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ABSTRACT  

PRACTICE MAKES THE DEFICIENCY OF GLOBAL MOTION DETECTION IN 

PEOPLE WITH PATTERN-RELATED VISUAL STRESS MORE APPARENT. 

 

JANA WEGRZYN 

Directed by: Professor Bin Zhang 

 

Pattern-related visual stress (PRVS) refers to the perceptual difficulties experienced by 

some individuals when exposed to high contrast striped patterns. People with PRVS 

were reported to have reduced sensitivity to global motion at baseline testing and the 

difference disappears at a second estimate. The present study was to investigate the 

effect of practice on global motion threshold in adults with and without PRVS.  

 

Methods: A total of 101 subjects were recruited and the Wilkins & Evans Pattern Glare 

Test was used to determine if a subject had PRVS. The threshold to detect global 

motion was measured with a random dot kinematogram. Each subject was measured 5 

times at the first visit and again a month later. Receiver operating characteristic (ROC) 

curve analysis was applied to show the agreement between the two tests.  

 

Results: Twenty-nine subjects were classified as having PRVS and 72 were classified as 

normal. At baseline, the threshold to detect global motion was significantly higher in 

subjects with PRVS (0.832 ± 0.098 vs. 0.618 ± 0.228, p < 0.001). After 5 sessions, the 

difference between the normal and subjects with PRVS increased (0.767 ± 0.170 vs. 

0.291 ± 0.149, p < 0.001). In ROC analysis, the area under the curve (AUC) improved 

from 0.792 at baseline to 0.964 at the fifth session. After a one-month break, the 



  
 

3 
 

difference between normal and subjects with PRVS was still significant (0.843 ± 0.169 

vs. 0.407 ± 0.216, p < 0.001) and the AUC was 0.875. 

 

Conclusion: The ability to detect global motion is impaired in persons with PRVS and the 

difference increased after additional sessions of practice. 
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Introduction: 

Pattern-related visual stress (PRVS) refers to the discomfort experienced by some 

people while viewing high contrast and repetitive patterns. This includes bodily 

symptoms, such as malaise and nausea, and perceptual symptoms ranging from 

illusions of color to seeing patterns vibrating [1]. Patterns with large deviations from 

natural image statistics, such as a high contrast striped grating in the range of three to 

four cycles per degree, often result in peak PRVS and anomalous experiences [2–5]. 

Studies suggest the effects of PRVS may be significant in daily life in healthy non-clinical 

individuals [6]. Those affected show less accuracy in identifying words versus non-words 

and are slower in visual searches, potentially affecting reading performance [7]. Because 

the population’s use of computers during daily activity is increasing, the consequences 

of high contrast images, motion, and repetitive tasks among people with PRVS need 

additional studies. PRVS is a unique set of symptoms that should not be confused with 

blur or fatigue. Ocular factors, such as instability in fixation and increased 

microfluctuation in accommodation, are unlikely to be explanations for the phenomenon 

[8–11]. The neural mechanism underlying PRVS is generally thought to be of cortical 

origin. The fact that PRVS is more likely to be evoked under binocular than monocular 

conditions also supports this view [12]. Unlike the natural images that cause a sparse 

response in the visual system, visually averse stimuli may cause an anomalous 

response as found in PRVS, as a result of either cortical hyperexcitability or poor cortical 

inhibition [5, 13–16]. Previous studies suggested an overload in extrastriate dorsal visual 

pathway in PRVS [17]. Migraine has a strong correlation to pattern glare with 82% of 

migraineurs exhibiting PRVS [18–20]. The visual stimuli that trigger migraine and PRVS 

share common features [21]. Those with statistical properties away from the natural 

scenes tend to evoke both migraine and PRVS [22–24]. Before the onset of the 

headache, up to 24 hours before, migraineurs’ susceptibility to pattern glare is increased 
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[25]. The distortions perceived by migraineurs tend to be on the same side of aura [26, 

