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ABSTRACT

Global summation of radial frequency patterns and the effect of sudden onset glare on shape
discrimination

The purpose of this study was to provide evidence of global pooling around the circumference
of the Radial frequency (RF) pattern, and to study the effect of sudden onset glare on shape
discrimination. The RF stimuli were generated by the amplitude modulation of the radius of a
circle which deforms them from circularity, while the cross sectional luminance profile was the
fourth derivative of Gaussians (D4). The amplitude of the stimuli determines how distinct the
pattern is and thus measures the degree of sensitivity while the radial frequency determines
the number of lobes the pattern has. In the first part of the study, whole RF patterns (RF3 to
RF16) and open component fractions (0.125, 0.25, 0.5, 0.75), which are incomplete sectors of
the whole, were tested against their respective reference unmodulated patterns. Subjects were
tasked with discriminating minute deviations from their reference patterns. In the second part
of the study, high contrast (20 X detection threshold) RF3 and RF4 contours and equivalent low
contrast (5 X detection threshold) RF3 and RF4 contours were used as stimuli. Shape
discrimination threshold for the high contrast target was determined with and without sudden
onset glare. The result of the first part of the study showed that threshold decreased
significantly as larger component RF patterns were tested (p < 0.05). The decrease could not be
accounted for by the probabilistic sampling of local filters (probability summation). The result of
the second part of the study showed that shape discrimination threshold increased with sudden
onset glare. The increase was even more pronounced with lower mean luminance and when
smaller fractions of the contours were tested. Shape discrimination threshold was significantly
higher with high contrast contours in the presence of glare than equivalent low contrast
contours, indicating that the veiling luminance model alone could not account for a decrease in
visual performance in this shape discrimination task.
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PART ONE

CHAPTER ONE

GLOBAL SUMMATION OF RADIAL FREQUENCY PATTERNS

INTRODUCTION

The quest to understand visual perception is probably as old as humans, however the earliest

documented evidence of this quest dates back to the pre-Socratic era (Zemplen, 2005;

Adamson, 2006; Pastore, 1971; Grusser, 1986). Broadly the major philosophical schools of

thought in visual perception were the intromission and extromission schools. Intromissionists

held the view that “emanations” from an object entering the eye cause visual perception, while

extromissionists claim the opposite. Philosophers like Empedocles probably held both views

since he alludes to the eye shooting fire like a lantern, while at the same time believing that the

eye contains pores that serve as receptacles that must exactly fit the emanations from the

object for perception to occur (Zemplen, 2005; Grusser, 1986; Adamson, 2006; Wade, 1999). A

fully morphed hybrid of the two schools of thought was established in the era of Plato, who

believed that visual perception occurs with a coalescence of the internal and external fires

outside the body. The first quasi-advanced theory at that time was propounded by Aristotle,

who did not buy into the intromission and especially extromission theories because as he

correctly asserts, if perception comes by rays emanating from the eye then one should be able

to see clearly at any given time, even in complete darkness (Zemplen, 2005). These primeval

theories of vision persisted through the middle ages and not much was done to advance

scientific thought in that historical epoch. It was not until the 16th and 17th Century that the

basis of modern ideas of vision perception began to take root with the work of Johannes Kepler
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(1571-1630) who argued that intromitted rays were refocused by the Crystalline lens unto the

retina where perception is made possible (Schmolesky, Webvision).

The most basic understanding of the anatomy of the Eye and Central Nervous System (CNS)

that were stunted largely as a result of religious prohibitions on dissection of human corpses

prevalent in the Middle Ages began to emerge between 1600-1860 AD (Schmolesky, Webvision;

Pastore, 1971; Smith, 1990). During this period the connection between the optic nerve to the

Lateral Geniculate body after decussating at the chiasm, and the projection to the Cortex were

known. Significant advances in histology with the discovery of the light microscope led to the

discovery of the neuron as the basic unit of the CNS; the scientist with the greatest contribution

to our modern knowledge of the neuron is none other than Santiago Ramon y Caja (1852-

1934). Further development and the discovery of the neuronal synaptic junction came with the

discovery of the electron microscope (Schmolesky, Webvision).

It was the pioneering work of Hubel and Wiesel (1962, 1965, 1968) that gives us the first clear

insight into understanding the early stages of form processing at the V1 level. They

demonstrated that the striate cortex is made up of three types of cells: simple, complex and

hyper-complex cells. Simple cell receptive fields are thought to be built from the more circular

center- surround pattern of RGC and LGN receptive fields; but simple cell receptive fields are

more elongated in shape with an active excitatory zone which may be flanked by inhibitory

zones on both sides. These cells respond optimally to line stimuli of appropriate widths and

orientations.
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Complex cells on the other hand, although having receptive field with the same spatial

configuration as simple cells, respond only to dynamic line stimuli; static stimuli elicit virtually

no response. Here we see early evidence of motion processing in the visual system (Albus and

Fries, 1980; Blakemore and Tobin, 1972; Bolz and Gilbert, 1986; Born and Tootell, 1991;

DeValois et al., 1985; Dreher, 1972; Fries et al., 1977; Hubel and Wiesel, 1965; Kato et al., 1978;

Maffei and Fiorentini, 1976; Nelson and Frost, 1978; Orban et al., 1979a, b; Rose, 1977; Sillito,

1977; Sillito and Versiani, 1977; Tanaka et al., 1987; von der Heydt et al., 1992; Yamane et al.,

1985).

Hubel and Wiesel, (1965) initially classified hyper-complex cells as distinct cellular types based

on their end-stopping behavior. Subsequent studies (Dreher, 1972; Gilbert, 1977; Kato et al.,

1978; Rose, 1977) have demonstrated this behavior in simple and complex cells; therefore

hyper-complex cells are now considered subsets of simple and complex cells. End-stopped cells

respond maximally to lines with properly defined length, width and orientation and therefore

will respond to angles and edges. This forms the basis of our current understanding of the early

stages of local contour processing (Loffler, 2003). We now know that at this stage filters

respond maximally to local aspects of a stimulus that are finely tuned to their spatial frequency,

orientation and phase dimensions (Loffler, 2008; De Valois et al., 1982; Hubel and Wiesel, 1968;

Heeger, 1992; Wilson & Humanski, 1993; Bonds, 1989; Bonds, 1991; Das and Gilbert, 1999; Das

and Gilbert, 1995).

Having demonstrated that early V1 neurons respond only to discrete or local aspects of an

object, the self-evident question becomes why and how do we see an unbroken, whole visual

percept of that object in space? Many studies have demonstrated that neurons make both
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proximal and distal connections with their neighbors which have led some to argue that these

local connections alone are sufficient to account for the global perception of an object in space.

