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PATHOPHYSIOLOGICAL RELEVANCE OF ASTROGLIAL ANGIOTENSIN AND 
THE ENDOCANNABINOID SIGNALING SYSTEMS IN SHRs 

 

by 

DHANUSH HASPULA 

June, 2017 

 

 

 

BACKGROUND: Spontaneously hypertensive rats (SHRs), an essential hypertension 

model, are characterized by pro-inflammatory states in brainstems. While Angiotensin 

(Ang) II, via activation of glial Ang Type 1 receptors (AT1Rs), has been shown to trigger 

a significant upsurge in pro-inflammatory cytokines, activation of astroglial Cannabinoid 

Type 1 Receptors (CB1Rs), elicits a potent anti-inflammatory response in the brain. Both 

brainstem AT1Rs and CB1Rs have also been reported to alter cardiovascular parameters 

in SHRs. Evidence of crosstalk between CB1Rs and AT1Rs has also emerged, further 

highlighting a need to understand their signaling interaction in cardiovascular diseases.  

APPROACH: The purpose of this study was twofold- first, to investigate the downstream 

consequences of AT1R and CB1R activation in astrocytes under early hypertensive and 

normotensive conditions, and second, to explore potential crosstalk mechanisms between 

the two receptors. The proposed studies were carried out in brainstem and cerebellar 
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astrocytes isolated from SHRs and their normotensive controls, the Wistar rats. Alterations 

in activation patterns of Mitogen activated protein kinases (MAPKs), and/or the levels of 

the total and inactive (phosphorylated) forms of the receptor, especially CB1R in the latter 

case, in SHR astrocytes, were employed as indices of receptor functionality. Additionally, 

changes in the levels of pro- and/or anti-inflammatory cytokines in response to Ang II and 

CB1R agonist, both alone and in combination, were also employed to assess the 

immunomodulatory effects of the two systems in SHR and Wistar rat astrocytes.  

RESULTS: Altered neuroinflammatory states were observed in brainstem astrocytes, but 

not cerebellar astrocytes of SHRs when compared to Wistar rats. While Ang II triggered 

potent activation of MAPKs and elicited prominent pro-inflammatory effects in brainstem 

astrocytes of both models, its activation in cerebellar astrocytes resulted in an increase in 

both pro- and anti-inflammatory states in both models. A reduction in CB1R expression, 

and CB1R-mediated anti-inflammatory effects were observed in brainstem astrocytes of 

SHRs when compared to Wistar rats. Although CB1R expression in cerebellar astrocytes 

was similar in both models, its downstream effects were partially reduced in cerebellar 

astrocytes of SHRs when compared to Wistar rats. While CB1R activation diminished Ang 

II-mediated pro-inflammatory effects in brainstem astrocytes of Wistar rats, its effects were 

not abated in SHRs. Interestingly, Ang II not only reduced CB1R expression in brainstem 

astrocytes of SHRs, but also triggered phosphorylation of CB1Rs in cerebellar astrocytes 

of both models.  

CONCLUSION: A dysregulated neuroinflammatory status, along with a dampened 

brainstem astroglial endocannabinoid tone, could well be important factors in the etiology 

of hypertension. Since AT1R activation results in downregulation and phosphorylation of 
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CB1Rs, counteracting the effects of renin angiotensin system (RAS) could serve as a viable 

strategy to indirectly elevate/preserve the basal endocannabinoid tone. This is especially 

applicable to hypertension, which is characterized by hyperactivity of the RAS and a 

potential dysregulation of the endocannabinoid system. 
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Chapter 1 
 

Background 

 

 

Hypertension has the dubious distinction of being termed the silent killer. In 

addition to being a peerless risk factor for cardiovascular diseases, hypertension is 

associated with minimal, if any, visible symptoms during the initial stages of disease 

progression. About 1 billion people are currently diagnosed with hypertension worldwide, 

and the numbers are expected to rise in the future (Kearney et al, 2005). Antihypertensive 

drug therapy is hailed as one of the most significant medical breakthroughs to come out of 

the 20th century, since its impact on mortality rates, is second only to antibiotics (Kaplan, 

1980). Since the introduction of antihypertensive drug therapy, death rates associated with 

cardiovascular disease have dropped by 72% in the United States 

(https://www.nhlbi.nih.gov/files/docs/research/2012_ChartBook_508.pdf).  In spite of the 

progress made, more than 30% of the United States population who are currently receiving 

anti-hypertensive drug therapy, continue to remain hypertensive (Calhoun et al. 2008). 

Identification of novel therapeutic targets that can lead to the generation of effective 

treatment strategies for resistant hypertensive cases, is the need of the hour. Since a 

multifactorial, polygenic disorder like hypertension may have multiple blood pressure 

regulatory mechanisms compromised at different stages of the disorder (Sleight 1971), the 

identification of trigger mechanisms becomes an uphill task. Identification of effective 
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therapeutic targets hinges on understanding the mechanisms that are impaired at the very 

early stages of hypertension. These may well be the drivers of hypertension, and treating 

them at the earliest stages would result in a better response to drug therapy.  

Augmented sympathetic activity is identified as one of the earliest mechanisms to be 

impaired in essential hypertension (Guyenet 2006). In borderline hypertensive individuals, 

an elevation in sympathetic activity was reported in several landmark studies (Julius et al. 

1991) (Anderson et al. 1989). Research in spontaneously hypertensive rats (SHRs), an 

animal model of hypertension that is widely employed in studying the disease, further 

corroborated the importance of autonomic dysfunction that is centrally mediated (Folkow 

1982)  (Saavedra et al. 1976). This model is also characterized with an elevation in 

sympathetic activity at very early stages of hypertension (Saavedra et al. 1976) (Dickhout 

and Lee 1998). A dysregulation of neurotransmitters in the cardiovascular centers of the 

brainstem, has been theorized, as a cause of an imbalance between the two arms of the 

autonomic system (Reis 1981) (Sved and Gordon 1994) (Takemoto and Yumi 2012). The 

brain renin angiotensin system (RAS) has been implicated as being the most important 

driver of sympathetic activity from the central nervous system (CNS) (Carlson and Wyss 

2008). An overactive brain RAS has been reported by several studies (Veerasingham and 

Raizada 2003). Angiotensin (Ang) II, the primary effector peptide of RAS, is able to elicit 

its deleterious effects via the activation of the Ang type 1 receptor (AT1R). Several in vitro 

and in vivo studies have highlighted the emerging role of brain inflammation in the 

pathogenesis of hypertension (Waki et al. 2008a). An elevation in the levels of pro-

inflammatory cytokines, and a reduction in the levels of anti-inflammatory cytokines, have 

been reported in the cardiovascular centers of  the brainstem and the hypothalamus of SHRs 
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when compared to their normotensive controls (Agarwal et al. 2011). Ang II has been 

demonstrated to alter neuroinflammatory and redox states in different cell types (Ogawa et 

al. 2011) (Kandalam and Clark 2010). Since glial cells have a role in regulating 

inflammatory states in the brain, the glial RAS was proposed as an important contributor 

to the pathogenesis of essential hypertension. Shi et al, hypothesized that glial AT1R 

activation by Ang II can cause an upsurge in the levels of reactive oxygen species (ROS) 

and pro-inflammatory cytokines via activation of glial AT1Rs (Shi et al. 2010a). These 

pro-hypertensive mediators, in a paracrine fashion, can alter neuronal functions by 

activating surface receptors, modifying ion channels and intracellular proteins (Shi et al. 

2010a). It was later demonstrated that chronic infusion of Ang II in the paraventricular 

nucleus (PVN), leads to an elevation in pro-inflammatory cytokines via activation of 

microglial AT1Rs (Shi et al. 2010b).   

It is well known that both microglial and astroglial cells, via a host of different mechanisms, 

can contribute to the resolution of pro-inflammatory states in the brain (Shastri et al. 2013). 

Recently, it has been reported that astroglial AT1Rs in the brainstem play critical roles in 

the regulation of sympathetic nervous system activity (Marina et al. 2016). Ablation of the 

astroglial AT1R in the brainstem is associated with a decrease in sympathetic nervous 

system activity in a model of heart failure (Isegawa et al. 2014a). Data from our laboratory 

indicated that Ang II has potent pro-inflammatory and pro-oxidant effects on brainstem 

astrocytes (Gowrisankar and Clark 2016c). In addition, Ang II can also upregulate a host 

of pro-hypertensive markers from brainstem astrocytes, making this an important cell type 

in the context of hypertension (Gowrisankar and Clark 2016b).  Interestingly, Ang II was 

able to elicit similar effects in astrocytes from other regions of the brain, such as cerebellum 
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(Clark et al. 2013)(Gowrisankar and Clark 2016c). The RAS has been demonstrated to 

have a role in cerebellar development (Côté et al. 1999). In the last decade or so, several 

studies have highlighted the utility of targeting components of the RAS in the treatment of 

disorders characterized by cognitive decline (Bodiga and Bodiga 2013) (Gao et al. 2013). 

In a recent study, anti-hypertensive drugs were also demonstrated to improve symptoms of 

autism in children (Zamzow et al. 2016). The incidence of neurodevelopmental disorders 

such as ADHD has been identified to be far greater in children with hypertension, than 

without (Adams et al. 2010).  

Cannabinoids are well-known to exert protective effects in the brain, by their crucial role 

in the regulation of homeostasis (Di Marzo 2009). Their ability to neutralize pro-

inflammatory states in the brain makes them therapeutically invaluable for the treatment of 

neurological disorders (Bisogno and Di Marzo 2007). A plethora of pre-clinical and clinical 

data support the beneficial role of cannabis or cannabinoid-based drugs in alleviating 

symptoms associated with neurological disorders (Consroe 1998). Interestingly, 

cannabinoids have been demonstrated to have tremendous promise as a potential treatment 

strategy for ADHD based on numerous positive pre-clinical and clinical outcomes (Adriani 

et al. 2003) (Milz & Grotenhermen, 2015). Endocannabinoid hypofunction/deficiency has 

been hypothesized to contribute significantly to the etiology of ADHD (Adriani et al. 

2003). Since dysregulated neuroinflammatory states are hypothesized to be key 

contributors to the biological basis of ADHD (Costantino et al. 2009), the 

immunosuppressive effects elicited by the cannabinoid type 1 receptor (CB1R) activation 

may well be crucial therapeutic targets. Key to its role may be the astroglial CB1R, as its 
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activation has been demonstrated to result in neutralization of pro-inflammatory conditions 

(Molina-Holgado et al. 2003) (Nagarkatti et al. 2009). 

Endocannabinoid system activation is associated with an improvement in cardiovascular 

parameters by several mechanisms that encompass both peripheral and central sites of 

action (Mendizábal and Adler-Graschinsky 2007). In SHRs, the ability of cannabinoids to 

dampen centrally-mediated sympathoexcitation, was impaired (Brozoski et al. 2009), 

while their cardioregulatory and vasodilatory properties were potentiated (Bátkai et al. 

2004). Several reports of  crosstalk between AT1Rs and CB1Rs has come to the fore in the 

recent past, resulting in an alteration of AT1R’s actions by cannabinoids (Turu et al. 2009; 

Rozenfeld et al. 2011). It could well be that the homeostatic role of CB1R to negate some 

of Ang II’s deleterious functions, may be impaired, leading to a potentiation of Ang II-

mediated neuroinflammatory and pro-oxidant states in SHRs.  

The purpose of this study was to investigate the downstream consequences of AT1R and 

CB1R activation in astrocytes under pre-hypertensive and normotensive conditions. We 

hypothesize that a dysregulation of CB1R functions in SHR astrocytes, alters its ability to 

modulate Ang II-mediated effects. In order to test our hypothesis, we employed primary 

astrocytes isolated from the brainstems of SHRs and their normotensive controls, the 

Wistar rats. Neonatal rats were used for this study since they serve as a model for 

prehypertension. We employed indices of receptor functionality, activated mitogen 

activated protein kinases (MAPKs), and total and inactive forms of receptor, in order to 

determine preservation or dampening of CB1Rs role under prehypertensive conditions. 

Additionally, we also explored the possibility of AT1R hyperactivity under 

prehypertensive conditions. Finally, we explored their neuroprotective or neurotoxic 
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effects by investigating the roles of the aforementioned receptors in the regulation of pro- 

and anti-inflammatory cytokines. Our three specific aims are as follows: 

Specific Aim 1: Determine whether Ang II alters CB1R expression in astrocytes isolated 

from SHRs and Wistar rats 

Specific Aim 2: a) Determine the consequences of RAS and endocannabinoid system 

activation, both alone and in combination, on MAPK signaling pathways in astrocytes 

isolated from SHRs and Wistar rats. b) Determine the effect of Ang II on triggering 

phosphorylation of CB1R in astrocytes isolated from SHRs and Wistar rats. 

Specific Aim 3: Determine the consequences of RAS and endocannabinoid system 

activation, both alone and in combination, on neuroinflammatory cytokines in astrocytes 

isolated from SHRs and Wistar rats. 

While our primary focus was on understanding the roles of the systems under investigation 

in brainstem astrocytes, we also employed astrocytes isolated from cerebellum as a 

reference model. Astrocytes from cerebellum were chosen as a model for two reasons. 

Firstly, cerebellum, unlike brainstem, is characterized by high levels of CB1R, and hence 

would make an ideal cell model to investigate crosstalk mechanisms between AT1R and 

CB1R. But more importantly, SHRs are characterized by astroglial dysfunction in the 

cerebellum, which results in a neurotoxic microenvironment (Yun et al. 2014). The SHR 

is also a widely employed model for studying ADHD (Adriani et al. 2003). Considering 

that there is a strong correlation between hypertension and neurodevelopmental disorders 

(Adams et al. 2010), evidence of potential augmentation of pro-hypertensive systems such 

as RAS, and dampening of protective systems such as the endocannabinoid system in SHR 
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cerebellar astrocytes, could aid in designing better treatment strategies for 

neurodevelopmental disorders such as ADHD.   

The major strength of this study is the use of prehypertensive rats as opposed to adult SHRs. 

This allows us to draw causal relationships between the results of our study to the etiology 

of hypertension. Also, the conclusions that we make from our results, will be based on 

several different indices for a single outcome. For instance, in addition to measuring CB1R 

expression levels, we are also employing two MAPKs and two cytokines, to examine 

receptor hyper/hypo- functionality. The limitation of this study is that it is purely an in vitro 

study. Hence the results must be interpreted with caution as there is a possibility that a 

change in receptor functionality or cytokine levels, observed in prehypertensive SHR 

astrocytes, may have only limited impact on the overall progression of the disease.   

The results from this study would serve two vital purposes. Firstly, it would be a step 

forward in expanding our understanding of astroglial functions in cardiovascular and 

neurodevelopmental disorders. Secondly, these results would add tremendously to our 

knowledge of the astroglial CB1Rs, which are theorized to play a vital role in both 

physiological and pathological conditions. 
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Chapter 2 

 

Introduction 
 

 

Overview 

 

This chapter will provide a brief synopsis of topics, that are core to the main idea 

of the project. Section 1 provides a detailed account of two brain regions, brainstem and 

cerebellum, in the pathogenesis of hypertension, and neurodevelopmental disorders such 

as ADHD, respectively. Sections 2 and 3 introduce the importance of astroglial 

dysfunction, specifically neuroinflammation, in the etiology of hypertension and ADHD. 

Sections 4 and 5 are focused on the role of RAS and endocannabinoid systems in the 

aforementioned pathological conditions, respectively. In all the above sections, the 

emphasis is on SHRs, since it is widely believed to be the best disease model to study 

hypertension and ADHD. Section 6 provides a brief description of the studies that have 

investigated crosstalk mechanisms between AT1Rs and CB1Rs. Section 7 provides a brief 

synopsis of all of the topics and also the rationale for the hypothesis and the specific aims 

of the project.  
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2.1 A brief introduction of the significance of brainstem and cerebellum impairment 

in pathological conditions: Emphasis on the SHR model. 

i) Brainstem 

a) Current status of hypertension 

Although anti-hypertensive medications have made rapid strides in drastically 

reducing mortality and morbidity rates due to cardiovascular diseases, the most alarming 

statistic, is that a significant percentage of hypertensive individuals that are currently on 

anti-hypertensive therapy, remain hypertensive (Calhoun et al. 2008). A lack of 

effectiveness of traditional anti-hypertensive medications, necessitates identification of 

therapeutic targets that are fundamental to the pathogenesis of hypertension (Fisher and 

Fadel 2010). Hence understanding the mechanisms that become dysregulated and 

eventually lead to an elevation in blood pressure, remains the focal point of cardiovascular 

research.  

b) Role of sympathetic hyperactivity in the pathogenesis of hypertension 

Since regulation of blood pressure is orchestrated by multiple mechanisms 

encompassing both neurogenic and non-neurogenic origins, the task of isolating 

hypertension trigger mechanisms remains a challenge. Evidence of autonomic dysfunction 

contributing to the development of hypertension came from studies conducted in borderline 

hypertensive individuals, where an elevated cardiac output was observed in young 

hypertensive individuals (Widimsky et al. 1957). By employing direct and also indirect 

parameters of sympathetic activation in humans (Julius and Esler 1975) (Safar et al. 1974), 

researchers were able to identify autonomic dysfunction as being a crucial mechanism for 
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the development of hypertension. A meta-analysis of plasma catecholamine levels in 

hypertensive individuals revealed a high correlation between younger hypertensive 

individuals, rather than older hypertensive individuals with hypertension (Goldstein., 

1983).  But seminal works of Anderson and Julius, published in the late 1980’s and early 

1990’s, not only established the importance of sympathetic overactivation as a significant 

factor in the initiation of hypertension (Julius et al. 1991), but also provided convincing 

evidence of CNS involvement (Anderson et al. 1989). In addition, studies conducted in 

animal models of hypertension, such as SHRs, revealed prominent autonomic dysfunction. 

Similar to borderline hypertensive individuals, sympathetic tone was augmented during the 

early stages of hypertension in SHRs (Fisher and Paton 2012) (Korner et al. 1993). 

Blockade of sympathetic activity was demonstrated to be more effective in young 

prehypertensive SHRs, when compared to adult SHRs (Weiss et al. 1974). Thus, evidence 

from prehypertensives and borderline hypertensive humans, in addition to the studies in 

hypertensive animal models, led to the development of the neuroadrenergic hypothesis for 

hypertension put forth by Grassi, which underscored the role of sympathetic hyperactivity 

in triggering and in perpetuating hypertensive conditions (Grassi et al. 2010). Traditional 

antihypertensives, other than centrally acting sympatholytics, have been demonstrated to 

have a minimal/neutral (Grassi et al. 1998) and also an exacerbatory effect (Fu et al. 2005) 

on central sympathetic outflow. Since an elevated central sympathetic outflow is a key 

underlying determinant of several cardiovascular diseases as well, it is essential that we 

explore the molecular mechanisms that leads to an impairment in cardiovascular 

parameters. The search for promising therapeutic strategies for lowering an augmented 

sympathetic drive, that is centrally mediated, has resulted in investigating the pleiotropic 
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effects of statins. They have been demonstrated to have potent antioxidant and anti-

inflammatory actions resulting in a decrease in sympathetic outflow in heart failure 

(McGowan et al. 2013).  

c) Brainstem cardiovascular centers and sympathetic activity  

Elevation in sympathetic drive was theorized to originate from an impairment of the 

CNS cardioregulatory centers, especially the brainstem (Saavedra et al. 1976) (Julius and 

Esler 1975). In the CNS, the cardioregulatory centers of the brainstem and hypothalamus 

play a critical role in the homeostatic regulation of blood pressure over a short duration or 

a longer period of time (Osborn 2005) (Guyenet 2006). Brainstem comprises of the nucleus 

tractus solitaris (NTS), which is the major command center for the integration of inputs 

from arterial baroreceptors, chemoreceptors, and also cardiopulomonary receptors 

(Zanutto et al. 2010). It also receives inputs from amygdala and the PVN located in the 

hypothalamus. Optimum functioning of the peripheral baroreceptors and the NTS, and the 

higher brain regions such as hypothalamus, have a crucial role in the regulation of 

baroreflex. Resetting of the baroreflex is a characteristic feature of neurogenic 

hypertension (Folkow 1982) (Fisher and Paton 2012). Activation of the peripheral 

baroreceptors serves to depress the rostral ventrolateral medulla (RVLM) activity, the 

major pressor center in the brain, leading to a decrease in sympathetic activity 

(Dembowsky and McAllen 1990). This action is achieved through baroreceptor afferents 

that terminate into the NTS, whose primary function is to keep check on the RVLM, via 

its activity on the major inhibitory center, the caudal ventrolateral medulla (CVLM). 

Additionally, afferent inputs from chemoreceptors and projections from PVN also 

terminate into the RVLM (Dampney et al. 2002). RVLM neurons, which are primarily of 
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the C1 type, terminate in the intermediolateral cell column, from which arises the 

sympathetic preganglionic neurons. Its activation has been demonstrated to result in an 

increase in sympathetic efferent activity to heart, arteries and kidneys, resulting in an 

increase in heart rate, vasoconstriction, and an increase in renin release (Kumagai et al. 

2012). Projections from several regions of the brain terminate into the RVLM. Hence 

elevation of sympathetic activity that is observed in hypertensive states could be either due 

to an impairment in baroreceptor and chemoreceptor afferent input to the brainstem, or a 

processing error in brainstem cardiovascular centers (Guyenet 2006).  

d) SHR- A model of essential hypertension  

The SHR is one of the most widely used models to study essential hypertension, as it 

exhibits remarkable similarities to human hypertension. These similarities are: 

1. Similar to the development of hypertension in humans, hypertension in SHRs develops 

over a period of time, and it is preceded by a pre-hypertensive stage. Similar to pre-

hypertensive individuals, SHRs are also characterized by an elevated sympathetic activity 

that is centrally mediated (Fisher et al. 2009) (Judy et al. 1979).  

2. A study examining the effects of gender on hypertension, reported that the severity of 

hypertension is greater in men when compared to women. In SHRs as well, a greater 

severity of hypertension in males when compared to females is observed (Sandberg and Ji 

2012).  

3. Similar to humans, anti-hypertensive medications demonstrated greater efficacy in the 

treatment of hypertension at the earlier stages, than at the later stages in SHRs (Weiss 1974) 

(Harrap et al. 1990).  
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Both in vitro and in vivo studies in SHRs, have greatly contributed to our understanding of 

the role of the brain in the pathogenesis of hypertension (Folkow 1982). An impairment of 

neuronal activity in the cardiovascular centers of the brainstem (Ito et al. 2000) and 

hypothalamus (Allen 2002) is theorized to be intricately connected to an augmentation of 

sympathetic activity. The role of the neurohumoral systems in long-term alterations of 

blood pressure, has also been highlighted by several studies (Dampney et al. 2002). Pro-

hypertensive hormonal systems such as the RAS are overactive in the brains of SHRs 

(Veerasingham and Raizada 2003). In  RVLM, where the AT1R is expressed at relatively 

high levels (Hu et al. 2002), activation of the receptor has been demonstrated to result in 

an increased firing frequency in SHRs (Matsuura et al. 2002). In addition to RVLM, 

hypothalamic cardiovascular regulatory regions such as PVN was also demonstrated to 

have a crucial role in mediating sympathetic hyperactivity observed in SHRs (Allen 2002). 

The PVN also receives direct inputs from the subfornical organ (SFO), which have been 

demonstrated to be sensitive to Ang II treatment (Okuya et al. 1987) (Dampney et al. 2002). 

The AT1Rs in the PVN have a critical role in sympathetic overactivity observed in SHRs, 

as experimentally-induced reduction of AT1R levels in SHRs, resulted in a lowering of 

blood pressure (Shan et al. 2011).  

e) Molecular mechanisms of elevated central sympathetic drive  

Evidence from several studies have identified elevations in pro-oxidant states (Gao 

et al. 2005), and pro-inflammatory states (Guggilam et al. 2008), to be candidate 

mechanisms by which Ang II via neuronal AT1R activation can cause an elevation in 

sympathetic activity in SHRs. While most of the studies have been geared towards 

unraveling the dysregulated molecular mechanisms of established hypertension, by 
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employing adult SHRs, very few studies have investigated the molecular mechanisms that 

become impaired at early stages (Doggrell and Brown 1998). Considering that these 

mechanisms may well be the drivers of hypertension, it becomes imperative that we 

identify the genes and proteins that either exhibit altered expression patterns or altered 

functions or both, in the brainstem and hypothalamus of SHRs. Only recently, an altered 

inflammatory status was identified in the NTS of prehypertensive, as well as hypertensive 

SHRs (Paton and Waki 2009) (Waki et al. 2008a). This discovery was instrumental in 

highlighting the importance of neuroinflammation in the development of hypertension. 

Studies from our laboratory and others, have further confirmed the existence of an altered 

inflammatory state in the brainstem  and hypothalamus of SHRs (Gowrisankar and Clark 

2016c) (Agarwal et al. 2011). While there has been some headway into understanding the 

role of hormones and secreted factors that regulate neuroinflammatory states in SHRs, this 

area of research has not been well investigated. A better understanding of potential 

regulators of neuroinflammatory states would enable us to leverage the anti-inflammatory 

potential of brain cells to achieve resolution of neuroinflammatory conditions. A condition 

like hypertension is characterized by neuroinflammatory and pro-oxidant states, as well as 

aberrant neuronal activity. Targeting multifunctional regulatory systems such as the 

endocannabinoid system may well prove as an attractive therapeutic target, since 

neuromodulatory and immunomodulatory effects, could be crucial in regulating 

dysregulated neuronal activity and inflammatory states (Di Marzo 2009).  
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ii) Cerebellum 

 

a) Cerebellar impairment and ADHD  

While the prefrontal cortex and basal ganglia have been extensively investigated in 

neurodevelopmental disorders such as ADHD, less importance has been given to 

cerebellum. The cerebellum was widely believed to have a central role in motor functions 

exclusively (Goetz et al. 2014b). The importance of purkinje cells in motor functions has 

been reported by several studies (Paulin 1993). In the recent past however, cerebellum has 

been theorized to have a critical role in non-motor functions such as cognition (Stoodley 

2012). The cerebellum sends and receives extensive inputs to the basal ganglia and cortex- 

the cerebellar dentate nucleus connects to the prefrontal cortex and the striatum. These 

projections that arise from the non-motor and motor regions of the cerebellum, may be 

critical in regulating several functions that are often intrinsic to the frontal lobe (Strick et 

al. 2009). Morphometric analysis conducted on different brain regions of boys with ADHD 

revealed significant reduction in the size of different brain regions, including the 

cerebellum, when compared to the control brains (Castellanos et al. 1996a). Cerebellar 

volumetric reductions have been reported to be even more evident than prefrontal cortex 

reductions in individuals with ADHD (Castellanos et al. 2002). Evidence of alterations in 

specific regions of the cerebellum that connects to brain regions with higher brain functions 

has also been reported (Bledsoe et al. 2011). Functional magnetic resonance imaging 

studies revealed that different functional domains of the cerebellum, involved in motor 

functions or attention, have mutually independent roles (Allen et al. 1997), which may be 

selectively altered in neurodevelopmental disorders (Allen and Courchesne 2003). 

Morphological changes observed in the structure of the cerebellum in neurological and 
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neurodevelopmental disorders, that are not associated with motor impairments, also 

highlights the role of cerebellum in functions such as cognition and attention. Additionally, 

motor and cognitive deficits are observed in several neurodevelopmental disorders (Goetz 

et al. 2014b) (Rogers et al. 2013). Impairment in cerebellar functioning has been observed 

in neurodevelopmental disorders such as autism (Allen et al. 2004) and ADHD (Valera et 

al. 2005). Along with the morphometric findings, these studies provide convincing 

evidence of cerebellar impairment in neurodevelopmental disorders, such as ADHD 

(Schneider et al. 2006), and other anxiety disorders which are not typically associated with 

motor functional deficits, such as posttraumatic stress disorder (Phillips et al. 2015). Since 

several structural and functional alterations of cerebellum are associated with 

neurodevelopmental disorders from a young age, cerebellar hypoplasia may well be a key 

feature of disorders such as autism and ADHD (Basson and Wingate 2013). 

b) The SHR as a disease model for ADHD  

Traits that are often observed in ADHD individuals such as shorter attention spans, 

inability to focus, and hyperexcitability, are also observed in SHRs, making it an ideal 

model to investigate the etiology of ADHD (Adriani et al. 2003). Astrogliosis, a hallmark 

of neurodegenerative disorders, is also reported in SHRs (Tomassoni et al. 2004). Similar 

to ADHD individuals, SHRs are also characterized by cerebellar atrophy and cerebellar 

impairment (Yun et al. 2014). An increase in the levels of apoptotic factors and astrogliosis 

was reported in the cerebellum of SHRs when compared to their normotensive controls 

(Yun et al. 2014). While the exact molecular mechanisms have not been investigated, one 

study has implicated the beneficial effects of cannabinoids on the symptoms of ADHD 

(Adriani et al. 2003). 
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iii) Hypertension and neurological impairments  

A strong correlation has already been demonstrated between hypertension and 

cognitive deterioration, and also brain RAS and cognitive function (Nelson et al. 2014) 

(Tzourio 2007) (Bodiga and Bodiga 2013). Although the SHR has been employed as a 

model for studying ADHD, the role of the RAS in the development of ADHD has not been 

investigated. Evidence of a greater incidence of learning disabilities in ADHD children 

diagnosed with primary hypertension, than those without, has been reported (Adams et al. 

2010). An observational case-control study assessing the efficacy of angiotensin-

converting-enzyme inhibitors (ACEIs) on cognitive functions in the elderly, also had 

favorable results (Gao et al. 2013).  Since hyperactivation of brain RAS is associated with 

elevated pro-inflammatory and pro-oxidant states, neutralization of the RAS could result 

in resolution of neuroinflammatory conditions, leading to improvement of various 

neurological impairments.  

2.2 Physiological and pathophysiological roles of astroglia: Emphasis on 

cardiovascular and neurodevelopmental disorders 

i) History of astrocytes  

Following the discovery of glial cells in the mid-1800’s, several theories of their 

possible roles in normal brain functioning and also in brain disorders were put forth during 

the late 19th and early 20th century (Hubbard et al. 2016). Lack of sophisticated tools to 

study glial cells were major hindrances during that era (Somjen 1988). It was only in the 

mid-1950’s that glial cell functioning was experimentally determined (Hubbard et al. 

2016). The availability of microelectrode recordings for studying electrophysiological 

properties of neuronal cells (Hodgkin and Huxley 1952), gave a major boost to 
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understanding glial cell physiology. The notion that astrocytes were electrically neutral, 

and hence were not capable of eliciting an electrophysiological response, was dispelled as 

researchers observed a hyperpolarized membrane in these cells (Hild et al. 1958). This was 

followed by studies that provided evidence of astroglial’s ability to buffer excess potassium 

(Orkand et al. 1966).  In spite of these landmark experiments, astrocytes were mostly 

relegated to have secondary roles when compared to their prized counterparts, neurons. 

This may well be due to their perceived inability to transmit information (Volterra and 

Meldolesi 2005). Landmark studies in the late 1980’s and early 1990’s, provided the first 

evidence of astroglial communication, which is mediated via mobilization of 

neurotransmitters (Hatton 1988) and transmission of calcium waves (Cornell-Bell et al. 

1990) (Nedergaard 1994). This was believed to be the turning point in astroglial research, 

and also in neuroscience research (Ndubaku and de Bellard 2008). Their ability to 

communicate with neurons, function as secretory cells, in addition to their housekeeping 

roles, made them vital from a physiological and pathological standpoint. Interestingly, 

several of these experiments were based on hypotheses that were stated by researchers 

close to a century earlier (Hubbard et al. 2016) (Somjen 1988). While discrepancies still 

persist over the ratio of astrocytes to neurons (Hilgetag and Barbas 2009) (Herculano-

Houzel 2009), astrocytes are one of the most abundant brain cell types.  Their ability to 

function as mediators of communication between neurons (Araque et al. 2001), surveyors 

of brain bioenergetics (Brown and Ransom 2007), and bidirectional regulators of 

inflammation (Bélanger and Magistretti 2009), are important to ensure normal brain 

functions.  

ii) Classification 
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Astrocytes are classified mainly into two types, protoplasmic and fibrous astrocytes. 

