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ABSTRACT 

        The shrinking processor feature size, lower threshold voltage and increasing on-chip transistor 

density make current processors highly vulnerable to soft errors. Architectural Vulnerability Factor 

(AVF) reflects the probability that a raw soft error eventually causes a visible error in the program 

output, indicating the processor’s susceptibility to soft errors at architectural level. The awareness of 

the AVF, both at the early design stage and during program runtime, is greatly useful for designing 

reliable processors. However, measuring the AVF is extremely costly, resulting in large overheads 

in hardware, computation, and power. The situation is further exacerbated in a multi-threaded pro-

cessor environment where resource contention and data sharing exist among different threads. Con-

sequently, predicting the AVF from other easily-measured metrics becomes extraordinarily attrac-

tive to computer designers.  

        We propose a series of AVF modeling and prediction works via using advanced statistical 

techniques. First, we utilize the Boosted Regression Trees (BRT) scheme to dynamically predict the 

AVF during program execution from a variety of performance metrics. This correlation is general-

ized to be across different workloads, program phases, and processor configurations on a single-

threaded superscalar processor. Second, the AVF prediction is extended to multi-threaded proces-

sors where the inter-thread resource contention shows significant and non-uniform impacts on dif-

ferent programs; we propose a two-level predictive mechanism using BRT as building blocks to 

characterize the contention behavior. Finally, we employ a rule search strategy named Patient Rule 

Induction Method (PRIM) to explore a large processor design space at the early design stage. We 

are capable of generating selective rules on important configuration parameters. These rules quanti-

fy the design space subregion yielding lowest values of the response, thereby providing useful 

guidelines for designing reliable processors while achieving high performance.  
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CHAPTER 1. INTRODUCTION 

        This dissertation focuses on soft error reliability of current processors, including single-

threaded and multi-threaded processors. It utilizes a number of machine learning and statistical 

techniques to perform the analysis and prediction. The three works presented in this dissertation 

(Chapter 3, 4, 5, respectively) build a strong foundation for future opportunities to improve pro-

cessor robustness against soft errors via scientific approaches. Most of these achievements have 

been published in high quality computer architecture conferences and journals.  

        This chapter presents an informative introduction to these works. It starts from introducing 

background in soft errors and architectural vulnerability, the metric we used to quantify the soft 

error masking effect at computer architecture level. The high cost in measuring the soft error 

vulnerability motivates our series of works in predictions. This chapter finally briefly describes 

the three works performed in my dissertation research along with the reasoning behind them.  

1.1 Soft Errors 

        Soft errors have become an important factor in degrading the reliability of current high per-

formance processors. They occur mainly due to electronic noises caused by energetic nuclear 

particles in the environment. There are basically two types of these nuclear particles: one is the 

alpha-particles generated in the decay of radioactive atoms existing in many materials in our 

common lives; the other is the neutrons and pions generated from cosmic rays. As shown in Fig-

ure 1-1, these particles may invert the state of a logic device (from ‘0’ to ‘1’, or from ‘1’ to ‘0’) 

when the resulted charge has been accumulated to a sufficient amount. IBM experiments [55] 

demonstrated that a single alpha-particle could cause four memory cells to change their content 
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from a one to a zero in a 64Kb DRAM memory chip. This kind of errors is termed as soft errors 

or transient faults, because only the stored data is destroyed but the circuit itself is not damaged.  

 
 
 
 

 
 

Figure 1-1. Strike changes state of a single bit. In this example, 1 will be flipped to 0. 

        If the corrupted bit is critical to the running program, the resulted error may propagate along 

with program execution to the output. In these cases, soft errors produce erroneous outputs that 

affect program correctness, significantly degrading the reliability. With the feature size and sup-

ply voltage scaling down to extremely small values (which effectively makes a bit more easily be 

flipped), current processors become highly vulnerable to soft errors. Many industry companies 

have reported the observation of soft errors causing severe damage on large servers in the past 

decades. For example, cosmic ray strikes on the L2 cache have caused Sun Microsystems’s flag-

ship servers to suddenly crash; also, error logs of large servers in many companies have docu-

mented various mysterious errors due to strikes.  

        Physical solutions to improve the reliability against soft errors are hard. For instance, the 

absorbent required to provide shielding is not practical (i.e. approximately > 10 feet of concrete); 

radiation-hardened cells come with significant penalty in performance, area, and cost. Neverthe-

less, these techniques may help alleviate the impact of soft errors at higher costs, but not com-

pletely remove it. In contrast, this dissertation analyzes and solves this problem from a different 

1 
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angle: we propose a series of works at computer architecture level that can effectively and effi-

ciently mitigate processor vulnerability to soft errors.  

1.2 Architectural Vulnerability Factor (AVF) 

        To characterize a processor’s soft error reliability, one should look at its effective soft error 

rate, i.e. the amount of actual errors resulted from raw soft errors in a time unit. Hence, the effec-

tive soft error rate (SER) is the product of raw SER and the probability that a soft error produces 

a visible error in the program output. The former is dependent on many factors at the circuit level 

including the critical charge of the circuits, processor area, temperature, etc.; while the latter is 

quantified at the architectural level by the Architectural Vulnerability Factor (AVF) [33][3]. In 

this dissertation, we focus on minimizing the AVF for soft error resilient designs at the architec-

tural level. The term “reliability” used in this dissertation (as well as many prior publications) 

refers to the processor robustness to raw soft errors. 

1.2.1 The Definition of AVF 

        A raw soft error does not necessarily affect the final output of a program. For example, a bit 

flip in an empty Reorder Buffer entry will not cause any error in the program execution; similar-

ly, overwriting the incorrect bit in a register before it is used again prevents the propagation of 

the error. Based on this observation, a processor structure’s Architectural Vulnerability Factor 

(AVF) [33] was defined as the probability that a raw soft error occurring in that structure finally 

produces a visible error in the program output. For example, the Branch Predictor’s AVF is 0% 

since it doesn’t matter at all for program correctness; on the other hand, the Program Counter 

(PC)’s AVF is almost 100% because almost all the bits in the PC always matter. A higher AVF 
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value indicates that the processor is more vulnerable to soft errors; the AVF characterizes the 

processor’s vulnerability to soft errors at architectural level.  

        A common approach to calculate a processor structure’s AVF is via Architecturally Correct 

Execution (ACE) analysis [33][3]: count the number of bits that are required for correct execu-

tion, and then divide it by the total number of bits of the structure. Using the ACE analysis meth-

od, many publications (e.g. [33][19]) have reported a large masking effect of raw soft errors at 

architectural level. That said, a key processor structure usually shows an AVF below 40%, but 

with a large variation over time. 

1.2.2 The Importance of AVF 

        The AVF provides computer architects with an indicator of the system’s susceptibility to 

soft errors. The awareness of the AVF, both at the early design stage and during program runtime, 

is greatly useful for cost-effective reliable processor designs. One example would be some form 

of partial redundancy described below. 

        Researchers [35][46][32][20] proposed Redundant Multithreading (RMT) to detect/recover 

from soft errors. The basic idea is to run two copies of the same program as separate threads with 

identical inputs on a Simultaneous Multithreading (SMT) or a Chip Multicore (CMP) processor. 

By comparing the outputs of the two threads, we can detect an effective soft error. A big draw-

back of RMT is the significant performance degradation due to the resource contention between 

the two threads. Mukherjee et al. [32] reported a 32% performance degradation of running the 

two threads simultaneously compared to only running a single copy of the program. In such cas-

es, the AVF can serve as an indicator to turn on/off the redundant thread: if the AVF of current 

program phase is very low (which means an error is not likely to happen), we can temporarily 
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disable the redundant thread to boost the performance by eliminating the inter-thread contention. 

Therefore, dynamically tracking the AVF during program execution is greatly useful for achiev-

ing a good tradeoff between system performance and soft error reliability.  

1.2.3 The Problem with AVF Measurement 

        The AVF provides useful guidelines in designing reliable processors, but its measurement is 

extremely expensive in terms of hardware and computation. To measure the AVF, one can use 

Statistical Fault Injection [49][29] or Architecturally Correct Execution (ACE) analysis [33]. 

The former requires a large number of experiments that randomly inject errors into program exe-

cution; while the latter needs to implement a post-commit analysis window to identify the hard-

ware bits that are required for correct execution. Regardless, either of these two methods results 

in costly overhead and significant performance degradation.  

        Specifically in our work, we followed the ACE method to calculate the AVF in our simula-

tors. The implemented post-commit analysis window [33][18] contains the most recent 40K 

committed instructions. The processor inserts the instructions into this window after they are 

committed, and also maintains the dependencies among them. At the other end of this window, 

we can determine an instruction’s type (e.g. a dynamically dead instruction, or a NOP instruction, 

etc), and use this information backward to calculate the AVF. Apparently, implementing this ap-

proach in the real processor requires additional hardware structures; additionally, the simulation 

in a simulator capable of measuring the AVF is significantly slowed down due to the additional 

computation incurred by the AVF measurement.  

        Furthermore, the ACE analysis can be also applied to multi-threaded processors’ AVF 

measurement. However, it is even more involved than in single-threaded processors because the 
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instruction streams from different threads must be traced independently and thus accompanied 

with separate dependency chains. For multi-threaded workloads with data sharing, a system-wide, 

much bigger analysis window must be implemented. Therefore, an accurate AVF prediction in 

place of actual AVF measurement can save a great amount of hardware overhead, computation, 

power consumption, etc, thereby being very attractive to computer architects designing soft error 

resilient systems. 

1.3 Statistical Applications in Computer Architecture 

        In recent years, there is a tendency to apply statistical and machine learning techniques to 

computer architecture research. The fundamental reason is because of the fast increasing number 

of design options. Different programs, and even different parts of the same program, may have 

distinct behaviors that interact with the hardware in different ways; on the other hand, the num-

ber of representative programs (i.e. benchmarks) and the number of possible hardware design 

choices are increasing geometrically. Consequently, it’s critical that computer architects have 

efficient mechanisms by which they can estimate the overall impact of various designs on the 

system. Statistical and machine learning techniques have been chosen for this purpose.  

        One example would be the online AVF prediction. As explained in Section 1.2.3, dynami-

cally predicting the AVF during program runtime eliminates the overhead in AVF measurement. 

Fu et al. [19] observed a fuzzy correlation between the AVF and a few common performance 

metrics. Walcott et al. [47] extended the input metrics set and used linear regression to reex-

amine this correlation. They performed a very accurate prediction, proving the existence of the 

correlation between the AVF and various processor performance metrics. Alternatively, Li et al. 

[28] developed an online algorithm to estimate processor structures’ vulnerability using a modi-
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fied error injection and propagation scheme [29][48]. The first two works in this dissertation, 

which will be described in the following sections, further generalized the correlation between 

AVF and performance metrics to be across workloads, execution phases and configurations. Re-

gardless, certain predictive techniques have been used in these works to perform a fast and accu-

rate prediction for metrics that are difficult to be directly measured.  

        Design space exploration is another kind of prediction that explores a huge design space and 

predicts the response for any design point in the space. Many researchers have done different 

variations of design space exploration. Ipek et al. [22] predicted performance of memory hierar-

chy, CPU and CMP design spaces using Artificial Neural Networks (ANNs); Similarly, Lee et al. 

[23] proposed to use spline-based regression to predict performance and power from a large de-

sign space. It’s also possible to derive optimal points based on their predictive models via ex-

haustive prediction in Pareto Analysis [24]. There are also a number of studies discussing design 

space exploration on performance and/or power [30][31]. For the correlation between the AVF 

and configuration parameters, Cho et al. [8] predicted the dynamics of power, CPI and the AVF 

using a combination of wavelets and neural networks. They also followed the same approach to 

predict the average soft error vulnerability and its tradeoff with performance [9]. The third work 

presented in this dissertation follows this approach but derives universal guidelines via exploring 

the design space that can be applied across programs.  

1.4 AVF Modeling and Prediction 

        The fundamental idea of this dissertation is to utilize advanced statistical techniques to 

model and predict the AVF from other easily-measured metrics, including performance metrics 

(e.g. structure occupancy rates), configuration parameters (e.g. structure sizes), and so on. Upon 
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accurate predictions, we are able to estimate the AVF values for a processor without AVF meas-

urement mechanism, thereby eliminating the overheads in measuring the AVF. Our first work 

[11][27] predicts the instantaneous AVF from a large set of processor performance metrics on a 

single-threaded superscalar processor. This work actually bridges the gap between the difficult 

AVF measurement and easily-obtained performance measurements. Second, the AVF prediction 

[13] is performed on multi-threaded processors, e.g. Simultaneous Multithreading (SMT) or 

Chip-Multiprocessors (CMP), where the inter-thread resource contention shows significant im-

pacts on the AVF. A two-level predictive mechanism is proposed to correlate the AVF with un-

derline configuration and contention behaviors in shared structures. Finally, we also use a rule 

search strategy to identify the designs that have lowest AVF values from a large design space 

consisting of key configuration parameters [14][12]. The generated selective rules provide com-

puter architects with useful guidelines in designing reliable processors while achieving high per-

formance at the pre-silicon stage. 

        The main contributions of this dissertation are summarized as follows: 

1.4.1 Dynamic AVF Prediction from Processor Performance Metrics 

        By utilizing a nonparametric tree-based predictive modeling scheme named Boosted Re-

gression Trees (BRT), we are capable of predicting the AVF from a variety of performance met-

rics. More specifically, we trained a predictor using various performance metrics and the meas-

ured AVF from a large number of program phases as the input and output, respectively. The pre-

dictor is then tested on other program phases to demonstrate its accuracy. This prediction turns 

out to be valid across workloads, execution phases, and underline configurations. We also quan-

titatively demonstrate the input variable importance to the AVF and how the AVF is affected by 

the most important inputs. In addition to accurate predictions, another statistical technique (i.e. 
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Patient Rule Induction Method or PRIM) is employed to summarize a few simple but useful se-

lective rules on the performance measurements. Applying these rules online can efficiently iden-

tify the program intervals vulnerable to soft errors. 

1.4.2 AVF Prediction on Multi-Threaded Processors with Resource Sharing 

        The inter-thread resource contention and sharing significantly and non-uniformly affect the 

AVF of different threads running simultaneously on a multi-threaded processor. We propose a 

two-level predictive mechanism to predict the AVF under contention. At the first level, a unified 

model predicts a certain program’s AVF when it runs alone on a single-threaded processor. The 

output of the first level model, along with a few key structures’ occupancy rates measured when 

the program runs against other program(s), are the inputs to the second level model, which final-

ly predicts the program’s AVF under contention. Consequently, we can obtain an accurate AVF 

estimation for a program co-scheduled with different programs on an SMT/CMP with any con-

figuration in the design space. In practice, the proposed scheme can be used to find soft error re-

silient thread-to-core mapping for both homogeneous and heterogeneous multi-threaded proces-

sors.   

