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Atropine Sulfate (AS) auto-injector (AtroPen®) is being used as an effective and safe 
antidote for the treatment of organophosphate (OP) pesticides or nerve gas poisoning. The 
use of AtroPen® is associated with several drawbacks including: bulky size, availability, 
affordability, invasiveness, and administration errors. Previously, AS fast disintegrating 
sublingual tablets (FDSTs) were developed and the feasibility of AS sublingual 
permeability were demonstrated. However, AS permeability was delayed due to the 
negative impact of higher doses of AS on FDST’s physical characteristics. Therefore, the 
aim in this research project was to optimize the previously developed AS FDSTs. It was 
hypothesized that optimizing the tablet’s filler grade will improve the tablet physical 
characteristics along with incorporating a pH modifier and penetration enhancers will 
significantly enhance AS sublingual permeability. 

Ten batches of AS FDSTs containing AS 8 mg were manufactured using a highly 
compressible filler grade of microcrystalline cellulose, MCC UF-702. AS FDSTs with and 
without a pH modifier (Na Bicarb 2%), or penetration enhancers (sodium dodecyl sulfate 
(SDS 0.5% or 1%), palmitoyl carnitine chloride (PCC 16%), or sodium glycocholate (Na 
Gly 15% or 20%)) were manufactured and evaluated.  

Several US Pharmacopeia (USP) and non-USP physical tests were performed to 
evaluate AS FDSTs’ characteristics. AS permeability from the ten AS FDST formulations 
were evaluated using Franz cells through excised porcine sublingual membranes. Results 
were statistically compared and deemed significant if p< 0.05. 

All manufactured AS FDSTs passed the quality control tests. MCC UF-702 grade 
resulted in better powder flowability, higher breaking force, faster disintegration, faster 
dissolution rate, and higher water uptake. AS sublingual permeability was linear, indicating 
for a passive transport. Transcellular enhancers had significantly higher AS permeability 
enhancement in comparison to paracellular enhancer. Incorporating Na Bicarb 2% along 
with SDS 1% into AS FDSTs resulted in the highest enhancement in AS cumulative 



 

 

sublingual permeation (AUC0-90 min), influx, and permeability. These optimized novel AS 
FDSTs has the potential to deliver therapeutic AS concentrations to the systemic 
circulation and achieve rapid onset of action for the first-aid treatment of OP toxicity. 
Further pharmacokinetics studies are recommended to determine the bioequivalence 
sublingual AS dose to AtroPen®.  
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Introduction 

 

 Research Rationale 

Organophosphate (OP) poisoning is reported by the World Health Organization 

(WHO) to cause 300,000 deaths annually (Chowdhary, Bhattacharyya, & Banerjee, 2014) 

and 3,000,000 poisoning cases per year (Robb & Baker., 2019). About 60% of the globally 

reported cases of suicides in agricultural or industrial settings involved the use of OPs. 

Also, even after the global prohibition of the use, production, and storage of weapons of 

mass destruction (OPCW, 2005), OP nerve agent such as sarin is still used worldwide in 

wars. For example, it was reported by the United Nations that 1,300 civilians died due to 

OP poisoning after the use of sarin nerve agent in Syria in 2013 (United-Nations, 2013). In 

the United States of America (USA), around 8,000 OP exposure cases are reported every 

year (Robb & Baker., 2019). 

These OP suicide cases, exposures to nerve agents due to war, and accidental OP 

poisoning cases have high mortality rate in developing countries that lack adequate and 
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well-equipped medical facilities to manage OP poisoning in a timely manner (Chowdhary 

et al., 2014).  

Organophosphates work by stimulating the continuous production of acetylcholine 

resulting in the continuous activation of muscarinic and nicotinic receptors leading to the 

symptoms associated with OP poisoning. Researchers use two mnemonics, “SLUDGE” 

and “DUMBELLS”, to specify AChE inhibitor toxicity symptoms: salivation, lacrimation, 

urination, defecation, diaphoresis, gastric upset, emesis, diarrhea, miosis, bradycardia, and 

bronchospasm. The symptoms of OP poisoning can range from mild to severe depending 

on the length and strength of the exposure.  

The immediate initiation of the treatment is very critical to save patients’ lives and 

prevent irreversible neurological complications. Atropine Sulfate (AS) is an effective and 

safe antidote used alone or in combination with other drugs for the treatment of toxicities 

due to nerve agent attacks and OP pesticide poisoning (Balali-Mood & Saber, 2012). The 

therapeutic effectiveness of AS against OP poisoning is based on the rapid bioavailability 

of therapeutic concentrations of AS in the blood (Vijayaraghavan, 2012). AS auto-injector 

(AtroPen®) is a pre-filled AS intramuscular (IM) injection that was approved by the Food 

and Drug Administration (FDA) in 1973 as an antidote for OP poisoning (Vijayaraghavan, 

2012). AtroPen® autoinjector is designed to be used out of the hospital with a starting dose 

of 2 mg for adults then doubling the dose every 5 minutes until atropinization (a term used 

to refer to the signs and symptoms of atropine toxicity) is achieved. This administration 

method and regimen despite being inconvenient, has successfully saved many lives 

following OP poisoning (Karakus et al., 2014). However, the use of the auto-injector is 
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associated with several limitations and drawbacks. These include but not limited to its 

availability, cost, and administration convenience. AtroPen® is only available for veterans, 

which limits its use for farmers (Bentur, Layish, & Krivoy, 2006). The autoinjectors require 

training for its administration and poisoning can result in some individuals being 

disoriented, hence may not be able to self-administer the drug as instructed (Topal et al., 

2014). The cost of the device limits its availability to many potential patients, especially 

that more than one device are needed for the treatment of OP poisoning. Additional 

drawbacks for using AtroPen® auto-injector include, patients’ body weight that can reduce 

medication effectiveness for overweight and obese patients (Palma & Strohfus, 2013) and 

the fear of the needle that can cause a delay in the administration, which is very critical for 

the treatment of emergency medical conditions (Altman & Wood, 2014).  

A new route for administering AS is being sought in order to overcome the limitations 

and drawbacks associated with the use of AtroPen® auto-injector and to increase the 

availability of AS as OP antidote. The sublingual route is one of the non-invasive routes of 

administration that has been used for the administration of drugs in emergency conditions 

and for the administration of highly metabolized drugs. However, the significance of the 

sublingual route depends on the feasibility of the immediate absorption of administered 

drug following its placement under the patient’s tongue. Sublingually administered drugs 

get absorbed through the reticulated vein in the lining mucosa in the oral cavity, then get 

transported to the facial, jugular, brachiocephalic veins, and finally to the systemic 

circulation (Kweon, 2011). AS sublingual administration appears to be a promising 

solution for most of AtroPen® drawbacks. It requires simpler manufacturing processes that 
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would be more cost-effectiveness than the auto-injectors currently used for the first-aid 

treatment of emergency OP poisoning conditions (Aodah, Bafail, & Rawas-Qalaji, 2017). 

The formulation of AS as fast disintegrating sublingual tablets (FDSTs) may offer better 

patient accessibility due to their lower cost, administration convenience, non-invasive 

administration when multiple doses to be administered, and storing and handling flexibility 

by the patient due to their small size compared to the auto-injectors, especially during 

emergency conditions (M.M Rawas-Qalaji, Simons, & Simons, 2007). These tablets can 

also be administered without prior training or assistance by a trained medical professional. 

Due to all the previous advantages for FDSTs, a preliminary AS FDSTs were developed 

and evaluated as an alternative, non-invasive dosage form for the treatment of OPs acute 

toxicities (Aodah et al., 2017).  

A range of AS doses, 2 mg, 4 mg and 8 mg, were previously formulated and evaluated 

as AS FDSTs (Aodah et al., 2017). However, the increase in AS dose up to 8 mg has 

negatively impacted the FDST’s physical characteristics. For example, in an aliquot of 2 

mL of water, the FDST’s disintegration time was significantly increased up to 3 min and 

AS dissolution was significantly reduced to 30% during the 1st min of the test when AS 

dose was increased to 8 mg in formulated FDSTs. Additionally, the sublingual permeation 

of AS had a lag time of 5 min, which can negatively impact the onset of action of AS 

(Aodah et al., 2017). Because of these formulation and permeation limitations, the potential 

of optimizing AS FDSTs formulation using a quality-by-design (QbD) approach were 

investigated to achieve an efficient AS sublingual delivery.  
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The absorption of the drug from the sublingual area can be affected by many factors. 

However, the most important two main factors are: the type of formulation used as well as 

the drug’s physicochemical properties (Meanwell, 2011). The types and grades of the 

excipients used in a drug formulation, mainly the filler excipient, can significantly impact 

drug absorption through controlling the rate of tablet disintegration into fine particles and, 

therefore, controlling the rate of drug release and dissolution necessary for its absorption 

(W. Brniak, Jachowicz, Krupa, Skorka, & Niwinski, 2013). Also, they are important for 

localizing the released drug from the tablet formulation at the site of absorption and 

limiting its loss into the stomach. Different excipients and excipients’ grades can perform 

differently, especially under the very strict conditions in the sublingual cavity that lack any 

agitation and has a limited volume of the saliva available for tablet disintegration and drug 

dissolution (Jivraj, Martini, & Thomson, 2000). For a FDSTs formulation, disintegration 

and wetting times are critical variables and can influence the rate of the drug dissolution 

(Witold Brniak, Jachowicz, & Pelka, 2015). Therefore, careful selection of the excipients 

that ensure rapid tablet disintegration is critical to liberate the drug and make it available 

for dissolution, which can enhance the rate of drug dissolution. Therefore, the effect of 

changing the filler’s grade in the AS FDSTs formulation on the tablets’ physical 

characteristics was investigated in order to optimize the AS FDSTs formulation. 

In order to enhance AS sublingual permeation, studying the effect of medium’s pH on 

AS ionization is very important to demonstrate if modifying the sublingual medium’s pH 

using a pH-modifying excipient, incorporated into the AS FDSTs formulation, can affect 

the sublingual permeability of AS, and therefore, its relative bioavailability. The selection 
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of excipients to be used depends on the properties of the targeted absorption site and the 

drug to be administered (Goswami, Li, & Jasti, 2016). The addition of pH modifiers into 

the tablet formulation to be administered sublingually ensures that the pH of the saliva is 

controlled within the range that is optimal for drug absorption. 

Paracellular or transcellular pathways are the two main transport pathways for any drug 

to be transported into the systemic circulation through the mucosal membrane. It is crucial 

to understand the dominant mechanistic transport pathways that characterize the 

permeation process through the oral mucosa for different molecules. This would assist in 

the selection and incorporation of the right penetration enhancer at the optimal amount to 

the AS FDSTs formulation in order to enhance AS sublingual permeability and relative 

bioavailability. The careful selection for the appropriate enhancer at a suitable 

concentration is very critical not only to enhance AS permeability but also to ensure their 

safety profile. 

 Research Hypothesis 

It was hypothesized that incorporating a pH-modifying pharmaceutical excipient into 

the FDSTs formulation would reduce the AS ionization in the tablet diffusional layer 

“microenvironment” and significantly enhance its permeation through sublingual 

membranes along with the assistance of a permeation enhancer. 
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 Research Objectives and Specific Aims 

The overall objective of this research was to develop a FDSTs of AS as an alternative 

and effective dosage form for the emergency treatment of OP poisoning. The specific 

objective in this project was to enhance the sublingual permeability of AS by applying 

multiple approaches including, optimizing the physical characteristics of AS FDSTs 

formulation and enhancing AS permeability by altering the absorption microenvironment’s 

pH using a pH-modifying pharmaceutical excipient and incorporating a penetration 

enhancer. The specific aims to achieve this objective were as follow: 

1) Evaluate the effect of the filler’s grade on the physical characteristics of AS 

FDSTs. 

2) Evaluate the pH-permeability profile of AS sublingual tablets. 

3) Formulate and evaluate optimized AS FDSTs containing a pH-modifier to 

assess their effect on AS permeability. 

4) Formulate and evaluate optimized AS FDSTs containing different permeability 

enhancers with or without a pH-modifier to assess their effect on AS 

permeation. 

 Significance and Innovation  

The wide-spread use of OP pesticides contributes to the high frequency of OP toxicity 

that occurs worldwide. The onset of the toxicity symptoms is often within minutes, which 
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can cause a number of long-term and irreversible complications. According to American 

Association of Poison Control Centers (AAPCC), the number of reported exposures to OP 

insecticides in the US alone were 1994 cases with 17 major outcomes and one death case 

in 2016 (Katz & Brooks, 2018). The numbers of reported cases are much higher in 

developing countries such as India and Nicaragua (Kanchan et al., 2010). These numbers 

have been increasing every year due to the increase in in the use and exposure to these OP 

pesticides. The main basic and initial treatment for the treatment of acute OP poisoning is 

the immediate administration of AS, a drug that inhibits the action of excess acetylcholine 

(ACh) at parasympathetic nervous system. AtroPen®, an AS auto-injector, has been 

approved by FDA and considered as an effective and safe antidote used  alone or in 

combination with other drugs for treating OP acute toxicity. In order to overcome the 

aforementioned drawbacks of using AtroPen® auto-injector and to increase the availability 

and accessibility of AS as an antidote for OP poisoning, the sublingual route for AS 

administration has been explored by our group (Aodah et al., 2017). 

The development of AS FDSTs will provide an accessible and non-invasive first-aid 

antidote for the treatment of OP poisoning and reduce the number of fatalities due to nerve 

gas attacks or OP pesticide poisoning. More people in danger of OP-induced toxicities will 

have access to the treatment and as a result, less fatalities and less neurological 

complications will occur if this new treatment was accessible and started early, as a first-

aid treatment, until patient is transported to a hospital.  

The basics of our research relies on the fact that sublingual lining has a highly 

networked blood vessels that aids in fast drug absorption to the systemic circulation 
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(Swarbrick, 2006). Also, using FDST formulations that release drug in 10-30 sec and 

promote drug dissolution in 1 min will provide non-invasive, user friendly, and more cost-

effective alternative treatment for OP toxicity that require no prior training for its 

administration, which overcome most of the drawbacks associated with AtroPen®. 

Evaluating the pH-permeability profile of AS and then incorporating a pH-modifier 

excipient in order to alter the Microenvironment pH to enhance absorption and reduce 

individual absorption variability, can overcome the sublingual permeability limitations 

encountered at high AS FDSTs dose. The addition of chemical penetration enhancers are 

another way that was studied and added to the AS FDSTs formulation to enhance its 

transcellular and/or paracellular sublingual permeability in order to improve its in vivo 

absorption to deliver therapeutic quantities of AS to the systemic circulation using the 

sublingual route.  

The development of new FDST formulations with enhanced permeability is a 

promising step to reach the therapeutic blood concentration needed for OP treatment. This 

novel dosage form can have a clinical significance as an alternative and non-invasive 

dosage form for treating OP toxicity. 
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 Assumptions, Barriers and Limitations 

 Assumptions 

Based on the literature, the porcine sublingual membrane (PSM) shares comparable 

anatomical and physiological properties with human sublingual membrane (Birudaraj, 

Berner, Shen, & Li, 2005; Goswami, Kokate, Jasti, & Li, 2013; Ong & Heard, 2009; Volz-

Zang, Waldhauser, Schulte, & Palm, 1995). Therefore, PSM was selected to be used in our 

ex vivo permeation experiments. 

 Barriers 

In this research project, some of the United States Pharmacopeia (USP) quality control 

tests were not suitable to be used as standardized tests or methods to evaluate the quality 

of our developed FDST formulations or to differentiate between them. For example, the 

USP disintegration time test (DT) is more suitable for regular tablets, which, unlike orally 

disintegrating tablets (ODTs), require a longer time to disintegrate, a higher volume to 

dissolve, and vigorous agitation that resemble the stomach motility (USP/NF, 2018a). 

Therefore, a previously developed apparatus were used to evaluate the DT of AS FDST 

formulations that was adapted instead of the USP Disintegration test (Aodah et al., 2017). 

A previously developed and validated drug dissolution (DD) test is another example of a 

non-USP method used in this research to evaluate the AS dissolution from FDSTs in 60 

sec (Rachid, Rawas-Qalaji, Simons, & Simons, 2011). 
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Membrane integrity was one of the most important variables that can affect the results 

of the drug permeation. However, in the research, the variability of the membranes due to 

integrity issue was decreased by increasing the number of the replications in the experiment 

(n number) and excluding outlier membranes, if any. Each ex vivo permeation study was 

performed using six replicates (n=6), however, only 4 replicates (n=4) were reported by 

removing data from membranes that showed excessive permeability indicating for 

membrane integrity issue. If all membranes had good integrity, data from the highest and 

lowest permeating membranes were excluded to maintain equal n number between 

experiments. A reasonable sublingual membrane’s variability is expected and can reflect 

the real biological differences between people. Permeability markers like propidium iodide 

(PI), Yo-Pro-1, and trypan blue have been used before to determine membrane integrity 

and exclude failing membranes (Bowman, Nesin, Pakhomova, & Pakhomov, 2010). 