Protoplasmic astrocytes (Type 1) are the most abundant type, and they are found in grey 

matter. They are closely associated with synapses and blood vessels and hence have an 

integral role in synaptic transmission, and formation of the blood brain barrier (BBB) 

(Molofsky et al. 2012). Fibrous astrocytes (Type 2) are present in the white matter. Along 

with oligodendrocytes, they have a role in the formation of myelin (Molofsky et al. 2012). 

In addition to these two types, glial cells with specialized functionality have also been 

identified. The Bergmann glia or Golgi epithelial cells, which are found in great numbers 

in the cerebellum, perform highly specialized functions encompassing neuroprotection and 

optimum functioning of the cerebellar circuit  (Korbo et al. 1993) (De Zeeuw and Hoogland 

2015). The other specialized glial cell type is the Muller cell, which are present in the retina. 

Their functions resemble those of protoplasmic astrocytes in the adult CNS (Börner et al. 

2007). In addition to the above cells, progenitor cells possessing astrocyte like properties, 

known as radial glial cells, have also been identified.  

iii) Physiological roles of astrocytes 

a) Role in neurodevelopment 

 Radial glial cells are theorized to arise from precursor neural epithelial cells during 

embryogenesis (Götz and Barde 2005). Radial glia cells are one of three types of progenitor 

cells which are involved in the generation of  neurons and astrocytes during the 

development of the nervous system (Götz and Barde 2005) (Freeman 2010). Astrocytes are 

also involved in guiding newly formed axons to their correct destinations thereby 

contributing to the functional specialization of neurons. Postnatally, there is an expansion 

in the number of glial cells, followed by maturation and specialization (Freeman 2010). 
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Mature astrocytes are then able to take part in synaptogenesis, neurite outgrowth, selective 

apoptosis of neurons (synaptic pruning), and at later stages they are involved in 

neurogenesis in select brain regions (Reemst et al. 2016) (Reemst et al. 2016).  

b) Supportive and specialized functions  

Astrocytes express a large number of ion channels. Due to their hyperpolarized resting 

state, they are able to participate in the redistribution of ions (Olsen et al. 2015). Ion 

channels such as Kir4.1, which are abundantly expressed in astrocytes, are involved in 

regulating the levels of potassium ions in the neuronal milieu (Olsen et al. 2015). 

Astrocytes also possesses multiple secretory and reuptake mechanisms for 

neurotransmitters (Malarkey and Parpura 2008) (Anderson and Swanson 2000). Their 

ability to modulate neurotransmitter levels in the synaptic cleft, is an essential aspect of 

their homeostatic and neuroprotective repertoire (Markowitz et al. 2007). Their role as 

homeostatic regulators hinges on their ability to regulate the levels of ions and 

neurotransmitters present in the neuronal milieu and the synaptic cleft. Additionally, 

astrocytes express an array of G protein coupled receptors (GPCRs), such as metabotropic 

glutamate receptors and purinergic receptors. These GPCRs along with connexins 43 and 

30, are critical players in astrocyte-mediated calcium signaling (Olsen et al. 2015) (Bradley 

and Challiss 2012). Mobilization of neurotransmitters such as glutamate and Adenosine 

triphosphate (ATP), enables astrocytes to not only communicate with neighboring neurons 

and astrocytes, but also distant neurons as well (Fellin 2009) (Navarrete and Araque 2008). 

This is primarily due to an elevation in calcium which triggers mobilization of a second 

wave of gliotransmitters (Fellin 2009). Their ability to communicate with neurons and with 

each other, was the basis of the tripartite synapse hypothesis put forth by Araque (1999). 
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Additionally, astrocytes can regulate other glial cell’s functions by either physically 

interacting with them, as in the case of microglia (Orthmann-Murphy et al. 2008), or by 

secretion of factors and cytokines (Shih et al. 2006) (Claycomb et al. 2013). Astrocytes 

form connections not just with neurons and other glial cells, but also with neighboring 

blood vessels. Astrocytes supply neurons with energy metabolites, such as lactate, after 

taking up glucose from the neighboring blood vessels (Stobart and Anderson 2013). 

Astrocytes along with capillary endothelial cells form the major constituents of the BBB. 

The BBB serves to isolate the brain from circulating macromolecules that are present in 

the peripheral circulation (Abbott 2002). Hence by forming a physical barrier, and by 

neutralizing foreign pathogens, astrocytes are part of a formidable CNS defense.  

iv) Role in pathological states 

a) Aberration in astroglial functions 

 Based on astroglial’s ability to perform highly specialized functions, in addition to 

their supportive roles in the brain, it has become evident that they have crucial roles in 

mediating pathological states. As mentioned earlier, astrocytes were incorrectly believed 

to have an insignificant role in pathological conditions. While astrocytes have both 

supportive and independent roles under physiological states, they undergo radical 

transformation when they sense an invasion of a pathogen in the CNS, or an injury to the 

CNS (Sofroniew 2009). This sentinel like function is crucial for warding off a pathogen or 

limiting CNS injury. This response of astrocytes where they undergo distinctive 

morphological and molecular changes, is termed reactive astrogliosis, Morphological 

changes such as hypertrophy, and molecular changes such as high glial fibrillary acidic 

protein (GFAP) expression are observed during reactive astrogliosis (Sofroniew 2009). 
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The other protective functions of astrocytes include an uptake of excitotoxic 

neurotransmitters, counteracting neuroinflammatory states, and protection from oxidative 

stress (Ndubaku and de Bellard 2008) (Bélanger and Magistretti 2009). Astrocytes possess 

high levels of glutathione, that enables them to neutralize threats associated with excess 

ROS such as superoxides and hydrogen peroxide during cellular stress (Dringen et al., 

2000).  Alterations in astroglial functions, either a loss of function or an erroneous 

regulation, has been reported in multiple pathological conditions (Verkhratsky et al. 2012) 

(Parpura et al. 2012). Central to this idea is the dichotomy of reactive astrogliosis. While 

the major purpose of reactive astrogliosis is to confer CNS protection, diffused and 

persistent reactive astrogliosis is deleterious (Sofroniew and Vinters 2010). Scientific 

literature is rife with both beneficial and deleterious effects of reactive astrogliosis 

(Sofroniew 2009). Inhibition of reactive astrogliosis was demonstrated to have beneficial 

effects in the long run in different models of CNS injury, inspite of compromising on 

regeneration capabilities at the earlier stage (Pekny and Pekna 2014). Akin to 

inflammation, the outcome is strongly dictated by the rate of resolution. A persistent and 

diffused reactive astrogliosis is not only an impediment to stable neuronal activity, but on 

a larger scale, can trigger neuronal damage (Sofroniew and Vinters 2010). Severe CNS 

insults like ischemia, chronic neurodegeneration and injury, not only triggers reactive 

astrogliosis, but can often lead to the formation of glial scar (Sofroniew 2009). While this 

serves to primarily isolate the site of damage from the rest of the healthy brain, collateral 

damage such as gross diminishment of regenerative capabilities of axons also takes place 

(Sofroniew and Vinters 2010) (Pekny and Pekna 2014) (Yuan and He 2013). In addition, 

reactive astrocytes are characterized by an impairment in its neuroprotective functionality, 
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such as reuptake disruption and barrier disintegration (Sofroniew and Vinters 2010) 

(Sofroniew 2009). As a result, understanding their functions in pathological states, would 

not only aid to strengthen our understanding of several pathological conditions, but may 

also reveal several additional drug targets and therapeutic opportunities that may have been 

overlooked so far (Scuderi et al. 2013) (Colangelo et al. 2014). Several of the drugs that 

are currently available to treat neurological impairments, are designed based on receptors, 

ion channels and signaling systems that are impaired in neurons, and not astrocytes or other 

glial cells (Verkhratsky et al. 2012).  

b) Neurodevelopmental disorders 

 While significant progress has been made in astroglial pharmacology, there are still 

avenues that have not been completely explored. Knowledge of potential aberrations in 

astroglial functions and development during embryogenesis, and its relation to 

neurodevelopmental disorders, still remains a fairly unknown area of research. Considering 

that their roles in synaptogenesis and neuronal survival have been fairly well established 

(Reemst et al. 2016) (Molofsky et al. 2012), astroglial dysfunction may well be intertwined 

with inaccuracies in synaptic activity, the latter being a characteristic of multiple 

neurodevelopmental disorders. Interestingly, in support of this notion is a study 

investigating the brains of autistic individuals. Autism, a neurodevelopmental disorder 

which usually manifests at a very early stage, is characterized by behavioral and cognitive 

deficits (Happé 1999). A high degree of astrogliosis was reported in the cerebellar cortex 

of brains from post-mortem autistic individuals (Yang et al. 2013). In other 

neurodevelopmental disorders such as ADHD, astroglial dysfunction was also reported. In 

a rat model of ADHD, the SHR, an increase in cerebellar astrogliosis and an increase in 
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apoptotic markers were observed when compared to their controls (Yun et al. 2014). An 

impairment in astroglial development in neurodevelopmental disorders, may well be 

contributing to the overall pathogenesis of disorders such as autism and ADHD (Molofsky 

et al. 2012).  

c) Hypertension and cardiovascular disorders 

 Essential hypertension and several cardiovascular diseases, such as heart failure, are 

characterized by an enhanced sympathetic tone (Malpas 2010). As mentioned in the earlier 

sections, this enhanced sympathetic tone is theorized to not be a consequence of the 

disorder, but contributes to the progression of it. Overt excitatory impulses from the RVLM 

presympathetic neurons, are ascribed as a major cause for sympathoexcitation that is 

observed in essential hypertension and cardiovascular diseases (Kumagai et al. 2012). 

Several theories have been attributed to this phenomenon. Imbalances in the levels of 

activating and restraining inputs to the RVLM (Smith and Barron 1990) (Ito et al. 2000), 

pro-oxidant and pro-inflammatory states in the RVLM (Wu et al. 2012), and imbalances 

between the excitatory and inhibitory neurotransmitters in the RVLM (Kishi et al. 2002), 

are some theories that have been highlighted in the literature. NTS via the CVLM has a 

restraining effect on RVLM activity (Guyenet 2006). ATP has been demonstrated to be an 

extremely important neurotransmitter in mediating the excitatory components of RVLM 

(Marina et al. 2013) and the chemoreflex input of the NTS neurons (Braga et al. 2007). 

Purinergic signaling is a key signaling system that regulates cardiovascular function by 

exerting autonomic modulatory influences (Gourine et al. 2009). Purinergic signaling is 

also crucial for astrocytes to communicate not only with other astrocytes, but also with 

neurons (Fields and Burnstock 2006). Brainstem hypoxia, which is commonly observed in 
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hypertension and cardiovascular diseases, is also known to be a favorable environment for 

ATP release from astrocytes (Marina et al. 2015) (Marina et al. 2016). Using rat models 

of heart failure and hypertension, the role of astroglial ATP were demonstrated to have 

exceedingly important roles in the pathogenesis of the aforementioned disorders (Marina 

et al. 2016). Interestingly, neuroinflammatory cytokines were also reported to be elevated 

in the cardiovascular centers of the brainstem and hypothalamus (Agarwal et al. 2011). Not 

only do astrocytes and microglial cells have fundamental roles in the homeostatic 

regulation of cytokines in the brain, but cytokines themselves can influence glial cell 

functions (John et al. 2003). Impaired resolution of neuroinflammatory conditions, could 

well lead to an impairment of cardioregulatory regions of the brain. In support of this view, 

SHRs treated with an inhibitor of S100B, a pro-inflammatory and an apoptotic marker of 

astrocytes (Higashino et al. 2009), and minocycline, an inhibitor of microglial activation 

(Shi et al. 2010b), resulted in a significant reduction of blood pressure. Prominent 

astrogliosis was reported in SHRs by multiple groups, further highlighting the role of 

astrocytes in the pathogenesis of hypertension (Tomassoni et al. 2004). 

v) Conclusion  

While the role of astrocytes has been explored in neurodegenerative disorders, their 

role in neurodevelopmental disorders, such as ADHD, and cardiovascular diseases, is still 

relatively unknown. As mentioned earlier, astrocytes are involved in a multitude of CNS 

functions, which encompasses crucial CNS development and cardioregulatory roles. 

Several disorders have already been directly linked to astrocyte malfunction (Borrett and 

Becker 1985) (Furnari et al. 2007) (Verkhratsky et al. 2012).  Since most of the currently 

employed CNS drugs are designed based on neuronal receptors and functions, it is 
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plausible that investigation of these cells, in pathological conditions such as ADHD and 

hypertension, may reveal new insights into the pathogenesis of these diseases. 

2.3 Brain inflammation in neurodevelopmental and cardiovascular disorders 

i) Physiological roles of cytokines  

Cytokines are a group of polypeptides that are fundamental for the initiation, 

perpetuation and termination of neuroinflammatory responses. Along with other peptides, 

these soluble factors are crucial for mediating both acute and chronic phases of 

inflammation (Ramesh et al. 2013). Cytokines are not only critical for the regulation of 

inflammatory responses, but they can also elicit a variety of cellular functions. In the CNS, 

cytokines are secreted by all brain cells, but microglia and astrocytes are the two major 

sources (Benveniste 1992). Once secreted, they can activate and transform glial cells to 

reactive cells (John et al. 2003). Cytokines can also alter the structural integrity of the BBB, 

resulting in entry of circulating immune cells (Pan et al. 2011). Additionally, glial cells can 

also produce anti-inflammatory cytokines that can terminate the inflammatory response 

(Vitkovic et al. 2001). Therefore, cytokines such as IL (Interleukin)-10 and IL-1 receptor 

antagonist (IL-1RA) can orchestrate an immune response to a CNS injury or an invading 

pathogen, and constitute key elements of the anti-inflammatory machinery of glial cells. In 

addition to their neuroprotective functionality, cytokines also have potent neuromodulatory 

roles (Vitkovic et al. 2000). Under normal conditions, cytokines such as IL-6, and other 

pro-inflammatory cytokines, once secreted from glial cells can activate neuronal cytokine 

receptors in a paracrine fashion  (Vezzani and Viviani 2015). Recently, their roles in early 

CNS development has also come to the fore (Deverman and Patterson 2009). Neuropoietic 

cytokines, mostly belonging to the IL-6 family, along with neurotrophic factors, are key 
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regulators of neuronal development during the embryonic stage, and gliogenesis during 

post-natal stages (Stolp 2013). This highly regulated process, controls cell-fate decisions, 

and also the specialization of progenitor cells into different cell types in the mature brain. 

ii) Pathological roles  

a) Aberrant levels 

Under chronic pathological conditions, excessive production of pro-inflammatory 

cytokines, can lead to impaired firing of neurons, excitotoxicity and neurodegeneration 

(Wilcox and Vezzani 2014). These effects result in neurological and cardiovascular 

impairments (Waki and Gouraud 2014). Evidently, neurodegenerative disorders are 

characterized by a marked alteration in the levels of neuroinflammatory cytokines (Frank-

Cannon et al. 2009) (Li et al. 2011) (Wang et al. 2015). Also, aberration in cytokine levels 

at prenatal stages, has been linked to psychosis and several neurodevelopmental disorders 

(Stolp 2013).  

b) Role of cytokines in the etiology of neurodevelopmental disorders   

Neurodevelopmental disorders such as autism are characterized by inflammatory 

states, in the periphery as well as the CNS (Onore et al. 2012). Post mortem studies, 

conducted on the brains of individuals with autism, revealed an elevated pro-inflammatory 

state in the cortex and the cerebellum, as well as a marked glial cell activation (Vargas et 

al. 2005). Additionally, another study reported an imbalance between the levels of pro- and 

anti-inflammatory cytokines in post-mortem brain specimens of individuals with autism 

(Li et al. 2009). A balance between pro and anti-inflammatory cytokines is essential for 

the normal development of the brain. Since an imbalance in the levels at prenatal stages 
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can result in significant deviations in neuronal circuit development (Meyer et al. 2009), the 

concept of fetal programming, has gained credence in the field of neurodevelopmental 

disorders (Szatmari 2011) (Madore et al. 2016). Cytokine imbalances were also reported 

in ADHD by two different studies (Oades et al. 2010) (Mittleman et al. 1997). A slight 

increase in the levels of IL-16 and the anti-inflammatory cytokine IL-13, and glial cell 

dysfunction were observed (Oades et al. 2010). Interestingly, our laboratory reported an 

altered neuroinflammatory state in cerebellar astrocytes isolated from SHRs when 

compared to Wistar rats (Gowrisankar and Clark 2016c). Dysfunction of SHR cerebellar 

astrocytes have been reported to have a crucial role in the development of ADHD in that 

model (Yun et al. 2014). Cerebellar astrogliosis has been shown to contribute to ADHD 

symptoms (Yun et al. 2014). Impaired functioning of cerebellar astrocytes in SHRs, 

warrants further investigation of this cell type in neurodevelopmental disorders. 

 

c) Role of cytokines in the etiology of cardiovascular disorders  

Chronic inflammation has often resulted in a deterioration of several cardiovascular 

functions, both in the periphery as well as the brain (Dinh et al. 2014) (Pauletto and Rattazzi 

2005). An augmentation of centrally-mediated sympathetic activity, is theorized to be a 

crucial mechanism for the pathogenesis of essential hypertension and cardiovascular 

diseases such as heart failure (Grassi et al. 2010). An impairment in the functions of the 

presympathetic neurons arising from the RVLM, and regulatory inputs into the RVLM 

from other cardiovascular centers, is ascribed as being a major factor for centrally-mediated 

sympathetic augmentation (Dampney 1994) (Wainford 2014). The idea that dysregulated 

neuroinflammatory states, in the cardiovascular centers of the brainstem, could contribute 
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to sympathoexciation, was suggested by Paton and colleagues, less than a decade ago 

(Waki et al. 2008b). This was based on gene expression studies in the NTS of SHRs, where 

they observed altered inflammatory states, specifically in the levels of junctional adhesion 

molecule 1 (JAM-1),  monocyte chemotactic protein 1 (MCP-1) and IL-6 (Waki et al. 

2008b). Following their study, multiple groups have provided evidence of a 

neuroinflammatory involvement in Ang II-mediated sympathoexcitation (Shi et al. 2011) 

(Shan et al. 2011) (Shi et al. 2010b) (Wu et al. 2012) (Winklewski et al. 2015). An 

elevation in the levels of IL-1β and IL-6, and a decrease in the anti-inflammatory cytokine 

IL-10 were observed in the cardiovascular centers of the hypothalamus and brainstem of 

SHRs when compared to their normotensive controls (Agarwal et al. 2011). Evidence of a 

direct link between neuroinflammation and hypertension was established when it was 

demonstrated that intracerebroventricular administration of the pro-inflammatory cytokine 

IL-1β into the PVN resulted in an elevation in blood pressure (Shi et al. 2011). A disruption 

in BBB has also been demonstrated in hypertensive conditions; this may result in 

infiltration of peripheral immune cells into the CNS (Marvar et al. 2011). Also, blockade 

of Toll like receptor 4 in the PVN, resulted in restoring the balance between pro- and anti-

inflammatory cytokines, suggesting the crucial role of neuroinflammation in the regulation 

of various cardiovascular parameters (Dange et al. 2015). The latter underscores the 

importance of microglia in the exacerbation of neuroinflammatory states in the PVN of 

SHRs. In support of this finding, minocycline, an inhibitor of microglial activation, 

neutralized Ang II-mediated elevation in pro-inflammatory cytokines and elevated 

sympathetic activity in Wistar rats (Shi et al. 2010b). The above studies indicate the 

importance of glial cells and neuroinflammation in the elevation of sympathetic activity. 
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iii) Conclusion  

Since astroglial dysfunction and altered inflammatory states have been identified in 

hypertensive rat models, it is plausible that brainstem astrocytes contribute to the impaired 

neuroinflammatory and pro-oxidant state observed in SHRs. This altered 

neuroinflammatory state, may well be contributing to a dysfunction of the cardiovascular 

centers in the brain. Our laboratory has observed significant differences in IL-6 mRNA 

levels in brainstem astrocytes isolated from SHRs when compared to their normotensive 

controls (Gowrisankar and Clark 2016c). Additionally, treatment of brainstem astrocytes 

with Ang II, the major pro-hypertensive peptide, as well as Ang III caused a spike in the 

levels of IL-6 (Kandalam and Clark 2010) (Kandalam et al. 2015). Whether other 

inflammatory cytokines, such as IL-1β and IL-10, are altered as well, will be the one of the 

aspects that were investigated in this study.  

2.4 RAS and neuroinflammation 

i) Classical and non-classical RAS  

The RAS is a cardioregulatory, peptidergic, hormonal system. It is composed of several 

different components which encompasses precursor and active peptides, enzymes and 

receptors. In response to a drop in blood pressure, low salt concentration, or low blood 

volume, the juxtaglomerular apparatus in the kidneys triggers the RAS cascade, which 

ultimately culminates in a significant anti-natriuretic, anti-diuretic and vasoconstrictive 

effect (Montani and Van Vliet 2004) (Hall 1986). Renin, secreted from the kidneys, 

converts Angiotensinogen (AGT), secreted from the liver, to Ang I. Ang I is converted into 

Ang II by the action of ACE, an enzyme produced in the lungs and blood vessels (Montani 

and Van Vliet 2004).  Ang II, the major effector peptide of RAS, is a circulating hormone, 
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that has multiple physiological functions. While most of their functions converge to have 

one singular outcome, that is an elevation in blood pressure, RAS also has a role to play in 

several other functions such as digestion, reproduction and prenatal development (Paul et 

al. 2006). The widely studied and documented actions of Ang II such as aldosterone 

secretion, vasoconstriction and ionotropic effects are due to its ability to interact with the 

AT1R (Fyhrquist et al. 1995). Ang II via activation of the AT1R, a pertussis toxin-

insensitive GPCR, causes a spike in the intracellular calcium levels. Elevation in calcium 

triggers activation of kinases, signaling pathways and transcription factors, and 

consequently causes several physiological actions such as smooth muscle contraction and 

aldosterone synthesis (de Gasparo et al. 2000). By interacting with the AT1R on the renal, 

cardiac and vascular cells, Ang II is able to increase aldosterone levels, elevate salt intake, 

sympathetic nervous system hyperactivation, have a positive ionotropic effect, and is also 

known to elicit potent vasoconstriction (Fyhrquist et al. 1995). Ang II is also known to 

interact with the AT2R, which is antagonistic to AT1R functions (Stoll et al. 1995). Its 

activation results in vasodilatory and cardioprotective  effects (Li et al. 2012b). AT2R 

expression is higher during prenatal stages when compared to adulthood (de Gasparo et al. 

2000), although this view has been challenged (Yu et al. 2010). Several other peptides that 

have functional similarity as well as dissimilarity to Ang II have also been identified, 

characterized and studied (Paul et al. 2006). Ang III, Ang IV and Ang (1-7) are 

physiologically active degradation products of Ang II. Ang III interacts with the AT1R, 

while Ang IV and Ang (1-7) interacts with their own cognate receptors, the Ang type 4 

receptor (AT4R) and the Mas receptor, respectively (Varagic et al. 2008). Ang II is 

degraded by Aminopeptidases to Ang III and Ang IV, and by ACE2 to Ang (1-7) (Paul et 
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al. 2006). Alternatively, Ang (1-7) can also be synthesized from Ang I by the action of 

neprilysin (Paul et al. 2006). Ang III exhibits functional similarity to Ang II, while Ang (1-

7) counteracts the deleterious effects of Ang II (Ferrario et al. 1991). The schematic 

representation of RAS pathway is in Fig 2.1. It is now widely accepted that Ang II is not 

only produced exclusively by a select group of tissues, but also by several other cell types 

(Paul et al. 2006). Optimal functioning of both systemic and local RAS, is critical for 

overall cardiovascular homeostasis (Lavoie and Sigmund 2003).  

 

 

 

 

Fig 2.1: RAS pathway 
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ii) Significance in cardiovascular diseases  

A dysregulated RAS is one of the hallmarks of cardiovascular diseases (Veerasingham 

and Raizada 2003). A hyperactive RAS is strongly correlated with several risk factors of 

cardiovascular diseases (Fyhrquist et al. 1995). Since both Ang II synthesis and AT1R 

activity is fundamental to RAS-mediated elevation in blood pressure, drugs that impede 

synthesis of Ang II, or those that antagonize the deleterious effects of AT1Rs, are the 

mainstay in the pharmacological management of numerous cardiovascular diseases, risk 

factors and their complications (Atlas 2007) (Burnier and Zanchi 2006). In addition to its 

augmented ability to elevate blood pressure by multiple mechanisms in cardiovascular 

diseases, Ang II can also cause extensive damage to the heart, kidneys and the vasculature 

(Wang et al. 2014) (Long et al. 2004) (Montezano et al. 2014). AT1R blockers and ACE 

inhibitors are routinely employed in several cardiovascular disorders and their risk factors, 

and are considered to be an extremely valuable therapeutic strategy (Aranda and Conti 

2003) (Atlas 2007). At a molecular level, elevation in ROS and inflammatory cytokines is 

identified as a single overarching paradigm for AT1R-mediated effects (Mehta and 

Griendling 2006). Some of the physiological and pathological roles of the AT1R are 

visually represented in Fig 2.2. 
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Fig 2.2: Physiological and pathological roles of AT1R activation 

iii) Brain RAS and its role in blood pressure control  

Although functional AT1Rs in the brain were identified in the 1960’s, the notion that 

brain cells could produce Ang II, was suggested much later (Bickerton and Buckley 1961). 

Evidence of Ang II synthesizing enzymes and Ang II precursors, in brain cells, provided 

the necessary impetus for the idea of an independently functioning brain RAS (Brooks and 

Malvin 1979) (Phillips 1983) (Campbell et al. 1984). This proved to be an unheralded 

discovery in the late 1970’s and early 1980’s. Following the discovery of brain RAS, 

several research groups reported its involvement in the development of cardiovascular 

diseases and their risk factors (Veerasingham and Raizada 2003) (Huang and Leenen 2009) 

(Campos et al. 2012). In the CNS, the AT1R levels are particularly greater in the 
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cardiovascular centers of the hypothalamus and brainstem; this is indicative of the 

importance of brain RAS in the regulation of cardiovascular parameters (Lenkei et al. 

1995) (Phillips et al. 1993). Significant evidence for its role in cardiovascular disorders 

came from studies on animal models of essential hypertension, such as SHRs. The brain 

RAS was demonstrated to be overactive in SHRs when compared to their normotensive 

controls (Veerasingham and Raizada 2003). Both Ang II as well as AT1R levels were 

observed to be higher in brainstems of SHRs when compared to their normotensive 

controls, Wistar Kyoto Rats (WKY) (Veerasingham and Raizada 2003). Microinjection of 

Ang II, or modulation of RAS, in the cardioregulatory regions of the brainstem and 

hypothalamus, was demonstrated to result in an increase in mean arterial pressure (Casto 

and Phillips 1985) (Zhu et al. 1998) (Matsuda et al. 1987) (Ito et al. 2002). (Stadler et al. 

1992). RVLM neurons treated with Ang II resulted in greater firing rates in SHRs when 

compared to WKY neonatal pups (Matsuura et al. 2002). In addition, the signal 

transduction pathway,  phosphoinositide 3-kinase (PI3K), was demonstrated to be a critical 

mechanism for AT1R-mediated elevation of RVLM neuronal activity in SHRs, but not in 

their normotensive controls (Veerasingham et al. 2005) (Seyedabadi et al. 2001). The brain 

Ang II has potent neuromodulatory effects. By acting on the neuronal AT1R, Ang II can 

modulate impulses generated by several neurotransmitters such as glutamate, GABA and 

norepinephrine and thereby alter synaptic strength and plasticity (Tsuda 2012).  Ang II was 

demonstrated to decrease baroreflex sensitivity by increasing GABAergic input into the 

NTS (Wang et al. 2006). Elevation in ROS and endothelial nitric oxide synthetase, and a 

decrease in neuronal nitric oxide synthetase  were described as crucial mediators of AT1R-

mediated impairment of baroreflex gain in the NTS (Cheng et al. 2010) (Wang et al. 2006).  



36 

 

iv) Astroglial RAS and hypertension  

Components of the RAS are not only expressed in neuronal cells, but also glial 

cells, and both these brain cells have a role in regulating cardiovascular functions 

(Morimoto et al. 2002). Astrocytes are theorized to be the major source of AGT in the brain 

(Deschepper et al. 1986). In SHRs, an increase in the levels of AGT, prior to the 

development of hypertension, was identified in the brain (Tamura et al. 1996). This further 

underscores the role of astroglial AGT in the development of hypertension. Interestingly, 

our laboratory has demonstrated an increase in the levels of AGT from brainstem astrocytes 

in response to Ang II (Gowrisankar and Clark 2016b). Additionally, we observed an 

increase in ACE and a decrease in ACE2 in response to Ang II treatment (Gowrisankar and 

Clark 2016a). Hence, the balance between the synthesizing and degradative enzymes could 

be altered, favoring Ang II synthesis. The consequence may well be an elevation or a 

renewal of brain Ang II, leading to an enhancement in AT1R activity. This self-

replenishment of Ang II, could be the reason for an elevation in the levels of Ang II, that 

is observed in the brainstems of SHRs.  Also, ablation of astroglial AT1Rs in the brainstem, 

has been demonstrated to result in an improvement in the symptoms of heart failure, by 

normalization of sympathetic activity (Isegawa et al. 2014a).  

While the importance of the astroglial RAS has been underscored by several studies, the 

molecular mechanisms underlying their effects have not been well investigated. Several 

groups have demonstrated the ability of pro-inflammatory cytokines to regulate 

sympathetic activity (Winklewski et al. 2015). Neuroinflammatory states were identified 

at very early stages of hypertension in SHRs, indicating a causal role in the development 

of essential hypertension (Waki et al. 2008a). Whether an increase in pro-inflammatory 
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cytokines, in the cardiovascular centers of the brain, was an important mediator of Ang II-

mediated sympathoexcitation, was investigated by Kang et al. (2008). They demonstrated 

that chronic infusion of Ang II in Sprague-Dawley rats resulted in an elevated 

sympathoexcitatory state, that was characterized by a pro-inflammatory and a pro-oxidant 

state in the PVN. Blockade of AT1Rs and nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-KB) was also demonstrated to normalize pro-inflammatory cytokines 

as well as sympathetic activity, further authenticating the role of neuroinflammation and 

RAS in sympathoexcitation (Kang et al. 2009). Also chronic infusion of Ang II led to a 

prominent inflammatory state in the brain vasculature via an increase in ROS (Zhang et al. 

2010). The role of glial RAS in elevating neuroinflammatory states was theorized in a 

review by Shi P et al (2010). They conceptualized that glial AT1R activation results in an 

increase in the levels of pro-inflammatory cytokines, which can then act as 

neuromodulators and regulate synaptic activity (Shi et al. 2010b). It is plausible that 

mobilization of cytokines from glial cells can alter neuronal activity, since low levels of 

cytokines have been theorized to alter neuronal activity (Waki and Gouraud 2014). 

Definitive evidence of the role of inflammatory cytokines and Ang II-mediated elevation 

in sympathetic nervous system activity came from studies in hypothalamus by the same 

group (Shi et al. 2010a). Chronic Ang II infusion in the PVN resulted in an increase in pro-

inflammatory cytokines and a decrease in anti-inflammatory cytokines, which then caused 

an elevation in blood pressure (Shi et al. 2010a). This effect could be blocked by 

minocycline, indicating that this effect was mediated by microglial AT1Rs (Shi et al. 

