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Abstract 
Background: Avian Influenza (H5N1) has become entrenched in Egypt since its emergence in 
2006.  Control measures have failed and surveillance systems remain inadequate.  A relatively 
new method for regression called Random Forests is presented here with the goal of providing 
accurate and timely predictions of the weekly number of outbreaks in each of the Egyptian 
governorates.  

Methods: Predictions were generated from Random Forests models using outbreak data from 
the FAO EMPRES-i database, and local weather data from Weather Underground.  This data 
was lagged by one and two weeks in order to make prospective predictions with the current 
week’s data in the future.  Model performance was assessed using a variety of methods. 

Results: The percent of the variance in observed outbreaks explained by the model in each of 
the governorates varied greatly,  ranging between 20 and 60 percent in governorates with high 
and medium outbreak activity. The models typically predicted poorly in governorates with low 
activity.  Linear regression of the observed outbreaks on the predicted values provided evidence 
that while outbreaks were consistently underpredicted across all governorates, predictions in 
some models tracked observed outbreaks quite accurately.  

Discussion: The varying levels of model performance in each of the governorates raises many 
questions about why this is.  While we cannot deduce these reasons from the models themselves, 
public health officials can use the lessons learned here as a guide to focus future research to 
better understand what is occurring.  Predictive models can be used to evaluate local surveillance 
systems, and find additional covariates for the model to determine the spatio-temporal risk of 
avian influenza.  As a result of better surveillance data and more complete models, control and 
prevention measures may be more effectively put in place where and when they are needed most. 
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Background 
Since its emergence globally, there have been 622 confirmed cases of H5N1 in humans, and 371 
deaths.  Egypt has the second highest number of reported human cases and deaths, at 170 and 61 
respectively.1  Avian influenza also threatens one of Egypt’s largest agricultural industries, 
which is a substantial source of employment, livelihood, and animal protein for Egyptians.2,3,4  
Control efforts including culling, quarantine of suspected cases, vaccination and movement 
restrictions for poultry have failed.  Lack of coordination in central and local veterinary services, 
inconsistent compensation and vaccination policies, dense populations of humans and poultry 
living together, and poor biosecurity in smallholder operations are the likely causes of 
endemicity in Egypt.5  Recent political instability has decreased both the country’s ability to 
cope with outbreaks, and the willingness of citizens to participate in control activities.6   
 
This lack of control and frequent human exposure to H5N1 could have global public health 
consequences as the virus could gain an increased affinity for human receptors, and thus have 
greater pandemic potential.7  The control and prevention of outbreaks in endemic countries like 
Egypt is necessary to reduce the threat of global emergence.  Control may be possible through a 
greater understanding of disease dynamics and increased surveillance.8  This paper presents a 
forecasting model that attempts to explain and predict the spatio-temporal dynamics of avian 
influenza in Egypt at the governorate level with the eventual goal of providing early warning, to 
decrease the time to disease detection, and improve the planning of targeted disease control 
measures.   

 
For influenza forecasting models to be accurate and aid in the planning and rapid implementation 
of disease control measures, the surveillance data used would ideally be complete and 
disseminated in a timely manner.9,10,11  Complete and timely pandemic influenza surveillance 
data, in reality, is a rarity.12  Models, however, can be used by public health officials to 
determine the likely risk of disease over space and time, which may help to target surveillance 
systems in areas where there is low disease detection, but apparent high risk.  Models may also 
help to determine whether increases or decreases in disease incidence are artifacts of changes in 
surveillance system functioning, or are a true signal in disease patterns.13  This creates a positive 
feedback loop that strengthens surveillance systems, while increasing the models ability to detect 
risk, and thus further targeting surveillance efforts.14  With decreased time to detection and better 
understanding of disease dynamics, control and prevention measures can be put into place where 
and when they will be most effective. 
 