27]. While the headaches are usually unilateral, the distortions tend to be predominant in 

one visual hemifield [5, 25]. Moreover, cortical hyperexcitability has also been reported 

in the visual cortex of the people with migraines [28, 29]. Therefore, PRVS and migraine 

should be viewed as the two ends of a continuum, with PRVS in the non-clinical 

population who experience abnormal illusions and migraine in the clinical population who 

suffer migraine attacks [16]. People with migraine do not perform well in motion 

coherence task [28, 30, 31], in which one needs to detect the elements moving 

coherently (the same direction) from the elements moving at random directions over a 

large space. Such a function could not be achieved in the primary visual cortex (V1) 

since the neurons there have small receptive fields and are only capable of analyzing 

location motion (movements in a small spatial region) [32]. The direction of the coherent 

motion could not be determined from tracking the trajectory of a single element. The 

outputs from many V1 neurons need to be pooled and integrated to extract the global 

motion information [33]. This step is done by the neurons in the medial temporal (MT) 

and medial superior temporal (MST) areas, where the neurons have much larger 

receptive fields and suitable for global motion analysis. The impaired performance in 

migraine is considered associated with the cortical hyperexcitability [28, 30, 31]. The 

global motion in people with PRVS has been less studied, possibly due the fact many of 

them are healthy nonclinical persons. The findings from the few existing studies are 

sketchy and even contradicting to each other. In one study, Simmers reported that the 

thresholds to detect global motion in people with PRVS are not significantly different 

from that in the normal population [34]. In another study, impaired thresholds for global 

motion detection are found in people with PRVS when tested for the first time. However, 

an improvement after a second attempt usually makes the difference insignificant [35]. 

Considering the close correlation between PRVS and migraine, such as common 



  
 

7 
 

triggering stimuli and cortical hyperexcitability [5, 13–16], the global motion in PRVS 

deserves a closer examination. In these previous studies, whether a subject has PRVS 

was assessed with different approaches. One is based on the subjects’ memory of 

symptoms that have occurred during daily activity, particularly those related to readings 

[35]. The other approach is based on observation whether a subject showed certain 

signs, such as voluntarily wearing colored filters over a sustained period of time [34]. In 

this study, we used the Wilkins & Evans Pattern Glare Test (PGT), in which a pattern 

likely to induce PRVS is presented to the subjects who report the occurrence of the 

visual disturbance just experienced [26]. Comparing to previous methods, PGT has 

several advantages. First, it is independent of the process of choosing a colour overlay. 

Second, it collects the subjects’ immediate symptoms after viewing the patterns, instead 

of recalling the symptoms encountered in the past. Third, the normative values for the 

normal population and specific diagnostic criteria have been clearly established by the 

researchers who invented this test. Therefore, in this study, we used the PGT to identify 

the subjects with PRVS first. Then we investigated if the subject PRVS have significantly 

worse performance in detecting global motion compared to the people without PRVS. 

Moreover, we tested whether practice can alleviate such impairment. 
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Materials and Methods  

Subjects 

A total of 101 unselected university students (27 male vs. 74 female, aged 19–35) 

participated in the study. The average spherical equivalent (SE) for all the eyes were -

2.59 ± 2.43 D. The average SE was -2.67 ± 2.47 D for the right eyes and -2.50 ± 2.45 D 

for left eyes. There was no significant difference between the SE of the two eyes (p = 

0.61, ranksum test). No information about the prevalence of specific learning difficulties, 

migraine, epilepsy, and medications was collected. All subjects were informed about the 

details of the study and written consent was obtained. This study protocol was approved 

by the Institutional Review Board of the Nova Southeastern University.  

 

Pattern Glare Test  

Whether a subject has PRVS was determined with the Wilkins & Evans Pattern Glare 

Test [36]. In short, a field of horizontal stripes of low (0.5 cycles per degree), middle (3 

cpd), and high (12 cpd) spatial frequencies (SF) was displayed. A grating with a middle 

range SF (3 cpd) served as the main test, which is expected to elicit the most visual 

discomfort. In addition, the pattern glare test had two more control gratings. The one with 

the lowest frequency (0.5 cpd) was designed to filter out the subjects who would be 

highly suggestible and report many visual distortions even when they perceived none. 

