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Abstract

In this dissertation, I explore new plasmonic structures and devices for manipu-

lating light at the nanoscale: slow-light waveguides and compact couplers. I first

introduce a plasmonic waveguide system, based on a plasmonic analogue of electro-

magnetically induced transparency (EIT), which supports a subwavelength slow-

light mode, and exhibits a small group velocity dispersion. The system consists of a

periodic array of two metal-dielectric-metal (MDM) stub resonators side-coupled to

a MDM waveguide. Decreasing the frequency spacing between the two resonances

increases the slowdown factor and decreases the bandwidth of the slow-light band.

I also show that there is a trade-off between the slowdown factor and the propa-

gation length of the slow-light mode.

I next consider Mach-Zehnder interferometer (MZI) sensors in which the sensing

arm consists of a slow-light waveguide based on a plasmonic analogue of EIT. I

show that a MZI sensor using such a waveguide leads to approximately an order

of magnitude enhancement in the refractive index sensitivity, and therefore in the

minimum detectable refractive index change, compared to a MZI sensor using a

conventional MDM waveguide.

I also introduce compact wavelength-scale slit-based structures for coupling free

space light into MDM subwavelength plasmonic waveguides. I first show that for

a single slit structure the coupling efficiency is limited by a trade-off between the

light power coupled into the slit, and the transmission of the slit-MDM waveguide

junction. I next consider a two-section slit structure, and show that for such a

structure the upper slit section enhances the coupling of the incident light into the

lower slit section. The optimized two-section slit structure results in ∼ 2.3 times

enhancement of the coupling into the MDM plasmonic waveguide compared to the

vi



optimized single-slit structure. I finally consider a symmetric double-slit structure,

and show that for such a structure the surface plasmons excited at the metal-air

interfaces are partially coupled into the slits. Thus, the coupling of the incident

light into the slits is greatly enhanced, and the optimized double-slit structure

results in ∼ 3.3 times coupling enhancement compared to the optimized single-slit

structure. In all cases the coupler response is broadband.

vii



Chapter 1
Introduction

1.1 Introduction to Plasmonics

As modern information technology develops, the ever increasing demand for faster

information processing is inevitable. Since the breakthrough invention of the first

transistor at Bell laboratories, the new era of silicon electronics technology emerged,

and our data-hungry society continuously drives electronic devices to become

smaller, faster, and more efficient. However, further increases in electronic process-

ing speed are at present limited by delays related to electronic interconnections

[1, 2]. Because of this, the integration of modern electronic devices for information

processing is rapidly approaching a fundamental speed limitation.

On the other hand, it is well-known that the velocity of a photon is much faster

than that of an electron in a dielectric. One of the potential research directions to

address the limitations of electronic interconnects is therefore to explore using pho-

tonic devices instead of their electronic counterparts. However, conventional pho-

tonic devices cannot be integrated as densely as their electronic counterparts. In

fact, this limitation of conventional dielectric optics is a consequence of the diffrac-

tion limit of light in dielectric media, which does not allow light to be confined in a

region smaller than the wavelength of light. As an example, a dielectric waveguide

supports electromagnetic modes. More specifically, I consider an air-silicon-air di-

electric slab waveguide (Fig. 1.1). Such a waveguiding structure always supports

a fundamental optical mode for any silicon core thickness. When the size of the

silicon core w is ∼ 0.68λ0/n, the fundamental mode can be effectively guided in

such a waveguide. In other words, the modal field is highly confined in the silicon

1



core. Here, λ0 is the free-space wavelength, and n is the refractive index of silicon.

As the size w decreases, the fundamental guided mode further extends into the

surrounding air cladding region (Fig. 1.1). Thus, simply decreasing the size of the

waveguide core does not lead to subwavelength guiding of the optical mode.

Fig. 1.1 clearly demonstrates the limitations associated with the diffraction limit

of light in conventional dielectric waveguides, and reveals the daunting problem

that one faces when attempting to achieve chip-scale integration of optical de-

vices. As a result, conventional dielectric optical waveguides cannot provide fast

and highly-compact interconnects. In addition, the large size mismatch between

electronic and optical devices indicates that there is also no way to integrate these

two technologies in the same chip. In short, the speed of electronics is limited

by delays in the interconnections, whereas the dense integration of conventional

dielectric optics is limited by the diffraction limit.

It therefore appears that further progress in information processing will require

the development of a promising new chip-scale device technology that can combine

the size of nanoscsale electronics and the speed of photonics, and thus bridge the

gap between nanoscale electronics and mircoscale photonics. The most feasible way

to circumvent the diffraction limit and squeeze light into nanoscale regions much

smaller than the wavelength of light is to use materials with negative dielectric

permittivity, such as metals. More specifically, the interface between a metal and

a dielectric supports the so-called surface plasmon-polariton (SPP) modes of elec-

tromagnetic waves coupled to the collective oscillations of the electron plasma in

the metal [3]. When the operating frequency approaches the surface plasmon fre-

quency, the field profile of these modes is highly confined in a deep subwavelength

region at the metal-dielectric interface. Therefore, the emerging area of plasmon-

ics enables light at the nanosacle, and could potentially address the technological
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FIGURE 1.1. Schematic of an air-silicon-air dielectric slab waveguide. The field profile
of the fundamental waveguide mode supported by such a structure is shown for different
thicknesses of the silicon core w.

challenges described in the previous paragraph. Plasmonics could lead to ultra-fast

and ultra-dense optical interconnections.

A variety of plasmonics applications has emerged in the past decade. One of the

first practical applications of plasmonics is near-field scanning optical microscopy

(NSOM). Subwavelength aperture structures, such as C-shape apertures, in metal-

coated optical probes enable localization of light in a nanoscale spot size and

are therefore useful in near-field optical microscopy [4]. An alternative method is

the apertureless technique, in which a sharp metal tip is used to localize light

in an intense near-field spot. The deep-subwavelength spatial resolution of such

an apertureless NSOM can be as small as ∼ λ/3000 at terahertz and infrared

frequencies [5]. The so-called tip-on-aperture (TOA) which combines the above

two techniques has attracted a lot of interest recently. The aperture’s enhanced

field, and the tip limited resolution of the metal structure make the TOA useful

for NSOM technologies (Fig. 1.2) [6].
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FIGURE 1.2. An aperture-based probe consisting of a metal protrusion deposited adja-
cent to an NSOM aperture.

Applications of plasmonics also include the development of metallic nanostruc-

tures for guiding SPP modes, such as nanogaps between metallic media [7], metal-

lic nanoparticle arrays [8, 9], V-shaped grooves [10, 11], metal wedges [11, 12],

and metal-dielectric-metal (MDM) waveguides [13]. Among these, MDM plasmonic

waveguides are of particular interest because they support modes with deep sub-

wavelength scale over a very wide range of frequencies extending from DC to visible

[7].

As mentioned above, plasmonics offers a great opportunity to integrate elec-

tronic devices and their optical counterparts on the same chip. One of the par-

ticularly promising related applications is the plasmon-enhanced photodetector,

which combines high-speed detection and low-power consumption (Fig. 1.3(a))

[14]. In addition to plasmon-enhanced photodetectors, chip-scale, high-speed, and

power-efficient optical modulators enhanced by surface plasmons were also recently

4



realized. More specifically, the device shown in Fig. 1.3(b) enables electrical signals

to be encoded into optical signals by changing the optical properties of a nonlin-

ear optical material sandwiched between the metal plates of a MDM plasmonic

waveguide [15].

                                  

 

FIGURE 1.3. (a) Normalized field-energy density for a plasmon-based detector. (b)
Schematic of a plasmonic modulator which enables electrical signals to be encoded into
optical signals.

Plasmonics techniques can also find applications in the field of photovoltaics.

Metallic nanostructures can enhance the efficiency of solar cells in converting

sunlight into electrical power [16, 17]. More recently, light-induced heating using

plasmonics has led to many novel applications, such as growth of semiconductor

nanostructures [18], thermal cancer treatment [19], and local control over phase
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transitions [20]. Since plasmonics can squeeze light into nanoscale volumes, it is

natural to consider its application in nonlinear optics and biosensors. Patterned

metal films can increase second-harmonic generation by more than an order of

magnitude [21], while Mach-Zehnder interferometers (MZI) with SPP waveguides

demonstrated high detection resolution and sensitivity [22]. In addition, plasmonics

lays the foundation for further novel material science and device technologies, from

metamaterials [23] to quantum plasmonics [24]. The field of plasmonics has grown

dramatically over the past decade, and it will be exciting to see what plasmonics

will bring for our society in the next decade.

1.2 Motivation

As described in the previous Section, the unique properties of surface plasmons,

which are light waves that propagate along metal surfaces, enable a wide range of

practical applications, including light guiding and manipulation at the nanoscale

[25, 26, 27, 28]. This could lead to miniaturized photonic circuits with length scales

that are much smaller than those currently achieved [26, 27]. The newfound ability

to use metallic nanostructures to manipulate light at nanometric length scales has

opened a myriad of exciting opportunities. Plasmonics is being explored for its

potential in subwavelength optics, data storage, light generation, microscopy and

biophotonics [25, 26, 28]. However, exploration of functional nanoplasmonic struc-

tures and devices, including active plasmonic devices, is still in a very early stage.

The realization of such devices would enable for the first time controlling light and

enhancing light-matter interactions at the nanoscale - beyond the diffraction limit

- something which is fundamentally impossible to achieve with dielectric-based de-

vice components. This in turn would have profound implications for computing,
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communications, and energy applications. The development of these nanoscale

devices and their integration will be challenging. It is therefore important to theo-

retically and computationally explore this area and to identify the most promising

structures for specific device applications such as sensing and switching.

Electromagnetically induced transparency (EIT) is a coherent process observed

in three-level atomic media, which allows a narrow transparency window in the

spectrum of an otherwise opaque medium, and can slow down light pulses by sev-

eral orders of magnitude [29]. Since the EIT spectrum results from the interference

of resonant pathways [29, 30], it has been recognized that similar interference ef-

fects can also occur in classical systems, such as optical waveguides coupled to

resonators and metamaterials [29, 31, 32, 33]. In addition, it has been demon-

strated that periodic optical waveguides, resulting from cascading structures with

EIT-like response, can slow down and even stop light [30, 34, 35]. Inspired by

these recent experimental and theoretical developments, I will investigate in detail

the properties of periodic plasmonic waveguides which represent an all-optical plas-

monic analogue of EIT. I will also investigate nanoscale plasmonic sensors enhanced

by slow-light effects. While dielectric waveguides lead to wavelength-scale sensors,

plasmonic waveguides could enable miniaturized sensors with subwavelength length

scales, due to the ability of such waveguides to confine and manipulate light at the

nanoscale.

In addition, for applications involving MDM plasmonic waveguides, it is essential

to develop compact structures to couple light efficiently into such waveguides [36].

Several different couplers between MDM and dielectric waveguides have been inves-

tigated both theoretically and experimentally [36, 37, 38, 39, 40, 41]. In addition,

structures for coupling free space radiation into MDM waveguides have also been

investigated. In particular, Preiner et al. [42] investigated subwavelength diffraction
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gratings as coupling structures into MDM waveguide modes. However, in diffrac-

tion grating structures several grating periods are required for efficient waveguide

mode excitation, so that such structures need to be several microns long when

designed to operate at frequencies around the optical communication wavelength

(λ0 =1.55 µm). In addition, in several experimental investigations of MDM waveg-

uides and devices, a single slit was used to couple light from free space into MDM

plasmonic waveguides [15, 43, 44, 45, 46]. While single slit coupling structures are

more compact, slit-based coupler designs have not been investigated in detail. In

this dissertation, I will investigate compact wavelength-scale slit-based structures

for coupling free space light into MDM plasmonic waveguides.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, I dis-

cuss the finite-difference frequency-domain technique, and its application in the

simulation of plasmonic devices. In Chapter 3, I discuss several issues associated

specifically with the simulation of plasmonic waveguide devices. In Chapter 4, I

introduce novel subwavelength slow-light plasmonic waveguides based on a plas-

monic analogue of EIT. In Chapter 5, I investigate MZI sensors in which the

sensing arm consists of slow-light waveguides introduced in Chapter 4. In Chap-

ter 6, I introduce compact wavelength-scale slit-based structures for coupling free

space light into MDM subwavelength plasmonic waveguides. Finally, in Chapter 7,

I summarize my conclusions, and provide suggestions for future work.
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Chapter 2
Finite-Difference Frequency-Domain
Technique

2.1 Introduction to the Simulation of Plasmonic Devices

The Finite-Difference Frequency-Domain (FDFD) technique is a general-purpose

numerical technique for the solution of Maxwell’s equations of electromagnetism

in the frequency domain. It can be applied to structures of any length scale and

for sources of electromagnetic radiation of any frequency. Here, however, the focus

is on the use of this technique in nanooptics, and in particular plasmonics.

