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ABSTRACT 

Interest point detection is an important low-level image processing technique with a wide 

range of applications. The point detectors have to be robust under affine, scale and photometric 

changes. There are many scale and affine invariant point detectors but they are not robust to high 

illumination changes. Many affine invariant interest point detectors and region descriptors, work 

on the points detected using scale invariant operators. Since the performance of those detectors 

depends on the performance of the scale invariant detectors, it is important that the scale 

invariant initial stage detectors should have good robustness. It is therefore important to design a 

detector that is very robust to illumination because illumination changes are the most common. 

In this research the illumination problem has been taken as the main focus and have developed a 

scale invariant detector that has good robustness to illumination changes.  

In the paper [6] it has been proved that by using contrast stretching technique the 

performance of the Harris operator improved considerably for illumination variations. In this 

research the same contrast stretching function has been incorporated into two different scale 

invariant operators to make them illumination invariant. The performances of the algorithms are 

compared with the Harris-Laplace and Hessian-Laplace algorithms [15]. 
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CHAPTER 1 - INTRODUCTION 

Computer vision has a wide area of applications ranging from simple smile detection in 

cameras to a highly complicated humanoid robot that can able to respond to its surroundings. 

Figure 1 shows the Asimo humanoid robot, designed and built by HONDA, receiving some 

customers [8]. It is still a challenge to develop an algorithm with very high performance under 

different noisy situations. It is clear that in future the application of computer vision is enormous 

and it might be a part of most of the embedded systems. The important initial stage of many 

computer vision algorithms is feature detection. The features can be regions, interest point, 

corners, edges etc. 

	
  

Figure 1: Image of ASIMO the robot, guiding customers [8]. 

Illumination is an important factor that affects the performance of the feature point 

detectors and feature descriptor algorithms. The images taken in our daily life will be highly 

dependent on the illumination conditions. Figure 2 shows an image taken during the night under 

high illumination conditions [3]. It can be observed that the objects and the people’s face are 

difficult to identify. Under these conditions the algorithms will have low performance without 

any preprocessing done.  
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        Figure 2: Effects of high illumination [3]. 

Interest point detection is a low-level computer vision technique that has wide range of 

applications like matching, object recognition, object tracking. In [15] an efficient affine 

invariant interest point detector has been introduced. The algorithm is a two-fold process in 

which the initial points are found using scale invariant operators to localize the points and then 

an iterative affine correction algorithm is applied. In the same paper two scale invariant operators 

namely Harris-Laplace and Hessian-Laplace were proposed. The points found by these scale 

invariant operators are further processed for affine corrections. For the algorithm to work well 

the initial points have to be located as close as possible to the actual location and the best 

approximation of the scale should be found. Thus the whole performance of the affine correction 

procedure depends on the initial position given by the scale invariant detectors. Many of the 

affine invariant interest point detectors and region descriptors are dependent on the performance 

of the initial interest point operators. It is therefore crucial that the initial points lie almost close 

to the actual points for the further procedures to give better results. Under strong illumination 

conditions the error in the initial position of the points will be high. In [6] an illumination 

invariant detector was proposed which is based on contrast stretching technique. The operator is 
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named as Illumination Robust Feature Extraction Transform (IRFET). The input image is 

contrast stretched around several contrasts and then the Harris detector [7] is applied on each of 

the contrast stretched images. The output measure of the detector from each of the contrast 

stretched image is summed up to give the final measure that is used to find the interest points. 

The idea behind this algorithm is that by contrast stretching the images, some of the image 

structures that might not be of good contrast in the original image might become easy to detect in 

the contrast stretched image, for example the low intensity areas might become visible when the 

image is stretched around low contrast values. It has been proved that the performance of the 

Harris detector increases considerably under high illumination changes, by using the contrast 

stretching technique.  

In this research the multi-scale Harris detector [6] and the Hessian detector [16] has been 

incorporated with the illumination invariant IRFET technique to develop methods that are 

invariant to scale and illumination changes. In the proposed methods the multi-scale Harris or the 

Hessian operator is applied on all the contrast stretched images and finally the interest points are 

chosen from the summed up responses from all the contrast stretched images. The performance 

of the proposed method has been validated against Harris-Laplace and Hessian-Laplace that were 

proved to have good robustness to scale changes. The following report is organized as follows: 

In chapter 2 the literature review of the interest point detectors are discussed briefly with some 

examples. Then the interest point detectors used in the research are detailed in chapter 3. In 

chapter 4 the proposed methods and the algorithm to detect the points are discussed in detail. In 

chapter 5 the results have been discussed using datasets with different variations. Also the scale 

validity is proved using SIFT features and the research is concluded with possible future 

improvements in chapter 5.. 
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CHAPTER 2 – LITERATURE REVIEW 

2.1 Interest Point Detection  

Interest points are intensity variations in two or more directions and the point represents 

some structure at one or more scales. Such points are robust and can be used to produce better 

retrieval performance than the other features like edges and blobs. There are many algorithms to 

extract such points. They can be broadly classified as variant and invariant detectors.  

2.2 Variant Detectors 

These detectors depend on the scale and affine transformations of the images. One such 

detector is the canny edge detector [4], which is a multi-stage operator. It uses the edge 

gradient’s magnitude and the corresponding direction calculated using four different filters that 

can detect the horizontal, vertical and the diagonal edges, to trace the edges. As the algorithm is 

based on the first order derivatives it is highly susceptible to noise and it uses Gaussian filtering 

on the image as a preprocessing stage to reduce noise. Figure 3 (a) shows the reference image 

and (b) shows the edge detectors output [4]. 

	
  
(a) (b)	
  

Figure 3: a - Reference image, b - Canny operator output [4].	
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Another widely used feature detector was Smallest Univalue Segment Assimilating 

Nucleus (SUSAN) [20]. It uses a circular mask and calculates a feature measure which is 

proportional to the number of pixels in the neighborhood of a pixel within the circular mask that 

are similar to the center pixel (nucleus). If that number is around one quarter of the total number 

of pixels that the circular mask contains, then the pixel is a corner or if the number of pixels is 

somewhere near half the number of pixels contained in the mask, then the center pixel is on an 

edge. Figure 4 below provides an insight of how this algorithm works [20].  

 
   (a)             (b) 

Figure 4: SUSAN operator [20]. 

Figure 4 shows that if the position of the center of the mask is at the corner the number of 

pixels similar to the nucleus will be as low as possible. If it is on the edge, the number of pixels 

similar to the nucleus will be almost half of the total number of pixels covered by the mask. The 

performance relies on the size of the mask and under affine variations it fails to perform well. 

Also the edge features detected by canny detector are not reliable for retrieval because they are 

highly affected by the affine variations making the retrieval process more difficult.  

