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ABSTRACT 

Scanning probe microscopy (SPM) characterizations are becoming more prevalent for 

surface investigations due to their capabilities for obtaining structural information and physical 

measurements.  New capabilities of SPM for studying and controlling nanoscale processes are 

emerging as valuable assets in research.  A fundamental understanding of the interactions of 

surface reactions provides essential information for developing workable applications for 

nanotechnology.  Two applications of SPM are discussed in this dissertation. 

The first investigation uses atomic force microscopy (AFM) for the characterization of 

nanostructures produced with a newly developed lithographic technique called “two-particle” 

lithography.  This new technique is based on particle lithography for the patterning of 

nanoparticles.  Structural templates of either latex or silica guide the deposition of nanoparticles 

to generate 2D arrays of nanopatterns.  The surface coverage, size and periodicity of the 

nanoparticle structures can be controlled by changing the particle size of the templating sphere.  

Particle lithography provides test platforms to enable multiple reproducible SPM measurements 

for nanostructures which have well-defined geometries and surface arrangements. 

 The second part of the dissertation discusses the results from using AFM to study the 

earliest stages of the onset of water corrosion of copper surfaces with nanoscale resolution.  

Within a few hours of exposure to water of varying chemistries, dramatic differences in the 

morphology of copper surfaces were observed by ex situ AFM topography imaging.  Surface 

characterizations of the treated copper samples were used systematically evaluate changes for 

copper surfaces with various chemical treatments and to investigate mechanisms of passivation 

and corrosion. 
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CHAPTER 1.  INTRODUCTION 

The focus of this dissertation was to apply an interdisciplinary approach using scanning 

probe methods in combination with fundamental investigations using analytical chemistry, 

surface science, environmental and materials chemistry.  Because of the dual capabilities for 

obtaining physical measurements and structural information with unprecedented sensitivity, 

scanning probe characterizations are becoming prevalent for surface investigations.  The new 

capabilities of scanning probe microscopy (SPM) for studying and controlling processes at the 

nanoscale are emerging as valuable assets in both fundamental and applied research.  Imaging 

modes of SPM have been used for studies of chemical and biochemical reactions and for 

investigations of tip-surface interactions,1, 2 chemical structures,3-6 and material properties7, 8 at 

the molecular level.  Scanning probe methods not only provide a means for characterizing 

samples with unprecedented spatial resolution, but also can be applied for nanoscale 

measurements of surface properties and as a tool for constructing designed surface arrangements 

of molecules.9-11  Scientific developments using SPM are providing a foundation for new 

technologies in areas such as molecular electronics,12-14 materials engineering,15, 16 medical 

diagnostics,17, 18 and drug discovery.19  Fundamental understanding of the interactions of surface 

reactions provides essential information for developing workable applications for 

nanotechnology. 

Two applications of SPM are advanced in this dissertation.  The first investigation applies 

atomic force microscopy (AFM) for characterizing nanostructures produced with a newly 

developed procedure for nanolithography described as “two-particle” lithography.20  Protocols 

were developed to prepare surface structures of cysteine-coated CdS quantum dots with 

nanoscale control of the placement and surface coverage of nanoparticles.  Particle lithography 

provided test platforms to enable multiple reproducible SPM measurements for nanostructures 
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having well-defined geometries and surface arrangements.  In the second part of the dissertation, 

the earliest stages of the onset of water corrosion of copper surfaces was investigated with 

nanoscale resolution using AFM imaging.21, 22  Within a few hours of exposure to water of 

varying chemistries, dramatic differences in the morphology of copper surfaces were observed at 

the nanoscale with ex situ AFM topography images.  These experiments were conducted at the 

National Risk Management Research Laboratory within the Water Supply and Water Resources 

Division of the United States Environmental Protection Agency (USEPA) in Cincinnati, Ohio, in 

collaborative research with Dr. Darren Lytle.  New ex situ protocols were developed for treating 

copper surfaces and information was obtained by viewing changes in surface morphology at the 

earliest stages of corrosion.  Nanoscale AFM characterizations were used to investigate 

mechanisms of surface passivation and corrosion, and to systematically evaluate changes for 

copper surfaces with various chemical treatments. 

1.1 Experimental Approach:  Operating Principles of AFM Imaging Modes 

 The second chapter of the dissertation provides details of the experimental approaches for 

SPM imaging modes used for these studies.  The imaging principle, hardware and instrument 

operation for contact mode and tapping mode AFM will be described, as well as the 

corresponding simultaneously acquired channels of frictional force and phase imaging modes, 

respectively.  The imaging principle for a newly developed magnetic imaging mode using 

magnetic sample modulation (MSM) will be explained.23, 24  Force modulation AFM, magnetic 

AC or MAC mode AFM, and magnetic force microscopy (MFM) will also be described to 

provide perspective and background information for understanding the investigations presented 

in this dissertation. 
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1.2 Nanostructures of Cysteine-Coated CdS Nanoparticles Produced with “Two-Particle” 
Lithography 

 Particle or nanosphere lithography is an approach for nanopatterning which uses 

physical adsorption of materials to surfaces.  Monodisperse latex particles self-assemble into 

periodic structures on flat surfaces, which can then be used as structural templates or photomasks 

to direct the deposition of materials.25-27  The latex particles are removed by various approaches, 

such as calcination,28-30 solvent dissolution,31-33 adhesive tape,34 or simple rinsing with water.35-37  

Particle lithography has been successfully applied for patterning metals, sols, polymers, and 

inorganic materials.26, 38-41  Researchers have also applied particle lithography with latex beads as 

photomasks, to construct functional surfaces for selective protein adsorption on lithographically 

defined regions.41, 42  Particle lithography can be applied for controlling the organization of 

proteins on surfaces through physical adsorption.35  This approach is a highly reproducible and 

robust method for patterning nanomaterials, and serves as an excellent starting point for 

continuing to develop more complex protocols with different surfaces and nanomaterials.  

Particle lithography is a practical technology which is amenable to further steps of chemical 

reactions, or for developing well-defined test structures for fundamental surface measurements.  

The methods of particle lithography offer advantages of nanometer precision and high 

throughput, since a small milliliter vial of solution can produce hundreds of replicate samples.   

 There is an emerging need for efficient methods that can produce organized arrays of 

nanomaterials with high throughput.  Particle lithography provides such an approach for rapidly 

preparing millions of exquisitely uniform nanometer-sized structures on flat surfaces, using basic 

steps of bench chemistry (e.g., centrifugation, drying, evaporation, rinsing).  A new lithography 

procedure was developed based on particle lithography for the patterning of nanoparticles into 

ordered arrays of nanostructures.  The new procedure, called “two-particle” lithography is 
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described in Chapter 3, demonstrating AFM images of nanostructures produced with cysteine-

coated CdS quantum dots.  The cysteine-coated CdS quantum dots were synthesized by students 

in collaborative research with Professor Isiah Warner’s research group.  Using two-particle 

lithography, we have developed a method to control the surface coverage and arrangement of 

quantum dots such as cysteine-coated CdS nanoparticles.20  Chapter 3 describes the new 

approach for patterning cysteine-coated nanoparticles to generate surface arrangements of ring 

structures, in which the diameter and spacing depend on the diameter and monodispersity of the 

particle used for the structural template, either polystyrene latex or silica mesoparticles.  Atomic 

force microscopy is used to visualize the nanostructures produced and to measure the height, 

diameter, and surface coverage of nanopatterned surfaces. 

 The mechanism for controlling the arrangement of nanoparticles is based on natural self-

assembly of colloidal mesospheres into close-packed arrangements on flat surfaces. The 

organized arrays of nanoparticles are ideal test platforms for surface measurements and provide a 

tool for fundamental studies of material properties.  For example, designed arrays of deposited 

metal nanoparticles can be applied for fundamental studies of magnetic, structural and electronic 

properties with various AFM imaging modes.  Results with cysteine-capped CdS quantum dots 

reveal well-organized periodic ring-shaped patterns, which cover micron-sized areas of flat 

surfaces such as mica(0001).   Well-defined arrays of nanostructures furnish precise reproducible 

dimensions for multiple successive AFM measurements.  The nanoparticle templates used for 

test platforms can be scaled to very small dimensions, to enable studies of size-dependent 

properties at tens of nanometers.  In comparison to conventional methods for creating 

nanostructures which use costly lasers, electron/ion beams or clean rooms, particle lithography is 

inexpensive and accessible to researchers with conventional bench equipment.  The two-particle 
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lithography procedure uses the simple steps of centrifuging, drying and rinsing.  Particle 

lithography can be applied to organize a range of nanomaterials such as proteins,35, 36 

nanoparticles34, 43, 44 and organic molecules45-47 on surfaces with exquisite control of surface 

arrangements and chemistry.  Size scalable test platforms facilitate successive reproducible SPM 

measurements.  In addition, the nanopatterning approach described in Chapter 3 provides new 

insight for interesting self-assembly phenomena, which can be applied to assemble nanoparticles 

at ultrasmall size scales.  The rationale for choosing CdS nanoparticles as model systems, the 

strategy for preparing well-defined nanostructures of nanoparticles and the plans for further SPM 

measurements will be detailed in Chapter 3. 

1.3 Surface Changes of Copper during the Initial Stages of Water Corrosion Investigated 
by AFM:  Role of pH, Phosphates, and Dissolved Inorganic Carbon 

 In Chapters 4 and 5, AFM was applied to investigate the role of different water 

chemistries on the initial stages of the corrosion of copper surfaces.  The source of lead and 

copper contaminants for drinking water is primarily from leaching of metal plumbing.  The 

surface features of Cu2O which initially form on a corroding copper surface upon exposure to 

drinking water directly impact the type and extent of corrosion and copper levels for consumer 

tap water samples.  Therefore studies of the influence of water chemistry for the resulting 

generation of copper corrosion by-products that form at the early stages of corrosion are 

important for improving the quality of drinking water.  The degradation of metal pipelines in 

water distribution systems caused by corrosion is an important research focus for the Water 

Supply and Water Resources Division of the USEPA.  In water distribution pipelines, valves, 

and fixtures, corrosion can be detrimental to the quality of public drinking water.  One area of 

research within the USEPA aims to control corrosion and reduce the release of metals into 

drinking water. 
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 Copper occurs naturally in rock, soil, water, sediment, and air, and is often used for water 

pipes in household plumbing.  Though a small amount of copper is required by the human body 

as an essential nutrient, long-term exposure to elevated levels of copper in drinking water may 

cause serious health problems.48  Short periods of exposure to high levels of copper have been 

shown to cause gastrointestinal disturbance, such as nausea and vomiting.  Using water with 

elevated levels of copper over many years may cause damage to the liver or kidneys.  The 

primary sources of copper in drinking water are corroding pipes and brass components of 

household plumbing systems.  Signs that drinking water may have elevated levels of copper 

include a metallic taste or blue to blue-green stains around sinks and plumbing fixtures.  

Corrosion leads to the release of copper ions into water samples and forms deposits of corrosion 

by-products on the interior walls of metal pipes.   In 1991, the USEPA published the Lead and 

Copper Rule in the National Primary Drinking Water Regulations (also referred to as the LCR or 

1991 Rule).  The Lead and Copper Rule requires that lead and copper levels in drinking water be 

minimized and public water utilities are enforced by these standards.  An action level of 0.015 

milligrams per liter (mg/L) was established for lead and 1.3 mg/L for copper for water samples 

standing for more than six hours.  

 The effects of pH and phosphate (ortho- and poly-) levels, as well as high levels of 

dissolved inorganic carbon, on the corrosion of copper surfaces were examined using AFM, 

secondary ion mass spectrometry (SIMS) and x-ray diffraction (XRD) analyses.  High resolution 

AFM clearly reveals differences in the structure and morphology for by-products formed on 

copper surfaces after only 6 to 24 hours of exposure to water samples.  For example, 

orthophosphate was found to substantially reduce the size and distribution of crystalline features 

that formed on copper surfaces.  Substantial differences in surface morphology at different pH 
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levels were also investigated within the normal pH range of tap water samples.  The details of 

experimental protocols that were developed in collaborative efforts with the USEPA laboratory, 

as well as the results and conclusions of these investigations are given in Chapters 4 and 5.  

1.4 Synopsis and Future Prospectus 

A considerable challenge is posed for making reproducible measurements in nanosized 

systems, for scaling and manufacturing devices at nanometer length scales, and for 

systematically evaluating the effects of molecular structure for material properties.  One of the 

major problems with surface studies is the lack of reproducibility and accuracy for measurement 

technologies.  For example, measuring electrical conductance with reliability has proven to be 

technically difficult for molecularly thin films due to problems with generating consistent test 

platforms of molecules and nanomaterials.  Another challenge is to develop methods for 

reproducibly depositing nanoparticles on surfaces with desired arrangements and coverage.  To 

address these challenges, a new approach for particle lithography was developed to generate 

designed planar arrays of regular nanostructures of quantum dots, to serve as a measurement 

platform for SPM measurements of nanomaterials properties.   