1.4.3 Universal Rules Guided Design Parameter Selection 

        We propose an effective approach to identify the configurations that have consistently low 

AVF values from a huge design space. Those identified configurations are inherently reliable to 

soft errors. Specifically, we characterize the design space using Patient Rule Induction Method 

(PRIM) to generate a set of selective rules on key design parameters. Applying these rules on the 

design space effectively identifies the design space subregion within which the output variable is 

considerably smaller (i.e. “valley seeking”) than its average value over the entire design space. 
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Therefore, the design configurations selected by the generated rules are inherently resilient to 

potential soft errors. This technique provides computer architects with useful guidelines to de-

sign reliable processors at pre-silicon stage. Furthermore, the proposed method is performed on 

multiprocessors to simultaneously balance multiple design metrics and achieve a proper tradeoff 

among reliability, performance, and power.  
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CHAPTER 2. BACKGROUND 

2.1 AVF Calculation 

        The concept of Architectural Vulnerability Factor (AVF) was originally proposed by 

Mukherjee et al. [33]; Biswas et al. [3] extended it to address-based structures. There are two ap-

proaches to measure the AVF: Statistical Fault Injection (SFI) [49][29] and Architecturally Cor-

rect Execution (ACE) analysis [33]. For SFI, a microarchitectural fault injector is needed for the 

simulator; a bit is randomly chosen from the microarchitectural state to be flipped at a random 

time during program execution; the microarchitectural state and simulation results are compared 

with the correct execution (i.e. the golden run) when simulation finishes. Therefore, calculating 

the AVF requires a large number of such fault injection experiments. The other approach, which 

we implemented in our simulators, is via ACE analysis; it provides a tight upper bound [4] on the 

soft error vulnerability of various processor structures. A unified framework named Sim-SODA 

[18] to study the AVF behavior in a superscalar processor has been released. We generally fol-

low the ACE approach described in these papers to calculate the AVF in our simulators.  

        In principle, we need to identify which bits in a dynamic instruction affect the correct exe-

cution of the program. These bits are called ACE bits since a fault in any of these bits will cause 

a visible error in the final output. On the other hand, we classify the dynamic instructions into 

five categories: NOP instructions which do not change any processor state; prefetch instructions 

which bring data into cache in advance but do not change processor states as well; dynamically 

dead instructions whose computed results are not used by subsequent instructions; unknown in-

structions whose types cannot be determined due to insufficient information; the remaining are 
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ACE instructions performing useful computation. Table 2-1 summarizes the ACE bits for each of 

these instruction types.  

Table 2-1. The ACE bits in different dynamic instructions 

Dynamic Instruction Type ACE Bits 
NOP, prefetch instructions opcode field 

dynamically dead instructions opcode field, destination register field 
unknown instructions, ACE instructions all bits (except masked source registers) 

 
        For NOP and prefetch instructions, as long as the processor correctly decodes them via the 

opcode field, the execution correctness would not be violated (although a different data block 

may be prefetched due to an error in other bits). For dynamically dead instructions, besides op-

code field we need to guarantee that the result is written into the correct register. Some instruc-

tions are unknown of their types since they are near the end of the simulation and we don’t have 

sufficient information to determine their types (e.g. whether the result computed by such an in-

struction will be used in the future). To have a conservative estimate of the AVF, we consider 

unknown instructions to have all bits as ACE. Finally, an ACE instruction usually has its all bits 

to be ACE with some exceptions in the masked source register field. For instance, if an “AND” 

instruction has one source register equal to zero, the other source register is actually masked 

(since the result is always zero regardless of the value in this register) and a soft error is tolerant 

in it.  

        Furthermore, to calculate the AVF for a processor structure (e.g. ROB), we also need to 

know how long each instruction stays in the structure (via recording the cycle numbers the in-

struction gets in/out of this structure). We then use the equation [33] in Figure 2-1 to calculate 

the AVF of a processor structure for a certain phase of program in execution:  
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∑ residency (in cycles) of all ACE bits in the structure for the program phase 
 

Total number of bits in the structure * total execution cycles for the program phase 
 
 

Figure 2-1. The equation to calculate the AVF of a structure for a program phase 

        The main difficulty in the above approach to calculate the AVF resides in determining the 

exact type of each dynamic instruction. For example, to determine whether an instruction (say 

inst) is dynamically dead, we have to track a large amount of instructions that follow inst. 

Among those subsequent instructions, if the destination register of inst is not used at all, inst is 

first-level dynamically dead; if the destination register is only read by the instructions turn out to 

be dynamically dead as well, inst is transitively dynamically dead; otherwise, inst is an ACE in-

struction. Hence, this determination involves a lot of computation, thus significantly slowing 

down the simulation. In our simulator, we implement a post-commit analysis window [33][18], 

which tracks the most recent 40K committed instructions, to determine the instruction type after 

the instruction goes through the entire window. The dependencies among the instructions have to 

be maintained in the window. 

        In summary, the AVF measurement suffers from two main disadvantages. First, it results in 

large overhead in computation, power, hardware, etc. This dissertation is motivated from this 

disadvantage. Second, a gap exists between the performance simulation and the AVF measure-

ment due to the post-commit analysis window. In other words, the AVF measurement of a cer-

tain program interval is delayed 40K instructions (the length of the window). Our work in Chap-

ter 3 bridges the gap via AVF prediction from online performance measurements. 
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2.2 Boosted Regression Trees (BRT) 

        Boosted Regression Trees (BRT), originally proposed by Friedman [16], is an ensemble 

technique that aims to improve the performance of a single model via fitting and combining 

many models for prediction. BRT employs two algorithms: “regression trees” from Classifica-

tion and Regression Trees [5] (CART), and “boosting” which builds and combines a collection 

of tree models. CART is a binary recursive partitioning algorithm. Initially, it splits the input 

space into two regions, and models the response by a constant for each region. For each of these 

regions, an input dimension and a split point are chosen to achieve the best fit. This can be visu-

alized as a parent node splitting into two child nodes. This procedure is recursively applied until 

the constructed tree reaches a certain depth. On the other hand, boosting is one of the recent en-

hancements to tree-based methods. In boosting, models such as regression trees are fitted itera-

tively to the training data, and an appropriate method is used to gradually increase emphasis on 

observations modeled poorly by the existing collection of trees. 

        The detailed BRT algorithm used in this dissertation is described in Figure 2-2. We consider 

a problem with n observations {yi, xi}, i=1,2,…,n, where xi is a p-dimensional input vector and yi 

is the response. In Step 2(b), a binary regression tree is constructed based on the distribution of 

current residuals. At each node of the tree, the algorithm partitions current region in a way that 

the resulted new prediction function produces the minimal Mean Square Error (MSE) among all 

possible split points. The tree construction terminates when its depth reaches a certain number. In 

this work, we set the maximum tree depth to be 3, indicating that H is not greater than 8. In Step 

2(d), ( )•I  is an indicator function which returns 1 (otherwise 0) if its argument is satisfied. ν  is 

a parameter between 0 and 1, controlling the learning rate of the procedure. Empirical results 

have shown that smaller values of ν  always lead to better generalization errors [16]. In this 
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study, we fix ν  at 0.01. Figure 2-3 illustrates the BRT algorithm in a two-dimensional input 

space. We can see that M regression trees are constructed corresponding to the M iterations of 

the algorithm. This figure shows the first one (Tree 1) as an example in which the input space is 

partitioned into five regions. Note that each tree is constructed based on the training data and the 

prediction function in current iteration, so they may be different from each other.  

        BRT is inherently nonparametric and can naturally handle mixed-type of input variables. 

Different from other parametric models, BRT does not make any assumption about the distribu-

tion of the values of the input variables, thus avoiding the transformations performed in pre-

processing training data. BRT is also capable of capturing complex behaviors with a relatively 

small number of inputs. This is in contrast to some other multivariate nonlinear modeling tech-

niques, in which extensive inputs from the analyst, analysis of interim results, and subsequent 

modifications of the method are required. Besides, BRT is insensitive to outliers, and unaffected 

by monotone transformations and different scales of input measurements.  

1. Initialize ( ) yf i =x0̂ , where y  is the average for { }iy . 
2. Repeat for :,...,2,1 Mm =  

(a) Compute the current residuals: ( ) .,...,1  ,ˆ
1 nifyr imiim =−= − x  

(b) Partition the input space into H disjoint regions { }H
hhmR 1=  based on { }n

iiimr 1, =x . 

(c) For each region, compute the constant fit: ( )∑
∈

−=
hmi R

imhm r
x

2minarg γγ
γ

 

(d) Update the fitted model: ( ) ( ) ( )hmhmmm RIff ∈×+= − xxx γν1
ˆˆ  

3. End algorithm. 
 

Figure 2-2. BRT-based algorithm used in this dissertation. 
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Figure 2-3. Illustration of the BRT algorithm in two-dimensional input space. 

        In addition to accurate prediction, BRT also provides visualized model interpretations in-

cluding input variable importance to the response and the partial dependence of the response on 

the most important variables. The relative importance of a variable is measured by accumulating 

the number of times the variable (dimension) is selected for splitting a region during the M itera-

tions. Each increment to this number is weighted by the improvement in the MSE as a result of 

the corresponding split. The relative importance is scaled so that the sum adds to 100%, with a 

higher number indicating a stronger influence on the response. On the other hand, a partial de-

pendence plot shows the effect of a subset of input variables on the response after accounting for 

the average effect of all other input variables in the model. Given any subset  of the input var-

iables indexed by , the partial dependence of )( xf is defined as 

( ) ( )[ ]xx
sxs fEFs \

= , where [ ]⋅
sx \

E  refers to the expectation over the joint distribution of all 

the input variables with indices not in s . In practice, partial dependence can be estimated from 

the training data by ( ) ( ) ( )∑
=

=
n

i
ifnF

1
\,ˆ1ˆ
ssss xxx , where { }n

i 1\sx  are the data values of sx \ .  

sx

{ }p,,1 ⋅⋅⋅⊂s
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2.3 Patient Rule Induction Method (PRIM) 

        The objective of PRIM [17] is to find a subregion in the input space that gives relatively 

low values for the output response. The identified input space subregion (or “box”) is described 

as a set of simple “selective rules” in a form of ( )jj

p

j
sxB ∈=∩

=1
. xj represents the jth input varia-

ble, and sj is a subset of all possible values for the jth variable. Hence, the identified subregion B 

is the intersection of p subsets, each being from one input variable.  

        The box construction of PRIM consists of two phases: patient successive top-down peeling 

and bottom-up recursive pasting. Figure 2-4 visualizes this procedure. The top-down peeling 

starts from the entire design space. At each iteration, we have the following operations: a small 

subbox b within the current box B is removed; we calculate the output mean for the elements re-

maining in }&|{ bxBxxbB ∉∈=− , and try this operation in each dimension (i.e. try removing 

a different subbox from each input variable); we then choose the one that yields the smallest out-

put mean value for the next box B-b. The above procedure is iteratively applied until the support 

of the current box B is below a chosen threshold β, which is the proportion of the design points 

remaining in the identified area. Note that for a categorical variable, an eligible subbox b con-

tains only one element of the possible values of the variable in the current box B.  

        The pasting algorithm is simply the inverse of the peeling procedure. The reason for pasting 

is that at each iteration of peeling we only look one step ahead. The box boundary is thereby de-

termined without knowledge of later iterations. Consequently, we may peel too much from the 

input space, and the final box can sometimes be improved by readjusting its boundaries. From 

the peeling result, the current box B is iteratively enlarged by pasting onto it a small subbox that 

minimizes the output mean in the new larger box. The subbox being pasted is chosen in the same 
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manner as in peeling. The bottom-up pasting is iteratively applied, successively enlarging the 

current box until the addition of the next subbox causes the output mean start increasing.  

 
 

Figure 2-4. PRIM training procedure, including peeling and pasting. 

        Regarding the complexity of PRIM, the first peel requires at most n*p operations, where n 

is the number of observations and p is the number of possible values of all input variables. The 

number of operations for each peel will decrease since fewer and fewer samples are left during 

peeling. On the other hand, PRIM performs approximately –log(n)/log(1-α) peeling steps, where 

α is the portion that is peeled off at each peeling iteration. An advantage of PRIM over greedy 

methods such as tree-based methods is its patience. For example, a binary tree partitions the data 

quickly because of its binary splits, while in PRIM each time only a small proportion (α) of data 

is peeled off. Hence, the solution of PRIM (hyper-boxes) is usually much more stable than the 

tree models. In other words, if the data are slightly changed, a tree structure may change dramat-

ically but the PRIM solution is less affected. Moreover, if the optimal subspace is not connected, 

PRIM can generate a sequence of hyper-boxes instead of just one. Namely, after getting the first 

hyper-box, the PRIM procedure can be repeated on the remaining dataset. As a result, the dis-

connected subspace can also be covered. However, we found that in practice the leading one hy-
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per-box usually covers most of the points with the smallest response values. Therefore, we only 

apply PRIM once to identify the desired subregion in the following sections.  

        Finally, all the description in this subsection assumes that the subregion that has the small-

est response values is being extracted (i.e. “Valley Seeking”). However, we can certainly invert 

all the conditions above and look for the subregion that has the largest response values (i.e. 

“Bump Hunting”). The choice between these two depends on the problem being solved. In Chap-

ter 3, we will use “Bump Hunting” to identify the program intervals showing highest AVF; in 

Chapter 5, we will use “Valley Seeking” to identify the designs that have the lowest soft error 

vulnerability.  
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CHAPTER 3. DYNAMIC AVF PREDICTION FROM 
PERFORMANCE METRICS1 

 

3.1 Summary 

        The first work in this dissertation predicts the instantaneous AVF from processor perfor-

mance metrics during program runtime. This work bridges the gap between the difficult AVF 

measurement and easily-obtained performance measurements. By utilizing the dynamic AVF 

prediction, we can eliminate the overhead due to measuring AVF, and also customize reliability 

enhancement mechanism to mitigate the performance degradation.  

        Several prior publications studied online AVF estimation. By observing a fuzzy correlation 

between the hardware AVF and some common performance metrics such as IPC, branch mispre-

diction rate, cache miss rate, etc, Fu et al. [19] concluded that a simple performance metric was 

not a good indicator to the program soft error vulnerability behavior. Walcott et al. [47] reex-

amined the correlation by extending the variable set to 160 easily-measured time-varying proces-

sor metrics. They adopted a multivariate regression-based statistical model using 22 workloads 

as a training set to extract a quantitative relationship between the AVF and a small subset of the 

variables, and then applied the obtained predictor to another 4 workloads. By demonstrating a 

very accurate prediction of the AVF behavior, their work convincingly proved the existence of a 

correlation between the AVF and various processor performance metrics. However, they restrict-

ed their model training/test within one configuration, and only focused on the first SimPoints [38] 

                                                 
1 © 2010 IEEE. Reprinted, with permission, from: B. Li, L. Duan, and L. Peng, “Efficient Mi-
croarchitectural Vulnerabilities Prediction Using Boosted Regression Trees and Patient Rule In-
ductions,” IEEE Transactions on Computers (TC) – Special Issue on System Level Design of 
Reliable Architectures, vol. 59(5), pp. 593-607, May 2010. 
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of SPEC CPU 2000 benchmark suite. It is not clear that the predictor obtained from one set of 

phases (i.e. the first SimPoints) will give accurate estimation for another set of phases (e.g. the 

second SimPoints); also, the model developed under one configuration most likely would not 

work for other configurations.  