As described in Chapter 1, plasmonics is a rapidly evolving field of science and

technology based on surface plasmons, which are electromagnetic waves that prop-

agate along the interface of a metal and a dielectric. In surface plasmons, light

interacts with the free electrons of the metal, which oscillate collectively in re-

sponse to the applied field. Recently, nanometer scale metallic devices have shown

the potential to manipulate light at the subwavelength scale using surface plasmons

[47]. This could lead to photonic circuits of nanoscale dimensions.

Surface plasmons can be described by macroscopic electromagnetic theory, i.e.,

Maxwell’s equations, if the electron mean free path in the metal is much shorter

than the plasmon wavelength [48]. This condition is usually fulfilled at optical

frequencies [48]. In macroscopic electromagnetic theory, bulk material properties,

such as dielectric constant, are used to describe objects irrespective of their size.

Here, all materials are assumed to be nonmagnetic (µ = µ0) and are characterized

by their bulk dielectric constant ϵ(r, ω) , where r=(x, y, z)=xx̂ + yŷ + zẑ, and ω

is the angular frequency. However, for particles of nanometer dimensions a more

9



fundamental description of their optical and electronic properties may be required

[49].

Analytical methods, such as Mie theory [50], can only be applied to planar ge-

ometries or to objects of specific shapes (spheres, cylinders) and have therefore

limited importance in the analysis of plasmonic devices and structures. Numerical

simulation techniques are therefore very important for the analysis and design of

plasmonic devices. Numerical modeling of plasmonic devices involves several chal-

lenges which need to be addressed. First, as mentioned above, plasmonic devices

can have arbitrary geometries. Several techniques are specific for one type of geo-

metrical configuration and are therefore not appropriate for modeling of arbitrary

plasmonic devices.

Second, the dielectric constant of metals at optical wavelengths is complex, i.e.,

ϵr(ω)= ϵRe(ω)+ϵIm(ω) and is a complicated function of frequency [51]. Thus, sev-

eral simulation techniques which are limited to lossless, nondispersive materials

are not applicable to plasmonic devices. In addition, in time-domain methods the

dispersion properties of metals have to be approximated by suitable analytical

expressions [52]. In most cases, the Drude model is invoked to characterize the

frequency dependence of the metallic dielectric function [53]

ϵr,Drude(ω) = 1−
ω2
p

ω(ω + iγ)
, (2.1)

where ωp and γ are frequency-independent parameters. However, the Drude model

approximation is valid over a limited wavelength range [53]. The range of validity

of the Drude model can be extended by adding Lorentzian terms to Eq. (2.1) to

obtain the Lorentz-Drude model [53]

ϵr,LD(ω) = ϵr,Drude(ω) +
k∑

j=1

fjω
2
j

(ω2
j − ω2)− iωγj

, (2.2)
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where ωj and γj stand for the oscillator resonant frequencies and bandwidths, re-

spectively, and fj are weighting factors. Physically, the Drude and Lorentzian terms

are related to intraband (free-electron) and interband (bound-electron) transitions,

respectively [53]. Even though the Lorentz-Drude model extends the range of va-

lidity of analytical approximations to metallic dielectric constants, it is not suitable

for description of sharp absorption edges observed in some metals, unless a very

large number of terms are used [53]. In particular, the Lorentz-Drude model cannot

approximate well the onset of interband absorption in noble metals (Ag, Au, and

Cu), even if five Lorentzian terms are used [53]. In Fig. 2.1, the Drude and Lorentz-

Drude models are compared with experimental data for silver. It is observed that

even a five-term Lorentz-Drude model with optimal parameters results in a factor

of two error at certain frequencies.

Third, in surface plasmons propagating along the interface of a metal and a

dielectric, the field is concentrated at the interface, and decays exponentially away

from the interface in both the metal and dielectric regions [25]. Thus, for numerical

methods based on discretization of the fields on a numerical grid, a very fine

grid resolution is required at the metal-dielectric interface to adequately resolve

the local fields. In addition, several plasmonic devices are based on components

of subwavelength dimensions [25]. In fact, most of the potential applications of

surface plasmons are related to subwavelength optics. The nanoscale feature sizes

of plasmonic devices pose an extra challenge to numerical simulation techniques.

The challenges involved in modeling plasmonic devices will be illustrated here

using a simple example: an infinite periodic array of silver cylinders illuminated

by a plane wave at normal incidence (inset of Fig. 2.2(a)). The FDFD method,

which is described in detail below, is used to calculate the transmission of the

periodic array. This method allows one to directly use experimental data for the

11
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FIGURE 2.1. Real and imaginary part of the dielectric constant of silver at optical
frequencies. The solid lines show experimental data [51]. The dashed lines show val-
ues calculated using (a) the Drude model and (b) the Lorentz-Drude model with five
Lorentzian terms. The parameters of the models are optimal and obtained through an
optimization procedure [53].
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frequency-dependent dielectric constant of metals, including both the real and

imaginary parts, with no approximation. The fields are discretized on a uniform

two-dimensional (2-D) grid with grid size ∆x = ∆y = ∆l. The calculated trans-

mission as a function of frequency is shown in Fig. 2.2(a). Also shown is the trans-

mission of the structure calculated with the Drude model of equation (2.1). It is

observed that the use of the Drude model results in substantial error. In general,

the Drude model parameters are chosen to minimize the error in the dielectric

function in a given frequency range [54]. However, this approach gives accurate re-

sults in a limited wavelength range, as illustrated in this example. In general, the

complicated dispersion properties of metals at optical frequencies pose a challenge

in modeling of plasmonic devices not encountered in modeling of low- or high-index

contrast dielectric devices.

The calculated transmission at a specific wavelength as a function of the spatial

grid size ∆l is shown in Fig. 2.2(b). It is observed that a grid size of ∆l≈1nm is

required in this case to yield reasonably accurate results. The required grid reso-

lution is directly related to the decay length of the fields at the metal-dielectric

interface. In general, modeling of plasmonic devices requires much finer gird reso-

lution than modeling of low- or high-index-contrast dielectric devices, due to the

high localization of the field at metal-dielectric interfaces of plasmonic devices. The

required grid size depends on the shape and feature size of the modeled plasmonic

device, the metallic material used, and the operating frequency.

In the following sections, the FDFD technique is introduced, and it is also ex-

amined how FDFD addresses the challenges mentioned above.
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FIGURE 2.2. (a) Calculated transmission spectrum of an infinite array of silver cylinders
(shown in the inset) for normal incidence and transverse magnetic (TM) polarization
(involving only the Ex, Ey and Hz vector field components). Results are shown for
a diameter a = 100 nm. The dashed line shows the transmission spectrum calculated
using the Drude model equation (2.1) with parameters ωp = 1.37×1016s−1 and γ =
7.29×1013s−1. (b) Calculated transmission at 855 THz as a function of the spatial grid
size ∆l.
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2.2 Introduction to Finite-Difference Methods

FDFD is based on approximating the derivatives in Maxwell’s equations by finite

differences. A brief overview of the main features of finite-difference methods is

therefore first provided here. In finite-difference methods, derivatives in differential

equations are approximated by finite differences. To approximate the derivative

df/dx|x0 Taylor series expansions of f(x) about the point x0 at the points x0+∆x

and x0 −∆x are used to obtain [52]

df

dx

∣∣∣∣
x0

=
f(x0 +∆x)− f(x0 −∆x)

2∆x
+O[(∆x)2]. (2.3)

Here, the notation O[(∆x)2] (to be read as “order (∆x)2”) denotes the remainder

term and indicates its dependence on ∆x, i.e., that it approaches zero as the second

power of ∆x. Thus, Eq. (2.3) shows that a central-difference approximation of the

first derivative is second-order accurate, meaning that the remainder term in Eq.

(2.3) approaches zero as the square of ∆x.

In finite-difference methods a continuous problem is approximated by a discrete

one. Field quantities are defined on a discrete grid of nodes. The rectangular grid

with node coordinates rijk = (xi, yj, zk) is the simplest and most commonly-used.

A field quantity at nodal location rijk is denoted for convenience as fijk = f(rijk).

Based on Eq. (2.3), the first derivative can be approximated by the following

central-difference formula

df

dx

∣∣∣∣
i

≃ fi+1 − fi−1

2∆x
, (2.4)

which is second-order accurate, based on the discussion above, if the rectangular

grid is uniform, i.e. xi = i∆x. For example, if the numerical resolution in the x

direction is increased by a factor of 10 (∆x
′
= ∆x/10), then the error introduced by

the finite-difference formula in Eq. (2.4) reduces roughly by a factor of 102 = 100.
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Similarly, the second derivative can be approximated by the formula

d2f

dx2

∣∣∣∣
i

≃ fi+1 − 2fi + fi−1

(∆x)2
, (2.5)

which is also second-order accurate on a uniform grid [52].

By replacing derivatives in differential equations with their finite-difference ap-

proximations, we obtain algebraic equations which relate the value of the field at a

specific node to the values at neighboring nodes. By applying the finite-difference

approximation to all nodes of the grid, a system of linear equations of the form

Ax = b is obtained. Since the equation for the field at each point involves only

the fields at the four (six in three dimensions, two in one dimension) adjacent

points, the resulting system matrix is extremely sparse. Such problems can be

solved efficiently if direct or iterative sparse matrix techniques are used.

2.3 The FDFD Method in One Dimension

The FDFD equations will now be derived by approximating the spatial derivatives

in Maxwell’s equations with finite differences. Assuming an exp(iωt) harmonic

time dependence for all field quantities, Maxwell’s curl equations in the frequency

domain take the form

∇× E(r) = −iωµ0H(r), (2.6)

∇×H(r) = J(r) + iωϵE(r). (2.7)

It should be noted that the field vectors E(r, t), H(r, t) are real (measurable)

quantities that can vary with time, whereas the vectors E(r, ω), H(r, ω) are com-

plex phasors that do not vary with time. The former can be obtained from the

latter by multiplying by exp(iωt) and taking the real part. For example,

E(r, t) = Re{E(r)eiωt}. (2.8)
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It should also be noted that in most cases for simplicity the frequency dependence

of the complex phasors is not explicitly shown, e.g., E(r) is used instead of E(r, ω).

Maxwell’s equations can be simplified by considering electromagnetic fields and

systems with no variations in two dimensions, namely, both y and z. By dropping

all the y and z derivatives in Eqs. (2.6) and (2.7), and assuming a current source

polarized in the z direction (J = Jz ẑ), Maxwell’s equations simplify to

∂Ez

∂x
= iωµ0Hy, (2.9)

∂Hy

∂x
= Jz + iωεEz. (2.10)

In the Finite-Difference Time-Domain (FDTD) technique a staggered spatial

grid, known as the Yee grid [52], is used for interleaved placement of the electric

and magnetic fields. The Yee grid enables the approximation of the continuous

derivatives in space by second-order-accurate two-point centered finite differences.

Since the spatial derivatives involved in Maxwell’s equations in the frequency do-

main are exactly the same as those in the time domain, the Yee grid can also

be used in FDFD. The placement of the electric and magnetic fields on a one-

dimensional (1-D) Yee grid for FDFD is identical to the one for FDTD, and is

shown in Fig. 2.3.

For simplicity a uniform rectangular grid with xi = i∆x is considered, and

the derivatives in Eqs. (2.9) and (2.10) are replaced with their finite-difference

approximations to obtain

Ez

∣∣∣
i+1

−Ez

∣∣∣
i

∆x
= iωµ0Hy

∣∣∣
i+1/2

, (2.11)

Hy

∣∣∣
i+1/2

−Hy

∣∣∣
i−1/2

∆x
= Jz

∣∣∣
i
+iωε

∣∣
i
Ez

∣∣∣
i
. (2.12)
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FIGURE 2.3. The placement of electric and magnetic field vectors in FDFD for Maxwell’s
equations in one dimension.

