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Abstract 

Surface-enhanced Raman scattering enhances the weak Raman scattering by using a roughened 

metal-coated surface as a catalyst. Roughness in the nanometer range provides the best 

enhancement. The nanostructures for the surface-enhanced Raman spectroscopy (SERS) 

substrates, in this work, are generated using an electrochemical etching process on silicon 

substrates. The patterns of nanoporous silicon thus generated are transferred onto transparent 

polydimethylsiloxane (PDMS) substrates using the “lift-off” process. An incomplex sputtering 

technique is employed to coat this substrate with a ~20 nm aluminum layer. Rhodamine 6G 

(R6G) molecules, when adsorbed to this metal surface, form the final SERS substrate that 

undergoes Raman spectroscopy characterization. This technique is expected to be useful when 

simple and photolithography-free techniques need to be employed for SERS substrate 

fabrication. 
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1.1 Surface-Enhanced Raman Spectroscopy 
 

The accidental discovery of surface-enhanced Raman scattering (SERS) in 1974 led to major 

advancements in the field of spectroscopy. The first SERS experiment observed the enhancement 

of the Raman signal by a magnitude of at least 106. This was accomplished by the adsorption of 

pyridine on the surface of silver nanoparticles (3). At the time, Martin Fleishman explained the 

large signal from his pyridine experiment to be an after-effect of the large number of scattering 

molecules present on the surface (4).  

A clearer understanding of this signal magnification came in the late 1970’s. The most common 

explanation for this effect is the electromagnetic enhancement effect (5). It accredits the 

enhancement in the Raman intensity to the electromagnetic field that exists at interfaces, also 

known as the surface plasmons (6). The incident light breaks ground for the enhancement 

process, by exciting the surface plasmons. This excitation energy is lost on surfaces that are 

smooth. When the roughness of the surface is less than the wavelength of the incident radiation, 

a dipolar plasmon is radiated. If this radiation is in resonance with the Raman or Rayleigh 

scattering of the molecule, the scatter will be amplified (6).  

The other explanation for the enhancement phenomenon is a charge-transfer enhancement effect. 

This explanation holds true for molecules that bond to the surface. By exciting an electron from 

the metal surface into an adsorbed molecule, the incident photon creates a negatively charged 

excited molecule. A nuclear relaxation is induced in the negatively charged excited molecule, as 

a result of this charge transfer. This relaxation promotes the return of the electron to the metal 

surface creating an excited neutral molecule. It also results in the emission of a wavelength 

shifted photon or the Raman photon (6). 
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at desired locations. The data obtained can be used to plot maps and hence examine the 

various plausible conditions. In global imaging, only frequencies of desired band are 

allowed to pass through filters. The spatial distribution of the intensity of this band is then 

captured. Both the methods are used to study the homogeneity and quality of the 

substrates under study. Since this study is performed at a molecular level, SERS plays a 

vital role. 

 Forensics (11): 

Since SERS is a non-destructive, non-contact, surface sensitive technique, it is a valuable 

tool in forensics. The process has been used in drug abuse identification and the detection 

of explosives (11). One fascinating application of SERS, in the fields of biology and 

forensics, is its use in DNA and RNA detection. A DNA chip containing nucleotide 

sequences in a grid pattern is used, instead of using only the target DNA. A database 

holds information about all of these sequences. Since the target DNA combines with the 

complimentary DNA on the chip alone, the target sequence can be identified. SERS is 

used to identify the location of this complimentary DNA sequence (12). 

 Biomedical Applications (11): 

Bone composition, bone disease state, cancer identification, eye examinations and in vivo 

skin studies currently employ SERS. 

1.3 Preparation of the SERS Substrate 
 

Depending on the process used to adsorb the metal on the roughened surface, it can either be 

colloidal SERS or substrate SERS. The most commonly used metals for SERS substrates are 

gold, silver and copper.  
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Colloidal SERS 

When metal particles are dispersed in a continuous gas, liquid or solid medium, colloidal SERS  

is formed (13). The particles remain dispersed in the solution indefinitely. The complexity of the 

colloid preparation is dependent on the target molecule, the system of analysis of the colloidal 

substrate and the equipment used for the process. The most commonly employed methods for the 

preparation of silver and gold colloids are: 

 Lee and Meisel Method (14):  

The goal of this method is to study the adsorption of dyes on metal colloids using SERS. 