        In this chapter, we propose a versatile method which accurately predicts the AVF across 

different workloads, execution phases and processor configurations. Initially, a statistical model 

is trained using the first SimPoints measured from a set of workloads under a BRT-based algo-

rithm; the trained model is then tested with other workloads that are not included in the training 

set. The testing results show that the prediction is very accurate. Within the same configuration, 

the trained model is also capable of predicting the vulnerabilities of the second SimPoints of all 

workloads. We then extend our model by adding the configuration parameters into the training 

variable set, and demonstrate a very high accuracy in predicting the AVF variations under differ-

ent configurations.  

        Finally, to make our method easier to be used in practice, we propose a fast estimation ap-

proach which utilizes Patient Rule Induction Method (PRIM) to extract some simple selective 

“IF-ELSE” rules on important performance metrics. These rules can be used to monitor the per-

formance variables during the program execution, and efficiently identify vulnerable intervals 

experiencing high AVF values. 

        The main contributions of this chapter are: 

• Versatile AVF Prediction. Our proposed method accurately predicts the AVF across dif-

ferent workloads, execution phases, and processor configurations.  
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• Model Interpretation and Comparison. The proposed model can quantify the input 

variables’ importance and the output response’s dependence on the inputs. Our model is 

also much more stable than traditional linear regression.  

• Fast AVF Estimation. The selective rules generated from the PRIM model significantly 

reduce the prediction complexity. This enables computer architects to efficiently identify 

highly vulnerable program intervals during runtime.  

• A Case Study of PRIM-Based ROB Redundancy. It effectively reduces the ROB AVF 

to a very low level with negligible performance degradation.  

3.2 Experimental Setup 

        We use Sim-SODA [18], a unified simulation framework that models soft error reliability of 

different microarchitecture structures in a microprocessor system, to measure the AVFs and a 

large set of performance metrics. Sim-SODA was developed based on Sim-alpha [10] which has 

been validated as an accurate Alpha 21264 simulator; it also has been incorporated with microar-

chitectural level AVF calculation methods for key processor structures. In this work, we use Sim-

SODA to dump the time-varying AVF values for Integer Issue Queue (IQ) and Reorder Buffer 

(ROB). These two structures produce significant impacts on the processor vulnerability, so with-

out losing generality our methods can be also used for other processor components. 

        Table 3-1 shows the Alpha-21264-like baseline machine configuration used in this work. In 

later sections, several key parameters will be tuned to generate 15 different configurations. For 

the experiments, all the integer benchmarks except one from the SPEC CPU 2000 suite are eval-

uated. The only exception is gzip whose simulation cannot be finished in a reasonable time in 

Sim-SODA. The floating point benchmarks of SPEC 2000 suite are not included in our experi-
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ments because Sim-alpha cannot accurately model Alpha 21264 floating point pipeline (thus 

Sim-SODA does not support AVF measurements for FP workloads). In order to perform suffi-

cient model training/test, we provide each benchmark with different inputs if possible; the total 

19 workloads are listed in Table 3-2 in which the training set includes the white columns and the 

test set consists of the gray columns. Note that the training and test sets are disjoint.  

        Each workload is run for two 100-Million Instruction SimPoints [38]. Table 3-2 gives the 

number of instructions (unit: 100M) fast-forwarded to reach the SimPoints that we are interested 

in. In this work, we term each SimPoint (i.e. the execution of 100M instructions) as a “phase”, 

and each 500K instructions within a SimPoint as an “interval”. In other words, for each workload, 

we simulate two phases, each containing 200 intervals. The granularity of dumping the AVFs 

and performance metrics is “interval”, that is, the system records the AVF values (of IQ and 

ROB) and the values of 217 performance variables after the execution of every interval. We 

don’t list all of them here because of the space, but the following subsections will analyze the 

most important ones. Table 3-3 explains the abbreviation of variable names. 

Table 3-1. The Alpha-21264-like machine configuration 

Pipeline stages 8 
Fetch/slot/map/issue/commit 
width 

4/4/4/4/11 

Fetch/slot queue size 4/4 
Issue queue size 20 
Reorder buffer size 80 
Load/store queue size 32/32 
Integer register file size 41 (1-cycle read latency) 
Integer ALUs/multipliers 4/4 (latency: 1/7) 
Branch predictor Hybrid (local: 1K+1K; global: 4K; choice: 4K) 
L1 I/D cache 64KB (64B block, 2-way, access latency: 1/3) 
L2 cache 2MB (64B block, 1-way, 7-cycle latency) 
ITLB/DTLB Each: 128 entries, fully-associative 
Victim buffer 8 entries, 1-cycle latency
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Table 3-2. Workloads and SimPoints 

Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2 
bzip2.source 4 104 mcf 1 37 crafty 114 252 

eon.cook 78 187 parser 173 309 gcc.200 101 137 
eon.kajiya 389 410 perlbmk.makerand 0 5 gcc.integrate 1 11 

eon.rushmeier 210 213 twolf 2 122 vortex.lendian3 97 311 
gap 83 239 vortex.lendian1 78 127    

gcc.166 0 20 vortex.lendian2 164 422    
gcc.expr 8 24 vpr.route 2 265    

gcc.scilab 38 112       
 

Table 3-3. Explanation of variable names 

Abbreviation Example Meaning 
xxx_count load_q_writes_count # writes to load queue in current interval 

xxx_cumulative_count ready_q_cumulative_count the cumulative # ready queue entries in all cycles of 
current interval 

xxx_average_count rob_average_count rob_cumulative_count / # cycles of current interval 
xxx_cumulative_latency fu_cumulative_latency the cumulative # cycles that the committed instructions 

of current interval stayed in functional unit 
xxx_occupant_rate issue_q_occupant_rate issue_q_average_count / issue_q_size 

 

3.3 Versatile AVF Prediction 

        Generally, we believe that the AVF value of a key processor structure is a complex function 

of a large set of processor performance metrics. The exact form of the function may vary in dif-

ferent execution stages or different configurations. Nevertheless, our proposed BRT method is 

capable of identifying important features from a large set of performance variables and accurate-

ly predicting the vulnerabilities across workloads, execution phases, and different configurations. 

We show the AVF prediction in this section. 

3.3.1 Prediction within the Same Processor Configuration 

        This subsection discusses the model training and test under our baseline setting (Table 3-1) 

to demonstrate that BRT accurately predicts the vulnerabilities of other workloads and future ex-

ecution phases. Specifically, 15 phase files (workloads in the white columns in Table 3-2) are 
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tively, validating the ability of our model to accurately predict the AVF variation on different 

workloads. Furthermore, the MAEs for the second phases of all 19 workloads are almost all be-

low 4 with only two exceptions mcf and vpr whose IQ errors reach about 8. The small average 

MAEs (2.23 for IQ and 1.16 for ROB) of the phase 2 files indicate that the cross-phase correla-

tion between the vulnerability and performance metrics can be captured by our model.  

 
 

Figure 3-2. Prediction results on different workloads (the 4 phase 1 on the left) and future 
phases (the 19 phase 2 on the right) 

 

 
 

Figure 3-3. Prediction results in terms of relative error rates 
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        For comparison purpose, we also present the relative error for each phase in Figure 3-3. As 

can be seen, most workloads in the test set are predicted with a relative error lower than 10%. 

Only mcf is an outlier that suffers from significant relative errors. From the simulation result, we 

found that its L1 data cache miss rate is only 0.0095 in the first SimPoint while this miss rate is 

0.2877 in the second SimPoint. Therefore, the training data from mcf does not represent its typi-

cal memory-intensive behavior. We believe this is the reason why mcf shows high relative errors 

in the prediction. 

        Generally, we believe that relative error is not a good metric to report the prediction per-

formance in this work. If we intended to look at the average AVF value throughout the entire 

phase (instead of a variation consisting of many intervals), relative error might be a good choice. 

However, our work addresses the instantaneous AVF curve which consists of hundreds of meas-

ured points within a phase, and some of them are very close to zero. The relative error could 

reach a very high value with a small absolute error. For example, if the true AVF measure is 1 

and the predicted AVF is 2, the relative error is 100% though the absolute error is only 1. This 

kind of “outliers”, though only a few, strongly affects the average of relative error, but does not 

reasonably reflect the prediction power of the model. Therefore, we will mainly focus on analyz-

ing the mean absolute error of the AVF in this work. 

        Empirical Cumulative Density Function (CDF) is another way to report the prediction per-

formance. From Figure 3-4, we see that over 90% of the intervals are predicted below absolute 

errors of 4.5 and 2.2 for the IQ and ROB AVFs, respectively. 
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        Specifically, we tune the four parameters listed in Table 3-4 to generate 15 different config-

urations because these parameters are dominant in producing the vulnerabilities of IQ and ROB. 

Note that cfg1 is the baseline setting described in Table 3-1. We still employ the BRT methodol-

ogy to perform the prediction in this case. However, in order to characterize the change in con-

figuration, we also include the tuned parameters in the performance metrics set as additional var-

iables. Two randomly selected workloads, each also containing two phases, are simulated under 

each configuration. The training set consists of the phases under cfg1 to cfg12 (48 phase files in 

total) while the test set is composed of the other 3 configurations (12 phase files). 

Table 3-4. Configurations used in Section 3.3.2. The training set contains the 48 phase files 
of cfg1 to cfg12 (white), and the test set includes the 12 phase files of cfg13 to cfg15 (gray). 

 Fetch/slot/map 
/issue widths 

Commit 
width 

Issue queue 
size 

Reorder buffer 
size 

Simulated workloads  
(2 phases for each) 

cfg1 4 11 20 80 mcf, vpr 
cfg2 4 11 40 40 eon.cook, gap 
cfg3 4 11 30 60 crafty, perlbmk.makerand 
cfg4 4 11 40 80 eon.cook, eon.rushmeier 
cfg5 2 7 20 80 eon.kajiya, gap 
cfg6 2 7 40 40 gcc.166, gcc.200 
cfg7 2 7 20 40 gcc.expr, gcc.integrate 
cfg8 2 7 40 80 gcc.scilab, mcf 
cfg9 1 3 20 80 parser, perlbmk.makerand 
cfg10 1 3 40 40 twolf, vortex.lendian1 
cfg11 1 3 20 40 vortex.lendian2, vortex.lendian3 
cfg12 1 3 40 80 vpr.route, bzip2.source 
cfg13 4 11 20 40 bzip2.source, crafty 
cfg14 2 7 30 60 eon.kajiya, twolf 
cfg15 1 3 30 60 gcc.expr, vortex.lendian1 

 
        Similar to the within-configuration study, we first apply BRT using all 217+4 input varia-

bles, and select the most important 10 features. After that, we refit the BRT model using the 10 

metrics. The relative variable influences for this case are quantified in Figure 3-5. Interestingly, 

the structure’s occupant rate becomes the most important variable to its AVF. We also observe 

that two configuration parameters (issue_q_size, rob_size) appear in the lists, indicating that 

changing configuration does have some impact in producing the AVF. As can be seen, the varia-
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In [25], the authors also used a nonparametric model and contour maps to analyze the roughness 

and bottlenecks of processor design topologies. 

        The proposed model can also quantify the AVF’s partial dependence to one very important 

variable. The contribution of the ROB average count to the ROB AVF is shown in Figure 3-10. 

We can observe that the increase of the ROB average count results in the increase of the ROB 

AVF. This can be easily explained as the proportion of the valid ROB entries approximates the 

vulnerability of the ROB. The vulnerability saturates at around 23 when the ROB average count 

exceeds 48, in which case the ROB average count is no longer a driving factor to the AVF and 

other variables should be considered. 

 
 

Figure 3-9. Partial dependence of the IQ AVF on the two most important variables in the 
within-configuration study 
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3.4 Fast AVF Estimation 

        In practice, a simpler AVF prediction mechanism is easier to be adopted. In order to reduce 

the model complexity, we further propose to use a PRIM-based technique to summarize some 

simple and interpretable “IF-ELSE” rules that can be applied to some important performance 

variables during runtime to quickly identify the intervals with high AVF values. We demonstrate 

the effectiveness of this method by illustrating the ROB AVF prediction results within the base-

line configuration.  

        The results of fast ROB AVF estimation in the within-configuration study are shown in 

Figure 3-13. We intend to find the top ~10% of the intervals in terms of the vulnerability level. 

Note that we denote a high vulnerable interval as a black “o” while an interval with a low vul-

nerability as a gray “+” in this figure. The training and test sets are the same as those in Section 

3.3.1; that said, the training set shown in the left part of Figure 3-13 contains 3,000 intervals 

(white columns in Table 3-2) while the test set contains 4,600 intervals from the benchmarks and 

phases listed in gray columns of Table 3-2. The rules extracted from the training data can be de-

scribed in Figure 3-14.  

        One can refer to Table 3-3 for the explanation of variable names. The only one here that 

was not listed in Table 3-3 indicates the cumulative latency that the committed instructions spent 

in passing the whole pipeline. From the testing results shown in the right part of Figure 3-13, we 

can see that applying these simple rules to the test set makes an accurate AVF estimation, i.e. the 

AVF of the current interval is high or not. The derived rules can be explained from an architec-

tural perspective: the valid ROB entries and the cumulative latency to go through it perform the 

estimation in the first place; longer cumulative slip latency reflects a lower instruction processing 
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vals shown in Figure 3-13 demonstrate a very good invulnerability to transient faults in the ROB, 

some of them (around 10% in the entire workload space) do have a relatively high ROB AVF 

that may result in a failure against system reliability requirements. However, as can be seen in 

the figure, our PRIM-based model is able to effectively identify such vulnerable intervals, in 

which we can essentially partition the ROB into two identical halves that execute the same in-

struction flows, generating necessary redundancy to detect possible ROB transient faults. Similar 

studies can be found in [41][47], but ours does not bound the AVF below some pre-specified 

threshold; instead, we systematically analyze the vulnerability distribution in the entire workload 

space, and generate some simple rules that select the intervals of interest, i.e. the vulnerable in-

tervals showing a high AVF. This section mainly focuses on reducing the ROB AVF in the with-

in-configuration study, but the approach can be easily applied to the cross-configuration situation 

or other processor structures.  