The most widely used operator and that forms the basis of many other operators is the 

Harris operator [7]. Harris operator detects both edges and corners and it uses the second 
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moment matrix to calculate the feature strength. The Harris detector was formulated by removing 

the problems associated with the Moravec’s detector [19] given by 𝐸!,! =    𝑤!,! 𝐼!!!,!!! −!,!

𝐼!,!  
!
. In the operator w is the window which has a value 1 inside the window and 0 elsewhere, I 

is the intensity of the image. (x,y) determines the shift and its values are from the set 

{(1,0),(1,1),0,1),(-1,1)}. (u,v) is the position of the current pixel. The final response of the 

operator at each pixel is the minimum value of Ex,y among the four shifts. The response will be 

low if the region is flat and it will be high for corners. A point is considered as corner if it is a 

local maximum of minimum of Ex,y and it should be above some threshold. The problems with 

the Moravec’s detector is that the detector’s response is anisotropic because of the fixed shifts 

used and it is affected by noise because of the binary and rectangular window and also it might 

respond to edges readily because only the minimum of the operator Ex,y is considered as a 

measure [8]. 

The problems associated with Moravec’s operator were eliminated in the Harris detector 

by using the Taylor approximation of the operator. The approximation of the Moravec operator 

is given by 𝐸!,! = 𝐴𝑥! + 2𝐶𝑥𝑦 + 𝐵𝑦!, where  𝐸!,! is the response at pixel (x,y).  A,  B and C are 

the parameters of the second moment matrix given by 𝜇 x =
𝐿!! 𝐿!𝐿!
  𝐿!𝐿!   𝐿!!

    = 𝐴 𝐶
𝐶 𝐵 , where 

Lx is the 1st order image derivative in x direction,  Ly is the 1st order image derivative in y direction 

and 𝜇 x  is the second moment matrix at pixel x=(x,y). By examining the eigenvalues of 𝜇 x  

the interest points can be detected. The cornerness measure for the Harris operator is given by 

det(µμ(x))− k  tr(µμ(x)), where det(.) is the determinant of the Harris matrix, tr(.)  is the trace of 

the matrix and the constant k is assigned a value of 0.4. The measure will be high for a corner, 
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low for a flat region and negative at an edge. In this research, scale adapted Harris operator is 

used as one of the primary operator. 

In [22] color transformations to invariant color spaces where applied to improve the 

performance and such transformations were applied on the Harris-Laplace and SUSAN to prove 

that the color is important for interest point detectors. But under high illumination conditions the 

detector’s performance drops low. Also the detector adds complexity to the algorithm in the 

means of transformations. 

2.2.1 Invariant Detectors 

There are number of algorithms that are robust to scale changes. The widely used 

algorithm is the Harris detector that detects edges and corners. Since the detector uses a 

symmetric Gaussian kernel in finding the derivatives and also for smoothing, the detection 

algorithm is invariant to rotation and also to slight illumination changes [17]. The detector is not 

scale invariant by itself because it uses one scale to find the points. In [5] an approach to make 

the Harris corner detector invariant to scale was proposed. The Harris operator was adapted to 

scale by adapting the second moment matrix to scale. The matrix is given by 𝜇 𝒙, 𝑠𝜎! , 𝑠𝜎! =

𝜎!!𝐺 𝑠𝜎! ∗
𝐼!! 𝒙, 𝑠𝜎! 𝐼!,! 𝒙, 𝑠𝜎!
𝐼!,! 𝒙, 𝑠𝜎! 𝐼!! 𝒙, 𝑠𝜎!

 where 𝜎! is the derivative scale, 𝜎! is the integration 

scale Iu is the image derivative in u direction, Iv is the image derivative in v direction, s is the 

parameter used to create the scale space, G is the Gaussian integration kernel and x is the position 

vector (x,y). The matrix is multiplied by a factor 𝜎!! to make the measure comparable across 

scales. The detector has low performance under affine and high illumination changes, because of 

the symmetric Gaussian kernel and limited number of scales used. In this research this operator 
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is used to adapt to high illumination changes and it has been the important part of the proposed 

detector.              

In [10] a scale invariant detector was proposed in which the Laplacian of Gaussian (LoG) 

filter was used as the detection operator. Since the LoG operator is based on the second order 

derivatives they are highly sensitive to noise and have direct influence on performance of the 

detector. The solution for this problem was given by [18] and a method similar to Harris detector 

was proposed by detecting the points for which the determinant and the trace of the Hessian 

matrix given by H(x) =
𝐿!! x,  𝜎! 𝐿!" x,  𝜎!
𝐿!" x,  𝜎! 𝐿!! x,  𝜎!

 attains an extrema. In the matrix Lxx is the 2nd 

order image derivative in x direction and Lyy is the 2nd order image derivative in y direction, 𝜎! is 

the scale of the derivative kernel and x  is the position vector (x,y). The derivatives are performed 

on the image and then smoothed by the Gaussian integration kernel with scale 𝜎!. The scale for 

the derivative kernel has to be carefully scaled respective to the current integration scale by a 

factor. One interesting part of the operator is that the trace of the matrix gives the LoG response. 

By simultaneously detecting the determinant and trace extremum, the detector is less affected by 

noise [18]. In this research the Hessian matrix is also an important part in developing the 

illumination invariant operator. 

In [15] an affine invariant interest point detection algorithm was proposed. In this two 

stage algorithm, the first stage is to detect interest points and their corresponding scale in a scale 

invariant way. The detected points are then iteratively corrected for affine variance. The initial 

scale invariant operators are the Harris-Laplace and Hessian-Laplace operators. These scale 

invariant stages in turn has two stages. In the first stage a set of points are detected using multi-

scale Harris operator or multi-scale Hessian operator and then the detected points are checked for 
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weakness using LoG operator. Though the operators are invariant to scale and rotation they fail 

to perform well under high illumination changes. The affine invariant iterative procedure that 

depends on the points and scale detected by the initial scale invariant point detector is in turn not 

invariant to high illumination changes. Figure 5 shows the affine regions detected using the 

detector [15]. 

	
  

Figure 5: Iterative affine corrections for interest points [15]. 

In figure 5, the top and bottom part of the images are the regions taken from two different 

images but corresponding to the same local structure. Image (a) shows the initial points detected 

using multi-scale Harris detector with their scales in white. The point selected using the Harris-

Laplace is shown in black.  It is clear that the multi-scale Harris operator finds multiple points 

corresponding to the same structure and the LoG stage of Harris-Laplace removes those 

duplicate points. Image (b) shows the affine region for the initial point detected by Harris-

Laplace before the affine corrections in black. The actual affine region from the corresponding 

image is shown in white. Image (c) shows that all the initial points detected by the multi-scale 
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Harris operator converge to the same point and region. Image (d) shows the average affine region 

selected in black and the actual region projected from the corresponding image in white. Image 

(e) shows the region after the affine corrections. 