In order for this goal to be achieved, the predictive model must be able to capture the 
relationships between the predictors and the occurrence of outbreaks, and be able to use this 
information to accurately forecast outbreaks in real time.  The model in this paper uses a 
relatively new tool for regression called Random Forests to predict the weekly number of H5N1 
outbreaks occurring in poultry at the governorate level.  Random Forests is a machine learning 
technique ideal for use in determining the sometimes subtle and complicated natural 
relationships between predictors and outbreaks.15  Random Forests have repeatedly demonstrated 
their superior ability to make accurate predictions when compared with other regression methods 
because of their ability to learn non-linear relationships.16,17  Random Forests deal well with 
small numbers of observations with large numbers of predictors, and are insensitive to outliers, 
missing data, and many variable types without the need for transformations.  Additionally, 
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Random Forests are not prone to overfitting nor bias, which are concerns in other modeling 
methods.18  These advantages, however, come at the cost of model transparency.  Error and the 
percent of the variance explained are reported for the model, as is relative predictor importance.  
There are no parameter estimates nor significance values given for predictors, leaving the 
investigator to find creative methods of testing model performance and design, which will be 
discussed here further.   
 
Random Forests are used more and more to forecast in a variety of fields, including finance to 
predict stock index movement, meteorology to predict severe weather events, and criminal 
justice to predict recidivism, but it has not been used to model outbreaks of pandemic 
influenza.19,20,21  Applications in ecology to predict species distribution and habitat suitability 
could potentially be used in the field of landscape epidemiology.22,23  However, the only known 
application in this field was the modeling tick presence or absence, and thus tick-borne disease 
risk, in Italy.24  Random Forests in influenza research are exclusively used to study viral genetic 
sequences because of their efficiency and ability to model the complex genetic causal 
mechanisms, mutations and viral characteristics.25  The model presented here would provide a 
novel approach to pandemic influenza epidemiology modeling and prediction.  Specifically, this 
paper will explore the use Random Forests to predict weekly outbreaks at the governorate level, 
use new methods to test model performance, and discuss future research for model performance 
improvement.  When assessing model performance, I hypothesize that the models in high 
activity governorates will be able to predict outbreaks better than chance, and that the magnitude 
of predictions will be to a lesser degree but will adequately show that predictions and actual 
outbreaks vary together enough to provide some useful lessons.  
 
Methods 
Data 
Outbreak data was obtained from the FAO EMPRES-i Global Animal Disease Information 
System.26   The EMPRES-i database compiles reports on animal disease outbreaks by location 
and date.  Each event is validated and confirmed with staff in the field or local animal health 
workers upon entry in the database.  Individual outbreak data was aggregated over each week by 
each governorate. Weather data was incorporated into this dataset using Weather Underground, 
which provides publicly available historical weather data.27   Weather data was added to the 
model because there is evidence that temperature may aid in the transmission of influenza 
viruses.28  Daily minimum temperatures were collected from 11 weather stations distributed 
throughout the country. Each governorate was assigned to the closest weather station, and the 
temperatures were averaged across each week.  Data was collected from February 2006, when 
avian influenza first emerged in Egypt, to the middle of March 2013.  R statistical programming 
platform was used to aggregate the data and to perform all analyses.29 
 
Model Design  
Temperature and outbreak variables were each lagged by one and two weeks.  This idea was 
considered due to possible delays in the weather’s impact on viral development, or to account for 
the acceleration of an outbreak’s trajectory, or some other possible temporal relationship that 
remains unknown.  Lagged variables were also used to allow for prospective out of sample 
predictions in the future.  Different combinations of these lagged variables were run in a Random 
Forests model and the percent of the variance in outbreaks that was explained by the model was 
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recorded.  The model that maximized the percent variance explained in the governorates overall 
was selected.  The models were applied to each of the governorates using the freely available 
randomForest package in R.30  The final model included the average minimum temperature 
lagged by one week, and aggregated weekly outbreak information lagged by one week and two 
weeks.   
 