3.5.1 The Approach 

        The basic idea of our approach is that whenever the program execution finishes an interval 

whose measured performance metrics conform to the trained PRIM rules (i.e. the interval is de-

clared to be vulnerable in the ROB), we partition the ROB into two identical halves, both run-

ning the same instruction flows from the next interval. This is defined to be in a redundant mode, 

during which the ROB AVF is effectively reduced to zero due to the generated redundancy. Af-

ter a fixed number of intervals, the ROB will switch back to a normal mode which recombines 

the two parts into the original buffer, and start checking the metrics again. Figure 3-15 details the 

algorithm; redundancy_flag records how many intervals remain in the redundant mode to reach 

the next normal mode interval. 
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At the beginning of each interval: 
IF ((redundancy_flag = 0) AND  

(ROB in the redundant mode)) 
THEN { 

ROB switches to the normal mode  
} 

 
At the end of each interval: 

IF    ((redundancy_flag = 0) AND 
(current measured metrics conform to the PRIM rules)) 

THEN { 
ROB switches to the redundant mode 
set redundancy_flag to n 

} 
IF (redundancy_flag > 0) 
THEN {  

decrement redundancy_flag by 1 
} 

   
Figure 3-15. PRIM-Based ROB redundancy algorithm 

        To switch the ROB from the normal mode to the redundant mode, we need to properly pro-

cess the valid instructions that still remain in the ROB such that the execution correctness is pre-

served. This can be done via Fetch Throttling, which is similar to Dispatch Throttling [41]. 

When a vulnerable interval is detected, we temporarily stop fetching instructions until the whole 

pipeline is drained and the ROB finishes the mode switching. After that the pipeline resumes in-

struction fetching, and every instruction will be placed in both ROB partitions to enable the re-

dundancy. This endows the ROB with the ability to detect possible transient faults.  

        When the ROB is in the redundant mode, the effective ROB size reduces to one half of the 

original size, and the PRIM rules that were derived in the normal mode become inappropriate. 

Therefore, we do not follow those selective rules under the redundant mode, but simply switch 

the ROB back to the normal mode after n intervals. In this study, we fix n at 10. Note that this 

scheme may potentially disable the ROB redundancy even when its AVF of current interval turns 

out to be high (but will re-enable the redundancy immediately after current interval if this hap-
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pens), resulting in some “outliers” escaping from our bounding effect. This is considered to be 

negligible since such outliers rarely exist in our 200-interval workload executions. 

3.5.2 Performance Degradation Analysis 

        Our PRIM-based ROB redundancy may suffer from performance degradation due to two 

reasons. One is that the effective ROB size is reduced to half in the intervals under the redundant 

mode, and the other is that we need to throttle fetching instructions to drain the pipeline when the 

normal-to-redundant mode switching happens. We analyze the performance degradation in this 

subsection to demonstrate that our redundancy scheme sacrifices only a negligible amount of 

performance to provide significant reliability improvement.  

        The average IPC degradation after applying our ROB redundancy scheme in within-

configuration study is 1.9% for the 23 workloads in the test set. There are only 3 of them show-

ing a relatively significant IPC decrease, while the rest 20 retain their performance very well. For 

analysis purpose, we only present two typical examples here: one is from the former group that 

suffers from performance degradation, and the other is from the latter ones that retain the IPCs.  

        gcc.scilab (phase 2), whose IPC decreases by 9.3% when enabling the redundancy scheme, 

is one of the 3 workloads that suffer from a noticeable IPC degradation. Figure 3-16 shows its 

IPC variation before and after applying PRIM-based ROB redundancy. An apparent two-step 

curve can be seen from this figure: the IPC retains well in the first step but nearly decreases by a 

constant amount in the second step. One can refer to Figure 3-18 for an easy explanation: the 

ROB occupant rate (for gcc.scilab) hangs around 50% in the first step but reaches 80% in the 

second step, where the system would be short of the ROB entries if the ROB size is cut to half. 

In contrast, bzip2 (phase 2) only presents a 0.2% decreasing in the IPC, whose variation is de-
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picted in Figure 3-17. Note that the two curves are highly overlapped with only a few points in 

the middle showing slight difference. Figure 3-18 also gives the ROB occupant rate for bzip2, 

and it’s not surprised to see a well retained IPC in this workload since its ROB occupancy persis-

tently stays below 50%. 

 
Figure 3-16. IPC variation for gcc.scilab in phase 2 of both schemes: without ROB redun-

dancy and with PRIM-based ROB redundancy. 
 

 
Figure 3-17. IPC variation for bzip in phase 2 of both schemes: without ROB redundancy 

and with PRIM-based ROB redundancy. 
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Figure 3-18. ROB occupant rate for gcc.scilab in phase 2 and bzip2 in phase 2. 

3.6 Related Work 

        Mukherjee et al. [32] compared the advantages and disadvantages of three different RMT 

techniques: (1) Lockstepping, a cycle-by-cycle synchronization that has long been used on com-

mercial fault-tolerant systems; (2) Simultaneous and Redundantly Threading (SRT) [35], which 

utilizes the dynamic resource sharing from SMT processors to reduce performance degradation 

due to redundancy; and (3) Chip-Level Redundant Threading (CRT), which extends SRT to a 

CMP environment, explores significant performance benefit on multithreaded workloads. Vi-

jaykumar et al. [46] and Gomaa et al. [20] proposed the recovery schemes for SRT and CRT, re-

spectively. Prior to these schemes, Rotenberg [36] and Austin [1] at first proposed different tran-

sient fault detection architectures.  

        There are two main approaches to calculate the AVF: ACE analysis and Statistical Fault 

Injection (SFI). The former provides a (tight, if the underlying system is appropriately modeled 

[4]) lower bound on the reliability level of various processor structures, and has been adopted in 

many research works on performance models. Fu et al. [19] quantitatively characterized vulnera-

bility phase behavior of four microarchitecture structures based on a system framework [18]. 
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Zhang et al. [52] performed a similar analysis on SMT architectures. Soundararajan et al. [41] 

described a simple infrastructure to estimate an upper bound of the ROB AVF, and also proposed 

two mechanisms (Dispatch Throttling and Selective Redundancy) to restrict the vulnerability to 

any limit.  

        Alternatively, SFI randomly (or statistically) injects into program execution a set of faults, 

each being independently analyzed and determined to see a visible error of the outcome. The 

AVF is the ratio of the number of trials that eventually raise an error to the total number of trials 

performed. Wang et al. [49] implemented a latch-accurate Verilog model to simulate an Alpha 

processor while Li et al. [29] incorporated a similar probabilistic model of error generation and 

propagation into an architecture-level tool. Wang et al. [48] compared ACE analysis to their 

fault-injection IVM, and claimed that ACE analysis was highly conservative by identifying two 

sources of its conservatism (lack of system detail and single-pass simulation). However, a recent 

publication [4] refuted their claim by stating that a small amount of additional details can result 

in a much tighter AVF bound and quantifying the small effect of Y-bits on system simulation.  

        Besides [47], some other works also addressed the problem of runtime AVF prediction. Cho 

et al. [8] examined workload dynamics in a design space of microarchitecture configurations. For 

each workload, they trained a set of neural networks with series of wavelet coefficients decom-

posed from AVF behaviors under different configurations, predicted the wavelet coefficients of 

any other configuration, and reconstructed the AVF curve (of the target configuration) from the 

predicted coefficients. Their work is completely different from ours in this chapter because they 

required a separate (or different) set of neural networks for each workload while our model has 

been demonstrated to be validated across workloads, phases and configurations. Very recently, 

Li et al. [28] developed an algorithm to estimate processor structures’ vulnerability online using 
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a modified error injection and propagation scheme from their previous work [29]. Their method 

does not need any offline simulation (except some experimental experience to determine key pa-

rameters), but requires hardware modification of the processor to support error propagation and 

detection rules.  

3.7 Conclusions 

        In this chapter, we proposed to use Boosted Regression Trees, a nonparametric tree-based 

predictive modeling scheme, to identify the correlation (across different workloads, execution 

phases, and processor configurations) between a key processor structure’s AVF and various per-

formance metrics. Experimental results showed that our model can accurately predict the AVF in 

the above situations. In addition, the proposed model provides useful interpretation tools for 

computer architects to quantify important variables and the AVF’s dependence on them. A quan-

titative comparison between the BRT model and linear regression demonstrates that our scheme 

is more stable and has many advantages. Finally, to reduce the prediction complexity, we also 

utilize another technique named Patient Rule Induction Method to extract some simple selective 

rules to monitor a few important metrics, which can be used to quickly identify the execution 

intervals with a relatively high AVF. The case study performed in the chapter also justifies the 

applicability of our fast AVF estimation scheme. 

  



 

46 
 

CHAPTER 4. AVF PREDICTION ON MULTI-
THREADED PROCESSORS 

 

4.1 Summary 

        Architectural Vulnerability Factor (AVF) provides useful guidelines in designing reliable 

processors, but its measurement is extremely expensive in terms of hardware and computation. 

This is precisely the reason that we proposed AVF prediction from performance metrics in the 

previous chapter. However, the prediction was conducted only on a single-threaded superscalar 

processor; the AVF measurement on a multi-threaded processor, e.g. Simultaneous Multithread-

ing (SMT) or Chip Multiprocessor (CMP), is much more complicated and involved. In this chap-

ter, we characterize and predict a program2’s soft error vulnerability under resource contention 

and sharing with other programs running on SMT/CMP architectures.  

        Difficulties. First, inter-thread resource contention and sharing significantly and non-

uniformly affect the AVF of structures3 of different hardware threads. Figure 4-1 shows different 

processor structures’ AVF variation when gcc runs alone and against different benchmarks on a 

two-way SMT and a dual-core CMP (which are based on the same processor configuration for 

comparison purposes). ROB refers to reorder buffer, and IQ refers to instruction queue. We can 

see that the impact of resource sharing is relatively small in the CMP, whose inter-thread conten-

tion is mainly located in the shared cache but has little impact on the processor structures’ AVFs. 

                                                 
2 In this chapter, a program refers to a single-threaded program. We use program and thread in-
terchangeably. A multi-programmed workload refers to a program combination, and a multi-
threaded workload refers to a program with multiple threads that have data sharing. 
3 In this chapter, AVF always refers to the AVF of hardware structure(s), which can be private to 
some thread or shared among threads. Sometimes, we use a thread (program)’s AVF to refer to 
the AVF of processor structures that are private to the thread. 
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On the other hand, the contention resulted from pipeline resource sharing in an SMT processor 

significantly and non-uniformly affects the AVFs when gcc is co-scheduled with different 

benchmarks. In addition, despite the strong variation, ROB AVF of SMT is consistently lower 

than that when gcc runs alone, but IQ AVF may be higher (e.g. gcc+apsi) or lower (e.g. 

gcc+crafty). This interesting observation introduces new issues into AVF behaviors (compared to 

contention-free superscalar’s AVF), indicating higher difficulty in accurately predicting a multi-

threaded processor’s AVF. 

 
 
Figure 4-1. The AVF variations of gcc (SPEC 2000) when it is co-scheduled with different 

benchmarks on SMT/CMP 
 
        Second, the problem complexity and scope are significantly enlarged in the context of mul-

ti-threading. AVF reflects soft error masking at both program level [44] and machine level [45], 

so AVF prediction should take into account both applications and processor configurations. Wal-

cott et al. [47] performed the prediction across SPEC CPU 2000 benchmarks on a fixed machine 

configuration; our first work [11] in this dissertation extended their prediction to be across a very 

small set of configurations by changing only 4 parameters. Nevertheless, both of their works 

were restricted to single-threaded processors with certain simplifications. In contrast, this work 
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intends to correlate these two important (but complex) problems: the processor configuration be-

ing from a statistically large design space, and the prediction effectiveness across different multi-

programmed and multi-threaded workloads. Furthermore, the predictive mechanism proposed in 

this chapter provides an efficient (and thereby practical) approach for multi-threading AVF pre-

diction. Traditional application-specific design space studies build a separate model for each 

program. This will result in intractable training cost in multi-threading environments since multi-

programmed workloads produce combinatorial growth in the number of possible program com-

binations [26]. Our AVF predictor’s cross-workload capability (i.e. only a single model for all 

workloads) is extraordinarily useful for efficient predictions on multi-threaded processors.  

        Our proposal: two-level predictive modeling. In this work, we propose a two-level pre-

dictive mechanism capable of accurately predicting key processor structures’ soft error vulnera-

bility on multi-threaded processors with resource contention and sharing. At the first level, a 

cross-program model is trained to predict the contention-free AVF on a single-threaded proces-

sor. The inputs to the first level model include a few important performance measurements (e.g. 

structure occupancies, cache miss rates) from the contention-free execution and the correspond-

ing configuration parameters. The output of the first level model, along with key processor struc-

tures’ occupancies measured when the program runs against other program(s) on a multi-

threaded processor, are inputted to the second level model, which finally predicts the program’s 

AVF under resource sharing with others.  

        Essentially, the first level model uses key parameters and simple performance measure-

ments to characterize underlying hardware configuration and the software program, respectively; 

while the second level model captures the inter-thread resource contention and sharing. Note that 

both of the two levels are “universal” for different programs, taking some performance metrics 
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as part of the inputs. The difference is that the performance metrics at the two levels are meas-

ured from single-threaded execution (without contention) and multi-threaded execution (with 

contention), respectively. By employing the proposed two-level prediction, we can obtain an ac-

curate estimation of a program’s AVF when it is co-scheduled with different programs on an ar-

bitrarily configured SMT/CMP whose configuration is from a design space. 

 
 
Figure 4-2. Comparison between the proposed two-level scheme and prior one-level scheme 

 
        Why are two levels necessary? Simply applying prior works’ [47][11] one-level approach 

fails to make accurate predictions on multi-threaded processors. For demonstration, we trained a 

one-level model to predict SMT processors’ register file AVF. We used the same prediction 

technique as in [11] since it demonstrated better performance than linear regression used in [47]; 

the inputs to this model are the various performance measurements when different threads are 

run simultaneously. For a fair comparison, the training and test sets are the same for these two 

approaches. Figure 4-2 compares the prediction accuracy between the two models in terms of R-

square (higher is better with 1 as the maximum) and mean percentage error (lower is better with 

0% as the minimum). We can see that the one-level scheme shows more than two times higher 

error rates than the two-level scheme. Especially for the test set, the mean percentage error 

R2 (Training set) Mean % Error
(Training set)

R2 (Test set) Mean % Error
(Test set)

Prior one-level scheme
Our two-level scheme

26%

0.26

15%

0.79 9%6%0.95 0.83
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reaches a very high value (26%) while the R-square is unacceptably low (0.26). Essentially, de-

coupling the prediction into two levels reduces the model complexity at each level and also im-

proves prediction accuracy. 

        Contributions. In summary, the main contributions of this chapter are as follows:  

• Universal prediction of the AVF on single-threaded processors. The first level model 

accurately predicts the AVF without contention on any given processor configuration in 

the design space. This model is universal for different programs, and also validated for 

unseen programs not used in training.  

• Universal prediction of the AVF under contention across multi-programmed work-

loads. The second level model takes the knowledge of the contention-free AVF from the 

first level model, and performs an accurate prediction of the AVF under resource conten-

tion for any program combination in analysis. This combined capability is extremely use-

ful in the era of multi-threading.  

• AVF prediction of multi-threaded workloads with data sharing. This chapter discuss-

es the impact of data sharing among different threads on the AVF of multi-threaded 

workloads.  