There are also algorithms to describe regions of interests so that the descriptions can be 

used to match the objects. One such algorithm is Scale Invariant Feature Transform (SIFT) [12]. 

In this method a Differentiation of Gaussian (DoG) operator that is an approximation of LoG 

operator is used to find the initial points and the scale. Then a set of features is determined for 

each point using gradient’s magnitude and orientation of pixels around the interest point in an 

affine and illumination invariant way.  In [2] a very efficient algorithm was proposed to find 

region descriptions called as Speeded Up Robust Features (SURF). The algorithm makes use of 

integral images to efficiently calculate the approximation of Hessian measure to find the initial 

interest points. The features are based on the response of Haar wavelet response. The algorithm 

is several times faster than the SIFT and is robust to many affine transformations. Again in these 

algorithms the initial points is found by some scale invariant operators that are not invariant to 

illumination.  

All the detectors that are scale invariant fail to perform well under high illumination 

changes. The reason for those detectors to have poor performance is that they don’t have any 

specific operations in them to improve their performance under illumination changes. This 

problem is taken as the primary consideration and it is the motivation for this research, because 

of the necessity for robust scale and illumination invariant detectors. The scale invariant 

operators have been adapted to illumination invariance and a method has been developed to 

improve their performance. 
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CHAPTER 3 – INTEREST POINT DETECTORS 

3.1 Harris-Laplace 

3.1.1 Multi-Scale Harris 

 The Harris Laplace consists of two stages. In the first stage the interest points are 

detected using the multi-scale Harris operator and then in the second stage, the selected points 

are further refined using the LoG measure. For an input image a scale-space is created and the 

corner strength at different scales is measured. In this research the initial scale used to test the 

performance of Harris-Laplace operator is 1.5 and a scale step size of 1.4 is used to get the scale 

for the higher levels. To make the search space for the derivative and integration scales simple, 

the derivative scale is chosen as a factor of the integration scale. In this research a factor of 0.7 is 

used to get the derivative scale from the integration scale (i.e.  𝜎! = 0.7𝜎!). Figure 6 shows a good 

picture of how the scale space is created [2]. The image shows that the derivative of the input 

image is successively determined and smoothed with kernels of increasing size to create the 

scale-space. 

                           	
  

Figure 6: Scale space creation. Left image – integration kernel of varying size, right image  
input image [2]. 
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After the scale space is created the interest points are detected. A point is considered as 

an interest point if it is a local maximum and has corner strength greater than a threshold to 

ensure that the points are strong. The search for interest points is done at every level of the scale 

space and the corresponding characteristic scale is assigned to the point. The scale selected for an 

image structure is characteristic in quantitative sense, since the measure relates the derivative 

operator and the image structure. Note there might be more than one characteristic scale 

corresponding to the same point but corresponding to different structures [15]. The points found 

by the multi scale Harris detector is then further processed based on the LoG measure to reject 

points that might be weak. Also the point location and scale are refined. 

3.1.2 Laplacian of Gaussian (LoG) 

 The input to this stage is the points found by the multi-scale Harris operator. It has been 

found that the Harris measure rarely attains maximum over scales and also LoG has been proved 

to select highest percentage of correct characteristic scales [15]. Figure 7 shows the plot of a 2D 

LoG filter with scale 9 given by LoG(x,𝜎!) = 𝜎!! 𝐿!! x,  𝜎! + 𝐿!! x,𝜎! , where σn   is the 

scale of the kernel, 𝐿!! is the 2nd order image derivative in x direction and 𝐿!! is the 2nd order 

image derivative in y direction at point x=(x,y). 

	
  

Figure 7: 2D LoG Kernel. 
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The LoG measure is perfectly suitable for detecting blobs because of its perfect 

symmetry but it also has been proved to be a good measure to detect interest points such as 

corners, edges, multi-junctions etc. [15].  

Two different methods have been proposed to eliminate weak points in the LoG stage. 

One is the iterative method that simultaneously refines the position and the scale of the detected 

interest point. The other method is the simplified one that rejects or retains the point but does not 

modify the scale or the position. The iterative method is accurate but the simplified method is 

computationally efficient. The simplified method is a tradeoff between the accuracy and 

execution time. However in our experiment the LoG stage is not used because of the use of 

contrast stretching technique to reject weak points. 

Simplified Method: 

In the simplified method, the LoG measure for the characteristic scale is checked for its 

maximum with the nearest finer σn-­‐1 and the coarser scale σn+1, where n is the current scale-

space level. If the response does not attain a local maximum in the selected scale or if it is less 

than the nearest scales or if it is lower than a threshold the point is rejected. 

Iterative Method: 

In the iterative method the selected scale from the multi-scale Harris stage is modified by 

a factor cσ, where σ is the scale corresponding to the point from the multi scale Harris detector. 

The factor c ranges from 0.7 to 1.4. The interval (0.7 to 1.4) spans the space between the 

successive coarser and the finer scale. At each stage the position of the point is refined along 

with its scale. When there is no change in scale and the position then the algorithm stops and the 

current position and scale are updated for the corresponding interest point. Thus the scale and the 
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position of the initial interest point are iteratively modified until the scale and the position does 

not change anymore. Below is the algorithm briefing the different steps to calculate LoG 

operator’s response [15]. 

Algorithm 

§  If the point xk attains a maximum over LoG scales the point is retained otherwise 

rejected. The scales are limited to σk+1=cσk, where c is between 0.7 and 1.4 

§ Neighboring pixel with high Harris measure than the current pixel is searched for 

the current scale σk+1 

§ Go to step 1 if σk+1≠σk  or xk+1≠xk 

§ The selected points from the LoG detector are then further processed for affine 

correction. Since the affine correction is out of scope for this research it is not 

discussed in this documentation. 

Figure 8 shows the output of the multi-scale Harris detector and the scale selected by LoG 

operator. Top row of the figure shows points selected using multi-scale Harris operator and the 

bottom row shows points selected using Harris-Laplace operator. 

	
  

Figure 8: Operator responses – multi-scale Harris (top), Harris-Laplace (bottom) [15]. 
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3.2 Hessian-Laplace 

 The Hessian-Laplace algorithm is similar to Harris-Laplace except for the second 

moment matrix. Hessian-Laplace uses a different measure based on second derivatives of the 

image as discussed in section 2. The operator uses the determinant of the Hessian matrix given 

by det 𝑯 = 𝜎!! 𝐿!!𝐿!!(x)  −   𝐿!"! x,𝜎!  and the trace of the Hessian matrix given by 

𝑡𝑟 𝑯 = 𝜎! 𝐿!!   +   𝐿!! . The determinant and the trace are multiplied by a factor of 𝜎!! and 𝜎! 

respectively to make the measures comparable between scales. A point is considered as an 

interest point if the determinant and the trace of the second moment matrix attains maximum. 