Psychophysically the existence of these neuronal connections has been shown through the

phenomenon of contour interaction. Polat and Sagi, (1993, 1994), showed the phenomenon of

contour interaction through collinear facilitation by demonstrating that the threshold for the

detection of a Gabor stimulus is elevated when flanked by a supra-threshold Gabor with a

separating distance of less than 2λ. On the other hand however, threshold of the Gabor target

decreases with increasing target-flanker separation up to 2-3λ, beyond which it begins to

increase again. This shows that shorter (< 2λ) target-flanker separation induces spatial

suppression or masking, while longer target-flanker separation induces facilitation. It is

important to note that maximum facilitation is induced when target and flanker have the same

orientation, the axis of orientation aligns vertically rather than horizontally (iso-orientation),

and spatial frequency of target and flanker is low. The phenomenon of collinear facilitation thus

makes it especially tempting to conclude that perception of a spatially extensive object might

be made possible by the integration of the local responses of V1 neurons, since all the

information are present at this stage. However if this were the case, it will undoubtedly lead to

a massive information glut and the attendant computational difficulty of segregating fore-and

back-ground information. To account for the visual system’s ability to discriminate fore-ground

from back-ground without linkage, a hierarchical model was developed. The literature provides

compelling evidence of this hierarchical strategy (Habak et al., 2004; Van Essen et al., 1992)

where output signals from lower stages V1 and V2 feed into higher centers V4 and V3/VP in the

ventral processing stream, for intermediate stages of form processing (Goodale and Milner,
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1992). Further evidence from neurophysiological studies (Gallant et al., 1993; Parsupathy &

Connor, 2001, 2001; Dumoulin and Hess, 2007) have demonstrated that area V4 responds

maximally to non-Cartesian shapes like circles, concentric circles and ellipses; and Gallant et al.,

(2000) showed that a clear deficit in shape discrimination existed in a patient with a lesion in

V4.

Other higher cortical centers involved in shape processing include: the infero-temporal (IT)

cortex, which is the highest level of the ventral stream; the Fusiform Face area (FFA), neurons

of which have been shown to respond to complex forms like faces; Parahippocampal place area

(PPA) and Lateral occipital cortex (LOC) (Brincat and Connor, 2004; Desimone, 1991; Gross,

1992; Tanaka, 1996; Young, 1992). Neurons from IT (Kayaert et al., 2003; Brincat and Connor,

2004) and FFA (Valentine, 1991; Loffler et al., 2005) seem to code information for a proto-

typical shape and that of the human face. Neuronal firings in the afore-mentioned areas have

been shown to increase with distance of a stimulus from this proto-typical shape or face.

The hierarchical model thus demonstrates that early parts of the striate cortex, V1, V2 respond

to edges and angles, the intermediate stages V3, V4 respond maximally to more global aspects

of an image especially non-Cartesian shapes while higher centers like the FFA respond to

complex shapes like faces. This study aims to demonstrate the existence of the intermediate

stages of shape processing by showing global pooling around non-Cartesian stimuli, using visual

psychophysical paradigms. The logic here is that if a different mechanism is involved in

discriminating local and global aspects of shapes, performance in both tasks will be different.

Furthermore, if there is a higher processing stage other than V1 in processing global shape,
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then performance in a global task should be better than that of the local aspects of the given

task.

Psychophysical studies using radial frequency (RF) stimuli to form non-Cartesian patterns have

been used to study global shape processing (Wilkinson et al., 1998; Loffler, 2008; Bell and

Kingdom, 2009; Bell et al., 2007; 2009; 2010; Schmidtmann et al. 2012; Mullen and Beaudot,

2002; Mullen et al., 2011). The suitability of the RF stimulus for psychophysical studies is

because it lends itself easily to parametric manipulation. The RF pattern is formed by the

amplitude modulation of the radius of a circle with the function below:

R(Ѳ) = r0[1 + Asin(ωѲ + Φ)]-----------------------------------------------------------------------------(1)

A is the radial modulation amplitude, ω is the radial frequency, Φ is the angular phase. The

radial amplitude modulation (A), determines how distinct the pattern is; the radial frequency

(ω), determines the number of lobes the pattern has; and the phase angle (Φ), determines the

orientation of the pattern (Figure 1). The function R(Ѳ) generates a perfect (unmodulated)

circle when amplitude is set at zero.

Several studies (Wilkinson et al., 1998; Loffler, 2008; Bell and Kingdom, 2009; Bell et al., 2007;

2009; 2010; Schmidtmann et al., 2012) have reported increased performance (decrease

threshold) with RF patterns as the number of lobes increases to between 8-10/360O, beyond

which threshold begins to increase (performance decreases), indicating that a global

mechanism summing responses around the circumference of the pattern is clearly in play,

otherwise one would logically expect to find no significant change in performance level

between RF1 or RF5 or more if the process was mediated solely by locally oriented filters.
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Another way to put it is that if a global shape mechanism operating at an intermediate level is

involved in the processing of RF patterns, performance on the whole RF pattern will be better

than the sum of its parts (Bell et al., 2010).

Wilkinson et al., (1998) studied the detection and recognition of radial frequency patterns

through a series of experiments. First, they measured basic threshold detection from circularity

using RF pattern with a mean radius of 0.5O, spatial frequency of 8 cpd and amplitude

modulation varying logarithmically at different radial frequencies. Threshold declined

(performance improved) almost 2 log units from a high at RF1 to an asymptote around RF3 to

RF5. The result showed that the detection of RF patterns in human is in the hyperacuity range

because it ranged from 2-9” when the amplitude of minimum distortion is expressed in seconds

of arc. The Amplitude of minimum distortion expressed as a proportion of the radius of the

circle yields a fraction known as the Weber fraction; the average Weber fraction in their study

was 0.003. Their third experiment was on radial frequency identification. Subjects were

presented with supra-threshold patterns having different radial frequencies, which were

presented within a short interval (167 ms). For radial frequency between 3-6 cycles/360O,

median performance was above 90% correct; for RF above 8 cycles/360O, performance fell

dramatically. Wilkinson et al. explained their results by positing that global pooling of local

contour signals around the circumference of the circle occurs and that the limitation of this

global mechanism at higher RF is the reason for the shortfall in performance.

If a global mechanism is in play with RF patterns, one will expect that the performance of the

whole pattern will be better that its parts. To address this concern, Wilkinson et al., 1998 in

their second experiment compared performance with sinusoidally modulated straight lines with
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that of the closed RF pattern. The base stimuli of the lines had the same luminance profile and

spatial frequency as that of the circle; the distance separating the two lines was also equivalent

to the diameter of the circle. The results showed that performance was better for the closed RF

contour at lower contrast than at 100% contrast at which point they were identical. These

results pose a serious challenge to models that negate the importance of a global mechanism

but instead postulate that local inter and intra-filter interactions at early parts of the visual

pathway (V1) are enough to explain the perception of smooth contours.