• A case study of soft error resilient thread-to-core scheduling. By utilizing the pro-

posed AVF prediction, we also present a case study that identifies the optimal thread-to-

core assignment minimizing the AVF of a Chip Multi-Threaded Processor. 

4.2 Two-Level Prediction Methodology 

        The ultimate goal of this work is to predict the AVF of a program in contention with other 

program(s) running simultaneously on a multi-threaded processor (e.g. SMT, CMP) without 
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AVF measurement mechanisms. It can be predicted from the AVF when this program runs alone 

without contention, and a group of important performance metrics reflecting the occupancy 

rates4 of key processor structures. The latter can be easily measured during program execution on 

an SMT/CMP, but the former cannot. Therefore, we further predict the contention-free AVF 

from the underlying single-threaded processor. We organize the predictions in a two-level pre-

dictive model in this subsection. The Boosted Regression Trees (BRT) algorithm described in the 

previous chapter serves as building blocks to our two-level model. 

        At the first level, a universal model is trained to predict the AVF in a contention-free single-

threaded processor. We first sample a group of training configurations from a huge processor 

design space, and then simulate them for benchmarks in the training set. The AVF and a few per-

formance measurements (e.g. IPC, cache miss rates, and structure occupancies) are measured 

during simulation. The model at this level is trained with these performance measurements and 

the corresponding configuration parameters as the inputs and the contention-free AVF as the re-

sponse. Figure 4-3 illustrates the training procedure. For brevity, only the inputs from a certain 

benchmark Bk are shown; but this procedure is actually performed for all the n training bench-

marks.  

        For the second level model involving inter-thread contention, Figure 4-4 takes a benchmark 

combination (Bi, Bj) as an example to illustrate its training procedure. The AVF of Bi from sin-

gle-threaded execution and a few processor structure occupancies measured from multi-threaded 

execution in which Bi competes with Bj serve as the inputs to the model; while the AVF of Bi in 

contention with Bj is the response to be predicted. We provide training examples from different 

benchmark combinations, making the second level model universal to different benchmark com-

                                                 
4 The occupancy rate of a processor structure is the proportion of its entries that are in use.  
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binations. The performance metrics at this level (i.e. structure occupancies) reflect the inter-

thread contention and sharing; in contrast, those at the first level (in Figure 4-3) are measured 

from a contention-free single-threaded processor. All of these performance metrics are easy to be 

measured in either simulators or real processors via performance counters. 

 
 
Figure 4-3. The first level universal model training using BRT. Only the inputs from a cer-

tain benchmark Bk are shown. 
 

 
 

Figure 4-4. The second level universal model training using BRT 

 
        By combining the two levels, we will be able to predict the AVF on an SMT/CMP running 

any benchmark combination. As shown in Figure 4-5, in order to predict the AVF of a bench-

mark Bk (in particular, Bk can be any unseen benchmark not in the training set) running against 
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another benchmark, say Bt, on a given processor configuration, we need to follow the following 

steps:  

        (1) Running single-threaded simulation for Bk with the processor configuration in analysis, 

and collecting the performance measurements after simulation. 

        (2) Giving the above performance measurements and the configuration parameters as inputs 

to the first level model, and then predicting the AVF of Bk without contention.  

        (3) Running multi-threaded simulation for the benchmark combination (Bk, Bt), and meas-

uring key structure occupancy rates under contention. 

        (4) Providing the predicted contention-free AVF and the measured key structure occupan-

cies as inputs to the second level model, and finally predicting the AVF of Bk under resource 

contention with Bt. Note that, to predict for an unseen benchmark Bk, the above approach only 

needs a single pass of single-threaded simulation for Bk and a single pass of multi-threaded 

simulation for Bk and its resource competitor. 

 
 

Figure 4-5. An overview of the two-level AVF prediction on a multi-threaded processor 
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4.3 Impact of Multi-Programmed Resource Contention on AVF 

4.3.1 Experimental Setup 

        We implemented the AVF measurements [33] in M-Sim3.0 [37] to model the soft error vul-

nerability of key processor structures. In M-Sim’s SMT model, each hardware thread has its own 

ROB and LSQ, but other structures (e.g. Issue Queue, Functional Units, Physical Register File, 

etc) are shared among threads. Basically, a fetcher (ICOUNT in our experiments) fetches instruc-

tions for each thread, and stores them in the corresponding ROB/LSQ after decode and rename; 

each thread dispatches instructions from its own ROB into a shared IQ in contention with other 

threads; the inter-thread contention exists in the remaining pipeline stages until commit. On the 

other hand, the CMP model creates a separate core (along with the private L1 I/D caches) for 

each thread, but the L2 unified cache is shared among cores. 

        In this work, we measure and study the AVF of the following five structures: Reorder Buff-

er (ROB), Load Store Queue (LSQ), Issue Queue (IQ), Functional Units (FU), and Physical Reg-

ister File (RF). In the case of SMT, we will perform prediction and analysis separately for each 

of these structures, because the private structures (ROB and LSQ) and the shared structures (IQ, 

Functional Units, and RF) demonstrate different behaviors in the AVF under contention; in a 

CMP, since almost everything is private to each core, we will focus on the core AVF.  

        38 benchmarks from SPEC CPU 2000 and 2006 suites are evaluated. For the other SPEC 

2000/2006 benchmarks not included here, we could not compile them into Alpha binaries runna-

ble in M-Sim3.0. We first focus our work on two-way SMT and dual-core CMP, and then dis-

cuss model scalability to more than two threads. We first simulate these benchmarks on our sin-

gle-threaded baseline configuration (whose parameters are shown in bold in Table 4-2), and cat-
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egorize them in Table 4-1 according to the IPC and L2 cache miss rate. We use SimPoint toolkit 

[38] to derive a representative 100-million instruction phase for detailed simulation of each 

benchmark. The number of fast forwarded instructions is shown after the benchmark name in 

this table. In order to capture different CPU/memory behaviors, we randomly choose some 

benchmarks from each of the four categories for test (the 4th column of Table 4-1). Consequent-

ly, the 435 two-threaded combinations generated from the 30 training benchmarks (i.e. 

4352
30 =C ) serve as the training examples to the predictors in the following sections. The predic-

tors will be tested with the other 268 combinations, in which either both benchmarks are from 

the 8 test benchmarks or one is from the training set and the other is from the test set (i.e. 

2688302
8 =×+C ).  

Table 4-1. Benchmarks used in multi-programmed workloads. The number of fast-
forwarded instructions (unit: 100M) is shown after the benchmark name. 

IPC L2 cache 
miss rate 

Training benchmarks Test bench-
marks 

> 1.0 < 30% gcc(135), sphinx3(12), apsi(382), eon(201), 
gzip(372), h264ref(272), hmmer(342), me-
sa(322), perlbmk(5), gap(324), 
gromacs(285), sjeng(498), 06bzip2(633), 
fma3d(150) 

calculix(200), 
namd(45), 
vortex(570) 

< 1.0 > 30% mcf(142), art(23), swim(234), lucas(597), 
equake(408), vpr(292), ammp(283), 
astar(449), lbm(69) 

milc(85), 
mgrid(236) 

> 1.0 > 30% wupwise(95), libquantum(200), applu(281) facerec(208) 

< 1.0 < 30% galgel(415), crafty(113), bzip2(152), 
gobmk(217) 

parser(270), 
twolf(176) 

 

        We will discuss the second level model first in this section because we are more interested 

in the contention behavior. All the training data used in this section are directly measured from 
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the baseline configuration. In Section 4.4, this model will be combined with the first level model 

to demonstrate the effectiveness of the entire two-level predictive mechanism. 

4.3.2 Impact on SMT Private Structures 

        ROB and LSQ are private to each thread in our SMT implementation. These two structures 

only contain instructions from a single thread, no matter whether it runs alone or competes with 

another thread. However, the inter-thread contention due to the shared pipeline resources strong-

ly affects a thread’s AVF for these two structures. We discuss the ROB AVF as an example in 

this subsection. To predict the AVF in contention, we train a BRT model with the inputs being 

the program’s AVF without resource contention and a group of occupancies measured under 

contention from the following structures: ROB, LSQ, IQ, RF, I/D TLBs, L1 I/D caches, and L2 

cache. Figure 4-6 demonstrates the input variable importance derived from the ROB AVF pre-

dictor. We can see that the ROB AVF largely depends on the thread’s register file occupancy. 

Register file plays an important role in the ROB AVF because the physical registers available for 

each thread are limited in a multi-way SMT processor. The processing of the instructions in the 

pipeline is thus more sensitive to the register file usage, and so is the AVF. In addition, we found 

that the ROB AVF of a program shows strong variation when it competes with different pro-

grams, but is consistently lower than that when the program runs alone (as exemplified in Figure 

4-1). This is because the shared resource contention reduces the thread’s register file occupancy 

to different extents in different benchmark combinations.  
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words, the shared cache contention has relatively little impact on a CMP’s core soft error vulner-

ability behaviors. This is in contrast with the situation in an SMT processor where the AVF 

shows significant variation. Figure 4-9 verifies the above finding by showing that the core AVF 

under contention is highly correlated to the core AVF without contention. 

4.4 Two-Level AVF Prediction for Multi-Programmed Workloads 

        The model obtained in Section 4.3 assumes the awareness of the program’s AVF on a sin-

gle-threaded processor without contention, which can be predicted from performance measure-

ments and configuration parameters on the single-threaded processor at the first level. This sec-

tion first validates the first-level model, and then combines the two levels to demonstrate accu-

rate predictions. 

4.4.1 Single-Threaded Universal Model Validation 

        We tuned several important parameters to form a large processor design space (Table 4-2) 

at the first level. The values used in the baseline configuration (i.e. the one based on which we 

trained the second level model above) are shown in bold. The design space size is 1,244,160, 

from which we randomly and uniformly simulate 400 points for each of the benchmarks (see Ta-

ble 4-1). After simulation, a few important but easily measured performance metrics are collect-

ed, including IPC, DL1/L2 cache miss rates, and the occupancies of ROB, LSQ, IQ and Register 

File. These performance measurements, along with the corresponding configuration parameters, 

are used to train the first level model. The simulation results of 300 configurations from each of 

the 30 training benchmarks (the 3rd column of Table 4-1) are used as training examples. The 

trained model is then tested with the other 100 configurations of the training benchmarks and all 

400 configurations of the test benchmarks. 
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Table 4-2. Processor configuration design space composed of parameters P1 to P9. The val-
ues shown in bold are used in our baseline setting (Table 4-1). 

 Parameter Selected Values # Op-
tions 

P1 Processor width 2, 4, 8 5 

 # Integer ALUs / 
# FP ALUs 

1/1-associated with processor width 2 
2/2, 4/4-associated with processor width 4 
4/4, 8/8-associated with processor width 8 

 

P2 ROB size 72, 84, 96, 108, 120, 132, 144, 156, 168 9 
P3 LSQ size 24, 32, 40, 48, 56, 64 6 
P4 IQ size 32, 40, 48, 56, 64, 72 6 
P5 L1 I/D cache size 16, 32, 64, 128 KB (64B block, 4-way) 4 
 L1 cache latency 1, 2, 3, 4 cycles (vary with L1 cache size)  

P6 L2 cache size 512, 1024, 2048, 4096 KB (64B block) 4 
 L2 cache latency 12, 14, 16, 18 cycles (vary with L2 cache size)  

P7 L2 cache assoc. 4, 8 2 

P8 Branch predictor 

bimod(1024), bimod(2048), gshare(10-bit L1 
width, 1024 L2 entries), gshare(11-bit L1 width, 

2048 L2 entries), combined(1024), com-
bined(2048) 

6 

P9 BTB 512/4, 512/8, 1024/4, 1024/8 4 
 
        Because of the space limit, we only show prediction results for the core AVF in Figure 4-10. 

We use percentage error (i.e. |predicted value – true value| / true value * 100%) to report the pre-

diction accuracy. Figure 4-10 is a boxplot showing the distribution of percentage errors for dif-

ferent benchmarks. In a boxplot, the upper and lower boundaries of the central gray box corre-

spond to the upper and lower quartiles of all the errors; the highlighted horizontal line within the 

box is at the median; the vertical dotted line drawn from the box boundaries extend to the border 

lines for outliers. The top border line is Q3+1.5*IQR and the bottom one is Q1-1.5*IQR, where 

Q1 and Q3 are the first and third quartiles and IQR is the inter-quartile range Q3-Q1. Any obser-

vation outside that range is considered as an outlier, and denoted by a circle. From this figure we 

can see that the BRT-based universal model is very accurate for all benchmarks, achieving a 2.94% 

median percentage error on average. Note that here only one single model is constructed and 
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AVF, even P1 can make very accurate predictions when scaling to more threads. This is because 

the correlation between AVF and input variables does not change drastically for CMP with an 

increasing number of cores. To summarize, the predictors may need more training when scaling 

to more threads, but the proposed approach itself is scalable. 

4.5 Extension to Multi-Threaded Workloads 

        Multi-threaded workloads (e.g. SPLASH2 [51]) explore thread-level parallelism. The mul-

tiple threads generated from the same program not only show contention in pipeline structures, 

but also show constructive behavior in memory hierarchy due to data sharing. For instance, a 

load miss from one thread can be avoided if the target data is recently accessed by another thread 

sharing the same cache. The impact of data sharing on the AVF of multi-threaded workloads is 

still largely unexplored. By varying the number of cores and application threads, Soundararajan 

et al. [42] concluded that the configurations optimizing soft error reliability of different multi-

threaded applications are not straightforward. Consequently, an efficient approach to obtain the 

AVF of multi-threaded workloads is useful and necessary. In this section, we predict multi-

threaded workloads’ AVF from processor structure occupancies and data cache coherency states.  

        All experiments in this section are run using the M5 simulator [2] which is capable of simu-

lating multi-threaded benchmarks. We implemented the AVF measurements for ROB, Load 

Queue, Store Queue and Issue Queue for multi-cores with Alpha 21264-like CPUs. 8 bench-

marks (cholesky, fft, radix, barnes, ocean.contiguous, ocean.noncontiguous, water-nsquared, and 

water-spatial) in SPLASH2 suite are evaluated, each being measured with 2 threads, 4 threads, 

and 8 threads enabled on dual-core, quad-core, and eight-core processors, respectively. All cores 

in our CMP model have private L1 I/D caches and share a unified L2 cache. The data coheren-
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cies among different L1 caches are maintained using a MOESI snooping protocol. Moreover, we 

dump the measurements every 500K cycles (called a phase) after program initialization, and col-

lect about 100 phases for each simulation. We found that the AVFs demonstrate strong phase 

variation, but are very similar on different cores in the same phase. Therefore, we use the meas-

urements from core 0 to represent the system in the following predictor training and testing. 