As mentioned above, by applying Eqs. (2.11) and (2.12) at all points in the

Yee grid, a system of linear equations is obtained, which can be solved to find

the electromagnetic fields. If the system obtained from Eqs. (2.11) and (2.12) was

directly solved, all electric fields (Ez

∣∣∣
1
, Ez

∣∣∣
2
, ..., Ez

∣∣∣
Nx+1

), and all magnetic fields

(Hy

∣∣∣
1+1/2

, Hy

∣∣∣
2+1/2

, ..., Hy

∣∣∣
Nx+1/2

) would have to be included in the vector of

unknown fields. (A 1-D Yee grid terminated at electric field positions was assumed

here). Thus, the system of linear equations would have a total of 2Nx+1 unknowns.

However, in the system of equations obtained from the FDFD algorithm, it is

straightforward to eliminate either all the electric or all the magnetic fields. To see

this, Eq. (2.11) is applied at two adjacent grid points:

1

iωµ0

Ez

∣∣∣
i
−Ez

∣∣∣
i−1

∆x
= Hy

∣∣∣
i−1/2

, (2.13)

1

iωµ0

Ez

∣∣∣
i+1

−Ez

∣∣∣
i

∆x
= Hy

∣∣∣
i+1/2

. (2.14)
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Equations (2.13) and (2.14) are now substituted into Eq. (2.12) to obtain

1

∆x

 1

iωµ0

Ez

∣∣∣
i+1

−Ez

∣∣∣
i

∆x
− 1

iωµ0

Ez

∣∣∣
i
−Ez

∣∣∣
i−1

∆x

 = Jz

∣∣∣
i
+iωε

∣∣∣
i
Ez

∣∣∣
i
, (2.15)

which can also be written as

1

µ0

Ez

∣∣∣
i+1

−Ez

∣∣∣
i

(∆x)2
− 1

µ0

Ez

∣∣∣
i
−Ez

∣∣∣
i−1

(∆x)2
+ ω2ε

∣∣∣
i
Ez

∣∣∣
i
= iωJz

∣∣∣
i
. (2.16)

Thus, application of finite-difference approximations at the node location xi re-

sults in a linear algebraic equation which relates the field Ez

∣∣∣
i
to the fields at the

two adjacent nodes Ez

∣∣∣
i−1

and Ez

∣∣∣
i+1

. By applying the finite-difference approxi-

mation to all internal nodes of the grid, a system of linear equations of the form

Ax = b is obtained, where b is determined by the source current J :

ai i−1 = ai i+1 =
1

(∆x)2
,

ai i = − 2

(∆x)2
+ ω2ε

∣∣∣
i
µ0, (2.17)

bi = iωµ0Jz

∣∣∣
i
,

xi = Ez

∣∣∣
i
.

The FDFD equations for the boundary nodes depend on the boundary conditions

at the boundary of the simulation domain. Typically, they involve only the two

outermost nodes, e.g., a11x1 + a12x2 = 0. Thus, in the 1-D case the linear system

matrix A is tridiagonal, and it is straightforward to eliminate the magnetic fields,

and obtain a system of equations which only involves the electric fields (Ez

∣∣∣
1
, Ez

∣∣∣
2
,

..., Ez

∣∣∣
Nx+1

) and has a total of Nx + 1 unknowns.

Finally, if Eqs. (2.9) and (2.10) are combined, the Helmholtz equation in 1-D is

obtained:

∂2Ez

∂x2
+ ω2εµ0Ez = iωµ0Jz. (2.18)
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When the spatial derivatives in this equation are approximated by centered finite

differences, Eq. (2.16) above is obtained. In other words, the FDFD equations can

be directly obtained by discretizing the Helmholtz equation for the electric field.

2.4 The FDFD Method in Two and Three Dimensions

For the 2-D case, it is assumed that there are no variations of either the fields or

the excitation in one of the directions, say the z direction. Thus, all derivatives

with respect to z drop out from the two curl equations (2.6) and (2.7). A current

source polarized in the z direction (J = Jz ẑ) is also assumed, so that only the

transverse electric (TE) polarization (involving only the Hx, Hy and Ez vector

field components) is excited [52] and Maxwell’s equations simplify to

∂Ez

∂y
= −iωµ0Hx,

∂Ez

∂x
= iωµ0Hy, (2.19)

∂Hy

∂x
− ∂Hx

∂y
= Jz + iωϵEz.

If the above equations are combined, the 2-D Helmholtz equation is obtained

∂2Ez

∂x2
+

∂2Ez

∂y2
+ ω2εµ0Ez = iωµ0Jz. (2.20)

As mentioned in the previous section, the exact same FDTD Yee grid can be

used in FDFD. A portion of the Yee grid for the TE case is depicted in Fig. 2.4.

The FDFD equations can be obtained by discretizing Eq. (2.19). It is then

straightforward to eliminate Hx and Hy to obtain the FDFD equations which only

involve the Ez field. Here, however, the 2-D Helmholtz equation (2.20) is discretized

to directly obtain the FDFD equations which only involve the Ez field. Once Ez is

calculated by solving the FDFD equations, the Hx and Hy fields can be calculated

by using the discretized versions of Eq. (2.19).
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FIGURE 2.4. An FDFD unit cell for transverse electric (TE) waves. The small vectors
with thick arrows are placed at the point in the grid at which they are defined. For
example, Ez is defined at grid points (i, j), while Hy is defined at grid points (i + 1/2,
j).

For simplicity a uniform rectangular grid with xi = i∆x and yj = j∆y is con-

sidered, and the derivatives in Eq. (2.20) are replaced with their finite-difference

approximations to obtain

Ez

∣∣∣
i+1,j

−2Ez

∣∣∣
i,j
+Ez

∣∣∣
i−1,j

(∆x)2
+

Ez

∣∣∣
i,j+1

−2Ez

∣∣∣
i,j
+Ez

∣∣∣
i,j−1

(∆y)2
+ ω2ε

∣∣∣
i,j
µ0Ez

∣∣∣
i,j
= iωµ0Jz

∣∣∣
i,j
.

(2.21)

Thus, application of finite-difference approximations at the node location rij =

(xi, yj) results in a linear algebraic equation which relates the field Ez

∣∣∣
i,j

to the

fields at the four adjacent nodes Ez

∣∣∣
i−1,j

, Ez

∣∣∣
i+1,j

, Ez

∣∣∣
i,j−1

, Ez

∣∣∣
i,j+1

. In the end, the

finite-difference approximation is applied to all nodes of the grid to obtain one

FDFD equation at each grid point (i, j). These equations form a system of linear

equations Ax = b with (Nx + 1)× (Ny + 1) equations and unknowns. The vector

of unknown fields x will include the electric fields at all mesh points (i, j), where

i = 1, 2, ..., Nx+1, and j = 1, 2, ..., Ny+1. Note that x is a one-dimensional vector.
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We should therefore construct a one-to-one mapping between the two-dimensional

electric field Ez

∣∣∣
i,j
, i = 1, 2, ..., Nx+1, j = 1, 2, ..., Ny+1 and the one-dimensional

vector of unknown fields xm, m = 1, 2, ..., (Nx + 1)× (Ny + 1). Choosing the right

mapping is in general important and can affect the convergence of the system of

linear equations. One simple mapping function in the two-dimensional case is:

m(i, j) = (i− 1)(Ny + 1) + j. (2.22)

Using this one-to-one mapping function, the following system of linear equations

is obtained:

am(i,j)m(i−1,j) = am(i,j)m(i+1,j) =
1

(∆x)2
,

am(i,j)m(i,j−1) = am(i,j)m(i,j+1) =
1

(∆y)2
,

am(i,j)m(i,j) = − 2

(∆x)2
− 2

(∆y)2
+ ω2ε

∣∣∣
i,j
µ0, (2.23)

bm(i,j) = iωµ0Jz

∣∣∣
i,j
,

xm(i,j) = Ez

∣∣∣
i,j
.

The same approach can be applied to obtain the FDFD equations for the 2-D

TM case as well as for the 3-D case.

2.5 Numerical Dispersion of the FDFD Algorithm

A single plane wave propagating in a uniform medium has a simple dispersion

relation connecting the angular frequency ω and the wave number k : ω = ck [55],

where c is the speed of light in the medium. Numerical techniques such as the FDFD

technique introduce numerical dispersion. To derive the dispersion properties of

the FDFD algorithm, a single wave or Fourier mode in space is considered. The

dispersive properties of FDFD are assessed by obtaining the dispersion relation of
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the scheme, relating the frequency of a Fourier mode on the grid to a particular

wavelength λ (or wave number k):

ω = fFDFD(k,∆x). (2.24)

In the 1-D case, a plane wave propagating in a uniform medium is considered

E(x) = e
√
−1kx, (2.25)

and its discretized version is

E
∣∣∣
i
= e

√
−1ki∆x. (2.26)

In the above equations,
√
−1 was used to avoid confusing it with the grid index

i. In a uniform medium with no sources the FDFD equation (2.16) becomes

Ez

∣∣∣
i+1

−2Ez

∣∣∣
i
+Ez

∣∣∣
i−1

(∆x)2
+ ω2εµ0Ez

∣∣∣
i
= 0. (2.27)

Equation (2.26) is substituted into Eq. (2.27) to find

e
√
−1ki∆x(e

√
−1k∆x − 2 + e−

√
−1k∆x)

(∆x)2
+ ω2εµ0e

√
−1ki∆x = 0, (2.28)

from which one obtains

ω = ck

(
sin(k∆x

2
)

k∆x
2

)
. (2.29)

Equation (2.29) is the dispersion relation of 1-D FDFD. It is observed that, in

the limit ∆x → 0, Eq. (2.29) reduces to the exact dispersion relation ω = ck. Using

Eq. (2.29), the numerical phase velocity v̄p ≡ ω
k
and group velocity v̄g ≡ ∂ω

∂k
of the

FDFD scheme can be derived. The numerical phase velocity of 1-D FDFD as a

function of the numerical resolution ∆x/λ is shown in Fig. 2.5. It is observed, for

example, that for a spatial resolution of 20 grid points per wavelength (∆x/λ=0.05)

the numerical error in the phase velocity is less than 1%.
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FIGURE 2.5. Dispersion of 1-D FDFD. Variation of numerical phase velocity with nu-
merical resolution ∆x/λ in 1-D FDFD.

In the 2-D case, wave-like modes propagating in both x and y directions are

considered

E(x, y) = e
√
−1(kxx+kyy), (2.30)

and their discretized version is

E
∣∣∣
i,j
= e

√
−1(kxi∆x+kyj∆y), (2.31)

where kx and ky are the wave numbers in the x and y directions, respectively.

In a uniform medium with no sources, the 2-D FDFD equation (2.21) becomes

Ez

∣∣∣
i+1,j

−2Ez

∣∣∣
i,j
+Ez

∣∣∣
i−1,j

(∆x)2
+

Ez

∣∣∣
i,j+1

−2Ez

∣∣∣
i,j
+Ez

∣∣∣
i,j−1

(∆y)2
+ ω2εµ0E

∣∣∣
i,j
= 0. (2.32)

Equation (2.31) is substituted into Eq. (2.32) to find after some manipulation:

ω2 = c2

k2
x

(
sin(kx∆x

2
)

kx∆x
2

)2

+ k2
y

(
sin(ky∆y

2
)

ky∆y

2

)2
 . (2.33)
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It is observed again that, in the limit ∆x → 0, ∆y → 0, Eq. (2.33) reduces to the

exact dispersion relation ω2 = c2(k2
x + k2

y).
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FIGURE 2.6. Dispersion of 2-D FDFD. Variation of numerical phase velocity with
wave-propagation angle in a 2-D FDFD grid for three different cases of numerical reso-
lution.

It can be seen from Eq. (2.33) that the numerical phase velocity v̄p for the 2-D

case is a function of angle of propagation through the FDFD grid. To see this,

wave propagation at an angle θ with respect to the positive x axis is assumed, in

which case kx = k cos θ and ky = k sin θ, where k =
√

k2
x + k2

y is the wave number.

Figure 2.6 shows a plot of normalized numerical phase velocity as a function of

propagation angle θ. The dependence is, in general, relatively small (compared

to dispersion errors due to the discretized grid), with v̄p/c varying by only a few

percent between θ = 45◦ and θ = 0◦, even for very coarse (e.g., ∆x = ∆y = λ0/5)

spatial grids. The dependence of v̄p/c on propagation angle θ is known as grid

anisotropy and is a source of additional numerical dispersion effects.
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Finally, it is noted that, unlike FDTD, in FDFD only the spatial derivatives are

approximated by finite differences. In fact, for time-harmonic sources and fields

the FDTD equations reduce to the FDFD equations in the limit of ∆t → 0.