The approach for producing regular arrangements of nanoparticles with high throughput 

as SPM test platforms has further been applied to pattern other systems of nanoparticles for other 

research projects in the Garno research group.  A brief overview of the new directions and 

applications of particle lithography is provided in Chapter 6.  Two-particle lithography has been 

successfully applied to systems of coated nanoparticles such as plasmid DNA-encapsulated 

metal nanoparticles,43 coated cobalt nanoparticles44 and CdSe quantum dots.34  A key advantage 

of two-particle lithography is that expensive instrumentation is not required for generating well-

defined nanostructures of designed dimension and periodicity.  The resulting arrangements of 

magnetic nanoparticles, for example, are important for commercial applications such as 
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ultrasmall transistors, catalysts, magnetic devices, immunoassay labeling, and medical imaging.  

In addition, collaborative work with surface characterizations of copper surfaces is being 

continued by Ms. Stephanie Daniels this year.  She has begun to develop in situ protocols for 

visualizing even earlier stages of copper corrosion, and will investigate the influence of other 

ions that are naturally present in water for surface corrosion. 

At present, scanning probe microscopes and nanoscale lithographies are primarily used as 

research tools in laboratories rather than as tools for manufacturing.  However in the future, 

nanoscale technology in manufacturing is predicted to bring an even greater impact and benefit 

to society than present-day microfabrication technologies.  Potential applications include the 

development of a new generation of chemical and biosensors, biochips, drug delivery 

mechanisms, analysis platforms and molecular electronic devices.  We anticipate that nanoscale 

research will define new directions in areas such as materials chemistry, biosensing, biomimetic 

surfaces and molecule-based electronics.  Work at the nanoscale interface is a promising 

multidisciplinary research frontier, offering a wealth of opportunities for new investigations of 

chemical reactions on surfaces.  Studies of the fundamental reactions of surface-bound 

molecules, including mechanisms, kinetics, chemical modification and surface properties are 

valuable areas for academic research. 
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CHAPTER 2.  IMAGING MODES OF ATOMIC FORCE MICROSCOPY 

1.1 Overview of Scanning Probe Microscopy 

Scanning probe microscopy (SPM) provides a new class of imaging techniques which 

offer a means to view surfaces in greater detail than previously possible.  Scanning tunneling 

microscopy (STM) was invented by Binnig and Rohrer in 198249 and for this development they 

were awarded the Nobel Prize in Physics in 1986.  Shortly afterwards, the atomic force 

microscope (AFM) was invented by Binnig, Quate, and Gerber in 1986.50  The invention of these 

new approaches for surface microscopy has captured a new view of surfaces and provides rich 

information for scientific research.  Unlike traditional optical microscopes, SPM techniques use a 

sharp probe affixed to a cantilever to “feel” the surface rather than using lenses to “see” a 

specimen.  Therefore the resolution is not limited by the wavelength of light.  The interactions 

between the tip and the sample are recorded and processed to form an image.  The surface 

structure of materials can be observed in real time on a scale from microns down to nanometers.  

The lattice arrangement of atoms can be visualized, and STM provides views of molecular and 

atomic vacancies and adatoms. 

There are several advantages to using AFM compared to other microscopy techniques.  

Images generated by AFM are true three-dimensional surface profiles.  Samples do not require 

special treatments or coatings which alter their composition.  Both conducting and insulating 

materials may be imaged.  A vacuum environment is not required for AFM imaging, and 

samples can be imaged in air or in liquid media. 

Since the invention of AFM, a range of different imaging modes have been developed to 

characterize the physical properties of surfaces, thin films, and nanomaterials.51  In normal 

contact mode, a sharp tip is scanned across a sample and the laser deflection is monitored to 

provide surface topography information.50, 52, 53  One drawback of contact mode is that drag 
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forces develop between loosely bound samples and the scanning probe, which can alter or 

damage the surface.  To overcome this limitation, tapping mode was developed.54-56  Tapping 

mode is a type of intermittent contact mode in which the cantilever is oscillated at a certain 

frequency and scanned over a sample.  This greatly reduces the dragging forces57 and makes it an 

excellent mode for imaging biological materials.58-61  Conducting-probe AFM (CP-AFM) is an 

imaging mode which measures the current-voltage relationship of materials.62, 63  This particular 

mode has been used to measure the electronic transport properties of single molecules64, 65 and 

self-assembled monolayers.66-68  Force modulation is a mode which measures the relative 

stiffness of a sample.69, 70  The Young’s modulus of organic thins films of varying sizes has been 

studied using force modulation.71, 72  For the imaging of magnetic domains, magnetic force 

microscopy was developed.73, 74  This mode is widely used in characterizing magnetic recording 

media.75, 76 

The various imaging modes require specific changes to the configuration of the 

instrument, such as oscillating the AFM probe or changing the positional feedback loop.  Rich 

structural and mechanical information about samples can be obtained for the different imaging 

modes, such as characterizations of elasticity, adhesion, conductivity, electronic properties and 

magnetic forces. 

This chapter presents the operating principles for several AFM imaging modes used for 

the research investigations described.  Instrument operation for contact mode, force modulation, 

tapping mode, magnetic AC (MAC) mode and magnetic force microscopy (MFM) are explained.  

The differences in operation for these imaging modes will provide a clearer understanding of the 

newly developed magnetic sample modulation (MSM) imaging mode, which is also presented.  

This new MSM imaging mode is essentially a hybrid technique which uses the feedback loop of 
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conventional contact mode AFM, the MAC mode solenoid to drive sample oscillation, and the 

phase and amplitude channels for data acquisition to characterize the selective modulation of 

magnetic domains. 

2.2 Contact Mode and Frictional Force Imaging 

 Contact mode AFM is a high resolution imaging technique capable of resolving features 

as small as an atomic lattice.  In the most basic configuration, a sharp tip affixed to a cantilever is 

scanned across a surface.  The tip is rastered in continuous contact across a surface using a 

piezoelectric tube scanner.  A diode laser is focused onto the backside of the cantilever and 

reflected onto a quadrant photodetector as illustrated in Figure 2.1.  As the tip is scanned across 

 

Figure 2.1. Setup for contact mode and lateral force AFM imaging. 

the surface in an X-Y raster pattern, attractive and repulsive forces between the tip and the 

sample cause the cantilever to bend as it profiles the surface features.  The tip deflection changes 

the position of the reflected laser on the quadrant photodiode detector.  The feedback loop 

adjusts the voltages of the piezoscanner to maintain a constant deflection or pressure on the 

sample surface.  A computer records the motion of the tip and a 3-D image is generated of the 
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surface topography of the sample by mapping the changes in voltage applied through the 

feedback loop with the X-Y position of the tip.50, 77-81 

As the tip is scanned across the sample in contact mode AFM, in addition to the vertical 

attractive and repulsive forces of the surface, it also experiences a torsional twisting.  The 

twisting of the cantilever is caused by friction between the tip and sample caused by nanoscale 

changes in surface chemistry.  Lateral force or frictional force microscopy, which are acquired 

simultaneously alongside surface topography, display contrast due to friction.  Frictional force 

imaging is useful when studying the inhomogeneity of sample surfaces, and provides a sensitive 

map of chemical differences for discriminating changes in surface chemistry and adhesion. 

 An example of contact mode imaging is shown in Figure 2.2 displaying gold 

nanoparticles which were dropcast on a glass surface.   The topography frame is shown on the 

left in Figure 2.2A, the dark areas represent shallow areas and the bright colors correspond to 

 

Figure 2.2. Contact mode AFM images of gold nanoparticles deposited on glass. (A) 
Topography and (B) friction images acquired in an ambient environment. 

taller features.  The image on the right (Figure 2.2B) shows the simultaneously acquired friction 

or lateral force image.  Areas of higher or lower friction can be arbitrarily scaled with different 
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colors.  Assigning regions of higher or lower friction requires prior knowledge of the nature of 

the sample.  In the absence of hysteresis, trace and retrace friction images can be digitally 

subtracted to reveal differences in surface friction, for well-aligned scanners. 

2.3 Force Modulation AFM 

Force modulation AFM is a continuous contact imaging mode used to map differences in 

the elasticity of a sample.  For force modulation AFM, the entire sample is induced to vibrate 

while the tip is scanned in continuous contact with the sample surface (Figure 2.3).  The sample 

 

Figure 2.3. Instrument set-up for force modulation AFM. 

is driven to oscillate at a selected frequency and amplitude while using the force-deflection 

feedback loop typical of contact mode AFM.  When the modulated surface is interrogated by the 

AFM tip, energy transfer causes the cantilever to vibrate.  Amplitude and phase signals are 

generated simultaneously with acquisition of topographic information.  The dampening or 
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enhancement of the amplitude and phase components of the cantilever vibration depends 

sensitively on the softness and viscoelastic properties of the sample.52, 82-84  Force modulation 

experiments have investigated the Young’s modulus of nanostructures composed of self-

assembled monolayers.71 

2.4 Tapping Mode and Phase Imaging 

 Tapping mode is an intermittent imaging mode of AFM, which uses an oscillating 

cantilever to minimize stick-slip adhesion during contact between the tip and the sample.  

Tapping mode offers advantages for imaging samples that are loosely bound to the surface or for 

samples that are sticky or fragile.  The tip is driven to oscillate at its resonant frequency and is 

brought close to the sample surface to intermittently “tap” the surface at the chosen frequency 

and desired amplitude.  For ambient imaging in air, the typical resonant frequency of tapping 

mode tips ranges from 160 to 300 kHz, whereas softer tips with resonances below 100 kHz can 

be used for tapping mode imaging in liquid media.  Typically, the tip is affixed to a small 

piezoceramic chip to drive the mechanical actuation for tip vibration (Figure 2.4).  As the tip is 

 

Figure 2.4. Instrument configuration for tapping mode. 
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scanned in intermittent contact with the surface, the feedback loop maintains a constant 

amplitude of tip oscillation.  The voltage changes applied to maintain the amplitude are 

reconstructed to form an amplitude image.  Phase data is obtained from the phase lag between 

the AC input which drives the oscillation and the cantilever oscillation output.  Phase images can 

be used to view differences in material properties due to differences in surface chemistry.  

Topography, amplitude, and phase data are obtained simultaneously. 54, 55, 85-87 

 An example tapping mode image is shown in Figure 2.5.  Frames of the topography and 

phase channels for an 8×8 µm2 scan area of the surface of 300 nm polystyrene latex is displayed, 

revealing the hexagonal packing arrangement of monodisperse spheres.  Figure 2.5A displays a 

topography image acquired in ambient air, with a z-scale of 130 nm and Figure 2.5B shows the 

simultaneously acquired phase image. 

 

Figure 2.5. Tapping mode images of 300 nm polystyrene latex film.  (A) Topography and (B) 
phase image. 

2.5 Magnetic AC Mode AFM 

Magnetic AC (MAC) mode is used to accomplish tapping mode AFM with an alternating 

electromagnetic field to drive the oscillation of a magnetically coated probe.88-92  For MAC 
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mode, an AC current is applied to a solenoid located beneath the sample stage to generate an 

electromagnetic field which alternates in polarity, frequency and strength (Figure 2.6).  The 

alternating electromagnetic field precisely drives the actuation of a cantilever which has a 

 

Figure 2.6. Setup for MAC mode. 

magnetic coating on the top side of the probe.  Better resolution can be often be achieved with 

MAC-mode because only the cantilever is being modulated as opposed to the entire cantilever 

holder attached to the piezoelectric actuator.  Essentially, MAC mode uses the same amplitude-

based feedback loop as for tapping mode.  The key difference between MAC-mode and 

conventional acoustic tapping mode is that a magnetic coating is required for MAC mode 

imaging, and tip actuation is driven directly by an electromagnetic field. 

2.6 Magnetic Force Microscopy 

The conventional imaging mode used for the detection of magnetic forces is known as 

magnetic force microscopy (MFM).73, 93-97  For MFM, the bottom side of an AFM probe is 

coated with a magnetic metal film (Figure 2.7).  The tip is first scanned in contact mode and the 
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topographic line trace is memorized.  The tip is then withdrawn from the surface at a selected 

height and is operated in non-contact mode while following the memorized topographic trace.  

The tip is rastered at a fixed distance from the sample and used as a magnetic force sensor to 

detect the relatively weak long range magnetic forces of areas of surfaces.  The attraction and 

 

Figure 2.7. Operating principle for magnetic force microscopy. 

repulsion of the tip by magnetic domains of a sample cause the cantilever to bend.  This 

approach provides a means to map the strength of the magnetic field at various distances (e.g. 50, 

100, 150 nm) from the surface.  Weaker magnetic forces do not influence the tip over great 

distances.  This limits the resolution of MFM to magnetic domains of 200-500 nm. 