        In addition to structure occupancies and cache misses (as used in the above two-level pre-

dictor), we also include data cache coherency states as part of the inputs to characterize the data 

sharing among different threads. Specifically, the percentage of data cache blocks that are in 

each of the five states (i.e. “MOESI”) is calculated. To our knowledge, this is the first work dis-

cussing the impact of cache coherency on soft error vulnerability. We train the predictor using 

the 4-thread phases of 6 benchmarks, and test it for the other two. Furthermore, this predictor is 

validated with the 2-thread and 8-thread phases of all 8 benchmarks (except a few 8-thread simu-

lations not runnable under M5). The prediction results are shown in Figure 4-13. We can see that 

most predictions have median percentage errors lower than 10%. This demonstrates the predic-

tor’s effectiveness across workloads (the leftmost two bars in Figure 4-13), across architectures 

(predictions for 2-thread and 8-thread simulations), and across phases (prediction for different 

phases). Figure 4-14 quantifies the input variable importance from this predictor. As can be seen, 

while IQ occupancy is the most influential factor to the core AVF for multi-threaded programs, 

three coherency states (dcache.MODIFIED, dache.OWNED, and dcache.SHARED) also appear 

among the top 10 important factors. 
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provides a combination of SMT and CMP. Programs co-scheduled on the same core (via SMT) 

compete for the shared pipeline resources, while different cores compete for the shared memory 

hierarchy. Therefore, different thread-to-core schedules may result in completely different be-

haviors in performance, power, and also AVF. Suppose each of the n cores in a CMT processor 

can support k simultaneous hardware threads, our goal is to find the optimal assignment of n*k 

programs (to different cores of this CMT processor) that minimizes the overall AVF. 

 
 
Figure 4-15. An example of identifying the optimal thread-to-core scheduling on a 2-way 2-

core CMT processor. The optimal scheduling is shown in solid lines. 
 
        Figure 4-15 is a graphic representation of the problem when n = 2 and k = 2. In this com-

pletely connected graph, vertices represent the programs to be scheduled, and the weight of the 

edge between two vertices is given by the core AVF value when the two programs are co-

scheduled on the same core. Therefore, finding the optimal program-to-core assignment (when k 

= 2) that minimizes the system AVF is identical to solving the minimum-weight perfect matching 

problem5 in this graph. Jiang et al. [21] proposed a polynomial-time algorithm to solve this prob-

lem when k equals 2 (n can be larger than 2). They also proved that this problem becomes NP-

complete when k is greater than 2.  

                                                 
5 A matching in a graph is a set of edges without common vertices. A perfect matching is a 
matching that covers all vertices of the graph. 
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        Consequently, as long as all the core AVF values (i.e. the weights of all the edges) are 

known when different combinations of programs are co-scheduled on the same core, we can 

easily identify the optimal thread-to-core assignment using Jiang et al.’s methodology [21]. The 

two-level AVF prediction proposed in this chapter provides an efficient approach to obtain these 

AVF values. In Figure 4-15, the two values shown on each edge are the measured/predicted core 

AVF when the corresponding two programs execute on the same core. Apparently, both meas-

ured and predicted values make the same correct decision: in this example, the optimal schedule 

is the assignment of (gcc, sphinx3) on one core and (galgel, lbm) on the other core. We can see 

that a suboptimal schedule, e.g. (gcc, lbm) and (galgel, sphinx3), will enlarge the system AVF by 

over 34% in this example. 

        Finally, to apply the above scheduling approach during program runtime, one can utilize 

Snavely et al.’s “Sample-Optimize-Symbios” (SOS) job scheduler [40]. SOS first runs each pos-

sible schedule for a short phase (i.e. “Sample”), selects the schedule with the highest goodness 

level (i.e. “Optimize”), and then runs the selected schedule for a number of intervals (i.e. “Sym-

bios”). SOS periodically repeats the above procedure to choose the optimal schedule adapting to 

program runtime behavior. Figure 4-16 shows the runtime AVF behaviors of different schedules 

constructed from the previous four benchmarks. When SOS is applied, it simulates each of the 

three schedules for one interval, during which it collects the performance inputs and predicts the 

AVF for current schedule. After the sample phase, SOS sticks to the schedule with the lowest 

AVF for 10 intervals, and then reenters sample phase. We can see from this figure that SOS is 

very effective in identifying runtime optimal schedules. 
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Figure 4-16. The runtime AVF behavior of different schedules. The SOS curve indicates 
the online AVF variation when “Sample-Optimize-Symbios” job scheduler is utilized. 

 

4.7 Related Work 

        Recently, Sridharan et al. proposed Program Vulnerability Factor [44] and Hardware Vul-

nerability Factor [45] to describe architecture-independent program vulnerability and software-

independent hardware vulnerability to soft errors. Regarding the studies on the inter-thread con-

tention on multi-core architectures, Lee et al. [26] proposed a composable performance regres-

sion (CPR) scheme to predict the performance of a benchmark combination on a multiprocessor 

from configuration parameters; Chandra et al. [7] predicted the impact of contention on the 

shared cache using three performance models. Our work differs from theirs in the followings: (1) 

we study and predict the soft error vulnerability of processor structures; (2) we also evaluate the 

SMT structures where the inter-thread contention shows more significant impact; (3) the statisti-

cal technique used in our work provides useful model interpretations.  

4.8 Conclusions 

        In this chapter, we propose a two-level predictive mechanism to accurately predict the soft 

error vulnerability of multi-threaded processors with resource sharing. The first level model cor-
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relates the AVF in a contention-free environment with important performance metrics and the 

underlying processor configuration. The second level model takes as inputs the output of the first 

level model and a few performance measures under resource contention from multi-threaded 

processors. The proposed prediction is universal for different multi-program combinations and 

multi-threaded applications running on multi-threaded processors. Collectively, this work pro-

vides useful mechanisms and guidelines for soft error resilient multi-threaded processor design. 
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CHAPTER 5. UNIVERSAL RULES GUIDED DE-
SIGN PARAMETER SELECTION 

 

5.1 Summary 

        The previous two chapters address AVF prediction from performance measurements which 

can only be obtained when a processor exists. On the contrary, this chapter correlates AVF with 

design parameters, improving the soft error reliability at pre-silicon stage, i.e. before the proces-

sor is manufactured.  We utilize PRIM mechanism to identify the design configurations that are 

inherently reliable to soft errors from a large design space.  

        The AVF is a combinational behavior of hardware and software [44][45]. A raw soft error 

can be masked in either the hardware system (e.g. idle bits in processor structures) or the pro-

gram in execution (e.g. dynamically dead instructions). Consequently, a system’s AVF value can 

span a wide range when the same program executes on different processor configurations (whose 

parameters are from a design space), while different programs may demonstrate completely dif-

ferent AVF behaviors on the same processor.  

        The situation is even more complicated in a multiprocessor where different cores share a 

low level cache. The AVF of one core may be affected by the other cores through the contention 

from the shared cache [53]. Figure 5-1 shows how the system AVF of certain configurations 

(cfg1 to cfg5) would vary when different workloads (multi-threaded benchmarks from 

SPLASH2 suite [51]) execute on a multi-core processor. The number at the end of a bench-

mark’s name indicates the number of threads generated for that benchmark. cfg1 to cfg5 are cho-

sen from a huge multiprocessor design space from which 1,000 design points are randomly sam-
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pled and simulated for each workload in analysis. Only multiprocessors with homogeneous cores 

are considered here. The 1,000 sampled configurations are ranked in each workload in terms of 

their AVF values, with the lowest value as rank 1 and the largest value as rank 1000. We can see 

that, for the same configuration, its AVF rank could be significantly different across different 

programs or the same program with different numbers of threads (i.e. FFT). For cfg1-3, there 

exist one or more workloads suffering from significant reliability degradation, i.e. a high AVF 

rank. A reliable processor design would favor configurations (such as cfg4 and cfg5 in this ex-

ample) whose AVF ranks are consistently low in different applications. However, the difficulty 

is how to quantitatively and efficiently identify such designs from a huge design space. 

 
 

Figure 5-1. The AVF rank of a certain configuration varies significantly across different 
multi-threaded workloads. A lower rank indicates a lower AVF value that is favored in a 

reliable processor. 
 
        In this work, we propose an effective approach to identify the configurations that have con-

sistently low AVF values from a huge design space. Those identified configurations are inherent-

ly reliable to soft errors. Specifically, we characterize the design space using Patient Rule Induc-
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tion Method (PRIM) [17] to generate a set of selective rules on key design parameters. Applying 

these rules on the design space effectively identifies the subregion of the design space within 

which the output variable is considerably smaller (i.e. “valley seeking”) than its average value 

over the entire design space. Therefore, the design configurations selected by the generated rules 

are inherently resilient to potential soft errors. This technique provides computer architects with 

useful guidelines to design reliable processors at pre-silicon stage.  

        More importantly, we are able to apply PRIM skillfully to derive a method that can generate 

“universal” rules effective across different applications. This cross-program capability is ex-

tremely useful in the era of multi-threading since the number of multi-threaded programs boosts 

quickly nowadays. For instance, the number of multi-programmed workloads increases super-

linearly with the increases of the number of threads and the number of benchmarks in considera-

tion. Traditional application-specific design space studies lack the scalability to multiprocessors 

due to the intractable training costs required by the greatly enlarged workload set. In contrast, 

our universal rules guided design parameter selection can provide workload-independent guide-

lines which are also validated to be effective for unseen applications not used in training.  

        Note, however, that by “universal” we don’t refer to rules working for ALL programs 

(which may not even exist); instead, we manage to identify the rules with cross-program effec-

tiveness for SPEC CPU and SPLASH2 benchmark suites used in this work. Nevertheless, these 

commonly used benchmarks are good representatives of real-world applications. Finally, the 

proposed approach is inherently generic, so it can be applied to optimize other processor design 

metrics, such as power and performance. A case study performed in this chapter utilizes the uni-

versal design parameter selection method to achieve a multi-objective optimization of reliability, 

performance, and power for multiprocessors. 
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        In summary, the main contributions of this chapter are as follows: 

• Design parameter selection for reliable processors: We propose to use an advanced 

rule search strategy (PRIM) to extract the design space subregion showing lowest AVF 

values. By using this technique, we quantitatively demonstrate that (1) minimizing the 

AVF for different processor structures may degrade or improve the performance; (2) re-

ducing the AVF of a single structure may increase the AVF of others in the processor. 

This addresses the demand for a holistic reliability optimization. 

• Universal rules generation and validation: We propose a generic approach capable of 

generating a set of “universal rules” that achieves the optimization of the output variable 

across different programs in execution. The effectiveness of the universal rule set is fur-

ther validated using a well-developed statistical method (bootstrapping [15]) on programs 

that are not used in training.  

• Balancing reliability, performance and power for multiprocessors: We perform a 

study using the proposed universal modeling scheme to simultaneously balance multiple 

design metrics for multiprocessors. We quantitatively identify proper trade-offs of relia-

bility, performance and power for a multi-core processor running multi-threaded work-

loads. 

5.2 Design Parameter Selection for Uniprocessors 

5.2.1 Experimental Setup 

        We implement the AVF calculations in an extended version of SimpleScalar3.0 [39] to sim-

ulate a detailed out-of-order multistage superscalar processor. Our simulation framework 

measures the AVF of major microarchitectural components in a uniprocessor, including ROB, 
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LSQ, Functional Unit, and Register File. The processor overall AVF is the ratio between the 

number of ACE bits of the entire processor and the processor size in bits. It can be calculated as 

the summation of different structure’s AVFs weighted by the corresponding structures’ sizes.  

        We use a mixed set of benchmarks from SPEC CPU 2000 and 2006 suits. As listed in Table 

5-1, 24 of them form the training set in generating universal rules, while the rest 12 are used for 

test. In order to have a complete evaluation, the entire SPEC CPU 2000 suite (except sixtrack) is 

included. For the other SPEC CPU benchmarks not used in this work, we are not able to compile 

them into Alpha binaries runnable in SimpleScalar. Each benchmark is simulated for 100 million 

instructions in details after being fast forwarded to a representative phase derived from SimPoint 

Toolkit [38]. The AVF values along with performance data are outputted at the end of each 

simulation. 

        For this study on uniprocessors, we construct a design space composed of eight configura-

tion parameters (P1 to P8 in Table 5-2). Note that the ROB and LSQ sizes are configured in a fi-

ne-grained manner because our scheme intends to quantify the value ranges of the parameters in 

the optimal configurations. Given the possible values of each parameter, the total number of 

points in the design space is 473,088. For each benchmark, we simulate 2,000 configurations 

randomly and uniformly sampled from the entire design space. 

Table 5-1. SPEC benchmarks used in the uniprocessor study. 

Train (24) Test (12) 
applu, apsi, art, bzip2, crafty, 
equake, fma3d, gcc, mcf, mesa, 
perlbmk, twolf, vortex, astar, 
06bzip2, gobmk, hmmer, 
libquantum, lbm, 06mcf, milc, 
namd, sjeng, sphinx3 

ammp, eon, facerec, 
galgel, gap, gzip, 
lucas, mgrid, parser, 
swim, vpr, wupwise 
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Table 5-2. The uniprocessor design space is composed of parameters P1 to P8. Branch pre-
dictors are renamed to BP1 to BP8 for later use. 

 Parameter Selected Values # Op-
tions 

P1 Processor width 2, 4, 8 6 
Fetch queue size 2, 4, 8 (vary with processor width) 

# of Integer ALUs / # of 
FP ALUs 

1/1, 2/1-associated with processor width 2 
2/1, 2/2-associated with processor width 4 
2/2, 4/4-associated with processor width 8 

P2 ROB size 64, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160 11 
P3 LSQ size 16, 24, 32, 40, 48, 56, 64 7 
P4 L1 I/D cache size 

(L1CS) 
16, 32, 64, 128 KB (32B block, 2-way) 4 

L1 cache latency 1, 2, 3, 4 cycles (vary with L1 cache size) 
P5 L2 cache size (L2CS) 512, 1024, 2048, 4096 KB (64B block) 4 

L2 cache latency 8, 12, 16, 20 cycles (vary with L2 cache size) 
P6 L2 cache associativity 

(L2CA) 
4, 8 2 

P7 Branch predictor (BP) bimod/4096 (BP1), bimod/8192 (BP2), 
2lev/1/4096 (BP3), 2lev/2/4096 (BP4), 
2lev/4/4096 (BP5), 2lev/1/8192 (BP6), 
2lev/2/8192 (BP7), 2lev/4/8192 (BP8) 

8 

P8 BTB 1024/4, 2048/2, 1024/8, 2048/4 4 
 

5.2.2 Application-Specific Design Parameter Selection 

        In this subsection, we directly apply the PRIM method and build a separate model for each 

benchmark to minimize its AVF. In other words, the derived rules are towards the optimization 

of the AVF for a specific application. For each benchmark, the rule sets minimizing the AVF of 

different structures are generated. From these results, we observe that minimizing the AVF of 

different structures have different impacts on the performance. Table 5-3 lists the results for a set 

of benchmarks. The rules for other benchmarks show similar behaviors, thus being omitted. 