2.6 Comparison to Other Numerical Techniques

FDFD is a frequency-domain technique, and can thus treat arbitrary material dis-

persion. Nonuniform and/or nonorthogonal grids are required in FDFD for efficient

treatment of curved surfaces and rapid field variations at material interfaces. In

FDFD, as in all other methods which are based on discretization of the differen-

tial form of Maxwell’s equations in a finite volume, absorbing boundary conditions

(ABCs) are required, so that waves are not artificially reflected at the boundaries of

the computational domain. Very efficient and accurate ABCs, such as the perfectly

matched layer (PML) [52, 56], have been demonstrated for FDFD. As mentioned

above, FDFD results in extremely sparse systems of linear equations. Such prob-

lems can be solved efficiently if direct or iterative sparse matrix techniques are

used.

FDTD is also a finite-difference method, so its performance in modeling plas-

monic devices is similar to the performance of FDFD. There are many similarities

between the two techniques. Both can be used to model structures with arbitrary

geometries. In addition, many of the methods used in combination with FDTD (to-

tal field/scattered field method, etc.) can also be used with FDFD. However, there

are some major differences. First, as mentioned above, in time-domain methods

the dispersion properties of metals have to be approximated by suitable analytical

expressions which introduce substantial error in broadband calculations. In addi-

tion, the implementation of methods for dispersive materials in FDTD requires
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additional computational cost and extra memory storage [52, 57]. On the other

hand, in FDTD it is possible to obtain the entire frequency response with a single

simulation by exciting a broadband pulse and calculating the Fourier transform of

both the excitation and the response [52].

The Finite-Element Frequency-Domain (FEFD) method is a more powerful tech-

nique than FDFD, especially for problems with complex geometries. However,

FDFD is conceptually simpler and easier to program. The main advantage of FEFD

is that complex geometric structures can be discretized using a variety of elements

of different shapes, while in FDFD a rectangular grid is typically used leading to

staircase approximations of particle shapes [56, 58]. In addition, in FEFD fields

within elements are approximated by shape functions, typically polynomials, while

in FDFD a simpler piecewise constant approximation is used [58]. In short, FEFD

is more complicated than FDFD but achieves better accuracy for a given compu-

tational cost [58].
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Chapter 3
Numerical Simulations of Plasmonic
Waveguide Devices

3.1 Calculation of Transmission, Reflection and Absorption Spectra

Using the FDFD method described on the previous chapter, I can calculate the field

patterns when light propagates in a plasmonic waveguide device. In addition to the

field patterns, I am also interested in calculating how much power is transmitted

through the device, how much power is reflected, and how much power is absorbed

in the device.

Using the fields calculated with the FDFD method, I can calculate the power

flux P through a given surface A as

P =

∫
A

S · dA =

∫
A

1

2
Re{E×H∗} · dA, (3.1)

where S = 1
2
Re{E×H∗} is the time-averaged Poynting vector representing the

electromagnetic power flux density in units of W
m2 . In the two-dimensional case, I

calculate the power flux per unit length.

To calculate the transmission T of a plasmonic waveguide device I perform two

simulations. I first excite the waveguide mode before the device, and measure the

power flux of the transmitted optical mode P1 after the device. I perform a similar

simulation in a straight waveguide and measure the power flux P0. By comparing

the two cases, I extract the power transmission of the plasmonic waveguide device

as

T =
P1

P0

. (3.2)

To obtain the transmission spectra T (ω), I perform these simulations over a range

of frequencies. As an example, in Figs. 3.1(a) and 3.1(b) I show the simulations
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I need to perform to calculate the transmission T of a structure consisting of a

plasmonic MDM waveguide side-coupled to two MDM stub resonators [59]. I am

interested in the regime where the waveguide width w is much smaller than the

wavelength (w ≪ λ), so that only the fundamental TM mode is propagating. Thus,

for such a structure I can simply use a dipole point source to excite the optical

mode (Fig 3.1).

 

   

FIGURE 3.1. (a) Schematic of a simulation of a plasmonic waveguide device consisting
of two MDM stub resonators side-coupled to a MDM waveguide. (b) Schematic of the
simulation of a straight MDM waveguide which is used for normalization.
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To calculate the power reflection spectra, I need to calculate the power of the

incident and reflected mode in the input waveguide. At a given frequency, the

power reflection of the plasmonic waveguide device is

R =
Pr

∣∣
z=0

Pinc

∣∣
z=0

, (3.3)

where Pr

∣∣
z=0

and Pinc

∣∣
z=0

represent the incident and reflected power flux at z = 0,

respectively. However, to eliminate the effect of near fields, I numerically calculate

the power flux at a distance d away from z = 0, i.e. P2 in Fig. 3.1(a), instead of

P
∣∣
z=0

.

At z = −d I have

P2 ≡ P
∣∣
z=−d

= Pinc

∣∣
z=−d

− Pr

∣∣
z=−d

. (3.4)

Here Pinc

∣∣
z=−d

can be obtained by performing a simulation in a straight waveguide

so that P
′
2 = Pinc

∣∣
z=−d

(Fig. 3.1(b)). I therefore have

Pr

∣∣
z=−d

= P
′

2 − P2. (3.5)

Since the power is proportional to the square of the field amplitude, I have

Pr

∣∣
z=0

= e2γMDMdPr

∣∣
z=−d

= e2γMDMd(P
′

2 − P2), (3.6)

and

Pinc

∣∣
z=0

= e−2γMDMdPinc

∣∣
z=−d

= e−2γMDMdP
′

2, (3.7)

where γMDM is the complex wave vector of the fundamental propagating TM mode

in such a MDM waveguide. Substituting the above two equations into equation

(3.4), the power reflection can be calculated at a given frequency as

R =
e2γMDMd(P

′
2 − P2)

e−2γMDMdP
′
2

=
e4γMDMd(P

′
2 − P2)

P
′
2

. (3.8)
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By performing these calculations over a range of frequencies, I can obtain the power

reflection spectra. Finally, using A = 1−T −R, which is obtained by applying the

conservation of energy, I can also calculate the absorption spectra of the structure.

3.2 Calculation of Dispersion Relation

The dispersion relation describes the interrelation between two wave properties,

the frequency ω and wavevector β, i.e. ω(β). Here I describe a method to calculate 

  

 

FIGURE 3.2. Schematic of a plasmonic waveguide system consisting of a periodic array of
two MDM stub resonators side-coupled to a MDM waveguide. I use three field monitors
to extract the wavevector of such system.

the dispersion relation of a periodic waveguide system using the FDFD method. As

an example, I calculate the dispersion of a plasmonic waveguide system consisting

of a periodic array of two MDM stub resonators side-coupled to a MDM waveguide

(Fig. 3.2). I use a dipole point source to excite the optical mode of the system (Fig.

3.2). I also use a perfect electric conductor (PEC) boundary condition to reduce

the simulation domain size by a factor of 2 (Fig. 3.2). In the regime of interest,
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the periodic waveguide structure supports a single propagating Bloch mode. In

addition, when using a single dipole point source to excite the right propagating

mode, the left propagating mode is also excited due numerical reflections from the

PML layer. Thus, I have

Hy(x, z) = A1u(x, z)e
−γz + A2u(x, z)e

γz, (3.9)

where A1, A2 are the complex amplitudes of the right and left propagating modes,

respectively, γ = α + jβ is the complex Bloch wave vector of the entire system,

and the function u is periodic in z, i.e. u(x, z + L) = u(x, z).

In the field expression in equation (3.9), I have three unknowns, A1, A2, and γ,

so I need three equations to extract them. I measure the field at three locations

(P1, P2, P3) with distance of L between them, where L is the period. I then have

A
′

1 + A
′

2 = B1,

A
′

1t+ A
′

2

1

t
= B2, (3.10)

A
′

1t
2 + A

′

2

1

t2
= B3,

where t = e−γL, A
′
1 = A1u(x0, z0)e

−γz0 , A
′
2 = A2u(x0, z0)e

γz0 , and Bi = Hy[x0, z0 +

(i− 1)L], i = 1, 2, 3. By solving this system, the parameter t can be found. Finally,

I obtain the Bloch wave vector using

γ = − ln t

L
. (3.11)

The real part of γ, α ≡ Re(γ) is associated with the material loss in the metal.

The propagating mode is attenuated with an attenuation length 1
α
, which is usually

referred to as the propagation length of the mode Lp. The imaginary part of γ, β ≡

Im(γ) is related to the dispersion relation ω = ω(β). I perform these simulations

over a range of frequencies to obtain the dispersion relation ω = ω(β).
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3.3 Total Field/Scattered Field Formulation

                                             

FIGURE 3.3. Schematic of a total-field/scattered-field simulation domain with several
regions identified [60].

Many electromagnetic problems involve the interaction of objects with an inci-

dent plane wave. I define the incident field as the field which is present in a free

space region in the absence of any objects or scatterers. On the other hand, the

scattered field is the field which results from the presence of the scatterers. Fi-

nally, the total field is the superposition of the incident and scattered fields. I use

a total-field/scattered-field formulation to simulate an incident plane wave. The

total-field/scattered-field formulation is based on applying Maxwell’s equations to

the total field in region 1, and to the scattered field in region 2, with appropriate

connecting conditions on the adjoining interfaces (Fig. 3.3). The incident fields are

used in the connecting conditions, and only need to be calculated at the interface

between these two regions.
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For a 2-D TE simulation, Maxwell’s equations simplify to

∂Ez

∂y
= −iωµ0Hx,

∂Ez

∂x
= iωµ0Hy, (3.12)

∂Hy

∂x
− ∂Hx

∂y
= iωϵEz.

                                             

                                 

FIGURE 3.4. The lower left corner of the boundary between the total fields and scattered
fields regions showing the locations where field components are defined for a 2-D TE
simulation using the total field/scattered field method.

Now consider the lower left corner of the boundary between the total fields and

scattered fields regions (Fig. 3.4). At grid point (i = i0, j = j0), I have (Section

2.5)

H tot
y

∣∣∣
i0+

1
2
,j0
−Hsca

y

∣∣∣
i0− 1

2
,j0

∆x
−

H tot
x

∣∣∣
i0,j0+

1
2

−Hsca
x

∣∣∣
i0,j0− 1

2

∆y
= iωϵEtot

z

∣∣∣
i0,j0

. (3.13)
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Note that Ez at i = i0, j = j0 is a total field. Equation (3.14) as written above

is not correct, since the spatial derivatives are expressed by a mix of total and

scattered field components. To fix this inconsistency, I use the linearity of Maxwell’s

equations

H tot
y

∣∣∣
i0− 1

2
,j0
= H inc

y

∣∣∣
i0− 1

2
,j0
+Hsca

y

∣∣∣
i0− 1

2
,j0
, (3.14)

H tot
x

∣∣∣
i0,j0− 1

2

= H inc
x

∣∣∣
i0,j0− 1

2

+Hsca
x

∣∣∣
i0,j0− 1

2

. (3.15)

Thus, the correct form of the above equation is

iωϵEtot
z

∣∣∣
i0,j0

=

H tot
y

∣∣∣
i0+

1
2
,j0
−Hsca

y

∣∣∣
i0− 1

2
,j0

∆x
−

H tot
x

∣∣∣
i0,j0+

1
2

−Hsca
x

∣∣∣
i0,j0− 1

2

∆y

−
H inc

y

∣∣∣
i0− 1

2
,j0

∆x
+

H inc
x

∣∣∣
i0,j0− 1

2

∆y
. (3.16)

In analogy to equations (3.13) through (3.16), the scattered magnetic field com-

ponents Hsca
y

∣∣∣
i0− 1

2
,j0
, Hsca

x

∣∣∣
i0,j0− 1

2

adjacent to the corner of the boundary are deter-

mined by

iωµ0H
sca
y

∣∣∣
i0− 1

2
,j0
=

Etot
z

∣∣∣
i0,j0

−Esca
z

∣∣∣
i0−1,j0

∆x
−

Einc
z

∣∣∣
i0,j0

∆x
, (3.17)

iωµ0H
sca
x

∣∣∣
i0,j0− 1

2

= −
Etot

z

∣∣∣
i0,j0

−Esca
z

∣∣∣
i0,j0−1

∆y
+

Einc
z

∣∣∣
i0,j0

∆y
. (3.18)