However, this approach requires adding the marker to all the permeability experiments 

performed, then the quantification of the marker in addition to AS in the collected samples 

to identify failing membranes. Then relate the experiment for the membranes that had 

integrity issue. For the large amount of permeability studies performed in the project, this 

approach will add significant unnecessary work, complexity, analysis, and would consume 

more time. Therefore, this approach was simpler and achieved similar sensitivity and 

outcome in detecting membrane integrity issues.  

The addition of pH-modifier and penetration enhancers into AS FDSTs formulation 

can lead to a local irritation of the tissue when the tablets are administered sublingually. 

Therefore, the excipient were carefully reviewed for their safety profile before being 
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selected. The amounts or concentrations reported in the literature to be safe and induced 

no local toxicities were adapted and used in our AS FDST formulations to ensure the safety 

of developed tablets and decrease any potential irritation or side effects that can affect the 

site of administration.   

 Limitations 

Incorporating a pH-modifier with or without a penetration enhancer into AS FDSTs 

formulation to modify the microenvironment’s pH and enhance AS sublingual 

permeability can be a very promising approach to achieve optimal AS sublingual 

absorption. In vivo pharmacokinetic studies using these optimized AS FDSTs can confirm 

the obtained ex vivo permeability studies, however, due to the lack of the animal facility 

and the analytical equipment to conduct pharmacokinetic studies and analyze collected 

blood samples it was not feasible to perform such studies. 

 Chapter Summary 

The fact that high annual OP poisoning cases due to agricultural and household 

accidental exposures, military and terrorist use, or suicidal cases was the main rational 

behind this research project. The aim of the project was to optimize the physical properties 

of AS FDSTs formulation and enhance the AS sublingual permeability and absorption to 

achieve our ultimate goal of delivering therapeutic quantities of AS to the blood using the 

sublingual route. These AS FDSTs will offer a novel approach for the treatment of OP 



26 
 

 
 

toxicities due to the significant advantages that the sublingual route offers and the use of a 

novel delivery system, FDSTs, to disintegrate, release, and promote the dissolution of AS 

in 1 min or less. Also, the novelty of this dosage form is that it will be the first alternative 

and non-invasive dosage form designed for self-administration for the treatment of OP 

poisoning, which will offer more clinical significance compared to AtroPen®. 
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Literature Review 

 

 Chapter Overview 

In this chapter, literature review was carefully conducted to include the most important 

and up to date information pertinent to this research project. The mechanism of action for 

OP, its poisoning effects and symptoms, and the currently available treatment options in 

the market were reviewed and discussed in detail.  

The backbone for all treatment regimens used for acute OP poisoning is AS. AtroPen®, 

a pre-filled AS auto-injector, is a single use device that can be self-administered 

intramuscularly. However, the use of AtroPen® is limited due to the challenges associated 

with its size (range from 10 to 14 cm) that limits the number of devices that can be carried, 

handled, and stored since multiple injections are required to treat OP toxicity. The use of 

the auto-injector in countries with low socioeconomic levels that have high risks of OP 

poisoning is challenging due to their high cost and the required training for their 

administration. This motivated us to develop a user-friendly alternative dosage form that 

can offer several advantages and overcome these drawbacks. 
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The sublingual route of administration was proposed as one of the promising solutions 

for the several drawbacks associated with the use of AS injection. An overview of FDSTs 

and their benefits to overcome the drawbacks of using AS auto-injectors were discussed.  

The role of selected excipients for FDSTs formulation on the physical characteristic of 

the dosage form were also reviewed. The different characteristics of various filler grades 

were also reviewed in this section to guide the selection of the appropriate filler grade to 

achieve optimal FDSTs characteristics for AS sublingual delivery.  

The effect of pH on drug ionization and the role of pH-modifying excipients to be 

incorporated into the FDSTs formulation on altering drug ionization and enhancing its 

sublingual permeability were explained in detail. Also, the role of various penetration 

enhancers and their mechanisms to enhance drug permeability were described. 

 Organophosphate Poisoning 

Organophosphates are one of the most widely used pesticides. Today, 

organophosphates have variety of uses in agriculture, homes, and as chemical gases. 

Organophosphates are esters of phosphoric acid. The organophosphorus compounds share 

the general structure of O=P(OR)₃ ( 

Figure 1) (Newmark, 2004; Zhao & Yu, 2013).  
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Figure 1. General chemical structure of organophosphates. 
R1, R2, and R3 represent the chemical functional groups that define the intensity of OP 
action, toxicity, and physicochemical properties. 
 

Because of the wide uses of OPs, poisoning due to the exposure to OP is more common 

to occur, especially for farmers and veterans. Pesticides and nerve agents are the two main 

sources for OP toxicity. According to WHO, the annual incidence rate of OP poisoning 

cases to be as much as 35 per 100,000 in general population (Chowdhary et al., 2014). In 

some of the agricultural countries, OPs are still the most widely used pesticides because of 

their effectiveness. For example, dichlorvos, malathion, parathion methyl, and chlorpyrifos 

are some of the pesticides that are used in this area (Chowdhary et al., 2014; WHO, 2004). 

OP poisoning commonly occur in developing countries that lack of adequate medical care, 

because they cannot afford safer but more expensive pesticides (Chowdhary et al., 2014; 

Kanchan et al., 2010). For example, countries such as Sri Lanka (Gunnell et al., 2007) and 

India (Kanchan et al., 2010) were registered to have the highest mortality cases due to OP 

pesticides poisoning. This is because these countries have agriculture-based economies and 

pesticides are commonly used and available (Chowdhary et al., 2014).  

OP nerve agents such as tabun, sarin, soman, and VX have also been used as weapons 

in warfare and terrorist attacks. Sarin is one of the most known OP nerve gas that was used 

during the first Gulf War in 1988 and resulted in the deaths of over 40,000 people. Sarin 
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gas was also used by terrorists as a weapon of mass destruction in Tokyo attacks in 1995 

(Chowdhary et al., 2014). A recent account of the use of sarin gas was reported in Syria in 

2012 where the Assad’s regime was accused of poisoning over 1300 people using sarin gas 

(Tillman et al., 2012).  

 Organophosphates mechanism of action 

Organophosphates mechanism of action relies on inhibiting the acetylcholinesterase 

(AChE) activity, the enzyme that degrades acetylcholine (ACh) ( 

Figure 2), leading to the accumulation of ACh (Chowdhary et al., 2014). ACh is one of 

the most abundant neurotransmitters that is found in both the central and peripheral nervous 

system. So, the accumulation of ACh due to the inhibition of AChE by OP will 

overstimulate the parasympathetic nervous system and muscarinic receptors (Figure 3). 

This overstimulation leads to many symptoms and life threatening respiratory failure, 

which is the main cause of death in OP poisoning (Eddleston, Buckley, Eyer, & Dawson, 

2008; Eddleston et al., 2004). The rate and degree of ACh inhibition is related to the 

structure of OP compound and its metabolism. 
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Figure 2. The chemical structure of acetylcholine. 
The structure is a combination of acetic acid and choline. 
 

 

Figure 3. Mechanism of action of organophosphates (PEHSU, 2018). 
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The severity of the toxicity following OP positing depends on the type of OP 

compound, as well as, the amount and the period of the exposure. The relationship between 

the structure of OP and its activity suggests that the severity of the toxicity is directly 

related to the hydrophobicity of the compound (Zhao & Yu, 2013). The O=P bond in OP 

competes with the carbonyl bond (C=O) in the acetyl part of ACh for the serine at the 

esteratic site of AChE (Wiener & Hoffman, 2004; Zhao & Yu, 2013). The nucleophilic 

hydroxyl group (-OH) on the serine residue of AChE binds to the electrophilic O=P center 

of the OP that cause the formation of a very strong covalent bond (Westfall & Westfall, 

2010; Wiener & Hoffman, 2004; Zhao & Yu, 2013). As a result, the phosphorylated AChE 

becomes inactive and cannot hydrolyze ACh because ACh binding site is blocked by the 

formed covalent bonded with OP. Therefore, this causes the inactivation of AChE, which 

leads to the accumulation of ACh that cause the overstimulation of the parasympathetic 

nervous system and muscarinic receptors (Sidell & Borak, 1992; Wiener & Hoffman, 2004; 

Zhao & Yu, 2013) (Figure 4). 

 Organophosphates toxicity symptoms 

The symptoms of different OPs toxicity are similar to symptoms due to the ACh over-

stimulation either in nicotinic or muscarinic receptors (Eskenazi, Bradman, & Castorina, 

1999). Anxiety, headache, convulsions, general weakness, and depression of respiration 

are commonly due to the overstimulation of the nicotinic ACh receptors. On the other hand, 

symptoms like increased salivation, lacrimation, sweating, and urination are due to excess 
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ACh at the muscarinic ACh receptors (Leibson & Lifshitz, 2008). Bronchoconstriction, 

rhinorrhea, and diaphragm paralysis symptoms are mainly due to the autonomic nervous 

system overstimulation by OP, which lead to death.  
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 Organophosphates toxicity treatment 

Numerous articles were published and established a guideline and the steps for the 

treatment of OP toxicity (Eddleston et al., 2008; Eddleston et al., 2004; Mathias & 

Bannister, 2013; Moshiri, Darchini-Maragheh, & Balali-Mood, 2012; Newmark, 2004; 

Westfall & Westfall, 2010; WHO, 2004; Wiener & Hoffman, 2004). Since OP poisoning 

is an emergency medical condition, a prompt treatment of intoxicated patient is very 

critical. The treatment of OP toxicity depends on two important stages, the emergency 

treatment stage and the follow-up treatment stage. The treatment steps for the emergency 

treatment stage should begin at the site of exposure as follows. First, the patient must be 

removed from the contaminated area and all of the soiled clothing items should be 

removed. Second, airway control and adequate oxygen should be provided while checking 

the breathing and heart rate of the patient. Third, the patient should be injected with AS, 

which is the essential drug in every OP emergency guideline (Eddleston et al., 2008; 

Eddleston et al., 2004; Wiener & Hoffman, 2004).  

Co-administration of oxime derivatives shortly after atropine such as pralidoxime can 

also be a part of the treatment plan. Oximes can lead to the reactivation of AChE by 

trapping the phosphate group of OP to release the hydroxyl group from the esteratic site on 

the AChE enzyme. The selection of the oxime molecule depends on the type OP causing 

the toxicity. Also, the reactivation of AChE by oxime is only effective in a recent OP 

exposure, for example, if the OP molecule has already “aged,” reactivation is unlikely to 
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occur (Eddleston et al., 2008; Eddleston et al., 2004; Wiener & Hoffman, 2004). Aging is 

the conversion of the inhibited enzyme into a non-reactivable form. 

Following the administration of AS or the coadministration of AS with pralidoxime, 

the patient need to be transferred to a medical center to start the follow up treatment stage. 

Overnight hospitalization is required to monitor the patient (WHO, 2004; Wiener & 

Hoffman, 2004). In some cases, the treatment can include the coadministration of 

benzodiazepines with AS injection for the treatment of seizures associated with OP toxicity 

(WHO, 2004; Wiener & Hoffman, 2004).  

As a prophylaxis, butyrylcholinesterase (BChE) can be administered prior to OP 

exposure. It is the only clinically effective prophylaxis considered for OP toxicity (Iyer, 

Iken, & Leon, 2015). 

 Atropine Sulfate 

Atropine sulfate (AS) is the sulfate salt of atropine that is extracted from the Atropa 

belladonna plant (Evans, 2002; Steenkamp, Harding, Heerden, & Wyk, 2004). Atropine is 

an ester consisting of tropic acid and tropine (Brown & Laiken, 2010). Because atropine 

has a low water solubility, AS is the active ingredient that is used in the current dosage 

forms. AS is an alkaloid with a molecular formula of [(C17H23NO3)2.H2SO4.H2O] (Figure 

5), and molecular weight of 694.84. Its pKa is 9.8 and the pH for a 2% AS solution in water 

is 4.5 to 6.2. An aliquot of 1 mL of water can dissolve up to 2.5 g of AS substance (RSC, 

2013).  
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Figure 5. Chemical structure of atropine sulfate. 

 

 Atropine sulfate mechanism of action and clinical indications 

AS acts as a sympathetic antagonist and binds to the muscarinic cholinergic receptors. 

It inhibits the parasympathetic nervous system by preventing the activation of the 

muscarinic receptors by the ACh neurotransmitter (Eddleston et al., 2008; Eddleston et al., 

2004). AS has a wide range of clinical uses. It is used in combination with diphenoxylate 

hydrochloride (2.5 mg Diphenoxylate hydrochloride USP and 0.025 mg Atropine sulfate 

USP) as a tablet dosage form (Lomotil®) as adjunctive therapy to treat diarrhea or bowl 

syndrome (RxList, 2018). Atropine 0.4 mg is also administered orally as anticholinergic 

and antispasmodic agent (MedScape, 2018). As an ophthalmic drop solution, it is used for 

cycloplegia and to induce mydriasis (Elsevier, 2015). As an injection, it is used 

preoperatively to reduce salivation and bronchial secretions during surgery (Elsevier, 
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2015). Also, as injection, it is used as antidote for the treatment of cholinergic toxicity 

associated with OP exposure (Heath, 2002; Meridian, 2016; Wiener & Hoffman, 2004). 

 Atropine sulfate pharmacokinetics and pharmacodynamics 

According to the clinical studies, AS’s distribution kinetics are dose-dependent. As a 

result, for the emergency treatment of OP toxicity, multiple administrations of AS are 

required to reach the effective concentration needed for the treatment. Based on the 

biopharmaceutics classification system (BCS), drugs can be classified depend on their 

solubility and permeability into four classes, high solubility-high permeability (Class I), 

low solubility-high permeability (Class II), high solubility-low permeability (Class III), 

and low solubility-low permeability (Class IV). AS is considered as a class III based on the 

BCS classification (Custodio, Wu, & Benet, 2008). AS is a highly soluble salt in water (2.5 

g/mL) that exhibited first-order elimination kinetics with renal plasma clearance of 660 

mL/min (Hinderling, Gundert-Remy, & Schmidlin, 1985; Lindenberg, Kopp, & Dressman, 

2004).  

After oral administration, atropine appears in plasma after 15 min and the Cmax is 

achieved within 1.5 – 4 hours. About 90% of a 2 mg oral dose was found to be absorbed 

through the gastrointestinal tract (GIT) (McEvoy, 2012 ). The half-life (T1/2) of atropine 

intravenous (IV) administration is (mean ± SD) 3.0 ± 0.9 hours (NIH, 2016). 

For our-of-the hospital treatment of OP toxicity, the recommended starting dose for an 

adult is 2 mg using AtroPen® auto-injector, and then doubling the dose every 5 minutes 
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until atropinization is achieved, with a maximum use of 3 auto-injectors. A 2 mg dose will 

results in a Cmax of 9.6 ± 1.5 ng/mL (mean ± SEM) and a Tmax of 3 min (NIH, 2016). 

AS can be used alone or in combination with other drugs for the treatment of OP 

toxicity. However, most of these combinations have more side effects. For example, the 

coadministration of pralidoxime with AS can lead to increased respiratory complications 

and higher mortality. Also, the coadministration of benzodiazepine such as diazepam with 

AS showed a poor intramuscular (IM) absorption (Eddleston et al., 2008; Eddleston et al., 

2004; Meridian, 2016). 

Most of the adverse effect associated with atropine is due to its antimuscarinic action. 

These include dry mouth, blurred vision, tachycardia, palpitation, headache, nausea, and 

vomiting. AS induces changes to the heart rate and respiratory passages based on the dose 

administered (Elsevier, 2015). After the administration of 0.5 mg AS, the excessive 

secretions from mouth and skin were stopped and dried up. Doubling the dose to 1 mg AS 

can increase the heart rate and mildly enlarges the pupils. With a dose of 2 mg AS, sever 

dry mouth, palpitation, and pupil dilatation accompanied by paralysis of accommodation 

may occur. A 5 mg AS dose can cause a more intense effects. These include, headache, 

difficulty in urinating, and slow gut movement. By increasing the dose to 10 mg AS or 

above, hallucination, arrhythmia, coma, and respiratory depression may occur as a result 

of the reduction in the secretions in respiratory passages that leads to a constriction 

and spasm of the respiratory passages, which can lead to death (Brown & Laiken, 2010; 

Heath, 2002; Meridian, 2016). The administration of AS for children should be used 

carefully as they are more sensitive to its adverse effects (Elsevier, 2015). 
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 Atropine sulfate auto-injector 

The AtroPen® auto-injector is designed for self or caregiver administration. Each unit 

is composed of a needle inside a cartridge that is 21 mm long for the 2 mg, 1 mg, and 0.5 

mg units or 13 mm long for the 0.25 mg unit. The drug delivery begins at the moment 

the needle emerges from the cartridge. After the use of the AtroPen®, the container should 

be disposed and cannot be refilled and the protruding needle cannot be retracted (NIH, 

2016). 