More recently Bell et al., 2010, further demonstrated evidence of global mechanism in RF

patterns at supra-threshold levels, by using radial frequency amplitude adaptation effects

(RFAAE). The rationale for using RFAAE is based upon the fact that adaptation to RF patterns of

known amplitudes shifts the perceived radial amplitude modulation of a test RF pattern in a

direction away from that of the adaptor. The adaptation effect was measured as the additional

modulation amplitude required to make the test probe and the reference probe appear the

same; this, they called the point of subjective equality (PSE). It is reasonable to assume that if

the PSE is greater for the whole RF pattern than for its parts, then a global mechanism could be

involved in the processing of the whole RF pattern. Their first experiment was a comparison of

the size of the RFAAE of the test RF pattern after adaptation with the whole versus parts of the

adaptor RF pattern. The result demonstrated that after adaptation to the “whole” adaptor

stimulus field, subjects required an average of 12% more amplitude of modulation to reached

PSE with the reference probe.  With the probe stimuli comprised of the parts of the pattern, no

observer showed a significant positive shift in the PSE. It is therefore reasonable to conclude

that the after-effect in the whole pattern probe was specific to the global form of the stimulus.
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This notion is however not a consensus, Mullen et al., 2011 for example, found no significant

difference in threshold when performance with whole RF patterns were compared to their

component parts. Clear differences in the methodology could account for the discrepancy in

the results demonstrated by Mullen et al., 2011 and that of others (Wilkinson, 1998; Loffler,

2003; Dickinson et al., 2012; Schmidtmann et al., 2012). It will be noteworthy to mention that

the stimuli used by Mullen were contrast scaled at 5 times detection threshold and also

presented in the cosine phase instead of sine phase as used by others.

We provide, in this study, further evidence of a global pooling around the RF contour using two

experiments. RF patterns with radial frequencies between 3-16 cycles/360O were used.

Threshold was determined as the minimum percentage radial amplitude modulation required

to just perceive the test patterns as different from various reference patterns. Performance of

the whole pattern was compared to that of component parts of the RF patterns. Stimuli for

Experiment 1 were high contrast (100%) RF contours, while that of experiment 2 were contrast

scaled at 5 times detection threshold and presented in the sine phase.
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CHAPTER TWO

METHODS

Apparatus

All stimuli were generated using Matlab 2010b (Mathworks) and Psychotoolbox (Bernard, 1997;

Peli, 1997). The host computer was Windows 7 based PC (Dell Optiplex, 780). All stimuli are

displayed on a gamma corrected CRT monitor (Richard Electronics, 15.3“ W X 11.5” H), with

resolution of 1280 X 1024 and a refresh rate at 100 Hz. The luminance of the pattern was 50

cd/m2 while contrast was linearized at 256 equally spaced grey levels. Subjects were seated 60

cm from the computer monitor in complete dim illumination with chin placed in the chin rest

and forehead on the forehead rest to maintain a stable fixation distance. At this distance the

stimuli covered an area of about 512 X 512 pixels.

Stimuli

The stimuli were radial amplitude modulation of the radius of a circle derived using equation (1)

R(Ѳ) = r0[1 + Asin(ωѲ + Φ)]------------------------------------------------------------(1)

A is the radial modulation amplitude, ω is the radial frequency, Φ is the angular phase, while Ѳ

represents the polar coordinates. The radial amplitude modulation (A), determines how distinct

the pattern is; the radial frequency (ω), determines the number of lobes the pattern has; and

the phase angle (Φ), determines the orientation of the pattern. The equation generates a

perfect (unmodulated) circle when amplitude is set at zero (Figure 1a and 1b). The amplitude A

was always set between 0 and 1 to prevent the crossing of the closed patterns; also the phase

of the pattern was varied to ensure subjects were not able to predict the position of the lobes.
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The cross-sectional luminance profile of the RF pattern used in this study is defined by the

fourth derivative of Gaussians (D4) and represented by the equation 2 below:

D4(r) = C{1 – 4[(r – r0)/σ]2 + (4/3)(r –r0)/σ)}4 exp[-((r – r0)/σ]2)----------(2)

C is the contrast of the contour, r and r0 is the radius and mean radius respectively, while σ

determines the peak spatial frequency which was set at 8 cpd for this study, full spatial

frequency bandwidth at half amplitude was 1.24 octaves.

In the first experiment different fractions of open RF patterns where used at high contract

levels, here contrast was set at 100%. In the second experiment different fractions of RF

patterns at low contrast levels (5 times detection threshold) were used (Figure 2). Fractions of

RF patterns were created by restricting the radial frequency contour between specific polar

angles.
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(a)

(b)

Figure 1. (a) Shows different RF patterns with increasing RF from left to right, while amplitude
modulation of the lower row is higher than the top row. (b) Shows an unmodulated pattern
with its cross-sectional luminance profile, which is defined by the 4th derivative of Gaussians,
below.
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Experimental Protocol

The procedure used in this study was the temporal two-alternative forced choice (2AFC)

paradigm. The reference and test contours were randomly presented to ensure the subjects

could not predict the test pattern based on which one comes first. The time lapse between the

presentation of the reference pattern and test pattern was 160ms and the inter-stimulus

presentation time was 300 ms. The task of the subjects was to discriminate between modulated

(A > 0; A ≤ 1) and unmodulated (A = 0) patterns. These six modulation amplitudes were used,

0.20, 0.3, 0.4, 0.5, 0.75, 1.0, with each amplitude tested 30 times, making a total of 180

presentations per experiment. The response criterion used was that the amplitude was

decreased after two correct responses and increased after one wrong response. The responses

of the subjects were automatically recorded when they pressed the left pointing arrow key on

the computer key-board indicating that the first presentation was the modulated pattern or

when they pressed the right pointing arrow key indicating that the second presentation was the

modulated pattern. No feedback was given to the subjects.

The first part of the experiment was the basic threshold determination, which was then used to

set the contrast levels of experiment 2; the high contrast experiment was set at 100% contrast

while the low contrast experiment was set at 5 X detection threshold. To evaluate for the

presence and strength of global summation, different fractions of RF3, 4, 6, 8, 10, 12 and 16

were modulated and compared with their respective reference patterns. For each amplitude

modulation point, threshold was computed for 62.5% correct response using the maximum

likelihood psychometric analysis and fitted with the Weibull model. Bootstrap analysis of 500
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simulations indicated that the model was good fit. All targets were viewed binocularly and two

practice sections were carried out.

a                    b                  c                  d e

Figure 2. RF4 patterns with different fractions: a = 0.12 (12.25%), b = .25 (25%), c = 0.50 (50%),
d = 0.75 (75%), e = 1.0 (100%). The top row consists of low contrast contours while the bottom
row has the high contrast contours.