The other two magnetic field components H tot
y

∣∣∣
i0+

1
2
,j0
, and H tot

x

∣∣∣
i0,j0+

1
2

adjacent to

the corner of the boundary do not require special handling and are given by

iωµ0H
tot
y

∣∣∣
i0+

1
2
,j0
=

Etot
z

∣∣∣
i0+1,j0

−Etot
z

∣∣∣
i0,j0

∆x
, (3.19)

iωµ0H
tot
x

∣∣∣
i0,j0+

1
2

= −
Etot

z

∣∣∣
i0,j0+1

−Etot
z

∣∣∣
i0,j0

∆y
. (3.20)
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Substituting equations (3.17)-(3.20) into Eq. (3.16), I obtain the final equation for

Ez

∣∣∣
i0,j0

in the 2-D FDFD total field-scattered field formulation

Etot
z

∣∣∣
i0+1,j0

−2Etot
z

∣∣∣
i0,j0

+ Esca
z

∣∣∣
i0−1,j0

(∆x)2
+

Etot
z

∣∣∣
i0,j0+1

−2Etot
z

∣∣∣
i0,j0

+ Esca
z

∣∣∣
i0,j0−1

(∆y)2

+ ω2ϵµ0E
tot
z

∣∣∣
i0,j0

= −[
1

(∆x)2
+

1

(∆y)2
]Einc

z

∣∣∣
i0,j0

−iωµ0

H inc
x

∣∣∣
i0,j0− 1

2

∆y

+ iωµ0

H inc
y

∣∣∣
i0− 1

2
,j0

∆x
. (3.21)

By comparing equations (3.21) and (2.21), I observe that the incident fields result

in an equivalent current source Jz such that

iωµ0Jz
∣∣
i0,j0

= −[
1

(∆x)2
+

1

(∆y)2
]Einc

z

∣∣∣
i0,j0

−iωµ0

H inc
x

∣∣∣
i0,j0− 1

2

∆y

+ iωµ0

H inc
y

∣∣∣
i0− 1

2
,j0

∆x
. (3.22)
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Chapter 4
Subwavelength Slow-Light Plasmonic
Waveguides Based on a Plasmonic
Analogue of Electromagnetically
Induced Transparency1

4.1 Introduction to Slow Light

Slow wave propagation was observed and widely used in the microwave range

as early as the 1940s [61, 62]. The first experimental observation of slow light

in the nonlinear regime was made in 1967 by McCall and Hahn [63], and soon

afterwards Grischkowsky and others observed slow light in the linear regime [64].

The discovery of EIT gave slow light science a strong impetus [65, 66, 67, 68].

In addition, slow group velocities occur quite commonly in waveguide structures

which enable engineering of their dispersion properties such as in photonic crystals

[69].

Slow-light methods have direct applicability to the fields of optical telecommuni-

cations for applications such as buffering, regeneration, and optical data processing

[70, 71]. Slow light can enable delaying and temporarily storing light in all-optical

memories. The target application of slow light for optical memory is an all-optical

router that temporarily stores data, while identifying the address of a data packet.

Electronic buffers typically store megabits of data. The main argument in favor of

optical schemes is that the required optical-electronic-optical conversion consumes

a lot of power and limits the bandwidth of information. Due to current technology

limitations, all-optical buffers are not expected to outperform electronic buffers in

1Reprinted with permission from Y. Huang, C. Min, and G. Veronis, “Subwavelength Slow-Light Plasmonic
Waveguides Based on a Plasmonic Analogue of Electromagnetically Induced Transparency,”Applied Physics Let-
ters, 99, 143117 (2011). Copyright 2011, American Institute of Physics.
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the near future. However, tunable optical delay lines for synchronizing and time-

interleaving streams of data are a more feasible application in the near future, since

only modest delays of the order of only a few bits are required.

In addition, nonlinear effects can be enhanced in systems with slow group veloc-

ity as a result of the compression of the local energy density [70]. When an optical

pulse travels in a slow-light waveguide, it is compressed and its energy density is

thereby increased [70]. As nonlinear effects depend on energy density, this means

that the strength of the nonlinear interaction effectively scales with the slowdown

factor of the waveguide. Slow light can bring spectacular advances to the field of

nonlinear optics, enabling sizeable effects to be realized with much lower power

levels and with much smaller and cheaper lasers.

Slowing down light in optical waveguides leads to enhanced light-matter inter-

action, and can, therefore, also enhance the performance of optical devices, such as

switches and sensors [70]. This is due to the fact that the sensitivity of the phase of

the light signal to the induced change in the index of refraction can be drastically

enhanced if one operates in the regime of slow group velocity [69].

Slow-light methods also find applications in quantum optics [70]. In quantum in-

formation processing, one of the key issues is to store the quantum state of light for

a sufficiently long time to enable quantum operations. Slowing and stopping light

are ways to achieve this long storage time [72]. Quantum operations can also be

performed in the same system by slowing down two pulses of light simultaneously.

The two pulses, when propagating with slow but equal group velocities, interact

very efficiently for a long time. This process creates strongly correlated states of

interacting photons (entangled photons), which form the basic building blocks of

a quantum processor [73].
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4.2 Slow-Light Waveguides Based on a Plasmonic Analogue of EIT

As discussed in Chapter 1, plasmonic waveguides have shown the potential to

guide and manipulate light at deep subwavelength scales [25]. Slowing down light

in plasmonic waveguides leads to enhanced light-matter interaction, and could

therefore enhance the performance of nanoscale plasmonic devices such as switches

and sensors [74, 75, 76, 77, 78, 79, 80]. Among the different plasmonic waveguiding

structures, MDM plasmonic waveguides are of particular interest because they

support modes with deep subwavelength scale over a very wide range of frequencies

extending from DC to visible [7]. Recently, a MDM plasmonic waveguide system,

based on a plasmonic analogue of periodically loaded transmission lines, which

supports a guided subwavelength slow-light mode was introduced [80].

In this chapter, I introduce an alternative MDM plasmonic waveguide system,

based on a plasmonic analogue of EIT, which also supports a guided subwavelength

slow-light mode. EIT is a coherent process observed in three-level atomic media,

which allows a narrow transparency window in the spectrum of an otherwise opaque

medium, and can slow down light pulses by several orders of magnitude [29]. Since

the EIT spectrum results from the interference of resonant pathways [29, 30], it has

been recognized that similar interference effects can also occur in classical systems,

such as optical waveguides coupled to resonators and metamaterials [29, 31, 32, 33].

In addition, it has been demonstrated that periodic optical waveguides, resulting

from cascading structures with EIT-like response, can slow down and even stop

light [30, 34, 35].

The proposed structure consists of a periodic array of two MDM stub resonators

side-coupled to a MDM waveguide. Side-coupled-cavity structures have been pre-

viously proposed as compact filters, reflectors, switches, and impedance matching
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elements for plasmonic waveguides [81, 82, 83, 84]. Here I show that the proposed

structure supports a band diagram similar to that of EIT systems, with three

photonic bands in the vicinity of the two stub resonances. The middle band cor-

responds to a mode with slow group velocity and zero group velocity dispersion

near the middle of this band. I find that decreasing the frequency spacing between

 

FIGURE 4.1. Schematic of a MDM plasmonic waveguide side-coupled to two MDM stub
resonators.

the resonances, increases the slowdown factor, and decreases the bandwidth of the

middle band. I also show that there is a trade-off between the slowdown factor and

the propagation length of the supported optical mode in such slow-light plasmonic

waveguide systems. I use the FDFD method to investigate the properties of the

structure [80]. As discussed in Chapter 2, this method allows us to directly use

experimental data for the frequency-dependent dielectric constant of metals such

as silver [51], including both the real and imaginary parts, with no approximation.

PML absorbing boundary conditions are used at all boundaries of the simulation
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domain. When simulating the periodic waveguiding structure, I place several peri-

ods of the structure within the PML layer to drastically reduce spurious reflections

at PML interfaces [80].

4.3 MDM Waveguide Side-Coupled to Two MDM Stub Resonators

I first consider a plasmonic MDM waveguide side-coupled to two MDM stub res-

onators (Fig. 4.1). The resonant frequencies of the cavities can be tuned by ad-

justing the cavity lengths L1 and L2. This system is a plasmonic analogue of EIT

[85, 86]. The MDM waveguide and MDM stub resonators have deep subwavelength

widths (w ≪ λ), so that only the fundamental TM mode is propagating. Thus, I

can use single-mode scattering matrix theory to account for the behavior of the

system [87]. The complex magnetic field reflection coefficient r1, and transmission

coefficients t1, t2 = t3 for the fundamental propagating TMmode at a MDM waveg-

uide crossing (Fig. 4.2(a)), as well as the reflection coefficient r2 at the boundary

of a short-circuited MDM waveguide (Fig. 4.2(b)) are numerically extracted using

FDFD [87]. The power transmission spectra T (ω) of the two-cavity system (Fig.

4.1) can then be calculated using scattering matrix theory as

T = |t1 − C|2 , (4.1)

which is in excellent agreement with the exact results obtained using FDFD (Fig.

4.3). Here C =
t22(2t1−2r1+s1+s2)

t21−(r1−s1)(r1−s2)
, si = r−1

2 exp(2γMDMLi), i = 1, 2, and γMDM =

αMDM + iβMDM is the complex wave vector of the fundamental propagating TM

mode in a MDM waveguide of width w. [Equation (4.1) is proved in Appendix

A]. The transmission spectra T (ω) feature two dips (Fig. 4.3). I found that the

frequencies ω1, ω2 where these dips occur are approximately equal to the first

resonant frequencies of the two cavities, i.e. ϕr1(ωi)+ϕr2(ωi)−2βMDM(ωi)Li ≃ −2π,
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FIGURE 4.2. (a) Schematic defining the reflection coefficient r1, and transmission co-
efficients t1, t2, t3 when the fundamental TM mode of the MDM waveguide is incident
at a waveguide crossing. Note that t2 = t3 due to symmetry. (b) Schematic defining
the reflection coefficient r2 of the fundamental TM mode of the MDM waveguide at the
boundary of a short-circuited MDM waveguide.
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FIGURE 4.3. Transmission spectra for the structure of Fig. 4.1 calculated using FDFD
(circles) and scattering matrix theory (solid line) for a silver-air structure with w = 50nm.
Results are shown for L1 = 360nm, L2 = 160nm (black line and circles), and L1 = 295nm,
L2 = 220nm (red line and circles). Also shown are the transmission spectra calculated
using FDFD for L1 = 295nm, L2 = 220nm and lossless metal (blue dashed line).

i = 1, 2, where ϕri = arg(ri), i = 1, 2. When either one of the cavities is resonant,

the field intensity in that cavity is high, while the field intensity in the other cavity

is almost zero, since it is far from resonance (Figs. 4.4(a), 4.4(b)). In addition,

the transmission is almost zero, since the incoming wave interferes destructively

with the decaying amplitude into the forward direction of the resonant cavity

field. The transmission spectra T (ω) also feature a transparency peak centered at

frequency ω0. I found that ω0 is approximately equal to the first resonant frequency

of the composite cavity of length L1 + L2 + w formed by the two cavities, i.e.

2ϕr2(ω0)− 2βMDM(ω0)(L1 + L2 + w) ≃ −2π.

Thus, the transmission peak frequency ω0 is tunable through the cavity lengths

L1, L2. When ω = ω0, the field intensity is high in the entire composite cavity (Fig.

4.4(c)), and the transmission spectra exhibit a peak due to resonant tunneling of

the incoming wave through the composite cavity. The width of the peak is highly
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(a)

(b)

(c)

FIGURE 4.4. (a)-(c) Magnetic field profiles for the structure of Fig. 4.1 for L1 = 360nm,
L2 = 160nm, w = 50nm at f = 143, 299, 194THz, when the fundamental TM mode of
the MDM waveguide is incident from the left.
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sensitive to the frequency spacing between the resonances δω = ω2−ω1, which can

be tuned by adjusting the stub lengths difference δL = L1 − L2. As δω decreases,

the width of the peak decreases (Fig. 4.3). In the lossless metal case, the center

peak can be tuned to be arbitrarily narrow with unity peak transmission (Fig. 4.3).

In the presence of loss, the peak transmission decreases, as the frequency spacing

δω decreases (Fig. 4.3).

 

 

FIGURE 4.5. Schematic of a plasmonic waveguide system consisting of a periodic array
of two MDM stub resonators side-coupled to a MDM waveguide.