AtroPen® are manufactured as AS 0.25 mg (for infants weighing less than 15 pounds 

(lbs)), AS 0.5 mg (for Children weighing 15 lbs to 40 lbs), AS 1 mg (for Children weighing 

40 lbs to 90 lbs), or AS 2 mg (for Adults and children weighing over 90 lbs) by Meridian 

Medical Technologies (Meridian, 2016; NIH, 2016) (Figure 6). Each strength provides 

different amount of atropine in either 0.3 mL or 0.7 mL sterile solution containing glycerin, 

phenol, citrate buffer and water for injection. AtroPen® 0.25 mg provides 0.21 mg 

atropine/0.3 mL, AtroPen® 0.5 mg provides 0.42 mg atropine/0.7 mL, AtroPen® 1 mg 

provides 0.84 mg atropine/0.7 mL, and AtroPen® 2 mg provides 1.67 mg atropine/0.7 mL 

(NIH, 2016). 
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Figure 6. Image of atropine sulfate auto-injector devices (AtroPen®) (Hilmas & Hilmas, 
2009). 
 

AtroPen® alone is the basic treatment used against acute OP poisoning. This auto-

injector is designed to be injected through the IM route to deliver AS. AtroPen® should be 

administered firmly straight down a 90° angle against the outer thigh. The current dosage 

form and administration method have successfully saved many lives from organophosphate 

poisoning. However, it is still inconvenient and unavailable in many developing countries 

and for farmers (Chowdhary et al., 2014). AtroPen® auto-injectors mainly available for 

military use in some countries and is not available for public use (Gunnell et al., 2007; 

Kanchan et al., 2010), which limit their use by farmers and civilians who are at risk of 
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nerve gas attacks. As stated previously, the use of the auto-injector, when available, is 

associated with several drawbacks. Their large size makes them difficult to carry and limits 

the number of devices that can be stored at any given time since multiple injections are 

required to administer the required doses of AS to achieve atropinization. Due to the 

multiple AtroPen® administration required to treat OP poisoning, they are considered 

highly invasive and are associated with increased risks of administration errors and 

infections, which may limit their effectiveness in practice. Because the needle cannot be 

retracted after administration this can lead to a possible post administration injuries (NIH, 

2016). Many IM injections, including AtroPen® may result in poor absorption which can 

reduce the drug effectiveness in obese (overweight) patients. This is due to the fixed needle 

length used in AtroPen®, which may not go deep enough to reach deep into the muscle 

(Palma & Strohfus, 2013). The use of these auto-injectors is very challenging in countries 

with low socioeconomic levels and have high risks of OP poisoning due to their high cost 

($37 per device), the required prior training for their administration, and the lack of 

adequate and well-equipped health care facilities in rural areas where majority of the OP 

toxicity cases occur (Ingle & Agarwal, 2014).  

 Alternative dosage forms for atropine sulfate administration  

In order to increase the availability of AS as an OP antidote, new routes of 

administration for the systemic delivery of AS are being sought that can avoid the 

drawbacks associated with the use of AtroPen® auto-injectors. One key aspect of the 
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selection of these new routes is to offer alternative noninvasive administration methods 

that can be used for multiple drug administrations. Also, these alternative administration 

methods or developed dosage forms have to be accessible to the individuals in low-income 

regions, farms, rural areas, and countries with ongoing armed conflicts. Upon reviewing 

the literature, three different dosage forms have been investigated and tested for this 

purpose as follow: 

1. AS respiratory inhaler: 

As respiratory inhaler was one of the dosage forms that were designed and 

evaluated (Corcoran, Venkataramanan, & Hoffman, 2013). According to the 

study, five puffs of AS inhaler were needed to deliver AS dose equivalent to 

AS 2 mg IM injection dose. The study concluded that an AS inhaler can be used 

only as an adjunctive therapy after the auto-injector (Corcoran et al., 2013). 

Another inhaler using Nano-AS dry powder was designed and evaluated by Ali 

et al. (2009). The authors conducted a clinical trial, and based on their results, 

a 6 mg of AS delivered via an inhaler was had a pharmacokinetic profile 

equivalent to AS 2 mg IM injection (Ali, Jain, & Iqbal, 2009).  

2. AS nasal aerosol spray: 

According to the study performed by Kumar et al. (2001), AS was delivered 

using a nasal spray in rats to study the cardiovascular and respiratory variables 

for OP toxicity. The results concluded that using AS nasal spray is as effective 

as an intraperitoneal injection (Kumar, Vijayaraghavan, & Singh, 2001).  

3. AS sublingual injection: 
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AS sublingual absorption was evaluated for the emergency treatment of OP 

toxicity by injecting AS eye drop solution formulation (Minims® 1%) under the 

tongue. The results showed that the time needed to reach the maximum 

concentration after sublingual injection (Tmax) was less than the time after IM 

injection of AS (Rajpal, Ali, Bhatnagar, Bhandari, & Mittal, 2010). In spite of 

the promising results this administration method is perceived as very invasive 

and not practical for self-administration.  

However, AS sublingual administration appears to be a promising solution 

for most of AtroPen® drawbacks. Therefore, preliminary AS FDSTs for the 

potential treatment of OP toxicity were developed, as reported previously 

(Aodah et al., 2017). 

 Sublingual Route of Administration 

The sublingual route of administration is one of the efficient routes that can be used for 

treating emergency conditions. The significance of this route is due to the feasibility of the 

drug’s immediate absorption after its placement under the tongue. The blood in the 

reticulated veins in the oral mucosal lining absorbs and transports the drug to the facial, 

jugular, brachiocephalic veins and finally to the systemic circulation (Kweon, 2011) 

(Figure 7). The sublingual mucosa is the thinnest mucosal lining of all oral mucosal area, 

highly vascularized, has low membrane’s thickness (100 to 200 µm), and low 
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keratinization, which promotes rapid drug absorption and onset of action, bypassing the 

first hepatic metabolism (Teubl et al., 2013) (Figure 8).  

 

Figure 7. The Sublingual Region (Ardent, 2018). 
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Figure 8. Movement of Drug Across Sublingual Mucosa (Dev, Mundke, Pawar, & 
Mohanty, 2016). 

 

 Fast disintegrating sublingual tablets 

Fast disintegrating sublingual tablets are solid dosage form that dissolve or disintegrate 

under the tongue without water within 1 min or less (USB/NF, 2018). ODTs in general are 

a user-friendly drug delivery system that helps patients such as geriatrics and children, with 

swallowing problems, by combining the advantages of the ease of the oral administration 

of liquids and the practicality of tablets administration (Senel, Rathbone, Cansiz, & Pather, 

2012). Sublingual administration through FDSTs offers many advantages when it comes 

to treating emergency conditions. The tablets can be administered immediately as a first-
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aid treatment right after the occurrence of the incident and until patient is transported to an 

emergency room or an equipped health care facility.  

The first-aid administration of these tablets would allow for an early initiation of the 

treatment and reduction in complications and patient death. These tablets need no water to 

disintegrate or drug to dissolve, which can avoid a critical limiting step for their first-aid 

administration in emergency treatment. They offer more administration convenience and 

storing and handling flexibility for patients due to their small size (M.M Rawas-Qalaji et 

al., 2007). These tablets also can be administered without prior training or the assistance 

of a trained medical professional (Singh et al., 2012). Sublingual tablets production is 

similar to production of most of other solid dosage forms that require simple and cost-

effectiveness manufacturing processes (Aodah et al., 2017). Formulating drugs to be 

administered sublingually as FDSTs ensures rapid tablet disintegration and drug release, 

which is important in the emergency conditions. 

One of the earlier examples of sublingual drug administration for the treatment of an 

emergency clinical condition is nitroglycerin sublingual tablet, which is used for the 

treatment of angina (Divakaran & Loscalzo, 2017). It relies on rapid drug release and onset 

of action. The sublingual route for the administration of nitroglycerin sublingual tablet 

elicits a drug response within 1-3 minutes after its administration (Divakaran & Loscalzo, 

2017). Verapamil is another example used for the treatment of angina that has shown to 

elicit a quick response when administered sublingually (Al-Waili & Hasan, 1999; John, 

Fort, Lewis, & Luscombe, 1992). 
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 Atropine sulfate fast disintegrating sublingual tablets 

The formulation of the aforementioned AS FDSTs (Aodah et al., 2017) was adapted 

from a previously prepared epinephrine FDSTs formulation (M. M. Rawas-Qalaji, Simons, 

& Simons, 2006). The doses used in the previous AS FDSTs ranged from 2 mg to 8 mg 

with a total tablet weight of 50 mg (Aodah et al., 2017). These tablets were developed as 

potential alternative dosage form for OP acute toxicity treatment. All the AS FDSTs 

batches passed the quality control test. However, when the AS dose was increased from 2 

mg to 8 mg, the tablet formulation’s properties deteriorated. For example, the disintegration 

time for the tablet was increased up to 3 min. Also, only 30% of the drug dissolved in 1 

min (Aodah et al., 2017). Therefore, the compression force used to manufacture 8 mg AS 

tablets was reduced from 130 -150 kgf to around 90 kgf in order to improve tablet 

disintegration and AS dissolution (Aodah et al., 2017). Also, the sublingual permeability 

of AS using this preliminary tablet formulation resulted in a lag time of 5 min. This means 

that the start of AS sublingual permeability was delayed by 5 min, which can negatively 

impact the potential of using these tablets as antidote for OP toxicity, which require a fast 

onset of action (Aodah et al., 2017). Due to these limitations, the previous preliminary 

tablet formulation was optimized in this work and then the optimized FDSTs were 

characterized using a quality-by-design approach to overcome the aforementioned 

limitations and to increase the potential of using AS FDSTs as a non-invasive, user-

friendly, and cost-effective AS dosage form for the treatment of emergency OP poisoning. 
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 Excipients 

Pharmaceutical excipients are pharmacologically inactive ingredients added to the drug 

formulation and form part of the finished product (Chen, Chetty, & Chien, 1999). The 

absorption of the drug from the sublingual area is affected by many factors. Some of the 

main factors include the type of formulation used, including excipients, as well as the 

drug’s physicochemical properties (Meanwell, 2011). Excipients in a drug formulation 

play an important role in determining the rate of drug absorption through the mucosa by 

controlling the rate of tablet disintegration into small particles and, therefore, controlling 

the rate of drug release and dissolution necessary for its absorption (W. Brniak et al., 2013). 

Also, in comparison to a liquid formulation, excipients in a sublingual tablet formulation 

are important for localizing the formulated drug at the site of absorption and limiting its 

loss into the stomach.  

 Effect of excipients on the physical characteristics of FDSTs 

Different excipients can perform differently under very strict conditions like the 

sublingual cavity that lacks any agitation and has limited volume of saliva to facilitate 

tablet disintegration and drug dissolution (Jivraj et al., 2000). For FDSTs formulation, 

disintegration and wetting times are critical attributes that can influence the rate of drug 

dissolution (Witold Brniak et al., 2015). Therefore, selecting excipients that ensure rapid 
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tablet disintegration is critical to liberate the drug and make it available for dissolution, 

which can lead to enhancing the rate of drug absorption.  

Most of the physical characteristics of FDSTs such as hardness, disintegration time, 

and powder flowability can be affected by the type of excipients used and their percentages. 

For example, Watanabe et al. (1995) used microcrystalline cellulose (MCC) grade PH-301 

and Low-substituted hydroxypropyl cellulose (L-HPC) grade LH-11 in their studies. Their 

results showed that increasing the percentage of LH-11 from 10% to 30% resulted in a 

reduction in the tablet hardness from 8 kgf to 6 kgf, and an increase in their disintegration 

time. Also, increasing the percentage of LH-11 (beyond 30%) reduced the powder’s 

flowability (Watanabe et al., 1995). Additionally, excipients selected for FDSTs 

formulation have to have low moisture content and low water solubility to ensure drug 

stability and enhance tablet disintegration and drug dissolution (Alyami et al., 2017). 

 Microcrystalline cellulose  

The MCC and L-HPC were the two cellulose excipients used in our AS FDSTs 

formulation (Aodah et al., 2017). MCC is a filler that is produced in wide variety of grades 

with different range of particle sizes and shapes, moisture contents, angle of reposes, and 

porosities (Guy, 2009). Each grade offers various set of properties that can affect the overall 

characteristics of the formulation. For example, MCC’s particle size and shape are the two 

important variables that can influence the entire powder flowability. MCC the PH grade is 

one of the most widely used grade in tablet formulations. Later, the MCC UF grade was 
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introduced as a new highly compressible filler grade. The different properties of different 

grades of MCC are shown in Table I (Asahi, 2018). 

For FDSTs formulation, the filler is one of the most important excipient that represents 

the highest percentage incorporated into the tablet formulation (Moolchandani et al., 2015). 

Since the preliminary AS FDSTs formulation resulted in unfavorable tablet’s hardness and 

disintegration time characteristics at high AS dose, it has been proposed that altering the 

filler type or grade in this project can improve the overall physical characteristics of the 

tablet, which can influence drug dissolution and absorption (Horio, Yasuda, & Matsusaka, 

2014). 

 

Table I. Characteristic of different MCC Filler Grades (Asahi, 2018)

 

MCC Grade 
Average 

Particle Size 
(µm) 

Bulk Density 
(g/cm3) 

Loss on 
Drying (%) 

Repose Angle 
(degree) 

UF-702 90 0.29 2.0-6.0 34 
UF-711 50 0.22 2.0-6.0 42 

PH-101 50 0.29 2.0-5.0 45 
PH-102 90 0.30 2.0-5.0 42 

PH-200 170 0.35 2.0-6.0 36 
PH301 50 0.41 2.0-6.0 41 

PH302 90 0.43 2.0-6.0 38 



52 
 

 
 

 Role of pH in Enhancing AS Sublingual Permeability 

The pH of the drug and its degree of ionization are critical parameters that can affect 

the drug permeation and absorption through the mucosal membrane. The pKa of the drug 

and the pH at the site of drug absorption in the sublingual region affect the extent of drug 

ionization and therefore, its permeability and absorption. The physiological pH in the 

sublingual area ranges between 5.8 to 7.5 (Sattar, Sayed, & Lane, 2014). Therefore, drugs 

that are unionized or partially ionized at this pH and with acceptable lipophilicity and low 

molecular weight can be readily absorbed through the sublingual mucosa (Wang & Chow, 

2014). The less the drug is ionized the more it can easily pass through the sublingual 

mucosal phospholipid layer (Chen et al., 1999). In general, most of the drugs are either 

weak basic or weak acidic, which means that they are partly ionized, hence, can attract 

water molecules, forming large complexes that cannot pass through the pores in the 

semipermeable membrane (Goswami et al., 2016). However, the degree of ionization of 

weak basic or acidic drugs is based on the prevailing pH at the site of absorption. 

According to Lee et al. (2005), the permeability of different compounds were tested 

using different apical pH buffer. The permeability of the basic compounds such as 

propranolol and timolol was decreased when the apical pH changed from 7.4 to 6.5 (Lee 

et al., 2005). Also, when the permeability of cimetidine (pKa= 6.8) and alfentanil (pKa= 

6.5) were tested at different pH in Caco-2 cells monolayers, their permeability were 

increased 30 – 60 fold at pH 8.0 in comparison to pH 5.0 (Palm, Luthman, Ros, Grasjo, & 

Artursson, 1999). 
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Altering the absorption medium’s pH in order to enhance drug bioavailability of basic 

drugs can be achieved by incorporating alkalinizing excipients into the drug formulation. 

The selection of the excipients to be used depends on the properties of the target absorption 

site (Goswami et al., 2016). Additionally, the addition of an alkalinizing excipient, also 

called a pH-modifier, to the tablet formulation to be administered sublingually ensures that 

the pH of the saliva is controlled within the range that is optimal for drug absorption and 

reduces absorption variability due to individual differences or food effect. The selection of 

these excipients is particularly important for AS as a weak base (Hassan, Ahad, Ali, & Ali, 

2010). Its extent of absorption can be greatly dependent on its degree of ionization, which 

is mainly affected by the pH of the saliva (Goswami et al., 2016). Therefore, the evaluation 

of various pH-modifying excipients is critical for enhancing and optimizing AS 

permeability. 