2010a). Studies have shown that microglial cell activation, is followed by astroglial 

activation (Liu et al. 2011b). Hence, microglia may initiate the inflammatory response, and 
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astrocytes may aid in perpetuating the inflammatory condition. A synergistic effect 

between pro-inflammatory cytokines and Ang II has also been reported in the PVN on 

sympathetic activity (Shi et al. 2011). Additionally, PVN astrocytes isolated from SHRs, 

when treated with prorenin, resulted in an augmented increase in proinflammatory 

cytokines (Rodríguez et al. 2015) (Rodríguez et al. 2016). Our group observed an elevation 

of pro-oxidant and pro-inflammatory states in brainstem astrocytes, isolated from SHRs 

and Wistar rats, in response to Ang II treatment (Gowrisankar and Clark 2016c). Ang II 

via AT1R has also been demonstrated to elevate ROS as well as activate key signal 

transduction pathways, such as extracellular signal–regulated kinase (ERK), p38 and Janus 

kinase (JAK)-signal transducer and activator of transcription (STAT) pathway, key 

pathways that are critical to several astroglial functions (Clark et al. 2013)  (Kandalam et 

al. 2015) (Z. Alanazi et al. 2014) (Gowrisankar and Clark 2016c). Activation of these 

pathways, along with an elevation in ROS levels, has been demonstrated to lead to cell 

proliferation and mobilization of inflammatory cytokines in astrocytes (Kandalam and 

Clark 2010) (Clark et al. 2013) (Gowrisankar and Clark 2016c).  

v) Brain RAS and neurological disorders  

Due to their pro-oxidant and pro-inflammatory effects, the role of brain RAS in the 

development of disorders characterized by neurological impairments and 

neurodegeneration, has also been investigated (Mascolo et al. 2017). Since astrocytes are 

involved in mediating homeostasis by regulating levels of cytokines and ROS in the brain, 

hyperreactive astroglial AT1R may well be a prominent feature of not just cardiovascular, 

but also neurological disorders. Astrocytes from brain regions other than brainstem, such 

as cerebellum, are also responsive to Ang II treatment (Clark et al. 2013)(Gowrisankar and 
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Clark 2016b). Ang II caused a significant increase in the pro-inflammatory cytokine, IL-6, 

and ROS levels, in astrocytes isolated from cerebellum from both Wistar and SHRs 

(Gowrisankar and Clark 2016c). Ang II-mediated elevation in ROS and pro-inflammatory 

states have been demonstrated to be associated with neurodegeneration, and also astrocyte 

senescence (Liu et al. 2011a) (Lanz et al. 2010) (Min et al. 2011). Further, several studies 

have also demonstrated the beneficial effects of RAS blockade in neurological diseases 

(Mogi and Horiuchi 2009). Evidence linking ACEIs or AT1R blockers with improvement 

of cognitive function was also reported (Davies et al. 2011). Favorable outcomes of ACEIs 

and AT1R blockers on improving rates of cognitive function in elderly individuals have 

also been reported (Gao et al. 2013) (Saxby et al. 2008). It could well be that RAS 

hyperactivity also plays a role in the etiology of neurodevelopmental disorders. As 

mentioned earlier, SHRs are employed as a rat model for ADHD. Considering that RAS is 

a premium hormonal system that is augmented in the SHR brains, it is surprising to observe 

a paucity of studies investigating the effects of RAS in ADHD. Nevertheless, the ability of 

Ang II to promote a pro-inflammatory state in different regions of the brain, may lead to 

significant alteration in brain functions, eventually leading to neurological disorders or an 

exacerbation of several neurological conditions. 

2.5 Endocannabinoid system in physiological and pathological conditions 

i) History  

The therapeutic potential of cannabis, commonly known as marijuana, has been a 

subject of great interest for several centuries. Its anxiolytic and euphoric properties were 

acknowledged in religious scriptures that date back to several millennia (Touw 1981). 

Several cultures and civilizations have used cannabis preparations to treat a variety of 
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ailments, ranging from rheumatism, inflammatory disorders in the previous millennia, to 

dysentery and malaria in the current millennia (Zuardi 2006). While evidence of 

therapeutic utility of cannabis was known in Asia and Africa, its therapeutic utility was 

relatively unknown to the western world until the 19th century (Di Marzo 2006). The first 

scientific report on cannabis was published by the Irish physician, William ‘O 

Shaughnessy, which marked the first traces of cannabis globalization. By providing 

evidence of its therapeutic efficacy and safety for pathological conditions such as infantile 

convulsions and cholera, he was instrumental in laying the foundation for cannabis research 

(O ’Shaughnessy, 1838-1840) (Di Marzo 2006). Pioneering works from the groups of 

Cahn, Todd, Adams and Mechoulam, in the 20th century, led to a better understanding of 

the chemical makeup of cannabis (Di Marzo 2006). However, the mechanism of its action, 

remained a mystery. Three decades later came the first report of  the existence of the 

cannabinoid receptor, termed cannabinoid receptor type 1 (CB1R), in the brain, which was 

reported by Howlett’s group in the late 1980’s in rat brain (Devane et al. 1988). The 

discovery of CB1R was followed by the identification of the second cannabinoid receptor, 

termed cannabinoid receptor type 2 (CB2R), and their endogenous ligands, termed 

endocannabinoids (Bisogno et al. 2005) (Pertwee 2009b). Unlike other GPCRs which 

usually have only one endogenous ligand, the cannabinoid receptors could be activated by 

two endogenous ligands, anandamide and 2-arachidonoylglycerol (2-AG). These ligands 

have complementary as well as divergent functions (Di Marzo and De Petrocellis 2012). 

Endocannabinoids not only interact with the two cannabinoid receptors, but they are 

capable of interacting with an array of different receptors, channels and proteins (Di Marzo 

and De Petrocellis 2012). The identification of the enzymes that are involved in the 
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degradation and biosynthesis of endocannabinoids, fatty acid amide hydrolase (FAAH) and 

diacylglycerol lipase (DAGL), in the following years, made up the classical 

endocannabinoid system (Bisogno et al. 2005).  

ii) Localization of CB1R 

The CB1R is highly expressed in the CNS, with densities that rivals other 

neurotransmitter and neuromodulatory receptors (Herkenham et al. 1991). Their 

expression however is region dependent; CB1Rs are highly expressed in the cerebellum, 

hippocampus and basal ganglia, while markedly reduced in the brainstem (Herkenham et 

al. 1991). In contrast to opioids, another commonly abused drug, marijuana possess a very 

high therapeutic index. This has been attributed to a sparse distribution of CB1R in the 

human brainstem. Its propensity to regulate motor, memory and emotional functions, were 

attributed to the greater CB1R distribution in the cerebellum and limbic system 

(Herkenham et al. 1991). The CB1R is also found in peripheral regions of the body, such 

as the peripheral nervous system, as well as in the cardiovascular, metabolic, renal, and 

reproductive organs (Pacher et al. 2005a) (Szekeres et al. 2012). Although the CB2R 

expression is considered to be much higher in lymphoid organs, CB1R transcripts have 

also been detected in primary and secondary lymphoid cells (Galiègue et al. 1995). Owing 

to their ubiquitous expression in the body, CB1R has been investigated in a multitude of 

physiological functions. Endocannabinoid synthesis and degradation, along with their 

receptor functions are shown in Fig 2.3.  
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Fig 2.3: Endocannabinoid system 

CB1R is a Class A GPCR that couples to the pertussis toxin-sensitive G-protein. It is 

theorized to exhibit high constitutive activity (Turu and Hunyady 2010). The majority of 

CB1Rs have been reported to be present intracellularly by several groups (Leterrier et al. 

2004) (Rozenfeld and Devi 2008) (McIntosh et al. 1998).  Its localization in astrocytes 

however has not been well documented. Similar to its localization in other cells, we 

observed high intracellular staining for the CB1R and its phosphorylated form in 

astrocytes. While astrocytes displayed staining for CB1R over the entire cell, the staining 

was of higher intensity in the intracellular region, predominantly in the nuclear and the 

perinuclear regions (Fig 2.4-Panel A). In the case of phosphorylated CB1R (p-CB1R), we 

not only observed nuclear staining, albeit a less intense one to that observed for the total 

CB1R, but also a localized punctate cytoplasmic staining. The latter that may be indicative 

of receptors that have been endocytosed (Fig 2.4- Panel B). 

MAGL- Monoacylglycerol lipase 

NAT- N-acetyltransferase 
PLC- Phospholipase C 
PLD- Phospholipase D 
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Fig 2.4: CB1R and p-CB1R localization in astrocytes: Immunofluorescence technique 
was employed to determine the localization of CB1R and p-CB1R localization in 
astrocytes. Panel A denotes the cells that were stained with an antibody for CB1R. Thin 
arrows denotes surface expressed receptors and thick arrows denotes receptors that are 
found in cytoplasm. Panel B denotes the cells that were stained with antibody for the p-
CB1R. Thick arrows denotes cytoplasmic staining. Refer to chapter 4 for details about 
staining procedures and antibodies.  

iii) Summary of CB1R’s physiological roles  

a) Neurodevelopment  

The CB1R is of paramount importance in cell to cell communication. Although 

evidence of endocannabinoid synthesis can be traced back to unicellular organisms 

(Elphick 2012), the origins of CB1R closely parallels the evolution of multicellular 

organisms (Elphick and Egertová 2005), which underscores its importance in mediating 

cell interactions. The ubiquitous expression of DAGL (Bisogno et al. 2003), and the high 

density of CB1Rs in the brain, makes this system especially important in brain functions 

that are tightly regulated by endocannabinoid levels. Elements of this system are detected 
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at virtually every stage of brain development and maturation (Galve-Roperh et al. 2009). 

Endocannabinoids acting through the CB1R, regulate progenitor cell proliferation, cell 

specialization and cell survival (Maccarrone et al. 2014). Cell fate decisions such as 

neurogenesis and axonal elongation, synaptogenesis and regulation of synaptic strength are 

tightly regulated by the levels of endocannabinoids (Aguado et al. 2005) (Harkany et al. 

2008).  

b) Neuromodulatory Roles  

Fundamental to CB1R’s neuroprotective roles, is its ability to fine tune and regulate 

synaptic transmission via retrograde signaling (Ohno-Shosaku et al. 2001) (Alger 2002). 

The CB1R is highly localized in presynaptic neurons (Egertová and Elphick 2000). 

Although originally identified on the presynaptic GABAergic neurons (Katona et al. 1999), 

evidence of CB1R localization has also been observed on the presynaptic glutamatergic 

(Robbe et al. 2002), cholinergic (Degroot et al. 2006) and nonadrenergic (Oropeza et al. 

2007) neurons. Excessive postsynaptic receptor activation results in mobilization of 

endocannabinoids into the synaptic cleft. They can then traverse across the synaptic cleft, 

from the postsynaptic neuron to the presynaptic neuron, where they activate the CB1R, 

which couples to the pertussis toxin-insensitive G-protein. Activation of CB1R attenuates 

neurotransmitter release into the synaptic cleft, resulting in dampened synaptic activity 

(Castillo et al. 2012). Hence, the CB1R can either suppress excitatory neuronal activity 

(Kreitzer and Regehr 2001), termed depolarization-induced suppression of excitation 

(DSE), or dampen the activity of inhibitory neurons (Ohno-Shosaku et al. 2001), termed 

depolarization-induced suppression of inhibition (DSI). This ‘circuit breaker’ like 
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functionality is a crucial modus operandi of the CB1R by which it influences synaptic 

plasticity.  

c) Functions of Astroglial CB1R  

Glial cell lineages develop postnatally, and the CB1R is demonstrated to have a key 

role in regulating the transformation of progenitor cells into astrocytes (Aguado et al. 

2006). Since the emergence of the concept of the tripartite synapse, several groups have 

shown that the paracrine signaling of endocannabinoids form the crucial bridge between 

brain cells (Araque et al. 1999) (Navarrete et al. 2014). Endocannabinoid-mediated 

bidirectional communication between astrocytes and neurons (Navarrete and Araque 

2008), has been demonstrated to significantly impact synaptic plasticity (Navarrete and 

Araque 2010) and memory formation (Han et al. 2012), further underpinning the 

importance of the astroglial endocannabinoid system in regulating physiological functions 

that were earlier believed to be exclusively neuronal. In addition to astroglial signaling, 

glial cells are known to have immunomodulatory roles in the brain (Bélanger and 

Magistretti 2009). Activation of the astroglial CB1R has been demonstrated to promote an 

anti-inflammatory state by elevating anti-inflammatory cytokines, and simultaneously 

lowering the levels of pro-inflammatory cytokines (Molina-Holgado et al. 2003) (Sheng et 

al. 2005a) (Nagarkatti et al. 2009). Also, one study has highlighted the role of astroglial 

CB2R, along with CB1R, in mediating the anti-inflammatory effects of cannabinoids 

(Molina-Holgado et al. 2002a). Further, cannabinoids have been demonstrated to have anti-

oxidant effects as well (Lipina and Hundal 2016). Activation of astroglial CB1R protects 

astrocytes against insults which induce apoptosis via an elevation in free radicals (Gómez 

Del Pulgar et al. 2002) (Carracedo et al. 2004).  
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iv) Endocannabinoid system and pathological conditions  

a) Neurological impairment 

 Cannabinoid-based therapies have shown tremendous potential, at both pre-clinical 

and clinical stages, for several neurological impairments (Giacoppo et al. 2014). In vitro 

and in vivo studies in animal models of neurological and neurodevelopmental diseases, 

along with human data, helped to greatly expand our understanding of the endocannabinoid 

system’s role in brain disorders (Scotter et al. 2010). Several of these disorders are 

characterized by an alteration of the levels of various components of the endocannabinoid 

system (Di Marzo 2008). Neurological and neurodegenerative disorders are often 

characterized by an impairment in long and short term synaptic plasticity and/or 

excitotoxicity resulting in neuronal cell death (Parpura et al. 2012). Elevation in the levels 

of glutamate has been observed in disorders such as ischemia and epilepsy (Stobart and 

Anderson 2013). The ability of CB1R to offer considerable protection against excitotoxic 

lesions, has been a compelling reason to view CB1R agonists as a bona fide therapeutic 

option for neurological and neurodegenerative disorders (Bisogno and Di Marzo 2007) 

(Scotter et al. 2010). CB1R agonists have been demonstrated to have immense therapeutic 

utility in numerous neurological conditions that are characterized with excitotoxic neuronal 

damage, such as Huntington’s disease and epilepsy (Chiarlone et al. 2014) (Alger 2004). 

While the activation of neuronal CB1R corrects for synaptic errors (Katona and Freund 

2008) (Alger 2014), glial CB1R activation leads to neutralization of free radicals and pro-

inflammatory cytokines (Nagarkatti et al. 2009). Both of them essentially work to 

reestablish homeostasis in the brain. Persistent pro-oxidant and pro-inflammatory states 

can be a major factor in the development of debilitating brain disorders (Baker et al. 2009), 
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in addition to exacerbation of symptoms of neurodegeneration. Targeting the 

endocannabinoid system in neurological disorders may well be a judicious therapeutic 

strategy, since cannabinoids have demonstrated  great therapeutic efficacy in clinical trials 

for several neurological impairments such as neuropathic pain and multiple sclerosis 

(Nagarkatti et al. 2009) (Pertwee 2002). Impairment of the endocannabinoid system has 

also been observed in neurodegenerative disorders, such as Parkinson’s disease, that are 

characterized by an imbalance in excitatory and inhibitory neurotransmitter levels (More 

and Choi 2015) (Di Marzo 2008).  

b) Neurodevelopmental disorders  

The endocannabinoid system plays a fundamental role in the development and 

maturation of the nervous system during pre- and postnatal stages (Basavarajappa et al. 

2009). In addition, the high density of CB1Rs in brain regions that regulate movement, 

memory, executive decisions and emotions is strongly indicative of their involvement in 

the progression of multiple neurodevelopmental disorders (Strohbeck-Kuehner et al. 

2008). Modulation of the endocannabinoid system has been investigated for 

neurodevelopmental disorders such as Fragile X syndrome, autism and ADHD (Busquets-

Garcia et al. 2013) (Chakrabarti et al. 2015) (Strohbeck-Kuehner et al. 2008). Depending 

on the pathological conditions, CB1R agonism can bring about beneficial or deleterious 

effects. CB1R-mediated enhanced suppression of GABA release is described as playing a 

vital role in the pathogenesis of Fragile X syndrome (Zhang and Alger 2010). This finding 

suggests that hyperactivation of the CB1R may well be contributing to the etiology of 

Fragile X syndrome. Dysfunctional FAAH enzyme activity was reported in peripheral 

lymphocytes of ADHD individuals (Centonze et al. 2009). In a rat model of ADHD, 
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hypoactivation of CB1Rs in the prefrontal cortex was observed (Adriani et al. 2003). 

Administration of cannabinoids resulted in improvement of symptoms associated with 

ADHD in that rat model (Adriani et al. 2003), indicative of a potential beneficial effect of 

CB1R agonism. Since several neurodevelopmental disorders are characterized by 

neuroinflammatory and pro-oxidant states, the strategy of leveraging the anti-inflammatory 

potential of the cannabinoid receptors to reestablish homeostasis of the neuronal milieu, 

may be an attractive strategy for treating these disorders (Wu et al. 2012) (Stolp 2013) (El-

Ansary and Al-Ayadhi 2012) 

c) Hypertension  

Hypotensive effects of cannabinoids were known well before the identification of the 

endocannabinoid system. Studies in the 1970’s assessed the impact of long-term effects of 

cannabinoids on cardiovascular parameters (Pacher et al. 2005a). Prolonged use, either 

marijuana inhalation, or delta-9-tetrahydrocannabinol (THC) consumption, resulted in a 

significant fall in heart rate and blood pressure (Benowitz and Jones 1975) (Rosenkrantz 

and Braude 1974). THC was demonstrated to have a potent hypotensive effect in 

hypertensive individuals when compared to normotensive individuals (Crawford and 

Merritt 1979). Evidence of central sympathoinhibition in response to cannabinoids, was 

also demonstrated (Vollmer et al. 1974) (Pacher et al. 2005a). But the complex 

cardioregulatory mechanisms of cannabinoids began to unravel, only after the investigation 

of the cannabinoid receptors in hypertensive animal models. By using SHRs and other rat 

models of hypertension, several studies in the late 1990’s were able to elucidate the 

mechanisms by which cannabinoids regulate blood pressure. Cannabinoids were 

demonstrated to normalize blood pressure elevation by both central and peripheral 
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mechanisms (Mendizábal and Adler-Graschinsky 2007) (Malinowska et al. 2012). 

Centrally, administration of cannabinoids into the NTS resulted in sympathoinhibition via 

dampening of GABAergic neurons. This neuromodulatory effect of CB1R results in an 

improved baroreflex sensitivity (Seagard et al. 2004). In the periphery, enhancement of 

basal endocannabinoid tone resulted in improving cardiovascular  parameters, such as heart 

rate and vascular resistance, of SHRs and other models of hypertension (Bátkai et al. 2004). 

Interestingly, while the myocardial and endothelial CB1R was elevated in SHRs, leading 

to enhancement of the peripheral endocannabinoid tone (Bátkai et al. 2004), reduced 

density of CB1R and consequently, a dampened endocannabinoid tone was identified in 

the CNS (Brozoski et al. 2009). Cannabinoid administration resulted in a marked reduction 

of blood pressure in SHRs, but not in WKY. Considering that the CB1R expression has 

been lowered in NTS of SHR, this effect may well be mostly mediated via peripheral 

CB1R. Although a possible involvement of the peripheral transient receptor potential 

cation channel subfamily V member 1 (TrpV1) channels cannot be disregarded (Li et al. 

2003). Endocannabinoid hyperactivity in the periphery could be an adaptive or a 

compensatory mechanism in response to an elevation in blood pressure in established 

hypertension. In that case, hypofunctional endocannabinoid system in the NTS leading to 

an elevated sympathetic activity in SHRs (Brozoski et al. 2009), may be a crucial causative 

mechanism in the development of hypertension. This is a plausible theory since 

sympathetic hyperactivity is theorized to be one of the earliest cardioregulatory 

modifications in the etiology of hypertension (Anderson et al. 1989).  
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d) Positive and negative cardiovascular outcomes of endocannabinoid system activation  

While favorable results were observed with CB1R agonists, several unanswered 

questions remain. As most of the studies employed an established hypertensive model, the 

claim that endocannabinoid dysfunction triggers hypertension, can neither be confirmed or 

denied, at the present moment. It should also be noted that some studies have reported 

sympathoexcitatory effects of endocannabinoid system activation (Niederhoffer and Szabo 

2000) (Padley et al. 2003). This apparent discrepancy in results may be attributed to one 

of many reasons. The data generated from employing normotensive models (Padley et al. 

2003); or monogenetic models of hypertension, as opposed to a polygenetic hypertension 

model (Schaich et al. 2014), may not be representative of a potential deleterious or 

beneficial role in hypertension. Other reasons such as inter-species variability 

(Niederhoffer and Szabo 2000); and the site of drug administration, RVLM or NTS (Padley 

et al. 2003), may also be a factor. However, there is evidence to support the therapeutic 

utility of CB1R antagonists, as CB1R agonism was demonstrated to worsen the symptoms 

of endothelial dysfunction and hepatic cirrhosis (Cooper and Regnell 2014) (Tiyerili et al. 

2010). Although Rimonabant, the CB1R antagonist, has been demonstrated to have 

beneficial outcomes in obesity and metabolic syndrome (Pi-Sunyer et al. 2006), several 

psychiatric problems have also been reported (Mendizábal and Adler-Graschinsky 2007). 

Association of neurological complications with Rimonabant treatment, is a major 

impediment for the use of CB1R antagonists as a therapeutic strategy (Topol et al. 2010) 

(Boekholdt and Peters 2010). However, no differences in blood pressure was noted when 

Rimonabant treated groups were compared with the control groups over a period of 2 years 

(Pi-Sunyer et al. 2006). Evidence of beneficial effects of endocannabinoid activation in 
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cardiovascular diseases have also been reported. In a recent analysis of NHANES data, a 

lower incidence of metabolic syndrome, in individuals with marijuana use, was reported 

(Vidot et al. 2016). Additionally, due to the neuroprotective effects of cannabinoids, such 

as normalization of aberrant neuronal firing and an elevation in antioxidant defense 

mechanisms, CB1R agonism is theorized to be a viable therapeutic strategy for ischemic 

conditions such as stroke and also myocardial reperfusion injury (Mendizábal and Adler-

Graschinsky 2007) (Hillard 2008).  

e) CB1R dysregulation  

It is evident that the endocannabinoid system has a major role in the etiology of 

neurological and cardiovascular disorders. Identification of a strong correlation between 

the severity of pathological conditions, and an elevated level of circulating 

endocannabinoids, has led to several research groups investigating the potential utility of 

endocannabinoids as potential biomarkers (Hillard et al. 2012) (Pacher and Kunos 2013) 

(Matias et al. 2012). In addition to endocannabinoids, alterations in CB1R expression and 

its homeostatic functionality has also been identified in pathological states (Miller and Devi 

2011) (Chen 2015). A loss of endocannabinoid protective function, often manifests as a 

reduction in endocannabinoid levels or receptor expression (Miller and Devi 2011). Since 

the CB1R plays an integral role in the regulation of homeostasis in the brain, several 

neurological conditions have been characterized with a downregulation of CB1R, and 

consequentially, a loss of protective functions (Horne et al. 2013). For some pathological 

conditions, an upregulation of CB1R is observed, where its activation has been 

demonstrated to improve (Pertwee 2009a) as well as worsen (Teixeira-Clerc et al. 2006) 

symptoms. Also, depending on the stage of the pathogenesis, endocannabinoid system 
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activation can oppose, as well as contribute to pathological conditions (Di Marzo 2008). 

Factors that drive chronic pathological conditions can also alter CB1R expression or 

function via several multiple mechanisms, such as transcriptional regulation and receptor 

crosstalk (Miller and Devi 2011).  

v) Alternative strategy to target endocannabinoid system 

Both cannabinoid agonists as well as antagonists have been associated with severe 

adverse effects, the latter especially led to a heightened suicidal risk (Topol et al. 2010). 

The use of indirect drugs that can enhance one’s own endocannabinoid system, by 

inhibiting enzymes that degrade endocannabinoids, was suggested as an alternative 

therapeutic strategy (McPartland et al. 2014) (Di Marzo 2008). However, this strategy is 

also not devoid of life threatening adverse effects. A recently held clinical trial that 

employed this strategy to test the safety profile of a FAAH inhibitor, resulted in lethal 

adverse effects, with one patient reported to be brain dead from neurological complications 

associated with the use of the highest dose (Kerbrat et al. 2016). Also suggested is the 

strategy of multi-drug therapy, which is to employ a low dose partial CB1R agonist as an 

adjunct therapy (Pertwee 2009a). Since the CB1R has a high tendency to crosstalk with 

several different GPCRs, the ability of this receptor to synergize or antagonize the effects 

of other GPCRs could be employed to maximize the beneficial effects, and possible blunt 

the adverse effects associated with cannabinoid drugs. 

2.6 Crosstalk between RAS and endocannabinoid system: emphasis on AT1Rs and 

CB1Rs 

i) Crosstalk mechanisms  
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The concept of paracrine transactivation of pre-synaptic CB1R by postsynaptic Gq 

GPCRs, was leveraged by the Hunyady group to investigate the crosstalk mechanisms 

between the AT1R, a Gq GPCR, and CB1Rs on non-neuronal cells. In chinese hamster 

ovary (CHO) and other commercial cell lines, the CB1R was demonstrated to be 

transactivated, both in an autocrine and paracrine fashion, by Ang II via the AT1R-DAGL 

axis (Turu et al. 2007) (Turu et al. 2009). The physiological consequences of AT1R to 

CB1R transactivation was evaluated by employing one of the AT1R’s fundamental 

functions, Ang II-mediated vasoconstriction. The CB1R has opposing roles to AT1R in the 

vasculature. It was observed that Ang II-mediated vasoconstriction was partially dampened 

by a simultaneous transactivation of CB1R. By employing a CB1R antagonist, they 

observed an augmentation of AT1R-mediated vasoconstriction by Ang II (Szekeres et al. 

2012), which demonstrated that the CB1R have a restraining role over AT1R functions. In 

the brain, there is evidence of CB1R involvement in AT1R-mediated elevation in blood 

pressure. An increase in mean arterial pressure from the administration of Ang II into PVN 

of WKY was blunted by simultaneous infusion of the CB1R inverse agonist, AM251 

(Gyombolai et al. 2012). This however is indicative of a potentiation of AT1R-mediated 

effects by CB1R in the CNS. The interaction is not limited to a transactivation of the 

receptors. Heterodimers of the AT1R and CB1R have also been identified, and the 

downstream significance was investigated in a neuroblastoma cell line and in hepatic cells 

(Rozenfeld et al. 2011). Co-treatment of Ang II with CB1R agonist, HU-210, led to an 

increase in AT1R-mediated activation of ERK in a neuroblastoma cell line, suggestive of 

possible synergism between the two receptors. Further, there was a potentiation of AT1R-

mediated pro-fibrogenic activity in hepatic cells by CB1R activation (Rozenfeld et al. 



54 

 

2011). The CB1R antagonist, Rimonabant, was demonstrated to improve symptoms of 

endothelial dysfunction, and it also downregulated AT1Rs in the vasculature (Tiyerili et 

al. 2010). It is evident that CB1R activation could both potentiate, as well as neutralize 

AT1R-mediated effects. The type of crosstalk and the consequence of it, is cell-type 

specific. Variations in receptor expression, level of basal endocannabinoid tone, and the 

downstream consequence of receptor activation, could well be crucial determinants of the 

type and nature of the crosstalk.  

ii) Contrasting roles of astroglial AT1Rs and CB1Rs 

 AT1Rs and CB1Rs have opposing roles in regulating astroglial functions. AT1R 

activation is associated with astroglial senescence (Liu et al. 2011a), an increase in factors 

that promote neuronal damage (Min et al. 2011), and its activation also worsens the 

outcome of cardiovascular diseases (Isegawa et al. 2014a) (Fig 2.5A). CB1R activation on 

the other hand is described as having an ‘astroprotective’ role (Gómez Del Pulgar et al. 

2002), whereby its activation results in a secretion of factors that are capable of inducing 

neuroprotection in neurodegenerative disorders and cardiovascular diseases such as stroke 

(Aguirre-Rueda et al. 2015) (Hillard 2008) (Fig 2.5B). While AT1R activation leads to an 

increase in pro-oxidant and pro-inflammatory states (Rodríguez et al. 2016), CB1R 

activation is associated with an elevation in anti-oxidant and anti-inflammatory states 

(Molina-Holgado et al. 2003) (Gómez Del Pulgar et al. 2002). Possible mechanisms by 

which CB1R activation can negate AT1R mediated deleterious effects, are shown in Fig 

2.6.  
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Fig 2.5A: AT1R-mediated deleterious effects 
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Fig 2.5B: CB1R-mediated protective effects 
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Fig 2.6: Potential mechanisms of CB1R-mediated neutralization of deleterious effects 

of AT1R: Ang II via astroglial AT1R activation results in an elevation of pro-inflammatory 
cytokines and ROS, that can generate greater GABAergic input to the NTS, leading to the 
disinhibition of RVLM neurons. This ultimately results in sympathoexcitation, as the 
restraining influence is diminsihed. Astroglial CB1R activation can lead to neutralization 
of Ang II-mediated elevation in pro-inflammatory cytokines and ROS. Also, presynaptic 
CB1R activation results in inhibition of GABAergic input, resulting in a greater baroreflex 
sensitivity. 

iii) Conclusion  

While several groups have demonstrated multiple modes of crosstalk between the 

AT1R and CB1R, with conflicting results, the ability of the CB1R to alter AT1R-mediated 

effects has not been investigated in hypertensive rats. Recently, CB1R antagonism was 

demonstrated to normalize sympathetic activity in a monogenic model of hypertension, 

characterized by an overactive RAS (Schaich et al. 2014). However, to our knowledge no 

such study exists in SHRs. Pathological conditions can also significantly alter the levels of 

the CB1R (Miller and Devi 2011). Factors that are responsible for the progression of the 

disease, are usually the key regulators of CB1R dysregulation and dysfunction in 
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pathological conditions. As mentioned earlier, CB1R dysregulation in the form of either a 

reduction in receptor density or hyofunctionality, or both have been reported in 

pathological conditions such as hypertension and ADHD (Brozoski et al. 2009) (Adriani 

et al. 2003). However, the role of Ang II in regulating CB1R expression has not been well 

investigated. In the same vein, CB1R-mediated alterations in AT1R functions, has also not 

been well investigated in SHRs. Since the CB1R and the AT1R have been demonstrated to 

crosstalk at several different levels, it is important to determine the consequences of their 

crosstalk in brain cells such as astrocytes.  

2.7 Rationale and Specific Aims 

i) Research in our laboratory  

Astrocytes serve to regulate several functions in the brain, and their roles in 

neurodevelopmental and cardiovascular disorders have come to the fore only in the recent 

past (Sofroniew and Vinters 2010) (Marina et al. 2016). Understanding the molecular 

aspects of astroglial functions, that result in an altered neuronal activity, such as an 

augmentation of ATP-mediated purinergic signaling, or triggering an upsurge in pro-

inflammatory and pro-oxidant states, are crucial to gain a better understanding of 

cardiovascular and neurological disorders (Marina et al. 2016). Ongoing research in our 

laboratory is geared towards unraveling the role of astroglial RAS in the development of 

hypertension, and to a lesser extent the development of neurodevelopmental disorders such 

as ADHD. While several studies have investigated the pro-inflammatory and pro-oxidant 

effects of Ang II on astrocytes (Winklewski et al. 2015), either from commercial sources 

or from normotensive rats, our laboratory has investigated Ang II effects in cerebellar and 

brainstem astrocytes from a well-established model of hypertension and ADHD, the SHR. 
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In addition to ROS and neuroinflammatory cytokines, other pro- and anti-hypertensive 

markers, were also investigated (Gowrisankar and Clark 2016a) (Gowrisankar and Clark 

2016b). With few exceptions, Ang II treatment resulted in an augmentation of pro-

hypertensive markers, and a reduction of anti-hypertensive markers investigated 

(Gowrisankar and Clark 2016a) (Gowrisankar and Clark 2016b). In most cases, the effects 

of Ang II was found to be greater in SHRs when compared to Wistar rats. 

ii) Rationale for investigating crosstalk between AT1Rs and CB1Rs  

Independent groups have demonstrated the ability of Ang II to downregulate 

Peroxisome proliferator-activated receptor gamma, in the periphery, and the anti-

inflammatory cytokine IL-10, in the brain (Tham et al. 2002a) (Shi et al. 2010a). Whether 

Ang II could alter other modulatory systems that have potent anti-inflammatory effects in 

the brain, is an area of research that has not been investigated. Strong evidence of protective 

effects in the brain by endocannabinoid system activation, in the form of its 

neuromodulatory and immunomodulatory effects, has been reported under pathological 

conditions (Nagarkatti et al. 2009) (Katona and Freund 2008). Whether CB1R activation 

leads to a neutralization of the deleterious effects that are associated with AT1R activation, 

has not been well investigated in brain cells. In the periphery however, evidence of both an 

elevation and also a reduction in Ang II’s effects, by CB1R activation, has been reported 

(Rozenfeld et al. 2011) (Szekeres et al. 2012).  