4.4 Periodic Plasmonic Waveguide System

I next consider the plasmonic waveguide system (Fig. 4.5) obtained by periodi-

cally cascading the side-coupled-cavity structure of Fig. 4.1. The periodicity d is

subwavelength (d ≪ λ), so that the operating wavelength is far from the Bragg

wavelength of the waveguide [80] (λ ≫ λBragg). In addition, the distance between

adjacent side-coupled cavities d−w is chosen large enough so that direct coupling
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between the cavities has a negligible effect on the dispersion relation of the system

[80]. Using single-mode scattering matrix theory [87], the dispersion relation be-

tween the frequency ω and the Bloch wave vector γ = α+ iβ of the entire system

is found to be

cosh(γd) =
A

2
exp[−γMDM(d− w)] +

B

2
exp[γMDM(d− w)], (4.2)

which is in excellent agreement with the exact results obtained using FDFD (Fig.

4.7). Here A = (t1 − r1)
t1+r1−2C

t1−C
, and B = (t1 −C)−1. [Equation (4.2) is proved in

Appendix B]. In Fig. 4.6, I show the dispersion relation for the plasmonic waveg-

FIGURE 4.6. Dispersion relation of the plasmonic waveguide system of Fig. 4.5 calcu-
lated using FDFD (red dashed line). Results are shown for a silver-air structure with
d = 300nm, L1 = 360nm, L2 = 160nm, and w = 50nm. Also shown is the dispersion
relation for lossless metal (black solid line).

uiding structure of Fig. 4.5. In the lossless metal case, the system supports three

photonic bands in the vicinity of the cavity resonances. The middle band cor-

responds to a mode with slow group velocity vg ≡ ∂ω
∂β

and zero group velocity

dispersion β2 ≡ ∂2β
∂ω2 near the middle of this band (Fig. 4.6). In the two band gaps
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between the three bands the system supports non-propagating modes with β = 0.

Such a band diagram is similar to that of EIT systems [34]. When losses in the

metal are included, the band structure is unaffected in the frequency range of the

three bands except at the band edges (Fig. 4.6). In addition, in the frequency range

of the two band gaps the Bloch wave vector γ has an imaginary component (β ̸= 0),

and the dispersion relation experiences back-bending [80] with negative group ve-

locity. In addition, the width of the middle band and the slowdown factor c/vg

FIGURE 4.7. Dispersion relation of the plasmonic waveguide system of Fig. 4.5 calculated
using FDFD (circles) and scattering matrix theory (solid line). Results are shown for
L1 = 360nm, L2 = 160nm (black line and circles), and L1 = 295nm, L2 = 220nm (red
line and circles). All other parameters are as in Fig. 4.6. In both cases only a portion of
the band structure is shown, corresponding to the frequency range of the middle band.

strongly depend on the frequency spacing between the resonances δω = ω2 − ω1.

By decreasing the stub lengths difference δL, δω decreases, and this leads to de-

creased bandwidth of the middle band (Fig. 4.7). In Figs. 4.8(a) and 4.8(b) I show

the slowdown factor c/vg, and propagation length Lp for the plasmonic waveguide

system of Fig. 4.5 as a function of frequency for two different values of δL. In
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both cases I show the frequency range corresponding to the middle band of the

system. For a given δL, the propagation length Lp of the supported optical mode

 

 

 

FIGURE 4.8. (a)-(b) Reciprocal of the group velocity vg, and propagation length Lp for
the plasmonic waveguide system of Fig. 4.5 as a function of frequency calculated using
FDFD. Results are shown for L1 = 360nm, L2 = 160nm, and L1 = 295nm, L2 = 220nm.
All other parameters are as in Fig. 4.6.

is maximized at a frequency very close to the frequency where the group velocity

dispersion is zero. As δL and therefore δω decrease, the slowdown factor c/vg in-

creases, while the propagation length Lp decreases at the frequency of zero group

velocity dispersion. Thus, there is a trade-off between the slowdown factor c/vg
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and the propagation length Lp of the supported optical mode in such slow-light

plasmonic waveguide systems [80]. For δL = 200nm (δL = 75nm) I have c/vg ≃ 6

(c/vg ≃ 30) at the frequency where the group velocity dispersion is zero (Figs.

4.8(a) and 4.8(b)).I found that even larger slowdown factors can be obtained by

further decreasing δL at the cost of reduced propagation length. I also note that

the propagation length of the system for a given slowdown factor can be increased

by incorporating gain media in the structure [47].

FIGURE 4.9. Dispersion relation of the plasmonic waveguide system of Fig. 4.5 calculated
using FDFD. Results are shown for d = 100nm (black line), d = 200nm (red line), and
d = 300nm (green line). All other parameters are as in Fig. 4.6. In all cases only a portion
of the band structure is shown, corresponding to the frequency range of the middle band.

I also consider the effect of the periodicity d (Fig. 4.5) on the dispersion relation

of the system (Fig. 4.9). For large d the distance d − w between adjacent two-

cavity structures in the periodic waveguide is large, so that their coupling through

the MDM waveguide is weak. In this regime, the frequency range of the middle

band of the periodic waveguide system of Fig. 4.5 approximately corresponds to
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the frequency range of the transparency peak of the two-cavity structure of Fig.

4.1. As d decreases, the coupling between adjacent two-cavity structures increases.

As a result, the slow-light middle band shifts to higher frequencies, while its width

slightly broadens (Fig. 4.9). Thus, the periodicity provides us an additional degree

of freedom to tune the dispersion relation of the periodic waveguide system.

4.5 Conclusions

In conclusion, I introduced subwavelength slow-light waveguides for enhanced light-

matter interaction, based on a plasmonic analogue of EIT. Unlike previously pro-

posed structures [80], such waveguides exhibit a small group velocity dispersion

and a large slowdown factor over a broad wavelength range, features which are

highly desirable for practical applications of slow-light devices [61]. In addition, if

these waveguides are combined with gain and tunable refractive index materials,

they could enable stopping and storing light in a subwavelength volume [30].
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Chapter 5
Design of Slow-Light Enhanced
Ultra-Compact Plasmonic Waveguide
Sensors

5.1 Introduction to Optical Sensors

Optical sensors are passive devices which convert variations of certain physical

quantities into detectable variations in the intensity, phase, or spectrum of optical

signals. By measuring the variations of the optical signal, we try to analyze the

desired physical property, and optimize the sensitivity through the light-matter

interaction process involved. Compared with their electrical or mechanical coun-

terparts, there are several advantages exhibited by optical sensors. For example,

optical devices in general enable high-speed signal processing. Nowadays, optical

sensors already play a significant role in a large range of technical applications

from traditional integrated optical sensors such as a Mach-Zehnder interferometer,

to novel optical biosensors which can be applied to healthcare, drug discovery, and

environmental protection [88].

The refractive index (RI) is the fundamental optical property of materials. RI

optical sensors, which convert RI variations to optical signals, are the most widely

used optical sensors. RI optical sensors which are implemented with a surface

plasmon system, are known as surface plasmon resonance (SPR) sensors. As we saw

in Chapter 1, surface plasmon polaritons are electromagnetic resonance excitations

that are bound to propagate along a metal-dielectric interface. A change in the RI

of the dielectric layer will lead to a change of the surface plasmon characteristic

wavevector. Since the SPP mode can be confined in a deep subwavelength scale

[89, 90], such sensors can be used in nanoscale photonics systems. In addition, most
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of the surface wave energy is confined in the dielectric. Therefore, the sensitivity can

be drastically enhanced even if there is a small change in the RI of the dielectric.

In a ring resonator, light is guided by total internal reflection between the high

RI core layer and the low RI cladding. Since the resonance wavelength of the

guided mode can be tuned by the RI of the cladding material, ring resonators can

be used as sensors. Ring resonators have been implemented in several structures

such as microspheres, microtoroids, microrings, liquid core optical ring resonators,

and have demonstrated high detection resolution and sensitivity capability [91, 92,

93, 94, 95]. In addition, on-chip ring resonators have potential for mass production,

and are compatible with other photonic devices for on-chip integration [96].

Interferometer-based sensors associate the phase variation of the propagating

optical mode with the RI variation. The phase variation is a result of the variation

of the effective index of the optical mode in the sensing waveguide. Interferometer-

based sensors can be implemented with surface plasmon interferometers [97]. As

mentioned above, the SPPs are tightly bound to the surface between the metal and

the dielectric. In addition to apertures in metal films and metal nanoparticles, MZI

with SPP waveguides have also demonstrated their great potential in biochemical

sensing applications both theoretically and experimentally [97, 98].

Photonic crystal (PhC) sensors are a promising direction for on-chip sensing of

the RI. Photonic crystals are composed of periodic refractive indices that alter the

motion of photons in the same way that a semiconductor crystal affects the elec-

tron motion. Photonic crystals therefore support photonic band structures which

are very similar to the electronic energy bands in semiconductors. In sensing appli-

cations, the characteristics of the photonic crystal band gap are shifted as a result

of RI variations. In addition, the photonic crystal fiber is a convenient and low

cost tool which enables remote sensing. On the other hand, the localized mode of
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a photonic crystal microcavity exhibits an extremely small active sensing volume,

which may be a great optical alternative to implement small volume detection in

future chip-scale photonics [99].

5.2 Slow-Light Enhanced Plasmonic Waveguide Sensors

Integrated optical devices for biochemical sensing could provide high sensitivity,

small size, and dense integration. In particular, planar guided-wave sensors, based

on Mach-Zehnder interferometers, directional couplers, and microring resonators,

are able to measure small refractive index changes of analyte, and are becoming

popular as label-free biomolecule sensors [97, 100, 101]. While dielectric waveguides

lead to wavelength-scale sensors, plasmonic waveguides could enable miniaturized

sensors with subwavelength length scales, due to the ability of such waveguides

to confine and manipulate light at the nanoscale. In this chapter, I investigate

nanoscale plasmonic sensors enhanced by slow-light effects.

I consider a Mach-Zehnder interferometer, implemented with plasmonic waveg-

uiding structures, which is used as a refractive index sensor (Fig. 5.1(a)). Fluidic

channels overlap with the sensing and reference arms of the MZI. The fluid to be

sensed flows over the sensing arm, while a reference fluid flows over the reference

arm. The sensing fluidic channel and the plasmonic waveguide structure in the

sensing arm overlap in the sensing region. The length and width of the sensing

region are LS and WS, respectively.

The modes of the plasmonic waveguides in the sensing and reference arms are

excited by an optical source such as a laser (Fig. 5.1(a)). The output power, which

is the only measurable quantity in such a MZI structure, is collected by a photode-

tector, and is given by
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FIGURE 5.1. (a) Schematic of a Mach-Zehnder interferometer (MZI) used as a refractive
index sensor. Fluidic channels overlap with the sensing and reference arms of the MZI.
The fluid to be sensed flows over the sensing arm, while a reference fluid flows over the
reference arm. The sensing fluidic channel and the plasmonic waveguide structure in the
sensing arm overlap in the sensing region. The length and width of the sensing region
are LS and WS , respectively. (b) Schematic of the plasmonic waveguide system used in
the sensing region of the MZI sensor. It consists of a periodic array of two MDM stub
resonators side-coupled to a MDM waveguide. N periods of the structure are included
in the sensing region of the sensor.
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Pout(n) = Pin

∣∣1
2
e−[A(n)+jB(n)] +

1

2
e−(A0+jB0)

∣∣2, (5.1)

where n is the refractive index of the biological or chemical analyte in the sensing

arm, e−A(n) and e−A0 is the attenuation of the optical mode field in the sensing

and reference arms, respectively, while B(n) and B0 is the insertion phase of the

sensing and reference arms, respectively. If I define

F (n) ≡ 1

2
e−[A(n)+jB(n)] +

1

2
e−(A0+jB0), (5.2)

equation (5.1) simplifies to

Pout(n) = Pin

∣∣F (n)
∣∣2. (5.3)

The MZI refractive index sensitivity is then given by

∂Pout(n)

∂n
= Pin

∂[F (n)F ∗(n)]

∂n
= Pin{

∂F (n)

∂n
F ∗(n) +

∂F ∗(n)

∂n
F (n)}. (5.4)

Choosing the attenuation of the sensing and reference arms to be equal results

in maximum MZI visibility for such a structure [102]. In addition, choosing the

difference between the sensing and reference arms insertion phases to be an odd

multiple of π
2
results in maximum refractive index sensitivity [102]. The reference

arm attenuation e−A0 and insertion phase B0 are therefore chosen so that in the

absence of analyte (n = n0), I have e−A(n) = e−A0 , and B(n0) = B0 ±mπ
2
where

m = 1, 3, 5,... Using equation (5.2), I find that

∂Pout(n)

∂n

∣∣
n=n0

=
1

2
Pine

−2A0(
∂A

∂n

∣∣
n=n0

∓ ∂B

∂n

∣∣
n=n0

). (5.5)

To characterize the sensing capability of the proposed MZI refractive index sensors,

I define the following figure of merit (FOM) in terms of the relative change in the

output power that occurs for a change in the refractive index [103, 104]

FOM ≡ 1

Pin

∂Pout(n)

∂n

∣∣
n=n0

=
1

2
e−2A0(

∂A

∂n

∣∣
n=n0

∓ ∂B

∂n

∣∣
n=n0

). (5.6)
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The FOM can also be written as

FOM = T · S, (5.7)

where T ≡ e−2A0 is the power transmission through each of the sensor arms in the

absence of analyte, and S ≡ 1
2
(∂A
∂n

∣∣
n=n0

∓ ∂B
∂n

∣∣
n=n0

) is a factor associated with the

sensitivity of A(n) and B(n) to refractive index variations. T and S will hereto-

fore be referred to as the transmission coefficient and sensitivity coefficient,

respectively, of the MZI sensor.

