1500.0 0.0 pr 
0.0 -6000.0 pr 
-1 + 
-70 jnz 
0.0 wzdac pu 
8 dioclr 
0 diotake 
 
1.0 szs 
pops 
rlb 
exit 
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APPENDIX B. LITHOGRAPHY SCRIPT FOR WRITING A COMPLEX ARRAY OF 
CIRCLE PATTERNS 

 
A script for writing a 2 × 2 array of ring patterns consisting of circle designs is 

presented.  Four circles are arranged with a common focal point.  For this script the “arcr” 

command describes the circular arc trajectory of the tip and designates the diameter of the 

circles.  A counter index function directs the tip to trace each circle five times with the C-

based command “jnz” or “jump not zero.”  

Figure B1. Writing complex patterns of SAMs. [Left] drawings showing the path of an AFM 
tip in    writing a combination of four circles to generate each pattern; [Center] each circle is 
traced three times; [Right] an AFM topograph showing patterns of 11-MUA nanografted 
within ODT matrix. 
 
# circlefun-1v.lth 
# patterned circle shapes (100 nm 
diameter)  
# optimized for SPM100 AFM 
# takes about 2 minutes for this script 
 
1.0 szs 
1.0e-10 pushs 
250.0 zss 
0.0 sza 
0.0 wzdac pu 
5000.0 ss 
 
# equilibration square 
-8000.0 0.0 pr 
0.0 -8000.0 pr 
# 
8 diotake 
8 dioset 

20 
0.8 wzdac pd 
0.0 200.0 pr 
10.0 0.0 pr 
0.0 -200.0 pr 
10.0 0.0 pr 
-1 + 
-30 jnz 
0.0 1500.0 pr 
1500.0 0.0 pr 
# circle patterns 
4 
4 
0.8 wzdac pd 
5 
360.0 400.0 0.0 arcr 
-1 + 
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-13 jnz 
 
5  
360.0 -400.0 0.0 arcr 
-1 +  
-13 jnz 
 
5 
360.0 0.0 400.0 arcr 
-1 +  
-13 jnz 
 
5 
360.0 0.0 -400.0 arcr 
-1 +  
-13 jnz 
 
0.0 wzdac pu 
0.0 2200.0 pr 

-1 + 
-79 jnz 
 
2200.0 0.0 pr 
0.0 -8800.0 pr 
-1 + 
-97 jnz 
 
8 dioclr 
0 diotake 
 
1.0 szs 
pops 
rlb 
exit 
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APPENDIX C: PEN TABLET AND INTERACTIVE PEN DISPLAY FOR GRAPHIC 
TRANSFER 

 
Sophisticated artwork can be created by hand for AFM-based lithography using the 

Graphire pen tablet. The pen tablet is interfaced to the AFM computer (USB device) to generate 

AFM tip designs. Scrapbook lithography scripts are written by tracing designs with the 

pen/mouse device.  The tablet is equipped with a 6 x 8 sq. in. active area which is a mapped 

representation of the drawing area in the PicoLith window.  To commence writing, the pen 

needs to be within 5 mm (0.20 inch) of the tablet surface.  

    

 
 
 
 
 
 
 
 
 
Figure C1. The Graphire tablet, pen and PicoLith window used for free-hand design of patterns 
 
1. Connect the Graphire tablet to the computer using a USB interface. 
 
2. Place the pen about 5 mm above the tablet; the green indicator on the tablet shows the pen is 

in range.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure C2. Tracing the “LSU” logos using a combination Graphire tablet, pen and PicoLith 
window  
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3. Open the dialog window for the Picolith browser, and select the line trace function. 

4. Trace the letters or drawing on the active area of the tablet with the pen. 

5. A replica drawing is formed in the Picolith window.   

6. Lithographic parameters of a drawing such as writing speed, applied force, and bias pulse 

duration are then assigned as desired by user by selecting and assigning color codes with the 

color palette of the Picolith dialog window.  

7. The density of lines for writing filled patterns is achieved by assigning a scale of 1 to 10 

where 1 is the most closely spaced. Different items of an array can be assigned different line 

densities for raster filling of patterns.  

8. When the Picolith script is activated to write, the relative motion of the tip on the surface is 

graphically presented on the Picolith window.  One can track the progress of writing by 

observing the drawing lines changing from continuous to dotted markers. 

9. The display size of the Picolith window directly scales to the actual size of the image frame 

chosen when running script.  Therefore, the script will produce patterns of different sizes 

according to the selected image size of the Picoscan program.  
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APPENDIX D: LETTERS OF PERMISSION 
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