 

 

iii) Hypothesis and specific aims  
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While several studies have investigated the functional relevance of activating or 

antagonizing the two aforementioned systems in astrocytes, there are very few studies 

investigating the molecular aspects of these two systems in these cells. Understanding their 

roles in the regulation of neuroinflammatory cytokines or in the activation of key signal 

transduction pathways, prior to the development of hypertension, is essential as it may lead 

to the identification of novel and superior therapeutic targets for treating pathological 

conditions. In addition, the role of astroglial CB1R in cardiovascular and 

neurodevelopmental disorders has not been investigated, in spite of the relevance of the 

endocannabinoid system to sympathetic nervous system activity and brain development. 

We hypothesize that a dysregulation of CB1R functions in SHR astrocytes, alters its ability 

to modulate Ang II-mediated effects. Here we aim to not only understand the consequences 

of activation of these systems on key astroglial functions, but also delineate the crosstalk 

mechanisms that may exist between the two key receptors, AT1Rs and CB1Rs. Astrocytes 

were isolated from the brainstems of SHRs since the brainstem has been implicated to play 

a key role in the integration and processing of sympathoexcitatory/sympathoinhibitory 

signals from peripheral baroreceptors and the hypothalamus. Cerebellar astroglial 

impairments have been documented in SHRs. As cerebellar impairments are characteristic 

of ADHD, cerebellar astrocytes from SHRs were also employed. The specific aims of this 

study are as follows, 

Specific Aim 1: Determine whether Ang II alters CB1R expression in astrocytes isolated 

from SHRs and Wistar rats  

Rationale: CB1R expression serves as a crucial indicator of endocannabinoid 

hypo/hyperfunctionality in pathological conditions. Instances of an alteration of CB1R 
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expression levels in pathological conditions, have been ascribed to factors or mediators 

that often are involved in the progression of the disorder (Miller and Devi 2011). 

Investigating the basal CB1R expression in both rat models, and investigating the effect 

that Ang II has on CB1R expression, was the purpose of this aim. Potential mechanisms 

by which Ang II can alter CB1R expression, are shown in Fig 2.7.     

 

Fig 2.7: Potential mediators of Ang II mediated changes in CB1R expression: MAPKs 
and AKT signaling pathways have been demonstrated to regulate the transcription of CB1R 
(Miller and Devi 2011). Also CB1R activation has been demonstrated to result in an 
elevation of CB1R transcription (autoinduction) (Laprairie et al. 2013). Since Ang II via 
the AT1R has been demonstrated to activate a diverse array of signal transduction 
pathways, and it also transactivates the CB1R, it is functionally capable of regulating CB1R 
transcription.               

Specific Aim 2: a) Determine the consequences of RAS and endocannabinoid system 

activation, both alone and in combination, on MAPK signaling pathways in astrocytes 

AKT- Protein kinase B 
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isolated from SHRs and Wistar rats. b) Determine the effects of Ang II on triggering 

phosphorylation of CB1Rs in astrocytes isolated from SHRs and Wistar rats. 

Rationale: a) Activation of the RAS and the endocannabinoid system leads to the activation 

of MAPKs, such as ERK and p38, which serve as critical cellular switches for long term 

alterations in cellular activity, by regulating transcription and translation (Clark et al. 2008) 

(Turu and Hunyady 2010). These pathways are often of immense physiological and 

pathological relevance. Although crosstalk between the two receptors, the AT1R and the 

CB1R has been reported by us and several other groups, the consequences of this 

interaction at the level of MAPK activation, in primary cells, has not been investigated. b) 

Activation of protein kinase C (PKC) has been demonstrated to inactivate CB1R by a 

phosphorylation mechanism (Garcia et al. 1998). The mechanism of Ang II-induced 

phosphorylation of CB1R is showed in Fig 2.8. Since the AT1R-PKC axis is the dominant 

mechanism by which Ang II is able to elicit its deleterious effects, we investigated the 

ability of Ang II to phosphorylate CB1R in astrocytes isolated from both models.   
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Fig 2.8: Mechanism of Ang II induced phosphorylation of CB1R: We propose that a 
potential candidate mechanism of unidirectional crosstalk may exist from AT1R to CB1R, 
which may disrupt the actions of CB1R activation in astrocytes. Activation of PKC was 
demonstrated to disrupt the neuromodulatory effects of CB1R (Garcia et al. 1998). It was 
demonstrated that PKC phosphorylates residues in the third intracellular loop leading to 
desensitization of the receptor (Garcia et al. 1998). Gq GPCRs, such as the AT1R, are 
capable of activating PKC via PLC. Hence Ang II is functionally capable of inactivating 
CB1R. 

Specific Aim 3: Determine the consequences of RAS and endocannabinoid system 

activation, both alone and in combination, on inflammatory cytokines in astrocytes isolated 

from SHRs and Wistar rats. 

Rationale: While it is evident that activation of glial RAS and endocannabinoid system 

may have opposing roles in the regulation of neuroinflammatory cytokines, whether an 

interplay between the two systems at the levels of pro- and anti-inflammatory cytokines 
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exists, has not been investigated. Interestingly, the consequences of astroglial CB1R 

activation on regulation of neuroinflammatory states, in cardiovascular or 

neurodevelopmental disorders, have also not been investigated. Since dampening of pro-

inflammatory states, and elevation of anti-inflammatory states is an integral part of CB1R-

mediated neuroprotection (Molina-Holgado et al. 2002b) (Molina-Holgado et al. 2003), 

we investigated the effect of CB1R agonist on both IL-1β and IL-10, in the presence and 

absence of Ang II. 

Overall, the findings from this study will reveal new insights on the role of the astroglial 

endocannabinoid system in the etiology of cardiovascular and neurodevelopmental 

disorders. By investigating variations in CB1R functionality and expression, under baseline 

conditions as well as a function of AT1R crosstalk, would lay the foundation for the 

identification of novel, yet viable therapeutic targets for the aforementioned disorders.  
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Chapter 3 
 

Heterologous Regulation of the Cannabinoid Type 1 Receptor by Angiotensin II in 

Astrocytes of Spontaneously Hypertensive Rats 

(See Appendix 4 for license agreement) 

 

Abstract 

Brainstem and cerebellar astrocytes have critical roles to play in hypertension and 

ADHD, respectively. Ang II, via the astroglial AT1R, has been demonstrated to elevate 

pro-inflammatory mediators in the brainstem and the cerebellum. The activation of 

astroglial CB1R, a master regulator of homeostasis, has been shown to neutralize 

inflammatory states. Factors that drive disease physiology, are known to alter the 

expression of CB1Rs. In the current study, we investigated the role of Ang II in regulating 

CB1R protein and mRNA expression in astrocytes isolated from the brainstem and the 

cerebellum of SHRs. The results were then compared with the normotensive counterpart, 

Wistar rats. Not only was the basal expression of CB1R protein and mRNA significantly 

lower in SHR brainstem astrocytes, but treatment with Ang II resulted in lowering it further 

in the initial 12 hours. In the case of cerebellum, Ang II upregulated the CB1R protein and 

mRNA in SHR astrocytes. While the effect of Ang II on CB1R protein was predominantly 

mediated via the AT1R in SHR brainstem; both AT1R and AT2R mediated Ang II’s effect 

in the SHR cerebellum. This data is strongly indicative of a potential new mode of cross 

talk between components of the RAS and the endocannabinoid system in astrocytes. The 
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consequence of such a crosstalk could be a potential reduced endocannabinoid tone in 

brainstem in hypertensive states, but not in the cerebellum under the same conditions.  

3.1 Introduction 

Since the seminal work in the late 1980’s, which first provided evidence of 

cannabinoid receptors in the brain (Devane et al. 1988), several other noteworthy findings 

soon followed which confirmed their existence (Herkenham et al. 1991) (Matsuda et al. 

1990). Subsequently, the endogenous ligands for the receptors, anandamide and 2-AG, and 

their metabolizing enzymes were also discovered (Devane et al. 1992) (Sugiura et al. 1995) 

(Pacher et al. 2006). The consequence was the unearthing of an ancient, yet highly 

important, physiological system which we now know as the endocannabinoid system. 

Understanding the complexities of the endocannabinoid system has not only paved the way 

for the identification of novel therapeutic targets, but it has also significantly aided in 

furthering our understanding of brain physiology. The CB1R is one of the most abundant 

G protein-coupled receptors in the brain, and the CB2R is mostly expressed on immune 

cells in the periphery (Munro et al. 1993). While the functionality of the endocannabinoid 

system has been extensively studied in neuronal cells, several studies have highlighted their 

role in regulating glial cell functions as well (Stella 2004) (Massi et al. 2008). Astrocytes 

isolated from both mice and rats not only express the CB1R, but also generate 

endocannabinoids (Walter et al. 2002). The endocannabinoid system is involved in 

regulating several functions of astrocytes such as energy balance (Bosier et al. 2013), 

neuron-astrocyte communication (Navarrete and Araque 2008), and modulation of 

inflammatory conditions (Molina-Holgado et al. 2002a) (Sheng et al. 2005a). As high 

levels of calcium also act as one of the triggers to generate endocannabinoids (Freund et 
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al. 2003), this system is well placed to re-establish equilibrium in conditions where 

homeostatic processes have gone awry.  

It is appreciated that neuronal CB1Rs and glial CB1Rs have diverse roles.  The 

neuronal CB1R is activated in response to excessive neurotransmitter release, while the 

glial CB1R serves an important immunomodulatory role. The ability of the CB1R to serve 

both neuromodulatory and neuroprotective functions, lends itself to be an attractive target 

for research of several neurological impairments (Pacher et al. 2006).  Its upregulation in 

pathological conditions has a protective (Lim et al. 2003), as well as a detrimental effect 

(Teixeira-Clerc et al. 2006). Hence it is imperative to not only identify the pathological 

conditions where CB1R is dysregulated, but to also understand the causes for it. Factors 

that play a key role in mediating disease conditions are the most likely candidates for 

regulating CB1R expression levels (Jean-Gilles et al. 2015) (Miller and Devi 2011). 

Several signaling pathways, such as ERK (Chiang et al. 2013), protein kinase b (AKT) 

(Laprairie et al. 2013), and STAT5 (Börner et al. 2007) have been proposed to play key 

roles in the transcriptional regulation of the CB1R. Cannabinoids have also been 

demonstrated to have a role to play in CB1R regulation (Laprairie et al. 2013) (Miller and 

Devi 2011).  

A dysregulated brain RAS is one of the hallmarks of essential hypertension 

(Veerasingham and Raizada 2003). The RAS comprises of the effector peptide Ang II, its 

cognate receptors Ang type 1 and type 2 receptors (AT1R and AT2R, respectively), and 

the enzymes involved in Ang II synthesis and degradation. The SHR, one of the most 

widely used genetic models of essential hypertension, is characterized by an overactive 

brain RAS (Veerasingham and Raizada 2003). The notion that chronic inflammation in the 
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brainstem contributes to an augmented sympathetic drive has received attention only in the 

last decade (Shi et al. 2010b). Our lab has previously reported the presence of functional 

astroglial AT1Rs in the brainstem and cerebellum of normotensive rats (Kandalam and 

Clark 2010) (Clark et al. 2013) (Clark et al. 2008). Ang II via the AT1R can activate several 

signaling pathways that are critical to several astrocyte functions such as regulation of 

inflammation (Kandalam and Clark 2010) and proliferation (Clark et al. 2008). The pro-

inflammatory effects of the AT1R are not restricted to the brainstem and hypothalamus, 

but several other regions of the brain are also susceptible to its deleterious effects. In the 

cerebellum, the AT1R has been demonstrated to oppose the beneficial effect of AT2R 

activation (Côté et al. 1999). Ang II is able to induce neuronal damage via activation of 

astroglial AT1R by increasing levels of pro-inflammatory cytokines (Lanz et al. 2010), or 

ROS (Liu et al. 2011a), the latter associated with astrocyte senescence.  

Considering the role of the RAS in perpetuating neuroinflammatory states, several 

studies have emphasized the positive effects of Ang receptor blockers (ARBs) in 

neurological and neurodegenerative disorders (Wolozin et al. 2008) (Mogi and Horiuchi 

2009). The SHR has also been employed to study ADHD as several distinct behavioral 

traits of this disorder, such as impulsivity, are exhibited by this animal model (Adriani et 

al. 2003). Recent studies highlight the importance of research in cerebellum to further our 

understanding of the pathophysiology of ADHD (Goetz et al. 2014a). Not only was a 

reduced cerebellar volume reported in children diagnosed with ADHD (Castellanos et al. 

1996b), but an increase in an astrocytic marker was also observed in the cerebellum of 

SHRs (Yun et al. 2014). As there is a dearth of information available on the brainstem and 

cerebellum astroglial CB1R and its potential regulators, this study becomes vital.  
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Inflammatory cytokines have been demonstrated to induce CB1R expression (Jean-

Gilles et al. 2015). An increase in the levels of pro-inflammatory mediators are observed 

in the brainstem of SHRs (Waki et al. 2008a). Not only can Ang II elevate pro-

inflammatory mediators, but it can also downregulate anti-inflammatory mechanisms that 

could help to perpetuate its inflammatory prowess in pathological conditions (Tham et al. 

2002a). Whether Ang II, a major driver of neuroinflammatory conditions, possesses the 

ability to alter a key neuroprotective regulator, CB1R, in hypertensive conditions is 

unknown. The ability of AT1Rs to generate endocannabinoids (Turu et al. 2009), to 

activate signaling pathways that play a role in CB1R transcriptional regulation and also to 

elevate pro-inflammatory cytokines, led us to postulate that Ang II can regulate CB1R 

expression in astrocytes.  In this study, we employed cerebellar and brainstem astroglial 

cells from SHRs and compared the results with its normotensive counterpart, the Wistar 

rats. We believe that the presence of a hypertensive background could significantly alter 

the effect that AT1R activation could have on neuroprotective regulators such as the CB1R. 

Hence, we not only investigated the changes in basal CB1R expression in brainstem and 

cerebellar astrocytes isolated from SHR and Wistar rats, but also investigated whether Ang 

II alters CB1R protein and mRNA levels in the aforementioned regions and rat models. 

The objectives of this study were three fold; firstly, to determine the basal expression of 

astroglial CB1R in hypertensive conditions and non-hypertensive conditions. Secondly, to 

investigate the effect of Ang II on CB1R expression under hypertensive and non-

hypertensive conditions. And lastly, to determine the receptor, either AT1R or AT2R or 

both, through which this Ang II effect is mediated.  
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3.2 Materials and methods 

i) Materials 

Ang II was obtained from Bachem (Torrance, CA). PD123319, the selective AT2R 

antagonist was obtained from Sigma (St. Louis, MO), and Losartan (AT1R antagonist) was 

kindly provided by Du Pont Merck (Wilmington, DE). Western blotting supplies were 

purchased from Bio-Rad Laboratories (Hercules, CA) or VWR International (Suwanee, 

GA). The CB1R antibody (209550) was purchased from Calbiochem (San Diego, CA), and 

the beta-actin antibody (A2066) was purchased from Sigma (St. Louis, MO). Anti-glial 

fibrillary acidic protein (GFAP) antibody [EP672Y] (ab33922) and Goat anti-Rabbit IgG 

H&L (Alexa Fluor® 488) (ab150077) were purchased from Abcam (Cambridge, MA). Rat 

cerebellum extract (sc-2398) was purchased from Santa Cruz Biotechnology (Dallas, 

Texas). The Bicinchoninic acid (BCA) protein kit was obtained from Pierce Biotechnology 

(Rockford, IL). Quantitative PCR (qPCR) products including the Taqman primer sets for 

CB1R (Rn02758689_s1), GFAP (Rn00566603_m1), Itgam (Rn00709342_m1), Pecam1 

(Rn01467262_m1), and beta-actin (Rn00667869_m1) were obtained from Applied 

Biosystems (Foster City, CA). All other chemicals were purchased from either VWR 

international (Suwannee, GA), Fisher Scientific (Waltham, MA) or Sigma (St. Louis, MO). 

ii) Isolation and culture of primary astrocytes 

Timed pregnant Wistar rats and SHRs were obtained from Charles River Laboratories 

(Wilmington, MA) and maintained in the ALAAC-accredited animal facility of Nova 

Southeastern University. All animal protocols were approved by the University 

Institutional Animal Care and Use committee and complied with the ethical treatment of 

animals as outlined in the NIH Guide for Animal Care and Use. The brainstem and 



71 

 

cerebellar astrocyte cultures were prepared using mechanical dissociation as previously 

described (Tallant and Higson 1997). 2-3 day old rat pups were sacrificed by CO2 

deprivation, followed by decapitation. Whole brains were then isolated from rat pups by 

cutting the skull open using micro dissecting scissors.  An incision was made at the 

occipital bone at the base of the skull. The skull was then split open by extending rostrally, 

along the midline fissure, and terminating at the frontal bone near the orbital cavity. The 

whole brains were then detached from the underlying cranial nerves, and removed from 

the skull using curved forceps. The brains were quickly immersed in media DMEM/F12 

culture media containing 10% FCS, 10,000 I.U/mL penicillin, 10,000 µg/mL streptomycin 

and 25 µg/mL amphotericin B. The procedure was repeated for the remainder of the rat 

pups. Individual brains were then placed longitudinally on a sterile gauze. Using sterile 

micro-dissecting forceps and scalpel blades, a section were made caudal to the cerebral 

hemispheres. The cerebral cortex was then separated from the cerebellum and the 

brainstem. A slant section was made rostral to the pons, in order to obtain the cerebellum. 

The remaining part of the brain is the brainstem. This procedure was repeated for all the 

rat pups. Cerebellums and brainstems from one litter of pups were then pooled separately, 

and were subjected to physical dissociation, in order to obtain a cell suspension. This 

suspension was then passed through two different sets of filters, 100 mm and 60 mm, to 

remove tissue debris, and to obtain a pure cell suspension. The cells were grown in 

DMEM/F12 culture media containing 10% FBS, 10,000 I.U/mL penicillin, 10,000 µg/mL 

streptomycin and 25 µg/mL amphotericin B at 37°C in a humidified incubator (5% CO2 

and 95% air). The cell cultures were fed every 3-4 days. On attaining confluency, the cells 

were subjected to vigorous shaking overnight which resulted in the detachment of 
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microglia and oligodendrocytes. Subsequently the cell cultures were detached with 

trypsin/EDTA (0.05% trypsin, 0.53mM EDTA) and replated at a ratio of 1:10. The 

astrocyte-enriched cultures were fed once every 3 days until they were about 90% 

confluent. Before all cell treatments, the cultures were made quiescent by treating with 

media, devoid of serum, for 48 hours. All subsequent treatments were conducted in serum 

free DMEM/F12 culture media containing 10,000 I.U/mL penicillin, 10,000 µg/mL 

streptomycin and 25 µg/mL amphotericin B. 

iii) Purity of astrocyte cultures  

The purity of the astrocyte cultures was assessed using qPCR, western blotting and 

flow cytometry. In order to detect the presence of astrocytes, microglia, and endothelial 

cells, we employed Taqman primers for GFAP (astrocytes), Itgam (microglia) and Pecam1 

(endothelial cells). For western blotting, we used a monoclonal antibody for GFAP at a 

concentration of 1: 1000. The steps are described in detail under the western blotting 

section. In order to test the percentage of astrocytes present in our culture, cells were 

analyzed using a BD C6 AccuriTMFlow cytometer (BD Bioscience, San Jose CA). Briefly, 

untreated cells were fixed with 2% formaldehyde followed by permeabilization using 0.1% 

triton in phosphate buffer saline (PBS). The reagents and the amounts employed for 

preparing PBS, are listed in the supplementary section (Appendix 3- Table 3S (C)). Cells 

were then probed with a monoclonal antibody for GFAP at a concentration of 1:150. Then 

they were treated with a secondary antibody conjugated with Alexa Fluor 488 at a 

concentration of 1:200.  A total of 10,000 events were analyzed.  
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iv) Cell treatments 

Astrocytes were treated with 100 nM Ang II for varying time periods ranging from 1 

hour to 48 hours. For CB1R protein estimation, the time periods were 1, 4, 8, 12, 16, 24 

and 48 hours. For CB1R mRNA estimation, the time periods were 4, 8, 12, 16 and 24 hours. 

For the inhibitor studies, the cells were pretreated with inhibitors for the AT1R (10 µM 

Losartan) and the AT2R (10 µM PD123319) for 30 mins before the addition of Ang II for 

varying times. The times for Ang II treatments for the inhibitor studies were chosen based 

on the earliest common point, where the difference observed with respect to its control, 

was statistically significant. For all experiments, cells that received no treatments were 

used as the control. 

v) Cell lysate preparation  

Immediately following treatments, cell lysates were prepared by washing cells with 

Tris buffered saline (TBS) followed by the addition of supplemented lysis buffer (100 mM 

NaCl, 50 mM NaF, 5 mM EDTA, 1% Triton X-100, 50 mM Tris-HCl, 0.01 mM NaVO4, 

0.1 mM PMSF and 0.6 μM leupeptin, pH 7.4). The reagents and the amounts employed for 

preparing TBS, are listed in the supplementary section (Appendix 3-Table 3S (A)). The 

supernatant was subjected to centrifugation (12,000xg for 10 min, 4°C) and the protein 

concentrations of the cell lysates were measured using the BCA method.  

vi) Total RNA extraction and mRNA expression 

Total RNA was extracted from astrocytes using the trizol method and subjected to a 

DNA cleaning step before determining the RNA concentrations using a Bio-Rad 

SmartSpecTM spectrophotometer (Bio-Rad Laboratories, Hercules, CA). Reverse 

transcription from total RNA (2µg) to complementary strand DNA was done using a high 
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capacity reverse transcription reagent kit (Applied Biosystems). qPCR was performed 

using the TaqMan Universal master mix, and the TaqMan gene expression primers 

(Applied Biosystems) for the CB1R gene (cnr1), GFAP, Itgam and Pecam1. Samples were 

analyzed in 96-well plates using the StepOneTMplus Real time PCR system from Applied 

Biosystems (Foster City, CA). The relative fold difference of Ang II treated samples 

over/under the control, was calculated for each target gene after normalization to levels of 

the housekeeping control gene, beta-actin. Data are expressed as fold change in gene of 

interest expression (Pecam or Itgam or CB1R) in treated/ untreated cells, as compared with 

the reference gene (GFAP or CB1R) in untreated cells.  

vii) Western blotting 

Volumes equivalent to 30µg of solubilized proteins were loaded into 10% 

polyacrylamide gels, and subsequently transferred to nitrocellulose membranes. The 

reagents and the amounts employed for preparing transfer buffer for western blotting, are 

listed in the supplementary section (Appendix 3-Table 3S (B)). The membranes were then 

blocked with 5% non-fat dry milk prepared in TBS containing 0.1% tween (TBS-T). The 

membranes were then subjected to 3 washes, 5 min each using TBS-T followed by 

incubation with an anti-CB1R rat polyclonal antibody or a GFAP monoclonal antibody at 

a concentration of 1:1000, prepared in TBS-T containing 5% milk, at 4°C overnight. The 

membranes were then subsequently washed and probed with an anti-rabbit secondary 

antibody for 1 hour at room temperature. After another round of washes, the bands were 

then visualized using ECL reagent (Pierce Biotechnology, Rockford, IL) and quantified 

using the Image J software (National Institute of Health (NIH), Bethesda, MS, USA). The 
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membranes were then stripped and reprobed with a beta-actin antibody at a concentration 

of 1:5000. The CB1R or GFAP bands were then normalized to beta-actin.  

viii) Statistical analysis 

A 2x2 mixed ANOVA was employed to determine if there were any significant 

differences in the basal values between SHRs and Wistar rats. This was followed by a 

Bonferoni T test to determine differences between groups. A two-way ANOVA was 

employed for testing the effect of Ang II on CB1R in SHRs as compared to Wistar rats. A 

Bonferoni T test was employed to determine significant differences between treatments 

and the respective control in different strains. In order to make comparisons between 

identical time points from different rat models, a student t test was employed. All data is 

expressed as mean± SEM for 7 or more experiments. 

3.3 Results 

i) Determination of the purity of the cell culture 

In order to test the purity of our cultures, we employed qPCR and flow cytometry. 

qPCR results revealed a high level of mRNA for GFAP, which is the astrocytic marker, 

while negligible levels of mRNA transcripts were detected for Itgam and Pecam1, which 

are markers for microglia and endothelial cells, respectively (Fig. 3.1A). Western blotting 

revealed higher levels of GFAP in astrocytes and negligible levels were detected in aortic 

vascular smooth muscle cells (VSMC) which were employed as a negative control (Fig. 

3.1B). The percentage of cells that were positive for the astrocyte marker, GFAP, was 

determined using flow cytometry. The proportion was estimated to be between 85-90% as 

indicated by the peak (Fig. 3.1C). 
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Fig 3.1A: A comparison of mRNA levels for markers of astrocytes, endothelial cells 

and microglia in our cell culture:  A comparison of mRNA levels for GFAP, Itgam and 
Pecam1 was made by employing qPCR. The data is represented as arbitrary units that were 
obtained when the cycle threshold (Ct) values for the markers were normalized to the Ct 
values of beta-actin using the 2-∆∆C

T method (Livak and Schmittgen 2001). Each value 
represents the mean ± SEM of preparations of astrocytes isolated from at least 4 litters of 
neonatal rat pups. 
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Fig 3.1B: A comparison of GFAP protein levels between astrocytes and VSMCs:  A 
comparison of GFAP levels in cerebellar astrocytes and VSMCs was made by employing 
western blotting.  Cell lysates from cerebellar astrocytes were loaded in lanes 1 and 2, and 
VSMC lysates were loaded in lanes 3 and 4. Each value represents the mean ± SEM of 
preparations of astrocytes and VSMCs isolated from at least 4 litters of neonatal rat pups. 

 

 

Fig 3.1C: Determination of GFAP+ cells in our culture:  Flow cytometry was employed 
to determine the proportion of cells that expressed GFAP in our cell culture.  
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ii) CB1R basal expression in SHR and Wistar astrocytes 

We used western blotting to detect CB1R protein levels in astrocytes isolated from the 

brain. The antibody employed was previously validated using a CB1R knock out model by 

another research group (Parmentier-Batteur et al. 2002). As CB1R is highly expressed in 

brain cells and expressed at relatively lower levels in peripheral tissues, we compared cell 

lysates prepared from cerebellar astrocytes with rat cerebellum extract and VSMC. The 

strongest band in all three samples was at ~64 kDa which denotes the glycosylated fraction 

of the receptor (Song and Howlett 1995) (Fig. 3.2A). The unglycosylated fraction or the 

native receptor (~53 kDa) was present only in whole cell extract, but weakly expressed or 

absent in cerebellar astrocytes and VSMCs. While the band intensity was the greatest in 

cerebellar whole cell extract, it was lowest in VSMC lysate. The band intensity in astroglial 

cell lysate was significantly greater than VSMC. This is indicative of a higher CB1R 

expression in the brain than in the periphery.  

In untreated astrocytes isolated from the brainstem, the basal levels of CB1R protein in 

the SHR samples were significantly lower than in the Wistar rat samples. Although the 

levels were higher in SHR cerebellum, the difference was not statistically significant. The 

CB1R was also expressed to a higher level in cerebellum than in brainstem astrocytes 

isolated from both normotensive and hypertensive rats (Fig 3.2B). The mRNA levels 

followed an identical pattern to the CB1R protein expression, whereby lower levels were 

observed in brainstem astrocytes isolated from SHRs when compared to Wistar brainstem 

samples (Fig 3.2C). The mean Ct values for SHR brainstem and Wistar brainstem were 

33.3 and 31.9, respectively. In the case of cerebellum, the difference observed between the 



79 

 

SHR and the Wistar rat was not statistically significant (Fig 3.2D). Mean Ct values for 

SHR cerebellum and Wistar cerebellum were 31.5 and 31.7, respectively.  

 

Fig 3.2A: Comparison of CB1R Protein in CNS and peripheral cells: A comparison of 
CB1R protein in Cerebellar astrocytes, rat cerebellum extract and VSMC was made by 
employing Western blotting. Cerebellar astroglial cell lysates in lane 1, rat cerebellar 
extract was loaded in lane 2, and VSMC cell lysate is loaded in lane 3. The data is 
represented as arbitrary units after normalization. (*denotes p < 0.05 and **denotes p < 
0.01). 
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Fig 3.2B: Basal CB1R Protein in brainstem and cerebellar astrocytes of SHRs and 

Wistar rats: A comparison of CB1R basal protein expression in brainstem and cerebellum 
astrocytes, isolated from SHRs and Wistar rats, was made by employing the Western 
blotting technique. Cell lysates prepared from astrocytes of Wistar brainstem (WBS), SHR 
brainstem (SBS), Wistar cerebellum (WCB) and SHR cerebellum (SCB) were loaded in 
lanes 1, 2, 3 and 4, respectively. The data is represented as arbitrary units after 
normalization. (*denotes p < 0.05 and **denotes p < 0.01). 
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Fig. 3.2C: A comparison of Basal CB1R mRNA in brainstem astrocytes between 

SHRs and Wistar rats: A comparison of CB1R mRNA expression in brainstem 
astrocytes, isolated from SHRs and Wistar rats was made using qPCR. The data is 
represented as arbitrary units that are obtained after normalization (Livak and Schmittgen 
2001). Each value represents the mean ± SEM of preparations of astrocytes isolated from 
six or more litters of neonatal rat pups.  (*denotes p < 0.05 and **denotes p < 0.01). 

 

 

 

 

 

 

 



82 

 

 

Fig. 3.2D: A comparison of Basal CB1R mRNA in cerebellar astrocytes between 

SHRs and Wistar rats: A comparison of CB1R mRNA expression in cerebellum 
astrocytes, isolated from SHRs and Wistar rats was made using qPCR. The data is 
represented as arbitrary units that are obtained after normalization (Livak and Schmittgen 
2001). Each value represents the mean ± SEM of preparations of astrocytes isolated from 
six or more litters of neonatal rat pups.  (*denotes p < 0.05 and **denotes p < 0.01). 

iii) Effect of Ang II on CB1R protein expression in brainstem astrocytes 

In order to determine if Ang II has any effect on CB1R expression in astrocytes isolated 

from the brainstem, we treated quiescent astrocytes with 100 nM Ang II for different time 

periods (1 hour to 48 hours). This concentration was optimal for activation of the astroglial 

AT1R as previously reported by our laboratory (Clark et al. 2008). We observed that Ang 

II caused an increase in CB1R protein expression from 4 hours onwards and this increase 

was sustained till 24 hours (Fig 3.3A). In the case of SHR brainstem astrocytes, Ang II 

caused a biphasic effect, where it downregulated the CB1R initially (maximum 

downregulation at 8 hours) and then upregulated the receptor at later time points (from 16 

hours onwards). In both cases, the difference at 1 hour was not statistically significant. 

When individual time points from SHR samples were compared with its respective Wistar 

time points, the difference was statistically significant from 4 to 12 hours. This is the period 
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where downregulation was observed in SHR brainstem samples while upregulation was 

seen in Wistar brainstem samples. At the later time points however, the difference was not 

statistically significant. 