This is accomplished by adding trisodium citrate solution to a boiling silver nitrate 

solution. The dark grey mixture is left boiling for an hour before it is allowed to cool 

down to form colloidal silver (15). 

 Leopold and Lendl Method (16): 

Sodium hydroxide is used to dilute hydroxylamine hydrochloride. This mixture is then 

rapidly added to a diluted silver nitrate solution. The grey brown colloidal silver is 

actualized in a few seconds. This method is commonly used when the preparation of 

colloidal silver needs to be fast and at room temperature (15). 

  Creighton Method (17): 

This method is employed when a simple, low cost and time efficient method for 

preparation of colloidal silver is needed. Aqueous solutions of sodium borohydride and 

silver nitrate are prepared separately and ice-cooled. The silver nitrate is added drop by 

drop into the sodium borohydride solution and stirred vigorously. This mixture is then 

kept still for an hour, before a 10 minute vigorous stirring again. The resulting mixture is 

colloidal silver (15). 
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 Sutherland and Winefordner Method (18): 

This technique is employed when a monodisperse layer of colloidal metal is required. 

Chloroauric acid is added to triply distilled water. Trisodium citrate solution is added 

drop by drop to the diluted chloroauric acid and then stirred at regular intervals. The 

mixture is boiled for 5 minutes to get the final dark red colloidal gold (15). 

 Colloidal suspensions for SERS are not very complex to prepare. The suspensions are also easy 

to handle and to store. These characteristics contribute towards the popularity of colloidal SERS. 

But, the high sensitivity to the preparation technique and impurities, limit its performance. 

Substrate SERS 

Increasing interest in SERS assisted a detailed look into the fabrication techniques for SERS 

substrates. Some of the work in SERS substrate fabrication employs the following techniques: 

 Island Lithography (19) :  

Green et al. created a range of pseudo-random silver structures using island lithography 

and electroless plating. Pyridine was adsorbed onto this substrate. Their study shows that 

these substrates gave a uniform Raman signal for areas saturated in pyridine and also 

areas that had less than a monolayer of it. These substrates were robust and reproducible 

and can be useful in analytical applications. 

 Multi-Layer Nanogap Array (20): 

Seol et al. fabricated their SERS substrate with a multi-layer nanogap array that consisted 

of three linearly aligned gold nanogaps. The fabrication process primarily consisted of 

chemical vapor deposition (CVD) and etching. This technique is used for SERS 
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In this work, the SERS substrates are prepared using a simpler approach. Figure 3 shows the 

flow of SERS substrate preparation. It involves three primary steps: the fabrication of 

nanoporous silicon, pattern transfer onto PDMS and the deposition of metal layer on this 

roughened PDMS. A brief explanation of all the steps involved, follows: 

Nanoporous Silicon 

Wet etching technique is used for the fabrication of nanoporous silicon.  An aluminum plate is 

used as the base for the setup. The silicon wafer is placed on top of this Al base. A teflon block, 

that has a cavity for the HF ethanol mixture, is placed on it. The etching current, the mixing ratio 

of the etchant and the resistivity of the silicon wafer in use, are the pivotal parameters used for 

controlling the size and distribution of pores on the wafer. This step is explained in depth in 

Chapter 2. 

Pattern Transfer 

PDMS is chosen to be the SERS substrate for two primary reasons. First, it can be a very flexible 

substrate. Second, it is transparent for wavelengths typically used in SERS and hence readings 

can be taken from the back side of the surface. 

Nanoporous silicon pattern is transferred onto the PDMS substrate in order to generate surface 

roughness. 10 parts of PDMS prepolymer and 1 part of curing agent are mixed and then poured 

onto the silicon surface. This PDMS is allowed to cure at room temperature for 24 hours before 

“lift-off”. 