The one with a high frequency (12 cpd) was designed to filter out the distortions caused 

by optical reasons. The subjects were asked to keep their fixation on a dot at the center 

of the grating for about 5 seconds, and then record any distortions seen on the record 

sheet. A subject with a score of > 3 on the middle SF pattern or a score of > 1 on the 

difference between mid and high SF patterns (mid—high) was defined as having PRVS 

[26]. 
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Global Motion Test  

The threshold to detect global motion was measured with a random dot kinematogram. 

A total of 200 white dots, each with high luminance (80 cd/m2), were presented on a low 

luminance (0.3 cd/m2) background. The display was calibrated with a luminance meter 

(LS100; Konica Minolta, Osaka, Japan). The stimulus was viewed binocularly from a 

head and chin rest. All stimuli were generated in Matlab (version 2012a, The MathWorks 

Inc., Natick, MA) using Psychophysics Toolbox and displayed on a BenQ LCD 27-in 

monitor (BenQ Corporation, Taipei, Taiwan) with a resolution of 2560 × 1440 pixels and 

a 60 Hz refresh rate [37, 38]. The tests were performed at a distance of 60 cm with a 

display size of 53 × 31 degree. The moving dots were presented within a 12-degree 

circular window and consisted of two kinds. The signal dots moved coherently towards 

the same direction, while the noise ones moved in random directions with an angular 

velocity of 5.0 deg/s collectively. A single dot size subtended 0.16 degree, with each dot 

having a lifetime of 200 ms (12 movie frames), after which the dot disappeared and was 

then regenerated at a random location within the circular window. The duration of each 

trial was 500 ms (Fig 1). Observers were asked to identify the direction of the perceived 

global motion, i.e. up vs. down, in a single-interval identification paradigm. An 

experimental trial consisted of the following sequence: (1) A white fixation cross 

appeared on the screen, (2) the fixation cross disappeared, and the stimulus was 

presented for 500 ms; (3) a text prompt appeared until the subject responded by 

pressing one of two keys on a keypad, up or down; and (4) the text disappeared, and 

audio feedback was provided to indicate the completion of a trial. The coherence of the 

moving dots, that is the percentage of signal dots, was adjusted according to a 3-down-

1-up staircase with a beginning coherence of 100%. The threshold was estimated from 

the arithmetic mean of the last 6 reversals with 8 reversals in total per test. The test was 
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repeated 5 times continuously and was repeated once again after a 1-month interval. 

One person collected all the data of pattern glare test and another person collected 

global motion test results. Those two persons were masked from each other. The 

participants were also masked. 

 

The Agreement Between Pattern Glare Test and Global Motion  

All statistical analyses were performed using SPSS statistical package 19 (SPSS, IBM, 

Chicago, IL, USA). To compare the threshold to global motions, which did not follow a 

normal distribution as confirmed with the Kolmogorov-Smirnov test, a Mann-Whitney U 

test was used. A receiver operating characteristic (ROC) curve was employed to 

evaluate the agreement between the two tests at baseline, after 5 sessions of training, 

and after the 1-month break. The area-under-the-curve (AUC) was used as the index to 

reflect the goodness of the agreement. Statistical significance was defined as p < 0.05.  
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Results  

 

Pattern Glare Data  

Based on the criteria, 72 subjects were classified as normal without PRVS and other 29 

were classified as subjects who experienced PRVS. Their scores are summarized in 

Table 1. G1 to G3 presents the average number of visual illusion experienced while 

viewing the gratings with low, middle, and high SF respectively. G2-G3 indicates the 

difference in numbers of illusion experienced viewing gratings of middle SF versus 

grating of high SF. 