 Calcium carbonate 

Calcium carbonate (Ca Carb), CaCO3, is a white inorganic water soluble salt. It forms 

a moderately alkaline solution when it dissolves in water. Its molecular weight is 

100.09 g/mol, with a melting point of 1571°F (825°C) (USP/NF, 2018i). Ca Carb is used 

therapeutically as a buffer in hemodialysis. It can be used as antacid for temporary 

heartburn relief. Ca Carb is also frequently used as a calcium supplement for osteoporosis 

treatment (MeSH, 1965).  
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 Sodium citrate 

Sodium citrate (Na Cit), Na3C6H5O7, is a white water soluble salt. It can be prepared 

as mon, di, or tri sodium citrate. Its molecular weight is 214.10 g/mol, with a melting point 

of 414°F (212°C) (USP/NF, 2018k). It can be used to increase the free sodium load. Na Cit 

is widely used as a buffer to adjust the pH of weak acidic or weak basic drugs (Ugwu & 

Apte, 2004). 

 Sodium bicarbonate 

Sodium bicarbonate (Na Bicarb), NaHCO3, is a white solid powder usually known as 

baking soda. It is a strong base that generates sodium carbonate when it heats over 200°F 

in oven for about an hour. Its molecular weight is 84.01 g/mol, with a melting point of 

122°F (50°C) (USP/NF, 2018j). It is one of the most commonly used pH buffering agent. 

Na Bicarb is also used as antacid to treat heartburn, indigestion, and upset stomach by 

neutralizing the excess stomach acid (MeSH, 1994). 

 Role of Penetration Enhancers in Enhancing AS Sublingual Permeability 

Properties of drugs such as lipid solubility and molecular weight have been reported to 

affect the absorption of the drug (Gao & Morozowich, 2006). It is very important to 

understand the mechanistic analysis and the characteristics for the permeation process in 

the oral mucosal for drugs of interest to optimize their drug delivery. The paracellular and 
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the transcellular routes are the two major pathways for any drug in order to pass through 

the mucosal membrane. The preferred pathway for most ionizable molecules will depend 

on two factors, the charge status of the molecule and the resistance encountered during the 

permeation process (Chen et al., 1999). 

 Transcellular transport 

The drug movement via the transcellular route involves the following: drug transport 

across the luminal membrane, diffusion through the cytosol, transport across the basolateral 

membrane, and movement through interstitial fluid and capillary (Patel & Misra, 2011). 

Transcellular permeation enhancers work by promoting the disruption in the cellular 

membrane. These enhancers, such as surfactants, partition into the cellular membranes and 

disrupt the packing of the lipids which results in defects in the structural integrity of the 

membrane (

Figure 9). However, their concentrations to be used are critical to avoid associated 

cytotoxicity.  

 Paracellular transport 

Paracellular transport is a passive transport where the substance transfers across the 

epithelium cells through the intercellular spaces between cells (Maiti, 2017). Tight 

junctions between cells play an important role in paracellular permeation. Unlike 

transcellular transport, paracellular transport is less selective with respect to size, charge, 
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and hydrophobicity (Preusch, 2007). It is the suitable way for hydrophilic substances that 

are not able to permeate through transcellular transport. Paracellular penetration enhancers 

have the ability to enhance drug absorption through transient widening of the tight 

junctions of the cells in the membrane leading to reducing in their resistance and increasing 

permeability while decreasing cell viability (Goswami et al., 2016) (

Figure 9). It is also known that the paracellular pathway is more selective to positively 

charged molecules than negatively charged molecules (Caon, Jin, Simoes, Norton, & 

Nicolazzo, 2015). Some of these enhancers can work as a mucoadhesive as well, which 

can potentially prolong the retention of the drug at the site of absorption and minimize drug 

loss by salivary secretions in sublingual area. 

 

           

Figure 9. Transcellular and Paracellular Transport (Levendoski, Leydon, & Thibeault, 
2014). 

 



57 
 

 
 

 Sodium dodecyl sulfate 

Sodium dodecyl sulfate (SDS) is a synthetic surfactant that enhances the absorption of 

the drugs through the sublingual mucosa by modifying the permeability of biological 

membranes and through the interaction with the drug (Goswami et al., 2016). SDS works 

as a transcellular enhancer that enhances the absorption of the drug due to protein 

denaturation, enzyme inactivation, swelling of tissue, and extraction of lipid components 

(Goswami et al., 2016). It also works as a paracellular enhancer by increasing the 

absorption of the hydrophilic drugs through the paracellular route through the 

solubilization of the intracellular lipids that form a barrier to paracellular permeant. The 

effects of SDS as penetration enhancer depend mainly on the lipophilicity of the permeant. 

It showed a very promising effect when used for the buccal drug delivery (Nicolazzo, Reed, 

& Finnin, 2004). On the other hand, SDS is a powerful irritant at high concentrations, 

however, a 1% SDS concentration was reported as the maximum concentration that can be 

used without causing cytotoxicity ("Final Report on the Safety Assessment of Sodium 

Lauryl Sulfate and Ammonium Lauryl Sulfate," 1983). 

 Palmitoyl carnitine chloride 

Palmitoyl carnitine chloride (PCC) is a fatty acid derivative of L-carnitine that works 

as an enhancer of hydrophilic molecules (Duizer, van der Wulp, Versantvoort, & Groten, 

1998). It enhances the absorption of the drug by distributing the epithelial tight junctions, 
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which reduces the resistance and increases the permeability while decreasing cell viability. 

It also causes dilation in the paracellular spaces. Duizer et al. (1998) studied the correlation 

between the absorption enhancing effect of PCC and its effect on tight junction morphology 

and cytotoxicity on the intestinal epithelium. They found that PCC was able to decrease 

the transepithelial electrical resistance (TEER) for hydrophilic molecules and increase their 

absorption and permeation (Duizer et al., 1998). The effect of PCC as an enhancer is a dose 

dependent, which means that by increasing the concentration of PCC, its effect as 

absorption enhancer increases (Duizer et al., 1998; Sutton, LeCluyse, Engle, Pipkin, & Fix, 

1993). The maximum reported concentration that can be used without causing cytotoxicity 

is 1mM (Duizer et al., 1998). 

 Sodium glycocholate 

Sodium glycocholate (Na Gly) is a bile salt that have been shown to be effective as a 

penetration enhancer, especially in buccal epithelial mucosa. Na Gly works both as a 

transcellular and a paracellular penetration enhancer. Its transcellular enhancement works 

by interacting with the epithelial lipids, which cause a destruction in the lipid packing and 

formation of micelles that overcomes the resistance at the aqueous diffusion layer of 

epithelial cell membrane (Senel, Duchene, Hincal, Capan, & Ponchel, 1998). However, the 

paracellular enhancement works by disrupting the cell-cell junction to cause widening in 

tight junctions between cells (Mahaling & Katti, 2016). According to the study done by 

Williams et al. (2004), 0.5% Na Gly was able to increase the permeability of 
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polycaprolactone nanoparticles in the anterior part of the eye (Mahaling & Katti, 2016). 

Also, Senel et al. (1998) studied the effect of Na Gly as a permeation enhancer for morphine 

hydrochloride (MPH) across the porcine buccal mucosa. Two concentrations were tested 

(10 mM and 100 mM). The results showed that 100 mM concentration was able to 

significantly enhance the permeability of morphine at porcine buccal mucosa but not the 

10 mM concentration (Senel et al., 1998). 

 Chapter Summary 

In this chapter, the mechanism of action of OP poisoning and their signs and symptoms 

were discussed. The steps for OP poisoning treatments were described. AS autoinjector is 

the basic and initial pharmacological treatment for OP poisoning. However, because of the 

drawbacks associated with its use, alternative route of administration was proposed. The 

advantages of the sublingual route anatomy and physiology for sublingual drug delivery 

were explained and the formulation of AS FDSTs was discussed. The role of the excipients 

and filler grades in enhancing the physical characteristics of FDSTs formulation was 

described. Finally, two different approaches to enhance the sublingual permeation of 

FDSTs were reviewed. These included the use of pH-modifying agents and penetration 

enhancers. 
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Methodology 

 

 Chapter Overview 

In order to address the objectives and aims of this research project, the methods used 

were developed and performed according to the following five main steps: 

1. Validating the analytical method for the quantification of AS. 

2. Formulating and manufacturing various AS FDST formulations.  

3. Evaluating the characteristics of AS FDSTs using various quality control tests. 

4. Evaluating the ex vivo pH-permeability profile for AS FDSTs. 

5. Evaluating the potential of incorporating different pH-modifiers into AS FDSTs and 

their effect on AS FDSTs ex vivo permeability. 

6. Evaluating the potential of incorporating different penetration enhancers into AS 

FDSTs and their effect on AS FDSTs ex vivo permeability. 
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 Analytical Method of Atropine Sulfate 

The validation of the analytical method was required for the accurate and reliable 

analysis of AS samples. AS samples obtained from the quality control tests and Franz cells 

permeability studies were analyzed and quantified using high pressure liquid 

chromatography (HPLC) system as the analytical equipment used in this project (USP/NF, 

2018h). Several AS calibration curves were prepared. Intra- and inter-assay variation, 

instrument and method reproducibility, instrument injection volume accuracy, and the 

minimum limit of quantification were determined to ensure that reliability of the analytical 

method used.  

 HPLC system and detection method 

In this project, an HPLC system, model e2695, Waters Corporation (Milford, MA) was 

used. The system was equipped with a UV photodiode array (PDA) detector, model 2998, 

a pump, a column oven, a degasser, and an auto sampler. The column used was the 

reversed-phase µBondapak C18 Column, 125Å, 10 µm, 3.9 mm X 300 mm, which was 

purchased from Waters Corporation (Milford, MA). A sample injection volume of 20 µL 

with a pump flow rate of 2 mL/min, and a detection wavelength of 254 nm were used for 

AS analysis (USP/NF, 2018g). 
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 Materials 

The mobile phase was prepared by dissolving 5.1 g of tetrabutyl ammonium hydrogen 

sulfate, purchased from Sigma Aldrich (Saint Louis, MO), in a 50 mL acetonitrile, 

purchased from EMD Millipore Corp. (Billerica, MA), in a 1 L volumetric flask. The final 

volume of 1 L was then completed by adding acetate buffer that was previously prepared 

by adding 5.9 g of sodium acetate, purchased from Sigma Aldrich (Saint Louis, MO), in 1 

L volumetric flask. Acetic acid 3 mL, purchased from Sigma Aldrich (Saint Louis, MO), 

was added and the final volume of 1 L was then completed by adding deionized water to 

prepare acetate buffer at a pH of 5.5. The mobile phase pH was adjusted to 5.5±0.1 with 

5N sodium hydroxide, purchased from EMD Millipore Corp. (Billerica, MA), and then 

filtered using 0.2 µm 47mm Supor®-200 filter (Pall Corporation, Mexico). 

 Calibration curves 

Calibration curve is a general method used to understand the response of the instrument 

to the analyte and to determine the concentration of an unknown sample analyte. The 

calibration curves were prepared and used for method qualification and AS quantification. 

A stock solution of AS (2 mg/mL) was prepared by dissolving 20 mg of AS monohydrate, 

purchased from Sigma Aldrich (Saint Louis, MO), in 10 mL deionized water in a 10 mL 

volumetric flask. A series of different AS standards were then prepared using the stock 

solution, including 200 µg/mL, 160 µg/mL, 80 µg/mL, 40 µg/mL, 20 µg/mL, 10 µg/mL, 
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and 5 µg/mL. Calibration factor was calculated from the slope obtained from plotting the 

area under the curve (AUC) of the different AS standards against their concentrations 

(n=5). 

 Instrument reproducibility 

Measuring the instrument reproducibility is very important as it measures the ability of 

the instrument to produce the same result if the same input was used. The reproducibility 

of HPLC instrument was evaluated by injecting and analyzing multiple AS standards of a 

high and low concentrations of AS, 20 µg/mL and 200 µg/mL (n=5). The relative standard 

deviation percentage (RSD%) for the injected and analyzed AS standards were calculated.  

 Injection volume accuracy 

The accuracy of the injection volume can measure the error that can result when using 

a specific instrument (instrument error). Usually, for each instrument, there is a range of 

error that can be acceptable. In order to evaluate the accuracy of the autosampler, injection 

linearity test was performed. The linearity of injecting increasing volumes of 10 µL, 20 

µL, 40 µL, 60 µL, 80 µL, and 100 µL of AS standard solution 20 µg/mL was evaluated by 

calculating the correlation of coefficient (R2) of the slope obtained from plotting the area 

under the curve (AUC) of the different injections against their injection volumes. 
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 Intra and inter-assay variation system 

In order to evaluate the method and personal variability, intra and inter-assay variation 

of AS calibration curves were performed. This test can express the precision and 

repeatability of the results, which are the two important factors for instrumental and 

analytical method qualification. Different calibration curves were used from three days at 

different times of the day (morning and evening). For intra-assay variability, 3 sets of AS 

standards for 3 different calibration curves (n=3) were prepared on the same day but at 

different times and used to determine variations between the results analyzed on the same 

day. For inter-assay variability, 3 sets of AS standards were prepared at different days (n=3) 

and used to determine variations from day to day analysis. The RSD% for the analyzed AS 

standards were calculated.  

 The limit of quantification  

The limit of quantification (LOQ) is defined as the minimum concentration that can be 

quantified accurately and reproducibly. LOQ was measured to determine method’s 

sensitivity and qualify the analytical method used. Low AS standard concentrations 

including: 0.1 µg/mL, 0.5 µg/mL, 1.25 µg/mL, 2.5 µg/mL, and 5 µg/mL, were injected and 

analyzed (n=5). The lowest AS concentration that was detected and analyzed with an 

RSD% of £ 5%, was considered the LOQ for AS using this analytical method. 
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 Formulation and Manufacturing of AS FDSTs 

The previously prepared and manufactured AS FDST formulations were adapted 

(Aodah et al., 2017) and optimized to address our aims. 

For this research project, 10 different AS FDST formulations were formulated and 

manufactured. All the AS FDST batches contained 8 mg AS as the active ingredient and 

had a total tablet weight of 50 mg.   

 Materials 

Atropine sulfate monohydrate (AS) was purchased from Sigma Aldrich (Saint Louis, 

MO). Magnesium stearate was used as a lubricant and purchased from Alfa Aesar 

(Heysham, Lancs, UK). Two grades of Ceolus® fillers MCC (PH-301) and (UF-702) were 

generously provided by Asahi Kasei Chemicals Co. (Tokyo, Japan). The superdisintegrant 

L- HPC (LH-11) was provided by Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan). 

 Formulation preparation 

All the powders used were sieved before mixing using an electrical sieve shaker (Cole-

Parmer, Vernon Hills, IL) with a sieve number 140 (106 µm) to ensure all excipients and 

active ingredient had uniform particles size distribution. AS was manually mixed with 

MCC by geometric dilation method. L-HPC, two-third the quantity, was mixed with the 

other powder mixture for 4 min using a three-dimensional manual mixer (Inversina, 
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Bioengineering AG, Wald, Switzerland). Magnesium stearate and the remaining one-third 

of L-HPC were manually mixed and then added to the powder mixture to be mixed for 

additional 30 sec. This mixing procedure was used to achieve both internal and external 

positioning of the superdisintegrant. 

The composition of the ten formulations are shown in Table II. The optimized AS 

FDST formulation contained the highly compressible filler grade, MCC UF-702, and was 

compared to the previously used filler grade, MCC PH-301. A pH modifier, Na Bicarb, a 

pH modifier and penetration enhancers, SDS, PCC, Na Gly, and enhancers alone, SDS, 

PCC and Na Gly, were incorporated in the optimized AS FDST formulations (Table II).  

 FDSTs’ manufacturing 

The mixed powder from each formulation of the ten batches was compressed and 

manufactured by direct compression method using a rotary Minipress I (Glob Pharma, NJ) 

at a compression force of 130-150 kgf using 3”/16” concave punches (Natoli Engineering 

Company, Inc., St. Charles, MO). 
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 Evaluation of The Physical Characteristics and Quality Control Testing of AS 

FDST Formulations 

The mixed powder from each batch was tested for its flowability (PF) and moisture 

content (MC) before compression. Then, the manufactured tablets were tested for their 

breaking force (BF), friability (F), and content uniformity (CU) using the United States 

Pharmacopeia (USP) standard tests and limits. Due to the lack of an accurate USP test that 

can discriminate small differences between FDSTs, tablets’ disintegration time (DT) and 

drug dissolution (DD) were tested using the previously developed and published 

apparatuses and procedures that can detect small differences between tablets (Aodah et al., 

2017; Rachid et al., 2011). FDSTs’ wetting time (WT) and water uptake (WU) were tested 

as well using modified procedures. 