 A practical example of MFM is shown in Figure 2.8 for a sample of magnetic film from a 

zip data diskette.  From the topography image, little can be determined about the chemical or 

magnetic structure of the surface.  However, in the MSM channel of Figure 2.8B the magnetic 

domains of the memory device are visible as light and dark bands.  The bright bands indicate that 

the magnetized tip is repelled by the magnetic field of the surface, whereas the dark bands 

display attractive forces for the magnetic probe. 
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Figure 2.8. Magnetic force microscopy (MFM) images of the surface of the polymer film taken 
from a zip disk, scan size is 8×8 µm2, the topography z-scale is 60 nm.  (A) Topography image; 
(B) magnetic image. 

2.7 Magnetic Sample Modulation 

Several measurement modes with SPM provide surface characterizations for evaluating 

magnetic properties of surfaces.  Imaging modes such as magnetic resonance force microscopy 

(MRFM)98-101 and magnetic force modulation102-105 require the use of tips with a magnetic 

coating.  Magnetic probes can be problematic, since the magnetic properties of the thin metal 

films which coat the underside of the probes diminish over time, requiring remagnetization.  

Also, after continuous contact mode scanning, the thin metal films can be worn away.  The 

thickness of the magnetic coatings is on the order of tens of nanometers, which greatly decreases 

the resolution for imaging small surface features.  Intrinsically, the resolution of SPM methods 

depends on the geometry of the coated probe; and metal coatings produce relatively large, blunt 

tips. 

This section presents a new approach for mapping the magnetic response of 

nanomaterials by combining magnetic sample modulation with contact mode AFM.  In contrast 

to magnetic force microscopy, magnetic sample modulation imaging requires nonmagnetic 
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probes and the mechanical response of materials to an external magnetic field is used to map the 

magnetic domains.  This new imaging mode has the potential to advance the resolution of 

magnetic imaging beyond that which is currently possible with MFM. 

This new imaging mode employs a standard, soft, nonmagnetic AFM cantilever operated 

in contact mode for detecting the physical motion of nanoparticles which are driven to vibrate by 

an AC electromagnetic field.  As shown in Figure 2.9, a solenoid is located underneath the 

sample, to which an AC voltage is applied, producing an alternating magnetic field.  The flux of 

the alternating magnetic field causes the magnetic materials on the surface to vibrate.  The 

periodic motion of the sample vibration can be tracked by changes in the deflection of the tip.  

As the tip is rastered across the surface in contact mode, the movement of the magnetic materials 

causes the tip to vibrate when it touches the vibrating domains.  The mechanical motion of the 

magnetic material is sensitively detected by a scanning AFM tip.  Only the magnetic materials 

vibrate when the alternating magnetic field is applied, providing selective contrast. 

 

Figure 2.9. Imaging concept for magnetic sample modulation.  (A) Instrument setup, (B) 
photograph of solenoid located beneath the sample plate. 
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The instrument setup for MSM is a hybrid of three imaging modes, in which the tip is 

operated in contact mode using a MAC mode sample plate to apply an alternating magnetic field 

for selective modulation of magnetic domains.  Essentially, MSM is a variant of force 

modulation AFM with selectivity for actuating and characterizing magnetic nanomaterials.  To 

visualize the magnetic domains of a sample, conventional contact mode images are first acquired 

without applying a magnetic field.  Next, the same area of the surface is scanned again with an 

alternating electromagnetic field applied. The polarity, oscillation and flux of the magnetic field 

are generated and controlled by selection of parameters for the AC current applied to the wire 

coil solenoid, which is located underneath the sample plate embedded within an epoxy resin 

shown in Figure 2.9 B.  When an electromagnetic field is applied to samples, only the magnetic 

domains are driven to vibrate, providing selective contrast for areas that are in motion.  A lock-in 

amplifier is used to acquire the amplitude and phase components of the deflection signals, which 

furnishes exquisite sensitivity for slight changes in tip movement.  The changes in phase and 

amplitude as the tip interacts with the vibrating sample are plotted as a function of tip position to 

create MSM phase and amplitude images.  The differences displayed for images with and 

without an applied magnetic field are used to map areas of magnetic nanomaterials. 

Magnetic sample modulation was applied to characterize micropatterned stripes of iron 

oxide nanoparticles.  Figure 2.10 showcases an experiment providing proof-of-concept images of 

MSM applied for microstripes of iron nanoparticles.  A topography image of the stripes of 

nanoparticles is shown in Figure 2.10A and Figure 2.10B is the simultaneously acquired phase 

image.  In the top images, no magnetic field was applied.  The bottom row of images was taken 

when the alternating magnetic field was activated.  In the presence of a magnetic flux, the 
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Figure 2.10. Contact mode images of micropatterned stripes of iron nanoparticles acquired with 
magnetic sample modulation (MSM).  (A) Topography and (B) phase image without an applied 
AC electromagnetic field. Views of (C) topography and (D) phase channels with the AC 
electromagnetic field turned on. 

topography view of Figure 2.10C is indistinguishable from that of Figure 2.10A. However, the 

magnitude and contrast of the MSM phase image has become more apparent in Figure 2.10D.   
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CHAPTER 3.  NANOSTRUCTURES OF CYSTEINE-COATED CdS NANOPARTICLES 
PRODUCED WITH “TWO-PARTICLE” LITHOGRAPHY 

3.1 Introduction 

 Organizing and arranging materials on surfaces with nanometer-level spatial control has 

proven to be a considerable challenge in nanotechnology. There are few tools for writing or 

inscribing structures at the nanoscale, and most lithography techniques for producing ultrasmall 

dimensions are expensive, difficult to accomplish and rely on stepwise serial processes of writing 

or inscribing patterns. With particle lithography, conventional bench chemistry methods of 

mixing, centrifuging, evaporation and rinsing can produce high density arrays of nanostructures.  

The patterning mechanism for particle lithography is based on spontaneous processes of solution 

self-assembly of monodisperse colloidal mesoparticles on flat surfaces. Using particle 

lithography, we have developed a new approach to control the surface coverage and arrangement 

of quantum dots such as cysteine-coated CdS nanoparticles. 

 The optical properties of semiconductor and metal nanocrystals not only depend on the 

size of the nanoparticles, but are also influenced by the arrangement and spacing on surfaces.  

Both long and short-range ordering in thin films greatly affect the overall light scattering, 

absorption, and luminescence. Methods have been developed to produce regular superstructures 

of metal, semiconductor and magnetic nanoparticles.106-110  The spacing between adjacent 

nanoparticles has been found to affect plasmon resonance properties for distances below 200 

nm.111-117  Ensembles of organized metal and semiconductor nanocrystals can be applied for 

measurements of physical properties as well as for tuning optical and electronic properties for 

device applications.118  The self-organization of nanoparticles into superlattices requires size 

distributions that are highly monodisperse to generate long-range order without defects. 

*Reproduced with permission from the American Chemical Society. 
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Particle lithography, which has also been referred to as nanosphere lithography, uses 

submicron-sized spherical particles as either a mask or template to produce nanostructures on 

surfaces.  Particle lithography has been applied to generate arrays of nanostructures of 

polymers,119-122 proteins,35, 36, 123, 124 metals,25, 125-136 and self-assembled monolayers.47, 137-139  

Particle lithography has not previously been applied to directly pattern nanoparticles, such as 

quantum dots.  The variety of nanostructures that can be generated using particle lithography 

include vertical rods/pillars,140, 141 2D and 3D arrays of nanoparticles,142-145 metal oxides,146, 147 

and silica;148 porous membranes of polyurethane;149 and 3D opal or reversed opal photonic band 

gap materials of silicon or titanium dioxide.150  There is a practical problem when using colloidal 

masks for patterning materials through sequential immersion steps, such as for preparing organic 

thin films by solution self-assembly.  Because of the buoyancy of the mesoparticles in various 

liquids, silica and latex spheres rapidly detach from surfaces when immersed in solutions of 

water or solvents.  Therefore, strategies need to be devised for particle lithography without direct 

immersion of mesosphere templates to form patterns.  To overcome this problem, liquid transfer 

from an inked PDMS stamp138, 139 or vapor deposition47 has been applied to pattern organic 

monolayers with mesoparticle masks. 

For optically active nanostructures, the diameters of templating mesospheres can be used 

to tailor the plasmonic properties of surfaces with periodic arrangements of nanoparticles.151  

Arrays of nanoparticles may provide useful structures for applications based on localized surface 

plasmon resonance (LSPR)26, 152, 153 and surface-enhanced Raman scattering (SERS).154-158  For 

applications in the field of photonic band gap materials, it is particularly important to develop 

methods of producing colloidal crystals with few defects for millimeter size scales.  Researchers 

have developed approaches to minimize the density of defects for particle lithography by use of 
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fabrication steps such as using convective assembly,159 sonication,160 spin-coating,161 shear force 

alignment,162 Peltier cooling,130 Langmuir-Blodgett troughs163 or directing the sample orientation 

under gravitational forces.164 

Nanoparticles such as semiconductor quantum dots exhibit stable fluorescence and are 

promising alternatives to organic dyes for investigations which require biological labeling.165-167  

However, concerns have been raised about the potential cytotoxicity of nanoparticles because of 

the toxic elements of the core materials (e.g., cadmium, selenium).  In certain cases, quantum 

dots can be rendered nontoxic with biocompatible coatings.168, 169  For example, nanoparticles of 

CdS have been passivated using organic ligands,170-175 peptides,176, 177 DNA,178, 179 proteins180 

and cysteine.181, 182 

We have developed a new approach of “two-particle” lithography by mixing latex or 

silica mesospheres with nanoparticles in aqueous solution.  Monodisperse mesoparticles self-

assemble into close-packed crystalline arrays on surfaces such as mica(0001) providing a 

structural template to direct the adsorption and placement of nanoparticles.  As solutions dry, 

nanoparticles surround the templates, filling in the interstitial void spaces of the surface between 

spheres.  Mesospheres can be efficiently removed by a simple rinsing step to disclose periodic 

arrays of nanoparticles.  The CdS nanoparticles for these investigations were capped with 

cysteine and were relatively polydisperse.  Depending on the concentration and ratios of smaller 

particles, the patterns generated on surfaces are either pores within a film of nanoparticles, or 

arrays of ring structures.  The arrays exhibit uniform geometries and periodicity, spanning 

micron-sized areas.  The density and periodicity of the arrays can be controlled by choosing the 

diameters of the mesospheres and ratios of nanoparticles. 
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3.2 Experimental Section 

3.2.1 Materials and Reagents 

Tris buffer (tris(hydroxymethyl)aminomethane), hydrochloric acid, L-cysteine, cadmium 

sulfate, sodium sulfide nonahydrate, and other routine chemicals were purchased from Sigma-

Aldrich (St. Louis, MO) as ACS reagent grade or higher.  Ultrapure 18.2 MΩ·cm distilled 

deionized water was used in all experiments.  Monodisperse latex and silica spheres were 

acquired from Duke Scientific (Palo Alto, CA). 

3.2.2 Synthesis of Cysteine-Coated CdS Nanoparticles 

The colloidal aqueous synthesis of cysteine-capped CdS nanoparticles was adapted from 

a procedure reported by Mehra and coworkers in which they reported formation of particles 

ranging in size from 2 nm to 4 nm.183  Briefly, 0.25 M solution of L-cysteine was prepared in 

nitrogen-saturated Tris buffer (1 M).  A solution with a final cysteine to cadmium ratio of 2:1 

was prepared by adding 20 mL CdSO4 (~0.03 M in 0.01 N HCl) to 5 mL of cysteine solution 

while vortexing.  Sodium sulfide (0.5 M in water) was then titrated into the solutions while 

vortexing to obtain S:Cd molar ratios of 0.25, 0.50, 0.75, 1.00, 1.50, and 2.00.  The samples were 

sealed and incubated for 60 min at 45ºC, followed by 10 min of N2 flushing to remove most of 

the unreacted sulfide.  Ethanol precipitations and centrifugations were used to remove free 

cysteine.  Cold ethanol was added drop-wise with continuous mixing until precipitation was 

formed.  The precipitates were recovered by centrifugation and the supernatant removed.  The 

precipitates were redissolved in 1 M Tris buffer and the ethanol precipitation repeated four times.  

The recovered solids from the final step were dissolved in water for spectroscopic 

characterization.  The approximate sizes of the particles were estimated based upon the size 

dependence of the lowest excited state of the semiconductor particles184, 185 and through 

empirically derived sizing curves that relate spectral properties to physical measurements.186  
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The synthesis procedure typically resulted in particles with diameters estimated to be in the range 

of ca. 1 to 4 nm, increasing as the S:Cd molar ratio was increased.  The expected size dependent 

luminescence was also observed upon illumination with a black light.  A lyophilizer used to 

remove water yielding a stable re-dispersible product.  Powders from the lowest ratio 

preparation, the preparation resulting in the smallest particles, were redispersed in water for 

AFM characterization and patterning. 