For the inhibitor studies, Wistar and SHR brainstem astrocytes were treated with 

100 nM Ang II for 4 hours, in the presence and absence of inhibitors, before harvesting 

them for proteins. As shown in Fig 3.3B, pretreating the cells with either the AT1R 

inhibitor or the AT2R inhibitor had no significant effect on Ang II-mediated CB1R protein 

expression.  However, Losartan (AT1R inhibitor) completely prevented Ang II’s effects 

on the CB1R in both SHR and Wistar brainstem astrocytes.  PD123319 (AT2R inhibitor) 

was ineffective in preventing Ang II’s effects on these cells. 
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Fig 3.3A: Ang II Effects on CB1R Protein Expression in Brainstem Astrocytes 

Isolated from SHRs and Wistar Rats: Western blotting was employed to compare CB1R 
protein levels from Wistar and SHRs brainstem astrocytes, which were pretreated with 100 
nM Ang II for varying time periods. Each value represents the mean ± SEM of preparations 
of astrocytes isolated from six or more litters of neonatal rat pups.  The data is represented 
as fold over/under control that were obtained when CB1R bands were normalized to beta-
actin bands and further normalized to its control (*denotes p < 0.05 and **denotes p < 0.01 
***p < 0.001 compared to its basal values; + denotes p < 0.05, ++ denotes p<0.01 compared 
to its corresponding Wistar time point).  
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Fig 3.3B: Effect of Angiotensin Receptor Blockers on Ang II-mediated effects on 

CB1R Protein levels in brainstem astrocytes isolated from SHRs and Wistar Rats: 
CB1R protein levels in brainstem astrocytes from Wistar and SHRs that have been 
pretreated with 100 nM Ang II alone, inhibitors (10 µM) alone, or a combination of Ang 
II and inhibitors, was measured using Western blotting technique. Each value represents 
the mean ± SEM of preparations of astrocytes isolated from six or more litters of neonatal 
rat pups. *Denotes p < 0.05 as compared to basal CB1R protein expression. 

iv) Effect of Ang II on CB1R mRNA expression in brainstem astrocytes 

Ang II effects on CB1R mRNA levels were also examined in brainstem astrocytes. As 

shown in Fig 3.4A, Ang II downregulated CB1R mRNA expression in Wistar brainstem 

astrocytes at all the time points examined (maximum was at 8 hours). In SHR brainstem 

astrocytes, Ang II had a biphasic response on CB1R mRNA levels, an effect similar to that 

observed for CB1R protein expression (see Fig 3.3A). However, maximum 

downregulation was observed at 12 hours and the peak effect occurred at 24 hours (over a 

4-fold increase).  Upon comparison of individual time points of SHR with Wistar samples, 

the differences were found to be statistically significant at 4, 8, 16 and 24 hours. The 
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difference at 24 hours was the greatest because upregulation was observed in SHR 

brainstem astrocytes, while downregulation was seen in its normotensive counterpart. 

To determine the Ang receptor involved in Ang II-mediated effects on the CB1R 

mRNA levels, Wistar and SHR brainstem astrocytes were treated with 100 nM Ang II for 

4 hours, in the presence and absence of inhibitors, before harvesting them for mRNA. As 

shown in Fig 4B, pretreating brainstem astrocytes with the inhibitors alone had no effect 

on the mRNA levels of the CB1R. But pretreatment with Losartan inhibited most of the 

Ang II effect on CB1R mRNA expression. PD123319, the AT2R blocker however was 

ineffective in preventing the actions of Ang II.   
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Fig 3.4A: Ang II Effects on CB1R mRNA Expression in Brainstem Astrocytes Isolated 

from SHRs and Wistar Rats: qPCR was employed to compare CB1R mRNA levels from 
Wistar and SHRs brainstem astrocytes, which were pretreated with 100 nM Ang II for 
varying time periods.  Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups.  The data is represented as fold 
over/under control that were obtained when CB1R Ct values were normalized to beta-actin 
Ct values and further normalized to its control (*denotes p < 0.05 and **denotes p < 0.01 
***p < 0.001 compared to its basal values; +denotes p < 0.05, ++denotes p<0.01, compared 
to its corresponding Wistar time point). 
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Fig 3.4B: Effect of Angiotensin Receptor Blockers on Ang II-mediated effects on 

CB1R mRNA levels in brainstem astrocytes isolated from SHRs and Wistar rats: 
qPCR was employed to compare CB1R mRNA levels in Wistar and SHR brainstem 
astrocytes that have been pretreated with 100 nM Ang II alone, inhibitors (10 µM) alone, 
or a combination of both Ang II and inhibitors. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. *Denotes 
p < 0.05 as compared to basal CB1R protein expression. 

v) Effect of Ang II on CB1R protein expression in cerebellum astrocytes 

In astrocytes isolated from Wistar cerebellums, Ang II caused downregulation of the 

CB1R protein at the higher time points (12 to 48 hours), while it had no effect at time points 

prior to 12 hours (Fig 3.5A). In SHR cerebellum samples, Ang II caused an upregulation 

of the CB1R protein. The difference was found to be significant from 4 to 48 hours. Similar 

to brainstem samples, Ang II had no effect on CB1R protein at 1 hour in both strains of 

rats.  Except for the 1 hour treatment point, differences observed for SHR samples when 

compared with Wistar samples, were statistically significant.  
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To determine the Ang receptor involved in this effect, Wistar and SHR cerebellum 

astrocytes were treated with 100 nM Ang II for 12 hours and 4 hours, respectively in the 

presence and absence of inhibitors, before harvesting the cells for protein estimations (Fig 

3.5B). Pretreating with the Ang AT1R and AT2R blockers had no significant effect on the 

basal protein expression of the CB1R.  Both Losartan and PD123319 partially prevented 

Ang II-mediated CB1R protein expression in SHR cerebellum astrocytes.  In contrast, 

while PD123319 had no effect on Ang II-mediated downregulation of CB1R protein 

expression in the Wistar cerebellum samples, Losartan was effective in abolishing its 

effect. 
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Fig 3.5A: Ang II Effects on CB1R Protein Expression in Cerebellum Astrocytes 

Isolated from SHRs and Wistar Rats: Western blotting was employed to compare CB1R 
protein levels from Wistar and SHRs cerebellum astrocytes, which were pretreated with 
100 nM Ang II for varying time periods. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups.  The data 
is represented as fold over/under control that were obtained when CB1R bands were 
normalized to beta-actin bands and further normalized to its control (*denotes p < 0.05 and 
**denotes p < 0.01 ***p < 0.001 compared to its basal values; +denotes p < 0.05, ++denotes 
p<0.01 compared to its corresponding Wistar time point). 
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Fig 3.5B: Effect of Angiotensin Receptor Blockers on Ang II-mediated effects on 

CB1R Protein levels in cerebellar astrocytes isolated from SHRs and Wistar Rats: 

Western blotting technique was employed to compare CB1R protein levels in Wistar and 
SHR cerebellar astrocytes that have been pretreated with 100 nM Ang II alone, inhibitors 
(10 µM) alone, or a combination of both Ang II and inhibitors. Each value represents the 
mean ± SEM of preparations of astrocytes isolated from six or more litters of neonatal rat 
pups. *Denotes p < 0.05 as compared to basal CB1R protein expression.  

vi) Effect of Ang II on CB1R mRNA expression in cerebellum astrocytes 

The major effect of Ang II on CB1R mRNA expression in Wistar samples was down-

regulation, while upregulation was observed in SHR cerebellar astrocytes (Fig 3.6A). 

Although exceptions to this trend was observed at the 8 and 12 hour time points in Wistar 

samples, the difference was not found to be statistically significant. In the case of SHR 

cerebellum samples, down-regulation was observed at 4 hours (Fig 3.6A). In this case 

however, the difference was found to be significantly different. Upon comparison of SHR 
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time points with their respective Wistar time points, the differences observed from 8 to 24 

hours were statistically significant.  

To ascertain which Ang receptor involved in this effect, Wistar and SHR cerebellar 

astrocytes were treated with 100 nM Ang II for 4 hours, respectively in the presence and 

absence of inhibitors, before harvesting them for mRNA.  As shown in Fig 3.6B, treating 

the cells with just the Ang receptor inhibitors alone, had no effect. While Ang II alone was 

able to significantly alter CB1R mRNA in both Wistar and SHR cerebellar astrocytes, 

pretreatment with Losartan resulted in termination of its effect.  However, pretreating the 

astrocytes with the PD123319 was ineffective in preventing the Ang II-mediated effects on 

the CB1R.  
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Fig 3.6A: Ang II Effects on CB1R mRNA Expression in Cerebellum Astrocytes 

Isolated from SHRs and Wistar Rats: qPCR was employed to compare CB1R mRNA 
levels from Wistar and SHR cerebellar astrocyte samples, which were pretreated with 100 
nM Ang II for varying time periods.  Each value represents the mean ± SEM of preparations 
of astrocytes isolated from six or more litters of neonatal rat pups.  The data is represented 
as fold over/under control that were obtained when CB1R Ct values were normalized to 
beta-actin Ct values and further normalized to its control (*denotes p < 0.05 and **denotes 
p < 0.01 ***p < 0.001 compared to its basal values; +denotes p < 0.05, ++denotes p<0.01, 
compared to its corresponding Wistar time point). 
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Fig 3.6B: Effect of Angiotensin Receptor Blockers on Ang II-mediated effects on 

CB1R mRNA levels in Cerebellar Astrocytes isolated from SHRs and Wistar rats: 
qPCR was employed to compare CB1R mRNA levels in astrocytes of both Wistar and 
SHRs that have been pretreated with 100 nM Ang II alone, inhibitors (10 µM) alone, or in 
combination with both Ang II and inhibitors. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. *Denotes 
p < 0.05 as compared to basal CB1R protein expression 

3.4 Discussion 

The most significant finding of this study is that Ang II, mostly via the AT1R, is 

capable of altering CB1R expression in astrocytes isolated from both cerebellum and 

brainstem under both hypertensive and non-hypertensive conditions. The direction and 

magnitude of change however, is not only different based on the presence/absence of a 

pathological state, but also dependent on the brain regions that the astrocytes were isolated 

from. Interplay between a triad of factors, namely Ang II, presence or absence of 

hypertension, and the brain region, may well be responsible for CB1R expression to be 

either elevated or lowered. 
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A higher basal CB1R protein expression was observed in cerebellar astrocytes 

when compared to brainstem astrocytes in both Wistar and SHRs, which is in congruence 

with other studies that have reported a higher CB1R expression in cerebellum compared to 

brainstem (Herkenham et al. 1991) (Tsou et al. 1998). Although expressed at lower levels 

in brainstem, cannabinoids  can elicit anti-nociceptive (Manzanares et al. 2006) and anti-

emetic (Van Sickle et al. 2001) effects, in addition to regulation of sympathetic activity via 

the brainstem CB1R (Seagard et al. 2004). Interestingly, a significant reduction in the 

levels of the CB1R, both protein and mRNA, in brainstem astrocytes isolated from the 

SHR when compared to its normotensive counterpart, the Wistar rat were observed in this 

study. However, in cerebellar astrocytes, both CB1R protein and mRNA levels were not 

significantly different between the two rat models. Reduced CB1R expression in SHR 

brains have been previously reported wherein researchers observed a reduction of CB1R 

levels in the prefrontal cortex of SHR (Adriani et al. 2003). Reduced expression in SHR 

brainstem astrocytes may be suggestive of a dampened endocannabinoid tone in blood 

pressure regulation under hypertensive conditions. The endocannabinoid tone in SHR 

cerebellum however could still be functional in pathological states such as ADHD. 

Administration of the CB1R agonist WIN-55,212, was demonstrated to improve symptoms 

of ADHD in SHRs (Adriani et al. 2003). It could well be that the unchanged CB1R density 

in SHR cerebellum is mediating some of the positive effects of cannabinoids in this case. 

While CB1R protein levels were remarkably higher in cerebellar when compared to 

brainstem astrocytes, a comparison of CB1R mRNA levels between the two regions 

yielded no significant differences. This indicates that any possible difference observed in 

the basal expression of CB1R cannot be solely attributed to transcriptional efficiency 
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across different brain regions in different rats, but additional factors such as translational 

efficiency, post translational modifications and/or protein stability could be contributing to 

it (Maier et al. 2009).  

When brainstems were treated with Ang II for increasing time periods, CB1R 

protein levels were significantly elevated in normotensive conditions, but not in 

hypertensive states during the earlier time points. The AT1R was the major Ang receptor 

responsible for these effects. This effect was most prominent at the earlier (until 8 hours) 

than the later time points. This suggests that the relatively early elevation of CB1R, which 

is observed in response to a hypertensive stimulus (Ang II) in Wistar brainstem astrocytes, 

is lost in SHR brainstem astrocytes. A plausible theory could be that an elevation in CB1R, 

in response to AT1R activation, may be a homeostatic mechanism to negate the pro-

inflammatory nature of Ang II under normal physiological conditions. This is possibly 

disrupted under pathological conditions in brainstem astrocytes. Not only is an elevated 

level of pro-inflammatory cytokines reported in SHR brainstem (Agarwal et al. 2011), but 

Ang II via the brainstem AT1R has been demonstrated to have a pressor effect that is 

significantly more dominant in SHRs when compared to Wistar rats (Seyedabadi et al. 

2001). While the brainstem astroglial AT1R has been shown to play an important role in 

augmenting sympathetic outflow (Isegawa et al. 2014a), CB1R activation in the brainstem 

has been demonstrated to lower blood pressure (Seagard et al. 2004) (Lake et al. 1997b) 

(Bátkai et al. 2004). Although there are studies that demonstrate the ability of CB1R to 

increase blood pressure, these have not been done in SHRs (Ibrahim and Abdel-Rahman 

2011) (Schaich et al. 2014). Excessive production of pro-inflammatory cytokines in the 

cardiovascular centers of the brain is tightly intertwined with the progression of 
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hypertensive conditions (Shi et al. 2010b). As the glial CB1R is known to elevate levels of 

anti-inflammatory cytokines (Molina-Holgado et al. 2003), it is conceivable that the 

downregulation of the CB1R, during the early phase of AT1R activation, may be 

contributing to the hypertension phenotype. With regards to the correlation between 

mRNA and protein data in brainstem astrocytes, the CB1R trend in response to Ang II was 

similar in SHRs, but not in Wistar rats. This suggests that under normal physiological 

conditions, the elevation of CB1R protein in response to Ang II in brainstem astrocytes, 

may not be linked to transcriptional regulation of the receptor (Figs. 3A and 4A). However, 

this may be a dominant mechanism in hypertensive conditions. An alternative mechanism 

could be that Ang II is affecting the stability of CB1R mRNA which may result in a drop 

in corresponding protein levels.  

In contrast to brainstem astrocytes, where Ang II treatment had a significant impact 

on CB1R expression within the first 8 hours, the earliest effect in Wistar cerebellum 

astrocytes was observed at the 12 hours’ time point. In SHR cerebellum samples, CB1R 

protein was elevated in response to Ang II from 4 hours onwards. This suggests that in 

cerebellar astrocytes, CB1R protein is either elevated (SHR), or remains unaltered 

(Wistar), in response to early AT1R activation.  While the elevation is persistent even at 

later time points in SHR cerebellum astrocytes, CB1R protein falls appreciably from 12 

hours onwards in Wistar cerebellum astrocytes. It is possible that the role of the CB1R may 

be preserved in cerebellum astrocytes in pathological conditions. Although the CB1R 

protein followed similar suit to that of the CB1R mRNA levels in response to Ang II, the 

receptor mediating this effect was not identical. While the effect of Ang II on CB1R protein 

expression was predominantly via the AT1R in Wistar cerebellar astrocytes, both AT1R 
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and AT2R effects were observed in SHR cerebellum astrocytes. Although several studies 

have reported an absence of AT2R in astrocytes (Li et al. 2012c), there have been others 

that have reported functional AT2R in astrocytes (Downie et al. 2009) (Park et al. 2013), 

such as neutralizing pro-inflammatory mediators (Steckelings et al. 2011). This data points 

to a potential role of the AT2R, in conjunction with AT1R, in elevating neuroprotective 

regulators, such as CB1R protein, in SHR cerebellar astrocytes. As CB1R is elevated in 

response to Ang II in SHR cerebellar astrocytes, its activation could be explored as a 

possible therapeutic strategy in diseases, such as ADHD, where cerebellar functions are 

dysregulated due to neuroinflammatory mediators and astrogliosis (Yun et al. 2014). 

Although a strong correlation between hypertension and various learning (Adams et al. 

2010), cognitive (Nade et al. 2015), and motor disabilities (Qian et al. 2010) has already 

been reported, the role of brain RAS has not been well investigated in disorders such as 

ADHD. More research on the cross-talk between the two systems, RAS and the 

endocannabinoid system, in cerebellum could shed some light on disorders that are linked 

to cerebellar dysfunction.  

The crosstalk between the CB1R and the AT1R has already been explored at both 

a mechanistic and functional level in peripheral tissues. Ang II via the AT1R generates 

endocannabinoids which can transactivate the CB1R in a paracrine manner, in both in vitro 

(Turu et al. 2009), and in vivo (Szekeres et al. 2012) conditions. Activation of the vascular 

CB1R has been shown to play a role in mitigating some of the AT1R effects on promoting 

vasoconstriction (Szekeres et al. 2012) suggesting a possible protective role of CB1R 

during hypertensive conditions. Although our study reported a reduction in the basal CB1R 

expression in astrocytes of SHR brainstem, CB1R expression was shown to be elevated in 
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the heart and blood vessels of SHRs (Bátkai et al. 2004). It could well be that while the 

peripheral endocannabinoid system is functioning at a higher degree in hypertensive states, 

the central endocannabinoid system may not be able to counteract the effects of Ang II in 

the brainstem under the same conditions. While an elevation of CB1R is thought to elicit a 

protective role, there have been cases where an increase is linked to a worsening of disease 

progression (Di Marzo 2008). Studies have also reported on the ability of CB1R to further 

enhance AT1R actions in the periphery, thereby hastening the process of disease 

progression (Rozenfeld et al. 2011), (Tiyerili et al. 2010). This is suggestive of the fact that 

the outcome of the interaction between the two systems, RAS and the endocannabinoid 

system is not only tissue specific, but may depend on the disease model. Further studies in 

our laboratory are underway to determine the downstream effects and functional 

significance of CB1R activation alone, and also in conjunction with Ang receptor 

activation in astrocytes isolated from SHR.  

The observed differential regulation pattern of CB1R by Ang II in this study 

underscores a potential region specific dampening of the endocannabinoid tone by one of 

the key drivers of hypertension. As glial AT1R and CB1R have opposing roles in regulating 

inflammatory states (Winklewski et al. 2015) (Sheng et al. 2005a) (Molina-Holgado et al. 

2002a) (Molina-Holgado et al. 2003), this interaction represents a potential therapeutic 

target not just for hypertension, but other diseases that have a neuroinflammatory 

component. A tendency for an increase in CB1R protein in cerebellar astrocytes and a 

decrease in brainstem astrocytes, in response to Ang II, suggests that homeostatic systems, 

such as the endocannabinoid system, may be functioning at suboptimal levels only in 

certain brain regions under hypertensive conditions. Ang II by downregulating an already 
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small pool of CB1R in the brainstem astrocytes under hypertensive states, may be involved 

in mediating a drop in endocannabinoid regulation of astroglial functions. A possible 

therapeutic strategy could be to elevate the brainstem CB1R in order to circumvent the pro-

inflammatory effects of Ang II in key cardiovascular centers. Centrally acting ARBs could 

well be a possible route to prevent Ang II from downregulating CB1R expression in the 

brainstem astrocytes. As AT1R is highly elevated in the cardiovascular centers in SHR 

(Reja et al. 2006), this strategy could aid in preventing CB1R from being downregulated 

in specific brain regions that are associated with blood pressure regulation. Administration 

of CB1R agonists has been demonstrated to negatively impact cerebellar functions (Patel 

and Hillard 2001), suggesting that direct agonism may be detrimental. Modulating the 

components, and possibly the functions,  of the endocannabinoid system by targeting such 

indirect modulators, would help in circumventing the undesirable adverse effects elicited 

by direct activation of the receptor (Di Marzo 2008). 
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Chapter 4 
 

MAPK Activation Patterns of AT1R and CB1R in SHR versus Wistar Astrocytes:  

Evidence of CB1R Hypofunction and Crosstalk between AT1R and CB1R. 
 

Abstract   

Background: Ang II and cannabinoids are able to regulate physiologically relevant 

astroglial functions via receptor-mediated activation of MAPKs. In this study, we 

investigated the consequences of astroglial AT1R and CB1R activation, alone and in 

combination on MAPK activation, in the presence and absence of hypertensive states. In 

addition, we also investigated a novel unidirectional crosstalk mechanism between AT1R 

and CB1R, that involves PKC-mediated phosphorylation of CB1R. Methods: Astrocytes 

were isolated from the brainstem and cerebellum of SHRs and normotensive Wistar rats. 

The cells were treated with either 100 nM Ang II or 10 nM Arachidonyl-2'-

chloroethylamide (ACEA), both alone and in combination, for varying time periods and 

the extent of phosphorylation of MAPKs, ERK and p38, and the phosphorylated forms of 

CB1R (p-CB1R), were measured using western blotting. Results: Ang II treatment resulted 

in a greater activation of MAPKs in SHR brainstem astrocytes, but not SHR cerebellar 

astrocytes when compared to Wistar rats. ACEA mediated MAPK activation was 

significantly lower in brainstem astrocytes of SHRs when compared to Wistar rats. ACEA 

negatively modulates AT1R-mediated MAPK activation in both cerebellar and brainstem 

astrocytes of both models. The effect however was diminished in brainstem astrocytes. 

Ang II caused a significant increase in phosphorylation of CB1R in cerebellar astrocytes, 

while a significantly lesser effect was observed in brainstem astrocytes of both models. 



102 

 

Conclusion: Both Ang II and ACEA-induced MAPK activation were significantly altered 

in SHR astrocytes when compared to Wistar astrocytes. A possible reduction in CB1R 

functionality, coupled with a hyperfunctional AT1R in the brainstem, could well be 

significant factors in the development of hypertensive states. AT1R-mediated 

phosphorylation of CB1R could be critical for impaired cerebellar development 

characterized by a hyperactive RAS. 

4.1 Introduction  

Astrocytes play critical roles in several pathological conditions. Their ability to 

serve as mediators of communication between neurons (Araque et al. 2001), to alter 

neuroinflammatory states (Bélanger and Magistretti 2009), to be a major source for AGT 

in the brain (Stornetta et al. 1988), and to regulate energy stores (Brown and Ransom 2007), 

lends these cells to be an ideal model for studying cardiovascular and neurological 

disorders. The SHR is a well-established animal model for essential hypertension (Badyal 

et al. 2003). In addition to being a model of choice to study hypertension and several other 

cardiovascular disorders, they have also been used to study neurodevelopmental disorders 

such as ADHD (Adriani et al. 2003). While astrocytes from the brainstem have been 

implicated in augmenting sympathoexcitatory drive (Marina et al. 2013), increased 

astrogliosis has been reported in the SHR cerebellum (Goetz et al. 2014b) which further 

illustrates the necessity of investigating the potential dysregulated molecular machinery in 

these cells.   

An overactive brain RAS is one of the most prominent characteristics of SHRs 

(Veerasingham and Raizada 2003). Astroglial AT1R in the brainstem has a critical role in 

elevating sympathetic activity in cardiovascular diseases (Isegawa et al. 2014a). In 
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astrocytes from the brainstem and cerebellum, Ang II via activation of the AT1R results in 

an increase in pro-hypertensive and a decrease in anti-hypertensive markers (Gowrisankar 

and Clark 2016b) (Gowrisankar and Clark 2016a). Several reports of crosstalk between the 

angiotensin system and the endocannabinoid system have emerged in the recent past (Turu 

et al. 2009) (Rozenfeld et al. 2011). CB1R is one of the most abundant GPCRs in the brain 

and its impairment has been linked to a multitude of neurological disorders (Miller and 

Devi 2011). CB1R antagonism has been demonstrated to both potentiate (Szekeres et al. 

2012), as well as neutralize Ang II-mediated effects (Rozenfeld et al. 2011). In the brain, 

both exogenous and endogenous cannabinoids (endocannabinoids) are claimed to have 

prominent neuroprotective and anti-inflammatory effects via activation of the CB1R, and 

the CB2R activation (Miller and Devi 2011). Interestingly, astroglial AT1Rs and CB1Rs 

have seemingly opposing roles in the regulation of several astroglial functions. For 

instance, while astroglial AT1R can cause astrocyte senescence (Liu et al. 2011a) and an 

increase in proinflammatory cytokines (Gowrisankar and Clark 2016c), astroglial CB1R 

activation confers protection against apoptosis (Gómez Del Pulgar et al. 2002) and an 

elevation in anti-inflammatory cytokines (Molina-Holgado et al. 2003). 

Neuroinflammation is not only critically implicated in neurological disorders, but also 

cardiovascular disorders since an increase in pro-inflammatory cytokines from glial cells 

has been shown to elevate sympathetic activity (Shi et al. 2010a).  

Activation of cell surface receptors, such as AT1Rs and CB1Rs, evokes cellular responses 

that are tightly regulated by key signal transduction pathways. Some of these key 

intracellular pathways associated with AT1Rs and CB1Rs in astrocytes fall under the 

umbrella of MAPKs. MAPKs serve as critical linking points between receptor activation 
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and cellular functions. MAPK activation in astrocytes is associated with a diverse array of 

functions, which have both physiological and pathophysiological consequences. Activation 

of astroglial MAPKs such as extracellular signal regulated kinase (ERK), p38 and c-Jun 

N-terminal kinase (JNK) regulate proliferation (Clark et al. 2001), astrogliosis and 

mobilization of neuroinflammatory cytokines (Gadea et al. 2008) (Winklewski et al. 2015). 

These functions make them important targets of neurological and cardiovascular diseases. 

Studies from our laboratory and others have shown that MAPKs are involved in Ang II-

mediated proliferative (Clark et al. 2013) and pro-inflammatory effects (Zhang et al. 2017). 

Cannabinoids also employ the ERK MAPK pathway in mediating their protective effects 

in astrocytes (Galve-Roperh et al. 2002). In brainstem neurons, ERK and other signal 

transduction pathways such as PI3K are crucial for CB1R-mediated regulation of 

cardiovascular parameters (Ibrahim and Abdel-Rahman 2012). While AT1R signaling 

mechanisms have been studied in SHR neurons (Yang and Raizada 1998), both AT1R- and 

CB1R-mediated effects on MAPK activation has not been well investigated in SHR 

astrocytes. 

Several studies have reported alterations in CB1R levels in SHR cells when compared to 

their normotensive counterparts, a decrease was observed in brains cells (Adriani et al. 

2003) and an increase in myocardial cells (Bátkai et al. 2004). Consequently, a change in 

CB1R expression levels has also been demonstrated to correlate strongly with an alteration 

in CB1R-mediated downstream effects (Miller and Devi 2011). Previously, we have 

reported a reduction in the CB1R expression levels in brainstem, but not cerebellar, 

astrocytes of SHRs when compared to Wistar rats (Haspula and Clark 2016b). Whether 

this reduction translates into a dampened CB1R tone, has not been investigated. MAPK 
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activation is governed by many factors, one of the primary factors being receptor density 

and trafficking (Murphy and Blenis 2006). Comparing signal transduction pathways of the 

CB1R and the AT1R, between the two strains would enable us to have a better 

understanding of potential endocannabinoid or Ang receptor dysregulation in pathological 

conditions, respectively. Interestingly, crosstalk between the two receptors at the level of 

ERK was also investigated in a neuroblastoma cell line (Rozenfeld and Devi 2008). Co-

treatment of Ang II with a CB1R agonist, HU-210, led to an increase in AT1R-mediated 

activation of ERK.  

Therefore the focus of our study was three-fold. First to investigate the effects of Ang II 

and a potent CB1R agonist, ACEA, individually on MAPK activation in SHR and Wistar 

rat astrocytes. This would enable us to understand the patterns of MAPK activation by RAS 

and endocannabinoid systems in astrocytes. Secondly, we investigated crosstalk between 

the two systems. This was assessed by investigating the effect of co-treatments with Ang 

II and ACEA on MAPKs. Whether ACEA treatment neutralizes or potentiates Ang II-

mediated activation of MAPKs, when compared to Ang II alone would then help us to 

understand the mode of crosstalk that exists between these two systems in these primary 

cells. Lastly, we explored a novel mode of crosstalk between AT1R and CB1R, which 

involves PKC activation. Garcia et al., (1998) has earlier demonstrated that PKC activation 

by Phorbol 12-myristate 13-acetate (PMA) results in phosphorylation of the CB1R in the 

third intracellular loop. This phosphorylation event diminishes CB1R’s ability to elicit its 

functions.  As the AT1R is a Gq GPCR, Ang II is functionally capable of activating PKC 

and thereby phosphorylating CB1R. Hence, both basal and Ang II-mediated 

phosphorylation of CB1R, was also investigated in this study. 



106 

 

4.2 Materials and methods 

i) Materials 

Ang II was obtained from Bachem (Torrance, CA). PD123319, the selective AT2R 

antagonist was obtained from Sigma (St. Louis, MO), and Losartan (AT1R antagonist) was 

kindly provided by Du Pont Merck (Wilmington, DE). ACEA, the specific CB1R agonist, 

was purchased from Tocris (Bristol, UK) and Bisindolylmaleimide I, Hydrochloride #9841 

(BIM I), the potent PKC inhibitor, was obtained from Cell signaling Technology (Beverly, 

MA). Orlistat, the DAGL inhibitor and PMA, the PKC activator were purchased from 

Sigma (St. Louis, MO). Western blotting supplies were purchased from Bio-Rad 

Laboratories (Hercules, CA) or VWR International (Suwanee, GA). The polyclonal 

antibody that detects the phosphorylated forms of CB1R, p-CB1 Antibody (Ser 316) [sc-

17555], was purchased from Santa Cruz (Dallas, TX), and the monoclonal phospho CB1R 

antibody, Anti-Cannabinoid Receptor I (phospho S316) antibody [EPR2223(N)], was 

purchased from Abcam.  The phospho-p38 (P-p38) and the phospho ERK (P-ERK) 

antibodies were purchased from Cell Signaling Technology (Beverly, MA). Beta-actin 

antibody (A2066) was purchased from Sigma (St. Louis, MO). The BCA protein kit was 

obtained from Pierce Biotechnology (Rockford, IL). All other chemicals were purchased 

from either VWR International (Suwannee, GA), Fisher Scientific (Waltham, MA) or 

Sigma (St. Louis, MO).  

ii) Isolation and culture of primary astrocytes 

Timed pregnant Wistar rats and SHRs were obtained from Charles River 

Laboratories (Wilmington, MA) and maintained in the ALAAC-accredited animal facility 

of Nova Southeastern University. All animal protocols were approved by the University 
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Institutional Animal Care and Use committee. The brainstem and cerebellar astrocyte 

cultures were prepared using mechanical dissociation as previously described (Tallant and 

Higson 1997). Briefly, brains from 3-day old rat pups were isolated and the cerebellum and 

brainstem were carefully separated from each brain. These regions are visible to the naked 

eye and can be clearly differentiated from each other. Astrocyte cultures were then 

prepared from the pooled brainstem and the pooled cerebellum by mechanical dissociation. 

The cells were grown in DMEM/F12 culture media containing 10% FBS, 10,000 I.U/mL 

penicillin, 10,000 µg/mL streptomycin and 25 µg/mL amphotericin B at 37°C in a 

humidified incubator (5% CO2 and 95% air). The cell cultures were fed every 3-4 days.  