Subjects

All subjects had normal or corrected to normal visual acuities and had neither ocular

pathologies nor binocular vision anomalies. They all underwent 2 practice sections before the

actual experiments.

Declaration

The study was approved by the Nova Southeastern University Institutional review board (IRB)

and done in accordance with the Helsinki declaration of the use of human subjects.
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Experiment 1

This experiment tested the hypothesis that performance with closed (whole) contour RF

pattern is better than the sum of its open parts, which will logically prove the existence of a

global mechanism summing local information around the circumference of the RF pattern.

Stimuli were radial modulation of the radius of a circle (eq. 1), with a cross-sectional luminous

profile given by the 4th derivative of Gaussians (D4). Different fractions of RF4, 6, 8, 10, 12 and

16 were generated by restricting the RF contours to various polar angles (Fig. 2). This first

experiment was conducted using high contrast targets (Fig. 2 bottom row).

Experiment 2

The same protocol and stimuli used in experiment 1 were also used in 2. The only fine detail is

that whereas the stimulus contrast used in experiment 1 was high (100%), that of experiment 2

was low at 5 X detection threshold.
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CHAPTER THREE

RESULTS

EXPERIMENT 1

Figure 3 shows data representation for four (4), out of eight (8) subjects of experiment 1, (100%

contrast), while figure 3A shows the mean plot of all subjects. All data clearly demonstrate that

threshold declined (performance increased) significantly as the percentage component parts of

the RF pattern increased; a trend which was demonstrated for all subjects. For all the subjects,

threshold was lowest for the whole RF pattern than for any of its component parts, on the

other hand, threshold was highest for all RF pattern (RF3-RF16) at the least percentage

component (12.5%) and declined rapidly to an asymptotic level around the 50% component.

Two factor analysis of variance (ANOVA) was performed. The first factor was the RF type with

seven levels (3, 4, 6 8, 10, 12 and 16), while the second factor was the component RF fractions

modulated, and had five levels (12.5, 25, 50, 75 and 100%). There was statistically significant

difference in the threshold amplitude modulation in the different RF type (p < 0.001), there was

also a significant decrease in threshold amplitude modulation as the proportion of RF pattern

increased (p < 0.01); interestingly there was significant interaction between the two factors (p <

0.01). Taken together, threshold decreased with increasing radial frequency and also with

increasing proportions of the RF patterns. This result both demonstrates the existence of a

global mechanism summing responses around the circumference of the RF pattern and the

strength of the summation. The interaction effect shows that both factors act together to

influence the radial amplitude modulation pattern. ANOVA post hoc analyses (Tukey) showed a

significant difference in all combinations of factor one with the weakest significance between
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RF3 and RF4 (p = 0.043); between RF3 and RF6 (p < 0.01), RF3 and RF12 was p < 0.01). Post hoc

analyses of the component fractions did not reveal any significant difference between 12.5 and

25% of the component part (p > 0.05) but there was significant difference in threshold for all

other combinations of the component parts. There was a strong negative correlation between

threshold of the RF contour and the component fractions. Correlation between component

parts of RF3 contour and their threshold was -0.766, RF4 (-0.815), RF6 (-0.734), RF8 (-0.677),

RF10 (-0.606), RF12 (-0.60) and RF16 (-0.38). The mean correlation for all data was 0.404. The

negative correlation indicates that threshold decreases as the proportion of the component

parts increase. Overall data show a strong dependence of threshold on both the number of RF

and the proportion of the pattern viewed by subjects.

If we take the ratio of threshold of the 0.125 component of the RF3 pattern to that of the

whole, we will have 5.96 as the average ratio, and for individual subjects we will have (S1 = 7.5;

S2 = 8.5; S3 = 6.09 and S4 = 3.52), such high ratios again are consistent with a very efficient

global integration process (Dickinson et al. 2012).

Threshold decline with increasing proportion of the RF pattern has been demonstrated to be

sharp in this study, but since a decline in threshold can reasonably be expected merely from a

probabilistic summing of the responses of independent detectors from their inherent noisy

signals, it is important to show that the decline seen in this study cannot be accounted for by

this probability summation. The decrease in threshold from the 0.125 component of RF3 for

subject S1 corresponds to a slope of -0.98, a far more efficient decrease than one will expect

from probability summation which in this study was determined to be -0.48. For S2 it was -
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1.013, -0.77 for S3 and -0.97 for S4. This same pattern of decline in the slope was observed for

RF patterns up to RF8, beyond which there was a decline that could be accounted for by

probability summation. All aforementioned subjects had less than -0.40 in the slope connecting

the 0.125 component part to the whole for RF contours over RF10.

Global summation is assumed when performance on a task with global pattern is better than

that of its component parts since local neural mechanisms code for local aspects of such

patterns. The above results show further evidence of a global mechanism that mediates

intermediate shape processing by demonstrating improved performance with whole RF

patterns compared to the sum of its parts.

Mullen et al., (2011) asserted that information that limits threshold in the RF pattern is

contained in their local components and showed in their study that threshold obtained for local

components of the RF pattern was not significantly different from that of the whole. This

implies that threshold is not set by a global shape processing mechanism but by the integration

of local signals from local filters at earlier stages of shape processing. The reason they offered

for the discrepancy with other studies was that those studies compared modulation of fractions

of closed RF patterns to the modulation of the whole. They further opined that if progressively

larger fractions were removed from an RF pattern, then performance with local fractions of

open contours will be similar to that of whole closed ones. This implies that the unmodulated

sectors of the closed contours were responsible for the difference in threshold. If this were so

we should expect that threshold for closed contours with a local fraction modulated will be

significantly lower than of a similarly modulated fraction of an open contour; although Mullen
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et al., (2011) seem to imply that it may be responsible for the higher threshold seen in other

studies contrary to their initial assertion. We addressed this by conducting a control experiment

with two closed contours RF4 and RF8. Different fractions of these contours, similar to those

already shown for open contours were modulated and threshold for both compared. Although

threshold for the open contours were slightly higher, contrary to what should be expected,

paired samples t-tests did not reveal any significant difference (p > 0.05) for the four observers

tested (Figures 4a-4d). Our data therefore does not support the claim that improved

performance with closed contours is a result of the unmodulated sectors.
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Figure 3: % radial amplitude modulation was plotted as a function of component fractions.
Contrast was set at 100%. Different color points represent the various RF patterns, and as can
be seen, % radial amplitude modulation declined with increasing component fractions.
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Figure 4: representative plots of % radial amplitude modulation vs. fractions of whole RF4 and
RF8 contours. There was no significant difference (p < 0.05) in threshold when similar
modulated fractions of open contours were compared to that of closed contours.
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EXPERIMENT 2

The same protocol and stimuli used in experiment 1 were also used in 2. The only fine detail is

that whereas the stimulus contrast used in experiment 1 was high (100%), that of experiment 2

was low at 5 X detection threshold (Figure 2 top row).