Random Forests 
Random Forests are a nonparametric method of regression that uses an ensemble of decision 
trees to learn data, estimate the importance of each input variable on the outcome, and make 
predictions.  Five hundred trees were used for each Random Forests model in this paper.  Each 
tree, or learner, was trained on a bootstrapped sample of the original data.  This means that the 
observations in the complete dataset were sampled with replacement, until the training set was 
the same size as the original, but contained some observations more than once and others not at 
all.31  The data was then partitioned in space based on a randomly assigned set of predictor 
variables in the training set to create nodes and grow the decision tree.32  Observations not 
included in the creation of the tree, which are called out of bag samples, are then pushed though 
that tree, and predictions are generated.  These predictions are compared with their observations 
to obtain an unbiased estimate of that tree’s error.  Generalization error (the difference in training 
set error and total error) is not a concern due to the large number of trees grown, meaning that 
there is no overfitting in Random Forests.33  Retrospective predictions are determined by the 
average of each tree’s individual predictions for each observation.  Prospective predictions are 
created by pushing new observations through each tree and averaging these values across all 
trees.34  The errors and the percent of the variance explained were examined to determine model 
performance.  
 
Model Performance 
The time series predictions generated were plotted over time with actual outbreaks to visually 
inspect prediction performance.  Residuals were examined through residual plots as well as a 
normal QQ plot.  Differences in the week-to-week number of outbreaks were calculated for the 
actual and the predicted values and were plotted against each other.  Visual inspection of these 
plots was used to estimate the number of predictions that were accurate in both direction and 
magnitude.  To test whether or not magnitude was accurately predicted on average, and that 
predictions and observed values varied together, observed values were regressed on predictions.  
Because the residuals are not normally distributed much of the linear regression information 
cannot be used inferentially, however the slope and its standard error, as well as coefficient of 
determination were examined to determine how the predictions varied with observed outbreaks.  
Chi-squared or Fisher’s Exact Tests were used to determine whether or not a model predicted 
week to week increases or decreases, regardless of magnitude, better than chance.   
  
Shrinking Predictions to the Mean 
In addition to the prediction of weekly cases, the movement of the virus across space was 
explored.  In Random Forests models it is possible to use additional information after the 
predictions have been generated to increase their accuracy.  This is called “shrinking the 
predictions towards the mean.”  Because many governorates become infected at the same time 
and possibly pass infection back and forth, correlation between each of the governorates was 
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found.  Using this information, predictions for each of the correlated governorates can potentially 
be “shrunk towards the mean” using the equations: 

 
Pi=½(G1i+G2i) 

Ĝ1i=αPi - (α-1)G1i 

Ĝ2i=αPi - (α-1)G2i 

Where Pi is the average of the predictions from two correlated governorates for the ith 
observation, Gji is the prediction for governorate j for the ith observation, and α is an arbitrary 
weight tested and chosen by the investigator.  The error is calculated with the new predictions 
and compared with the original error value to determine if shrinkage increases the accuracy of 
the predictions.  
 
Results 
Percent Variance Explained 
An individual model was run for each of the governorates despite activity level, although it was 
hypothesized that governorates with low outbreak activity would not produce high performing 
models. In Table 1 we can see the governorates activity level over time judging by the number 
of weeks with observed outbreaks.  Model error is also reported for each governorate, but as this 
value is not comparable across governorates the table is sorted by the percent variance explained 
by the model.  The percent of variance explained by the model differed greatly between 
governorates, ranging between 20 and 60 percent in governorates with medium and high 
outbreak activity.  Quite a few of the models for high activity governorates were outperformed 
by middle activity governorates.  Governorates with negative percent variance explained are very 
poor predictors and are mostly indicative of low activity governorates.  Geographic 
representations of outbreak activity level and percent variance explained are found in Figure 1. 
 