On attaining confluency, the cells were subjected to vigorous shaking overnight which 

resulted in the detachment of microglia, oligodendrocytes and cell debris. Subsequently, 

the cell cultures were detached with trypsin/EDTA (0.05% trypsin, 0.53mM EDTA) and 

replated at a ratio of 1:10. The astrocyte enriched cultures were fed once every 3 days until 

they were about 90% confluent. Before all cell treatments, the cultures were made 

quiescent by treating with serum free media, for 48 hours. All subsequent treatments were 

conducted in serum free DMEM/F12 culture media containing 10,000 I.U/mL penicillin, 

10,000 µg/mL streptomycin and 25 µg/mL amphotericin B. The purity of the enriched 

astrocyte cultures were determined using Flow cytometry, western blotting and qPCR as 

shown previously (Haspula and Clark 2016b).  

iii) Cell treatments 

Astrocytes were treated with 100 nM Ang II and/or with 10 nM ACEA, a potent 

CB1R agonist, for varying time periods ranging from 1 min to 1 hour. For P-ERK and P-

p38 protein estimation, the time periods of Ang II or ACEA treatments were 1, 5, 10, 15, 
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30, 45 and 60 mins. Select time points (5, 15, 30, 45 and 60 mins) were employed to 

compare the effect of co-treatment on the two MAPKs with Ang II. For p-CB1R protein 

estimation, the time periods of Ang II treatments were 1, 5, 10, 15, 30, 45 and 60 mins and 

for 50 nM PMA treatment, the exposure time was 15 mins. For the inhibitor studies, the 

cells were pretreated with inhibitors for the AT1R (10 µM Losartan), the AT2R (10 µM 

PD123319), PKC (50 nM BIM I), or DAGL (100 nM Orlistat) for 30 mins before the 

addition of 100 nM Ang II for 15 mins. 

iv)  Cell lysate preparation for western blotting 

Immediately following treatments, cell lysates were prepared by washing cells with 

TBS followed by direct lysis with 200 µL of 1x Laemmli sample buffer (125 mM Tris-

HCl, pH 6.8, 1% SDS, 0.5% glycerol, 5 mM EDTA, 5 mM EGTA, 0.01 mM NaVO4, 0.1 

mM PMSF and 0.6 μM leupeptin) per well. Protein concentrations were determined using 

the BCA assay as per the manufacturer’s instructions. After protein determinations, β-

mercaptoethanol (5%) and bromophenol blue (0.01%) were added to the samples, and the 

cell lysates were stored at -80 ͦC until further processing.  

v) Western blotting 

Volumes equivalent to 20-50 µg of solubilized proteins were loaded into 10% 

polyacrylamide gels, and subsequently transferred to nitrocellulose membranes. The 

membranes were then blocked with 5% BSA prepared in TBS containing 0.05% tween 

TBS-T. The membranes were then subjected to 3 washes, 5 mins each using TBS-T 

followed by incubation with a P-ERK, P-p38 or with a p-CB1R rat polyclonal antibody. P-

ERK was prepared in TBS-T containing 5% milk, while P-p38 was prepared in TBS-T 

containing 5% BSA. Both were prepared at a concentration of 1:5000. The p-CB1R 
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antibody was prepared at a concentration of 1:100, in TBS-T containing 5% BSA. All 

incubations with primary antibodies were done overnight, at 4°C. The membranes were 

then subsequently washed and probed with an anti-rabbit secondary antibody for 1 hour at 

37°C. After another round of washes, the bands were visualized using ECL reagent (Pierce 

Biotechnology, Rockford, IL) and quantified using the Image J software (National Institute 

of Health (NIH), Bethesda, MD, USA). The membranes were subsequently stripped and 

reprobed with a β-actin antibody at a concentration of 1:5000 in TBS-T, containing 5% 

milk. The bands were then normalized to β-actin.  

vi) Statistical analysis 

A 2x2 mixed ANOVA was employed to determine if there were any significant 

differences in the basal p-CB1R levels between SHRs and Wistar rats. This was followed 

by a Bonferoni T test to determine differences between groups. A two-way ANOVA was 

employed for testing the effect of treatments on MAPKs and p-CB1R in SHRs as compared 

to Wistar rats. A Bonferoni T test was employed to determine significant differences 

between treatments and the respective control. In order to make comparisons between 

identical time points from different rat models, a two-tailed student t test was employed. 

All data is expressed as mean± SEM for 5 or more experiments. 

4.3 Results  

i) Effect of Ang II and ACEA alone on MAPK activation in brainstem astrocytes 

An alteration in Ang and endocannabinoid system’s activities in brainstem astrocytes 

from SHR may well be relevant to pathological conditions that have a dysregulated 

cardiovascular component. Since both Ang II and ACEA are potent activators of MAPKs, 

the extent of activation of these signaling pathways would presumably be a measure of the 
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level at which it is functioning. In other words, a lower activation of the MAPK by the 

agonists may correspond to a dampened effect. In order to investigate this, samples 

prepared from brainstem astrocytes, earlier treated with either Ang II or ACEA, were 

subjected to western blotting and probed with antibodies that detect P-ERK or P-p38.  

Ang II caused a greater activation of P-ERK and P-p38 at most time points examined in 

SHRs when compared to Wistar rat samples (Fig 4.1A and 4.1B respectively). Ang II’s 

effect however on P-ERK was greater than on P-p38. This effect of Ang II was mediated 

by the AT1R in brainstem astrocytes (Appendix 1- Fig 4.1S and 4.2S). Unlike Ang II, 

ACEA caused a greater activation of P-ERK and P-p38 in Wistar rats when compared to 

SHR samples (Fig 4.1C and 4.1D, respectively). The effect of ACEA on P-ERK was 

similar to that of P-p38. 
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Fig 4.1A: Effect of Ang II on ERK activation in brainstem astrocytes: Brainstem 
astrocyte samples, pretreated with 100 nM Ang II for varying times, were subjected to 
western blotting technique and probed with a P-ERK antibody as described. Each value 
represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated 
versus untreated samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.1B: Effect of Ang II on p38 activation in brainstem astrocytes: Brainstem 
astrocyte samples, pretreated with 100 nM Ang II for varying times, were subjected to 
western blotting technique and probed with a P-p38 antibody as described. Each value 
represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated 
versus untreated samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.1C: Effect of ACEA on ERK activation in brainstem astrocytes: Brainstem 
astrocyte samples, pretreated with 10 nM ACEA for varying times, were subjected to 
western blotting technique and probed with a P-ERK antibody. Each value represents the 
mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated 
samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.1D: Effect of ACEA on p38 activation in brainstem astrocytes: Brainstem 
astrocyte samples, pretreated with 10 nM ACEA for varying times, were subjected to 
western blotting technique and probed with a P-p38 antibody. Each value represents the 
mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated 
samples; + p< 0.05- SHR versus Wistar samples).  

ii) Effect of Ang II and ACEA in combination on MAPK activation in brainstem 

astrocytes 

Since CB1R agonism/antagonism was demonstrated to significantly alter AT1R-

mediated effects, we explored the consequences of co-activation of both receptors in our 

model system on MAPK activation. In order to explore this, samples prepared from 

brainstem astrocytes were treated with Ang II and ACEA simultaneously.  They were then 

subjected to western blotting and probed with antibodies that detect P-ERK or P-p38. 

Comparison of select time points were done between the combination treatment (Ang 

II+ACEA), with Ang II alone. 
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Co-treatment with Ang II and ACEA resulted in a slight reduction of MAPK activation in 

both SHR and Wistar brainstem astrocytes than treatment with Ang II alone (Fig 4.2A-

4.2D). The effect was statistically significant for P-ERK, at the higher time points. 

Although both Ang II and ACEA treatments resulted in MAPK activation, when employed 

as treatments alone, the peak effect produced by ACEA alone was significantly lower than 

Ang II. The decrease in MAPK activation observed when employed together, could reflect 

a CB1R-mediated reduction in AT1R’s effect.  

 

Fig 4.2A: Effect of Ang II and ACEA in combination on ERK activation in SHR 

brainstem astrocytes: SHR brainstem astrocyte samples, pretreated with 100 nM Ang II 
alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-ERK antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples; 
+ p< 0.05- Co-treatment versus Ang II alone). 
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Fig 4.2B: Effect of Ang II and ACEA in combination on ERK activation in Wistar 

brainstem astrocytes: Wistar brainstem astrocytes, pretreated with 100 nM Ang II alone 
or in combination with 10 nM ACEA for varying times, were subjected to western blotting 
technique and probed with a P-ERK antibody. Each value represents the mean ± SEM of 5 
or more litters of neonatal rat pups. (*p < 0.05- treated versus untreated samples; + p< 0.05- 
Co-treatment versus Ang II alone). 
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Fig 4.2C: Effect of Ang II and ACEA in combination on p38 activation in SHR 

brainstem astrocytes: SHR brainstem astrocyte samples pretreated with 100 nM Ang II 
alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-p38 antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples). 
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Fig 4.2D: Effect of Ang II and ACEA in combination on p38 activation in Wistar 

brainstem astrocytes: Wistar brainstem astrocytes (Fig 4.2D), pretreated with 100 nM 
Ang II alone or in combination with 10 nM ACEA for varying times, were subjected to 
western blotting technique and probed with a P-p38 antibody. Each value represents the 
mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated 
samples).  

iii) Effect of Ang II and ACEA alone on MAPK activation in cerebellar astrocytes 

Administration of exogenous cannabinoids was demonstrated to improve symptoms of 

ADHD in SHRs (Adriani et al. 2003). Several studies have demonstrated a link between 

an impairment in cerebellar functions with symptoms of ADHD (Goetz et al. 2014b). 

Neutralization of prominent cerebellar apoptosis and astrogliosis in SHRs, was also shown 

to improve symptoms of ADHD in that rat model (Yun et al. 2014). Considering that the 

CB1R has protective effects in  astrocytes (Gómez Del Pulgar et al. 2002), and the AT1R 

has deleterious effects (Liu et al. 2011a), a comparison of key signaling pathways in these 

cells would enable us to better understand the consequences of receptor dysregulation 

(either upregulation or downregulation) in ADHD. Using P-ERK and P-p38 as indicators 
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of receptor activation, we explored the possibility of an alteration in AT1R and CB1R 

signaling in cerebellar astrocytes of SHRs. 

Interestingly, Ang II caused a greater activation of both P-ERK and P-p38 in Wistar 

cerebellar astrocytes when compared to SHR cerebellar astrocytes (Fig 4.3A and 4.3B, 

respectively). This Ang II effect was entirely different from that observed in brainstem 

astrocytes (Fig 4.1A and 4.1B). The effect of ACEA in cerebellar astrocytes however, did 

resemble its effect in brainstem astrocytes. The ACEA effect was greater in Wistar 

astrocytes when compared to SHR astrocytes isolated from the cerebellum (Fig 4.3C and 

4.3D). This indicates a possible impairment of both systems under investigation in SHR 

cerebellar astrocytes when compared to Wistar rat cerebellar astrocytes. 

 

 



120 

 

 

Fig 4.3A: Effect of Ang II on ERK activation in cerebellar astrocytes: Cerebellar 
astrocyte samples, pretreated with 100 nM Ang II for varying times, were subjected to 
western blotting technique and probed with a P-ERK antibody as described. Each value 
represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated 
versus untreated samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.3B: Effect of Ang II on p38 activation in cerebellar astrocytes: Cerebellar 
astrocyte samples, pretreated with 100 nM Ang II for varying times, were subjected to 
western blotting technique and probed with a P-p38 antibody as described. Each value 
represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated 
versus untreated samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.3C: Effect of ACEA on ERK activation in cerebellar astrocytes: Cerebellar 
astrocyte samples, pretreated with 10 nM ACEA for varying times, were subjected to 
western blotting technique and probed with a P-ERK antibody. Each value represents the 
mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated 
samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.3D: Effect of ACEA on p38 activation in cerebellar astrocytes: Cerebellar 
astrocyte samples, pretreated with 10 nM ACEA for varying times, were subjected to 
western blotting technique and probed with P-p38 antibody. Each value represents the 
mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated 
samples; + p< 0.05- SHR versus Wistar samples). 

iv) Effect of Ang II and ACEA in combination on MAPK activation in cerebellar 

astrocytes 

Unlike brainstem astrocytes, CB1Rs are expressed in relatively higher levels in 

cerebellar astrocytes (Haspula and Clark 2016b). Low CB1R expression in brainstem 

astrocytes, could well be a significant factor in obscuring CB1R-mediated alterations of 

Ang II’s activity. We again explored the consequence of co-activation of both the receptors 

in cerebellar astrocytes of the two models. Of particular interest was Wistar cerebellar 

astrocytes, where both systems had a considerable effect on MAPK activation.  
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Co-treatment with Ang II and ACEA, resulted in a significant reduction in P-ERK and P-

p38 signal, when compared to Ang II alone (Fig 4.4A-D). While the effect was observed 

in both rat models, the difference was statistically significant in Wistar cerebellar astrocytes 

only (Fig 4.4B and 4.4D). ACEA-mediated inhibition of Ang II’s effect on MAPK was 

also observed to be more robust in cerebellar astrocytes when compared to brainstem 

astrocytes. 

 

Fig 4.4A: Effect of Ang II and ACEA in combination on ERK activation in SHR 

cerebellar astrocytes: SHR cerebellar astrocyte cell lysates, pretreated with 100 nM Ang 
II alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-ERK antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples). 
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Fig 4.4B: Effect of Ang II and ACEA in combination on ERK activation in Wistar 

cerebellar astrocytes: Wistar cerebellar astrocyte cell lysates, pretreated with 100 nM Ang 
II alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-ERK antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples; 
+ p< 0.05- Co-treatment versus Ang II alone). 
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Fig 4.4C: Effect of Ang II and ACEA in combination on p38 activation in SHR 

cerebellar astrocytes: SHR cerebellar astrocyte cell lysates, pretreated with 100 nM Ang 
II alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-p38 antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples). 
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Fig 4.4D: Effect of Ang II and ACEA in combination on p38 activation in cerebellar 

astrocytes: Wistar cerebellar astrocyte samples, pretreated with either 100 nM Ang II 
alone or in combination with 10 nM ACEA for varying times, were subjected to western 
blotting technique and probed with a P-p38 antibody. Each value represents the mean ± 
SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples; 
+ p< 0.05- Co-treatment versus Ang II alone). 

v) PKC-mediated p-CB1R expression in brainstem and cerebellar astrocytes 

 Since the phosphorylated form of the CB1R is an indicator of an inactive receptor, 

we compared the levels of p-CB1R in both brainstem and cerebellar astrocytes of the two 

rat models. For this experiment, we employed the polyclonal phospho-CB1R antibody (p-

CB1R) (Santa Cruz) that detects phosphorylated serine in the third intracellular loop. In 

order to determine the specificity of the p-CB1R polyclonal antibody employed, we 

measured p-CB1R levels in samples obtained from astrocytes that were pretreated with 

increasing concentrations of ACEA, a potent CB1R agonist, thereby triggering 
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phosphorylation of the receptor by a homologous mechanism. We found that increasing 

concentrations of ACEA resulted in an increase in p-CB1R levels which is indicated as a 

single band at ~49 kDa (Appendix 1- Fig 4.3S). This is in agreement with the results 

obtained from the Anti-CB1R monoclonal antibody (Abcam) where again a single band at 

~49 kDa was observed (Appendix 1- Fig 4.4S) (http://www.abcam.com/Cannabinoid-

Receptor-I-phospho-S316-antibody-EPR2223N-ab186428/reviews/49381). We observed 

that the basal p-CB1R levels were significantly higher in cerebellar astrocytes when 

compared to brainstem astrocytes (Fig 4.5A), which is most likely due to a higher CB1R 

expression in cerebellar astrocytes when compared to brainstem astrocytes (Haspula and 

Clark 2016b). When the two models were compared, the levels of p-CB1R were greater in 

brainstem astrocytes of SHRs than from Wistar rats (Fig 4.5A). The difference between the 

two models in cerebellar astrocytes however was not statistically significant. An elevation 

of p-CB1R levels, in SHR brainstem astrocytes could be a possible explanation for a 

decreased ACEA-mediated MAPK activation, that was observed in our previous 

experiments.   

In order to determine whether PKC is involved in triggering the phosphorylation of CB1R, 

PMA-treated samples, were analyzed for p-CB1R expression. We observed a significantly 

higher PMA-induced p-CB1R elevation in cerebellar astrocytes, when compared to 

brainstem astrocytes (Fig 4.5B). Upon comparison between the two models, the levels of 

PMA-induced p-CB1R was slightly greater in brainstem astrocytes isolated from SHRs 

when compared to Wistar rats. However in cerebellar astrocytes, the PMA-induced p-

CB1R elevation, was not significantly different between the two models (Fig 4.5B). The 

above results indicate that PKC-mediated CB1R phosphorylation is more prominent in 
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astrocytes isolated from the cerebellum when compared to brainstem. The presence of 

hypertension alters the levels in brainstem astrocytes, but not in cerebellar astrocytes.  

 

Fig 4.5A: Basal p-CB1R expression in brainstem and cerebellar astrocytes of SHRs 

and Wistar rats: Basal p-CB1R levels from brainstem and cerebellar astrocytes of Wistar 
rats were compared with p-CB1R levels of SHRs using western blotting. Lanes 1 and 2 
denote Wistar brainstem (WBS) and SHR brainstem astrocyte (SBS) samples, while lanes 
3 and 4 denotes Wistar cerebellar (WCB) and SHR cerebellar astrocyte (SCB) samples, 
respectively. Each value represents the mean ± SEM of 5 or more litters of neonatal rat 
pups. (+ p< 0.05- SHR versus Wistar samples). 
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Fig 4.5B: PMA-induced p-CB1R expression in brainstem and cerebellar astrocytes: 

p-CB1R levels from untreated astrocytes were compared from astrocytes that were treated 
with 50 nM PMA for 15 mins. The four bars represent the elevation of p-CB1R levels in 
PMA-treated samples over that of the untreated samples, and the second lane denotes 
treated samples. The first lane in each of the 4 representative blots denotes untreated 
samples. The four representative blots from left to right are astrocyte samples from Wistar 
brainstem (WBS), SHR brainstem (SBS), Wistar cerebellum (WCB) and SHR cerebellum 
(SCB). Each value represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* 
p < 0.05- treated versus untreated samples; + p< 0.05- SHR versus Wistar samples). 

vi) Effect of Ang II on p-CB1R expression in brainstem and cerebellar astrocytes 

Our earlier experiments were designed to investigate the effects of ACEA on modulating 

AT1R-induced MAPK activation. Unidirectional crosstalk from AT1R to CB1R has been 

shown to enhance the endocannabinoid tone by CB1R transactivation (Turu et al. 2009). 

However, possible inactivation of CB1R by Ang II, has not been investigated. Whether 

Ang II can induce phosphorylation of CB1R in both brainstem and cerebellar astrocytes, 

was the primary focus of this experiment. The peak effect produced by Ang II on p-CB1R 
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levels in cerebellar astrocytes was observed to be much greater than that produced in 

brainstem astrocytes (Fig 4.6A and 4.6B). However, a comparison between the two models 

for the same brain region indicated no significant differences in the peak effect produced 

by Ang II on p-CB1R levels (Fig 4.6A and 4.6B). Regarding temporal activation, Ang II 

initiated the phosphorylation event much earlier in SHR cerebellar astrocytes than in 

Wistar cerebellar astrocytes (Fig 4.6A).   

The Ang receptor involved in Ang II-mediated phosphorylation of the CB1R, was also 

investigated. As observed in Fig 4.6C, Ang II elicited this response by activation of the 

AT1R in Wistar cerebellar astrocytes. Losartan, the AT1R antagonist, prevented Ang II-

mediated elevation of p-CB1R levels. On the other hand, the AT2R antagonist, PD123319, 

was unsuccessful in preventing Ang II-mediated phosphorylation of the CB1R. Treatment 

with inhibitors alone had no significant effect on p-CB1R expression (Fig 4.6C).   

Phosphorylation of the CB1R can be mediated via PKC or DAGL. Gq GPCRs were 

demonstrated to transactivate CB1R via activation of DAGL (Turu et al. 2009). Hence, 

phosphorylation of CB1R could well be the consequence of CB1R transactivation by 

AT1R. We employed inhibitors for PKC (BIM I) and DAGL (Orlistat) to determine the 

most prominent mechanism among the two. Since the effect of Ang II and PMA on p-

CB1R levels was diminished in brainstem astrocytes of both models, when compared to 

cerebellar astrocytes, we employed cerebellar astrocytes from Wistar rats to investigate the 

mechanisms involved in Ang II-mediated phosphorylation of CB1R. As observed in Fig 

4.6D, PKC was exclusively contributing to Ang II-mediated CB1R phosphorylation in 

cerebellar astrocytes of Wistar rats, suggesting that this effect is not a consequence of 

receptor transactivation, but is through a desensitization mechanism.  
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A complete list of inhibitor data is provided in the supplementary section (tables 1S and 

2S). PKC was the most dominant mechanism in SHR cerebellar astrocytes as well. 

Although PKC is again a key mediator of Ang II-induced phosphorylation of CB1R in 

brainstem astrocytes, we also observed DAGL involvement in Ang II-mediated 

phosphorylation of CB1R in the case of Wistar brainstem astrocytes (Appendix 2- Table 

1S and 2S).  
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Fig 4.6A: Effect of Ang II on p-CB1R expression in cerebellar astrocytes: Wistar and 
SHR cerebellar astrocytes were treated with 100 nM Ang II for times ranging from 1 min 
to 60 mins. p-CB1R levels from treated samples were then compared with the untreated 
sample. Each value represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* 
p < 0.05- treated versus untreated samples; + p< 0.05- SHR versus Wistar samples). 
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Fig 4.6B: Effect of Ang II on p-CB1R expression in brainstem astrocytes: Wistar and 
SHR brainstem astrocytes were treated with 100 nM Ang II for times ranging from 1 min 
to 60 mins. p-CB1R levels from treated samples were then compared with the untreated 
sample. Each value represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* 
p < 0.05- treated versus untreated samples; + p< 0.05- SHR versus Wistar samples).  
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Fig 4.6C: Effect of Ang II with or without Ang receptor inhibitors on p-CB1R 

expression in cerebellar astrocytes: Wistar cerebellar astrocyte samples, treated with 
Ang II with or without 10 µM Losartan (AT1R inhibitor) or 10 µM PD123319 (AT2R 
inhibitor), represent lanes 2-6. Lane 1 is the untreated sample and lane 2 is sample that was 
treated with 100 nM Ang II alone. Each value represents the mean ± SEM of 5 or more 
litters of neonatal rat pups. (* p < 0.05- treated versus untreated samples).  
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Fig 4.6D: Effect of Ang II with or without inhibitors for PKC and DAGL on p-CB1R 

expression in cerebellar astrocytes: Wistar cerebellar astrocyte samples treated with 
either 50 nM BIM I (PKC inhibitor) and 50 nM orlistat (DAGL inhibitor) are loaded in 
lanes 2 and 3 respectively. Lane 4 is sample that is treated with 100 nM Ang II alone, while 
lanes 5 and 6 are inhibitors with 100 nM Ang II. Lane 1 is the untreated sample. Each value 
represents the mean ± SEM of 5 or more litters of neonatal rat pups. (* p < 0.05- treated 
versus untreated samples).  

4.4 Discussion 

Although several findings were reported in this study, the most significant ones are 

related to CB1R dysfunction in SHR astrocytes, and phosphorylation of CB1R via the 

AT1R-PKC axis in cerebellar astrocytes of both models. Reduced ability of ACEA to 

activate MAPK, coupled with an increase in basal levels of p-CB1R, in SHR brainstem 

when compared to Wistar brainstem astrocytes, is suggestive of a potential dampening of 



137 

 

CB1Rs effects under hypertensive conditions. Regarding receptor crosstalk, we have 

identified heterologous phosphorylation of CB1R via PKC as a candidate mechanism for 

Ang II to phosphorylate, and potentially inactivate the CB1R. This form of crosstalk 

between AT1R and CB1R is more prevalent in cerebellar than brainstem astrocytes of both 

models. 

Treatment with either Ang II or ACEA resulted in contrasting effects on MAPK activation 

in brainstem astrocytes isolated from SHRs when compared to Wistar rats. While Ang II-

mediated activation of MAPKs was greater in brainstem astrocytes isolated from SHRs 

when compared to Wistar rats, ACEA effect on MAPKs activation was more prominent in 

astrocytes isolated from normotensive rats. Several studies have reported an augmentation 

of RAS activity in SHR brain cells such as RVLM neurons when compared to their 

normotensive controls (Matsuura et al. 2002). More robust activation of MAPKs by Ang 

II in SHR brainstem astrocytes, when compared to Wistar brainstem astrocytes, could be 

an indicator of an overactive AT1R in astrocytes. Ang II, a potent mitogen, is capable of 

causing prominent ERK activation, the latter being a key signaling pathway in cell 

proliferation (Clark et al. 2013). Regarding the endocannabinoid system, our laboratory 

and others have reported a reduction in the levels of CB1R in SHRs when compared to 

their normotensive controls (Adriani et al. 2003) (Brozoski et al. 2009) (Haspula and Clark 

2016b). In the current study, we observed an elevation in the levels of p-CB1R in SHR 

brainstem astrocytes when compared to Wistar brainstem astrocytes. In addition, we also 

observed a reduction in MAPK activation by ACEA in brainstem astrocytes of SHRs, when 

compared to Wistar rats. Both findings are indicative of a dampened astroglial 

endocannabinoid system in brainstem under hypertensive conditions. Hypofunctional 
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CB1R has also been reported by others in SHRs (Adriani et al. 2003)  (Brozoski et al. 

2009) . It could well be that a reduction of protective systems such as the endocannabinoid 

system, and a potentiation of pro-hypertensive systems such as the RAS, could be critical 

in the etiology of hypertension. 

In contrast to brainstem astrocytes, Ang II treatment did not elicit stronger MAPK 

activation in SHR cerebellar astrocytes, when compared to Wistar rat cerebellar astrocytes. 

Interestingly, a reduction in cerebellar volume is observed in children with ADHD 

(Bledsoe et al. 2011). Ang II is capable of triggering significant ERK activation under 

normal physiological conditions in cerebellar astrocytes (Clark et al. 2013). But an 

impairment in SHR cerebellar astrocytes, suggests a possible disruption in the gliogenic 

machinery in SHR cerebellum. ERK is a key player in gliogenesis, the latter a prominent 

feature of CNS development in postnatal stages (Li et al. 2012a). The same findings were 

also observed for p38. This MAPK pathway is a key signal transduction pathway involved 

in regulating inflammatory responses from glial cells (Guo et al. 2010). Previously, we 

observed that Ang II had a greater effect on elevating secreted IL-6 levels in cerebellar 

astrocytes isolated from Wistar rats when compared to SHRs (Gowrisankar and Clark 

2016c). As activation of p38 and ERK is purely an AT1R-mediated effect, AT1R 

expression or functionality could be reduced in cerebellar astrocytes of SHRs when 

compared to Wistar rats. Unpublished data from our laboratory indicates a significant 

reduction in the levels of AT1R mRNA in SHR cerebellar astrocytes, which supports our 

current findings. Similar to brainstem astrocytes, ACEA had a slightly reduced effect on 

MAPKs activation in SHR cerebellar astrocytes when compared to Wistar cerebellar 

astrocytes. This suggests a possible dampening of the endocannabinoid system functions 
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in cerebellar astrocytes of SHRs when compared to Wistar rats. We have previously 

reported that the CB1R expression levels in cerebellar astrocytes in SHRs, was similar to 

that of Wistar rats (Haspula and Clark 2016b). In the current study, p-CB1R levels were 

similar in both models. Therefore, there may be other factors at play that we have not 

accounted for in this study.   

Results from our co-treatment experiments indicate that ACEA was able to decrease Ang 

II-mediated activation of MAPKs in both cerebellar and brainstem astrocytes. The effect 

however was much more prominent in cerebellar astrocytes. AT1R and CB1R couple to 

Gq and Gi G proteins, respectively. Crosstalk between Gi and Gq GPCRs have been 

demonstrated to potentiate Gq-mediated downstream effects (Rozenfeld et al. 2011) 

(Carroll et al. 1995) (Rives et al. 2009). Interestingly, co-stimulation of GPCRs, that are 

both capable of MAPK activation, have been reported to cancel out excessive MAPK 

activation by inactivating one of the receptor’s signaling pathway (Hanke et al. 2001). 

Since CB1R activation results in a reduction of AT1R-mediated MAPK activation in both 

cerebellar and brainstem cells, we can conclude that CB1R agonists can offset AT1R-

mediated deleterious effects which are mediated by MAPK activation. Owing to CB1Rs 

neuroprotective role, the receptor is known to have important homeostatic regulatory 

functions in astrocytes (Carracedo et al. 2004). The CB1R could well be keeping a check 

on incessant MAPK activation that may come about by prolonged agonist treatment.  

In addition to identifying astroglial CB1R impairment in SHR brains, we have identified a 

new mode of crosstalk between AT1R and CB1R, that is CB1R phosphorylation by Ang 

II. Heterologous desensitization of CB1R may also serve as a new paradigm for Gq GPCR-

mediated inactivation of CB1R. Activation of Gs-coupled GPCRs such as Adenosine 
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receptors, have been demonstrated to trigger inactivation of CB1R in presynaptic neurons 

(Ferreira et al. 2015). However, activation of Gq GPCRs has been shown to transactivate 

CB1R (Turu et al. 2009). Whether the balance between inactivation or transactivation of 

the CB1R is altered under certain pathological conditions and in certain brain regions, 

needs further investigation. Owing to relatively low CB1R expression in brainstem, the 

extent of Ang II-mediated CB1R phosphorylation was greater in cerebellar astrocytes when 

compared to brainstem astrocytes. The consequence of such an inactivation mechanism 

could be relevant to cerebellar impairments that are characterized by excessive RAS 

activation. It is well known that counteracting the deleterious effects of RAS activation in 

the brain is a valuable therapeutic strategy for not only cardiovascular diseases, but also 

for neurological disorders (Gao et al. 2013). This could well be a mechanism by which an 

overactive RAS, that is observed in hypertensive conditions, is able to dampen protective 

regulatory mechanisms such as the endocannabinoid system in regions of the brain that are 

not linked to blood pressure regulation. Disturbances in normal physiological processes, 

such as repeated stress, have also been shown to elevate phosphorylated forms of the CB1R 

in rat cerebellum, but not in rat brainstem (Xing et al. 2011).  Since cerebellum has higher 

CB1R expression than the brainstem (Moldrich and Wenger 2000) (Haspula and Clark 

2016b), AT1R-mediated phosphorylation of CB1R could well be a prominent 

endocannabinoid inactivation mechanism in regions of the brains with high CB1R 

expression. Whether this or other inactivation mechanisms are prevalent in those brain 

regions where CB1R expression is greater, remains to be investigated.   

The findings from this study highlight the potential interplay between AT1Rs and CB1Rs 

in astrocytes under normal and pathological conditions. Not only can CB1R activation lead 
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to inhibition of AT1R-mediated MAPK activation, but Ang II can also induce significant 

phosphorylation of CB1R in cerebellar astrocytes, and consequentially trigger potential 

inactivation of CB1R. However, the functional consequences of these interactions need to 

be evaluated in pathological conditions such as hypertension, and neurological 

impairments such as ADHD. 
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Chapter 5 
 

Regulation of Neuroinflammatory Cytokines by Angiotensin II and ACEA in SHR 

Astrocytes 

 

Abstract  

Background: An imbalance in the levels of pro- and anti-inflammatory cytokines 

has been reported in the brains of SHRs. Neuroinflammation in the cardioregulatory 

regions of brainstem and hypothalamus has been theorized to be a major contributor to the 

development of hypertension. Although cannabinoids exert potent neuroprotective and 

anti-inflammatory effects, their role in regulation of cytokines in hypertension has not been 

investigated. Methods: Astrocytes were isolated from the brainstem and cerebellum of 

Wistar rats and SHRs, a model of hypertension and ADHD. Astrocytes were then treated 

with 100 nM Ang II or 10 nM ACEA, both alone and in combination, for 12 and 24 hours. 