5.3 MDM Waveguide in the Sensing Arm

I first consider the case where the plasmonic waveguiding structure used in the

sensing arm of the MZI sensor is a conventional MDM plasmonic waveguide [102].

The metal and the dielectric are assumed to be silver and water, respectively. I

consider a deep subwavelength sensing region with length Ls=200nm. In Fig. 5.2, I

show the FOM for such a structure as a function of the width of the MDM waveg-

uide w, calculated using FDFD and Eq. (5.6). I observe that the FOM increases

as the width of the waveguide w decreases. As w decreases, the group velocity of

the optical mode supported by the waveguide decreases [80]. The sensitivity of the

effective index of the mode to variations of the refractive index of the dielectric

therefore increases [69]. Thus, the sensitivity coefficient S of the MZI sensor in-

creases as the waveguide width w decreases. On the other hand, the propagation

length of the optical mode decreases as w decreases [80]. Thus, the transmission

coefficient T of the sensor decreases as the waveguide width w decreases. However,

the increase in the sensitivity coefficient S dominates the decrease in the transmis-

sion coefficient T of the sensor, so that overall the FOM increases as the waveguide

width w of the MDM plasmonic waveguide decreases.
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Note that, if one considers the flow conditions of the carrier fluid as well as the

size of the target biochemical analyte molecules, the practical lower limit for the

MDM waveguide width is w ∼ 20nm [102]. Thus, the maximum FOM when a

conventional MDM plasmonic waveguide is used in the sensing region is ∼ 0.7.

Also note that when a translationally invariant waveguide such as the conven-

tional MDM plasmonic waveguide is used in the sensing region of the MZI sensor

we have A = αLs and B = βLs, where α and β = 2 π
λ0
neff are the real and imag-

inary parts, respectively, of the propagation constant of the fundamental MDM

waveguide mode. In addition, for the range of parameters considered here, I can

neglect the sensitivity ∂α
∂n

so that Eq. (5.6) reduces to [102]

FOM = ∓1

2
Le−2αL2π

λ0

∂neff,s

∂n

∣∣
n=n0

. (5.8)

In Fig. 5.2, I also show the FOM calculated with the approximation of Eq. (5.8)
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FIGURE 5.2. Figure of merit FOM ≡ 1
Pin

∂Pout(n)
∂n of a MZI refractive index sensor

implemented with MDM plasmonic waveguides as a function of the width w of the
waveguides. Results are calculated for a sensing region length LS = 200nm at f =
194THz using FDFD (circles), and the analytical approximation of Eq. (5.8) (solid line).
The metal and dielectric are assumed to be silver and water, respectively.
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and I observe that it is in excellent agreement with the FOM calculated using

FDFD.

5.4 Plasmonic Analogue of EIT Waveguide in the Sensing Arm

I now consider the case where the plasmonic waveguiding structure used in the

sensing arm of the MZI sensor is a slow-light waveguide based on a plasmonic ana-

logue of EIT (Chapter 4). More specifically, the plasmonic waveguide system used

in the sensing region consists of a periodic array of two MDM stub resonators side-

coupled to a MDM waveguide (Fig. 5.1(b)). This system for brevity will heretofore

be referred to as a plasmonic EIT system. N periods of the structure are included

in the sensing region. I first consider a MZI sensor in which a single period of the

plasmonic EIT system is included in the sensing region (N=1). The transmission

spectra of such a structure feature a transparency peak centered at a frequency

which is tunable through the length L1 + L2 + w of the composite cavity formed

by the two stub resonators (Chapter 4). Here I choose L1 + L2 + w=400nm, so

that the transparency peak is centered at the operating frequency of f=194THz

(λ0 = 1.55µm). In addition, as before, I consider a sensing region with length

Ls = 200nm. In Figs. 5.3(a) and 5.3(b), I show the transmission coefficient T , and

the sensitivity coefficient S, respectively, for such a MZI sensor as a function of

the stub resonator length L1. As L1 increases, L2 decreases, since L1 + L2 + w is

fixed. Thus, the stub lengths difference ∆L = L1 − L2 decreases, and therefore

the frequency spacing between the stub resonances ∆ω decreases. As a result, the

transmission coefficient T , which corresponds to the transparency peak, decreases

due to the metallic loss (Chapter 4). On the other hand, as ∆L decreases, the

slowdown factor increases (Chapter 4). Thus, the sensitivity coefficient S increases
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FIGURE 5.3. (a) Transmission coefficient T for a MZI refractive index sensor in which
the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b) with N =
1 and w = 50nm as a function of the stub resonator length L1. Results are calculated
for a sensing region length LS = 200nm, and width WS = L1 + L2 + w = 400nm. All
other parameters are as in Fig. 5.2. (b) Sensitivity S as a function of the stub resonator
length L1. All other parameters are as in (a).
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for L1 < 160nm. I note that if L1 > 160nm, I have L2 < 190nm so that ∆L and

therefore ∆ω become very small. In this regime I found out that the slowdown

factor actually decreases, so that the sensitivity coefficient S also decreases, as

L1 increases (Fig. 5.3(b)). In Fig. 5.4, I show the FOM calculated using FDFD
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FIGURE 5.4. Figure of merit FOM ≡ 1
Pin

∂Pout(n)
∂n of a MZI refractive index sensor, in

which the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b), as
a function of the stub resonator length L1. All other parameters are as in Fig. 5.3(a).

and equation (5.6) for the MZI sensor in which a single period of the plasmonic

EIT system is included in the sensing region (N=1). The FOM is a product of

the transmission coefficient T , and the sensitivity coefficient S [equation (5.8)].

For L1 < 160nm there is a trade-off between T which decreases, and S which

increases, as L1 increases (Figs. 5.3(a), 5.3(b)). For small L1 the increase in S

dominates the decrease in T , so that the FOM increases, as L1 increases. How-

ever, for larger L1 the decrease in T becomes significant, and the FOM eventually

decreases (Fig. 5.4). The maximum FOM of ∼ 5.2 is obtained for L1 ∼145nm. I

next consider a MZI sensor in which two periods of the plasmonic EIT system are
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 FIGURE 5.5. (a) Transmission coefficient T for a MZI refractive index sensor in which
the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b) with N = 2
as a function of the stub resonator length L1. All other parameters are as in Fig. 5.3(a).
(b) Sensitivity S as a function of the stub resonator length L1. All other parameters are
as in (a).
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included in the sensing region (N=2). In Figs. 5.5(a), 5.5(b), and 5.6, I show the

transmission coefficient T , the sensitivity coefficient S, and the FOM, respectively,

for such a MZI sensor as a function of the stub resonator length L1. I observe that

the dependence of T , S, and FOM on L1 is very similar to the single period case

(Figs. 5.3(a), 5.3(b), and 5.4). For a given L1, increasing the number of periodsN of

the plasmonic EIT system, increases both the attenuation and the insertion phase

of the optical mode propagating through the structure. Thus, the transmission

coefficient T decreases, while the sensitivity coefficient S increases, as the number

of periods N increases (Figs. 5.3, 5.5). The maximum FOM of ∼ 6.9 for the N=2

case is obtained for L1 ∼ 145nm (Fig. 5.6). I observe that for deep subwavelength
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FIGURE 5.6. Figure of merit FOM ≡ 1
Pin

∂Pout(n)
∂n of a MZI refractive index sensor, in

which the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b) with
N = 2, as a function of the stub resonator length L1. All other parameters are as in Fig.
5.4(a).

sensing regions (Ls=200nm), using the plasmonic EIT system in the sensing arm
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of the MZI sensor results in significantly larger FOM, compared to a sensor in

which a conventional MDM waveguide is used in the sensing arm. As mentioned

above, a MZI sensor using the plasmonic EIT system results in a maximum FOM

of ∼ 5.2 and ∼ 6.9 for N=1 and N=2, respectively, while the maximum FOM for

a MZI sensor using a conventional MDM waveguide is ∼ 0.7. In other words, a

MZI sensor using the plasmonic EIT system leads to approximately an order of

magnitude enhancement in the FOM, and therefore in the minimum detectable

refractive index change, compared to a MZI sensor using a conventional MDM

waveguide. I found that further increasing the number of periods N of the plas-
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FIGURE 5.7. Figure of merit FOM ≡ 1
Pin

∂Pout(n)
∂n of a MZI refractive index sensor, in

which the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b), as
a function of the number of periods N . All other parameters are as in Fig. 5.4(a).

monic EIT system in the sensing region of the MZI sensor decreases the FOM of

the sensor (Fig. 5.7). This is due to the fact that when lossy waveguides are used in
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the arms of a MZI sensor the optimum length of the sensing region is equal to the

propagation length of the optical mode in the waveguides [102]. For the plasmonic

EIT system considered here, when N>2 the length of the structure exceeds the

propagation length of the supported optical mode, and the corresponding FOM

therefore decreases. Finally, in Fig. 5.8, I show the FOM of the MZI sensor based
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FIGURE 5.8. Figure of merit FOM ≡ 1
Pin

∂Pout(n)
∂n of a MZI refractive index sensor, in

which the sensing region consists of a plasmonic waveguide system as in Fig. 5.1(b), as
a function of frequency. Results are shown for L1 = 145nm. All other parameters are as
in Fig. 5.6(a).

on the plasmonic EIT system for N=2 as a function of frequency. I observe that,

as expected, the FOM of the sensor exhibits a peak at f=194 THz, which coin-

cides with the transparency peak in the transmission spectra of the plasmonic EIT

system. In addition, the FOM also exhibits a peak at f=124 THz. I found that

this peak in the FOM is also associated with a peak in the transmission spectra

of the plasmonic EIT system for N=2. The magnetic field profiles associated with
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the transmission spectra peaks at f=124 THz and f=194 THz are shown in Figs.

5.9(a), and 5.9(b), respectively.

f=124THz

f=194THz

 Incident

direction

(b)

(a)

200nm

FIGURE 5.9. (a) Magnetic field profile for the structure of Fig. 5.8 at f = 124 THz when
the fundamental TM mode of the MDM waveguide is incident from the left. (b) Same
as in (a) except that f = 194 THz.

5.5 Conclusions

In conclusion, I considered Mach-Zehnder interferometer sensors in which the sens-

ing arm consists of a slow-light waveguide based on a plasmonic analogue of EIT. I

showed that a MZI sensor using such a waveguide leads to approximately an order
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of magnitude enhancement in the refractive index sensitivity, and therefore in the

minimum detectable refractive index change, compared to a MZI sensor using a

conventional MDM waveguide.
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Chapter 6
Compact Slit-based Couplers for
Metal-Dielectric-Metal Plasmonic
Waveguides

6.1 Introduction to Couplers for Plasmonic Waveguides

As discussed in Chapter 1, plasmonic waveguides have shown the potential to guide

subwavelength optical modes, the so-called surface plasmon polaritons, at metal-

dielectric interfaces. Several different nanoscale plasmonic waveguiding structures

have been proposed, such as metallic nanowires, metallic nanoparticle arrays, V-

shaped grooves, and MDM waveguides [9, 10, 13, 105, 106, 107, 108, 109]. Among

these, MDM plasmonic waveguides, which are the optical analogue of microwave

two-conductor transmission lines [110], are of particular interest because they sup-

port modes with deep subwavelength scale over a very wide range of frequencies

extending from DC to visible [7]. Thus, MDM waveguides could provide an inter-

face between conventional optics and subwavelength electronic and optoelectronic

devices.