Since it uses the second derivatives, the points may have changes in only one direction. By 

checking the maximum this way the operator penalizes points that have changes in a single 

direction [17].  

 The procedure is the same as described for Harris-Laplace. A scale space is created and a 

set of interest points is detected at each level by selecting points that attains local maximum in 

determinant as well as trace and if the corner strength is above some threshold. The selected 

points are further checked for weakness by using simplified LoG or iterative LoG operators.  

 Figure 9 shows the multi-scale hessian operators response to an image for different 

scales. The first image (top-left) is the reference image (Note: The operators work on the gray 

scale image. All the color images are converted to gray scale and then the operators are applied) 

and the following 12 images are the responses of the Hessian operator for different scales. The 

2nd last image is the multi-scale response (i.e. the scale-space maximum of each pixel) of the 

Hessian operator. The final image is the output of the non-maxima suppression applied on the 

multi-scale response.  
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Figure 9: Overview of multi-scale Hessian operator. 

 Figure 10 shows the LoG responses to the input reference image shown in the first image 

of the figure. The 12 images following the reference correspond to the LoG response at 12 

different scales. The 2nd last image is the interest points detected by the multi-scale Hessian and 

the last image is the output of the LoG operator. We can see that the number of points in the last 

image is less because the LoG operator rejects the weaker points. 

	
  

Figure 10: Overview of the LoG stage of Hessian-Laplace. 
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3.3 Illumination Robust Feature Extraction Transform (IRFET) 

 The IRFET [6] accounts for illumination problem by using the contrast stretching 

technique by stretching the input image around certain contrasts and applying the detection 

process on those images. This enhances the possibility of detection of interest points that might 

be under low-contrast regions, which might not be detected in the actual image. The contrast 

stretching function used is given by 𝑓!(I(x,  y))  =   1 1+ 𝑒!! ! !,! !! . In this formula, c is the 

contrast around which the stretching is done, the parameter γ (gamma) controls the slope of the 

function i.e. the range of values around the contrast that are stretched, I(x,y) is the normalized 

intensity value of the pixel at location (x,y). The function with different gamma values is shown 

in the figure 11 [6]. In the paper 50 different contrasts and a gamma value of 25 has been used. 

	
  

Figure 11: Contrast stretching function [6]. 

The idea behind the IRFET operator is that the points having high variability will be 

detected over many contrast stretched images. The input image is contrast stretched around some 

preselected contrasts. Then any of the interest point detection operators are applied on the 

contrast stretched image to obtain the scores. We will call this as contrast-space throughout this 

documentation. The point is selected as an interest point if it was detected across many of the 

applies the Harris corner detection procedure on the logarithm of
an image instead of the image itself. Similar to the homomorphic
filtering, the underlying idea is to separate the illumination and
reflectance components and reduce the effect of the illumination
component. The method was later extended by first dividing red
and blue channels by the green channel and then taking logarithm
[10]. In [11], each color channel is normalized by subtracting mean
and then dividing by the square root of the sum of the squares of
the pixel values in that channel. This procedure would work well
if the illumination changes can be effectively modeled as scale
changes. Ref. [12] also models the illumination changes as scale
factors, modifies the optical flow equation, and solves for the scale
factors in addition to other geometric transformation parameters.
When the illumination changes are large, the effect on the pixel
intensities would be non-uniform and these methods would likely
to perform not as much effectively as in small illumination cases.

Recently, methods to extract scale and affine invariant interest
points have been proposed. A review of these methods can be
found in [13]. A comprehensive evaluation of the interest point
detectors is provided in [14]. Among these methods, the scale
invariant feature transform (SIFT) [15] method also presents a re-
gion descriptor based on the local histogram of the gradient vec-
tors to achieve illumination invariance in addition to scale
invariance. In the illumination invariance experiments of [14],
the SIFT method is among the best performers.

In this paper, we present a method, illumination invariant fea-
ture extraction transform (IRFET), to improve the robustness of fea-
ture detection against illumination changes. The IRFET stretches
the histogram of an image around a set of pixel intensities; an
interest point detector is applied to each contrast-stretched image
to produce a three-dimensional cornerness map. Interest points are
determined from this map.

The IRFET is generic and can be combined with a feature detec-
tor that creates feature strength map and then applies non-max-
ima suppression to it. In this paper, we show how the IRFET
improves the repeatability rate of the Harris corner detector. Sec-
tion 2 reminds the standard Harris corner detector. Section 3 ex-
plains the idea behind the IRFET method and also presents its
application on the Harris corner detector. The robustness of the
proposed method over the Harris corner detector is proven in Sec-
tion 4. Section 5 compares several interest points detectors exper-
imentally; and Section 6 concludes the paper.

2. Harris corner detector

One of the most commonly used interest point detectors in
computer vision applications is the Harris corner detector [2].
The Harris corner detector is based on the autocorrelation matrix
of the image gradients. The autocorrelation matrix A(x,y; I) of an
image I at a pixel location (x,y) is given as follows:
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where @=@x and @=@y calculates the gradients in horizontal and ver-
tical directions, respectively; and N is a set of pixels around (x,y).
Usually a weighted sum of the gradients in N is taken using a Gauss-
ian function centered at (x,y) to give more weight to the pixels that
are close to (x,y). The cornerness response function of the Harris
corner detector is based on the determinant and trace of the auto-
correlation matrix:

Rharrisðx; yÞ ¼ detAðx; y; IÞ $ kðtraceAðx; y; IÞÞ2; ð2Þ

where k is a small positive constant controlling the cornerness sen-
sitivity of the detector. After calculating the cornerness response for
all pixels, non-maxima suppression is used to get the corner points.

3. Illumination robust feature extraction transform

The IRFET is an intuitive method to improve illumination invari-
ance of feature detectors. The underlying idea is to stretch the im-
age contrast as a function of intensity to span the space of possible
photometric transformations. By applying a feature detector to a
contrast-stretched image, the response of the feature detector un-
der a particular illumination condition is simulated. The collection
of the responses under a set of illumination conditions forms a sig-
nature for each pixel. The signatures can then be used to character-
ize a pixel and to find illumination robust interest points.

The contrast stretching function that we use in our experiments
is the sigmoid function, which has the following form:

fcðIðx; yÞÞ ¼
1

1þ e$cðIðx;yÞ$cÞ ; ð3Þ

where I(x,y) is the normalized intensity value in the range [0,1], c is
the contrast center around which the contrast is stretched, and c
determines the slope of the sigmoid function. Fig. 1 illustrates the
sigmoid function.