Results of experiment 2 are displayed below in figure 5; similar trends as seen with high

contrast stimuli were also seen with contrast at 5 X detection threshold the only difference

being that lower contrast increases threshold by about a factor of 2. Similar increase in

threshold has been reported (Shmidtmann et al., 2012). The reduction in sensitivity due to

contrast was seen for all RF contours and local component fractions (0.125 and 0.25); however,

as larger component fractions were tested, threshold approximated that seen when contrast

was set at 100%. The initial increase in threshold with lower component fractions was more

obvious with RF3 as can be seen from the data (Fig. 5a-5d). Although threshold increased with

lower contrast set at 5 X detection threshold, there was a statistically significant decrease in

threshold as larger component fractions were tested for all subjects. Two-factor ANOVA

showed a significant decline in threshold with RF pattern and component fractions tested (p <

0.01); there was also a significant interaction between the two factors (p = 0.0298). The ratio of

threshold of 0.125 component, to that of the whole for RF3 for the subject in Fig. 5(a) was 9.8/1

which is such a steep increase that it suggests an efficient global integration process. The same

pattern was seen across subjects and for other RF patterns. Mullen, Beaudot and Ivanov, (2011)

are contrarians with respect to the view that a global integration process sums information

around the circumference of the RF patterns and determines threshold. Although they used RF
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patterns set at 5 X detection threshold as was used in this study, our results did not replicate

their findings, and thus we conclude in favor of a global mechanism active at intermediate

stages of form processing as the reason for the superior performance seen when whole RF

contours were compared to their component parts.

Figure 5 (a-d): % radial amplitude modulation plotted as a function of component RF fractions
with contrast set at 5 X detection threshold. Threshold was significantly increased for RF
patterns with local components (0.125 and 0.25).
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CHAPTER FOUR

DISCUSSION

Results from this study are consistent with an efficient global integration mechanism summing

local responses along the circumference of an RF contour. Similar conclusions have been made

by several authors. Threshold for most RF patterns were clearly in the hyper-acuity range which

suggests that humans are exquisitely sensitive to minute deviations from circularity and this has

been roundly demonstrated by various studies (Wilkinson et al., 1998; Loffler, 2008; Bell and

Kingdom, 2009; Bell et al., 2007; 2009; 2010; Schmidtmann et al., 2012).

In this study we have used RF patterns a little different from other studies; we have used

various component fractions of RF3-16, and results show that threshold decreased significantly

with increase in the component parts and increasing RF contours. Two-Factor ANOVA showed

significant differences in threshold with RF component parts and RF cycles. For all combinations

of RF3 to RF16, Tukey’s post-hoc test showed that there was a significant difference in

threshold. Data showed that there was more variability in threshold for RF3 to RF8; although

threshold for higher RF patterns looked marginal, it was nonetheless significant. On the other

hand, in factor 2 (component fractions), there was no significant difference between

component 0.125 and 0.25 (p > 0.05), all other combinations were however significant (p <

0.01). Similarly, Schmidtmann et al., (2012), using repeated measures ANOVA found that

threshold decreased significantly as the number of cycles of RF3 and RF5 patterns increased.

Dickinson et al., (2012) also demonstrated that threshold for RF3 patterns were significantly

different for one cycle open (q = 6.92, p < 0.05) and closed (q = 5.54, p < 0.05) with ANOVA after

transforming their data. The significant differences seen in threshold with various component
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parts in comparison to the whole, and also seen in RF3 to 16 cannot be accounted for by

consideration of integration of signals from only local detectors but indicates a more global

mechanism summing responses from the circumference of the patterns.

The strong negative correlation between component fractions and threshold for various RF

patterns is further indication of the decrease in threshold as the fractions of the component

parts increase. It is important to note that this correlation weakened marginally as higher RF

cycle patterns were used ostensibly because data became more non-linear as more global

aspects of the RF patterns were revealed. Schidtmann et al., (2012) also found such non-

linearity in their data and concluded that it could be accounted for by a more efficient global

process enabling an increased performance of the whole RF pattern in comparison to its local

components.

Dickinson et al., (2012) in providing further evidence that local cues to shape in RF patterns are

integrated globally used threshold ratios between single cycle open RF patterns and completely

modulated RF3 pattern and found on the average a ratio of 2.8. If there was a lack of a more

efficient global mechanism one will expect that the ratio between local aspects of the contour

to that of the whole will be close to unity. Using our different fractions of open RF patterns, we

demonstrated for RF3 pattern an average ratio of 5.96 for the 0.125 to the whole RF pattern, a

result that is consistent with an efficient global integration mechanism.

Local noise within detectors could result in improved performance (decrease in threshold) and

this could be misconstrued as evidence of a global mechanism, therefore many studies have

used the reciprocal of the slope of the psychometric function as a measure of the strength of
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integration. This slope must exceed that predicted by probability summation for an efficient

global mechanism to be assumed. Probability summation prediction could be derived by taking

the average slope of the psychometric function, and this slope was calculated to be about -0.33

by Graham and Robson, 1987. Other studies have used probability prediction different from -

0.33. For example, Dickinson et al., (2012) used -0.44. We calculated a predicted probability

summation of -0.48 for this study and as demonstrated in the result, the derived slope for the

RF3 to 8 contours were significantly steeper than what would be expected by local integration

predicted by probability summation.

Decreasing contrast to 5 X detection threshold did not compromise global integration as seen in

experiment 2. There was however a decline in performance when smaller component fractions

(0.125 and 0.25) were tested; this was even more marked with RF3 patterns. Despite the

increase in threshold for smaller components, two-way ANOVA showed a statistically significant

decrease in threshold with RF patterns and component fractions. The ratio of the decline in

threshold from local component to that of the whole was significantly steep enough to suggest

an efficient integration mechanism as would be expected from an intermediate shape

processing mechanism summing inputs globally. The findings of Dickinson et al., (2012) and

Schmidtmann et al., (2011) support our conclusion. Both aforementioned studies also

suggested that the differences seen in the results and subsequent conclusions of Mullen,

Beaudot and Ivanov, (2011) could be accounted for by the fact that their methodology was

different than those used in other studies since they used smooth Gaussian windowed sectors

viewed in cosine phase (rather than in sine phase) to render parts of their stimuli invisible. We

have also shown that threshold is affected when progressively larger component parts are
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removed from the RF contour and that doing so increases threshold or reduces the ability to

discriminate modulated sectors from unmodulated ones.