Following treatments, IL-1β and IL-10 mRNA and secreted protein levels, were measured 

using qPCR and ELISA, respectively. Results: Both IL-1β and IL-10 levels were 

significantly higher in brainstem astrocytes, but not cerebellar astrocytes, of SHRs when 

compared to Wistar rats. The ability of Ang II and ACEA to alter IL-10, and not IL-1β 

levels, were significantly different in brainstem astrocytes of SHRs when compared to 

Wistar rats. Neither treatments had potent effects on altering the secreted cytokine 

fractions. The effect of ACEA on IL-10 mRNA levels was greater in brainstem and 

cerebellar astrocytes of Wistar rats when compared to SHRs. This is indicative of potential 

hypofunction of CB1Rs in SHR brainstem astrocytes. Co-treatment with Ang II and ACEA 
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resulted in a greater neutralization of Ang II-mediated increases of IL-10 protein and 

mRNA levels in brainstem astrocytes of SHRs when compared to Wistar rats. Conclusion: 

Differences in basal cytokine levels are indicative of a dysregulated neuroinflammatory 

state in brainstem astrocytes of SHRs when compared to Wistar rats. Both astroglial 

angiotensin and endocannabinoid systems had seemingly opposing roles in regulating 

neuroinflammatory cytokines in these cells. The inability of ACEA to elicit prominent anti-

inflammatory effects in SHR astrocytes is indicative of a potential CB1R hypofunction. 

Impairment of neuroprotective systems and an exaggerated neuroinflammatory response 

in early stages of hypertension, could well be major contributors to the pathogenesis of 

hypertension.  

5.1 Introduction 

SHR is a widely employed model for studying essential hypertension 

(Veerasingham and Raizada 2003). Several parallels can be drawn between development 

of hypertension in humans with SHRs. During early stages of hypertension, SHRs are 

characterized by an augmented sympathetic response - a characteristic also seen in 

borderline hypertensives (Julius et al. 1991) (Mancia and Grassi 2014).  In fact autonomic 

dysfunction, observed at early stages of hypertension, has been implicated to have a causal 

role in the development of essential hypertension (Mancia et al. 1999). Moreover, 

inflammation in the cardiovascular centers of the brain, is deemed to be a major contributor 

to an augmented sympathetic drive observed in hypertensive conditions (Winklewski et al. 

2015). Neuroinflammation is not only a hallmark of several neurological disorders, but is 

also a feature of cardiovascular diseases (Shi et al. 2010b) (Waki and Gouraud 2014). An 

imbalance in the levels of pro- and anti-inflammatory cytokines, was observed in the brains 
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of SHRs when compared to their normotensive controls (Agarwal et al. 2011) (Waki et al. 

2008a). Direct injection of IL-1β into the PVN, a cardiovascular center in the 

hypothalamus, resulted in an increase in renal sympathetic nerve activity and mean arterial 

pressure, which is strong evidence of causality between an elevation in pro-inflammatory 

cytokines in the brain and hypertension (Shi et al. 2011).  

An overactive RAS has been reported in SHR brains (Veerasingham and Raizada 

2003). Ang II, the primary effector peptide of the RAS, is able to elicit prominent pro-

inflammatory (Shi et al. 2010a), and pro-oxidant effects (Liu et al. 2011a) in the brain via 

activation of the AT1R. Ang II has been demonstrated to alter the balance of inflammatory 

cytokines in the PVN, by shifting it towards a pro-inflammatory state, via activation of the 

microglial AT1R (Shi et al. 2010a).  This shift has been shown to be a major mechanism 

by which Ang II elevates sympathetic activity. But a neuroinflammatory state is also 

observed in the cardiovascular centers in brainstems of young prehypertensive and adult 

SHRs (Waki et al. 2008a) (Paton and Waki 2009). Interestingly in the brainstem, both 

neuronal and astroglial AT1Rs are key players in the regulation of sympathetic outflow 

from the brain. Ablation of the astroglial AT1R in the brainstem has been demonstrated to 

cause a decrease in sympathetic activity in a heart failure model, further highlighting 

astroglial AT1R as a necessary component in the elevation of sympathetic activity 

(Isegawa et al. 2014a). It is well known that astrocytes along with microglia are important 

in regulating neuroinflammatory states in the brain in several neurological disorders. 

Considering that Ang II has pro-hypertensive effects via the activation of brainstem 

astroglial AT1Rs, it becomes necessary to investigate the possible role of 

neuroinflammatory cytokines in the development of hypertension. 
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Interestingly, the presence of prominent astrogliosis (Tomassoni et al. 2004) and  a 

neuroinflammatory state (Agarwal et al. 2011) in SHRs, makes it an ideal model to 

investigate  neurological disorders. Apart from hypertension, SHRs are also a validated 

model of ADHD (Adriani et al. 2003). Several personality traits that are present in ADHD 

individuals such as hyperreactivity to external stimuli, shorter attention spans and a 

predisposition towards impulsive behavior, are also observed in SHRs (Adriani et al. 

2003). In the recent past, the cerebellum has received considerable attention in the 

pathogenesis of ADHD (Goetz et al. 2014b). Cerebellar functions are compromised in 

ADHD individuals (Goetz et al. 2014a) (Goetz et al. 2014b). In addition, a significant 

reduction in the size of cerebellar lobes are also observed (Bledsoe et al. 2011). SHRs also 

have compromised cerebellar functions (Goetz et al. 2014b). Prominent astrogliosis is 

observed in the SHR cerebellum, which indicates that astroglial dysfunction is a major 

contributor to this phenotype (Yun et al. 2014). Although significant correlation has been 

shown between hypertension and ADHD, the possible role of the RAS in cerebellar 

dysfunction in SHRs has not been investigated. Interestingly, multiple studies have 

demonstrated that cannabinoids can cause significant improvement in symptoms 

associated with ADHD (Strohbeck-Kuehner et al. 2008) (Milz and Grotenhermen., 2015) 

(Adriani et al. 2003). 

In the context of neuroinflammation, the endocannabinoid system has been 

extensively investigated in several neurological disorders (Di Marzo 2008). The ability of 

this system to elicit prominent protection against excitotoxicity (Maresz et al. 2007) and 

pro-inflammatory states (Molina-Holgado et al. 2003), makes it a prime therapeutic target 

in disorders that have a major neuroinflammatory component. Astrocytes not only express 



146 

 

CB1R, but are capable of synthesizing endocannabinoids as well (Walter et al. 2002). 

Cannabinoids exert their protective effects via the activation of the CB1R (Molina-Holgado 

et al. 2003) (Molina-Holgado et al. 2002a). CB1Rs have been demonstrated to crosstalk 

with several receptors (Turu and Hunyady 2010), and thereby can potentiate or suppress 

the receptor’s functions. By employing drugs that modulate CB1R actions as adjunct 

therapies, it would enable us to design better therapeutic strategies. Not only does CB1Rs 

crosstalk with AT1Rs at multiple levels, that is heterodimerization or Ang II-mediated 

changes in CB1R expression (Turu et al. 2009) (Rozenfeld et al. 2011) (Haspula and Clark 

2016b), but cannabinoids have been demonstrated to exert both functionally similar 

(Rozenfeld et al. 2011) and functionally diametric effects (Szekeres et al. 2012) in response 

to Ang II. For instance, in hepatic cells, CB1R inhibition was demonstrated to decrease 

AT1R-mediated deleterious effects in hepatic cells and reduce AT1R expression in 

vascular cells (Rozenfeld et al. 2011) (Tiyerili et al. 2010). However, another study 

reported that CB1R inhibition resulted in a decrease in AT1R-mediated vasoconstriction 

(Szekeres et al. 2012). In astrocytes however, certain critical functions of AT1Rs and 

CB1Rs have been demonstrated to be antagonistic to each other. Activation of AT1Rs is 

associated with astrocyte senescence (Liu et al. 2011a) and exacerbation of pro-

inflammatory states (Gowrisankar and Clark 2016c). CB1R activation on the other hand, 

exerts prominent astro-protective (Gómez Del Pulgar et al. 2002), neuroprotective and anti-

inflammatory states (Molina-Holgado et al. 2003).  Intriguingly, studies investigating the 

role of CB1R in the regulation of neuroinflammatory states in hypertension, are not 

available. We and others have already demonstrated several levels of crosstalk between 

these two receptors (Haspula and Clark 2016a) (Haspula and Clark 2016b). The 
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consequence could well be potentiation or antagonism of AT1R-mediated deleterious 

effects. This study aims at understanding the functional consequences of AT1R and CB1R 

activation, both alone and in combination, in the regulation of inflammatory cytokines, IL-

1β and IL-10, in primary astrocytes prepared from the brainstem and cerebellum of SHR 

brains. The ability of CB1R activation to neutralize (or potentiate) Ang II-mediated pro-

inflammatory effects, will be addressed from the results of this study.   

5.2 Materials and methods 

i) Materials 

Ang II was obtained from Bachem (Torrance, CA). ACEA or Arachidonyl-2'-

chloroethylamide, the specific CB1R agonist, was purchased from Tocris (Bristol, UK). 

Sodium deoxycholate (DOC) (89904) was purchased from Thermo Fischer (San Diego, 

CA). qPCR products including the Taqman primer sets for IL-1β (Rn00580432_m1), IL-

10 (Rn00563409_m1), and beta-actin (Rn00667869_m1) were obtained from Applied 

Biosystems (Foster City, CA, USA). ELISA kits for IL-1β (BMS630) and IL-10 (BMS629) 

were purchased from eBioscience (San Diego, CA). The BCA protein kit was obtained 

from Pierce Biotechnology (Rockford, IL). All other chemicals were purchased from either 

VWR International (Suwannee, GA), Fisher Scientific (Waltham, MA) or Sigma (St. 

Louis, MO).  

ii) Isolation and culture of primary astrocytes 

Timed pregnant Wistar rats and SHRs were obtained from Charles River 

Laboratories (Wilmington, MA) and maintained in the ALAAC-accredited animal facility 

of Nova Southeastern University. All animal protocols were approved by the University 

Institutional Animal Care and Use committee. The brainstem and cerebellar astrocyte 
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cultures were prepared using mechanical dissociation as previously described (Tallant and 

Higson 1997). Briefly, brains from 3-day old rat pups were isolated and the cerebellum and 

brainstem were carefully separated from each brain. These regions are visible to the naked 

eye and can be clearly differentiated from each other. Astrocyte cultures were then 

prepared from the pooled brainstem and the pooled cerebellum by physical dissociation. 

The cells were grown in DMEM/F12 culture media containing 10% FBS, 10,000 I.U/mL 

penicillin, 10,000 µg/mL streptomycin and 25 µg/mL amphotericin B at 37°C in a 

humidified incubator (5% CO2 and 95% air). The cell cultures were fed every 3-4 days.  

On attaining confluency, the cells were subjected to vigorous shaking overnight 

which resulted in the detachment of microglia, oligodendrocytes and cell debris. 

Subsequently, the cell cultures were detached with trypsin/EDTA (0.05% trypsin, 0.53mM 

EDTA) and replated at a ratio of 1:10. The astrocyte-enriched cultures were fed once every 

3 days until they were about 90% confluent. Before all cell treatments, the cultures were 

made quiescent by treating for 48 hours with DMEM/F12 culture media containing 10,000 

I.U/mL penicillin, 10,000 µg/mL streptomycin and 25 µg/mL amphotericin B. All 

subsequent treatments were conducted in serum free media. The purity of the enriched 

astrocyte cultures were determined using Flow cytometry, western blotting and qPCR as 

shown previously (Haspula and Clark 2016b).  

iii) Cell treatments 

For determining the effect of RAS activation on IL-1β and IL-10 levels, astrocytes 

were treated with 100 nM Ang II and 10 nM ACEA for 12 and 24 hours alone. In order to 

determine the ability of the CB1R agonist, ACEA, to neutralize or potentiate Ang II’s 
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effect, astrocytes were co-treated with both Ang II (100 nM) and ACEA (10 nM) for 12 

and 24 hours.  

iv) Total protein extraction and measurement from conditioned medium  

Immediately following treatments, the conditioned medium was collected and 

subjected to centrifugation at 1,500 rpm for 10 min at 4°C. The supernatant was collected 

and stored at -80°C until further use. Owing to low amounts of secreted IL-1β and IL-10 

in the conditioned medium, the protein was concentrated using the DOC-TCA precipitation 

method as previously described (Chevallet et al. 2007). The protein was then measured 

using the BCA assay as per the manufacturer’s instructions. Equal concentrations of 

proteins samples (10 ug) were then employed for ELISA. ELISA for IL-1β and IL-10 was 

then performed as per the manufacturer’s protocol.    

v) Total RNA extraction and mRNA expression 

Total RNA was extracted from astrocytes using the trizol method and subjected to 

a DNA cleaning step before determining the RNA concentrations using a Bio-Rad 

SmartSpecTM spectrophotometer. Reverse transcription from total RNA (2 µg) to 

complementary strand DNA was done using a high capacity reverse transcription reagent 

kit (Applied Biosystems). qPCR was performed using the TaqMan Universal master mix, 

and the TaqMan gene expression primers (Applied Biosystems) for the IL-1β and IL-10 

genes. Samples were analyzed in 96-well plates using the StepOneTMplus Real time PCR 

system from Applied Biosystems. For the experiments estimating the basal expression of 

cytokines, data are expressed as fold change in the expression of genes of interest (IL-1β 

and IL-10) in SHR samples, as compared with reference genes (IL-1β or IL-10) in Wistar 

samples. For the experiments determining the effect of Ang II and/or ACEA, data are 
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expressed as fold-change in the expression of genes of interest (IL-1β or IL-10) in treated 

cells, as compared with the reference gene (IL-1β or IL-10) in untreated cells. β-actin was 

employed as the housekeeping gene. 

vi) Statistical analysis 

A 2x2 mixed ANOVA was employed to determine if there were any significant 

differences in the basal expression of IL-1β and IL-10 alone, between SHRs and Wistar 

rats. This was followed by a Bonferoni T test to determine differences between groups. A 

two-way ANOVA was employed for testing the effect of treatments on IL-1β and IL-10 

alone, in SHRs as compared to Wistar rats. A Bonferoni T test was employed to determine 

significant differences between treatments and the respective control. In order to make 

comparisons between identical time points from different rat models, a two-tailed student 

t test was employed. All data is expressed as mean± SEM for 6 or more experiments. 

5.3 Results 

i) Basal expression of IL-1β and IL-10 in brainstem astrocytes 

Both IL-1β and IL-10 levels were reported to be different in adult SHR brains when 

compared to their normotensive controls (Agarwal et al. 2011). Distinct 

neuroinflammatory states have been reported in the brainstem cardiovascular centers of 

prehypertensive as well as hypertensive SHRs (Waki et al. 2008a) (Waki et al. 2008b). In 

order to determine whether brainstem astrocytes contribute to the inflammatory states 

observed in hypertension, we employed astrocytes isolated from the brainstems of neonatal 

SHRs and Wistar rats.  
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In brainstem astrocytes, both ELISA (Fig 5.1A) and qPCR (Fig 5.1B) data indicates that 

IL-1β levels were significantly higher in SHRs when compared to Wistar rats. 

Interestingly, IL-10 levels were also significantly higher in SHR brainstem astrocytes (Fig 

5.1C, 5.1D). The mean Ct values for SHR brainstem for IL-1β was 25 as opposed to 31 in 

Wistar brainstem samples. In the case of IL-10, the Ct value for SHR brainstem was 32 as 

opposed to 36 in Wistar brainstem.   

 

Fig 5.1A: Basal expression of IL-1β secreted protein in brainstem astrocytes: ELISA 
was employed to compare levels of secreted IL-1β in brainstem astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (**denotes p < 0.01 for SHR versus 
Wistar samples). 



152 

 

 

Fig 5.1B: Basal expression of IL-1β mRNA in brainstem astrocytes: qPCR was 
employed to compare levels of IL-1β mRNA in brainstem astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (**denotes p < 0.01 for SHR versus 
Wistar samples). 

 

 

Fig 5.1C: Basal expression of IL-10 secreted protein in brainstem astrocytes: Elisa 
was employed to compare levels of secreted IL-10 in brainstem astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
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isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for SHR versus 
Wistar samples). 

 

Fig 5.1D: Basal expression of IL-10 mRNA in brainstem astrocytes: qPCR was 
employed to compare levels of IL-10 mRNA in brainstem astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (**denotes p < 0.01 for SHR versus 
Wistar samples). 

ii) Basal expression of IL-1β and IL-10 in cerebellar astrocytes 

In cerebellar astrocytes as well, the basal levels of IL-1β, both secreted protein (Fig 5.2A) 

and mRNA (Fig 5.2B), were higher again in SHRs when compared to Wistar rats. The 

differences however were not as apparent as that observed in brainstem samples. The Ct 

value for IL-1β in SHR cerebellum was 29 and in Wistar cerebellum it was 30.5. Secreted 

basal IL-10 protein levels were higher in Wistar rats when compared to SHRs (Fig 5.2C). 

IL-10 mRNA levels on the other hand were not significantly different (Fig 5.2D). The Ct 

value for IL-10 in SHR cerebellum samples was 34 and in Wistar cerebellum it was 35.  
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Fig 5.2A: Basal expression of IL-1β secreted protein in cerebellar astrocytes: ELISA 
was employed to compare levels of secreted IL-1β in cerebellar astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for SHR versus 
Wistar samples). 

 

 

Fig 5.2B: Basal expression of IL-1β mRNA in cerebellar astrocytes: qPCR was 
employed to compare levels of IL-1β mRNA in cerebellar astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for SHR versus 
Wistar samples). 
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Fig 5.2C: Basal expression of IL-10 secreted protein in cerebellar astrocytes: ELISA 
was employed to compare levels of secreted IL-10 in cerebellar astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for SHR versus 
Wistar samples). 

 

 



156 

 

Fig 5.2D: Basal expression of IL-10 mRNA in cerebellar astrocytes: qPCR was 
employed to compare levels of IL-10 mRNA in cerebellar astrocyte samples between 
Wistar and SHRs. Each value represents the mean ± SEM of preparations of astrocytes 
isolated from six or more litters of neonatal rat pups.  

iii) Effect of treatments on IL-10 levels in brainstem astrocytes 

To determine the roles of astroglial angiotensin and cannabinoid systems in 

regulating IL-10 levels in brainstem, we employed brainstem astroglial samples that were 

pretreated with either Ang II or ACEA, both alone and in combination. These were 

subjected to ELISA and qPCR measurements in order to determine the secreted protein 

fraction and mRNA transcript levels of IL-10, respectively. Both Ang II and ACEA had 

significant effects on the mRNA levels, while their effects on the secreted fraction was not 

as prominent. Nevertheless, we observed that Ang II treatment decreased both IL-10 

protein (Fig 5.3A, 5.3C) and IL-10 mRNA (Fig 5.3B, 5.3D) levels, in SHR and Wistar rat 

brainstem astrocytes. Its effect on reducing the secreted IL-10 fraction however was more 

prominent in SHRs than in Wistar rat (Fig 5.3A, 5.3C) brainstem astrocytes. ACEA had a 

prominent effect on elevating IL-10 protein (Fig 5.3A, 5.3C) and mRNA (Fig 5.3B, 5.3D) 

levels, in Wistar when compared to SHR brainstem astrocytes. Treating astrocytes with a 

combination of Ang II and ACEA resulted in a neutralization of Ang II mediated decreases 

in Wistar (Fig 5.3A, 5.3B), but not in SHR brainstem astrocytes levels (Fig 5.3C, 5.3D).  
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Fig 5.3A: Effect of treatments on IL-10 secreted protein levels in Wistar brainstem 

astrocytes: ELISA was employed to compare levels of secreted IL-10 in Wistar brainstem 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples). 
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Fig 5.3B: Effect of treatments on IL-10 mRNA levels in Wistar brainstem astrocytes: 
qPCR was employed to compare levels of IL-10 mRNA in Wistar brainstem astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples). 
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Fig 5.3C: Effect of treatments on IL-10 secreted protein levels in SHR brainstem 

astrocytes: ELISA was employed to compare levels of secreted IL-10 in SHR brainstem 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples, and + denotes p < 0.05 for SHR 
versus Wistar samples- see fig 5.3A). 
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Fig 5.3D: Effect of treatments on IL-10 mRNA levels in SHR brainstem astrocytes: 
qPCR was employed to compare levels of IL-10 mRNA in SHR brainstem astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times are 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples, and + denotes p < 0.05 for SHR versus Wistar samples- 
see fig 5.3B).  

iv) Effect of treatments on IL-10 levels in cerebellar astrocytes 

The immunomodulatory roles of both angiotensin and endocannabinoid systems 

are not well understood in cerebellum, under both physiological as well as in pathological 

conditions. As mentioned earlier, gross anatomical and functional changes have been 

reported in ADHD individuals and SHRs, a model of ADHD (Goetz et al. 2014b) (Bledsoe 

et al. 2011) (Yun et al. 2014). Since RAS hyperactivity (Veerasingham and Raizada 2003) 

and endocannabinoid hypofunctionality (Adriani et al. 2003) have been both reported in 

SHR brains, we investigated the roles of these two systems in regulating the levels of 

neuroinflammatory cytokines in SHR and Wistar rat cerebellar astrocytes. Ang II treatment 

resulted in a decrease in IL-10 secreted protein and mRNA levels again in cerebellar 
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astrocytes of both rat models (Fig 5.4A-D). The effect was more prominent at the level of 

mRNA in both SHRs and Wistar rat cerebellar astrocytes. Similar to what we observed in 

brainstem astrocytes, ACEA treatment in cerebellar astrocytes resulted in a significant 

increase in the levels of IL-10 mRNA, and only a partial increase in the levels of secreted 

IL-10 in both rat models (Fig 5.4A-D). Although ACEA was able to increase the levels of 

IL-10 mRNA, a combination of Ang II and ACEA on cerebellar astrocytes did not result 

in an increase in IL-10 levels (Fig 5.4B and 5.4D).  

 

Fig 5.4A: Effect of treatments on IL-10 secreted protein levels in Wistar cerebellar 

astrocytes: ELISA was employed to compare levels of secreted IL-10 in Wistar cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times are 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples). 
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Fig 5.4B: Effect of treatments on IL-10 mRNA levels in Wistar cerebellar astrocytes: 

qPCR was employed to compare levels of IL-10 mRNA in Wistar cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times are 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples). 

 



163 

 

 

Fig 5.4C: Effect of treatments on IL-10 secreted protein levels in SHR cerebellar 

astrocytes: ELISA was employed to compare levels of secreted IL-10 in SHR cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times are 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples, and + denotes p < 0.05 for SHR 
versus Wistar samples- see Fig 5.4A). 
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Fig 5.4D: Effect of treatments on IL-10 mRNA levels in SHR cerebellar astrocytes: 
qPCR was employed to compare levels of IL-10 mRNA in SHR cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples, and + denotes p < 0.05 for SHR versus Wistar samples- 
see Fig 5.4B). 

v) Effect of treatments on IL-1β levels in brainstem astrocytes 

An increase in IL-1β is associated with an elevation in sympathetic activity (Shi et 

al. 2011). Chronic Ang II infusion resulted in an elevation of IL-1β levels in PVN via glial 

cell activation (Shi et al. 2010a). Interestingly, cannabinoids, via the activation of the glial 

CB1R, has been demonstrated to neutralize IL-1β surges as a consequence of inflammatory 

insults (Molina-Holgado et al. 2003). Whether activation of CB1R or AT1R has a role in 

altering IL-1β levels, has not been studied yet. Brainstem astrocytes treated with Ang II 

resulted in only a moderate increase in IL-1β levels, both protein and mRNA, in both 

models (Fig 5.5A-D). Interestingly, the effect of Ang II in brainstem astrocytes was 

partially greater in Wistar rats (Fig 5.5A, 5.5B) when compared to SHRs (Fig 5.5C, 5.5D). 
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ACEA did not have a significant effect on IL-1β mRNA levels in both models (Fig 5.5B, 

5.5D). A partial reduction in IL-1β levels in SHR brainstem astrocytes (Fig 5.5C, 5.5D) 

was observed in response to ACEA treatment. Interestingly, treatment of Wistar brainstem 

astrocytes with ACEA, resulted in an increase in IL-1β protein levels (Fig 5.5A), albeit the 

increase was less than 50%. The combination treatment of Ang II with ACEA resulted in 

an increase in IL-1β protein and mRNA levels, and this effect was similar to Ang II alone 

in Wistar brainstem astrocytes (Fig 5.5A, 5.5B). ACEA however was effective in partially 

neutralizing Ang II-mediated increases in IL-1β protein and mRNA levels in SHR 

brainstem astrocytes (Fig 5.5C, 5.5D).   

 

Fig 5.5A: Effect of treatments on IL-1β secreted protein levels in Wistar brainstem 

astrocytes: ELISA was employed to compare levels of secreted IL-1β in Wistar cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples). 
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Fig 5.5B: Effect of treatments on IL-1β mRNA levels in Wistar brainstem astrocytes: 
qPCR was employed to compare levels of IL-1β mRNA in Wistar cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples). 
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Fig 5.5C: Effect of treatments on IL-1β secreted protein levels in SHR brainstem 

astrocytes: ELISA was employed to compare levels of secreted IL-1β in SHR cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples, and + denotes p < 0.05 for SHR 
versus Wistar samples- see Fig 5.5A). 
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Fig 5.5D: Effect of treatments on IL-1β mRNA levels in SHR brainstem astrocytes: 
qPCR was employed to compare levels of IL-1β mRNA in SHR cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples, and + denotes p < 0.05 for SHR versus Wistar samples- 
see Fig 5.5B). 

vi) Effect of treatments on IL-1β levels in cerebellar astrocytes 

Both Ang II and ACEA were observed to significantly alter the levels of IL-10 

mRNA in cerebellar astrocytes. Whether these systems can elicit an effect on the pro-

inflammatory cytokine, IL-1β, is the focus of this experiment. Interestingly, Ang II 

treatment resulted in a pronounced decrease in IL-1β mRNA levels in both Wistar and SHR 

cerebellar astrocytes (Fig 5.6B, 5.6D). In the case of secreted data, Ang II again did not 

significantly change the levels of IL-1β from astrocytes (Fig 5.6A, 5.6C). Unlike brainstem 

astrocytes, ACEA was effective in lowering the secreted IL-1β fraction in cerebellar 

astrocytes of both rat models (Fig 5.6A, 5.6C). ACEA treatment was ineffective in 
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significantly modulating Ang II-mediated changes either at the level of secreted IL-1β or 

at the level of IL-1β mRNA (Fig 5.6A-D). 

 

Fig 5.6A: Effect of treatments on IL-1β secreted protein levels in Wistar cerebellar 

astrocytes: ELISA was employed to compare levels of secreted IL-1β in Wistar cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples). 
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Fig 5.6B: Effect of treatments on IL-1β mRNA levels in Wistar cerebellar astrocytes: 

qPCR was employed to compare levels of IL-1β mRNA in Wistar cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples). 
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Fig 5.6C: Effect of treatments on IL-1β secreted protein levels in SHR cerebellar 

astrocytes: ELISA was employed to compare levels of secreted IL-1β in SHR cerebellar 
astrocyte samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The 
treatment times were 12 and 24 hours. Each value represents the mean ± SEM of 
preparations of astrocytes isolated from six or more litters of neonatal rat pups. 
(*denotes p < 0.05 for treated versus untreated samples, and + denotes p < 0.05 for SHR 
versus Wistar samples- see fig 5.6A). 
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Fig 5.6D: Effect of treatments on IL-1β mRNA levels in SHR cerebellar astrocytes: 

qPCR was employed to compare levels of IL-1β mRNA in SHR cerebellar astrocyte 
samples treated with Ang II, ACEA and a combination of Ang II and ACEA. The treatment 
times were 12 and 24 hours. Each value represents the mean ± SEM of preparations of 
astrocytes isolated from six or more litters of neonatal rat pups. (*denotes p < 0.05 for 
treated versus untreated samples, and + denotes p < 0.05 for SHR versus Wistar samples- 
see fig 5.6B). 

5.4 Discussion 

Although both the RAS and the endocannabinoid system have well-established 

roles in modulating neuroinflammatory states, their ability to alter neuroinflammatory 

markers in SHRs, has not been well-investigated. The current study not only reinforces the 

immunomodulatory roles of the two systems, but also highlights their importance in 

pathological conditions such as hypertension. In addition to investigating these systems, 

the role of astrocytes in regulating neuroinflammatory states, under physiological and 

pathological conditions, is also reported in this study. 
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Our findings suggest that both pro-inflammatory and anti-inflammatory states are elevated 

in SHR brainstem astrocytes when compared to Wistar brainstem astrocytes. An increase 

in both IL-1β and IL-10 mRNA and protein levels, is observed in SHR brainstem astrocytes 

when compared to Wistar brainstem astrocytes. It should be noted that the cells employed 

in the current study are from neonatal pups which have not yet attained hypertensive states, 

but serves as a model for understanding the factors that contribute to genetic programming 

of hypertension. By employing cells from pre-hypertensive neonatal rat pups, we are able 

to identify candidate mechanisms that may contribute to the etiology of hypertension, and 

not mechanisms that have been dysregulated as a cause of hypertension. This principle has 

been employed by others as well (Ferrari et al. 2009).  Protective systems are upregulated 

in certain hypertensive rat models (Mirabito et al. 2014). It could be that at these early 

stages, a compensatory increase in anti-inflammatory cytokines, such as IL-10, is able to 

neutralize the deleterious effects of the pro-inflammatory cytokine, IL-1β. Since we did 

not observe a similar large difference in the levels of cytokines in cerebellar astrocytes 

between the two models, the change observed in brainstem astrocytes may well have a 

consequential role in augmentation of cardiovascular functions that are relevant to 

hypertensive conditions, such as elevation of sympathetic activity.  

The ability of Ang II to elevate levels of ROS (Liu et al. 2011a) and pro-inflammatory 

cytokines (Kandalam and Clark 2010) (Gowrisankar and Clark 2016c) in astroglial 

cultures, has already been demonstrated. Whether Ang II can induce pro-inflammatory 

cytokines, and neutralize anti-inflammatory cytokines, to a greater extent in SHR 

brainstems when compared to Wistar brainstems, has not been studied. In our study, we 

observed that Ang II significantly lowered IL-10, and elevated IL-1β, mRNA levels in SHR 
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brainstem astrocytes. The Ang II effect on secreted fraction of both cytokines however was 

not pronounced. When the two models were compared, Ang II-mediated changes on IL-10 

protein levels was greater than its effect on elevating IL-1β levels in SHRs. Previously, we 

have reported that Ang II has a greater effect on the pro-inflammatory cytokine IL-6 levels 

in Wistar brainstem astrocytes when compared to SHR brainstem astrocytes prepared from 

neonatal pups (Gowrisankar and Clark 2016c). Based on this data and our current findings, 

we can conclude that Ang II’s major mechanism of action, during the early stages of 

hypertension, could well involve dampening of anti-inflammatory cytokines, such as IL-

10, rather than elevating pro-inflammatory cytokines, such as IL-1β and IL-6. Ang II was 

reported to enhance vascular inflammation by downregulating protective/anti-

inflammatory systems such as PPAR-γ (Tham et al. 2002b).  Ang II was able to 

downregulate the CB1R in brainstem astrocytes isolated from SHRs, but not Wistar rats 

(Haspula and Clark 2016b). Based on these findings, we can theorize that Ang II could be 

eliciting its deleterious effects in the early stages of hypertension by dampening protective 

or anti-inflammatory systems in astrocytes.  

Several studies have highlighted the roles of the CB1R in promoting anti-inflammatory 

responses in astrocytes (Molina-Holgado et al. 2002a) (Molina-Holgado et al. 2003). In 

our study, ACEA treatment neutralized the Ang II-mediated decrease in IL-10 levels in 

brainstem astrocytes isolated from Wistar rats. But its effect on neutralizing Ang II-

mediated changes in IL-10 levels in brainstem astrocytes of SHRs was not as prominent as 

that observed in brainstem astrocytes isolated from Wistar rats. This could well be due to 

a hyperactive RAS, coupled with a hypofunctional CB1R effect in SHR brainstem 

astrocytes. The ability of ACEA to elicit a greater anti-inflammatory effect in brainstem 
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astrocytes from Wistar rats when compared to SHRs, suggests a dampened CB1R response 

in hypertensive conditions in brainstem. CB1R dysregulation has been reported in several 

pathological conditions, that encompass both cardiovascular and neurological disorders 

(Pacher et al. 2005b) (Di Marzo 2008) (Miller and Devi 2011). Our laboratory and others 

have reported a decrease in CB1R expression in SHR brainstem when compared to their 

normotensive controls (Haspula and Clark 2016b) (Brozoski et al. 2009), and an increase 

in the levels of inactivated forms of CB1R (Haspula and Clark 2016b). Dampening of 

protective systems, such as the endocannabinoid system, observed during prehypertensive 

conditions, could well be a significant factor in the transformation of prehypertension to 

an established hypertensive state. However, cannabinoids were demonstrated to not only 

promote anti-inflammatory states, but can also result in elevation of pro-inflammatory 

effects (Nagarkatti et al. 2009). ACEA treatment did result in a slight elevation of secreted 

IL-1β protein in brainstem astrocytes under normotensive conditions.  