By applying the contrast stretching function at different con-
trast centers, we obtain a set of contrast-stretched images. (Fig. 2
shows a set of contrast-stretched versions of two images at various
contrast centers. Notice that these two different images produce
similar responses at particular contrast centers. For example,
c = 0.8 for Image (a) produces an image that is very similar to the
output of c = 0.2 for Image (b). Likewise, the output of c = 1.0 for
Image (a) is similar the output of c = 0.5 for Image (a). Also, notice
how some details in c = 0.05 for Image (b) get apparent as in Image
(a).) A feature detector is then applied to each of these contrast-
stretched images. In case of the Harris corner detector, first, the
autocorrelation matrix at each pixel is found:
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where Icðm; nÞ & fcðIðm;nÞÞ is the contrast-stretched image at con-
trast center c. And then, the cornerness response is calculated:

Rðx; y; cÞ ¼ detAðx; y; IcÞ $ kðtraceAðx; y; IcÞÞ2: ð5Þ

Note that the cornerness response is a function of the contrast cen-
ter c. R(x,y;c) for all (x,y;c) is a three-dimensional matrix that can
be used to analyze the pixels in terms of the cornerness strength.
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Fig. 1. Sigmoid functions at contrast centers c = 0.3 and c = 0.6 are plotted. The
parameter c controls the slope of the sigmoid.
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contrast stretched images. One way to detect points is to select interest points in each of the 

contrast stretched image by applying non-maxima suppression with thresholding and then to 

check for points that were detected in many levels of the contrast-space. But that is a costly 

operation. Instead if we sum up the scores across the contrast-space and apply the non-maxima 

suppression with thresholding on the summed up measure the output will be the same. By doing 

this way the computation has been reduced a lot. The latter method of measure calculation has 

been used in this research. Figure 12 below shows how a point would respond for the interest 

point operator across the contrast-space [6]. 

	
  

Figure 12: Harris operator’s response on contrast stretched images. 

This idea of contrast stretching can be incorporated into any of the interest point detection 

algorithms to make it illumination invariant. It has been shown that this method has improved the 

performance of Harris detector considerably under high illumination changes. The performance 

is validated using the point repeatability score. A drawback of the algorithm is that the detection 

algorithm has to be applied on each of the contrast stretched image. Thus the detection time is 

increased and it depends on number of contrast stretched images used.  
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CHAPTER 4 – PROPOSED METHODS 

4.1 Operators 

 The Harris-Laplace and Hessian-Laplace are robust to slight illumination changes. But 

under high illumination variations the detector’s performance decreases, which is evident from 

the results discussed later in this report. On the other hand, IRFET algorithm has been shown to 

be robust under high illumination variation. In this research it has been proved that the proposed 

methods are better in point localization than the Harris-Laplace and Hessian-Laplace and so they 

can be used as a preprocessing stage for affine invariant detectors [15] that are based on the 

output of the scale invariant detector or can be used as a preprocessing stage for region 

descriptors that work on the points found by some interest point detectors. Thus the whole 

interest point detector or the region descriptor algorithm will be robust to high illumination 

changes. The proposed methods are discussed below. 

 The IRFET contrast stretching technique can be incorporated into any algorithm to make 

it illumination invariant. One way to make the affine invariant algorithm [16] robust to 

illumination is to apply the whole algorithm on contrast stretched images. But there is an 

important factor to be considered in this method. The affine detection algorithm detects the 

elliptical affine region using the second moment matrix. Since interest points are detected and 

affine regions are calculated in all the contrast stretched images, the problem arises in choosing 

the elliptical region for a point. One possible solution for this is to select the region for which the 

Harris measure is a maximum across the contrast space (2D space created by stretching the 

images around some contrasts). But this method will be highly prone to noise and also the scale 

of a region corresponding to a particular structure might be different in different contrast 

stretched images. A better way to implement is to make the preprocessing stage of the affine 
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detection algorithm robust to illumination. Thus to replace the Harris-Laplace or the Hessian-

Laplace with the proposed algorithm, became a better solution. The multi scale Harris and the 

Hessian detectors are incorporated with the IRFET to make the detection, scale and illumination 

invariant. 

 The proposed algorithms are named as Harris-IRFET that uses the multi-scale Harris 

operator and Hessian-IRFET that uses multi-scale Hessian. 

4.1.1 Stage 1 – Creating Contrast-Space 

 Let us assume that the number of contrasts used is n (i.e. n equally spaced contrasts 

between 0 and 1), γ be the slope of the stretching function, I be the input image. First step in the 

proposed methods is to preselect a set of contrasts around which the input image can be stretched 

to form the contrast-space. The number of contrasts used has a direct impact on the detectors 

execution time. Therefore the number of contrasts used has to be carefully selected. After 

carefully studying the responses of the operators for different γ and n it has been found that the 

minimum value for n is 9 (i.e. 9 equally spaced contrasts between 0 and 1) for Hessian-IRFET 

and 12 for Harris-IRFET. The value for γ is set as 30 for both the operators. After fixing the 

parameters of the contrast stretching function the next step is to apply the stretching function to 

the input image I. A contrast-space is created by contrast stretching the image around different 

contrast using the contrast stretching function. 

Figure 13 shows the reference image (top-left) stretched around contrasts 0.2, 0.5 and 0.8 

with a gamma value of 30 respectively shown by the following images. In the image (top-right) 

the stretching has made the number tag of the cars more visible than they were in the original 

image and improved the contrast in certain regions of the image. This property of contrast 

stretching technique makes the operator illumination invariant. 
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Figure 13: Contrast space (contrasts used – 0.2, 0.5, 0.8). 

4.1.2 Stage 2 – Multi-Scale Operation 

On each of the images in the contrast space the multi-scale Harris or the multi-scale 

Hessian operator is applied to get the corner strength of each pixel in the image. In using the 

multi-scale Harris operator the response is calculated similar to the one discussed earlier in the 

section 3.1 for each of the contrast stretched images and they are summed up to give the final 

measure. 

In using the Hessian operator a slightly different approach was used. In [2] it has been 

experimented and found that the trace of the Hessian matrix did not have considerable effect on 

the performance and so they used the determinant in building their operator. Also our 

experiments comply with the latter result and in this research the idea of using the determinant 

was adapted and instead of using the determinant and trace simultaneously, only the determinant 
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of the Hessian matrix is considered to get the response score. By incorporating the operator by 

this way the operator had better or comparable performance with the Hessian-Laplace. 