3.2.3 Preparation of Substrates 

 Ruby muscovite mica (S&J Trading Co., NY) was used for atomic force microscopy 

(AFM) investigations.  Pieces of mica (1×1 cm2) were cut and cleaved immediately before 

depositing sample solutions. 

3.2.4 Atomic Force Microscopy 

Images were acquired using an Agilent 5500 scanning probe microscope (SPM) equipped 

with Picoscan v5.3.3 software.  Digital images were processed using Gwyddion (version 2.9) 

open source software, which is freely available on the Internet.187  An ambient environment was 

used for either contact mode (Figures 2, 4, and 6) or intermittent contact imaging with acoustic 

AC (AAC) mode (Figures 3 and 5).  Rectangular silicon nitride cantilevers (MSCT-AUHW, 

resonance frequency 85-155 kHz, spring constant 0.50 N/m) from Veeco Probes (Camarillo, CA) 

and silicon AFM probes (PPP-NCL, resonance frequency 155 kHz) with an aluminum reflex 

coating from Nanosensors (Neuchatel, Switzerland) were used for imaging. 

3.2.5 Procedure for “Two-Particle” Lithography 

 A solution of monodisperse mesospheres (200-800 nm) is mixed with smaller 

nanoparticles (diameter < 50 nm) at a given ratio, for two-particle lithography.  The basic 

chemistry steps are outlined in Figure 3.1.  First, an aqueous solution of monodisperse latex or 
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Figure 3.1. Procedure for “two-particle” lithography. (A) Mesospheres and nanoparticles are 
mixed; (B) a drop of sample is dried; (C) mesospheres are rinsed away. 

silica mesoparticles is centrifuged and rinsed to remove surfactants or other contaminants.  The 

centrifuge speed and duration are chosen to produce a clear supernatant, in the range of 10-20 
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min at 14,000 rpm.  The pellet is then resuspended in deionized water for one rinsing cycle by 

centrifugation.  In the next step, the rinsed pellet of mesospheres is resuspended in the desired 

volume of an aqueous solution containing nanoparticles.  A small volume (10 μL) of the mixture 

of nanoparticles and mesospheres is deposited onto the substrate, e.g. pieces of freshly cleaved 

mica (1×1 cm2).  The droplet of sample is then dried in air at room temperature, with relative 

humidity ranging from 40-70%.  This method is commonly used for preparation of samples for 

SPM referred to as “dropcasting” or drop deposition.  After drying, the larger mesospheres can 

be efficiently and completely rinsed away using ethanol or water, to leave the nanoparticles 

adsorbed to the surface in patterned arrangements which conform to the periodicity of the 

structural template of mesospheres. 

3.3 SPM Characterization and Size Analysis of Nanoparticles 

 For these investigations, CdS nanoparticles were functionalized with cysteine as a 

capping agent.  Samples were analyzed using contact-mode AFM (Figure 3.2) to obtain 

information about the size and dispersity of the nanoparticles.  The topography and frictional 

force images were acquired simultaneously and provide maps of the morphology and surface 

chemistry, respectively.  The cysteine-coated nanoparticles were diluted in water and deposited 

on mica substrates to dry.  The hydrophilic nature of mica provides a means to disperse 

nanoparticles across the surface and to minimize self-aggregation.  Two different size ranges are 

apparent in the AFM images; the smaller adsorbates (less than 0.5 nm) correspond to residues of 

excess cysteine which are present in the parent sample.  Evidence for the differences in surface 

composition of the two materials is provided in the frictional force image of Figure 2B, which 

displays markedly distinct colors for the different materials.  Friction images map changes in 

surface chemistry which result from differences in tip-surface adhesion as the sample is scanned 

by the AFM probe.  For example, the atomically smooth and flat areas of mica reflect a different 
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color contrast than the adhesive areas of cysteine or nanoparticles.  To determine which 

adsorbates are cysteine and which are CdS nanoparticles the topography and frictional force 

images can be compared side-by-side.  Cysteine has approximate dimensions of 0.8 nm, which 

matches well with the thickness of the smaller adsorbates.188  The smaller adsorbate particles 

with a dark color correspond to cysteine residues, whereas the larger particles with a bright color 

are CdS nanoparticles. 

The diameters of the cysteine-coated nanoparticles were measured by acquiring cursor 

measurements of the heights of individual nanoparticles.  In AFM topography images the lateral 

dimensions of nanoparticles are distorted by the geometry of the probes.  However, 

measurements in the z-direction correlate accurately with the nanoparticle diameters.  For the 

sample presented in Figure 3.2A, the average size of the nanoparticles is 1.7 ± 0.7 nm, ranging 

from 0.9 to 3.5 nm in diameter (n = 44). 

 

Figure 3.2. Cysteine-coated CdS nanoparticles dried on mica(0001). (A) Contact mode 
topography image (7 × 7 μm2); (B) corresponding frictional force image; (C) size distribution 
from multiple cursor height measurements. 

3.4 Structural Templates of Latex 

The ex situ steps of patterning with mesospheres and nanoparticles can be characterized 

using AFM throughout the fabrication process.  The top surface of latex mesospheres used as a 
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structural template in two-particle lithography is viewed in Figure 3.3, before the rinsing step.  

Basically the larger spheres provide a rigid structure to direct the arrangement of nanoparticles 

during drying.  As water evaporates from the mixture of two particles (mesospheres and 

nanoparticles) convective forces drive the larger latex or silica spheres to assemble into a close-

packed hexagonal array (Figure 3.3A).143  The periodicity and arrangement of the structural 

templates dictates the surface organization of the nanoparticles (Figure 3.3B).  The nanoparticles 

are pulled towards the surface and surround the larger mesospheres during the drying step.  The 

smaller nanoparticles, which are not visible during this step, migrate to the bottom areas 

surrounding the template spheres.  For monodisperse samples of latex or silica mesospheres, a 

close-packed arrangement is produced spontaneously when solutions are dried on atomically flat 

surfaces. 

 

Figure 3.3. The natural self-assembly of monodisperse latex mesospheres furnish a structural 
template for two-particle lithography, to guide the adsorption of nanoparticles on surfaces. (A) 
AAC mode topograph of 300 nm latex (2.5 × 2.5 μm2); (B) cursor line profile for A. 

The mesospheres mask circular areas of the surface to form a crystalline, close-packed 

structure.  The tightly packed spheres do not fully cover all areas of the surface; small exposed 
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areas in between spheres provide a network of narrow capillary channels for solutions to migrate 

to the surface.  The nanoparticles are carried with the liquid meniscus during the drying step to 

form regular, evenly distributed arrangements of nanoparticles deposited near the base of the 

template mesospheres.  After the surface is rinsed, the mesospheres are completely displaced, 

whereas the nanoparticles persist and are not removed from the surface.  Several factors 

contribute to the facile removal of mesospheres by simple rinsing.  There is relatively weak 

adhesion between the mesospheres and the mica substrate.  The buoyant properties of the spheres 

provide a mechanism for flotation, and the particles swell and expand when water is introduced.  

However, the cysteine-coated nanoparticles remain securely attached to the surface despite 

rinsing, to form a 2D array of circular nanopatterns organized with a periodicity corresponding to 

the diameters of the template mesospheres. 

 After rinsing away the latex structural template for the sample of Figure 3.3, cysteine-

coated nanoparticles remain attached to the surface to form well-defined circular patterns.  The 

geometries and arrangement of the rings are viewed with contact mode topography images in 

Figure 3.4.  The nanopatterns are highly symmetric, with uniform geometries and periodicity 

matching the organization and diameters of the structural templates.  A view of 105 ring 

structures is provided within the 3.3×3.3 μm2 frame of Figure 3.4A.  Scaling up to macroscopic 

dimensions, this would extrapolate to 900 million nanostuctures for a 1×1 cm2 area.  

Approximately 21% of the surface is covered by rings of nanoparticles, estimated using digital 

image analysis.189  The corresponding frictional force image (Figure 3.4B) displays differences 

in surface composition between the rings of nanoparticles and other areas of the surface.  In this 

example, the bright areas have higher friction, resulting from stronger adhesive interactions 

between the tip and rings of cysteine-coated CdS nanoparticles.  Notice that the frictional 
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contrast of the areas between the rings of nanoparticles is different than the dark areas inside the 

circle.  The interstitial areas between the rings of nanoparticles are an intermediate color, and 

correspond to residues of cysteine. 

 

Figure 3.4. Rings of cysteine-coated CdS nanoparticles formed using a structural template of 
300 nm latex mesospheres. (A) Contact mode topography image; (B) corresponding frictional 
force image; (C) zoom-in view of A; (D) line profile for C. 

 A zoom view of the hexagonal arrangement of seven nanostructures (1×1 μm2) is 

presented in Figure 3.4C.  The diameter of the rings measures approximately 180 nm across, and 

there are 9-14 nanoparticles forming each ring.  The average periodicity measures 320 ± 12 nm, 

which closely matches the expected diameter (300 ± 6 nm) of the latex template.  The center-to-
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center spacing between adjacent rings corresponds to the periodicity of the latex; however the 

size of the rings is somewhat smaller.  The diameter of the rings is established by the area of 

contact between the mesosphere and surface.  The uncovered areas of the substrate inside the 

rings of nanoparticles provide a baseline for height measurements.  A representative line profile 

across two ring structures is shown in Figure 3.4D.  The height of the rings measures 5.6 ± 0.9 

nm.  An intermediate height is observed between the rings of nanoparticles, which is attributed to 

clusters of adsorbates of unreacted cysteine.  The ring structures of nanoparticles are uniformly 

distributed throughout areas of the surface, according to the regular periodic arrangement of the 

300 nm latex templates.  The AFM images are representative views of the morphologies 

observed for multiple areas of the surface. 

3.5 Structural Templates of Colloidal Silica 

Mesospheres of colloidal silica can also be used as structural templates for two-particle 

lithography.  Nanopatterns of cysteine-coated CdS nanoparticles were formed using 500 nm 

silica spheres as a template (Figure 3.5).  The diameters of the mesospheres can conveniently be 

 

Figure 3.5. Ring structures of cysteine-coated CdS nanoparticles produced using 500 nm silica 
spheres as a template. (A) Topography image acquired using AAC mode; (B) zoom in view of 
A; (C) line profile for B. 
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used to tailor the periodicity of the arrays of ring structures.  A topographic view is displayed for 

a 4×4 μm2 area of the ring structures of cysteine-coated CdS nanoparticles (Figure 3.5A).  The 

rings have a diameter of 140 ± 12 nm.  The diameters for rings formed with colloidal silica as the 

templating particle are smaller than when polystyrene latex was used.  Colloidal silica spheres 

are more mechanically robust than latex beads.  Polysytrene latex deforms upon drying, which 

increases the contact area between the mesoparticle and the surface, thereby increasing the 

diameter of the ring patterns.138, 190, 191  Approximately 10% of the surface is covered by 

nanostructures.  Twelve rings of nanoparticles are visible within the 2×2 μm2 frame of Figure 

3.5B.  This scales to 300 million nanostructures for a 1×1 cm2 area.  A cross section across two 

ring structures (Figure 3.5C) indicates that the rings measure 1.9 ± 0.6 nm in height, which 

matches the thickness of a single layer of nanoparticles.  Areas between the rings contain 

adsorbates of unbound cysteine.  There are also bright spots interspersed throughout the regions 

between the ring patterns, which are cysteine-coated CdS nanoparticles.  The cross section 

(Figure 3.5C) displays a bumpy baseline, where nanoparticles have filled in the areas of the 

surface between the rings. 

3.6 Changes in Surface Coverage with Different Ratios of Particles 

Structures of continuous films with uncovered regular pores can be produced using 

higher concentrations of nanoparticles.  An example of pore morphologies produced within a 

2.5×2.5 μm2 area using 300 nm latex spheres as the templating mesospheres is shown in Figure 

3.6A.  Forty-seven pores are visible within this image, with an average diameter measuring 210 

± 16 nm.  A height profile of four pore areas is presented in Figure 3.6B.  The edges of the pores 

have a height of 8.5 ± 1.8 nm, which suggests that a multilayer of nanoparticles has formed at the 

edges of the pores.  The areas between the pore structures have heights of several nanometers.  

This thickness corresponds to a layer of cysteine-coated CdS nanoparticles which have filled the 
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interstitial regions of the surface between the ring structures.  The pattern is discontinuous, 

revealing areas of uncovered mica substrate.  As the latex film is dried, the defects of the 

templating film produce imperfections.  Depending on the drying conditions, the shrinkage and 

deformability of latex spheres can produce cracks and shifts in the registry of the patterns. 

 

Figure 3.6. Pore nanostructures within a film of cysteine-coated CdS nanoparticles produced 
using 300 nm latex particles as the template. (A) Topography image acquired with contact mode 
AFM; (B) line profile for A. 