 

 Global Motion  

All subjects were tested for the threshold to detect global motion 5 times. The baseline 

threshold, the threshold measured during the first session, in the subjects with PRVS 

was significantly higher than that of the normal subjects (Fig 2 and Table 2). However, 

the difference was only about 0.22. Over the sessions, a decrease in the threshold was 

apparent in the normal subjects. The improvement ratio (IR) was calculated as the 

(Threshold 1st session—Threshold 5th session)/(Threshold 1st session). The mean IR in 

the normal was 0.483 ± 0.279, with 87.5% (63/72) subjects having IR > 0.2, and 80.6% 

(58/72) subjects having IR > 0.3. In contrast, the decrease of threshold was much 

smaller in the subjects with PRVS. The mean IR was 0.075 ± 0.207 (p < 0.001), with 

only 24.14% (7/29) subjects having IR > 0.2, and 10.34% (3/29) subjects having IR > 

0.3. After 5 sessions of tests, the threshold in the subjects with PRVS was significantly 

higher than that in the normal subjects (Table 2). The difference became much larger 

(0.47), instead of disappearing. To test if the increased difference between normal and 

PRVS subjects persists after a period without training, the threshold to detect global 

motion was evaluated again after giving each subject a break for a month (Fig 3). For 
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the normal subjects, the threshold rebounded to a level similar to the third training 

session (p = 0.542), which was significantly lower than the baseline (p < 0.001). In other 

word, the effect of practice was partially retained in non-PVRS subjects. In the subjects 

with PRVS, the threshold rebounded to a level similar to the baseline (p = 0.485). The 

difference (0.44) between the normal subjects and subjects with PRVS, after a break for 

a month, was still larger than the difference found at the baseline (0.22).  

 

Agreement between pattern glare and global motion  

ROC analysis was performed after each session to investigate the agreement between 

the pattern glare test and the global motion test in distinguishing subjects with PRVS 

from the normal subjects (Fig 4). With a chosen criterion for global motion threshold, a 

subject with a higher threshold was classified as having PRVS and a subject with a 

lower threshold was classified as normal. This result was compared to the results from 

the pattern glare test to calculate the sensitivity and specificity. As the criterion was 

systematically varied, a ROC curve was constructed and the AUC was calculated as 

0.792 at baseline and it improved over the sessions. After 4 sessions of training, it 

reached a value of 0.973 and then further practice did not improve it. The ROC analysis 

after the 5th session suggested an optimal cut-off criterion and a threshold of 0.6 of 

coherence to detect the global motion, with 94.4% specificity and 86.1% sensitivity. Due 

to the rebound of threshold in both normal and subjects with PRVS, the AUC dropped to 

0.875, which as comparable to the AUC value after the 2nd session (0.852) in the first 

visit.  

 

 

 

 



  
 

13 
 

Discussion  

 

Our results demonstrated that, at baseline, the subjects with PRVS had a higher 

threshold than normal subjects in detecting global motion. For most of the normal 

subjects, but for only some of the subjects with PRVS, the thresholds decreased over 

sessions of practice. The difference between normal and PRVS subjects became much 

larger after 5 sessions of practice. The results distinguish PRVS subjects from normals 

and match well with results from pattern glare test, particularly after practice, with an 

AUC of 0.964 after 5 sessions.  

 

Comparison to previous studies  

The results from previous studies [34, 35] and current study form a continuum on the 

performance of detecting in global motion with PRVS. At one extreme, Simmers et al 

reported no difference between subjects with RPVS and normal subjects. At the 

opposite extreme, our revealed showed persistence impairment in performance even 

after five sessions of practice. In the middle, Conlon’s results showed significantly worse 

performance that disappeared after a second test. The difference among those three 

studies could be partially be explained by a few factors. First, the criteria used to 

establish subjects with PRVS are different. In Simmer’s study, subjects who voluntarily 

used the color overlay over 6 months were recruited. In Conlon’s study, visual discomfort 

was assessed with the combination of two methods. One is the Visual Discomfort Scale 

[39], which measures the retrospective reports on visual discomfort. The other is a 3-

point rating scale to rate the immediate somatic and perceptual unpleasantness of a 

horizontal square-wave grating with spatial frequency at 4-cycles/degree, without the 

control stimuli at low and high spatial frequencies. Subjects scoring 50% or greater on 
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both measures are classified as having visual discomfort. In our study, the responses to 

three spatial frequencies were collected [26]. 