For the multi-scale detectors a range for the integration (σI) and derivative (σD) scales 

has to be chosen. In our research the smallest scale is chosen as 1.5 and the scale is increased in 

the consecutive levels with a step size of 1.4 (σI   =   1.5(1.4^level), where the initial level is 

considered as 0th level and the symbol ^ denotes the power operator). The number of levels is 

chosen as 11 and these are used to determine the scale of a structure centered at a particular 

pixel. The range of scales chosen entirely depends upon the application where the operators are 

used. In using the detectors to detect objects that are very big in very high-resolution images the 

longest scale should be sufficiently large in turn the step can be set to some high value. It is 

impossible to use all combination of derivative and integration due to limited hardware 

resources. The derivative scale is chosen as a fraction of the integration scale similar to multi-

scale Harris. Figure 24 shows the Gaussian integration and derivative kernels at a scale. 

 
 
Figure 14: Gaussian kernels (upper left – Gaussian 2D, upper right – Gaussian 1D, lower left – 
1D Gaussian 1st order derivative, lower right – 1D Gaussian 2nd order derivative). 
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Figures 15 and 16 shows the image derivative in x-direction and y-direction respectively 

for a reference image. The 1st image is the reference image and the successive images are the 

reference image convolved with a derivative kernel of increasing scale (scales used are 3, 9, 15, 

30, 45 respectively). The derivatives are smoothed with appropriate Gaussian integration kernel 

of slightly larger scale. As the scale is increased the information we get decreases due to the 

reason that there are just few structures with such low spatial frequency change. (NOTE: Low 

spatial changes respond to derivative kernel with large scales). 

 

Figure 15: Image derivative in x-direction. 

	
  

Figure 16: Image derivative in y-direction. 

 Figures 17 and 18 show the second derivatives of an image in x and y-direction 

respectively. These measures are used in calculating the Hessian measure. The scales used for 

the derivative kernels are the same as used for the first order derivatives. The second derivative 
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gives small values exactly at the interest point and peaks near the actual position of the interest 

point. But this does not affect the calculation of the performance of the operators. Because the 

effect is the same in all the images and the points found in different images should be relatively 

the same. 

	
  

Figure 17: Second order image derivative in x-direction. 

	
  

Figure 18: Second order image derivative in y-direction. 

 Thus after determining all the necessary image derivatives the multi-scale Harris or the 

Hessian measure for each of the contrast stretched image is found by selecting the scale-space 

maximum of the cornerness measure. The figures 19 through 27 show the response of the 

Hessian operator to the input contrast stretched image at different scales. There are 9 contrast 

stretched images and 11 different scales used. The first image in each of the figures is the 
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contrast stretched reference image of the illumination dataset shown in section 5. The following 

images in each figure are the Hessian responses at the 11 successive scales between 1.5 and 45. 

The last image is the cornerness measure of each pixel corresponding to the scale-space 

maximum. Since at the boundaries the convolution assumes 0 for the pixels that are not inside 

the convolution kernel, the response that we get will not be accurate. So in practice some of the 

values are ignored along the image boundaries.  By doing this we can make sure that the 

convolution values are correct. 

	
  

Figure 19: Multi-scale Hessian response to image stretched around the contrast 0.03. 

	
  

Figure 20: Multi-scale Hessian response to image stretched around the contrast 0.15. 
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Figure 21: Multi-scale Hessian response to image stretched around the contrast 0.27. 

	
  

Figure 22: Multi-scale Hessian response to image stretched around the contrast 0.38. 

	
  

Figure 23: Multi-scale Hessian response to image stretched around the contrast 0.38. 
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Figure 24: Multi-scale Hessian response to image stretched around the contrast 0.62. 

	
  

Figure 25: Multi-scale Hessian response to image stretched around the contrast 0.74. 

	
  

Figure 26: Multi-scale Hessian response to image stretched around the contrast 0.85. 
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Figure 27: Multi-scale Hessian response to image stretched around the contrast 0.97. 

To understand how the operators respond to the corners and other regions the operators 

response to some selected points on different contrast stretched images should be analyzed. 

Figure 28 shows the response of the multi-scale Hessian across the contrast-space to four 

manually selected points. The responses are the scale-space maximum of the points in each 

contrast stretched image. Image (a) shows the corner strength of the selected corner pixel. Image 

(b), (c) and (d) shows the corner strength of three other points near the corner pixel 

corresponding to (a). It is clearly seen that the operator gives high response at the corner and the 

pixels near have low responses over the contrast-space. 

 
Figure 28: Corner strength of pixels across contrast-space. 
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   The figure shown is the response of the operators to each of the contrast stretched images. 

The actual response used in this research is the sum of the responses across the contrast space. 

By summing up the cornerness the corner strength will be sufficiently high and can be easily 

distinguished from the rest of the weak points. Intuitively the Harris-IRFET and Hessian-IRFET 

operators apart from finding points in an illumination invariant way they also boost the responses 

of the multi-scale Harris and multi-scale Hessian respectively to separate out the good interest 

points.  

4.1.3 Stage 3 – Point Detection 

 After determining the multi-scale measure for each of the contrast stretched images, the 

sum of all the responses is calculated. Then the last step is to eliminate weak points using non-

maxima suppression with thresholding. In this experiment non-maxima suppression of radius 3 

has been used to test and validate all the operators.	
  The threshold used for the non-maximum 

suppression stage should be carefully chosen because they play a vital role in eliminating noisy 

points. Experimental results showed that the Harris-IRFET and the Hessian-IRFET operators 

performed at their best when the threshold was chosen as a function of the maximum value of the 

final measure instead of a constant threshold for all the contrast stretched images. For the Harris-

IRFET the threshold was chosen as 1% of the maximum measure and for the Hessian-IRFET the 

threshold was chosen as 5% of the maximum cornerness value.  

Figure 29 shows the reference image followed by the output of the multi-scale Hessian on 

each of the contrast stretched images. The 2nd image from the last is the total sum of all the 

measures from the contrast stretched images. The last image shows the points detected using 

non-maxima suppression and thresholding operations.  
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Figure 29: Overview of Hessian-IRFET operator. 
 