Sputtering 

Sputtering is used to deposit a thin layer of aluminum on the roughened surface. Aluminum has 
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good adhesion to PDMS and has been known to bring out high SERS enhancement.  Two things 

need to be taken into consideration when determining the thickness of the metal layer to be 

deposited – smoothening of the surface after deposition and the light absorption for backside 

illumination. It was reported that SERS signal was six times weaker with the backside 

illumination compared to the front side illumination for a 75 nm thick silver film (25). 

1.3.1 Literature Review 

 Nanoporous Silicon 

The high cost and specializations required for using conventional techniques like electron-beam 

lithography for the skeleton substrate fabrication gives porous silicon an edge. The fabrication is 

relatively easy. The shape and size can be easily controlled with slight modifications to the 

preparation process. Panarin et al. used a homogenous porous silicon layer for the fabrication of 

SERS substrates. The porous silicon obtained on a low resistivity (100) wafer was coated with 

silver using immersion plating. It was concluded that the microstructure of the silver film and 

hence the SERS-activity, were dependent on the pore diameter, the porosity and the depth of the 

pores forming this layer (26). Chan et al. compared their SERS-active porous gold substrate 

against a commercial SERS active substrate namely Klarite®. The gold was deposited on the 

porous silicon structure using sputtering. It was observed that the molecules adsorbed on the 

gold/porous silicon substrate had higher sensitivity as compared to Klarite® (27). There are 

numerous other studies that indicate the effectiveness of porous silicon as a SERS substrate. 

 PDMS 

The high flexibility and the transparency of PDMS make it a very good candidate for SERS 

substrates. Nahla A. Abu-Hatab, when researching the novel approaches in the fabrication of 
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SERS substrates, transferred metallic nanodiscs onto PDMS. This structure was used in 

multiplexed microfluidics platform to produce efficient SERS substrates (28). Wu et al. 

fabricated metallic nanocrack based SERS substrate on PDMS (29). An uneven strain 

distribution was applied across this substrate to obtain nanocracks. The PDMS used for this 

purpose was mixed in a 10:1 ratio, where the PDMS prepolymer was 10 parts and the curing 

agent 1. The results obtained showed an enhancement factor of 4 x 106. 

1.4 Challenges 

The morphology of nanoporous silicon is controlled by several factors including the wafer 

resistivity, the etching current and the mixing ratio of the etching solution. The wafer resistivity 

is not uniform throughout the wafer resulting in non-uniform pore size and depth. To ensure as 

uniform a current distribution as possible, the silicon wafer will be coated with a 500 nm layer of 

aluminum on the backside.  

In order to transfer the patterns of nanostructures from nanoporous silicon to PDMS, a mixture 

consisting of 7 parts of PDMS prepolymer and 1 part curing agent was poured onto the 

nanoporous silicon sample. Since the resulting PDMS was inflexible, it was difficult to “lift-off” 

without damaging the samples. A mold release agent, 1H,1H,2H,2H-

perfluorodecyltrichlorosilane (silane), was tested to help assist the “lift-off”. Even though it 

proved to be an excellent choice for the process, other options were explored. Silane has high 

toxicity and requires cautious handling. A softer PDMS (10 parts to 1) demonstrated results 

comparable to samples generated using the silane catalyst. To ensure that the pattern is 

transferred successfully to soft PDMS, the pores will be formed shallow. Deep pores led to 

complications in the “lift-off” process. For more flexible PDMS, structures in the micrometer 

range tend to collapse, jeopardizing the integrity of the entire substrate.  
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Chapter 2: SERS Substrates 

In 1956, Uhlir discovered porous silicon when experimenting with a technique to polish the 

surface of silicon (30). Instead of an electropolished wafer, an amalgamation of the applied 

current and the etching solution led to the formation of porous silicon on the wafer. The 

availability of large surface area on porous silicon generated a lot of interest. The discovery of its 

room temperature photoluminescence properties in 1990 (31)  made porous silicon marketable. 

Good thermal insulation capabilities and mechanical properties combined with the 

photoluminescence properties make porous silicon an attractive choice in the silicon industry. 

The low cost and compatibility with silicon-based electronics are added advantages (32). 