 Powder flowability (PF) or the angle of repose test 

Powder’s flow behavior is an important factor that has a significant impact on tablets 

manufacturability (Prescott & Barnum, 2000). Powder flowability has a direct effect on 

weight variability and content uniformity. A poor powder flowability results in huge weight 

and content variation (Prescott & Barnum, 2000). Therefore, the flowability of the powder 

mixture of each batch was tested before compressing the tablets. The mixed powder from 

each formulation was poured into a clean funnel with a diameter of 7 cm at a height of 30 

cm and allowed to freely flow on a flat stainless steel surface and form a cone shape. This 
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process was repeated three times (n=3). The angle of repose was determined by using a 

special protractor to measure the angle between the wall of the cone side and the flat surface 

(Figure 10) (USP/NF, 2018d). 

The USP powder flow properties and its corresponding angles of repose are presented 

in Table III. The lower the angle of repose, the better the powder flowability (USP/NF, 

2018d).

 

            

Figure 10. Measurement of the powder’s angle of repose using a goniometer angle finder, 
miter gauge arm, measuring ruler protractor. 
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Table III. Flow properties and corresponding angles of repose according to USP 
(USP/NF, 2018d)

 

 Moisture content (MC) test 

Measuring the MC of the mixed powder is one of the important tests that can affect 

drug stability and powder flowability. High percentage of powder MC indicates 

difficulties, especially for FDST formulations due to increasing the ability to uptake 

moisture from the surrounding which may negatively affects the tablet’s disintegration 

(Alyami et al., 2017). A specific amount of the mixed powder from each formulation, 

usually 1 g (n=3), was spread on the heating pan of a Halogen Moisture Analyzer HE73, 

METTLER TOLEDO® (Sonnenbergstrasse, Schwerzenbach, Switzerland). The 

temperature in the analyzer reached 300°C to evaporate all the moisture in the powder. The 

MC (%) of the powder was recorded after heating based on the weight of powder used. The 

powder samples were discarded after testing. 

Flow Property Angle of Repose (degree) 
Excellent 25–30 

Good 31–35 

Fair—aid not needed 36–40 

Passable—may hang up 41–45 
Poor—must agitate, vibrate 46–55 

Very poor 56–65 

Very, very poor >66 
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 Measurement of tablet’s dimensions 

The tablet dimensions were measured to ensure the uniformity of the tablets 

dimension and manufacturing. In this test, ten tablets were randomly selected from each 

formulation and the diameter (D) and thickness at the tablet’s center (TC), were measured 

using a digital caliber (VWR, Randor, PA) (Figure 11). The mean (± SD) was calculated 

and recorded. 

 

 

         

Figure 11. Measurement of the tablet’s dimensions using a digital caliber.
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 Breaking force (BF) test 

Breaking force “hardness” test was performed to test the amount of force required to 

break up the tablet. It is critical to form hard FDSTs during manufacturing that pass the 

friability test but without retarding the tablet’s disintegration. The test was performed 

according to the USP guideline (USP/NF, 2018f). The BF of six randomly selected tablets 

was measured using Vanguard Hardness Tester LIH-3 (Vanguard Pharmaceutical 

Machinery, INC, Spring, TX). The mean (± SD) was calculated and recorded. 

 Friability (F) test 

The friability (F) test is a required test according to the USP guidelines to ensure that 

manufactured tablets can stand shipping and handling. The test involved testing 130 

dedusted tablets equivalent to 6.5g using a USP friability tester (Vanguard Pharmaceutical 

Machinery, INC, Spring, TX). Tablets were weighed before the test and then placed in the 

drum and rotated for 100 rounds at 25 rpm. At the end of the test, the tablets were dedusted 

and weighed again. The percentage of weight loss was calculated using the following 

equation: 

Weight Loss %= (#$%&'(	*$+,-$	–	#$%&'(	/+($-)
#$%&'(	*$+,-$ 	X	100                

The maximum allowed weight loss according to the USP criteria is less than or equal 

to 1.0% (USP/NF, 2018e). 
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 Content uniformity (CU) test 

Content uniformity is a quality control test used to assess the individual content of the 

active ingredient in each tablet (Vranić & Uzunović, 2008). According to USP, content 

uniformity test is required for tablets that contain less than 25 mg or less than 25% of the 

active ingredient. Tablet content was analyzed by randomly selecting 10 tablets and 

dissolving each one in 10 mL of distilled water by vortexing for 1 min. Aliquot sample 

from each solution was collected, diluted, and then filtrated using 0.45 µm nylon syringe 

filters (VWR, Randor, PA). Samples were analyzed by HPLC with UV detection (Waters 

Corporation, Milford, MA) using the standard USP procedure for analyzing AS injection 

(USP/NF, 2018g). The USP acceptance value (AV) of L1 (15% or less) was calculated for 

each formulation (USP/NF, 2018c). 

 Tablet’s disintegration time (DT) test 

Disintegration time test is an important test for ODTs and used to assess the time the 

tablet takes to liberate its active ingredients to be available for absorption (Al-Gousous & 

Langguth, 2015). An alternative non-USP disintegration test method was previously 

developed and published for FDSTs (Aodah et al., 2017). The developed apparatus 

included a rotating shaft (8 ± 2 mm diameter, 220 ± 20 mm height), a stainless-steel round 

USP basket (38.5 ± 1 mm diameter, 23 ± 2 mm height) with a stainless-steel wire screen 

(0.36 - 0.44 mm apertures and 0.22 - 0.31 mm wire diameter) attached at the base of the 
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rotating shaft, and a glass beaker (30 ± 10 mm diameter, 40 ± 10 mm height, 20 mL 

volume).  

The test was performed by partially immersing the rotating basket that contains one tablet 

rotated at a speed of 60 rpm into the glass beaker containing 2 mL of warmed water to 37 

± 2 ºC to facilitate tablet disintegration. The time (in seconds) required for each tablet 

(n=6) to disintegrate completely and for the fine particles to pass through the basket 

screen into the beaker was determined using a stopwatch (Aodah et al., 2017) (Figure 

12). 

 

                         

Figure 12. (a) Disintegration apparatus; (b) USP stainless-steel basket.

 

Rotating Shaft 

Glass Beaker 
(20 mL) 

Water (2 mL) 

USP Basket 

(a) (b) 

USP Basket 

AS FDST 



75 
 

 
 

  Drug dissolution (DD) test 

Drug dissolution is critical and can be the rate limiting step for its absorption. Dissolution 

test is a quality control test that can determine the extent and the rate of the drug 

absorption (Kraemer, Gajendran, Guillot, Schichtel, & Tuereli, 2012). Dissolution test 

was measured according to our previously developed and validated non-USP dissolution 

test designed to simulate the low fluid volume and static environment available in mouth 

cavity and to discriminate between small differences in the dissolution of different AS 

FDST formulations (Rachid et al., 2011).  

Tablets were randomly selected (n=6) and tested according to our previously published 

procedure. Each tablet was dropped into the donor chamber that contained 2 mL of water 

and connected to a sampling tube under vacuum. The donor chamber and the sampling 

tub were separated by 0.45 µm filter membrane (Figure 13). After 60 sec, the vacuum 

valve was activated and only the drug released and dissolved from each tablet was sucked 

into the receiving sampling tube through the filter membrane, while the undissolved drug 

and excipients were retained on the membrane (Rachid et al., 2011). Collected samples 

were diluted and analyzed by HPLC with UV detection (Waters Corporation, Milford, 

MA) using the standard USP procedure for analyzing AS injection to quantify and 

calculate the percentage of AS dissolved from the tablet within 60 sec (USP/NF, 2018g). 
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Figure 13. (a) An illustrative dissolution apparatus (b) Disassembled dissolution 
apparatus.

 Water uptake (WU) test 

For FDSTs, it is important to determine how well the tablet can absorb and hold water to 

facilitate drug dissolution. In this non-USP test developed by Aodah and coworkers 

(Aodah et al., 2017), the dry weight of each tablet (n=6) was measured using an 

analytical balance (d=0.01 mg). Then, while the tablet was still on the balance, water was 

added dropwise on the top of the tablet. Once the tablet could not hold more water and 

water started to ooze out, its wet weight was recorded (Figure 14). The percentage of how 

much the tablet can absorb and hold water was calculated using the following equation: 

Water Uptake (%) =  (456	457896:;<=	457896);<=	457896 >	100             

                                              

Donor Chamber 
(2 mL Water) 

Sampling Tube 

Vacuum 
Line 

(a) 

Donor Chamber 

 

Sampling 
Tube 

Filter Membrane 

(b) 
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Figure 14. Measurement of AS FDST’s water uptake.

 

 Wetting time (WT) test  

Similar to the dissolution test, wetting time was necessary to measure how fast water can 

diffuse throughout the tablet to dissolve the drug and, therefore, measure small 

differences in FDST formulations using a previously published non-USP method (Aodah 

et al., 2017). Wetting time was recorded using a stopwatch right after placing each tablet 

(n=6) on a wetted but drained paper towel to remove excess water before each test. The 

time was recorded when the water penetrated throughout the entire tablet (Figure 15). 
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Figure 15. Wetting time test of FDSTs. 
A: an image for AS 50 mg FDST when placed on a wet paper towel at t0; B: an image of 
FDST placed on a wet paper towel at the end of wetting test. 
 
 

 Ex vivo Permeability Studies  

The ex vivo permeation of AS from each FDSTs formulation batch was performed to 

evaluate and measure the sublingual permeability of AS, and the effect of various 

excipients incorporated into the tablet formulation to optimize tablets’ physical 

characteristics and AS sublingual permeability. 

 Franz cells preparation 

Static vertical jacketed Franz cells containing donor and receiver chambers with an OD 

of 20 mm, a reservoir volume of 20 ± 1 mL, and a magnetic stirrer at the bottom of the 

receiver chamber (PermeGear Inc., Hellertown, PA) were used to perform the ex vivo 

A  

B  
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permeability studies (Figure 16). The temperature of the circulating water was set at 37°C 

± 1°C. The surgically excised thin sublingual epithelial membrane from the underlying 

connective and fat tissues of a porcine lower jaw was used as the diffusional membrane 

(n=4) as previously established and reported (Rachid et al., 2011; M. M. Rawas-Qalaji, 

Werdy, Rachid, Simons, & Simons, 2015) (Figure 17). The integrity of the membranes 

were visually examined and experimentally assessed for any significant variability in AS 

permeability within each study. The excised membranes were stored at -20°C in phosphate 

buffer, pH 6.8, which represent the average pH of the saliva (pH 5.8 – 7.5), until being 

used within three months of their storage (Zhang, Zhang, & Streisand, 2002). 
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Figure 16. An illustrative scheme for a Franz cell.

 

 

 

 

 

 

 

 

 

 

Figure 17. An image of excised porcine sublingual membrane.
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 Evaluation of the effect of MCC filler grade on the sublingual permeability of AS 

FDSTs formulation 

For each study, excised sublingual porcine membranes were thawed at room 

temperature and mounted on Franz cells for 30 min to equilibrate with the diffusion 

medium from both sides. Air bubbles were removed from the receptor chambers and cells 

were checked for leaks. The water bath was set at 37oC and water was circulated in the 

jacketed Franz cells. A receiver chamber with a magnetic stirrer was filled with phosphate 

buffer, pH 7.4 (which represent the pH of the blood). Deionized water 2 mL was used in 

the donor chamber to facilitate tablet disintegration and dissolution. Tablets from FDSTs 

formulation containing MCC UF-702 (formulation R1) (n=4) were placed at the center of 

the mounted sublingual membrane in the donor chamber at time 0 (T0). Aliquots, 200 µL, 

were withdrawn from the receptor chamber using of 22 G and 6 inches needles (Cadence 

Inc., Cranston, RI) and 1 mL syringes at several time intervals, 5, 10, 15, 20, 30, 45, 60, 

75, and 90 min. The volumes withdrawn were replenished with fresh phosphate buffer. 

Samples were filtered and transferred into HPLC vials for HPLC analysis using UV 

detector (Waters Corporation, Milford, MA) according to the standard USP method for 

analyzing AS injection (USP/NF, 2018g).  

The result was then compared to the previously prepared and published AS FDSTs 

formulation (formulation B), that contained MCC PH-301 (Aodah et al., 2017). 
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 Evaluation of the ex vivo pH-permeability profile of AS FDSTs formulation 

The ex vivo permeability of the AS FDSTs formulation using MCC UF-702 

(formulation R1) was prepared and performed as described in section 3.5.2. However, 

instead of using water in the donor chamber as a diffusion medium, Mcvilian buffer 

(phosphate acetate buffer) was prepared at pH 5, 6.5, 6.8, or 8 and 2 mL of the prepared 

buffer was placed in the donor chamber to establish a pH-permeability profile for AS and 

to allow for tablet disintegration and AS dissolution.  

The pH that facilitated the highest AS permeability from FDSTs was selected as the 

optimal pH for AS sublingual permeability. 

 Evaluation of the effect of different pH-modifiers on the pH of AS solution  

Three pH-modifiers were selected: Na Bicarb, Ca Carb, and Na Cit, used in two 

concentrations (1 or 2% of tablet weight, 50 mg) to evaluate in vitro their ability to modify 

the pH of deionized water as a diffusion medium, which has almost the same pH of human 

saliva. Various concentrations from each pH-modifier were dissolved in 2 mL of deionized 

water (n=3) and the pH of the solution was measured using a pH meter (Orion Star®, 

Thermo Scientific, Waltham, MA). The pH-modifier that was able to modify the pH of the 

diffusion medium to the optimal pH for AS sublingual permeation based on the ex vivo 

pH-permeability studies (section 3.5.3) was then tested again with the addition of AS FDST 

in 2 mL of deionized water to evaluate their effect along with AS in FDSTs. 
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 Evaluation of the effect of incorporating a pH-modifier and/or penetration 

enhancers on the sublingual permeability of AS FDST formulations 

Different AS FDST formulations containing a pH-modifier and/or a penetration 

enhancer (Table II) were formulated and manufactured according to section 3.3 and 

evaluated according to section 3.4. The ex vivo permeability of AS from these different AS 

FDST formulations was performed as described in section 3.5.2. A 2 mL of deionized water 

was used in the donor chamber to facilitate tablet disintegration and dissolution. AS FDSTs 

permeated at pH 6.8 medium, the average saliva pH, was used as a control to evaluate the 

effect of incorporating a pH-modifier and/or various penetration enhancers on AS 

sublingual permeability. 

 Statistical Analysis 

The mean (± SD) of the results from the physical tests including, PF, MC, BF, F, CU, 

DT, DD, WU, and WT for each FDSTs formulation were calculated AS FDSTs 

formulation without pH-modifier and penetration enhancers were statistically compared to 

the previously prepared and published AS FDSTs formulation (formulation B) (Aodah et 

al., 2017) using student’s t-tests. Al the rest of AS FDST formulations prepared in this 

project were statistically compared within each other by a one-way analysis of variance 

(ANOVA) and Tukey-Kramer tests.  

The mean (± SD) of cumulative amount of AS (µg/cm2) permeated over time was 
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plotted and the area under the curve of AS permeated for 90 min (AUC0–90) and 15 min 

(AUC0–15) were calculated for each AS FDST formulation. The mean of AS influx, J 

(µg/cm2.min), was determined from the slope of the linear portion of the amount of drug 

permeated versus time curve. The AS permeability coefficient, P (cm/min), was calculated 

by dividing J by the initial AS concentration in the donor chamber at T0, which is 8 mg in 

2 mL (4 mg/mL). The Lag time (LagT), which is the time required for AS before it started 

to diffuse through the sublingual membrane to the receiving chamber, was calculated by 

extra-plotting the slope line to intersect with the X-axis. Data were statistically compared 

by student’s t-tests or one-way ANOVA and Tukey-Kramer tests.  

All the statistical analysis tests were performed using NCSS statistical software (NCSS, 

Kaysville, UT). Differences were considered to be statistically significant at p<0.05. 

 Chapter Summary 

In this chapter, the methods and the designs of the studies performed in order to achieve 

the objectives of this project were discussed in detail. Ten different formulations of AS 

FDSTs weighing 50 mg were prepared and manufactured using a new filler grade (UF-

702), a pH-modifier (Na Bicarb), and/or a penetration enhancers (SDS, PCC, or Na Gly). 

Each formulation was evaluated for its physical characteristics. The PF, MC, CU, and F 

tests were performed and evaluated using the USP standard tests. However, due to lack of 

an accurate USP testing method that can discriminate small differences between FDSTs, 
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DT, DD, WT, and WU tests were performed using our developed apparatuses and 

procedures to detect small differences between tablets.  