        First, some rules tend to degrade the performance considerably when minimizing the AVF. 

Specifically, the rules for mcf to optimize the ROB AVF introduce restrictions on branch predic-

tor selection. Figure 5-2 shows the variation of branch misprediction rate and the ROB AVF 
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when different branch predictors BP1 to BP8 are used in the configurations running mcf. The 

other parameters are the same for these configurations. Clearly, the ROB AVF varies contrarily 

with respect to the variation of branch misprediction rate. If we exclude BP1 and BP2 as the 

rules suggest, one can expect a significant performance loss. Similar observation can be made 

from the rules for minimizing the LSQ AVF. For example, in gobmk, the restriction on L1 cache 

size to have smaller values will result in a larger execution time. 

Table 5-3. Rules for optimizing individual structure’s AVF for a set of benchmarks. 
“Width/ALUs” is the combination of processor width, # of integer ALUs, and # of FP ALUs; 

‘&’ refers to ‘AND’; ‘||’ refers to ‘OR’. 

Bench-
mark 

ROB AVF LSQ AVF Functional Unit 
AVF 

Register File AVF 

mcf (ROB > 130) & (LSQ < 64) 
& (BP!= BP1) & (BP!=BP2) 

(LSQ > 48) & (L2CS < 4096) 
& (BP!=BP1) & (BP!=BP2) 

Width/ALUs=8/4/4 (Width/ALUs!=2/1/1) & 
(LSQ > 24) & 
(BP=BP1||BP2) 

applu  (ROB > 90) 
& (LSQ < 32) 

(ROB < 110) & (LSQ > 40) (Width/ALUs=4/2/2||8/2/2||
8/4/4) & (LSQ < 32) 

(Width/ALUs=4/2/2||8/2/2||8
/4/4) & (ROB > 80) &  
(LSQ > 24) & (L1CS > 16) 

fma3d  (Width/ALUs=2/2/1) 
& (ROB > 90) 

(Width/ALUs=2/2/1||4/2/1||8/
4/4) & (LSQ > 40)  
& (L1CS < 128) 

(Width/ALUs=2/1/1||8/4/4) 
& (L1CS < 64) 

Width/ALUs=8/4/4 

gobmk (ROB>110) & (L1CS<128) 
& (L2CS > 512) 
& (BP!=BP2) & (BP!=BP1) 

(LSQ > 40) & (L1CS < 64) & 
(BP!=BP1) & (BP!=BP2) 

(Width/ALUs=2/2/1||8/4/4) 
& (L1CS < 64) 

(Width/ALUs!=2/1/1)  
& (Width/ALUs!=2/2/1) 
& (L1CS > 32) & (L2CS > 
512) & (BP!=BP5) & 
(BP!=BP3) & (BP!=BP4) 

milc (ROB>90) & (LSQ<32) (ROB < 110) & (LSQ > 40) Width/ALUs=8/4/4 (Width/ALUs!=2/1/1) & 
(ROB > 110) & (LSQ > 40) 

 
        In contrast, optimizing the Register File AVF simultaneously improves the performance. 

Therefore, the rules generated for minimizing the Register File AVF clearly select the designs 

achieving high performance, e.g. larger ROB or LSQ, larger caches, wider CPUs, or more accu-

rate branch predictors. For example, the rules for milc favor a ROB size larger than 110. Figure 

5-3 shows the RF AVF and performance variation trends under different ROB sizes. It is easy to 

see that a larger ROB size results in better performance and a more reliable Register File as well. 

More pipeline resources will improve performance, making instructions pass through the pipe-
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line more quickly. This will shorten the write-read interval for a certain register, thus reducing 

ACE cycles and decreasing the register file AVF. 

 
 

Figure 5-2. ROB AVF of mcf (SPEC 2000) varies with different branch predictors 

 

 
 

Figure 5-3. Register File AVF of milc (SPEC 2006) varies with different ROB sizes 

 
        The correlation between the AVF and performance is fuzzier in Functional Units. A wide 

processor usually incurs a low FU AVF because it has more ALUs which will execute the in-

structions more quickly (thus fewer ACE cycles); a narrow processor significantly degrades per-

formance, but its FU AVF may be still low due to the inefficient usage of ALUs. This can be 
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verified from the rules for optimizing the FU AVF of many benchmarks. For instance, Figure 5-4 

illustrates that in fma3d the execution cycles consistently decrease with increased processor 

width and number of ALUs, but the FU AVF increases initially and decreases later. Consequent-

ly, the rules for fma3d shown in Table 5-3 choose the two extreme settings (either widest or nar-

rowest) in optimizing the FU AVF. If performance is taken into consideration, one should choose 

a wide processor. 

 
 
Figure 5-4. Functional Unit AVF of fma3d (SPEC 2000) varies with different combinations 

of processor width and # of ALUs 
 
        To summarize, minimizing the individual processor structure’s AVF may degrade the per-

formance (e.g. in ROB and LSQ), or improve the performance (e.g. in Register File), or result in 

either way (e.g. in Functional Unit). 

5.2.3 Universal Rules Guided Design Parameter Selection 

        In Table 5-3, we can observe many contradictions between the rule sets for optimizing the 

AVFs of different structures. For example, applu requires a small LSQ size (<32) but a large one 

(>40) in optimizing the AVF for ROB and LSQ, respectively. Figure 5-5 illustrates this contra-
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time the ROB AVF quickly boosts to a very high value. Therefore, if the rules for optimizing the 

LSQ AVF are adopted in a processor design, ROB will become extremely vulnerable. Conse-

quently, reducing the AVF of one processor structure may increase the AVF of others. When de-

signing a reliable processor, one can easily make a mistake by transferring the soft error vulnera-

bility to other parts of the processor, instead of really reducing it. Therefore, the overall AVF of 

the entire processor should be considered to achieve a holistically reliable solution. 

 
 

Figure 5-5. ROB and LSQ AVFs of applu (SPEC 2000) vary with different LSQ sizes 

 
        All the rule sets in Table 5-3 are generated specifically for a certain benchmark. In other 

words, PRIM is directly applied to the AVF measurements of that particular benchmark to sum-

marize the rules. Consequently, the rule sets work well for their corresponding applications, but 

differ from each other. From Figure 5-1 and Table 5-3, we can see that there exists some consen-

sus among different programs about what configurations are reliable. Therefore, it is possible to 

extract a “universal” rule set that works well across different programs.  

        However, directly combining the AVF measurements from different benchmarks for train-

ing is not feasible since the absolute AVF value ranges significantly differ in different bench-
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marks. Instead, we propose to rank the configurations in each benchmark in terms of the AVF 

measurements. For the 2K configurations used in this work, the one with the lowest AVF value 

is ranked 1 while the one with the largest AVF is ranked 2000. If so, a certain configuration 

would have 24 different ranks for the 24 training benchmarks in Table 5-1, respectively. We use 

the average of these ranks as the output response to train PRIM models. The generated rule set 

contains the design points that are universally reliable for all training benchmarks. An alternative 

is to look at the maximum of the ranks, but the results generated in this way are more conserva-

tive. In practice, we found that minimizing the average of the cube of the ranks (i.e. mean(rank3)) 

is very effective in identifying the universal rules, as this tends to balance the ranks across differ-

ent benchmarks. For example, suppose we have 5 benchmarks and need to compare two cases 

with ranks (2, 2, 2, 2, 2) and (1, 1, 1, 1, 6), respectively. If the average of ranks is used, the two 

cases are considered as the same; but if the cube of ranks is used, the first case is better than the 

second one.  

        By using the above approach, we are able to generate a universal rule set from the training 

benchmarks that optimizes the overall AVF of a uniprocessor. It is shown as Rule Set I in Figure 

5-6. Rule Set I provides useful guidelines in designing a holistically and universally reliable pro-

cessor. It favors a large ROB size because ROB has the largest contribution to the core AVF; 

other factors somehow degrade the performance, validating our previous observation that a con-

tradiction exists between optimizing performance and some structures’ AVF. The next subsec-

tion will test this rule set on other benchmarks to validate its effectiveness on unseen programs. 

(Width/ALUs!=8/2/2) & (ROB>130) & (LSQ<24) & 

(L1CS<128kB) & (BP!=BP1) & (BP!=BP2) 

Figure 5-6. Rule Set I (Optimizing Uniprocessor AVF) 
 



 

83 
 

5.2.4 Universal Rules Validation 

        In this subsection, we apply Rule Set I on the 12 test benchmarks (see Table 5-1) to validate 

its effectiveness in identifying reliable design configurations. For each benchmark being tested, 

the validation consists of the following steps:  

(1) Simulate 2,000 configurations randomly and uniformly sampled from the entire design 

space. These simulations are used to approximate the whole design space whose exhaus-

tive simulation is intractable.  

(2) Identify what configurations among the 2,000 ones are selected by Rule Set I. When Rule 

Set I was generated above, β was set to 2%. Therefore, there are approximately 40 points 

selected by this rule set.  

(3) Identify in which part of the design space the points selected by Rule Set I are actually 

located.  

        The main difficulty of the above approach is in (3), because for each benchmark in the test 

set we intend to know where those configurations selected by the rule set are located in the entire 

design space (not just the sampled 2K configurations!). In other words, we intend to know what 

percentile (say p) of the design space that the values of these selected points are below. The p-

percentile for the whole space indicates the value that is greater than p% of all the design points 

but less than the rest. In order to make inference based on the entire design space, we use the 

bootstrapping method [15]. Specifically, we first sample (with replacement) 1000 bootstrap sam-

ples for the 2000 configurations. Note that each bootstrap sample also contains 2000 design 

points. We then compute a confidence interval estimate of the p-percentile of the entire design 

space based on these samples. Specifically, for each bootstrap sample, we calculate its p-

percentile. This gives us a total of 1000 values for p-percentiles (one for each bootstrap sample). 
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Among these 1000 values, we further calculate their 5-percentile (say W). By doing so, we have 

95% confidence that the p-percentile of the entire design space is larger than or equal to W. Fi-

nally, we adjust the p value (by repeating the above steps) to have the derived W slightly larger 

than the largest value of the selected points. Therefore, the final determined p value is the per-

centile that all the selected points are below. This approach is conservative since the exact p-

percentile of the entire design space could be much larger than W. 

        For each benchmark being tested, we first calculate the minimum, lower quartile, median, 

upper quartile, and maximum of the design points selected by the rule set; after that, for each of 

these five values, we calculate the corresponding percentile of the entire design space it is below 

(using the bootstrapping method). We use boxplot to demonstrate the validation results in Figure 

5-7. In a boxplot, the upper and lower boundaries of the central gray box correspond to the upper 

and lower quartiles; the highlighted horizontal line within the box is at the median; the vertical 

dotted line drawn from the box boundaries extend to the minimum and maximum. The vertical 

axis shows the percentile of the entire design space that the selected points are below. For exam-

ple, for vpr, the maximum of the points selected by Rule Set I corresponds to a value of 5% in 

the vertical axis, meaning that in this benchmark all selected points are within the top 5% optima 

of the entire design space. We can see that Rule Set I is very effective in finding the optima for 

all test benchmarks. On average, the design points quantified by Rule Set I achieve the top 10% 

optima of the entire design space. Again, as clarified in Section I, we don’t intend to locate the 

design space subregion that is reliable independent of all programs, but demonstrate that the 

rules generated using our proposed methodology work well across SPEC CPU benchmarks. The-

se rules would be effective for other programs outside SPEC provided that SPEC CPU bench-

mark suites well represent real-world applications. 
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5.3.1 Experimental Setup 

        All experiments in this section are run using the M5 simulator [2] capable of simulating 

multi-threaded benchmarks that have data sharing among threads. Consequently, the result of an 

instruction that is “dynamically dead” in one thread may be used in another thread, making it 

“vulnerable” as well. Therefore, in order to calculate the AVF for multi-threaded workloads, a 

system-wise post-commit analysis window needs to be maintained. The committed instructions 

from different threads are inserted into this unified window, and their types can be determined 

after reaching the other end of the window. The AVF can then be calculated from such infor-

mation. We implement the AVF measurements for ROB, Load Queue, Store Queue and Issue 

Queue for multiprocessors with Alpha 21264-like CPUs.  

        Six benchmarks (Cholesky, FFT, Radix, OceanContiguous, WaterNSquared, and WaterSpa-

tial) in SPLASH2 [51] suite are evaluated, each being measured with 1 thread, 2 threads, and 4 

threads enabled on single-core, dual-core, and quad-core processors, respectively. All cores in 

our multiprocessor model have their private L1 I/D caches and share a unified L2 cache. The da-

ta coherencies among different L1 caches are maintained using a MOESI protocol. Multi-

threaded workloads explore thread-level parallelism. The multiple threads running simultaneous-

ly show contention as well as constructive behaviors in the shared memory hierarchy. Therefore, 

the AVF, performance and power of one thread can be affected by its resource competitors.  

        M5 simulates Alpha 21264-like out-of-order CPUs, whose important parameters are tuned 

and form a new design space shown in Table 5-4. In this study, 1,000 configurations are random-

ly sampled from the multiprocessor design space and simulated for each benchmark. Note that a 

separate core (with the corresponding configuration from the design space) is created for each of 

the threads enabled in the simulated benchmark. The detailed simulation starts after the pro-
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gram’s sequential initialization, and stops when the fastest thread finishes a certain amount of 

instructions. 

Table 5-4. The multiprocessor design space is composed of parameters M1 to M9. Only mul-
tiprocessors with homogeneous cores are considered. The entire space size is 1,458,000. 

 Parameter Selected Values # Options 

M1 

Processor width 2, 4, 8 

6 # of Integer ALUs / # 
of FP ALUs 

1/1, 2/1-associated with processor width 2 
2/2, 4/3-associated with processor width 4 
4/3, 6/4-associated with processor width 8 

M2 ROB size 72, 84, 96, 108, 120, 132, 144, 156, 168 9 
M3 LQ/SQ sizes 16, 20, 24, 28, 32 5 
M4 IQ size 32, 40, 48, 56, 64, 72 6 

M5 
Phys. Int/FP reg. file 

sizes 100, 120, 140, 160, 180 5 

M6 BTB 1024, 2048, 4096 3 
M7 RAS 8, 12, 16 3 

M8 
L1 I/D cache sizes 16, 32, 64, 128 KB (64B block, 2-way assoc.) 4 L1 cache latency 1, 2, 3, 4 cycles (vary with L1 cache size) 

M9 
(Shared) L2 cache size 512, 1024, 2048, 4096, 8192 KB (64B block, 

8-way assoc.) 5 (Shared) L2 cache la-
tency 

10, 12, 14, 16, 18 cycles (vary with L2 cache 
size) 

 

5.3.2 Optimizing Individual Metrics 

        Before simultaneously balancing the three metrics, we separately optimize each of them 

first. The multiprocessor’s soft error vulnerability can be characterized by its aggregated AVF: in 

our case, it’s the average of all cores’ AVFs because of the core homogeneity; the reciprocal of 

the system throughput, i.e. 1/Throughput = (Σ IPCi)-1, where 0<=i<n, is used to represent a n-

core processor’s performance; finally, the total power is the summation of all cores’ power. Note 

that all three metrics favor a lower value.  