2.1 Porous Silicon 

Porous silicon is formed by selective etching of silicon substrate. In the early history of porous 

silicon research, it was assumed to be a layer deposited on the silicon as a result of reduction of 

divalent silicon to amorphous silicon (33). Years after its discovery came a detailed explanation 

of pore formation that contradicted this reduction theory. 

An externally applied potential to the porous silicon fabrication cell triggers the flow of current 

from silicon to the HF ethanol mixture. Holes from the semiconductor and F-ions from the 

electrolyte combine at the silicon/electrolyte interface to dissolve silicon by process of an 

electrochemical reaction. A depletion zone starts at this interface. Since anodization is typically 

maximum at pore tips, the depletion width is limited. The current pinches off when the adjoining 

depletion layers come in contact. A sudden current pinch curbs further etching. This is very 

critical in preventing pore structures from collapsing. It is this very self-limiting nature of the 

process that leads to the formation of porous silicon. When the depletion layers stop widening, 

deepening of the pores initializes. Formation of the porous silicon layer marks the end of the 
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neighboring depletion layers meet, preventing further etching (32). At this point, the holes are 

present at the tip of the pores and hence the only etching that occurs (32), occurs along this 

direction, as shown in figure 4(c). Thus, the depth and the porosity of the sample can be 

controlled by current density, the mixing ratio of the etching solution and the doping 

concentration of the silicon wafer in use. 

Source of the holes defines the direction of pore growth. The alignment of pores is usually 

decided by roughness of pore walls. The pores are usually aligned along <100> direction. 

The morphology of the porous silicon is understood to be primarily dependent on the following 

parameters: 

 Doping concentration (35): 

The effects of a change in doping concentrations are different for p-type and n-type 

silicon wafers. For n-type silicon, with an increase in doping, the pore size decreases. 

However, for p-type silicon, size of the pores increases with an increase in doping 

concentration. It is also observed that two-layered porous silicon can be generated on 

lightly-doped p-type silicon and illuminated n-type silicon.  

 Current density (35): 

When the current density is high, disintegration of silicon and oxide formation occurs. 

But for lower current densities, only the disintegration of silicon takes place. When the 

applied current is such that it assists in oxide formation of pore tips, an increase in the 

current density aids the widening of the oxide layer at the pore bottom alone. The pores 

thus formed have wider bottoms and thinner walls. However, if the current density is less 

than that required for the oxide layer formation, an increase in current density increases 

the current flow through the tip of the pore resulting in sharper pores. 
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 Mixing ratio of the etching solution (35): 

The mixing ratio of the etching solution, the current density and the doping concentration 

are inter-related. For effect of the change in mixing ratio to be noticeable, the applied 

current should be equal to or greater than the value that marks the onset of oxide layer 

formation at pore tips.  If the HF concentration is increased at this point, rate of 

disintegration of oxide increases. The current density at which the surface is covered with 

oxide is now higher than with a lower concentration of HF. Smaller pores are an offshoot 

of this process. 

In one study, gold nanocrystals ~63 nm in width were considered to form highly efficient SERS 

substrates (36). In another research, a very detailed study was done on size dependent 

enhancement. It was observed that the enhancement was most efficient in the 50 – 200 nm range 

(37). This work aims at generating pores in this range. The pore morphology is a vital part of this 

research and hence considerable attention was paid to all of these mutually related parameters.  

2.2 Fabrication of Porous Silicon  

Two of the most common techniques used for the fabrication of porous silicon are – stain etching 

and electrochemical etching of the silicon wafer. Stain Etching is often referred to as open-circuit 

stain etch. A mixture of hydrofluoric acid, nitric acid and water is used as the etchant, usually 

with a ratio of 1:5:10. The easy availability of the chemicals involved and the ease of fabrication 

make this process promising. However, its limited usability stems from the fact that the porous 

silicon layer thus emanated is usually very thin.  

Electrochemical etching is a more recurrently used technique for the fabrication of porous 

silicon. Figure 5 shows the anodization cell used in this research. 
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for 20 minutes generated pores in the μm range. Since the generation of porous silicon was so 

sensitive to applied current and the etching time on high resistivity wafers, low resistivity wafers 

were tested. Table 1 shows the time/current combinations that the samples were subjected to.  