Second, in our study and Simmer’s study, only one field of dots were used, and subjects 

were required to detect the direction of the coherent motion. In Conlon’s study, two 

panels each with 300 white dots were presented simultaneously, with one containing a 

variable percentage of dots moving coherently and the other one containing randomly 

moving dots only. The subject’s task was to select the panel containing coherent motion. 

With the simultaneous presence of a target panel and the reference panel, it becomes a 

discrimination task, instead of detection task, which is harder. This might explain the 

large observed improvement in threshold in subjects with visual discomfort. Third, in 

Conlon’s study, the subjects were only tested twice in two sessions. As shown in our 

study, even after the second session of tests, there was still some overlap between the 

normal subjects and the PRVS subjects, since the AUC was 0.852. Considering with the 

relative smaller sample size in Conlon’s study (n = 17 for normal subjects with visual 

discomfort), it is highly possible to obtain results showing no statistical difference. 

Fourth, the parameter values used for global motion tests were different in those studies. 

It is known that parameters including dot number, dot density, dot luminance, moving 

speed, etc., could influence the measured threshold [40, 41]. In Simmer’s test, both 

black and white dots were used. There are fewer dots (100 vs. 200 in ours) moving at 

lower speed (2.5deg/sec vs. 5 deg/sec in ours). The dots subtended a smaller circular 

space (4-degree vs. 12-degree in ours). Each dot in Simmers’ study is smaller (0.03 deg 

vs. 0.16 deg in ours) and has shorter lifetime (26 ms vs. 200 ms in ours). It is possible 

that visual stimulus in our study could have triggered PRVS in the sensitive subjects, 

while the stimuli used in Simmers’ study did not. With or without color overlay, the 

subjects’ performance in Simmers’ study did not show any significant difference, 
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perhaps supporting the notion that Simmers et al.’s motion test did not elicit symptoms of 

visual stress but ours did. 

 

Close Association Between the Subjective Test and Objective Test  

It is important to note the close agreement between the pattern glare test and global 

motion test in distinguishing subjects with PRVS from the normal subjects. Pattern glare 

is based on an individuals’ subjective report of perceived symptoms [26]. Our global 

motion test is a 2-alternative forced choice test that minimizes the influence of subjective 

bias of individual subjects. Significantly in our study, objective results matched results 

from the subjective assessment. This close association could be due to underlying 

neural mechanism. The prevailing explanation for PRVS is the cortical hyperexcitability 

[14, 42]. In normal subjects, it has been proved that, for noise-free tasks, increased 

cortical excitability by external stimulation improves the performance and decreased 

cortical excitability deteriorates the performance [28]. More importantly, for tasks with 

noise, reduction of the cortical excitability actually enhances the performance. In PRVS, 

a stimulus-driven cortical hyperexcitability could impair one’s capability to separate the 

noise from signal. According to these, the altered motion perception in subjects with 

PRVS would be more reasonably interpreted as the effect of cortical hyperexcitability, 

rather than the cause. Global motion is processed in the dorsal pathway, especially the 

V5 area where the neurons are shown to have larger receptive fields [43, 44]. By using 

the global motion, our study and others suggested that PRVS affects visual processing 

outside the primary visual cortex [35]. It also suggested repetition affects visual tasks in 

the extrastriate areas differently in the people with PRVS than the normal populations. 

Further study is desirable to better understand the effects of repetitive visual processing 

tasks in the subjects who are deficient in inhibitory suppression such as migraine and 

PRVS. This type of visual stimulus is of greater significance as daily tasks increasing 
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consist of high contrast, computer generated images. One precaution that we should 

keep in mind is that, even after 5 sessions of training, the sensitivity to distinguish 

subjects, with a cut off threshold of 60% coherence to detect global motion, was still only 

86.1%, not quite as high as the specificity. In other words, there is a partial overlap 

between the normal population and the population with PRVS. Or it could simply be that 

global motion processing and PRVS share certain portions of the neural mechanism, not 

the entire neural underpinnings.  