        We follow the same approach described in Section 5.2.3 to generate universal rule sets op-

timizing the three metrics, respectively. Specifically in this work, we put the 2-thread runs of 5 
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benchmarks (except WaterSpatial) in the training set, and validate the generated rules with 1-

thread and 4-thread runs. In particular, WaterSpatial is chosen to have all configurations (includ-

ing 1-thread, 2-thread, and 4-thread) in the test set, validating the generated model’s effective-

ness across different SPLASH2 benchmarks and different numbers of threads. These three rule 

sets (Rule Set II, III, IV) are listed in Table 5-5. Not surprisingly, a multiprocessor with wider 

CPUs and more pipeline resources usually demonstrates better performance, while a power-

efficient design often selects parameters at lower end of the range. In contrast, Rule Set II which 

minimizes the processor AVF favors a large value in some structures (e.g. ROB) but a small val-

ue in some others (e.g. LSQ, IQ). The validation of these three rule sets are shown in Figure 5-8. 

We can see that most identified designs are within the top 20% optima. 

Table 5-5. Universal rule sets for optimizing different metrics for multiprocessors 

Rule Set II 
(Optimizing AVF) 

(Width/ALUs=4/2/2||4/4/3||8/4/3||8/6/4) & 
(ROB>132) & (LSQ<32) & (IQ<48) & 

(L1CS>32kB) & (L2CS<2MB) 
Rule Set III 

(Optimizing Throughput -1) 
(Width/ALUs=8/4/3||8/6/4) & (IQ>64) 

Rule Set IV 
(Optimizing Power) 

(Width/ALUs=8/6/4) & (ROB<156) & 
(16<LSQ<32) & (IQ<72) & (Phy. Reg. 
File<140) & (16kB<L1CS<128kB) & 

(L2CS !=1MB) 
Rule Set V 

(Optimizing 
AVF 0.3 * Throughput -0.4 * Power 0.3) 

(Width/ALUs=8/4/3||8/6/4) & (ROB>132) 
& (LSQ < 32) & (IQ<56) & (BTB>1024) 

& (L1CS<128kB) & (L2CS != 4MB) 
Rule Set VI 
(Optimizing 

AVF 0.2 * Throughput -0.6 * Power 0.2) 

(Width/ALUs=8/4/3||8/6/4) & (ROB>120) 
& (LSQ < 32) & (IQ<48) & 

(L1CS<128kB) & (L2CS != 8MB) 
 



 

 

Figuree 5-8. Valid
number at

dation of Ru
t the end of

ule Set II, I
f a benchm

89 

 
III, IV on th
ark’s name

he test mul
e indicates t

ti-threaded
the number

 

 

 

d benchmar
r of thread

rks. The 
s. 



 

90 
 

5.3.3 Balancing Multiple Metrics 

        Simultaneously balancing the three metrics is actually a multi-objective optimization prob-

lem, requiring a reasonable objective function. We propose to minimize the function  f  in Figure 

5-9 to achieve a good trade-off among different conflicting metrics. 

cba PowerThroughputAVFf *)/1(*=  

where a, b, c >= 0, and a+b+c = 1 

Figure 5-9. The objective function used in balancing multiple metrics 

        The exponentials a, b, and c are weight factors controlled by the designer. Formulating the 

objective function as above would result in an optimization process in proportional to the relative 

change of different metrics, ensuring more fairness than other objective functions such as nor-

malized summation. Consequently, the designer can give more importance to a certain metric by 

enlarging its weight factor. The above discussions regarding Rule Set II, III, and IV are actually 

special cases where one of the three weight factors equals 1 and the other two equal 0. That said, 

Rule Set II – IV merely optimize a certain metric without taking the other two into account. 

Therefore, one can expect large degradations in the other two metrics for each of the three rule 

sets.  

        Figure 5-10 shows the comparison of different assignments of weight factors (a, b, c) in 

terms of AVF, performance and power. A separate rule set is generated for each weight factors 

assignment. Each column in this figure corresponds to the average response of the design points 

selected by the corresponding rule set, and this value is normalized to the case merely optimizing 

the response metric (i.e. one in Rule Set II, III, IV). For example, the AVF of the configurations 

selected by Rule Set III (weight factors (0, 1, 0)) demonstrates 64.5% degradation compared to 

those selected by Rule Set II which merely optimizes the AVF; in contrast, Rule Set II shows 
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36.6% degradation in performance than Rule Set III. Hence, none of the three rule sets (II, III, 

and IV) provides good balance of reliability, performance and power. This is in our expectation 

since they individually optimize only one of the three conflicting metrics. On the other hand, tun-

ing the weight factors would result in better trade-offs among the metrics. (0.3, 0.4, 0.3) is a 

well-balanced assignment which shows in the figure 8.4%, 16.3%, and 1.3% degradations in 

AVF, performance and power, respectively. One can further enlarge the performance’s weight 

factor to mitigate the performance loss. For instance, (0.2, 0.6, 0.2) is another assignment that 

decreases performance degradation to 9.4% but comes with an increased AVF degradation to 

14.3%. The rule sets for these two assignments are also listed in Table 5-5 as Rule Set V and VI. 

5.4 Related Work 

        For the correlation between the AVF and configuration parameters, Cho et al. [8] predicted 

the dynamics of power, CPI and the AVF using a combination of wavelets and neural networks. 

They also followed the same approach to predict the average soft error vulnerability and its 

tradeoff with performance [9]. Our work differs from theirs in that we provide simple but helpful 

guidelines to conduct reliable processor design. We also quantitatively analyze the effect of op-

timizing holistic reliability and identify the trade-off of reliability, performance, and power for 

multiprocessors. 

        A series of studies discussed design space exploration on performance and/or power 

[30][31]. Ipek et al. [22] predicted performance of memory hierarchy, CPU and CMP design 

spaces using Artificial Neural Networks (ANNs); Similarly, Lee et al. [23] proposed to use 

spline-based regression to predict performance and power from a large design space. It’s also 

possible to derive optimal points based on their predictive models (e.g. via exhaustive prediction 
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in Pareto Analysis [24]), but our method is a one-step search that is more efficient and direct. 

Besides, PRIM can provide highly interpretable selective rules. More importantly, we demon-

strated in this chapter that the PRIM-generated rules are effective across SPEC and SPLASH2 

benchmarks. This is in contrast to traditional application-specific design space studies. 

5.5 Conclusions 

        In this chapter, we propose to use a rule search statistical technique to generate simple se-

lective rules on design parameters. These rules quantify the design space subregion that contains 

the configurations optimized for soft error reliability or other design metrics, providing computer 

architects with valuable guidelines to design reliable and high performance processors at early 

design stage. We found that reducing the AVF of a single processor structure may increase the 

vulnerability of other structures, and merely minimizing a processor’s AVF may degrade per-

formance. Our proposed generic approach is capable of generating a set of “universal” rules that 

achieves the optimization of the output variable across different programs in execution. The ef-

fectiveness of the universal rule set is validated on programs that are not used in training. Finally, 

the extension to multiprocessors enables a multi-objective optimization of reliability, perfor-

mance and power for multi-threaded workloads. 
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CHAPTER 6. SUMMARY AND FUTURE WORK 

6.1 Summary 

        Architectural Vulnerability Factor (AVF) characterizes a computer system’s vulnerability to 

soft errors at architectural level. The scaling processor feature size, lower threshold voltage, and 

increasing clock frequency make current processors highly vulnerable to soft errors. Therefore, 

AVF provides useful guidelines to computer architects in designing reliable and high perfor-

mance computer systems. However, measuring the AVF, either at an early design stage or during 

program runtime, incurs significant overhead in hardware structures and computation work. 

Consequently, this dissertation proposes a series of soft error resilient mechanisms via modeling 

and predicting the AVF using advanced statistical techniques.  

        First, we propose to use Boosted Regression Trees (BRT), a nonparametric tree-based pre-

dictive modeling scheme, to identify the correlation across workloads, execution phases, and 

processor configurations between a key processor structure’s AVF and various performance met-

rics. The proposed method not only makes accurate prediction but also quantitatively illustrates 

individual performance variables’ importance to the AVF. A quantitative comparison between 

our model and conventional linear regression is performed to demonstrate that our model shows 

higher stability when the model size varies. Moreover, to reduce the prediction complexity, we 

also utilize a rule search strategy named Patient Rule Induction Method (PRIM) to extract simple 

selective rules on important metrics, which can be dynamically applied during runtime to fast 

identify the vulnerable execution intervals. A case study that enables PRIM-based ROB redun-

dancy is performed to demonstrate the applicability of the trained rules.  
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        Second, the AVF measurement is even more complicated on multi-threaded processors such 

as Simultaneous Multithreading (SMT) and Chip Multiprocessor (CMP) architectures. The inter-

thread resource contention shows significant and non-uniform impact on a program’s AVF when 

it is co-scheduled with different programs. Furthermore, the data sharing in multi-threaded work-

loads may change the AVF behavior. Hence, we propose a scalable two-level predictive mecha-

nism capable of predicting a program’s AVF on a multi-threaded processor from easily measured 

metrics. Essentially, the first level model correlates the AVF in a contention-free environment 

with important performance metrics and the processor configuration; while the second level 

model captures the inter-thread resource contention and sharing via structure occupancies. By 

utilizing the proposed scheme, we can accurately estimate any unseen program’s soft error vul-

nerability under resource sharing with any other program(s), on an arbitrarily configured multi-

threaded processor. In practice, the proposed model can be used to find soft error resilient thread-

to-core scheduling for a chip-multithreaded (CMT) processor.  

        Our third work in this dissertation improves the processor’s soft error reliability at the pre-

silicon stage. We propose to apply the PRIM method on processor design parameters. By explor-

ing a large architectural design space, a set of selective rules on key design parameters can be 

generated to identify the configurations that are inherently reliable to soft errors. Our approach is 

capable of generating “universal” rules that achieve the optimization across different programs. 

The effectiveness of the universal rule set is further validated on programs not used in training. 

This cross-program capability is very useful in the era of multi-threading in terms of scalability 

and reducing training cost. Finally, the proposed scheme is extended to multiprocessors where 

multiple design metrics including reliability, performance and power are balanced. Our method-
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ology is able to produce quantitative and universal solutions for both uniprocessors and multi-

processors.  

6.2 Future Work 

        In the near future, I will continue to perform interdisciplinary research between computer 

architecture and experimental statistics, in which case finding a critical problem whose solution 

will be significantly improved with a more scientific and statistical approach is always important. 

In the long term, I am interested in building a reliable and high performance framework for fu-

ture computer systems, including many-core processors, supercomputers, and GPUs.  

6.2.1 Application Level Soft Error Propagation Analysis 

        The previous chapters examine the soft errors occurred in hardware at computer architecture 

level; on the other hand, we are also interested in the soft errors exposed to the application. Un-

derstanding how errors propagate through an application is important for reliable software design, 

especially if these errors are difficult to be detected and quantified. Existing works examining 

application level soft error vulnerability usually employ a fault injection approach: injecting ran-

dom errors into the application and evaluating their effect on the output. However, this approach 

only shows application specific characteristics since the fault injections are only performed to 

this particular application. It becomes extremely expensive if a large number of applications need 

to be analyzed.  

        Therefore, we are developing a generic approach capable of examining and predicting soft 

error vulnerability for an arbitrary application. This approach is called modular analysis, isolat-

ing an application into individual routines and performing prediction for each of them. Specifi-

cally, an arbitrary application can be considered as a directed graph of routines: each of these 
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routines takes its input from another routine or the initial application input, and produces its own 

output that will be used as the input to another routine or the final output of the application. As 

illustrated in Figure 6-1, if an error occurs in one of these routines, it may propagate along with 

the routine dependency graph to the final application output. 

 
 

Figure 6-1. An application is a directed graph of routines 

 
        We propose to train a predictor from the input error pattern to the output error pattern for 

each routine. Any well-developed machine learning technique, such as Neural Networks or Sup-

port Vector Machine, can be used for predictor training. Consequently, for an arbitrary applica-

tion, as long as the dependency among routines and the predictors for all involved routines are 

available, we can make an end-to-end prediction from the initial input error pattern to the final 

output error pattern of the application. This effectively gives the soft error vulnerability of the 

entire application.  

        Since a great number of High Performance Computing (HPC) programs make significant 

use of a small number of libraries, this modular approach is very efficient in analyzing HPC pro-

gram vulnerabilities. Besides, it also provides compile-time guidelines to programmers about the 

soft error vulnerability of their programs, so that they can modify the program (e.g. via using a 

different algorithm) if necessary to improve the reliability.  
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6.2.2 Inter-Layer Coordinated Fault Tolerance 

        To evaluate a certain technique, one should look at its overall effect on the entire computer 

system, which spans multiple layers such as hardware, architecture, OS, and application layers. 

Traditional computer architecture research merely focuses on the architectural level, thus likely 

resulting in ultimate sub-optimal designs whose benefits from an innovative architectural scheme 

are diminished at upper layers. Therefore, we plan to investigate the interaction among different 

layers, developing fault tolerance techniques via inter-layer coordination.  

        One specific example is to generate reliable object code through compiler and architecture 

co-design. Current optimizing compilers usually have a large number of optimizations, each pa-

rameterized by a number of heuristics, thresholds, and flags. These parameters form a huge com-

piler design space, which can be combined with a processor configuration design space to derive 

the optimal solutions across both compiler and architecture layers. Furthermore, traditional oper-

ating systems employ optimization schemes that merely enhance performance; however, future 

systems will take other design metrics (e.g. reliability and power efficiency) into account. As a 

result, a variety of such schemes need to be revisited or redesigned to fulfill new requirements. 

Providing architectural support for this purpose will be one of the future studies. 

6.2.3 Constructing Reliable High Performance Computing (HPC) Systems 

        A large scale HPC system consists of a great amount of processor cores, routers, disk arrays, 

etc. Failures of these small components super-linearly decrease the Mean-Time-To-Failure 

(MTTF) of the entire HPC system. Consequently, unexpected errors and exceptions are frequent-

ly encountered on supercomputers/clusters. Improving the reliability of HPC systems is neces-

sary and urgent.  
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        A fundamental challenge in conducting HPC studies is the lack of an architectural simulator 

capable of running HPC applications. I have been using a well-developed full-system simulator 

(i.e. M5 [2]) for my PhD research, and will extend this framework to simulate common HPC ap-

plications. With this tool, we will be able to develop architectural mechanisms that support paral-

lel programming. For instance, we can examine and compare different implementations or algo-

rithms of the same functional module used in an HPC application. Alternatively, we can also per-

form reliability studies at the application level. An example would be experiments of fault injec-

tions into commonly used routines of large scientific and commercial programs. We will charac-

terize and predict the properties of error propagation through a series of routines in an HPC ap-

plication.  
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