Table 1: Conditions under which low resistivity samples are treated. 

 

 

 

 

 

 

 

 

 

 

The best results with the low resistivity wafers were obtained when the applied current was 

between 90 mA/cm2 and 126 mA/cm2 and the etching time was 20 minutes. A 1-to-1 ratio of HF 

and ethanol worked best (for the purposes of this work) with the aforementioned conditions. 

Lower concentrations of HF were also tested but yielded no useful results for the purposes of this 

work. 

Current Density Etching Time 

 (mA /cm2 ) (Minutes) 

6 20 

12 20 

24 20 

24 60 

72 20 

72 40 

90 20 

90 25 

100 20 

100 25 

110 20 

110 35 

120 20 

126 20 

126 10 

HF: Ethanol 1:1 
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Chapter 3: Raman Spectroscopy 

An excitation laser, a sample illumination system and light collection optics, a wavelength 

selector and a detector are the rudimentary components of a Raman system (39). The 

illumination of the sample is usually done using a visible range laser (39). In our case, the laser is 

a He-Ne laser with a wavelength of ~633 nm. When the laser beam strikes the sample, there will 

be some scattering. Most of this scattered signal is collected with the lens. The Raman spectrum 

is achieved after this scattered light is sent through the interference filter or the 

spectrophotometer (39). Like discussed in Chapter 1, the results of Raman spectroscopy are 

extremely useful in the wide range of industries. It is also an excellent tool for research. 

Porosity of the porous layer plays a part in the enhancement effect. For structures that have low 

porosity, the pores are widely spaced and are expected to be stronger. Whereas, high porosity 

samples have pores separated by thin walls. The “lift-off" process can damage these thin walls. 

Low porosity samples are thus expected to be suitable candidates for the SERS characterisation. 

In this research, the Horiba LabRAM Raman spectrometer is used to study the samples. The 

samples were studied with a 10× objective lens. Using a 10× instead of a 50× or a 100× objective 

lens would increase the spot size of the area under study. Whitney et al., in their detailed work 

explained the contribution of the spot size in the Raman spectra. It was concluded that with 

increasing spot size, the details in the Raman spectra are lost (40). According to their research, 

the peaks, when a 100× objective is used, indicate a clear contrast whereas as the peaks at 10× 

give very litte information about the Raman peaks. Since the samples were very close to the 50× 

and the 100× and ran the risk of being damamged by the sample, when focused, the 10× 

objective lens was used.  
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3.1 Reference Samples 

This research studies a wide variety of substrates for its Raman behavior. The Raman spectrum 

for smooth PDMS, without R6G molecules adsorbed on it, is shown in figure 15. The most 

prominent peaks for the smooth PDMS were observed at 618, 714, 1260 and 1411 cm-1. These 

peaks are close to the peaks observed by Bae et al. in their work (41). 

 

Figure 15: Raman Spectra for Smooth PDMS without R6G 

 

 

 

 

 

 

 

Figure 16: Raman spectra for smooth PDMS with R6G molecules adsorbed on the surface. 
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Figure 16 shows these Raman spectra peaks on a smooth PDMS sample coated with R6G. The 

R6G peaks shown, are at 710, 1263 and 1388 cm-1. The peaks at 710 cm-1 and 1263 cm-1 are 

consistent with the peaks observed for R6G by Bae et al (41). The peak at 1388 cm-1 is also a 

peak for R6G (42).  

Figure 17 shows the Raman spectra for a smooth PDMS with an Al layer. The laser was incident 

on this sample from the front.   

 

Figure 17 : Raman spectra for smooth PDMS coated with Al and R6G, front illuminated. 

 

Figure 18: Raman Spectra for smooth PDMS coated with Al and R6G, back illuminated. 
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Figure 18 shows the Raman spectra for a smooth PDMS sample coated with metal and R6G, 

when back illuminated. Figure 19 shows the Raman spectra for smooth silicon dipped in R6G. 