3.7 Discussion 

For two-particle lithography, the natural self-assembly of monodisperse mesospheres 

furnishes a structural template to direct the placement of nanoparticles on surfaces.  Since the 

mesospheres of latex or silica are uniform in size, a close-packed hexagonal arrangement is 

produced spontaneously when aqueous solutions are dried on flat surfaces (Figure 3.3).  The 

tightly packed mesospheres do not fully cover the surface; areas between spheres provide 

channels for aqueous solutions of the cysteine-coated CdS nanoparticles to flow to the surface.  

The cysteine-coated CdS nanoparticles are soluble in water and are carried with the liquid 

meniscus during the drying step, to form rings around the base of the template spheres.  The 
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areas where the mesospheres are in direct contact with the surface are effectively masked.  After 

the template spheres are rinsed away, the structures of cysteine-coated CdS nanoparticles can be 

applied for further surface characterizations or assays. 

A number of complex interactions are involved in the process of generating 

nanostructures with two-particle lithography.  For the protocol to succeed, the nanoparticles 

should exhibit strong adhesion to the surface, whereas the structural templates of mesospheres 

need to adhere weakly.  Two-particle lithography has worked successfully with other systems of 

nanoparticles such as cobalt nanoparticles with an oleic acid and trioctylphosphine oxide192 and 

metal nanoparticles encapsulated with plasmid DNA.43  The adhesion between bare gold 

nanoparticles and the substrate was not sufficiently strong for the nanostructures to remain 

attached to the surface during the rinsing step.  There should be weak or no adhesion between the 

nanoparticles and mesospheres, so that only the template spheres are displaced during the rinsing 

step.  Polystyrene latex spheres and colloidal silica have worked successfully as templates, due to 

their relatively weak adhesion to hydrophilic mica.  Another requirement for two-particle 

lithography is for the substrate to be atomically flat, to minimize defects during the assembly of 

mesospheres.  Thus far, two-particle lithography has been successful with aqueous solutions.  

When organic solvents were tested for two-particle lithography, the samples dried rapidly and 

did not generate ordered arrangements of ring patterns.  Further investigations are in progress to 

evaluate cooled conditions during the drying step, to try different solvents and to test the 

suitability of other substrate materials. 

 Unlike methods of particle lithography with metal evaporation in vacuum, which 

generate periodic arrays of triangular structures, solution-based particle lithography produces 

circular geometries.  The examples presented for two-particle lithography display circular or 
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ring-shaped morphologies when using solution-based approaches for patterning.  These 

nanostructures are quite different from those of previous reports using methods of metal 

evaporation, which disclose triangular or pyramid nanostructures.26  Since solution-based particle 

lithography does not require heated evaporation of metals through a latex mask, the dynamics 

and mechanisms of patterning are dissimilar.  For two-particle lithography, the mesospheres 

serve as a solid structural template during conditions of ambient drying.  As the liquid dries, 

nanoparticles assemble surrounding the base of latex or silica spheres to generate patterns that 

conform to the solid shape of the mesosphere templates.  The resulting nanostructures of two-

particle lithography exhibit circular ring or pore morphologies according to the spherical shape 

of the mesosphere templates.  In contrast, with deposition of heated metal vapors in vacuum, the 

interstitial void areas produce nanostructures with a triangular or pyramidal shape.  For 

evaporative masks of close-packed mesospheres, line of sight deposition such as metal 

evaporation will not be able to deposit materials in the areas masked by spheres, thus triangular 

structures or incomplete rings are generated. 

Two-particle lithography provides a convenient and facile means for controlling the 

surface coverage and density of nanoparticles on surfaces.  Once the solution conditions are 

optimized, replicate samples prepared using a given ratio and particle diameter exhibit 

reproducible morphologies and periodicity.  Surface self-assembly is emerging as an 

indispensable approach for organizing materials at the molecular scale for practical reasons, such 

as low cost, applicability to a wide range of nanomaterials and capabilities for high-throughput 

manufacture of regularly shaped structures.  Two-particle lithography provides a viable approach 

for generating arrays of patterns of nanoparticles using simple steps of bench chemistry (e.g. 

centrifugation, drying, evaporation, rinsing).  Well-defined nanostructures provide precise 
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reproducible dimensions for investigations of surface properties and furnish test platforms that 

are suitable for successive characterizations with SPM. 
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CHAPTER 4.  SURFACE CHANGES DURING THE INITIAL STAGES OF WATER 
CORROSION OF COPPER INVESTIGATED BY ATOMIC FORCE MICROSCOPY:  

ROLE OF pH AND PHOSPHATES 

4.1 Introduction 

The primary source of copper in drinking water is from corroding copper pipes in 

household plumbing.  The solubility of corrosion products which have formed on the interior 

walls of copper pipes determines the level of copper at the consumer’s tap.  In 1991, the 

Environmental Protection Agency issued the Lead and Copper Rule which specifies an Action 

Limit of 1.3 mg/L for copper.48  If the concentration of copper in more than 10% of customer 

taps is above this level, then action must be taken to reduce the concentration of copper.  This 

can be accomplished by adjusting either the pH, alkalinity or by addition of corrosion inhibitors.  

Phosphorous compounds are commonly used as corrosion inhibitors for the protection of metal 

materials.193-197  Orthophosphate and hexametaphosphate have been shown to reduce the soluble 

copper release from corrosion products.198 

Atomic force microscopy (AFM) is a high resolution imaging technique which furnishes 

topographic information about surface changes due to corrosion down to the nanoscale.  Samples 

imaged by AFM can be acquired in ambient, liquid, or UHV environments.  Unlike macroscopic 

corrosion studies which take weeks to months for visible changes to occur, corrosion studies 

using AFM are able to visualize the changes a surface undergoes at the early onset of corrosion.  

High resolution AFM furnishes an experimental approach to directly view the initial events and 

formation of corrosion deposits on a surface.  Previously, AFM has been applied for studies of 

the corrosion of materials such as iron,199 steel,200-202 silver,203 glass204 and copper.205-208  The 

effectiveness of corrosion inhibitors has also been evaluated using AFM investigations.209-211 

The aim of this report was to investigate the early stages of the water corrosion (< 24 h) 

occurring for a copper surface using high resolution AFM.  The evolution of surface changes 
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over time was studied by using ex situ high resolution AFM, time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) and x-ray diffractometry (XRD) as specifically influenced by 

changing pH and orthophosphate levels. 

4.2 Experimental Section 

4.2.1 Copper Sample Preparation 

Pure copper samples (99.9%) were used for the experiments.  The copper surfaces were 

not polished or etched, to simulate the natural conditions of copper plumbing.  Samples of 

copper coupons were cut into 1×1 in2 squares, and cleaned by sonicating for 5 min in 0.5% 

Triton X-100® (Curtis Matheson Scientific, Inc., Houston, TX) followed by ultrasonic cleaning 

in Milli-Q water for 5 minutes.  The copper substrates were then rinsed in acetone and dried in 

air.   

4.2.2 Water Sample Preparation 

Water samples (1 L) of varied conditions were prepared as detailed in Table 1.  The pH 

of the solutions was adjusted with hydrochloric acid and sodium hydroxide using an automated 

titrator system (Fisher Scientific).  Reagents added to the water solutions were prepared from 

ACS reagent grade sodium bicarbonate, sodium sulfate, sodium chloride, sodium hypochlorite, 

and sodium phosphate tribasic (Fisher Scientific).  The initial concentrations of chloride, sulfate, 

phosphate, and other metals were measured with an inductively coupled plasma atomic emission 

spectrophotometer (ICP-AES). 

Table 4.1.  Water conditions for immersion of copper samples. 
Sample   pH  DIC   

(mg/L) 
Sulfate 
(mg/L)

Chloride  
(mg/L) 

Chlorine 
(mg/L) 

Orthophosphate 
(mg/L) 

1 9  10  120 60 3 0  
2  9  10  120 60 3 6  
3  6.5  10  120 60 3 0 
4  6.5  10  120 60 3 6  
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4.2.3 Experimental Setup 

Copper samples were suspended by a nylon string in a 1 L glass beaker of water sample 

with selected chemistry.  The beaker was covered with parafilm and the water was stirred at a 

slow rate.  After a certain time interval (4 h or 24 h), the copper samples were removed from the 

water and dried in air.  After drying, the samples were analyzed by AFM. 

4.2.4 Surface Analysis 

An Agilent 5500 scanning probe instrument equipped with PicoScan version 5.4 software 

was operated in acoustic AC (AAC) mode and used to aquire AFM images.  Tapping mode tips 

were obtained from Nanosensors (Neuchatel, Switzerland), and had average resonance 

frequencies ranging from 155 – 170 kHz. 

A Scintag (Santa Clara, CA) XDS-2000 diffractometer with a copper x-ray tube was used 

to acquire x-ray patterns.  The tube was operated at 35 or 40 kV and 40 mA.  Scans were 

performed over a 2-theta range between 5 to 90º with a step of 0.02º and a 2 second hold time.  

Pattern analysis was performed using the MDI Jade XRD pattern processing computer software 

in conjunction with the ICDD PDF-2 2002 database. 

A CAMECA (Gennevilliers, France) ION-TOF model IV instrument equipped with a 25 

keV liquid metal (69Ga) ion gun was used for ToF-SIMS analysis.  A flood gun was used for 

charge neutralization.  A 100 × 100 μm2 area of the corroded copper samples was analyzed for 

the chemical composition on the surface and depth profiling from the top down.  The mass 

spectra generated are used to determine the composition of sample surface constituents. 

4.2.5 Data Analysis 

Calculation of the RMS roughness (Rrms) were accomplished using Gwyddion (version 

2.10) open source software supported by the Czech Metrology Institute, which is freely available  
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on the internet.212  The RMS roughness is calculated using the following equation: 

 

Where Zi is the height of each data point, Z bar is the average of all height values in the image, 

and n is the number of data points within the image.  Estimates of surface coverage were 

obtained with UTHSCA Image Tool for Windows version 3.00.213 The percentage of colored 

pixels was determined subjectively to provide estimates of surface coverage.  The topography 

images were converted to grayscale bitmaps and a threshold value was selected visually for 

conversion to black and white pixels. 

4.3 Results and Discussion 

4.3.1 Images of the Cleaned Copper Surface before Water Immersion 

As a frame of reference, AFM topography views the surface of a freshly cleaned copper 

substrate are presented in Figure 4.1, providing a baseline for comparison to treated surfaces.  

Surface changes that occur at both the micro- and nanoscale can be characterized with AFM.  

Figure 1 exhibits successive zoom-in views ranging from 30 µm to 850 nm for scan sizes.  Tall 

features are displayed as bright areas and shallower features are shown with dark colors.  Several 

dark grooves or scratches which result from the manufacturing process are apparent in the AFM 

images, which are oriented in the vertical direction.  The depth of the grooves ranged from 20 to 

190 nm for the copper control surface viewed in Figure 4.1.  For convenient comparison of 

various surface treatments, the AFM scan direction was consistently chosen to align the grooves 

vertically.  Multiple areas of the samples were characterized, and the images presented display 

representative morphologies of the entire sample.  A high resolution view (0.85×0.85 µm2) of the 
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Figure 4.1. A clean copper surface viewed with contact mode AFM.  Successively acquired 
images at different magnifications (A) 30×30 µm2; (B) 10×10 µm2; (C) 0.85×0.85 µm2; (D) 
cursor profile for the line in C. 

copper surface is presented in Figure 4.1C, for a relatively flat area of the sample with few 

scratches.  The roughness for this selected area measured 2.4 nm, which is relatively smooth.  A 

cursor line across the image (Figure 4.1D) displays a representative height profile in the range of 

10-15 nanometers. 

4.3.2 Surface Changes Observed at pH 9, Without or With Orthophosphate 

The effects of corrosion for a copper substrate that was immersed in the conditions of 

sample 1 (pH 9) after 6 h or 24 h are viewed in Figure 4.2.  Changes that have taken place after 6 

h are shown in the top row of images (Figures 4.2A-2C); the bottom panels were acquired after 

24 h immersion (Figures 4.2E-2G).  Small clusters of adsorbates are observed, scattered 

throughout areas of the surface that were not evident for the control sample of Figure 4.1.  The 

heights of the clusters range from 37 to 92 nm, and cover roughly 3% of the copper surface; 

lateral dimensions range from 160 to 460 nm.  A cursor line profile (Figure 4.2D) indicates the 

height of the clusters in Figure 2C measures from 62 to 85 nm. The adsorbates result in an 

increase in overall surface roughness compared to the control sample.  The roughness (Rrms) 

measures 28 nm for the area presented in Figure 4.2C. 
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Figure 4.2. Copper surface after immersion in water sample 1 at pH 9.  Zoom-in AFM views 
after 6 h for (A) 20×20 µm2; (B) 10×10 µm2; (C) 5×5 µm2; (D) line profile for C.  Changes after 
24 h immersion for areas of (E) 20×20 µm2; (F) 10×10 µm2; (G) 5×5 µm2; (H) line profile for G. 

The surface changes became more prominent after 24 h of immersion in water sample 1.  