While Ang II mostly reduced both mRNA and protein levels of the anti-inflammatory 

cytokine, IL-10, in brainstem astrocytes, the same was not observed in cerebellar 

astrocytes. In the case of cerebellar astrocytes, Ang II lowered IL-1β mRNA levels and 

partially elevated IL-1β protein levels. A lack of correlation between mRNA and protein 

may be attributed to several factors (Maier et al. 2009). But a decrease in IL-1β mRNA 

levels by Ang II highlights a possible role of protective systems such as the AT2R and 

possible crosstalk with CB1R in cerebellar astrocytes. We previously observed an increase 

in CB1R expression as well in SHR cerebellar astrocytes, which have been pretreated with 

Ang II (Haspula and Clark 2016b). This effect was mediated by both AT1Rs and AT2Rs, 

suggesting a possible protective role of the AT2R in cerebellum. AT2R activation has been 
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demonstrated to increase IL-10 and suppress pro-inflammatory effects (Dhande et al. 

2013). Unpublished data from our laboratory suggests that AT2R levels were increased in 

cerebellar astrocytes of SHRs when compared to Wistar rats. An increase in AT2R levels, 

observed in SHR cerebellar astrocytes, could well be one of the many protective 

mechanisms that are evident at the early stages of hypertension. Ang II however is not 

devoid of pro-inflammatory effects in cerebellar astrocytes. A significant decrease in IL-

10 mRNA and protein levels, in response to Ang II, is observed in cerebellar astrocytes 

from both models. It could well be that some of Ang II’s pro-inflammatory effects in 

cerebellar astrocytes is neutralized by its anti-inflammatory effects, the latter being 

mediated by the AT2R. Further investigations are underway to determine the receptor 

involved in mediating this effect.  

The effects of ACEA in cerebellar astrocytes was similar to that observed in brainstem 

astrocytes at the level of IL-10 mRNA. Following ACEA treatment, the peak increase in 

IL-10 mRNA was significantly greater in cerebellar astrocytes of Wistar rats when 

compared to SHRs. Interestingly, in the case of cerebellar astrocytes, ACEA was able to 

again elevate IL-1β levels, on this occasion however it was at the level of mRNA. This data 

confirms a possible low level pro-inflammatory effects of CB1R activation under normal 

physiological conditions, since partial pro-inflammatory effects were also observed in both 

brainstem and cerebellar astrocytes under normotensive conditions. ACEA was mostly 

ineffective in counteracting Ang II-mediated alteration in IL-1β and IL-10 levels in 

cerebellar astrocytes. An increase in the phosphorylated forms of the CB1R, has been 

demonstrated to result in desensitization and inactivation of CB1R (Garcia et al. 1998). 

Ang II triggered potent CB1R phosphorylation in cerebellar astrocytes of both SHRs and 
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Wistar rats (Haspula and Clark 2016a). Ang II via AT1R not only alters neuroinflammatory 

states, but could also inactivate the endocannabinoid system by elevating the 

phosphorylated forms of the CB1R. It could well be that in cerebellar astrocytes, ACEA is 

ineffective in neutralizing some of Ang II’s effects since Ang II via AT1R is able to 

desensitize CB1R more so in cerebellar than in brainstem astrocytes.  

As the peak effects for the secreted cytokine fraction were less than 2-fold for both Ang II 

and ACEA, either alone or in combination, we can conclude that neither Ang II no ACEA 

can cause a significant spike in the secretion profile of neuroinflammatory cytokines from 

astrocytes. It can however, significantly alter the levels of IL-1β and IL-10 mRNA levels 

in brainstem and cerebellar astrocytes isolated from both models. Factors secreted from 

microglial cells, in response to inflammatory or neurotoxic insults, were reported to act as 

triggers to mobilize cytokines from astrocytes (Shinozaki et al. 2014). Since our cell culture 

is devoid of microglial cells, it could well be that the translational and secretory machinery 

is regulated by these other factors. Nevertheless, both astrocytes and microglia are major 

players in regulating neuroinflammatory states in the brain. But most of the available data 

regarding Ang II-mediated neuroinflammation, is mainly restricted to microglial cells (Shi 

et al. 2010a). In addition to highlighting the contrasting roles of the two systems, RAS and 

endocannabinoid system, in the regulation of neuroinflammatory cytokines, the findings 

reported in this study provide clear evidence of an inflammatory response that is generated 

from an astrocyte enriched culture. An exaggerated basal inflammatory response observed 

in SHR brainstem astrocytes, underscores the importance of brainstem astrocytes in the 

development of hypertension. Whether CB1R hypofunction and Ang II-mediated 

neuroinflammation in brainstem astrocytes, is an integral component of the dysregulated 
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molecular machinery that contributes to the pathogenesis of hypertension, remains to be 

investigated 
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Chapter 6 

 

Conclusion  

 

6.1 Overview 

Imbalances of the levels of inflammatory cytokines in the brain are ascribed as 

being a key factor in the etiology of cardiovascular and neurological disorders (Winklewski 

et al. 2015) (Stolp 2013) (Deverman and Patterson 2009) (Frank-Cannon et al. 2009). SHR, 

a widely-used model to investigate hypertension and ADHD, is characterized by RAS 

hyperactivity and astroglial dysfunction (Matsuura et al. 2002) (Tomassoni et al. 2004) 

(Veerasingham and Raizada 2003). While Ang II-induced pro-oxidant and pro-

inflammatory effects in the CNS have been reported by several groups (Kang et al. 2009) 

(Carlson and Wyss 2008) (Zhang et al. 2010), the importance of the glial AT1R in 

mediating the deleterious effects of Ang II, has come to the fore only in the recent past (Liu 

et al. 2011a) (Lanz et al. 2010) (Gowrisankar and Clark 2016c) (Isegawa et al. 2014b). 

Since astroglial dysfunction is a feature of pathological conditions that encompass 

etiologies relevant to both neurological and cardiovascular abnormalities, identifying 

molecular mechanisms that can neutralize AT1Rs, or help to revert astroglial function back 

to normalcy, is critical for the identification of viable therapeutic targets (Verkhratsky et 

al. 2012) (Reemst et al. 2016). The endocannabinoid system, and especially CB1Rs, is 

widely accepted as a crucial homeostatic regulator (Di Marzo 2009). Activation of the 

presynaptic CB1R dampens hyperactivity of neurons, while astroglial CB1R activation 

aids in resolution of neuroinflammatory and neurotoxic states in the CNS (Katona and 
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Freund 2008) (Massi et al. 2008) (Walter et al. 2004) (Gómez Del Pulgar et al. 2002). In 

the recent past, multiple groups have provided evidence of altered CNS endocannabinoid 

system activity, in both hypertension and ADHD (Brozoski et al. 2009) (Bátkai et al. 2004) 

(Adriani et al. 2003). Activation of the CB1R is associated with an improvement in indices 

of cardiovascular as well as attentional processing in SHRs (Brozoski et al. 2009) (Bátkai 

et al. 2004) (Adriani et al. 2003). Additionally, CB1R agonists and antagonists have been 

demonstrated to alter AT1R’s functionality (Rozenfeld et al. 2011) (Szekeres et al. 2012) 

(Tiyerili et al. 2010). Owing to CB1R’s anti-inflammatory and sympathoinhibitory effects 

(Sheng et al. 2005b) (Lake et al. 1997a) (Mendizábal and Adler-Graschinsky 2007), the 

endocannabinoid system is ideally placed to neutralize AT1R’s deleterious effects in 

pathological conditions.  

Hence, identification of potential hyper/hypofunctionality of RAS and endocannabinoid 

system, in SHR astrocytes, was the major focus of this study. Although RAS hyperactivity 

has been reported in SHR brainstems (Veerasingham and Raizada 2003), a potential 

neuroinflammatory link in brainstem astrocytes, has not been investigated. Another 

important aspect of this study was to investigate the consequences of RAS activation on 

CB1R expression and function. It was important to us to identify the regulators of a 

potential CB1R dysregulation in SHR astrocytes. Since the regulators of CB1R expression 

and functions, are routinely identified as being the same factors that are instrumental in the 

progression of the disorder (Miller and Devi 2011), we explored the possibility of Ang II 

being a critical factor in the alteration of endocannabinoid tone in SHR astrocytes.  

Our data strongly suggests a prominent neuroinflammatory state, and a reduction in CB1R 

activity in SHR brainstem astrocytes. However, activation of the astroglial AT1Rs in SHR 
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brainstem astrocytes, shifts the balance between pro- and anti-inflammatory cytokines 

towards the former. In the case of cerebellar astrocytes, Ang II treatment resulted in an 

elevation in both pro-inflammatory and anti-inflammatory cytokines in SHR cerebellar 

astrocytes. Albeit, the effect was only at the level of mRNA in the latter. While we did 

observe neuroinflammatory states, and a slight alteration in CB1R’s expression and 

functions in cerebellar astrocytes, the difference was not as marked as that observed in 

brainstem astrocytes of SHRs when compared to Wistar astrocytes.  CB1R activation 

predominantly opposes AT1R-mediated activation of MAPKs and an elevation in pro-

inflammatory states, in both brainstem and cerebellar astrocytes of both rat models. 

Additionally, Ang II treatment is associated with a decrease in CB1R levels in SHR 

brainstem astrocytes, and an increase in p-CB1R levels in cerebellar astrocytes of both 

models. Our data is strongly indicative of a genetically programmed CB1R dampening, 

that could result in dysregulation of neuroinflammatory cytokines, eventually leading to 

prominent pro-inflammatory states that are characteristic of hypertensive states. 

Additionally, Ang II-induced minimization of CB1R activity in astrocytes, either via 

receptor downregulation or receptor phosphorylation, could be of significance for 

pathological conditions characterized by RAS hyperactivity and/or astroglial dysfunction.   

6.2 Summary of results 

i) Astrocytes and neuroinflammatory cytokines 

Multiple studies have reported the presence of a markedly distinct 

neuroinflammatory state in SHRs when compared to their normotensive controls (Waki et 

al. 2008a) (Agarwal et al. 2011). Distinct neuroinflammatory states have been reported in 

the cardiovascular centers of prehypertensive as well as hypertensive SHRs (Waki et al. 
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2008a) (Waki et al. 2008b). In our study, we observed a significant elevation of both pro- 

and anti-inflammatory cytokines IL-1β and IL-10, respectively, in astrocytes isolated from 

the brainstems of prehypertensive SHRs when compared to Wistar rats. An increase in IL-

10 levels may serve as a compensatory mechanism that is functional at prehypertensive 

stages, but may well be lost at later stages of hypertension. Nevertheless, an augmented 

level of inflammatory cytokines at early stages of hypertension in the brainstem, is strongly 

suggestive of a causal role for neuroinflammation in the pathogenesis of hypertension.  In 

the case of cerebellar astrocytes, differences in the levels of neuroinflammatory cytokines 

were not as drastic as in the case of brainstem astrocytes, between the two models. 

However, significant increases in IL-1β mRNA, and a slight reduction in the levels of 

secreted IL-10 levels, does indicate the presence of a dysregulated neuroinflammatory state 

in SHR cerebellum as well. As the magnitude of difference was not great, their contribution 

to the pathogenesis of disorders characterized by SHR cerebellar impairments, such as 

ADHD, remains debatable.  

ii) Astroglial CB1R and p-CB1R expression  

Despite definitive evidence of its neuroprotective and anti-inflammatory effects 

(Nagarkatti et al. 2009), the role of astroglial CB1Rs in the development of cardiovascular 

diseases and their risk factors has not been well explored. Alterations in CB1R expression 

and functions have been reported in the CNS, heart and vasculature of adult SHRs 

(Brozoski et al. 2009) (Bátkai et al. 2004) (Adriani et al. 2003). However, these variations 

could be secondary to hypertension, with little or no causal effect on the development of 

hypertension. Our results indicate that CB1R expression, both protein and mRNA, was 

significantly lowered in brainstem astrocytes, but not in cerebellar astrocytes, of SHRs. 
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Also, a moderate increase in the level of p-CB1R was observed in SHR brainstem 

astrocytes.  The levels of p-CB1R observed were remarkably higher in cerebellar when 

compared to brainstem astrocytes of both models. While differences in p-CB1R and CB1R 

levels were also observed in cerebellar astrocytes, the difference was not statistically 

significant.  This is indicative of a hypofunctional CB1R in SHR brainstem astrocytes. 

Since brain cells from prehypertensive SHRs were employed, there could be a causal 

relationship between the observed basal CB1R changes in brainstem and the development 

of hypertension.  

iii) Ang II-mediated effects in astrocytes from SHRs and Wistar Rats 

a) Ang II-induced neuroinflammatory changes 

Chronic infusion of Ang II has been reported to elevate neuroinflammatory states (Kang et 

al. 2009) (Shi et al. 2010b). Elevation of neuroinflammatory cytokines and ROS are 

deemed critical intermediary steps in Ang II-mediated sympathoexcitation (Kang et al. 

2009) (Shi et al. 2010b). However, it is unknown whether Ang II elicits a pronounced 

neuroinflammatory effect in brainstem astrocytes isolated from a prehypertensive rat 

model. Ang II was effective in lowering IL-10 levels, both mRNA and secreted protein, in 

astrocytes isolated from brainstems of both SHRs and Wistar rats. Its effect however, was 

greater in SHRs when compared to Wistar brainstem astrocytes. The effect of Ang II on 

IL-1β  however was slightly greater in brainstem astrocytes isolated from Wistar rats when 

compared to SHRs. This suggests that Ang II-induced elevation of pro-inflammatory 

cytokines is not augmented under prehypertensive conditions, but its effect on lowering 

anti-inflammatory cytokines is potentiated. In the case of cerebellum astrocytes, Ang II 

lowered both IL-10 and IL-1β mRNA levels, while it had negligible effects on the secreted 
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fraction in both rat models. However, the effect in cerebellar astrocytes of SHRs was 

similar to Wistar rats. This is indicative of an absence of compensatory mechanisms in 

brainstem astrocytes under prehypertensive states, but not in cerebellar astrocytes. A 

possible AT2R involvement may well be responsible for Ang II-mediated anti-

inflammatory effects in cerebellar astrocytes.  

b) Ang II-induced MAPK activation 

MAPKs serve as vital interceding points between receptor activation and receptor 

function. AT1R stimulation was earlier reported to lead to a pronounced activation of 

MAPKs in astrocytes (Clark et al. 2001) (Clark et al. 2008) (Clark et al. 2013) (Nemoto et 

al. 2015). We have employed two MAPKs, ERK and p38, as potential indicators of 

AT1R’s activity in astrocytes from SHRs and Wistar neonatal rat pups. Our results indicate 

that the activation patterns of both ERK and p38 by Ang II were nearly identical, and they 

are driven exclusively by the AT1R. In SHR brainstem astrocytes, Ang II caused an 

augmented increase in the activation of P-ERK and P-p38. Interestingly, in cerebellar 

astrocytes, Ang II had a prominent effect on MAPKs in Wistar rats, while its effect in SHRs 

was greatly diminished. Unpublished data from our laboratory suggests that AT1R mRNA 

expression is lowered and AT2R mRNA is elevated in cerebellar astrocytes of SHRs when 

compared to Wistar rats. It could well be that the AT1R-MAPK axis is amplified in SHR 

brainstem astrocytes, but diminished in cerebellar astrocytes from the same model.  

 

c) Ang II-induced changes in CB1R and p-CB1R  
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In order to ascertain whether RAS activation leads to endocannabinoid dampening 

under prehypertensive conditions, we measured CB1R and p-CB1R levels in SHR 

astrocytes treated with Ang II. A decrease in CB1R expression or an increase in 

phosphorylation of the CB1R represents a fall in endocannabinoid function.  

Treatment of brainstem astrocytes with Ang II for 12 hours resulted in a moderate increase 

in CB1R protein expression in Wistar rats. In brainstem astrocytes isolated from SHRs 

however, a decrease was observed in response to Ang II treatment for the first 8 hours, 

followed by a normalization to baseline levels by the 12th hour. Interestingly in Wistar 

cerebellar astrocytes, Ang II treatment resulted in no significant effect for the first 8 hours, 

which was then followed by a decrease. In SHRs however, Ang II caused an increase in 

CB1R expression within the first 8 hours. With the exception of SHR cerebellar astrocytes, 

the effect was exclusively mediated by AT1Rs. The decrease in CB1R expression in SHR 

brainstem astrocytes treated with Ang II, could represent a loss in protective/compensatory 

mechanisms in prehypertensive states. This may well be preserved in other regions of the 

SHR brains, as we did observe an increase in response to Ang II in cerebellar astrocytes.    

Phosphorylation of CB1R represents another novel and significant mode of CB1R 

dampening by PKC activation (Garcia et al. 1998). Ang II-induced phosphorylation of the 

CB1R was similar in astrocytes isolated from normotensive as well as prehypertensive rats, 

suggesting that Ang II mediated inactivation of CB1R, via phosphorylation, may not be a 

contributing factor for the development of hypertension. However, substantial differences 

were observed when different regions were compared. In the case of cerebellar astrocytes, 

Ang II induced significantly higher phosphorylation of CB1R, with a peak effect of ~5 fold 

over basal. Only about a 2-fold over basal peak effect was observed in brainstem astrocytes. 
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This suggests that Ang II-induced inactivation of CB1R, via phosphorylation of the 

receptor, may be of prominence in brain regions with high CB1R expression, and in 

pathological conditions associated with high brain RAS activity. This however may not 

contribute to an impairment in cerebellar functions in SHRs since basal p-CB1R expression 

was not found to be different in SHRs when compared to Wistar rats in cerebellar 

astrocytes. 

iv) CB1R-mediated effects in astrocytes from SHRs and Wistar rats 

a) ACEA-induced neuroinflammatory changes 

Apart from neutralizing excitotoxicity, cannabinoids are also known to elicit their 

neuroprotective effect by their anti-inflammatory and anti-oxidant actions (Nagarkatti et 

al. 2009). Activation of the astroglial CB1R has been demonstrated to protect against 

neurotoxic, pro-oxidant and pro-inflammatory stimuli (Gómez Del Pulgar et al. 2002) 

(Aguirre-Rueda et al. 2015). This is due to an increase in the levels of anti-inflammatory 

cytokines, as well as a reduction in the levels of pro-inflammatory cytokines in response to 

astroglial CB1R activation. Whether astroglial CB1R’s immunomodulatory effects are 

preserved in prehypertensive conditions, was the focus of these experiments. ACEA 

treatment elevated IL-10 levels and also reduced IL-1β levels in both brainstem and 

cerebellar astrocytes of SHRs. However, its effect on IL-10 levels in brainstem astrocytes 

was significantly dampened in SHR astrocytes when compared to Wistar astrocytes. In the 

case of cerebellar astrocytes, the effect on IL-10 was slightly greater again in Wistar rat 

astrocytes when compared to SHR’s, albeit the difference was not as marked as that 

observed in brainstem.  This suggests that ACEA could elicit anti-inflammatory effects in 

both SHR brainstem and cerebellar astrocytes, in spite of changes in CB1R expression, 
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phosphorylation and a reduced ability to activate MAPK. However, its effect on altering 

IL-10 levels were markedly diminished in SHR brainstem astrocytes, suggesting that a 

potential hypofunction of CB1Rs could contribute to the development of pro-inflammatory 

conditions in brainstem, a state that is observed in hypertension.  

b) ACEA-induced MAPK activation 

Other groups have reported hypofunctional CB1Rs in SHR brainstems and 

prefrontal cortex when compared to their normotensive controls (Brozoski et al. 2009) 

(Adriani et al. 2003). Our results indicate an alteration of CB1R expression and function 

in SHR brainstem astrocytes, and to a lesser extent in SHR cerebellar astrocytes as well. In 

order to ascertain whether changes in basal CB1R expression and phosphorylation have 

any effect on its downstream targets, we measured activation of MAPKs, ERK and p38, as 

downstream molecular indicators. ACEA treatment resulted in pronounced ERK and p38 

activation in both Wistar brainstem and cerebellar astrocytes. The effect however, was 

markedly diminished in SHR brainstem astrocytes. This could be due to a reduction in 

CB1R expression and an elevation in phosphorylated forms of the CB1R. This effect is 

highly indicative of CB1R hypofunction. Since this finding was observed in the brainstems 

of prehypertensive SHRs, it is possible that this reduced endocannabinoid tone is 

contributing to the initiation of hypertension. Despite no marked variations in CB1R and 

p-CB1R levels in cerebellar astrocytes of SHRs, a partial dampening of CB1R-mediated 

ERK and p38 activation was observed. Perhaps, the CB1R-MAPK axis dampening in the 

cerebellum may not be associated with CB1R-mediated anti-inflammatory effects, and 

may be linked to other astroglial functions.  
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v) Co-activation of both RAS and endocannabinoid system in astrocytes from SHRs and 

Wistar rats 

 a) Effect of Co-treatment of Ang II with ACEA on neuroinflammatory cytokines  

Several groups have reported evidence of crosstalk between AT1Rs and CB1Rs, 

resulting in either an enhancement or a reduction of AT1R’s effects (Szekeres et al. 2012) 

(Rozenfeld et al. 2011). The CB1R has been shown to be vital to Ang II-mediated 

deleterious effects (Schaich et al. 2014) (Szekeres et al. 2012). Our results reveal that 

ACEA, a potent CB1R agonist, did not potentiate Ang II effects, but was capable of 

limiting Ang II’s neurotoxic effect, specifically on IL-10 levels in Wistar brainstem 

astrocytes. This effect however was greatly diminished in SHR brainstem astrocytes. In 

cerebellar astrocytes, ACEA was capable of reducing Ang II-mediated effects on 

inflammatory cytokines. In either case, we did not observe synergistic or additive effects 

on co-stimulation of Ang receptors and CB1Rs. We conclude that activation of CB1R may 

well be a viable strategy for pathological conditions characterized by Ang II-mediated 

neuroinflammatory conditions.  

b) Effect of co-treatment of Ang II with ACEA on MAPK activation 

Crosstalk between Gi and Gq GPCRs potentiates Gq GPCRs, either by a 

heterodimerization-independent, or a heterodimerization-dependent interaction (Rozenfeld 

et al. 2011) (Carroll et al. 1995) (Rives et al. 2009). We investigated whether co-

stimulation of CB1R with AT1R, a Gi- and a Gq- coupled GPCR, respectively results in a 

synergistic effect when compared to AT1R activation alone. Co-stimulation of AT1R and 

CB1R with Ang II and ACEA respectively, resulted in a decrease in Ang II-induced MAPK 

effect in brainstem astrocytes isolated from both neonatal SHRs and Wistar rats. In the case 
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of cerebellar astrocytes however, the decrease was much more prominent. This suggests a 

possible dampening of Ang II’s effect on MAPK activation by cannabinoids. 

6.3 Strengths and limitations 

i) Strengths 

The biggest strength of this study was that we employed multiple parameters to 

assess a single outcome. For instance, we investigated two signaling pathways, both CB1R 

and p-CB1R levels, as well as neuroinflammatory cytokines, to ascertain a potential CB1R 

dysregulation in brainstem astrocytes of SHRs. By employing prehypertensive SHRs, we 

are able to establish potential causality between the results of our study and the 

development of hypertension, which has been a severe drawback of several studies, 

including those that have employed adult SHRs (Doggrell and Brown 1998). In addition to 

brainstem astrocytes, parallel experiments were run in cerebellar astrocytes of both models. 

These experiments allowed us to compare the consequences of AT1R-CB1R crosstalk in 

regions of low CB1R, such as brainstem, with regions of relatively higher CB1R 

expression, such as cerebellum. 

ii) Limitations  

The major drawback of this study is the lack of in vivo data. Hence, we cannot 

confirm the therapeutic utility of targeting CB1R in hypertension at this moment. Also, in 

most of the cases, both Ang II and ACEA, had a much greater effect on cytokine mRNA 

levels, than at the level of the secreted fraction. It could well be that factors secreted from 

microglia or neurons, both of which are extremely low in our cell culture (Haspula and 

Clark 2016b), have a role in translation and secretion of interleukins.  
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6.4 Future perspectives  

Longitudinal studies keeping track of inflammatory cytokines in SHRs brains, over 

different stages of hypertension, will help in developing a better understanding of the 

contribution of neuroinflammation to the development of hypertension. Although we did 

not observe a significant difference in the levels of inflammatory cytokines in cerebellar 

astrocytes, other neurotoxic mediators should also be investigated, especially since high 

levels of apoptotic factors and astrogliosis have been reported in SHR cerebellum (Yun et 

al. 2014).  In vivo studies investigating the potential of cell type specific CB1R 

upregulation, would help in determining the impact of restoring astroglial CB1R functions 

in brainstem on the progression of hypertension. In addition, the role of centrally 

administered anti-inflammatory drugs in the brainstems of SHRs on potential improvement 

of cardiovascular parameters, could also be investigated. Possible synergistic effects of 

partial CB1R agonists and AT1R antagonists could well be a therapeutically viable option, 

and their synergistic or antagonistic effects need to be evaluated in both in vitro and in vivo 

conditions.  

6.5 Significance 

This is the first study to demonstrate dampening of the endocannabinoid system by 

Ang II, either by receptor downregulation, and/or by receptor phosphorylation 

(inactivation) in prehypertensive SHRs. Additionally, we observed a hypofunctional 

endocannabinoid system in the brainstem of SHRs, a region which is characterized by 

hyperactive RAS in SHRs. These mechanisms of endocannabinoid dampening by Ang II 

could be extremely important in pathological conditions that are characterized by an 

overactive brain RAS, as the counterregulatory mechanisms are reduced. This 
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encompasses not just cardiovascular disorders and their risk factors, but also several 

neurological impairments that have responded favorably to drugs that counteract the brain 

RAS, such as centrally acting ACEIs (Gao et al. 2013). Endocannabinoid dampening is a 

crucial link between RAS and neurological impairments, especially since CB1R 

hypofunction is a characteristic feature of several neurological diseases.  

6.6 Therapeutic significance  

Our findings suggest that Ang II can reduce the endocannabinoid tone by multiple 

mechanisms. This suggests that in instances of high RAS activity, neutralizing the effects 

of RAS could be a useful alternative strategy to boost basal endocannabinoid system 

activity. This would also isolate basal endocannabinoid tone elevation to only those regions 

of the brain that are characterized with excessive RAS activity. This is especially important 

since direct CB1R agonists, results in CB1R activation in unwanted brain regions and are 

therefore associated with several adverse effects. Thus, indirect activation of CB1R would 

bypass the need for direct CB1R agonists. 
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APPENDIX 1 

 
Supplementary Figures 

 

 

Fig 1S: Effect of Inhibitors on Ang II-mediated ERK activation in Wistar brainstem 
astrocytes: First lane (Ctrl) represents the untreated sample. Second lane (A2) represents 
the Ang II-treated sample. Third and fifth lanes represents samples that have been treated 
with 10 µM of AT1R inhibitor, Losartan (AT1), and AT2R inhibitor, PD123319 (AT2), 
each for 30 mins respectively. Fourth and Sixth lanes represents samples that have been 
treated with 10 µM of AT1 and AT2, each for 30 mins respectively, followed by A2 
treatment for 15 mins.  
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Fig 2S: Effect of Inhibitors on Ang II-mediated p38 activation: First lane (Ctrl) represents 
the untreated sample. Second lane (A2) represents the Ang II-treated sample. Third and 
fifth lanes represents samples that have been treated with 10 µM of AT1R inhibitor, 
Losartan (AT1), and AT2R inhibitor, PD123319 (AT2), each for 30 mins respectively. 
Fourth and Sixth lanes represents samples that have been treated with 10 µM of AT1 and 
AT2, each for 30 mins respectively, followed by A2 treatment for 15 mins. 
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Fig 3S: Polyclonal p-CB1R antibody employed to compare p-CB1R levels in ACEA-
treated samples. Lane 1 represents untreated sample. Lanes 2-5 represent samples that have 
been pretreated with increasing concentrations of ACEA. Concentrations range from 0.1 
nM to 100 nM. 
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Fig 4S: Monoclonal p-CB1R antibody employed to compare p-CB1R levels in ACEA-
treated samples. Lane 1 represents untreated sample. Lanes 2-4 represent samples that have 
been pretreated with increasing concentrations of ACEA. Concentrations range from 0.1 
nM to 10 nM. 
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APPENDIX 2 

 
Supplementary Tables 

 

  

Treatment 

Wistar 

(Fold over Basal) 

SHR 

(Fold over Basal) 

Brainstem Cerebellum Brainstem Cerebellum 

100 nM Ang II 2.25 ± 0.2* 2.27 ± 0.06* 2.28 ± 0.3* 2.3 ± 0.2* 

10 µM Losartan 0.99 ± 0.1 0.92 ± 0.1 1.1 ± 0.1 1.3 ± 0.1 

10 µM Losartan + 100nM Ang II 1.03 ± 0.1 0.89 ± 0.1 1.0 ± 0.2 1.1 ± 0.2 

10 µM PD123319 0.96 ± 0.1 1.0 ± 0.1 1.0 ± 0.2 1.0 ± 0.2 

10 µM PD123319 + 100nM Ang II 2.15 ± 0.2* 1.9 ± 0.2* 2.21± 0.05* 1.7 ± 0.1* 

 

Table 1S: Effect of Angiotensin receptor blockers on Ang II-induced phosphorylation of 
CB1R. Each value represents the mean ± SEM of 5 or more litters of neonatal rat pups.  (* 
p < 0.05- treated versus untreated samples). 
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Treatment 

Wistar 

(Fold over Basal) 

SHR 

(Fold over Basal) 

Brainstem Cerebellum Brainstem Cerebellum 

100 nM Ang II 2.62 ± 0.2* 2.67 ± 0.06* 2.25 ± 0.2* 2.3 ± 0.1* 

50 nM BIM I+ 100 nM Ang II 1.1 ± 0.1 1.12 ± 0.2 1.1 ± 0.3 1.2 ± 0.1 

50 nM Orlistat + 100 nM Ang II 1.23 ± 0.2 2.1 ± 0.2* 1.4 ± 0.1* 1.8 ± 0.2* 

50 nM BIM I 1.2 ± 0.2 0.95 ± 0.1 0.99 ± 0.1 1.3 ± 0.1 

50 nM Orlistat 0.99 ± 0.1 1.3 ± 0.1 1.1 ± 0.2 1.3 ± 0.1 

 

Table 2S: Effect of BIM I and orlistat on Ang II-induced phosphorylation of CB1R. Each 
value represents the mean ± SEM of 5 or more litters of neonatal rat pups.                         (* 
p < 0.05- treated versus untreated samples). 
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APPENDIX 3 

 
Buffer Solutions 

 

Tris 4.85 g 

Sodium chloride  58.44 g 

pH 7.5 

Total volume 2 liters with distilled water 

Table 3S (A): TBS for western blotting 

 

Tris 3 g 

Glycine 14.4 g 

Methanol 200 ml 

Total volume 1 liter with distilled water 

Table 3S (B): Transfer buffer for western blotting 
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Sodium dihydrogen phosphate 3.4 g 

Sodium monohydrogen 

phosphate  

10.2 g 

Sodium chloride 17.5 g 

pH 7.5 

Total volume 2 liters with distilled water 

Table 3S (C): PBS for cell culture 
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APPENDIX 4 

 
License agreement for chapter 3 

 