Testing AS permeability at a range of pH values to evaluate the pH-permeability profile 

of AS sublingual tablets were used as a guideline for choosing the optimal pH and pH-

modifier to be incorporated into the tablet’s formulation. In order to evaluate the AS 

sublingual permeation and the effect of incorporating a pH-modifier and/or a penetration 

enhancer into the tablet formulation, various ex vivo permeation studies were performed 

for each formulation using static vertical jacketed Franz cells. All the results and data from 

the quality control tests as well as the ex vivo permeation studies were analyzed using 

HPLC system with a UV detector and statistically analyzed.  
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Results 

 

 Chapter Overview 

In this chapter, the results for the described studies in the methods section were 

presented in detail. These include the results from HPLC qualification method tests, quality 

control and physical tests for AS FDST formulations, AS permeability studies to establish 

the pH-permeability profile, the pH results from using different pH-modifiers, and results 

from evaluating the effect of a pH-modifier and or various penetration enhancers on 

enhancing AS sublingual permeability from various AS FDST formulations. In this 

chapter, the most significant results were illustrated and emphasized using tables and 

figures to easily compare the results for the different FDST formulations. Mean ± SD was 

calculated and compared by T-test, one-way ANOVA and Tukey-Kramer tests using NCSS 

statistical software (NCSS, Kaysville, UT). Differences were considered to be statistically 

significant at p< 0.05. 
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 HPLC Method Qualification 

 Atropine sulfate calibration curves 

Calibration curves ranging from 5 to 200 µg/mL (n=5) were linear with a correlation of 

coefficient (R2) of > 0.9998. The retention time of AS was at 8 min. The mean of the 

performed calibration curves was plotted in Figure 18.

 

 

Figure 18. AS calibration curves (n=5).
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 Instrument and method reproducibility 

The HPLC system reproducibility was evaluated by analyzing the lowest and highest 

concentrations of AS (n=5), 20 µg/mL and 200 µg/mL. The RSD% for the injected 

concentrations were 0.7% and 0.2%, respectively. 

 Injection volume accuracy 

The instrument accuracy was evaluated by injecting 20 µg/mL AS standard, using 

increasing injection volumes starting from 10 µL. The AUC of the injected volumes 

(n=6) resulted a linear correlation with a correlation of coefficient of R2= 0.999 (Figure 

19).  
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Figure 19. The linearity of the autosampler’s injection volume.

 

 Intra and inter-assay variation system 

The RSD% for the intra and inter-assay (n=3) of different AS concentrations were 

calculated and the results were shown in Table IV.  
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Table IV. Intra and inter-assay variation

RSD%: relative standard deviation percentage.
 

 The limit of quantification  

The minimum amount of AS that could be detected and quantified using the HPLC-

UV detector system was 125 ng with an RSD% of 1.6% (n=5). 

 

 Physical Characteristics and Quality Control Testing of AS FDST Formulations 

 The effect of the MCC filler grade on the physical characteristics of AS FDSTs 

formulation 

The current new formulation of AS FDSTs (formulation R1), that contained MCC UF-

702, was evaluated based on the various previously described physical tests in section 3.4 

and was compared to the previously prepared and published AS FDSTs formulation 

(formulation B) (Aodah et al., 2017). Results comparing the physical characteristics of the 

RSD% 
AS Concentration (µg\ml) 

5 10 20 40 80 160 200 

Intra-assay 0.5 0.5 0.9 0.6 0.9 0.9 0.4 

Inter-assay 0.4 0.4 0.9 0.2 0.3 0.8 0.2 
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new AS FDSTs formulation containing MCC UF-702 to the previously developed and 

published AS FDSTs formulation containing MCC PH-301 were summarized in Table V. 

Mean (± SD) angle of repose of the powder mixture for formulation R1 was 32° ± 0.5°, 

which was significantly lower (p<0.05) than formulation B, 42° ± 2°. The tablet BF of 

formulation B (1.9 ± 0.6 kgf) was significantly lower (p<0.05) than formulation R1 (2.5 ± 

0.1 kgf). AS FDSTs from formulation R1 had significantly faster DT (p<0.05), higher WU 

and DD compared to AS FDSTs from formulations B (Table V). However, the WT was 

significantly (p<0.05) faster in formulation B AS FDSTs compared to formulation R1 AS 

FDSTs. 

 

Table V. Quality control tests of atropine sulfate 8 mg FDST formulations

 

Results were presented as mean (± SD) 
B: AS FDSTs using MCC PH-301; R1: AS FDSTs using MCC UF-702. 
* p<0.05

 

Test 
AS FDST Formulations 

B R1 
Powder Flow (repose angle) 42 ± 2 32 ± 0.5* 

Breaking Force (kgf) 1.9 ± 0.6 2.5 ± 0.1* 

Friability (loss %) 0.09 0.05 

Disintegration Time (sec) 14.0 ± 0.4 5.0 ± 0.6* 

Drug Dissolution (%) 88.5 ± 14 99.5 ± 6.2* 

Water Uptake (%) 229 ± 12 303 ± 16* 

Wetting Time (sec) 11 ± 1 17.0 ± 0.9* 
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 Powder flowability (PF) or angle of repose test 

According to the USP criteria (USP/NF, 2018d), all the powder blends developed for 

AS FDST formulations in this project had either a passable or a good angle of repose based 

on Table III. The angle of repose results for the powder blends from the different 

formulations were presented in Table VI. 

 Moisture content (MC) test 

Moisture content was tested for all the powder blends from the different AS FDST 

formulations. MC can influence the tablets stability and powder flowability. The addition 

of the pH-modifier and/or transcellular penetration enhancers (formulation R2, R3, R4, R6, 

R7, R8, R9, and R10) showed a significantly higher (p<0.05) MC than AS FDSTs 

formulation with no pH-modifier and/or penetration enhancers (formulation R1). However, 

the difference was higher when the transcellular enhancers were added alone to AS FDSTs 

(formulation R8, R9, R10). The results of MC from the different AS FDST formulations 

were presented in Table VI.  

 Tablets’ dimensions measurement 

All the tablets prepared for the different formulations of AS FDSTs had the same 

tablet’s size. The mean (± SD) of tablet’s dimensions including, tablet’s diameter and 

tablet’s central thickness for different AS FDST formulations were shown in Table VI. 
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 Breaking force (BF) test 

At the same compression force used (130 – 150 kgf), different formulations showed 

different tablets’ hardness. Breaking force of the manufactured tablets ranged from 2.0 to 

2.4 kgf. However, these differences between the different AS FDST formulations were not 

significantly different (p>0.05). The tablet hardness results for each AS FDSTs formulation 

were presented in Table VI. 

 Friability (F) test  

According to the USP, the maximum weight loss allowed for a tablet dosage form is 

no more than 1% (USP/NF, 2018e). All the manufactured AS FDST formulations passed 

the friability test. The friability results for each AS FDSTs formulation were shown in 

Table VI. 

 Content uniformity (CU) test  

According to the USP criteria for dosage form’s content uniformity (USP/NF, 2016), 

all AS FDST formulations passed the acceptance value (AV) for CU, with AV of ≤ 15. The 

mean (± SD) of tablets’ CU% and AV for each FDSTs formulation were presented in Table 

VI.  
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 Tablet’s disintegration time (DT) test 

The addition of the pH-modifier (Na Bicarb) and/or penetration enhancers (SDS, PCC, 

Na Gly) significantly increased (p<0.05) the tablet’s disintegration time compared to the 

AS FDSTs formulation with no pH-modifier and/or penetration enhancers (formulation 

R1). Despite the addition of the pH-modifier and/or the penetration enhancers into the 

tablet formulations containing the new MCC filler grade UF-702, most of the AS FDST 

formulations (formulation R2, R3, R4, R6, R7, R8, and R10) had a short disintegration 

time of less than 12 sec. AS FDST formulations containing the paracellular enhancer PCC 

16% with or without a pH-modifier (formulation R5 and R9) resulted in the longest 

disintegration time (p<0.05) of 12 sec and 16 sec, respectively. All the disintegration results 

for the different AS FDST formulations were shown in Table VI. 

 Drug dissolution (DD) test 

The percentage of dissolved AS from AS FDSTs in the first 60 seconds for all the AS 

FDST formulations were almost complete. The addition of the pH-modifier and/or 

penetration enhancers (formulation R2, R3, R4, R6, R7, R8, and R10) showed no negative 

effect (p>0.05) on the percentage of AS dissolved per minute. The addition of the 16% 

paracellular enhancer PCC with or without a pH-modifier (formulation R5 & R9) resulted 

in significantly less (p<0.05) AS percentage dissolved per min (86% and 88) compared to 

the other formulations. The mean (± SD) of DD% for all AS FDST formulations were 

shown in Table VI. 
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 Water uptake (WU) test 

The WU by the AS FDSTs formulation with no pH-modifier and/or penetration 

enhancers (Formulation R1) was significantly higher (p<0.05) than the formulations that 

had a pH-modifier, a pH-modifier with or without penetration enhancers, and penetration 

enhancers alone (formulation R2, R3, R4, R5, R6, R7, R8, R9, and R10). Also, the addition 

of the transcellular enhancer Na Gly 20% with or without the pH-modifier resulted in the 

lowest (p<0.05) percentage of WU (247% and 240%). The mean (± SD) percentage of 

tablet’s WU for all AS FDST formulations were shown in Table VI. 

 Wetting time (WT) test 

The WT of FDSTs was only affected by the addition of the penetration enhancers alone 

without the pH-modifier including, SDS 1% (formulation R8), PCC 16% (formulation R9), 

and Na Gly 20% (formulation R10). They all significantly increased (p<0.05) the tablet’s 

WT compared to the other AS FDST formulations (Table VI). Also, AS FDSTs 

formulation with the pH-modifier and paracellular enhancer PCC 16% (formulation R5) 

resulted in the longest WT (P<0.05) compared to the all other formulations. The WT results 

for all AS FDST formulations were shown in Table VI.  
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 Ex Vivo Permeability Studies 

 The effect of the MCC filler grade on the sublingual permeability of AS FDSTs 

formulation 

The mean (± SD) cumulative amount of AS permeated over time from both formulations, 

the previously developed AS FDSTs formulation (Formulation B) and the current 

formulation (Formulation R1) were plotted in  

Figure 20. Formulation R1 AS FDSTs resulted in a significantly higher (p<0.05) mean 

(± SD) cumulative amount of AS permeated (AUC) over 90 and 15 min, AS influx, and 

significantly decreased the permeation lag time in comparison to formulation B AS FDSTs 

(Table VII).
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Figure 20. The cumulative AS permeated per area (µg/cm2) versus time from FDST using 
MCC PH-301 (formulations B) and UF-702 (Formulation R1).
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Table VII. Ex vivo permeability of atropine sulfate 8 mg FDST formulations in water as a 
diffusion medium

Results were presented as mean (± SD) 
B: AS FDSTs using MCC PH-301; R1: AS FDSTs using MCC UF-702. 
* p<0.05. 
 

 The ex vivo pH-permeability profile of AS FDSTs formulation 

The mean (± SD) cumulative amount of AS permeated over time from AS FDSTs at 

various pH media were plotted in 

Figure 21. During the first 20 min of the permeation studies, AS permeation from 

formulation R1 AS FDSTs at different pH media did not show any significant difference 

(p>0.05). However, the mean (± SD) of AUC0-90 of AS permeated, J, and P from 

formulation R1 AS FDST in a diffusion medium of pH 8 were statistically higher (p<0.05) 

than at all other pH media (5, 6.5 and 6.8). Also, the AUC, J, and P from formulation R1 

AS FDST at pH 6.8 medium, which represented the average saliva pH, were statistically 

higher (p<0.05) than at pH 5 medium (Table VIII). 

 
AS FDSTs Formulations 

B R1 

Area under the curve, 
AUC0-90 min (µg/cm2/min) 

14995 ± 3184 23239 ± 550* 

Area under the curve, 
AUC0-15 min (µg/cm2/min) 

122 ± 150 722 ± 134* 

Influx, J (µg/cm2/min) 4.6 ± 0.9 7.7 ± 0.8* 

Lag time, LagT (min) 11.2 ± 4.7 0.0 ± 0.0* 
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Figure 21. The cumulative AS permeated per area (µg/cm2) versus time from FDSTs 
formulation R1 at different pH medium 

 

Table VIII. Ex vivo permeability of AS FDSTs at different pH

Results were presented as mean (± SD) 
* p<0.05 from all. 
$ p<0.05 from pH 5.
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AS FDSTs Formulation (R1) at Different pH 
Medium 

pH 5 pH 6.5 pH 6.8  
(control) pH 8 

Area under the curve, 
AUC0-90 min (µg/cm2/min) 

9708 ± 13530 9908 ± 14330 11232 ± 
12006 22715 ± 524* 

Influx, J (µg/cm2/min) 3.0 ± 0.5 3.3 ± 0.3 4.5 ± 0.4$ 8.4 ± 1.6* 

Permeability coefficient,     
P (cm/min) 

6.0x10-4 ± 
1.2x10-4 

8.2x10-4 ± 
8.6x10-5 

1.1x10-3 ± 
9.7x10-5 $ 

2.1x10-3 ± 
4.1x10-4* 



101 

 

 The effect of different pH-modifiers on the pH of AS solution  

Na Bicarb 2% resulted in a pH of 8.1 ± 0.3 that was significantly higher (p<0.05) than all 

other buffers at the various concentrations used. Also, incorporating Na Bicarb 2% into 

AS FDSTs formulation resulted in a similar (p>0.05) pH value of 7.9 ± 0.1. The mean (± 

SD) pH values for the different buffers used at different concentration were shown in  

Table IX.  

Table IX 

 

Table IX. pH measurements of different pH-modifiers at different concentrations 

Results were presented as mean (± SD) 
* p<0.05 from all except 2% Na Bicarbonate incorporated into AS FDSTs.

 

 The effect of incorporating a pH-modifier with or without penetration enhancers on 

the sublingual permeability of AS FDST formulations 

The mean (± SD) cumulative amount of AS permeated over time from AS FDSTs that 

contained the pH-modifier (2% Na Bicarb) with or without penetration enhancers (SDS, 

Concentration 
(%) 

pH-Modifiers 

Na Bicarb Ca Carb Na Cit 

1% 7.2 ± 0.2 6.6 ± 0.1 6.2 ±0.3 

2% 8.1 ± 0.3* 7.6 ± 0.1 7.5 ± 0.1 

2% with AS FDSTs 7.9 ± 0.1 - - 

Concentration 
(%) 

pH-Modifiers 

Na Bicarb Ca Carb Na Cit 

1% 7.2 ± 0.2 6.6 ± 0.1 6.2 ±0.3 

2% 8.1 ± 0.3* 7.6 ± 0.1 7.5 ± 0.1 

2% with AS FDSTs 7.9 ± 0.1 - - 

Concentration 
(%) 

pH-Modifiers 

Na Bicarb Ca Carb Na Cit 

1% 7.2 ± 0.2 6.6 ± 0.1 6.2 ±0.3 

2% 8.1 ± 0.3* 7.6 ± 0.1 7.5 ± 0.1 

2% with AS FDSTs 7.9 ± 0.1 - - 
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PCC, or Na Gly at different concentrations) were plotted in Figure 22. The mean (± SD) 

AUC0-90 of cumulative drug permeated, J, and P from AS FDST formulations (formulation 

R2, R3, R4, R5, R6, and R7) were statistically higher (p<0.05) than the control 

(formulation R1 at pH 6.8) (Table X). The mean (± SD) AUC0-90 of cumulative AS 

permeated, J, and P from AS FDSTs with the pH-modifier and transcellular enhancers 

(formulation R3, R4, R6, and R7) were significantly higher (p<0.05) than with the 

paracellular enhancer (formulation R5) and the control (Table X). Incorporating the pH-

modifier Na Bicarb 2% with SDS 1% (formulation R4) achieved the highest enhancement 

in AS sublingual permeability (p<0.05) and increased AS permeability 13-fold compared 

to the control. The ex vivo results for the different AS FDST formulations were shown in 

Table X. 

Also, the J and P of AS FDST formulations with the pH-modifier and paracellular 

enhancers (formulation R5) showed similar results (p>0.05) compared to the AS FDST 

formulations with the pH-modifier alone (formulation R2) (Table X). 
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Figure 22. The cumulative AS permeated per area (µg/cm2) versus time from FDST 
formulations with pH-modifier and penetration enhancers.
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Table X. Ex vivo permeability of different AS FDST formulations containing a pH-
modifier and penetration enhancers

Results were presented as mean (± SD) 
R1: AS FDSTs at pH 6.8 medium using MCC UF-702; R2: AS FDSTs with Na Bicarb 2%; 
R3: AS FDSTs with Na Bicarb 2% and SDS 0.5%; R4: AS FDSTs with Na Bicarb 2% and 
SDS 1%; R5: AS FDSTs with Na Bicarb 2% and PCC 16%; R6: AS FDSTs with Na Bicarb 
2% and Na Gly 15%; R7: AS FDSTs with Na Bicarb 2% and Na Gly 20%. 
* p<0.05 from all. 
$ p<0.05 from all but not each other. 
 