 

Some Other Noticeable Points in this Study  

Several previous studies on perceptual learning reported that the subjects with worse 

performance at the start of training tend to improve much more than those with better 

performance [45, 46]. That was the case for the normal subjects in our study but was not 

true for the subjects with PRVS. The improvement ratio in subjects with PRVS was 

significantly smaller than that in normal subjects. It is possible that, in subjects with 

PRVS, repetitive exposure to the visual stimuli would further increase the cortical 

excitability, which in turn would counteract the learning effects from practice and lead to 

small or no improvement at all. Some previous studies on perceptual learning have tried 

to equate the performance levels before training by scaling the stimuli to see if that could 

lead to an equivalent amount of improvement throughout the training [47]. In this study, 

we purposely used subjects who are naïve to psychophysical experiment to remove the 

potential interference of previous learning experience. This allowed us to better reveal 

the differences of the initial condition between the normal subjects and subjects who are 

sensitive to pattern glare. Every subject started the test with a 100% coherence level 

and followed the same 3-down-1-up procedure. We did not adjust the initial values in the 

following session. It would be interesting to determine how long the positive effect of 

perceptual learning could last. In our study, we did not intentionally test the lasting 
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duration. We simply noticed that in the evaluation 1 month after the first 5 sessions of 

training, the subjects’ performance showed a significant regression. However, they were 

still significantly better than the values obtained at the first measurement, which mean 

the learned effect was retained for at least 1 month. For the subjects who were sensitive 

to pattern glare, the rebound effect was not as dramatic as in the normal subjects. This 

does not mean that the subjects who were sensitive to pattern glare retained the learned 

function better; it was simply due to the fact that the reduction in threshold from the 

training sessions that occurred a month ago were not as great as those in normal 

subjects to begin with. In other words, there was not much space for rebounding.  

 

The Limitations of Current Study  

We compared our normal subjects with other studies to ensure that they are indeed 

normal. For PGT test, the scores to gratings at all three spatial frequencies were within 

the normal ranges established by Evans et al. The mean scores to gratings at low, 

middle, and high spatial frequency were 0.52, 1.72, and 2.11 respectively, which were 

very close to the normative values reported by Evans et al. (0.53, 1.59, and 1.82) [26]. 

Moreover, the difference between scores to middle and high spatial frequency was -0.39 

in our study and -0.23 in Evans’ study. For global motion, the normal subjects mean 

thresholds (0.29 ± 0.15) were very close to those reported in the studies with similar 

choice of parameters (0.37 ± 0.10) [28]. However, caution has to be applied that when 

interpreting the findings on the subjects with visual stress. From above comparison, it is 

clear that when the diagnosis of visual stress relies on either symptoms or signs, the 

findings may vary. When this study was already in the data collection stage, no unified 

diagnostic criteria with balanced utilization of signs and symptoms were available. 

Fortunately, in two recently published studies [48, 49], Evans and coworkers have filled 

this gap. They identified the six most important symptoms include words moving, 
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merging, and fading, patterns and shadows in text, text standing above page, and 

discomfort to flickers. They also pointed out the three most important signs include 

voluntary use of a color overlay over 3 months, an improvement more than 15% in 

Wilkins Rate of Reading Test when using colored filters and a PGT result greater than 3 

with mid-spatial frequencies. It is recommended that at least three of the six typical 

symptoms and two of the three signs should be present for a visual stress diagnosis. 

The emergence of such diagnostic standard will greatly push forward the research in this 

field. Another point that we want to point out is that we could not exclude the influence 

about the potentially co-existing conditions, such as certain learning difficulties, migraine, 

epilepsy, and medications on the global motion results.  