Conclusion

This study further confirms the existence of a global shape processing mechanism summing

information around the RF pattern and consequently demonstrates a greater saliency of whole

RF patterns in comparison to its component parts.
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PART TWO

CHAPTER FIVE

EFFECT OF SUDDEN ONSET GLARE ON SHAPE DISCRIMINATION

INTRODUCTION

In normal eyes, Intraocular light scatter from light emanating from a glare source results in a

veiling glare over the retina that degrades retinal image quality by contrast reduction of the

retinal image; this ultimately reduces visual performance and is classified as disability glare

(Aslam et al., 2007; Anderson and Holladay, 1995; Gary and Regan, 2007; Wood et al., 2012;

Yuan et al., 1993; Mainster and Turner, 2012; van den Berg, 1991; van den Berg et al., 2013;

Franssen et al., 2007;). This reduction of visual performance is even more significant in diseases

that compromise the integrity of the ocular media, the most common example being cataract

(van der Meulen et al., 2012; Paulsson and Sjostrand, 1980). Apart from cataract, other

conditions that have been reported to lead to an increase in intraocular light scattering are

Peripheral Iridectomy (Congdon et al., 2012), LASIK (Niesen et al., 1996), IOL in pseudophakia

(Peng et al., 2012) just to mention a few.

The equivalent veiling luminance has been used to quantify the veiling glare over the retina

(Holladay, 1927; Vos et al., 2002) in the intraocular milieu and is given by the equation below:

n
Leq = 9.2 ⅀ Ei/Ѳ i(Ѳ + 1.5)---------------------------------------------------(3)

i=1

Leq is the equivalent luminance; Ei is the illuminance from the ith glare source in Lux, while Ѳ is

the angle between the fixation point and the glare source (Figure 6). If we assume a perfect
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modulation transfer function for the normal eye then the contrast of the retinal image will

equal that of the contrast of the target stimulus. Thus contrast will be:

C = (Lmax – Lmin) / (Lmax + Lmin) --------------------------------------------------(4)

C is the retinal image contrast, Lmax is the maximum luminance and Lmin is the minimum

luminance.

To quantify the effect veiling glare will have on retinal image contrast which is a reduction as

already mentioned, the equivalent luminance will have to be added to contrast as in equation

5:

[(Lmax + Leq) –(Lmin + Leq)] / [(Lmax + Leq) + (Lmin + Leq)]

= (Lmax - Lmin) / (Lmax + 2Leq)--------------------------------------------------------(5)

where Leq represents the equivalent luminance. Another mathematical model for equivalence

luminance was provided by Paulsson and Strostrand 1980:

η = (L/E)(M2/M1 – 1) -----------------------------------------------------------(6)

η is the scattering factor (equivalent luminance) and is a function of Ѳ in equation 1; L is the

mean luminance of the target stimulus; E is the luminance of the glare source; M1 and M2 are

the contrast with and without glare respectively of the retinal image if one assumes ideal

modulation transfer function.



30

It is obvious from equation 5 that the equivalent luminance from intraocular light scattering

when added to retinal image contrast will degrade retinal image quality (contrast) and decrease

visual performance as a consequence.

Most studies have used visual acuity as a measure of visual performance when studying the

effect of glare while some have used the contrast sensitivity function (Gary and Regan, 2007).

This appears to be the first time radial frequency patterns have been used to study the effect of

sudden onset glare on shape discrimination as far as we can determine. Two major experiments

were performed. The first part of experiment 1 studied the effect of sudden onset glare on the

threshold of closed RF3 and RF4 contours in a shape discrimination task. The second part of

experiment 1 used equivalent low contrast RF3 and RF4 contours to study whether the veiling

luminance model can account for the effect of glare on threshold in a shape discrimination task.

The third part of experiment 1 studied the effect of changes in the mean luminance level on the

aforementioned parts. Experiment 2 studied the effect of glare on the threshold of

discriminating open fractions of the RF contours in a shape discrimination task and at both high

and low mean luminance levels. This study provides evidence that sudden onset glare increases

the threshold of shape discrimination and that the equivalent luminance model does not fully

account for the decrease in visual performance using radial frequency stimuli.
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CHAPTER SIX

Method
Apparatus

All stimuli were generated using Matlab 2010b (Mathworks) and Psychotoolbox (Bernard, 1997;

Peli, 1997). The host computer is Windows 7 based PC (Dell Optiplex, 780). All stimuli are

displayed on a gamma corrected CRT monitor (Richard Electronics, 15.3“ W X 11.5” H), with

resolution of 1280 X 1024 and a refresh rate at 100 Hz. The luminance of the pattern was 50

cd/m2 while contrast was linearized at 256 equally spaced grey levels. Subjects were seated 60

cm from the computer monitor in ambient illuminance condition with chin placed in the chin

rest and forehead on the forehead rest to maintain a stable fixation distance. At this distance

the stimuli covered an area of about 512 X 512 pixels.

Stimuli

The stimuli were radial amplitude modulation of the radius of a circle derived using equation (1)

R(Ѳ) = r0[1 + Asin(ωѳ + Φ)]----------------------------------------------------(1)

A is the radial modulation amplitude, ω is the radial frequency, Φ is the angular phase, while Ѳ

represents the polar coordinates. The radial modulation amplitude (A), determines how distinct

the pattern is; the radial frequency (ω), determines the number of lobes the pattern has; and

the phase angle (Φ), determines the orientation of the pattern (Figure 1). The equation

generates a perfect (unmodulated) circle when amplitude is set at zero. The amplitude A was

always set between 0 and 1 to prevent the crossing of the closed patterns; also the phase of the

pattern was varied to ensure subjects were not able to predict the position of the lobes.
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The cross-sectional luminance profile of the RF pattern used in this study is defined by the

fourth derivative of Gaussians (D4) and represented by the equation 2 below:

D4(r) = C{1 – 4[(r – r0)/σ]2 + (4/3)(r –r0)/σ)}4 exp[-((r – r0)/σ]2)----------------------------(2)

C is the contrast of the contour, r and r0 is the radius and mean radius respectively, while σ

determines the peak spatial frequency which was set at 8cpd for this study, full spatial

frequency bandwidth at half amplitude was 1.24 octaves. The partial RF contours used in

experiment 2 were generated by restricting RF3 contours between specific polar angles (Ѳ, in

equation 5).