 
 

 The effect of incorporating penetration enhancers on the sublingual permeability of 

AS FDST formulations 

The mean (± SD) cumulative amount of AS permeated over time from AS FDSTs that 

contained a penetration enhancer (SDS, PCC, or Na Gly) were plotted in Figure 23. The 

mean (± SD) AUC0-90 of cumulative drug permeated and J from AS FDSTs with 

transcellular enhancers (formulation R8 and R10) were significantly higher (p<0.05) than 

AS FDSTs with paracellular enhancer (formulation R9) and the control (Table XI) 

(Figure 23). Also, the P of AS FDSTs formulation with the transcellular enhancer (SDS) 

 
AS FDSTs Formulations 

R1 
(control) R2 R3 R4 R5 R6 R7 

Area under the curve, 
AUC0-90 min (µg/cm2/min) 

11232 ± 
12006* 

30696 ± 
510* 

40173 ± 
1396* 

114334 
± 3413* 

25339 ± 
1527* 

79071 ± 
1429* 

84775 ± 
908* 

Influx, J (µg/cm2/min) 4.5 ± 
0.4* 

9.6 ± 
1.6$ 

19.3 ± 
1.0* 

56.1 ± 
4.3* 

9.5 ± 
2.0$ 

26.4 ± 
0.5* 

31.0 ± 
0.2* 

Permeability coefficient,     
P (cm/min) 

1.1x10-3  
±  

9.7x10-5* 

2.4x10-3 
± 

4.0x10-4$ 

5.0x10-3 
± 

2.2x10-4* 

1.4x10-2 
± 

1.1x10-3* 

2.4x10-3 
± 

5.1x10-4$ 

6.6x10-3 
±  

1.2x10-4* 

7.7x10-3 
±  

6.5x10-5* 
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showed a significantly higher (p<0.05) result compared to the other enhancers and 

control (Table XI). 

 

Figure 23. The cumulative AS permeated per area (µg/cm2) versus time from FDST 
formulations with penetration enhancers.
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Table XI. Ex vivo permeability of different AS FDST formulations containing only 
penetration enhancers

Results were presented as mean (± SD) 
R1: AS FDSTs at pH 6.8 medium using MCC UF-702; R8: AS FDSTs with SDS 1%; R9: 
AS FDSTs with PCC 16%; R10: AS FDSTs with Na Gly 20%. 
* p<0.05 from all. 
$ p<0.05 from all but not each other.

 

 Chapter Summary 

In this chapter, AS calibration curves were successfully created using the standardized 

USP analytical method. Both the analytical instrument and the quantification method 

demonstrated high accuracy and reproducibility. All the physical characteristics and 

quality control tests, USP and non-USP tests, for the different manufactured FDST 

formulations were successfully performed. The results of the physical characteristic as well 

as the ex vivo permeability test for the optimized AS FDST formulations using the new 

MCC filler grade were reported and resulted in more optimal characteristics. The pH-

permeability profile for AS was determined and the relationship between the medium’s pH 

and AS sublingual permeation was established. The different AS FDST formulations 

prepared with the addition of pH-modifier and/or penetration enhancers and their effect on 

 
AS FDST Formulations 

R1 
(control) R8 R9 R10 

Area under the curve, 
)/min2g/cmµ( min 90-0AUC 

11232 ± 
*12006 

27180 ± 
$2726 

22947 ± 
*1210 

28228 ± 
$1488 

/min)2g/cmµ( JInflux,  *± 0.4 54. $1.0± 8.5  *0.2±  .03 $0.7±  .06 

Permeability coefficient,  
P (cm/min) 

1.1x10-3 ± 
5-9.7x10 

±  3-2.1x10
*4-2.6x10 

±  4-8.0x10
5-6.5x10 

±  3-x1081.
4-x100.2 
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AS sublingual permeability were also investigated and compared to the control to 

demonstrate enhancement in AS sublingual permeation from the optimized AS FDSTs.
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Discussion 

 

 Overview 

In this project, different ways and strategies for enhancing the physical characteristics 

as well as the sublingual permeation and absorption of AS for a previously prepared AS 

FDSTs (Aodah et al., 2017), were explored and evaluated. The tablets characteristics for 

the sublingual delivery of AS for the treatment of OP toxicity is very critical since the tablet 

should disintegrates rapidly to release the drug into the sublingual area. Also, complete and 

rapid drug dissolution should be obtained in the small saliva volume to ensure rapid and 

efficient drug absorption (Nayak & Manna, 2011; Wang & Chow, 2014; Washington & 

Washington, 2001; Zhang et al., 2002). 

The overall objective of this project is to develop a new dosage form for AS that can 

overcome the many drawbacks associated with the use of current AS auto-injector, 

AtroPen®. The proposed AS FDSTs, as alternative first-aid dosage form, should possess 

the physical qualities that allow them to withstand the USP criteria and function to deliver 

a bioequivalent dose of AS comparable to AtroPen® in order to attain a clinical 

significance.  
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In order to achieve this goal, optimizing the AS FDSTs formulation by changing the 

MCC filler grade was one of our strategies to enhance the quality and the physical 

characteristics of the tablet. The standard USP tests including, CU, F, and BF, and in-house 

developed and modified tests including, DT, WT, WU, and DD, were used to evaluate the 

effect of changing the filler grade on tablet characteristics and ensure the stringent criteria 

for sublingual drug delivery are met.  

In order to achieve optimal AS permeation and absorption, AS permeability at various 

pH media was explored to evaluate the effect of altering the microenvironment’s pH of the 

sublingual cavity and the potential of incorporating a pH-modifier into the tablet 

formulation.  

Additionally, the effect of various penetration enhancers at various concentrations on 

AS sublingual permeability were also explored by incorporating various penetration 

enhancers with or without a pH-modifier into the tablet formulation and evaluating their 

effect on AS sublingual permeability in order to enhance AS sublingual permeability from 

FDSTs.  

 The Effect of MCC Filler Grade on the Physical Characteristics and Sublingual 

Permeability of AS FDSTs Formulation 

Microcrystalline cellulose is a widely used filler that is manufactured by different 

companies and available in various grades of different properties to be used in different 

pharmaceutical formulations and dosage forms. Fillers with different properties can 

perform differently when compared at discriminating conditions like the very strict 
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conditions of the sublingual route and when the sublingual dosage form is subjected to low-

volume static conditions under the tongue that does not aid dosage form disintegration or 

drug dissolution. MCC PH grade is one of the commonly used conventional grades in tablet 

formulations and MCC UF grade is one of the more recent highly compressible grades 

manufactured by Asahi Kasei Corp that were used in the formulation of our AS FDSTs. In 

this project, changing the conventional MCC filler grade, PH-301, in formulation B to a 

highly compressible MCC UF-702 grade in formulation R1 resulted in significant changes 

in AS FDST’s physical characteristics and AS permeability.  

MCC UF-702 grade is spherical in shape, has an average particles size of 90 µm, and 

a repose angle of 34°. On the other hand, MCC PH-301 grade has an irregular particles’ 

shape, an average particles size of 50 µm, and a repose angle of 41° (Table I) (Asahi, 2018). 

The particles size distribution, the shape, and the density of the filler’s particles are 

important variables that can influence the entire powder flowability, since the filler 

constitutes the majority of the tablet composition (Kucera, DiNunzio, Kaneko, & 

McGinity, 2012). The larger particles size of MCC UF-702 grade provided a less frictional 

contacting surface area between the MCC UF-702 particles and the surface they are 

flowing against. Also, the spherical shape of MCC UF-702 particles facilitated a better 

flow and resulted in a significantly lower angle of repose (32˚ ± 0.5˚) for formulation R1 

powder mixture compared to the angle of repose (42˚ ± 2˚) for formulation B powder 

mixture which contained MCC PH-301 that has irregularly particle shaped (Table V) 

(Horio et al., 2014). 

MCC UF-702 grade has a more porous structure as demonstrated by its lower bulk 

density of 0.29 g/cm3 compared with a bulk density of 0.41 g/cm3 for MCC PH-301 grade 
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(Table I) (Asahi, 2018). The porous structure of UF-702 grade can result in a higher plastic 

deformation, which means better compatibility, and faster tablet disintegration compared 

to PH-301 grade at similar compression forces (Dinunzio et al., 2012). It allows for better 

and faster water penetration by capillary action through the pores, which promotes tablet 

swelling and disintegration (Thoorens, Krier, Leclercq, Carlin, & Evrard, 2014). This 

correlated well with the hardness and disintegration results from formulation R1 and 

formulation B FDSTs. Harder tablets were obtained for formulation R1 FDSTs without 

negatively affecting the tablet disintegration (Table V) despite being manufactured at 

similar compression forces. The difference in the tablet porosity created due to using UF-

702 grade in formulation R1 FDSTs resulted in a harder tablet compact and faster tablet 

disintegration compared to formulation B FDSTs. The disintegration time for AS FDSTs 

was measured using our previously developed and published method that resembles the 

statics and low solution volume conditions in the human mouth (Aodah et al., 2017). This 

method was able to measure the time required in seconds for the AS FDSTs to disintegrate 

into fine particles and to discriminate between different formulations (formulation R1 and 

B FDSTs), which cannot be measured by the current official USP standard disintegration 

test (Aodah et al., 2017; USP/NF, 2018a).  

Tablet’s WT and WU measure the speed and extent of water absorption by the tablet 

to initiate drug dissolution and disintegrate the tablet. The number of bonds formed 

between the particles during compression is one of the variables that can affect tablet 

porosity and excipients swelling extent, which affects the speed and extent of water 

penetration into the tablet (Thoorens et al., 2014). Wetting test utilized a very small amount 

of water just enough to wet the paper towel used in this test representing a stringent testing 
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conditions, which can be correlated to a dry mouth clinical condition that can negatively 

impact the tablet’s disintegration. Because formulation R1 FDSTs had a higher tablet 

hardness, they showed a longer (p<0.05) wetting time compared to formulation B FDSTs 

(Table V). It seems that the amount of water used in the wetting test may not have been 

sufficient to overcome the stronger bonds formed within formulation R1 FDSTs, therefore, 

significant wetting time difference was achieved. On the other hand, when more water was 

presented in the disintegration and water uptake tests representing normal or excess 

salivary secretions manifested in case of OP toxicity, tablet’s disintegration and water 

uptake in formulation R1 FDSTs were significantly better (p<0.05) when compared to 

formulation B FDSTs (Table V). 

In order to confirm the significance of improving tablet characteristics (disintegration, 

wetting, and water uptake) on the rate of drug dissolution, the amount of drug dissolved 

within only 60 sec were measured using our previously validated and published apparatus 

and method, since it cannot be measured by the current official USP standard dissolution 

test (Aodah et al., 2017; USP/NF, 2018b). This apparatus and method were developed to 

simulate the short time and static and low volume conditions available for drug 

disintegration and dissolution following a sublingual drug administration (Aodah et al., 

2017; Rachid et al., 2011) The significant impact of changing MCC PH-301 grade to MCC 

UF-702 grade was well demonstrated not only on the characteristics of FDSTs but also on 

the rate AS dissolution (Table V). Formulation R1 FDSTs promoted complete AS 

dissolution without any agitation within 60 sec (99.5 ± 6.2%) that was significantly higher 

than formulation B FDSTs (88.5 ± 14%), an indication for the release of more amount of 

AS from the tablet due to better AS FDSTs characteristics.  
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These results can be very meaningful and critical when they are correlated with a 

significant increase in sublingual AS permeation and absorption in order to demonstrate a 

clinical significance. Therefore, the sublingual permeation of AS from these FDSTs were 

evaluated through excised porcine sublingual membranes using Franz diffusion cells. 

Replacing MCC PH-301 grade with MCC UF-702 grade resulted in a significant increase 

in the overall AS permeation over time, AS influx, and reduced AS permeation lag time 

(Table VII).  

For the treatment of emergency conditions, the rate of drug absorption is as critical as 

the amount of drug being absorbed in order to achieve the fast onset of action required for 

treating these conditions. For this reason, the amount of drug diffused for 15 min, (AUC0–

15) (µg/cm2) was also calculated for further analysis. 

The lag time and the amount of AS permeated during the initial 10-20 min (Figure 20) 

can be useful in guiding the AS FDSTs development. Changing the filler grade to UF-702 

in formulation R1 FDSTs reduced the lag time from 11.2 ± 4.7 min to zero min and 

increased the AUC0-15min almost 6-fold (Figure 20). The reduction in lag time was mainly 

due to the significant increase in tablet disintegration and AS dissolution that permitted for 

immediate and significantly higher AS permeation through the sublingual membrane. 

Further drug absorption beyond the applicable time for sublingual absorption, although 

increased the overall AS permeated over time, may have no clinical significance for the 

treatment of emergency conditions that require fast onset of action during the short 

administration time required for sublingual route. The delayed increase in the AS 

permeated from formulation R1 FDSTs after 75 min of the permeability study (Figure 22) 

was mainly due to the accumulation of AS in the donner cell that was able to overcome the 
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permeability resistance of the sublingual membrane. The delayed increase in AS 

permeation, despite of its clinical insignificance for the sublingual treatment of OP toxicity, 

is another confirmation that formulation MCC UF-702 was superior to MCC PH-301 and 

resulted in faster drug release, higher dissolution, higher concentration, and higher drug 

permeation over time. A similar increasement were expected to be achieved by formulation 

B FDSTs, despite of its insignificance, if permeability studies were extended beyond 90 

min. 

In summary, the results from this research support that the filler grade can play a critical 

role in changing the characteristics of AS FDSTs, which can have significant implications 

on the permeation and potentially the absorption of sublingually administered AS from 

FDSTs formulation, and therefore, may increase the potential of developing an alternative 

non-invasive dosage form for the treatment of OP toxicity. 

 The Ex Vivo pH-Permeability Profile of AS FDSTs Formulation 

The permeability of any drug is known to be affected by three main factors. These 

include charges, lipophilicity, and molecular weight of the drug molecules (Lee et al., 

2005). The extent of sublingual absorption of AS FDSTs can be greatly dependent on its 

degree of ionization, which is mainly affected by the pH of the saliva. Therefore, the 

evaluation of various pH medium is critical for enhancing AS sublingual permeability. 

Mcvilian buffer was prepared at pH 5, 6.5, 6.8, and 8 to establish a pH-permeability profile 

for AS FDSTs. The amount of AS permeated from FDSTs (formulation R1) at various pH 

medium was measured. The results from this test were very important as to evaluate the 
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effect of AS degree of ionization, as a result of changing the medium pH, on AS 

permeability from FDSTs. Also, it guided the determination of the optimal pH for AS 

sublingual permeability and, therefore, the criteria for the ideal pH-modifier that is needed 

to be incorporated into AS FDSTs formulation to modify the sublingual microenvironment 

pH to that optimal pH.  

AS is a weak base with a pKa of 9.4 and a logP of 2.19 (NIH, 2018). This means that 

at pH 9.4, 50% of the drug will be in the unionized form, which allow for better absorption 

for the lipid soluble unionized portion of the drug through cell membrane (Lee et al., 2005). 

The results from our Franz cells permeability studies indicated that the initial AS 

permeated, due to the fast DT of the tablet and fast release and dissolution of AS, was not 

impacted by the medium pH. However, following the initial AS permeation, which seems 

to have saturated the sublayers of the sublingual membranes, the less ionized AS at higher 

pH resulted in higher permeation than the ionized AS at lower pH.  

The mean (± SD) of AUC0-90 of AS permeated, J, and P from AS FDSTs (formulation 

R1) in a diffusion medium of a pH of 8 were statistically higher (p<0.05) than at all other 

pH media (pH 5, 6.5 and 6.8) (Table VIII). The P of AS FDSTs was increased 2-fold at pH 

8 compared to pH 6.8, which represented the average saliva pH (Table XII). 

 According to Lee et al., 2005, they found that for basic drugs with a high pKa, the 

permeability through Caco-2 monolayers was increased as the pH increased (Lee et al., 

2005). These results were in agreement with our findings for AS and comply with the pH-

partition theory. Therefore, by modifying the microenvironment pH of the saliva to pH 8, 

the unionized form of AS would be increased and hence its sublingual absorption will be 

increased.  
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Table XII. The enhancement in AS permeability coefficient (p) for all AS FDST 
formulations compared to control p value (R1 at medium pH 6.8)

R2: AS FDSTs with Na Bicarb 2%; R3: AS FDSTs with Na Bicarb 2% and SDS 0.5%; 
R4: AS FDSTs with Na Bicarb 2% and SDS 1%; R5: AS FDSTs with Na Bicarb 2% and 
PCC 16%; R6: AS FDSTs with Na Bicarb 2% and Na Gly 15%; R7: AS FDSTs with Na 
Bicarb 2% and Na Gly 20%; R8: AS FDSTs with SDS 1%; R9: AS FDSTs with PCC 16%; 
R10: AS FDSTs with Na Gly 20%.