4.2 Implementation 

4.2.1 MATLAB and C++ 

 The algorithm is implemented in MATLAB and C++. MATLAB implementation of 

Harris-Laplace, Hessian-Laplace and the proposed methods is used in validation. Execution time 

in MATLAB for the proposed algorithms is in average 75 seconds per image. The proposed 

method has also been implemented in C++ using the OpenCV libraries to make practical 

application possible. The execution time in C++ is in average 45 seconds per image. The 

execution time is tested on Intel dual core i7 processor with a clock speed of 2.7GHz. The 

implementation can be optimized further, by using multithreaded programming. 
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4.2.2 GPU - OpenCL 

Still the implementation will be slow for images with very high resolution. One way to 

tackle this problem is by parallelizing the operatins. By using Graphics Processing Units (GPU), 

Digital Signal Processors (DSP) and multi core CPU’s the implementation can be parallelized to 

a great extent. These performance accelerators have several processing units that are capable of 

doing basic arithmetic operations in parallel. By efficiently using these units we can considerably 

improve the performance. To motivate the future improvements of the proposed algorithm, the 

algorithm has been implemented using OpenCL API, which is an interface between the 

application and the above mentioned performance accelerators. Figure 30 shows the platform 

model used by OpenCL [9]. The host is the machine to which the accelerators are connected. A 

compute device is a GPU device, multi-core processor or any accelerator device. A host can be 

connected to any number of such devices. A compute device is subdivided into compute units 

that are further divided into processing elements. The processing elements are the units capable 

of performing arithmetic operations. 

	
  

Figure 30: OpenCL platform model [9]. 

Figure 31 shows the execution model [9]. NDRange specifies how the data is organized and 

executed. At present the maximum number of dimension supported is 3 and the size depends on 
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the device. Input data is organized as workgroups which in turn divided into workitems. Each 

workgroup executes on a compute unit and each workitem executes on a processing element. 

              	
  

Figure 31: OpenCL execution model [9]. 

 Figure 32 shows the memory model of an OpenCL device [9]. Global memory is the 

device memory and can be accessed by any workgroup. Global memory access is the slowest. 

Local memory is local to a workgroup and can be accessed by any work item inside a 

workgroup. Local memory access is faster than the global access. Private memory can only be 

accessed by work item and it is the fastest memory access.  

	
  

Figure 32: OpenCL memory model [9]. 
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The important factor that affects the performance of the GPU implementation is that the 

data transfer overhead between the main memory and the accelerators memory. To perform 

computations on the accelerators, the data has to be transferred to the memory of the accelerators 

and then retrieve the data after the process is done. To efficiently implement an algorith 

minimum data transfer should occur between the systems main memory and accelerators 

memory. Also by using the better accelerators it is possible to achieve very high speed for very 

high-resolution images. The reason for concentrating on very high-resolution images is that for 

low resolution images the regular implementation might work better than the GPU 

implementation because of the data transfer issue mentioned before.  

The efficiency can be achieved by data parallel or task parallel implementation. In data 

parallel implementation a set of instructions is applied to each of the input elements, in our case 

to each pixel. In task parallel implementation execution processes are distributed across the 

different nodes i.e. the processors. Since convolution is extensively used and convolution is 

highly data parallel, the performance can be improved by data parallel implementation. The 

algorithm has been implemented and optimized using OpenCL API to use the GPU resource and 

a 3 times speedup has been achieved over the OpenCV implementation on the same machine 

which had higher end GPU and quad core processor. The total time taken by the algorithm is 4.5 

seconds per image. The benchmark was tested on a machine with NVIDIA GeForce video card 

with 512 cuda cores (processing elements).  The execution time depends on the architecture of 

the GPU and the number of cores it has. So with higher end GPU’s a tremendous improvement 

in the execution time can be achieved. Figure 33 shows a flow chart that gives a pictorial 

representation of the proposed algorithms.  
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Figure 33: Overview of the proposed algorithms. 
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CHAPTER 5 – RESULTS 

5.1 Dataset 

 The dataset used to validate the performance of the algorithm is obtained from the 

website [14]. In validating the algorithms five image datasets with five different variations 

(illumination, blur, compression, viewpoint and scale) is used. Each set has a reference image 

and 5 other images with affine or illumination variations. The homography (mapping) between 

the reference image and the other images are known, which is used to calculate the repeatability 

score. Figure 34 shows the dataset used. In the figure row 1 is the illumination dataset, row 2 is 

the blur dataset, row 3 is the compression dataset, row 4 is the viewpoint dataset and row 5 is the 

dataset with scale variations. The 1st image in each dataset is the reference image and the 

following images have successively increasing variations from the reference. 

 

Figure 34: Dataset [14]. 
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5.2 Repeatability Score 

 In this research the point repeatability score is used as the performance measure to 

validate the proposed algorithms. There are many ways to define the repeatability of a detector. 

Here a straightforward algorithm to calculate the repeatability is used. A point in one image is 

said to be a match if there is an interest point in the 3x3 neighborhood of the other image 

surrounding the projected point. Let us assume n interest points were detected in the reference 

and m points in the other test image. The repeatability score is given by 

!"#$%&  !"  !"#$%&"  !"#$!!"
!"#  (!,!)

  x  100%, where number of feature matches is the number of matched 

interest points common to both the images.  

There might be changes in camera position while registering the images i.e. in the case of 

scale and viewpoint change, a part of scene will not be present in the other. Thus the points lying 

in the area common to both the images has to be determined and the interest points that lie in this 

common area should be taken into account for calculating the repeatability measure. The features 

that are common to both the images can be obtained by projecting both the reference and the test 

image onto each other and to find the outliers by detecting which pixels went out of bound in the 

corresponding projected image. Steps followed to find the repeatability score are listed below. 

STEPS: 

1. Project the interest points detected on the images onto one another. 

2. Reject the points that are projected out of boundary in the other image.  

3. For each point in one image check whether there is a point in another image inside a 

3x3 neighbourhood. 

4. Calculate the repeatability score using the formula mentioned above. 
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5.2.1 Illumination 

 The illumination dataset contains six images taken under different lighting conditions. 

Since the proposed method is focused on images with illumination changes, the operator was 

expected to perform at its best. Figure 35 and 36 shows the feature points detected using the 

operators. Figures 37 and 38 shows the repeatability score and the number of features detected 

on the images. The results prove that the Harris-IRFET and Hessian-IRFET perform better than 

Harris-Laplace and Hessian-Laplace.  

	
  

Figure 35: Feature points: Harris-IRFET (left), Harris-Laplace (right). 

	
  

Figure 36:	
  Feature points: Hessian-IRFET (left), Hessian-Laplace (right). 
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Figure 37: Repeatability plot - Illumination dataset. 

	
  

 

Figure 38: Number of features - Illumination dataset. 
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5.2.2 Blur 

 From the repeatability plot shown in figure 39 it can be seen that the performance was 

better in most cases. Since the dataset contains images with low contrast regions that will be 

difficult to detect without contrast stretching the images the proposed method performs well for 

some images. Figure 39 and 40 shows feature points detected using the operators. Figure 41 and 

42 shows the repeatability and the number of features detected for the blur dataset. 

	
  

Figure 39: Feature points: Harris-IRFET (left), Harris-Laplace (right). 
 