Larger clusters with greater surface coverage are visible in Figures 4.2E-2G.  The adsorbates 

range in height from 170 to 390 nm, and cover 42% of the surface.  A cursor line across several 

of the clusters show heights of 200-350 nm (Figure 4.2H) leading to an increase in RMS 

roughness of 95 nm. 

The water conditions for Figure 4.3 are nearly the same as in Figure 4.2, except for  

adding orthophosphate.  With addition of 6 mg/L orthophosphate at pH 9, distinct differences in 

surface morphology are produced as shown in Figure 4.3.  After 6 h, the sample exhibits small 

adsorbed clusters that are randomly distributed across areas of the surface (Figures 4.3A-3C).  

The clusters range in height from 40 to 74 nm, and cover approximately 6% of the surface.  The 
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Figure 4.3. Copper surface after treatment with water sample 2 at pH 9 containing 6 mg/L 
orthophosphate.  Contact-mode AFM topographs after 6 h of immersion: (A) 20×20 µm2; (B) 
10×10 µm2; (C) 5.3×5.3 µm2; (D) cursor profile for the line in C.  Successive zoom views after 
24 h of immersion: (E) 20×20 µm2; (F) 9.7×9.7 µm2; (G) 5×5 µm2; (H) line profile for G. 

RMS roughness measures 19 nm for the area of Figure 4.3C, which is comparable to the 

roughness of Figure 4.2C.  The cross section in Figure 4.3D indicates that the adsorbates are 

shorter than those of Figure 4.2, measuring less than 100 nm in height.   

After 24 h of immersion under conditions of pH 9 with 6 mg/L orthophosphate, the 

surface has been substantially changed.  The entire surface of the copper substrate is covered by 

small adsorbates.  The heights of the clusters measure approximately 50 nm or larger, however 

there are no uncovered areas of the substrate to reference as a baseline for cursor profiles.  The 

surface roughness of Figure 4.3G measured 30 nm, however this value does not reflect changes 

relative to the bare copper.  As compared to the surfaces of Figure 4.2 after 24 h, the deposits for 
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Figures 4.3E-H are smaller but are adsorbed throughout the surface to fully maximize the surface 

coverage. 

4.3.3 Changes for Copper Surfaces Immersed in Water at pH 6.5 

Copper surfaces were similarly immersed in water at pH 6.5 with different levels of 

orthophosphate for 6 and 24 h.  The surface changes are presented in Figures 4.4A-C after 6 h of 

immersion in water sample 3 without addition of orthophosphate, and Figures 4.4E-G display the 

changes after 24 h.  Angular crystalline adsorbates are distributed throughout areas of the surface 

after 6 h (Figures 4.4A-C).  These crystals nearly cover the entire surface (80%) and measure 

290 to 410 nm in height.  With a close-up view in Figure 4.4C, the crystals are shown to have a 

 

Figure 4.4. Surface changes after immersion in water sample 3 at pH 6.5.  After 6 h: (A) 20×20 
µm2; (B) 10×10 µm2; (C) 5×5 µm2; (D) line profile for C. After 24 h of water exposure: (E) 
20×20 µm2; (F) 9.1×9.1 µm2; (G) 4.5×4.5 µm2; (H) line profile for G. 
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highly regular geometry with little variability in size at the nanoscale.  There are approximately 

33 crystals within the 5×5 µm2 area of Figure 4.4C, and the RMS roughness measures 108 nm.  

The heights of the crystals range from 250 to 400 nm along the representative line profile of 

Figure 4.4D. 

The copper surface exhibits near saturation coverage of a crystalline film after 24 h of 

immersion in water sample 3 (Figure 4.4E-G).  Larger crystals have formed and there is a greater 

polydispersity for the crystal sizes.  The surface density of adsorbates has increased; there are no 

longer gaps in between the angular particles.  A few small holes are present within the layer of 

crystals, providing a baseline for measuring changes in the height of the crystalline layer.  There 

are two oval shaped areas of bare copper in the upper right quadrant of Figure 4.4E which 

provide an in situ landmark for the zoom views of Figures 4.4F and 4.4G.  Comparing the 

topography frames, the shape of the grooves of the underlying copper surface (oriented in the 

vertical direction) can be distinguished.  Larger crystals appear to have formed within the 

grooves than on the flatter surface areas, likely attributable to confinement within narrow 

channels.  The RMS roughness for the area defined in Figure 4.4G measures 74 nm. 

To determine the composition of the crystalline features on the surface observed in 

Figure 4.4, x-ray diffraction (XRD) was performed on the copper substrates.  The XRD spectrum 

obtained for the sample immersed for 6 h in water sample 3 is presented in Figure 4.5.  Several 

large peaks which predominate the XRD spectrum result from the bulk composition of the Cu 

substrate.  The smaller peaks observed for the spectrum arise from a minor surface contribution 

of Cu2O, cuprite, to the overall diffraction pattern. 
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Figure 4.5. XRD spectrum of a copper surface after immersion in water sample 3 for 6 h.  

 The XRD spectrum obtained for the sample immersed in water sample 3 for 24 

hours is shown in Figure 4.6.  This spectrum is similar to the spectrum seen in Figure 4.5, 

however the peaks resulting from the presence of Cu2O are greater in magnitude.  This correlates 

well with the AFM results presented in Figure 4.4 which show that the surface was almost fully 

saturated with crystalline features after immersion in water sample 3 for 24 h.  The density, 

coverage and thickness of the surface structures increased after longer immersion.  This data 

indicates that crystals of cuprite have grown on the copper surface when immersed in water 

sample 3. 
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Figure 4.6. Diffraction spectrum of a copper surface immersed for 24 h in water sample 3. 

The changes for a copper surface after immersion in water sample 4 at pH 6.5 containing 

6 mg/L orthophosphate are shown in Figure 4.7.  Comparing the AFM topographs of Figure 4.7 

with the control sample of Figure 4.1, significant changes are evident throughout all areas of the 

surface. The morphology has changed from mixed domains of relatively smooth flat areas to 

exhibit a granular coating of small spherical structures.  As the scan area is magnified in Figures 

4.7B and 4.7C, the surface is covered with a dense network of chains of round clusters.  The 

nanostructures measure from 35 to 62 nm in height and lateral dimension.  The roughness 

measurement of Figure 4.7C indicates a relatively smooth surface, Rrms = 24 nm because the very 
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Figure 4.7. Copper surface after immersion in water sample 4 at pH 6.5 containing 6 mg/L 
orthophosphate.  After 6 h of treatment: (A) 20×20 µm2; (B) 10×10 µm2; (C) 3×3 µm2; (D) line 
profile for C. Topography images after 24 h of immersion: (E) 25×25 µm2; (F) 12×12 µm2; (G) 
4×4 µm2; (H) line profile for G. 

small clusters are densely packed and expose few gaps or valleys.  The cursor profile of Figure 

4.7D correspondingly exhibits little surface corrugation. 

Further surface changes become apparent after 24 h of immersion in water sample 4 (pH 

6.5, 5 mg/L orthophosphate) as shown in Figures 4.7E-G.  The smaller grooves and scratches 

have begun to fill in, and a few larger adsorbates are scattered across the surface.  The size of the 

larger clusters ranges from 78 to 230 nm.  The larger features maintain a round geometry, and 

higher magnification views of Figures 4.7F and 4.7G show that the larger structures are actually 

aggregates of several smaller clusters.  The RMS roughness measures 16 nm for the area framed 

in Figure 4.7G, which is slightly smaller than that for Figure 4.7C.  Differences in the roughness 

of the underlying substrate are quite variable at the nanoscale.  When the changes in roughness 
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are quite small, the RMS parameter is not the best indicator for comparison.  A representative 

line profile across Figure 4.7H demonstrates an increase for the heights of the surface structures, 

reaching 75 nm in dimension.  

To evaluate the effects of the addition of the corrosion inhibitor orthophosphate, XRD 

was performed on the copper surfaces presented in Figure 4.7.  The XRD spectrum of the sample 

immersed for 6 hours in water sample 4 is displayed in Figure 4.8.  Unlike the diffraction pattern 

presented in Figure 4.5, there are no peaks apparent which correspond to the pattern for Cu2O. 

 

Figure 4.8. XRD spectrum for a copper sample immersed in water sample 4 for 6 h. 

 After 24 h of immersion in water sample 4, the XRD spectrum for the copper surface 

does not evidence further changes, as shown in Figure 4.9.  Similar to the sample immersed for 6 
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h, there are no peaks in this spectrum which correspond to the diffraction pattern of Cu2O.  This 

shows that the addition of orthophosphate to a water having pH 6.5 inhibits the formation of 

cuprite on the surface of copper. 

 

Figure 4.9. XRD spectrum of a copper surface immersed in water sample 4 for 24 h. 

  Changes in the morphology of copper surfaces caused by water corrosion can be readily 

observed using AFM, within a few hours of exposure to the water solutions.   For the four water 

samples tested, morphology differences are readily apparent at the nanoscale.  The shapes, sizes 

and distribution of adsorbates across the surface are influenced by the parameters of pH and 

orthophosphate concentration.  Even small changes in pH substantially affect the resulting 

surface morphology.  For example, crystalline surface structures were detected in the absence of 
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orthophosphates at pH 6.5, whereas at alkaline pH 9 the shape of the clusters was more spherical 

and smaller in dimension.   

Comparing the samples of water containing orthophosphate, (water samples 2 and 4) the 

sizes of the clusters formed throughout areas of the surface were smaller and more 

homogeneous, as revealed in the topographs of Figures 4.3 and 4.7.  Differences could be 

detected within the first 6 h of water immersion for Figure 4.3A-C versus Figures 4.7A-C, there 

was considerably less surface coverage of round clusters at pH 9.  However, after 24 h of water 

treatment with orthophosphate, at either pH 6.5 or 9 the surfaces are strikingly similar with 

saturation coverage of adsorbates of uniform dimension. 

Through XRD analysis, the chemical composition of the crystalline features formed on 

the copper surface immersed in water sample 3, water with pH of 6.5 and containing no 

orthophosphate, was determined to be Cu2O.  The formation of Cu2O was inhibited by the 

addition of orthophosphate as indicated by the XRD spectra for a copper surface immersed in 

water sample 4, water with pH 6.5 containing 6 mg/L orthophosphate, displayed in Figures 4.8 

and 4.9. 

Further analysis of the chemical composition of the corrosion by-products that formed on 

the surface of the copper samples was accomplished using time-of-flight secondary ion mass 

spectrometry (ToF-SIMS).  This supplemental data is reported in Appendix C. 
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CHAPTER 5.  IMPACT OF pH, DISSOLVED INORGANIC CARBON, AND 
POLYPHOSPHATE FOR THE INTIAL STAGES OF WATER CORROSION OF 

COPPER SURFACES INVESTIGATED BY AFM 

5.1 Introduction 

 The degradation of metal pipelines in water distribution systems caused by corrosion is 

an important research focus towards controlling corrosion and for reducing the release of 

deleterious metals into drinking water.  The mechanisms of aqueous copper corrosion as 

influenced by various combinations of anions such as chloride, sulfate, bicarbonate, silicate, 

phosphate and calcium have not been thoroughly investigated at the nanometer scale.  Studies of 

the early stages of water corrosion (< 24 h) occurring for a copper surface, as specifically 

influenced by changing pH, ions and orthophosphate levels will provide insight towards 

developing water treatment chemistries which minimize the corrosive effects of water on metal 

distribution systems.   

 Copper originates naturally in rock, soil, water, sediment, and air, and is often used for 

water pipes in household plumbing.  Corrosion of metal plumbing in water distribution pipelines, 

valves, and fixtures leads to the release of copper ions into water samples and produces deposits 

of corrosion by-products on the interior walls of metal pipes.   Corrosion can be detrimental to 

the quality of public drinking water, by releasing metals such as copper into water.48 Though a 

small amount of copper is required by the human body as an essential nutrient, long-term 

exposure to elevated levels of copper in drinking water may cause serious health problems.  

Acute ingestion of high levels of copper have been shown to cause gastrointestinal disturbance, 

such as nausea and vomiting.  Using water with elevated levels of copper over many years may 

cause damage to the liver or kidneys.  In 1991, the USEPA published the Lead and Copper Rule 

in the National Primary Drinking Water Regulations (also referred to as the LCR or 1991 Rule).  

The Lead and Copper Rule requires that lead and copper levels in drinking water be minimized 
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in public water utilities.  An action level of 1.3 mg/L was established for copper for water 

samples standing for more than six hours. 