 

 The Effect of Different pH-modifiers on the pH of AS Solution 

The addition of pH-modifiers to the tablet formulation to be administered sublingually 

ensures that the pH of the saliva is controlled within the range that is optimal for drug 

absorption. In order to change the microenvironmental pH of the saliva and sublingual area, 

different pH-modifiers were tested in different concentrations to assess their ability to 

modify the AS solution pH to pH 8. As per our previous results in section 4.4.2, pH 8 was 

found to be the pH at which the cumulative amount of AS permeated, J, and P through the 

sublingual membrane were the highest.  

Various pH-modifying excipients were tested. All the pH-modifiers used were a non-

irritating salts that can be used safely in sublingual area. At a 1% initial concentration, Na 

Bicarb, Ca Carb, or Na Cit were able to modify the pH of water. However, this pH 

modification was not statistically different (p>0.05) from the pH of the water. By 

 
AS FDST Formulations 

R2 R3 R4 R5 R6 R7 R8 R9 R10 

Enhancement in 
Permeability 
coefficient, P 
(fold) 

2 2 13 2 6 7 2 - 1.5 
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increasing the concentration of pH-modifying excipients from 1% to 2%, Na Bicarb was 

able to show a significantly higher pH (p<0.05) from water and the rest of pH-modifying 

excipients tested ( 

Table IX). This means that Na Bicarb has the highest potential to modify the 

microenvironment of the saliva, however, an appropriate concentration of Na Bicarb had 

to be used in order to achieve the desired pH (Badawy & Hussain, 2007).  

In order to asses any potential interference for AS or the excipients used in the tablet 

formulation on the functionality of Na Bicarb in modifying the pH to the desired optimal 

pH, Na Bicarb 2% was tested again with the addition of one AS FDST. The solution’s 

overall pH was measured. Similar pH results were obtained for the solution ( 

Table IX), which indicated that AS and the excipients used in AS FDSTs formulation had 

no negative impact on modifying the pH to pH 8 and they did not interfere with the 

intended function for incorporating Na Bicarb in the tablet formulation.  

 The Effect of incorporating a pH-modifier and/or Penetration Enhancers on the 

Physical Characteristics of AS FDST Formulations 

In order to evaluate the effect Na Bicarb 2% as a pH-modifier and/or penetration 

enhancers on AS SL permeability, these excipients need to be of incorporated into the AS 

Concentration 
(%) 

pH-Modifiers 

Na Bicarb Ca Carb Na Cit 

1% 7.2 ± 0.2 6.6 ± 0.1 6.2 ±0.3 

2% 8.1 ± 0.3* 7.6 ± 0.1 7.5 ± 0.1 

2% with AS FDSTs 7.9 ± 0.1 - - 

Concentration 
(%) 

pH-Modifiers 

Na Bicarb Ca Carb Na Cit 

1% 7.2 ± 0.2 6.6 ± 0.1 6.2 ±0.3 

2% 8.1 ± 0.3* 7.6 ± 0.1 7.5 ± 0.1 

2% with AS FDSTs 7.9 ± 0.1 - - 
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FDSTs formulation, However, these changes in the tablet formulation my negatively 

impact the tablets’ characteristics.  

When direct compression method is used to manufacture tablets, powder flowability 

becomes a critical parameter to control for. It can be determined by measuring the angle of 

repose and the MC of the powder (Alyami et al., 2017). High MC can result in variable 

tablet characteristics and performance. All prepared and tested AS FDST formulations had 

good flowability according to the USP (USP/NF, 2018d) (Table VI). However, when only 

the transcellular and paracellular enhancers were incorporated in to AS FDST formulations 

(formulation R8, R9, R10), the MC was statistically higher (p<0.05) compared to the 

previously tested AS FDST formulations with a pH-modifier alone, or with a pH-modifier 

and a penetration enhancer (Formulation R2, R3, R4, R5, R6, and R7) (Table VI).  

Even though the addition of penetration enhancers had negatively affected the MC of 

the powder formulations, these changes did not impact the powder angle of repose and the 

tablets’ breaking force. All AS FDST formulations were compressible within similar 

compression forces (120 – 140 kgf) and resulted in the formation of hard compact that 

passed the friability test with less than 1% weight loss. Therefore, although the 

incorporation of pH-modifier and/or penetration enhancers resulted in an increase in the 

powder MC, this increase was not significant enough to negatively impact the tablet 

characteristics (Table VI).  

The different AS FDST formulations that have been prepared were able to pass the AV 

of the CU test according to the USP criteria (USP/NF, 2018c) (Table VI). This showed that 

incorporating Na Bicarb 2% as a pH-modifier and/or the addition of penetration enhancers 
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did not influence the flow and the uniformity of the blend during mixing, which resulted 

in a uniform distribution of AS between the AS FDSTs.  

The DT can influence the rate and extent of AS sublingual dissolution and absorption. 

Testing the DT is very critical for ODT formulations because rapid disintegration is the 

key of a successful ODT formulation. Since the USP DT is unable to detect small difference 

between different ODT formulations, a disintegration test developed in our lab was used 

to evaluate the DT of different AS FDST formulations. This test was designed to take in 

consideration the critical key attributes and environment in the sublingual area, including 

the small amount of saliva available for tablet disintegrate and static environment under 

the tongue (Aodah et al., 2017). Using this DT as described previously, the incorporation 

of penetration enhancers into the AS FDSTs formulation containing MCC UF-702, which 

found to enhance tablet characteristics and AS sublingual permeability, retarded tablet’s 

disintegration and significantly increased its DT (p<0.05) in comparison to formulation R1 

and formulations with only Na Bicarb (Table VI). This can be explained mainly by the 

reduction in overall table porosity. Previously, It has been demonstrated that highly water-

soluble excipients used at high concentrations could absorb and retain the limited available 

water to dissolve them, which limits the water from traveling within the tablet through the 

capillary channels created by MCC to induce the swelling of the superdisintegrant that 

cause tablet’s disintegration. Also, the reduction in MCC content due to the addition of 

non-porous and less water-soluble excipients would lower the overall tablet porosity and 

therefore would delay tablet disintegration due to reduction in the extent of capillary 

pathways within the tablet that water uses to travel through to induce fast disintegration. 

However, the incorporation of Na Bicarb along with penetration enhancers improved the 
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DT, which can be explained by the high aqueous solubility of Na Bicarb and its low 

concentration used. As a result, the dissolution of Na Bicarb created more porous tablet 

without limiting water penetration and compensated for the reduction in tablet porosity due 

to the incorporation of penetration enhancers on the expense of MCC. 

Paracellular enhancers PCC 16% was found to significantly increase (p<0.05) the 

disintegration time of AS FDSTs when incorporated to the formulation either with Na 

Bicarb 2% or alone compared to all other formulations (Table VI). This mean that Na 

Bicarb was not able to reduce the PCC negative effect on tablet characteristics to the same 

extent as with SDS and Na Gly. 

The results of WT test relies on the results of tablets’ disintegration time. The wetting 

time needed for FDSTs is another critical parameter that is more sensitive to FDST 

formulations’ differences than DT since it demonstrates the ability of the tablet to withdraw 

water into the tablet from the sublingual cavity under extreme conditions like in dry mouth. 

The tablet relies on the penetration of saliva by capillary diffusion to allow for tablets’ 

disintegration and dissolution. In the previously described WT test, the tablet is in 

contacted with the wetted tissue from one side only, therefore, water penetrated mainly 

from one side of the tablets to the entire tablet. A significant increase in the tablet’s WT 

was only observed for AS FDSTs containing SDS or Na Gly without Na Bicarb, and PCC 

with and without Na Bicarb, which can be related, as previously explained, to the reduction 

in the overall tablet porosity due to the incorporation of penetration enhancers (Table VI). 

On the other hand, the addition of the pH-modifier Na Bicarb 2% in the various AS FDSTs 

(formulation R3, R4, R6, and R7) did not negatively affect the WT (P<0.05) in comparison 

to formulation R1 (Table VI). This can be due to the high solubility of Na Bicarb as 
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previously discussed, which did not retard water penetration at the concentration used and 

was able to create more porous tablet after its dissolution and balanced out the reduction in 

tablet porosity by the incorporation of less water-soluble penetration enhancers. 

Water uptake is a test that was used for FDST to assess the tablet’s swelling and its 

capacity to absorb and hold water in order to facilitate drug dissolution. The results from 

WU test for formulation R1, which contained no pH-modifier and no penetration enhancer, 

was significantly higher (p<0.05) than all other formulations (Table VI). The incorporation 

of additional excipients on the expense of MCC and L-HPC in the rest of the AS FDST 

formulations lowered the ability of the suprdisitegrant, L-HPC, to expand or swell to the 

same extent as in formulation R1; and lowered the filler’s ability, MCC, to create a similar 

level of tablet porosity as in formulation R1 to accommodate similar amount of absorbed 

water within the tablet.  

The DD % was measured to determine the amount of the drug released and dissolved 

from FDSTs in 1 min. A previously developed method was used to simulate AS FDSTs 

dissolution in the oral cavity (Rachid et al., 2011). The addition of a pH-modifier Na Bicarb 

2% and penetration enhancers did not negatively impact (p>0.05) the percentage of AS 

dissolved in 1 minute (Table VI). However, PCC 16% with or without a pH-modifier 

(formulation R5 & R9) had significantly less (p<0.05) drug percentage dissolved in 

comparison to the other formulations (Table VI). 

In spite of the differences between these AS FDST formulations, all of these tablets 

possessed the attributes for a good AS FDST and were within the acceptable and expected 

ranges, except for AS FDST with PCC 16% with or without a pH-modifier (formulation 

R5 & R9).  



146 

 

 The Effect of Incorporating a pH-modifier and/or Penetration Enhancers on The 

Sublingual Permeability of AS FDST Formulations 

AS FDSTs were designed to be administered sublingually. Therefore, the processes for 

complete drug delivery of the therapeutic dose should not take longer than 1–2 minutes for 

the treatment of emergency conditions and for minimizing the swallowing of the tablet or 

its components into the GIT. During this time, the tablet should have been disintegrated, 

the drug dissolved, and a therapeutic drug amount immediately permeated and absorbed 

through the sublingual mucosa. Any remaining amount of the drug after it has been 

permeated but not yet necessarily absorbed based on drug permeability coefficient may 

accumulates in the submucosal layers of the sublingual membrane and result in further 

drug absorption (Wang & Chow, 2014). Excess drug released from the tablet and dissolved 

in the sublingual area beyond the sublingual epithelial cells’ absorption capacity, it will not 

be absorbed and can be lost into the GIT. This explanation was also adopted in the previous 

sublingual animal studies for epinephrine (M. M. Rawas-Qalaji et al., 2006; M. M. Rawas-

Qalaji et al., 2015). Tablet’s DT and DD% can be considered the main limiting tablet’s 

physical characteristics that can impact AS sublingual permeation, absorption, and relative 

bioavailability. Tablet’s DT can control the rate of drug release and indirectly the rate of 

drug dissolution (DD%). Therefore, both DT and DD can control the amount of drug 

available for absorption, i.e. drug concentration, during the short and limited time of 

sublingual administration. According to Fick’s law, altering the initial drug concentration 

will alter the rate of diffusion, i.e. drug influx. 

Considering the importance of the period right after the sublingual drug administration 
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for AS permeation and absorption for the treatment of emergency condition, ex vivo 

permeability studies were performed for all AS FDST formulations. In order to understand 

and evaluate the mechanism for enhancing drug permeation, the ex vivo permeability 

studies for AS FDSTs formulation containing a pH-modifier Na Bicarb 2% alone 

(formulation R2), AS FDST formulations containing a pH-modifier Na Bicarb 2% and 

penetration enhancers, SDS, PCC, and Na Gly (formulations R3, R4, R5, R6, R7), and AS 

FDST formulations with penetration enhancers alone, SDS, PCC, Na Gly (formulations 

R8, R9, and R10) were compared to AS FDSTs formulation (R1). The mean (± SD) area 

under the curve (AUC0-90) of cumulative drug permeated from AS FDST formulations 

containing a pH-modifier with penetration enhancers (formulations R3, R4, R5, R6, and 

R7) were statistically higher (p<0.05) than AS FDST formulations containing penetration 

enhancers only (formulations R8, R9, and R10), pH-modifier only (formulation R2), and 

control (formulation R1) (Table X). Incorporating SDS 1% with Na Bicarb 1% 

(formulation R4) achieved the highest enhancement in AS sublingual permeability 

(p<0.05) and increased AS permeability 13-fold compared to control (formulation R1) 

(Table XII). 

Our studies demonstrated that the enhancement in AS sublingual permeability was 

correlated with the concentration of penetration enhancers used. The higher the 

concentration, the higher the amount of drug permeated. However, the maximum allowed 

concentrations to be used in AS FDST formulations were limited to their safety profile. 

Also, the results from our studies indicated that the addition of transcellular penetration 

enhancers with a pH-modifier had a synergistic effect on AS sublingual permeability.  
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The mean (± SD) AUC0-90 and J from AS FDSTs with transcellular enhancers alone, 

SDS and Na Gly (formulation R8 and R10) were significantly higher (p<0.05) than with 

paracellular enhancer PCC (formulation R9) (Table XI). However, the mean (± SD) AS P 

from AS FDSTs with SDS transcellular enhancers were significantly higher (p<0.05) than 

AS FDSTs with Na Gly transcellular enhancers, PCC paracellular enhancer, and control.  

These findings demonstrated that AS follow the transcellular transport pathway for its 

sublingual absorption.  

The amount of AS permeated from AS FDSTs formulation with paracellular enhancer 

PCC (formulation R9) increased at 75 min compared to AS FDSTs with transcellular 

enhancers, SDS and Na Gly (formulation R8 and R10). The reason for this increasement 

was due to the accumulation of AS in the donor cell to the extent that was able to overcome 

the permeability resistance in the sublingual membrane. This is probably irrelevant to 

emergency treatment situations, especially during the short sublingual administration time. 

Also, our previous dose escalating ex vivo permeability studies using formulation B 

showed that increasing AS dose resulted in a linear increase of AS permeability (Aodah et 

al., 2017). These results are an indication for a passive sublingual AS transport mechanism. 

Therefore, It can be concluded that AS transport is mainly by passive transcellular transport 

pathway, which is in agreement with previously suggested transport mechanism. 

These studies confirmed the potential and the benefits of modulating the absorption’s 

microenvironment pH, to reduce AS ionization, as a promising approach for enhancing AS 

permeation through sublingual epithelial cells. This enhancement can be further increased 

by the addition of a transcellular penetration enhancer.  
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 Recommendations for Future Studies 

In the interests of developing AS FDSTs as a new dosage form to treat the emergency 

condition of OP toxicity, future in vivo pharmacokinetics animal studies are recommended. 

In vivo animal studies will evaluate and confirm the effect of changing the 

microenvironment pH on drug ionization as well as the effect of penetration enhancers on 

enhancing AS sublingual permeability. A does-escalating animal studies are recommended 

to determine the sublingual AS dose bioequivalent to AtroPen®. These preclinical animal 

studies will guide the dose selection for any future clinical studies. 

It is known that improving or masking the bad taste of drugs intended for oral 

administration can improve patient compliance. Atropine sulfate is known for its bitter 

taste when administered orally (Maggs, 2008). Therefore, various taste masking 

approaches for AS FDSTs are recommended to mask the bitter taste of AS before 

conducting human studies. 

 Conclusion 

In this project, different AS FDST formulations were successfully manufactured and 

evaluated. The quality control methods used in this project were able to successfully 

discriminate and detect formulations differences. The newer highly compressible MCC 

filler grade UF-702 was able to successfully alter the properties of AS FDSTs and improve 

the AS dissolution rate, and therefore, the rate and extent of AS sublingual permeation. 

Reducing AS ionization through altering the diffusion medium’s pH by incorporating an 
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appropriate pH-modifier into the AS FDSTs formulation can be a useful approach to 

enhance AS sublingual permeation. This approach enhanced AS sublingual permeability 

2-fold compared to the control (Table XII).  

Combining a transcellular penetration enhancer along with a pH-modifier into the AS 

FDST formulations, enhanced AS sublingual permeation between 7 to 13-fold (Table XII). 

This study, therefore, innovatively improved the permeability of sublingually administered 

AS FDSTs through altering the medium pH and the addition of penetration enhancers. 

This novel AS FDSTs are expected to significantly improve the pharmacokinetic 

parameters (AUC, Cmax, and Tmax) in future animal studies and reduce the bioequivalent 

sublingual AS dose. The successful development of these novel AS FDSTs as alternative 

dosage form for AtroPen® will ensure the sublingual delivery of therapeutic AS 

concentrations to the systemic circulation and the rapid onset of action for the treatment of 

OP toxicity as a first-aid treatment until patients are transported to appropriate health 

facility. This new dosage form will offer an affordable, easy-to-administer, non-invasive, 

and portable alternative dosage form for the treatment OP toxicities. 
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Figure 9. Transcellular and Paracellular Transport (Levendoski et al., 2014). 
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