Model Performance Measures 
Actual values were regressed on predicted values to determine prediction accuracy in direction 
and magnitude, and how the predictions varied with the observations.  In Table 1 we see that 
slopes close to one show an accurate prediction on average of the magnitude of outbreaks 
weekly.  Slopes for all governorates are above one, meaning each model consistently 
underpredicted the number of outbreaks each week.  When examining how much the predictions 
varied with the number of actual outbreaks, we see R-squared values in some governorates are 
quite high, with a range between 50 and 80 percent.  So while the models consistently 
underpredict there is strong evidence that for some governorates predictions still accurately track 
movements in the actual observations. Chi-squared and Fisher’s exact test, which were used to 
test the ability of the model to predict increases and decreases regardless of magnitude showed a 
range of significance both in high and low performance models, which is relatively inconsistent 
with the rest of the evidence, and raises questions as to whether this is an appropriate measure of 
model performance.   
 
Additional Lessons Learned 
Visual inspection of the plotted time series predictions and observed outbreaks, like the example 
seen in Figure 2, difference plots seen in Figure 3, and QQ plots seen in Figure 4 showed 
overarching patterns. These figures are just one example model taken from the governorate of 
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Menoufia, which has experienced the highest number of weeks with observed outbreaks.  These 
figures demonstrate the typical performance of the models in most medium and high activity 
governorates.  From the time series plots and difference plots we see that the models generally 
underpredicted outbreaks, and lacked the ability to determine the steepness of initial outbreaks, 
but could accurately predict peaks and decreases.  We can also see that Random Forests has 
difficulty in predicting zero outbreaks in periods of low activity leading to overpredictions 
during this time.  The QQ plots of the residuals for each model reiterate this fact by showing that 
the data are heavily skewed to the right.  Many governorates experienced high activity years in 
2010 and 2011, with sustained transmission outside of the typically active winter months.  
Activity has decreased since this highly erratic period.  It appears the models can detect a 
seasonal pattern even in governorates with substantial transmission throughout the year.  This is 
apparent in the pervasive increase in predictions during the autumn months regardless of actual 
activity.  In Figure 5 we can examine the aggregated number of outbreaks and predictions across 
the whole country of Egypt to determine Random Forests’ overall performance.  This time series 
plot demonstrates Random Forests overpredicting in times of low activity and underpredicting 
large spikes and transmission occurring outside the normal winter season.  Attempts to shrink 
predictions towards the mean of highly correlated governorates were not successful.  No 
additional information caused model errors to be lowered.   
 
Discussion 
Each of the models is poorest at predicting the magnitude of sudden large spikes in outbreaks.  
More information may be needed to improve the accuracy of predictions for these spikes, if at all 
possible.  Regardless of the consistent underpredictions of outbreaks, many of the models were 
able to predict increases that tracked with observed outbreaks, judging by both percent variance 
explained from the Random Forests output as well as the R-squared of the linear regression of 
actual outbreaks on predictions. While sharp increases were difficult for the model to detect, 
peaks and decreases were better predicted.  Most likely the use of outbreak data lagged by one 
and two weeks aids in the model’s ability to catch up to the peak and to predict the decrease 
more accurately.  Low activity governorates have poor performing models because of the large 
number of weeks with no outbreaks, and thus little information to be learned by the models.  
Despite these models’ “poor performance,” predictions for these governorates will often be close 
to zero, which will typically be accurate, as they are low activity.  In these cases, poor 
performance may not actually mean poor predictions over time. 
 
Using chi-squared and Fisher’s exact test to determine whether or not the models could predict 
week to week increases and decreases, regardless of magnitude, provided some results 
inconsistent with the rest of the model performance assessments.  This result was most likely 
caused by the level of noise in each model during periods of low activity, leading to many 
extremely minute increases and decreases in the predictions while the actual observations 
remained at zero.  With those fluctuations, and because we were only looking at increases and 
decreases of any magnitude, it was difficult to separate the noise from more meaningful 
increases and decreases in the predictions.   
 