	
  

Figure 40: Feature points: Hessian-IRFET (left), Hessian-Laplace (right). 
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Figure 41: Repeatability plot - Blur dataset. 

	
  

Figure 42: Number of features – Blur dataset. 
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5.2.3 Compression 

The proposed method has comparable performance with the Harris and Hessian Laplace 

methods for images with compression. Figures 45 and 46 shows the repeatability rate and 

number of features detected on the images in compression dataset. Figure 43 and 44 shows the 

interest points detected using the operarors. 

	
  

Figure 43: Feature points: Harris-IRFET (left), Harris-Laplace (right). 
 

	
  

Figure 44: Feature points: Hessian-IRFET (left), Hessian-Laplace (right). 
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Figure 45:	
  Repeatability plot - Compression dataset. 

 

	
  

Figure 46: Number of features - Compression dataset. 
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5.2.4 Viewpoint 

In the case of viewpoint change the proposed methods performed better than Harris-

Laplace and Hessian-Laplace. Viewpoint changes are usually accompanied by illumination 

changes and due to this reason, the proposed operators performed better. Figures 49 and 50 

shows the repeatability rate and number of features on the images in viewpoint dataset. Figure 47 

shows the feature points detected using Harris-IRFET (left) and Harris-Laplace (right). Figure 48 

shows the feature points detected using Hessian-IRFET (left) and Hessian-Laplace (right). 

	
  

Figure 47: Feature points: Harris-IRFET (left), Harris-Laplace (right). 

 

	
  

Figure 48: Feature points: Hessian-IRFET (left), Hessian-Laplace (right). 
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Figure 49: Repeatability plot – Viewpoint dataset. 

	
  

Figure 50: Number of features - Viewpoint dataset. 
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5.2.5 Zoom and Rotation 

The proposed operators have comparable performance with the Harris and Hessian 

Laplace operators in the case of zoom and rotation changes. All the operators perform low under 

high variations. This is due to the reason that we use discrete number of scales and the variations 

are high. Figure 53 and 54 shows the repeatability rate and the number of features detected using 

the four operators. Figure 51 shows the feature points detected using Harris-IRFET (left) and 

Harris-Laplace (right). Figure 52 shows the feature points detected using Hessian-IRFET (left) 

and Hessian-Laplace (right). 

	
  

Figure 51: Feature points: Harris-IRFET (left), Harris-Laplace (right). 

	
  

Figure 52: Feature points: Hessian-IRFET (left), Hessian-Laplace (right). 
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Figure 53: Repeatability plot – Zoom and Rotation dataset. 

	
  

Figure 54: Number of features - Zoom and Rotation dataset. 
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5.3 Scale Efficiency 

Scale selection is an important part of the scale invariant operators. Operators like 

SIFT[12], SURF [2], affine invariant Hessian and Harris [15] depend on the scale and position of 

the interest points found by the initial stage scale invariant interest point detectors. One way to 

detect the scale for the proposed detectors is to select the scale corresponding to the scale-space 

maximum in the contrast stretched image that has the highest cornerness measure (i.e. the scale 

corresponding to the scale-space maximum of the image that is also a contrast-space maximum). 

Another way is to get the scales corresponding to scale-space maximum from all the contrast 

stretched images and then do some normalization based on the cornerness measure. Experiments 

showed that these methods did not work well. This is due to the reason that the contrast 

stretching the image does not preserve the scale of its objects. Objects might be detected at 

different scales in different contrast stretched image.  

 One possible solution is to determine the scales on the original image after detecting the 

interest points using the Harris/Hessian-IRFET methods. This idea has been studied and 

validated against the scale selection procedure of Hessian-Laplace and Harris-Laplace. SIFT 

feature descriptor is a rotation and illumination invariant feature descriptor algorithm that 

depends on the scale of the interest points detected by its initial stage. In our experiment the scale 

and interest points detected by the proposed methods are given as input to the SIFT descriptor to 

get the feature descriptions. By using these descriptions from different images the feature 

matching is done and tested for the accuracy using the match rate. 

 The illumination dataset has been used to study the proposed operators scale selection 

property. After getting the feature descriptions from the images the features from the reference 

image were matched with the features from other images using FLANN (Fast Library for 
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Approximate Nearest Neighbors) OpenCV library. Figure 55 shows few of the matched features 

between the reference image and one of the other images from the illumination dataset.  

	
  

Figure 55: Features mapped from the reference (left) to the test image (right). 

The matched features are further checked for the point locality using the known mapping 

between the reference and other images. The mapping is nothing but the homography 

information between the images. Using the homography information the matched features can be 

checked whether they are matched to the same point in the other image or to some other similar 

objects in other parts of the image. Figure 56 shows the match rate of Hessian-IRFET and 

Hessian-Laplace for the features detected on images from the illumination dataset. Match rate is 

given by !"##$!%  !"#$!!"
!"!#$  !"#$!!"

×100% where total   matches is the sum of correct   matches and 

mismatches. The match rate is almost same for both the operators. This is because the scale 

detected was not illumination invariant and the procedure to select the scales for the proposed 

operator was almost the same as the Hessian-Laplace. Figure 57 shows the number of correct 

matches. It can be seen that even though the match rate is the same for both operators Hessian-

IRFET finds more correct matches than the Hessian-Laplace. This is due to the reason that 

Hessian-IRFET finds more good interest points that may lie in a low contrast region. 
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Figure 56: Match rate for the features between the reference and other images. 

	
  

Figure 57:	
  Number of features matched between the reference and the other images. 
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5.4 Conclusion 

 The proposed method improved the performance of Harris-Laplace and Hessian-Laplace 

for datasets having illumination, viewpoint and blur variations and thus proving to be a better 

scale invariant detector. Overall Hessian-IRFET proved to be the best operator outperforming 

others. The number of contrasts around which the image has to be stretched has been reduced in 

this implementation to just 12 contrasts for Harris-IRFET and to 9 contrasts for Hessian-IRFET. 

Still the method takes 12 or 9 times more time than the actual algorithm that is incorporated 

which in this case is the multi-scale Harris/Hessian operators. Since the algorithm is highly 

parallel the GPU implementation can be used to speed up the detection process. Still a lot of 

optimization can be done in the algorithm and the implementation to improve the execution 

speed. The algorithm fails to perform well under high affine variations. It is due to the limited 

number of scales used and the algorithm is not affine invariant by itself because of its symmetric 

derivative and integration kernels. In future improvements the algorithm can be a preprocessing 

stage for the affine invariant algorithm like those discussed in [15] and thus making it 

illumination and affine invariant feature extraction operator. Also the scale selected during the 

detection is not illumination invariant and so future work can be focused on scale selection 

procedure so that the scale found is illumination invariant.  
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