The amount of light was set at mesopic levels. The glare source was the Integrated Glare

Testing System (M&S Technologies, IL). The propriety lenses minimize the light “spray”,

starburst and halo effects created by the glare system. The center of the glare source was the

same height as the stimulus and deviated horizontally by 10o from the visual axis. The observers

wore artificial pupils of 1.5 mm in diameter to ensure uniform retinal luminance. The amount of

glare entering the eye was calculated using the Stile-Holladay formula:

Leq(Ѳ) = (10*E/Ѳ2) for 1o< Ѳ<30o ---------------------------------------------(7)

Where Leq is the equivalent veiling luminance; E is the illumination of the glare source (Lux)

incident of the cornea, and Ѳ is the angle between the visual axis and the glare source

(degrees).
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Figure 6. Schematic representation of the experiments. Glare source is separated from the test
monitor by the angle Ѳ. Intraocular light scattering (retinal straylight) causes a veiling glare
over retinal image, degrading its quality.
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Experimental Protocol

The procedure used in this study was the temporal two-alternative forced choice (2AFC)

paradigm. The reference and test contours were randomly presented to ensure the subjects

could not predict the test pattern based on which one comes first. The time lapse between the

presentation of the reference pattern and test pattern was 160ms and the inter-stimulus

presentation time was 300ms. The task of the subjects was to discriminate between modulated

(A > 0; A< 1) and unmodulated (A = 0) patterns. Six modulation amplitudes including, 0.20, 0.3,

0.4, 0.5, 0.75 and 1.0 were used, with each amplitude tested 30 times, making a total of 180

presentations per experiment. The response criterion was that the amplitude was decreased

after two correct responses and increased after one wrong response. The responses of the

subjects were automatically recorded when they pressed the left pointing arrow key on the

computer key-board indicating that the first presentation was the modulated pattern or when

they pressed the right pointing arrow key indicating that the second presentation was the

modulated pattern. No feedback was given to the subjects. For each amplitude modulation

point, threshold was computed for 62.5% correct response using the maximum likelihood

psychometric analysis and fitted with the Weibull model. Bootstrap analysis of 500 simulations

indicated that the model was good fit. All procedures were carried out without and with the

glare source on.



35

Experiment 1

Five subjects made up of 4 experienced psychophysical test takers and 1 naïve observer took

part in the study. The stimuli were RF3 and RF4 contours and the task of subjects was to

discriminate modulated pattern from an unmodulated circle, with or without glare present

(Figure 7). The RF contours were either high contrast stimuli set at 20% (20 times detection

threshold), or the equivalent low contrast stimuli set at 5% (5 X detection threshold).

The purpose of this experiment was to study the effect of sudden onset glare on the threshold

of discriminating closed RF contours, while the rationale for using the equivalent low contrast

contour (set at 5 X detection threshold) was to determine if the veiling glare or retinal straylight

model alone accounts for changes in threshold position. Having calibrated the exact luminance

from the glare source that will result in a veiling glare expected to reduce the contrast of the

high contrast contour to that of the equivalent low contrast pattern, we should then expect

that shape discrimination threshold for the high contrast (20%) stimulus with the glare source

on will not be significantly different from threshold for the low contrast (5%) stimulus without

glare. Stated differently, our null hypothesis was that there is no significant difference between

shape discrimination with glare for the high contrast stimulus RF pattern and that of low

contrast stimulus without glare. To test the effect changes in mean luminance levels will have

on shape discrimination threshold, the high contrast stimuli were set at 10% (10 X detection

threshold) closer to the equivalent low contrast stimuli.
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a                                            b

c

d

Figure 7. a. unmodulated high contrast RF contour with glare; b. glare source; c. unmodulated
high contrast contour without glare; d. equivalent low contrast RF contour. The glare source
renders the contrast of a to be equal to that of d.

Experiment 2

In experiment 2 different fractions of RF3 and RF4 contours corresponding to 0.50 and 0.75 of

the whole and set at 5% contrast were used as stimuli. The task for the subjects was to

discriminate between modulated fractions against unmodulated reference patterns.
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Subjects

All subjects had normal or corrected to normal acuities and had neither ocular pathologies nor

binocular vision anomalies. They all underwent 2 practice sections before the actual

experiments.

Declaration

The study was approved by the Nova Southeastern University Institutional review board (IRB)

and done in accordance with the Helsinki declaration of the use of human subjects.
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CHAPTER SEVEN

RESULTS

The red dots represent threshold with high contrast stimuli (20 X detection threshold) in the

presence of glare; the grey dots represent threshold for the equivalent low contrast stimulus (5

X detection threshold) without glare; the black dots represent threshold for the high contrast

(20 X detection threshold) without glare. Figure 8 is a display of results of threshold points from

experiment 1. All threshold points for high contrast RF contours without glare (black dots) were

quite low, at hyper-acuity ranges. RF3 contours however had slightly elevated threshold points

compared to RF4 at high mean luminance levels (Figs. 8A and 8B). The highest threshold points

demonstrated were those of high contrast contours in the presence of glare (red dots). This

indicates that sudden glare significantly degraded the performance of this shape discrimination

task. Interestingly, threshold of high contrast contours in the presence of glare was higher than

that of the equivalent low contrast low contrast contour. The equivalent low contrast contour

was carefully constructed to ensure that it has the same contrast as that of the high contrast

contour when glare impinges on the retina. In effect, it means that equal performance should

be expected with the high contrast contour with glare and the equivalent low contrast contours

if the veiling luminance alone is responsible for the reduced visual performance (higher

threshold). The results show to the contrary that performance with the equivalent low contrast

contour was better (lower threshold) than that of the high contrast contour in the presence of

glare. This clearly demonstrates that the veiling luminance model alone cannot fully account for

the reduction in visual performance.
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Thus far the study has demonstrated a consistent increase in threshold or a reduction in visual

performance in the presence of glare at high mean luminance level (20 X detection threshold),

the second part of experiment 1 used contours with a lower mean luminance (10 X detection

threshold), and again a significant increase in threshold for shape discrimination was

demonstrated (Fig. 8C, D). What this represents is that irrespective of the luminance

parameters of an object in space, glare is expected to increase the threshold of accurately

discriminating its shape. Figures 8C and D also show that the threshold increase is more

significant with the RF3 contour when compared to that of RF4.