 

Gender Differences 

Our study found sex-related differences in motion detection performance and visual 

illusion. There may no one cause for differences in response to visual stimuli between 

the genders. In terms of morphologic differences, the brain size itself varies between 

people and the genders Differences in cognition may affect a psychophysical test, where 

results are dependent on the subjective response.  Studies suggest males have a faster 

click rate or reaction time. This means that the likelihood of a male hitting the answer 

while the global motion stimulus was still presented is higher. This may be significant in 

our study, where there was an option to respond when the stimulus was no longer being 

presented. Additionally, studies reveal real differences in vision. Males outperform 

females in visual acuity, backward masking, biological motion and motion direction 

tasks. In terms of visual illusion, females were more apt to see visual illusions on the 

ponzo illusion. However other tests of visual illusion showed no differences or were 

inconclusive. Specifically, sinusoidal spaced gratings measuring tilt yielded no sex 

differences in illusion. Other considerations include underlying conditions, such as 
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migraine, which are more common in women. Since migraine is highly correlated with 

visual stress, it follows that our study would find more female participants to have visual 

stress. Understanding neurological differences in vision processing between the genders 

is still in the early stages of research. The data is not yet conclusive to extrapolate to our 

study. 
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Conclusions  

 

Subjects with PRVS are less sensitive at detecting global motion. This difference 

becomes significantly greater, instead of disappearing, over sessions of practice. 
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Tables and Figures 

Figure 1 

 

A 

 

B                                                                                  C 

 
                           Time                                                                                                                   Trial number 

 

 

Fig 1. Stimulus and experimental procedure. (A) Kinematogram with different levels of 

coherence with dots moving in the same direction presented as filled one. (B) 

Experimental procedure. (C) An example of results obtained from a staircase with a 3-

down-1-up paradigm. 
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Figure 2 

 

 1    2      3       4      5                      1      2       3     4      5 

 

       0      0.2     0.4      0.6    0.8 1                           0      0.2    0.4      0.6    0.8 1 

                    Threshold                                            Threshold 

 

Fig 2. The thresholds to detect global motion reduced after practice. Top panels: Line 

plot illustrating the changes in threshold to detect global motion with training sessions in 

normal subjects (A) and those with PRVS (B). Gray lines represent individual subjects’ 

data and colored symbols represent mean values after each session. Bottom panel: 

probability density plot for the threshold to detect global motion after the 1st session (C) 

and the 5th session (D). Blue: normal subjects; red: subjects with PRVS. 
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Figure 3 

 
      0                0.5                  1             0                  0.5                1 

 
 

 

Fig 3. Threshold to detect global motion measured after a break for a month. 
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Figure 4 

 

           Normal           PRVS                     0    0.2     0.4     0.6       0.81 

Threshold 

 

Fig 4. ROC analysis showing agreement between global motion test and pattern glare 

test. ROC curves after the first session (A), the 5th session (B), and after a break for a 

month (C). The AUC was plotted as a function of numbers of sessions (D). Orange, 

sessions in the first visit; purple, after a 1-month break. 
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Table 1 

Score Normal PRVS P value 

G1 0.514 ± 0.769 0.828 ± 0.889 0.079 

G2 1.723 ± 1.077 3.862 ± 1.093 < 0.001 

G3 2.111 ± 1.295 2.828 ± 1.891 0.031 

G2-G3 -0.389 ± 1.082 1.035 ± 1.179 < 0.001 

Table 1. Scores on the pattern glare test. 

Values are presented as mean ± standard deviation. 

 

 

Table 2 

Sessions Normal PRVS U value P value (2 tailed) 

1st 0.617 ± 0.228 0.832 ± 0.098 411 < 0.001 

2nd 0.511 ± 0.229 ⇤ 0.806 ± 0.127 297 < 0.001 

3rd 0.429 ± 0.219 ⇤ 0.814 ± 0.113 146 < 0.001 

4th 0.333 ±0.163 ⇤ 0.789 ± 0.132 53 < 0.001 

5th 0.291 ± 0.149 ⇤ 0.767 ± 0.170 71.5 < 0.001 

A month later 0.407 ± 0.216 ⇤ 0.843 ± 0.169 156.5 < 0.001 

Table 2. The thresholds to detect global motion after each session. 

Values are presented as mean ± standard deviation. 

⇤ Indicates a significant difference from the threshold obtained from the 1st session. 
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