 Phosphorous compounds often are used to inhibit corrosion and to protect metal 

surfaces.193-197  Orthophosphate and hexametaphosphate have been shown to reduce the soluble 

copper release from corrosion products.198 Aminophosphonic acid has been shown to inhibit 

corrosion of iron surfaces.214 

 Atomic force microscopy (AFM) provides 3D topographic information for a wide range 

of surface materials with micron to nanometer resolution. Increasingly, AFM is being applied for 

corrosion studies to gain insight on local changes of metal surfaces.  High resolution AFM 

provides highly sensitive measurements for systematically investigating changes, enabling one to 

control a wide range of experimental parameters for surface treatments. For example, for in situ 

studies of corrosion inhibitors were investigated for different media using AFM.202, 215-218 Surface 

studies with AFM have been used to investigate corrosion of materials such as copper205-208, 219 

steel,200, 201 iron199, 220 and silver.203  

 In this report, the effects of pH and polyphosphate levels combined with high levels of 

dissolved inorganic carbon were examined using AFM, secondary ion mass spectrometry (SIMS) 

and X-ray diffraction (XRD) analyses to gain insight on mechanisms of corrosion for copper 

surfaces.  Differences in the structure and morphology were readily observed within 6 to 24 

hours of exposure to various water samples, forming by-products and mineral deposits on copper 

surfaces.  Substantial differences in surface morphology at different pH levels were also 

observed at the nanoscale, for water samples within the normal pH range of tap water samples. 
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5.2 Materials and Methods 

5.2.1 Surface Preparation 

 Scanning probe studies require surfaces which are clean and relatively smooth for 

viewing small changes.  The samples used in these experiments were pure copper (99.9%) cut 

into 1×1 in2 squares.  To remove possible impurities or surface contaminants, copper samples 

were cleaned by sonication for 5 minutes in 0.5% Triton X-100® in water (Curtis Matheson 

Scientific, Inc., Houston, TX).  This was followed by ultrasonic cleaning in deionized water 

(Milli-Q, 18 megaohm) for 5 minutes.  After sonication, the copper surfaces were rinsed in 

acetone and dried in air. 

5.2.2 Water Sample Preparation 

The water conditions for these experiments are summarized in Table 5.1.  The pH of the 

solutions was controlled with an automated titrator system using hydrochloric acid and sodium 

hydroxide (Fisher Scientific).  Reagents added to the solutions were sodium bicarbonate, sodium 

sulfate, sodium chloride, sodium hypochlorite (Fisher Scientific), and sodium 

hexametaphosphate (Mallinckrodt Chemicals).  Initial concentrations were measured using 

inductively coupled plasma atomic emission spectrophotometry. 

Table 5.1.  Water conditions for copper sample immersion. 
Sample   pH  DIC   

(mg/L) 
Sulfate  
(mg/L)

Chloride  
(mg/L) 

Chlorine 
(mg/L) 

Hexametaphosphate 
(mg/L) 

1 9 100  120 60 3 0 
2  6.5  100  120 60 3 0
3  9 10  120 60 3 6
4  6.5  10  120 60 3 6 

 

5.2.3 Experimental Setup 

Copper samples were immersed in 1 L of water sample by suspension with a nylon string.  

The solutions were stirred at a slow rate with a magnetic stir bar and covered with parafilm.  
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After either 6 or 24 h of immersion, the samples were removed and dried in air for analysis using 

AFM. 

5.2.4 Atomic Force Microscopy 

An Agilent 5500 scanning probe microscope equipped with Picoscan v5.4 software 

(Agilent Technologies, Tempe, AZ) was used to aquire images in Figures 5.3 and 5.4.  A Veeco 

Bioscope system (Veeco Instruments Inc., Plainview, NY) was used to aquire the images 

presented in Figures 5.1 and 5.2.  Digital images were processed using Gwyddion (version 2.13) 

open source software, which is freely available on the Internet and supported by the Czech 

Metrology Institute.187  Images were acquired in ambient conditions using acoustic AC (tapping) 

mode.  Tapping mode tips were obtained from Nanosensors (Neuchatel, Switzerland), and had 

average resonance frequencies ranging from 155 – 170 kHz. 

5.3 Results 

 Studies of the early stages of water corrosion, as specifically influenced by selected 

parameters of pH, alkalinity, anions and orthophosphate levels were accomplished by immersing 

cleaned pieces of copper in various water samples for either 6 or 24 h.  After samples were 

removed and dried, AFM images were used to directly visualize the nucleation and growth of 

metal deposits, corrosion by-products or the formation of pits.  Topographic views of samples 

that were prepared under controlled aqueous conditions provide insight for the role of pH and 

water parameters for the passivation or corrosion events which take place at the onset of copper 

corrosion.  

5.3.1 Cleaned Copper Sample before Immersion in Water 

To provide a control sample as a frame of reference for surface changes, AFM images 

were acquired for a cleaned copper sample before water immersion.  Figure 5.1 displays the 

surface of a copper sample after it was cleaned.  Vertical grooves or scratches aligned in a 
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vertical direction are shown in the successive zoom-in views of Figures 5.1A to 5.1C, which 

measure different depths ranging from 52 to 256 nm.  The grooves are spaced at variable 

intervals, spanning distances from 1 to several microns.  There are also small pits and scars 

scattered randomly throughout the sample surface, which contribute to a moderately rough 

surface.  All of the AFM images acquired for subsequent samples in this report were oriented to 

view a similar vertical direction, to enable convenient comparison.  Multiple areas of the samples 

were analyzed, and the views shown in Figure 5.1 are representative of the morphology for areas 

throughout the entire copper surface.  The RMS roughness for a relatively smooth region of 

Figure 5.1C measures 2.4 nm.  This value is comparable to previous reports of surface roughness 

for copper surfaces.209 

 

Figure 5.1. Surface views of a clean copper sample displaying different magnifications.  
Tapping mode topographs for areas of (A) 40×40 µm2; (B) 8×8 µm2; (C) 1×1 µm2; (D) cursor 
profile for the line in C. 

5.3.2 Effects of High Carbonate Alkalinity at pH 6.5 versus 9 

Dissolved inorganic carbon (DIC) is the sum of inorganic carbon species and includes 

contributions of carbon dioxide, carbonic acid, bicarbonate and carbonate anions.  Most of the 

total alkalinity of natural waters results from the carbonate alkalinity of DIC.  In previous 

reports, alkalinity has been shown to mitigate the corrosive effects of water and protect copper 
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surfaces.(Lytle et al.)  For a direct assessment of the effects of high alkalinity on copper surfaces, 

water sample 1 was prepared at pH 9 with a relatively high DIC level of 100 mg/L.  Successive 

zoom-in views of the copper surface after 6 and 24 h at high alkalinity are presented in Figure 

5.2, in which the DIC originated from dissolved sodium bicarbonate.  The top row (Figures 

5.2A-C) shows the surface changes after immersion for 6 h, and the bottom row (Figures 5.2D-F) 

shows the topography after 24 h.  The images disclose scattered arrangements of round 

protrusions or clusters of carbonate by-products, formed at the surface-liquid interface.  There 

was no evidence of pits or holes being formed within this time frame, and successive magnified 

views of Figures 5.2B and 5.2C reveal that the entire surface is covered with regular sized 

 

Figure 5.2. Copper surface after immersion in water sample 1 at pH 9 with 100 mg/L DIC.  
Zoom in magnified views after 6 h for (A) 20×20 µm2; (B) 10×10 µm2; (C) 5×5 µm2; (D) line 
profile for C.  Changes after 24 h for areas of (E) 20×20 µm2; (F) 10×10 µm2; (G) 5×5 µm2; (H) 
line profile for G. 
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clusters ranging from 25 to 63 nm.  A representative line profile in Figure 5.2D indicates the 

heights for two large adsorbates measure 48 and 55 nm.  The overall roughness of the sample has 

increased; the area in Figure 5.2C evidenced an RMS roughness measuring 13 nm. 

After 24 h of immersion in water sample 1, the surfaces display similar morphologies for 

carbonate clusters, however at higher density.  A few larger clusters have attached to the surface, 

exhibiting heights ranging from 48 to 135 nm.  The taller adsorbates are actually aggregates of 

smaller clusters, as revealed in the zoom-in AFM views of Figures 5.2F and 5.2G.  A 

representative cursor profile across Figure 5.2G shows that the heights of the surface protrusions 

have increased in size, in comparison to Figure 5.2C. 

 Water sample 2 was prepared at pH 6.5 to match the composition of sample 1, for a direct 

comparison of pH effects for copper surfaces exposed to high DIC levels.  There are 

considerable differences in surface morphology after immersion in water sample 2, as shown in 

the AFM topographs of Figure 5.3.  The upper row (Figures 5.3A-C) displays images for a 

sample that was immersed in water sample 2 for 6 h, and the second row (Figures 5.3E-G) shows 

the changes after 24 h immersion.  Large, angular crystalline nanostructures are evident for the 

sample prepared at pH 6.5.  The large crystals shown in the upper row of images have heights 

ranging from 432 to 723 nm, and cover approximately 20% of the surface.  The RMS roughness 

has increased to 164 nm.  The facets and angular morphology of the crystals can be readily 

recognized as salt crystals resulting from the precipitation of sodium salts at lower pH. 

 After 24 h immersion in water sample 2, the surface coverage and density of crystals has 

increased in comparison to the 6 h sample.  The heights of the structures range from 210 to 580 

nm and the surface coverage has increased to approximately 56% of the total area.  The RMS 

roughness of the 24 h sample measured 166 nm. 
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Figure 5.3. Surface changes of copper substrate after immersion in water sample 2 with pH 6.5 
and 100 mg/L DIC.  AFM topographs after immersion for 6 h for areas of (A) 30×30 µm2; (B) 
20×20 µm2; (C) 10×10 µm2; (D) line profile for C.  After 24 h for areas of (E) 40×40 µm2; (F) 
20×20 µm2; (G) 10×10 µm2; (H) line profile for G. 

5.3.3 Surface Changes with Addition of Hexametaphosphate at pH 6.5 and 9 

When hexametaphosphate was added in the water solutions, at a lower alkalinity level of 

10 mg/L DIC, considerably different morphologies were observed for the copper surfaces.  

Figure 5.4 displays images of the surface changes for a copper surface immersed in water sample 

3 (pH 9, 6 mg/L hexametaphosphate, 10 mg/L DIC).  The top row (Figures 5.4A-B) shows a 

sample that was immersed in water sample 3 for 6 h, and the bottom row of images (Figures 

5.4D-E) shows views of a sample immersed for 24 h.  After 6 h of sample immersion, round 

plateau-like features become apparent in Figure 5.4A, however these structures appear to be 

protrusions that are integrated within the surface and are derived from the copper landscape.  The 

dimensions of the round plateaus range to as large as 0.72 to 1.25 µm in size.  The protrusion 
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nanostructures do not appear to be attached to the surface, rather, a predominant high surface 

coverage of pits and valleys have become evident in the zoom-in views of Figure 5.4B.  The pits 

seen in this image have depths of 18 to 50 nm.  The surface morphologies reveal the onset of 

changes attributable to corrosion.  The RMS roughness for the topograph of Figure 5.4B 

measures 11 nm. 

 After 24 h immersion in water sample 3, the pitting became more predominant and 

 

Figure 5.4. Changes due to corrosion for a copper surface after immersion in water sample 3 at 
pH 9 with 6 mg/L polyphosphate and 10 mg/L DIC.  Surface views after 6 h for areas of (A) 
11.4×11.4 µm2; (B) 5×5 µm2; (C) line profile for B.  After 24 h of immersion:  (D) 11.4×11.4 
µm2; (E) 5×5 µm2; (F) line profile for E. 
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clearly apparent throughout areas of the surface.  Instead of the relatively smooth, continuously 

flat surface of Figure 5.1 (RMS roughness measured 2.4 nm), the surface areas show a high 

density of multiple pits and valleys have formed.  There is no evidence of loosely attached 

adsorbates or deposits formed for these water conditions, rather the surface shows new shapes of 

valleys and protrusions throughout the sample areas.  The evidence of pitting is especially visible 

in Figure 5.4D when put side-by-side with to a comparable area of the control sample of Figure 

5.1B.  The line profile of Figure 5.4F indicates the surface corrugation ranges from 15 to 60 nm.  

The roughness after 24 h increased to 15 nm for the surface immersed in water sample 3. 

The effects of hexametaphosphate for treating a copper surface at pH 6.5 (6 mg/L 

hexametaphosphate, 10 mg/L DIC) are shown in the AFM images of Figure 5.5.  The upper 

images (Figures 5.5A and 5.5B) display changes for a sample immersed in water sample 4 for 6 

h and the bottom row (Figures 5.5D and 5.5E) presents views for a sample immersed under the 

same conditions for 24 h.  After 6 h immersion, the surface displays both the formation of 

surface deposits as well as an increase in pitting corrosion.  Round adsorbates of various sizes 

and shapes have formed throughout areas the copper surface.  The adsorbates are smooth and 

round, with a globular shape. Pitting is also evident for the zoom-in view of Figure 5.5B, 

evidencing a continuous coverage of the surface with small pits that are 20 to 40 nm deep.  The 

globular nanostructures measure 25 to 61 nm in dimension, and the RMS roughness measured 14 

nm for the area framed in Figure 5.5B. 