A two-way analysis of variance (ANOVA) was performed first for the 20% contrast data. The

first factor was called the contrast factor with three levels, high contrast plus glare, high

contrast without glare and equivalent low contrast. The second factor was the RF contour used

and has two levels, RF3 and RF4. Threshold was significantly different between RF patterns (p <

0.01); RF4 thresholds were significantly lower than RF3 thresholds indicating that the subjects

were better at discriminating RF4 modulated patterns from perfect circles than they were in

discriminating RF3 patterns. There was a significant difference in threshold across contrast

levels (p < 0.01). ANOVA post-hoc with Tukey’s test showed threshold for high contrast target

with glare was significantly higher than that of equivalent low contrast target (p = 0.014). There

was also a significant difference in threshold between high contrast target with glare and high

contrast target without glare (p < 0.01). Furthermore there was a significant difference in

threshold between high contrast target without glare and equivalent low contrast target (p =

0.012). There was no significant interaction between the two factors (p > 0.05).
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A separate 2-way ANOVA was performed for data with contrast set at 10%. Threshold for RF4

contours were significantly lower than that of RF3 contours (p < 0.01); threshold also varied

significantly with contrast levels (p < 0.01) and there was no significant interaction between the

two factors (p = 0.26). Tukey’s post-hoc test revealed a significant difference between high

contrast target with glare and equivalent low contrast target (p = 0.033) and between high

contrast targets with or without glare (p < 0.01). Post-hoc comparison of threshold between

high contrast targets without glare was also significantly lower than that of the equivalent low

contrast target (p = 0.019).

Results for experiment 2 are plotted in Figures 9A-D. The figures show that when fractions, 50%

(a) and 75% (b), of the low contrast RF4 contours were tested, threshold increased. The

increase was higher the larger the missing sector, with the threshold for the 75% approximating

that of the high contrast target in the presence of glare. The same trend was seen with RF3

contours but threshold with the RF3 contours were significantly higher by comparison. Figure

9C and D show results when fractions of low contrast RF3 and RF4 contours were tested at

different mean luminance levels. Again, similar trend as reported earlier were demonstrated:

threshold increased the larger the missing sector; RF3 threshold were higher and low mean

luminance level generally ramped up threshold.

Putting all the results together, this study has demonstrated that glare reduced visual

performance in the task of shape discrimination. That this reduction is even more significant

when partial contours are tested and even more so at low mean luminance levels. We have also

demonstrated that since threshold with high contrast contours in the presence of glare is

significantly higher than that of equivalent low contrast contours we can reject our null
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hypothesis and conclude that our data could not account for the veiling luminance as the only

source of the reduction in visual performance in this shape discrimination task.

Figure 8. Threshold points for high contrast RF and equivalent low contrast contours. High
contrast contour in the presence of glare (red dot); high contrast contour in the absence of
glare (Black dot); equivalent low contrast contour (grey dot). A and B were tested at high mean
luminance level, while C and D were tested at low mean luminance level.
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Figure 9. All plots show equivalent luminance contour tested using partial open contours (50
and 75%). Plots A and B are at high mean luminance levels while C and D were tested at low
mean luminance levels.
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CHAPTER EIGHT

DISCUSSION

The literature is replete with evidence supporting a reduction in various aspects of visual

performance as a result of glare. The reduction has been attributed to veiling luminance or

retinal straylight reducing the contrast and thus the quality of the retinal image (Anderson and

Holladay, 1995; Aslan et al., 2007; Congdon et al., 2012; Mainster, 2012; van den Berg, 2013;

van den Meulen, 2012). Paulsson and Strostrand (1980) demonstrated a reduction in contrast

sensitivity function in the presence of glare, a reduction that was even more significant in

patients with cataract. Anderson and Holladay, (1995) in their study on the effect of glare from

vehicle headlights showed a significant decrease in motion perception. Aguirre et al., (2008) in

evaluating the influence of glare on suprathreshold visual performance using simple reaction

times in a detection task noted an increase in simple reaction times which indicates a decrease

in visual performance.

This study appears to be the first time, as far as we know, that used RF patterns to study the

effect of glare on visual performance in a shape discrimination task. We have demonstrated

that sudden onset glare does indeed increase the threshold of discriminating the RF shapes,

and this difficulty increases when local components of the contour are tested, as seen by the

fact that threshold of smaller open contours are higher than those of whole closed ones. Lower

mean luminance also increases threshold of discriminating RF contours across the board

irrespective of RF type or whether they are open fractions or closed whole contours.

Some studies have looked at the role of the veiling luminance model as the sole cause of the

increase in threshold in visual performance tasks and have found that veiling luminance alone
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does not fully account for the reduction in visual performance. Aguirre et al., (2008) found that

sudden glare increases simple reaction times (RT) in a detection task but when the data was

plotted as a function of the inverse of contrast there was a linear relationship between RT and

the slope of the graph. Glare increased the slope of the graph but interestingly, the slope varied

with spatial frequency which is not what one would expect if the veiling luminance over the

retinal image is the only source of vision compromise. Paulsson and Strostrand, (1980) used the

contrast sensitivity function (CSF) of normal subjects and those with varying degrees of cataract

and used the veiling luminance model imposed by the glare source to account for the reduction

in visual perception, a reduction that was even more marked in individuals with cataract. It is

however striking to note that their result showed a disparate reduction in CSF in the spatial

frequency domain with many of the subjects showing more distinct reduction in the low and

medium frequency ranges. If the veiling luminance alone explains the reduction of visual

performance such spatial frequency selectivity will not be seen but instead a uniform reduction

in CSF would have been demonstrated.

Our data showed that the veiling luminance model could not completely account for the

reduction in the shape discrimination threshold. In experiment 1 we demonstrated that shape

discrimination threshold for high contrast targets in the presence of a glare source was

significantly higher than that of equivalent luminance target, which is contrary to what is

expected since the veiling luminance imposed by the glare source reduces the contrast of the

high contrast target to that of the equivalent luminance target. This same result was replicated

even when a target with a contrast of 10 X the detection threshold was used. What this implies

is that the effect of glare on a target is not dependent on the contrast of the target and that
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performance in the presence of a glare source is worse than without glare at an equivalent

contrast level. Furthermore there was no significant difference in threshold when open contour

(1/2 or 3/4) targets at low contrast levels (in the absence of glare) were compared to that of

closed high contrast targets (in the presence of glare).



46

Conclusion

This study showed that transient glare significantly impaired ability to detect minute radial

deformation of an RF contour, furthermore that the impairment was significantly greater than

that caused by contrast reduction and finally that the impairment caused by transient glare was

similar to those measured at low contrast with sections of the contours missing. Data modeled

by using the veiling luminance over the retinal image, alone could not account for the reduction

of visual performance.
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