Governorates with a higher proportion of outbreaks detected over summer months, as opposed to 
the more typical outbreaks in winter months, were not as effective at predicting large spikes in 
summer outbreaks, the aggregate of which we can see in Figure 5.  This is one hypothesis for 
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why the chi-squared and Fisher’s exact tests showed sensitivity to noise in some governorates 
and not others.  Predictions in governorates with higher rates of transmission during summer 
months may have more noise in the summer months that do not have outbreaks.  In these cases 
the model will have learned the weather data differently than in a governorate with primarily 
winter transmission.  This shows the model’s ability to detect a natural flu season using the 
weather data, which becomes less useful as increases in the detection of summer cases occur.  
Further research will be needed to determine the potential causes for increased detection of 
influenza in the summer, as well as to determine other variables that can be added to these 
models to decrease the noise in times of low activity. 
 
The Random Forests models can be used to analyze the trend of the disease over time and judge 
potential impacts of any known surveillance system improvements or deteriorations, or the 
impacts of any known interventions.  If that information is known they can also be used to learn 
about potential changes in the nature of the virus over time.  The increased levels of activity, 
specifically activity occurring outside of the typical flu season in the years of 2010 and 2011, 
may be due to any number of reasons.  Since then activity appears to have decreased.  
Determining whether or not these signals are artifacts of changing surveillance and diagnostics, 
or whether these are actual changes in the nature of outbreaks, may be important in refining the 
model over time, and in understanding nature of the virus.  Certainly modeling the impacts of 
political instability over this period could be extremely illuminating.  Parsing out the decreasing 
effectiveness in control efforts that are simultaneous with the potential deterioration of 
surveillance systems during this time is important in understanding disease dynamics in Egypt.   
 
One interesting outcome that raises questions is why the model works well in some governorates 
and not in others.  Intuitively models may not work as well in low activity governorates, but 
what are the differences between adjacent high activity governorates?  Because we have already 
seen the weaknesses in using weather data alone, more variables are needed to determine the 
differences across governorates.  This additional information in the model could be used to 
determine why there is more apparent summer transmission in some places, or to capture a 
variety of other potential differences that only the discerning Random Forests algorithms can 
detect.  More research into the surveillance and reporting systems, animal health worker 
presence, animal and human density, and income levels across governorates are all potentially 
useful inputs. While these are ways to improve model performance, the model as it is can be 
used to help understand, evaluate, and strengthen the surveillance systems in each governorate.  
Each model’s output should match public health officials’ assumptions about perceived H5N1 
activity in each governorate and the efficacy of each governorate’s surveillance system.  If it 
does not, the models can motivate investigations into why this is.  
 
Lastly, predictions may be improved by incorporating data from other governorates that have 
concurrent outbreaks or that may be responsible for the repeated spread of infection beyond its 
borders.  While correlations between many governorates were found to be quite high, after many 
attempts and resulting failures to incorporate this information into better predictions, it is clear 
that there is a more complicated mechanism of spread between governorates.  Further research is 
needed to determine how the governorates are linked and how this relationship has potentially 
changed over time.  It may be difficult to parse out the relationship between the geographically 
close high activity governorates in the north, but there are a few interesting cases of 
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geographically distant governorates being highly correlated.  Poultry trade routes may be useful 
in determining the connectedness of the governorates.  Additionally, with the increasing 
availability of viral genetic sequences that are geographically referenced, the phylogeography of 
H5N1 can be modeled for a more accurate understanding of how the virus is moving throughout 
the country.   
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Tables and Figures 
 