A new surface morphology evolved after immersion in water sample 4 for 24 h.  The 

smooth globular shapes have been replaced with compact clusters of aggregated nanoparticles, as 

well as an increase in depth and density for pinhole pits (Figure 5.5D). The surface changes 

result from the interplay of corrosive etching and the adsorption of nanoparticle deposits.  From 
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the zoom-in view presented in Figure 5.5E, there are many aggregated clusters of small 

adsorbates attached at the sites of grooves and crevices on the surface.  The clusters of 

nanoparticles measure from 15 to 71 nm in height, and the RMS roughness increased to 22 nm 

(Figure 5.5E). 

 

Figure 5.5. Changes for a copper surface after immersion in water sample 4 at pH 6.5 with 6 
mg/L polyphosphate and 10 mg/L DIC.  Surface changes after 6 h for (A) 10×10 µm2; (B) 5×5 
µm2; (C) line profile for B.  After 24 h of exposure for areas of (D) 18.3×18.3 µm2; (E) 5.6×5.6 
µm2; (F) line profile for E. 

5.4 Discussion 

 Side-by-side comparisons of the AFM images of various surface treatments at different 

immersion intervals provide new insight on the role of polyphosphates, DIC and pH in surface 
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passivation or corrosion.  As a frame of reference, the untreated surface of Figure 1 can be 

compared to each of the sets of AFM images, providing a baseline of the expected surface 

morphology for untreated copper.  Evidence of an increase in pitting was not observed for 

surfaces treated with water samples 1 (pH 9) and 2 (pH 6.5), with the addition of 100 mg/L DIC, 

thus increased alkalinity from bicarbonate was demonstrated to inhibit corrosion of copper in 

agreement with previous reports.  The AFM images in Figures 5.2 and 5.3 display the surface 

deposits of different chemical nature, however there was no clear evidence of an increase in the 

density of surface pits due to corrosion.  The facets and angular morphology of the crystals 

viewed in Figure 5.3 can be attributed to the precipitation of salt crystals. 

 Changes due to corrosion were observed for the surfaces of copper which occurred at 

lower levels of DIC, even with the addition of hexametaphosphate, as disclosed in the AFM 

images of Figures 5.4 and 5.5.  Changes attributable to corrosive pitting were more readily 

apparent and advanced at pH 9 than was observed for surfaces treated at pH 6.5.  An interchange 

between particulate deposition and corrosive pitting was evident for surfaces treated with water 

sample 4 at pH 6.5.  Understanding the chemical composition of the surface adsorbates through 

XRD or SIMS characterizations will provide a clearer picture of the nature and mechanism of 

copper corrosion as well as the routes for producing passivating surface layers of mineral 

deposits. 

5.5 Conclusion 

 When one considers the complex interactions at the surface-liquid interface of copper for 

various pH and water treatment conditions, a great deal of research remains to be addressed.  

Although we have judiciously chosen certain concentrations of DIC and polyphosphates for 

these initial investigations, rich information about the evolution of surface structures can be 
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gained by investigations with incremental changes in pH, solution concentration and immersion 

intervals.  This report furnishes a practical framework and starting point for selecting 

experimental parameters which markedly influence the surface changes that occur during water 

corrosion.  By combining approaches for qualitative and quantitative surface characterizations, a 

predictive molecular-level model can be developed for understanding the interplay between 

anions, salts, organic agents, DIC and pH for processes of surface corrosion and passivation. 
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CHAPTER 6.  SYNOPSIS AND FUTURE PROSPECTUS 

 There is an emerging requirement for robust, inexpensive lithography methods for the 

high throughput fabrication of nanostructures.  In Chapter 3, “two-particle” lithography was 

demonstrated as a facile route for producing well-ordered arrays of rings of nanoparticles.  The 

new method requires only simple bench chemistry techniques of mixing, centrifuging, 

evaporation, and rinsing.  Two-particle lithography was first demonstrated using cysteine-coated 

CdS quantum dots to produce regular arrays of ring-shaped nanostructures spanning micron-

sized areas.  Since this development, the approach for two-particle lithography has been 

generically applied for preparing nanopatterns of several other systems of nanoparticles.  

Investigations are in progress which apply the capabilities of two-particle lithography to generate 

well-defined test platforms of nanomaterials such as metal nanoparticles which were synthesized 

by templating with plasmid DNA,221-223 magnetite nanoparticles with various organic shells,224 

cobalt nanoparticles with surface coating terminated with oleic acid and trioctylphosphine 

oxide,225 ferritin proteins which have a protein cage encapsulating an iron nanoparticle core226 as 

well as nanoparticles derived from ionic liquids.227 The dimensions of nanostructures produced 

via two-particle lithography are tunable by selecting different sizes of templating spheres of 

either latex or silica.  The arrays of nanostructures produced by two-particle lithography provide 

precise, reproducible dimensions for nanoscale investigations of surface properties, furnishing 

well-defined test platforms that are suitable for successive characterizations with scanning probe 

microscopy. 

Understanding the dependence of magnetic properties and the size scaling effects at the 

nanoscale is important for both understanding the behavior of existing nanomomaterials as well 

as for the advancement in the development of new materials.  A newly developed atomic force 

microscopy imaging mode referred to as magnetic sample modulation (MSM) was developed for 
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mapping and measuring the vibrational response of magnetic nanomaterials on surfaces when the 

flux of an alternation electromagnetic field is applied to samples.  The new atomic force 

microscopy (AFM) imaging mode was first demonstrated for micropatterned stripes of iron 

oxide nanoparticles, as described in Chapter 2 in Figure 2.10.  An alternating flux of an AC-

generated electromagnetic field was used to induce vibration of magnetic nanomaterials on 

surfaces.  The vibration is sensitively detected using channels of a lock-in amplifier.  The MSM 

imaging technique provides practical and innovative strategy for mapping and measuring the 

magnetic forces of metal nanoparticles, and establishes a new benchmark in resolution and 

sensitivity for AFM characterizations of magnetic nanomaterials, at the level of detecting the 

magnetic response of individual nanoparticles.  The MSM imaging mode furnishes unparalleled 

sensitivity and selectivity for distinguishing samples which exhibit a magnetic moment in the 

presence of an applied alternating current (AC) electromagnetic field.  Changes in the phase and 

amplitude of vibrating nanomaterials are mapped relative to the driving AC signal.  Magnetic 

sample modulation has been applied for characterizing individual ferritin,226 DNA-templated 

nanoparticles of nickel and iron,221, 222 and cobalt nanoparticles as small as 4 nm in diameter.225  

 Nanostructures of ferritin were used as a test platform for investigations with MSM to 

characterize biomolecules at the nanoscale.  The ferritin nanocage is 12 nm in height and 

contains about 4500 iron atoms. The iron core which is about 6 nm in size is paramagnetic.  

Ferritin has an iron core which is paramagnetic.  Particle lithography was used to define the 

surface assembly of ferritin to generate well defined rings of protein necklaces.  Well organized 

structures of ferritin on the surface enable accurate and precise characterizations of the magnetic 

properties of the samples using MSM.  The sensitivity and selectivity of MSM enabled mapping 

and selective detection of the iron atoms present within the encapsulating protein cage.  The 
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combination of nanoscale lithography with new measurement approaches with AFM was 

brought about by protocols described and developed for this dissertation.  Combining 

lithography and AFM characterizations is a practical strategy for analysis of surface properties at 

the nanoscale. 

Magnetic samples need to be carefully arranged on surfaces to enable vibration.  

Designed test structures with nanoscale dimensions were prepared using practical, inexpensive 

strategies based on the chemical approaches of self-assembly by two-particle lithography.  

Magnetic nanoparticles of cobalt and nickel were fabricated using plasmid DNA as a structural 

template, in a collaborative project with A. Varotto and C. M. Drain at City University of New 

York.  The method of magnetic sample modulation (Chapter 2) is a hybrid mode of AFM 

imaging.  For MSM-AFM, a modulated AC electromagnetic field selectively induces vibration 

of magnetic nanomaterials on surfaces.  A non-magnetic AFM tip is brought into contact with 

the sample surface using constant force feedback.  The mechanical vibration of the magnetic 

nanomaterials on the surface is sensed by the AFM tip when it touches the vibrating domains.  

Only the magnetic domains vibrate, providing selective contrast when energy is transferred from 

the sample to the AFM probe.  A lock-in amplifier is used to acquire the amplitude and phase 

components of the AC signal which provides exquisite sensitivity for small changes in AFM tip 

movement driven by the oscillation of magnetic samples.  Essentially, MSM is a hybrid of 

contact mode AFM and selective “force modulation” of magnetic domains.  Both the amplitude 

and phase signal are acquired simultaneously with topographic images to map the location of 

magnetic nanoparticles.  Our results indicate that the best images for magnetic mapping are 

acquired with standard soft commercial probes using sample resonance frequencies which are 

different than the natural resonances of the AFM cantilevers. 
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 Atomic force microscopy provides a tool for developing new approaches to view the 

changes of surface during the early stages of corrosion.  The effects which ions have on the 

resulting copper surface after immersion in a particular water chemistry, as well as the effects of 

known corrosion inhibitors such as phosphates, has been performed.  The size, shape and surface 

coverage of corrosion products can be directly visualized with AFM for side-by-side 

comparisons of surface treatments.  Combining AFM with other analytical techniques such as x-

ray diffraction (XRD) and secondary ion mass spectrometry (SIMS) gives new insight into the 

mechanisms for surface passivation and/or corrosion processes.  New collaborative projects are 

in progress by S. L. Daniels of LSU, for investigating the role of water chemistry parameters for 

changes in surface chemistry at even earlier stages of corrosion, using in situ protocols with 

AFM.  The United States Environmental Protection Agency (USEPA) will continue to sponsor 

research internships for students with AFM training in this on-going collaborative effort.  As 

evidence of the priority for such investigations in research with the USEPA, a new research 

building is nearly constructed for targeting surface chemistry and developing new 

characterization tools for surface analysis. 
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APPENDIX A:  LETTER OF PERMISSION 
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APPENDIX B:  PROCEDURE FOR CLEANING COPPER SURFACES 

To prepare the copper substrates for the immersion experiments, the following protocol 

was followed to clean the surfaces of the copper: 

1. Sonicate the copper sample in 0.5% Triton X-100 surfactant for 5 minutes. 

2. Rinse the sample with Milli-Q water. 

3. Sonicate the sample in Milli-Q water for 5 minutes. 

4. Rinse the sample with acetone. 

5. Dry the sample in air.  

6. Store the sample in a dessicator until use. 
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APPENDIX C:  TOF-SIMS SPECTRA OF COPPER SURFACES IMMERSED IN 
WATERS OF VARYING CHEMISTRIES 

 
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is capable of shallow 

sputter depth profiling.  An ion (Ar+) gun is operated in the DC mode during the sputtering phase 

in order to remove material, and the primary ion gun is operated in the pulsed mode for the ion 

acquisition.  Depth profiling by ToF-SIMS allows monitoring of all species of interest 

simultaneously, and with high mass resolution.  For the depth profiles, an Ar gun of 3 keV was 

used for the sputtering of sample surface and the sputter area was 300 × 300 μm2. The sputtered 

surface was analyzed by the Ga+ gun with 25 keV having 1.85 to 1.95 pA current and the 

analyzed area was 100 × 100 μm2. 

A CAMECA ION-TOF model IV instrument equipped with a 25 kV liquid metal (69Ga) 

ion gun was used for ToF-SIMS analysis.  A flood gun was used for charge neutralization.  

Corroded copper coupon samples were cut as small as 1 × 1 cm2, then analyzed for the chemical 

composition on surface and depth profiling from the top down.  The mass spectra generated are 

used to determine the composition of sample surface constituents. 
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Figure C.1. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 1 
from table 4.1 for 6 h. 
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Figure C.2. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 1 
from table 4.1 for 6 h. 
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Figure C.3. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 1 
from table 4.1 for 24 h. 
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Figure C.4. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 1 
from table 4.1 for 24 h. 
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Figure C.5. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 2 
from table 4.1 for 6 h. 
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Figure C.6. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 2 
from table 4.1 for 6 h. 
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Figure C.7. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 2 
from table 4.1 for 24 h. 
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Figure C.8. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 2 
from table 4.1 for 24 h. 
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Figure C.9. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 3 
from table 4.1 for 6 h. 
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Figure C.10. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 3 
from table 4.1 for 6 h. 
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Figure C.11. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 3 
from table 4.1 for 24 h. 
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Figure C.12. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 3 
from table 4.1 for 24 h. 
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Figure C.13. Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 4 
from table 4.1 for 6 h. 
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Figure C.14. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 4 
from table 4.1 for 6 h. 
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Figure C.15 .Negative ion ToF-SIMS spectrum of a copper surface immersed in water sample 4 
from table 4.1 for 24 h. 
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Figure C.16. Positive ion ToF-SIMS spectrum of a copper surface immersed in water sample 4 
from table 4.1 for 24 h. 
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