 

 

 

 

 

Figure 19 : Raman spectra for smooth silicon dipped in R6G. 

For all the reference samples, it was observed that the spot size was small and the peaks sharp. 

3.2 Raman Spectra for 90 mA/cm2 Reference Samples 

Pattern was transferred from a 90 mA/cm2 porous silicon sample to PDMS to generate Raman 

spectra of Figures 20 and 21. Figure 20 shows the front illuminated sample for this spectrum. 

 

Figure 20 : Front illuminated 90mA/cm2 porous silicon pattern transferred onto PDMS, dipped in 
R6G. 
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Figure 21 shows the Raman spectra for the sample, when back illuminated. 

 

Figure 21: Back illuminated 90mA/cm2 porous silicon pattern transferred onto PDMS, dipped in 
R6G. 

3.3 Raman Spectra for 90mA/cm2 SERS Substrates 

A ~20 nm layer of Al was coated on roughened PDMS samples. In this case, these samples were 

obtained by transferring the nanostructures from the sample treated at 90mA/cm2 for 35 minutes. 

Figure 22 shows the Raman spectra for front illuminated SERS substrate.  
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Figure 22 : 90 mA/cm2 SERS substrate, R6G-coated, Al-coated, front illuminated. 
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Figure 23, on the other hand shows the Raman spectra for the same sample when back 

illuminated. 

 

Figure 23: 90 mA/cm2 SERS substrate, R6G-coated, Al-coated, back illuminated. 

In both the cases, when focused, the spot size was larger than any of the previous samples. The 

lack in contrast in the peaks explains the major drawback of using the 10× objective lens. 

3.4 Raman Spectra for 120 mA/cm2 Reference Samples 

Figure 24 shows the Raman spectra of a front illuminated roughened PDMS. 

 

 

 

 

 

Figure 24 :  Front illuminated 120 mA/cm2 roughened PDMS sample, R6G-coated, Al-coated. 
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A thin layer of Al was sputtered on the porous silicon sample generated with an applied current 

density of 120 mA/cm2. Figure 25 shows the Raman spectrum for this sample. 

 

Figure 25 : 120 mA/cm2 porous silicon coated with a thin layer of Al. 

3.5 Raman Spectra for 120 mA/cm2 SERS Substrates 

The SERS substrate in Figure 26 was prepared by transferring the nanostructures from 

120mA/cm2 to a 10-to-1 PDMS and then coated with a thin layer of Al.  

 

 

 

 

 

Figure 26 : Raman spectra of 120 mA/cm2 porous silicon patterns transferred onto 10-to-1 
PDMS, R6G-coated,Al-coated,front illuminated. 
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Before the Raman spectra were obtained, the sample was dipped in the analyte. Figure 26 shows 

the Raman spectra for this sample when front illuminated. The lack of the low contrast peaks is 

attributed to the larger spot size, when the sample is focused. 

Figure 27 shows the Raman spectra for the 120 mA/cm2 SERS substrate when back illuminated.   

 

Figure 27: Raman spectra for 120mA/cm2 SERS substrates,R6G-coated,Al-coated,back 
illuminated. 
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Chapter 4: Conclusion 

It can now be conclusively said that the morphology of the underlying porous silicon layer is 

extremely critical for a successful SERS substrate. A uniform layer of porous silicon is equally 

important for the same. It was successfully achieved by depositing a 500nm layer of Al on the 

back side of the silicon wafer before commencing the etching process. The porous silicon layer 

generated was ~ 50nm deep and ~ 50 – 100 nm wide. Limiting the depth of the porous silicon 

layer helps reduce the strain on the PDMS sample during the “lift-off” process. Using a 10-to-1 

PDMS instead of a less flexible 7-to-1 PDMS further assists the separation process. Using a 

mold release agent further reduces the complexity of the process.  

It is expected that this technique is capable of producing effective SERS substrates. 

Improvements can be made to the Raman spectra by using a higher objective lens and low 

porosity underlying nanostructured porous silicon. Low porosity samples do not usually have 

structures as delicate as the high porosity samples thus helping the “lift-off” process. 
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