Table 1 

Governorate Weeks with 
Outbreaks MSE 

Percent 
Variance 
Explained 

Slope ± SE R-squared 
χ2 or  

Fisher Exact  
P-Value 

Kalyoubia 88 1.66 60.26 1.17 ± .02 0.84 0.043 
Giza 104 8.4 41.62 1.27 ± .03 0.85 0.690 
Gharbia 108 0.84 34.65 1.38 ± .06 0.67 0.097 
Fayoum 80 0.61 24.69 1.35 ± .07 0.51 0.291 
Menoufia 125 1.94 19.46 1.36 ± .06 0.64 0.016 
Sharkia 67 11.37 18.23 1.33 ± .03 0.83 0.024 
Dakahlia 96 1.09 17.22 1.36 ± .07 0.56 0.002 
Kafr el-Sheikh 50 0.61 14.94 1.53 ± .08 0.53 0.025 
Beni Suef 48 0.22 13.22 1.31 ± .09 0.33 0.186 
Minya 70 0.76 6.39 1.39 ± .07 0.51 0.150 
Behera 55 0.54 4.79 1.63 ± .10 0.40 0.027 
Aswan 13 0.09 3.45 1.69 ± .15 0.27 0.013 
Cairo 16 0.11 2.37 1.81 ± .19 0.18 0.002 
Qina 49 0.24 1.55 1.73 ± .12 0.38 0.029 
Alexandria 34 0.26 1.24 1.66 ± .11 0.36 <0.001 
Dumyat 45 0.32 -1.19 1.67 ± .11 0.32 0.212 
Matruh 3 0.01 -1.36 3.01 ± .78 0.04 0.002 
Red Sea 2 0.01 -1.39 2.25 ± .61 0.04 0.013 
Asyut 7 0.03 -1.74 3.07 ± .61 0.07 <0.001 
New Valley 5 0.03 -1.74 1.60 ± .09 0.48 <0.001 
Port Said 8 0.02 -2.09 3.08 ± .46 0.11 0.029 
Suez 13 0.05 -2.82 1.93 ± .18 0.22 0.037 
Suhaj 20 0.15 -5.02 1.81 ± .08 0.53 <0.001 
Ismailia 5 0.05 -9.5 2.13 ± .11 0.50 <0.001 
Table 1 shows descriptive statistics and measures of model performance for each governorate.  Variables included 
are: a) Weeks with observations since 2006 for each governorate, b) Mean square error and percent variance 
explained for each model, which are returned in the Random Forest regression output in R,  c) The slope of the 
linear regression of observed values regressed on predicted values which determines not only whether week to week 
increases or decreases could be predicted, but also judges the accuracy of the predicted magnitude of outbreaks, d) 
R-squared judges how much the variation in the observations is explained by the relationship between the observed 
and predicted values. e) Chi-squared or Fisher’s exact test p-values used to test whether or not the model could 
predict increases and decreases (regardless of magnitude) better than chance. *This table shows models for 24 
governorates.  There have been no outbreaks in the two governorates North and South Sinai, and thus no models 
were created for them.   
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Figure 1 
 

 
Figure 1 shows a geographical representation of the outbreak activity in each of the governorates (A)  as well as 
Random Forests model performance based on percent of the variance explained (B). There have been no outbreaks 
detected in the Sinai peninsula at this time.  
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Figure 2 

 
Figure 2 is an example of the time series data of the observed and predicted number of outbreaks given by the 
Random Forests model in the governorate of Menoufia. 
 
Figure 3 

 
Figure 3 is a plot of the week to week increases and decreases in the actual and predicted observations for an 
example governorate, Menoufia.  Points near the line were accurate predictions in both direction and magnitude. 
Points in the 1st and 3rd quadrants accurately predicted week by week increases or decreases.  Points in the 2nd and 4th 
quadrants were predicted in the incorrect direction.   
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Figure 4 

 
Figure 4 shows the normal QQ plot for the residuals for Menoufia’s model.  It demonstrates the typical 
underprediction of outbreaks in each model, as this hints at a residual histogram that is skewed to the right. 
 
Figure 5 

 
Figure 5 shows the countrywide weekly outbreak data since 2006 and the aggregate predictions from each 
governorates Random Forests model (although it does not include the initial outbreaks in 2006 as they were on such 
a larger scale the details in later years are less discernible if graphically represented) 
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