For applications involving MDM plasmonic waveguides, it is essential to develop

compact structures to couple light efficiently into such waveguides [36]. Several

different couplers between MDM and dielectric waveguides have been investigated

both theoretically and experimentally[36, 37, 38, 39, 40, 41]. In addition, structures

for coupling free space radiation into MDM waveguides have also been investigated.

In particular, Preiner et al. [42] investigated subwavelength diffraction gratings as

coupling structures into MDM waveguide modes. However, in diffraction grating

structures several grating periods are required for efficient waveguide mode exci-

tation, so that such structures need to be several microns long when designed to
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operate at frequencies around the optical communication wavelength (λ0 =1.55

µm). In addition, in several experimental investigations of MDM waveguides and

devices, a single slit was used to couple light from free space into MDM plasmonic

waveguides [15, 43, 44, 45, 46]. While single slit coupling structures are more com-

pact, slit-based coupler designs have not been investigated in detail.

In this chapter, I investigate compact wavelength-scale slit-based structures for

coupling free space light into MDM plasmonic waveguides. I show that for a sin-

gle slit structure the coupling efficiency is limited by a trade-off between the light

power coupled into the slit, and the transmission of the slit-MDM waveguide junc-

tion. I next consider a two-section slit structure, and show that for such a structure

the upper slit section enhances the coupling of the incident light into the lower slit

section, by improving the impedance matching between the incident plane wave

and the lower slit mode. The optimized two-section slit structure results in ∼ 2.3

times enhancement of the coupling into the MDM plasmonic waveguide compared

to the optimized single-slit structure. I then consider a symmetric double-slit struc-

ture. I show that for such a structure the surface plasmons excited at the metal-air

interfaces are partially coupled into the slits, and thus the coupling of the incident

light into the slits is greatly enhanced. The optimized double-slit structure results

in ∼ 3.3 times coupling enhancement compared to the optimized single-slit struc-

ture. Finally, I show that, while all incoupling structures are optimized at a single

wavelength, the operation wavelength range for high coupling efficiency is broad.

The remainder of this Chapter is organized as follows. In Section 6.2, I first

define the transmission cross section of the MDM plasmonic waveguide for a given

coupling structure, and describe the simulation method used for the analysis of the

couplers. The results obtained for the single slit, two-section slit, and double slit
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coupling structures are presented in Sections 6.3, 6.4, and 6.5, respectively. Finally,

our conclusions are summarized in Section 6.6.

6.2 Simulation Method

I consider a silver-silica-silver MDM plasmonic waveguide in which the upper metal

layer has a finite thickness (Fig. 6.1). The minimum thickness of this metal layer is

chosen to be 150nm. For such a thickness, the field profile and wave vector of the

fundamental TM mode supported by such a waveguide at optical frequencies are

essentially identical to the ones of a MDM plasmonic waveguide with semi-infinite

metal layers. I consider compact structures for incoupling a normally incident plane

wave from free space into the fundamental mode of the silver-silica-silver MDM

plasmonic waveguide. In all cases, the total width of the incoupling structure is

limited to less than 1.1µm, which approximately corresponds to one wavelength in

silica (λs = λ0/ns, where ns =1.44), when operating at the optical communication

wavelength (λ0 =1.55µm).

Due to the symmetry of all coupling structures considered in this paper, the

same amount of power couples into the left and right propagating silver-silica-silver

MDM waveguide modes. In other words, half of the total incoupled power couples

into each of the left and right propagating MDM waveguide modes. For comparison

of different incoupling configurations, I define the transmission cross section σT

of the silver-silica-silver MDM waveguide as the total light power coupled into

the right propagating fundamental TM mode of the waveguide, normalized by the

incident plane wave power flux density [36]. In two dimensions, the transmission

cross section is in the unit of length.
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I use a two-dimensional FDFD method (Chapter 2) [111, 112] to numerically

calculate the transmission in the MDM plasmonic waveguide. This method allows

us to directly use experimental data for the frequency-dependent dielectric constant

of metals such as silver [36, 51], including both the real and imaginary parts, with

no approximation. PML absorbing boundary conditions are used at all boundaries

of the simulation domain [56]. I also use the total-field-scattered-field formulation

to simulate the response of the structure to a normally incident plane wave input

(Chapter 3) [52].

6.3 Single Slit Coupler

 

FIGURE 6.1. Schematic of a structure consisting of a single slit for incoupling a normally
incident plane wave from free space into the fundamental mode of a MDM plasmonic
waveguide.

I first consider a structure consisting of a single slit for incoupling a normally

incident plane wave from free space into the fundamental mode of the silver-silica-

silver MDM plasmonic waveguide with dielectric core thickness w. The slit extends
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half way into the dielectric core of the MDM waveguide (Fig. 6.1). In Fig. 6.2, I
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FIGURE 6.2. Transmission cross section σT of the MDM plasmonic waveguide in units
of w for the structure of Fig. 6.1 as a function of the slit width d and length h calculated
using FDFD. Results are shown for a silver-silica-silver structure with w = 50nm at
λ0 =1.55µm.

show the transmission cross section σT of the silver-silica-silver MDM waveguide

in units of w for the single slit structure of Fig. 6.1 as a function of the width d and

length h of the slit. For the range of parameters shown, I observe one transmission

peak. The maximum cross section of σT ∼ 4.67w is obtained for such an incoupling

structure at d = 250nm and h = 205nm (Fig. 6.2). Both the silver-silica-silver

MDM waveguide and the silver-air-silver slit have subwavelength widths, so that

only the fundamental TM mode is propagating in them. Thus, I can use single-

mode scattering matrix theory to account for the behavior of the system [87]. I

use FDFD to numerically extract the transmission cross section σT1 of a silver-air-

silver MDM waveguide with air core thickness d (Fig. 6.3(a)). I also use FDFD

to extract the complex magnetic field reflection coefficient r1 and transmission
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FIGURE 6.3. (a) Schematic defining the transmission cross section σT1 of a semi-infinite
MDM waveguide when a plane wave is normally incident on it. (b) Schematic defining the
reflection coefficient r1, and transmission coefficient t1 when the fundamental TM mode
of a metal-air-metal waveguide is incident at the junction with a metal-dielectric-metal
waveguide. (c) Schematic defining the reflection coefficient r2 of the fundamental TM
mode of a MDM waveguide at the waveguide/air interface.

coefficient t1 of the fundamental mode of a silver-air-silver MDM waveguide at the

T-shaped junction with a silver-silica-silver MDM waveguide (Fig. 6.3(b)), as well

as the reflection coefficient r2 at the interface between the silver-air-silver MDM

waveguide and air (Fig. 6.3(c)). The transmission cross section σT of the silver-

silica-silver MDM waveguide for the single slit structure of Fig. 6.1 can then be

calculated using scattering matrix theory as [87]:

σT = σT1ηres1Tsplitter, (6.1)
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FIGURE 6.4. Transmission cross section σT for the structure of Fig. 6.1 as a function of
the slit length h calculated using FDFD (red circles) and scattering matrix theory (black
solid line). Results are shown for d = 220nm. All other parameters are as in Fig. 6.2.

where Tsplitter=|t1|2 is the power transmission coefficient of the T-shaped junc-

tion of Fig. 6.3(b), ηres1 = | exp(−γ1h)
1−r1r2 exp(−2γ1h)

|2 is the resonance enhancement factor

associated with the silver-air-silver slit resonance, and γ1 = α1 + iβ1 is the com-

plex wave vector of the fundamental propagating TM mode in a silver-air-silver

MDM waveguide with air core thickness d. [Equation (6.1) is proved in Appendix

C]. I note that ηres1 is a function of the reflection coefficients r1 and r2 at both

sides of the silver-air-silver slit. I also observe that the resonance enhancement

factor ηres1 exhibits a maximum when the slit Fabry-Pérot resonance condition

arg(r1) + arg(r2) − 2β1h = −2mπ is satisfied, where m is a integer. Thus, for a

given silver-air-silver slit width d, the transmission cross section σT of the silver-

silica-silver MDM waveguide is maximized for slit lengths h which satisfy the above

Fabry-Pérot resonance condition.
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In Fig. 6.4, I show the transmission cross section σT of the silver-silica-silver

MDM waveguide for the single slit structure of Fig. 6.1 as a function of the slit

length h calculated using FDFD. Results are shown for d = 250nm, which is

the optimum slit width as mentioned above. I observe that, as the slit length h

increases, the transmission cross section σT exhibits peaks, corresponding to the

Fabry-Pérot resonances in the slit. The maximum transmission cross section σT of

∼ 4.67w is obtained at the first peak (h = 205nm) associated with the first Fabry-

Pérot resonance in the slit. In Fig. 6.4, I also show σT calculated using scattering

matrix theory (Eq. (6.1)). I observe that there is excellent agreement between the

scattering matrix theory results and the exact results obtained using FDFD.

For the optimized single slit structure (d = 250nm, h = 205nm), the transmis-

sion cross section σT1 of the corresponding silver-air-silver MDM waveguide with

air core thickness d = 250nm (Fig. 6.3(a)) is ∼ 7.71w = 385.5nm (Table 6.1).

In other words, the silver-air-silver subwavelength MDM waveguide collects light

from an area significantly larger than its geometric cross-sectional area [36]. In

addition, for the optimized single slit structure the power transmission coefficient

of the T-shaped junction is Tsplitter ∼0.37, and the resonance enhancement factor

is ηres1 ∼1.64 (Table 6.1). Thus, ∼ 2× 37 = 74% of the incident power at the junc-

tion is transmitted to the left and right propagating modes of the silver-silica-silver

MDM waveguide.

In Fig. 6.5, I show the transmission cross section σT1 of a silver-air-silver MDM

waveguide (Fig. 6.3(a)) as a function of the waveguide air core thickness d. I ob-

serve that, as expected, σT1 increases monotonically as the thickness d increases.

In other words, the light power collected by the waveguide increases as the air core

thickness of the waveguide increases. On the other hand, the properties of the T-

shaped junction (Fig. 6.3(b)) can be described using the concept of characteristic

74



TABLE 6.1. Transmission cross sections σT1/2
and σT in units of w, power transmission

coefficient of the T-shaped junction Tsplitter, and resonance enhancement factors ηres1/2
calculated using scattering matrix theory. Results are shown for the optimized single slit,
two-section slit, and double-slit structures of Figs. 6.1, 6.7, and 6.9, respectively.

Single
slit

Two-section slit Double-
slit

σT1/2
(w) 7.71 12.33 18.49

Tsplitter 0.37 0.28 0.41
ηres1/2 1.64 3.11 2.02

σT (w) 4.67 10.75 15.29

impedance and transmission line theory [13, 110, 113]. Based on transmission line

theory, the structure is equivalent to the junction of three transmission lines. The

load connected to the input transmission line at the junction consists of the series

combination of the two output transmission lines. The characteristic impedances

of the input and output transmission lines are Z1 = γ1
jωϵ0

d and Z2 = γ2
jωϵ

w, re-

spectively, where γ2 = α2 + iβ2 is the complex wave vector of the fundamental

propagating TM mode in a silver-silica-silver MDM waveguide with dielectric core

thickness w, and ϵ is the dielectric permittivity of silica [13, 84]. Thus, the equiva-

lent load impedance is ZL = 2Z2, and the maximum transmission coefficient Tsplitter

is obtained when the impedance matching condition Z1 = ZL = 2Z2 is satisfied.

The transmission coefficient Tsplitter of the T-shaped junction (Fig. 6.3(b)) there-

fore does not increase monotonically with d. As a result, the coupling efficiency

of the single slit structure is limited by a trade-off between the power incident

at the slit-MDM waveguide junction, and the transmission coefficient Tsplitter of

the T-shaped junction. More specifically, the width of the optimized single slit

is d = 250nm, as mentioned above. If the slit width d decreased, the impedance

matching between the silver-air-silver MDM input waveguide and the two silver-

silica-silver MDM output waveguides would improve, and Tsplitter therefore would

increase. However, if d decreased, the transmission cross section σT1 of the silver-

75



0.0 0.3 0.6 0.9
0

6

12

18

24

σ
T2

σ
T1

 

 

 T
ra

n
s
m

is
s
io

n
 c

ro
s
s
 s

e
c
ti
o
n
 (

w
)

Width (µm)

FIGURE 6.5. Transmission cross sections (in units of w = 50nm) of a single silver-air-sil-
ver MDM waveguide σT1 (Fig. 6.3(a)), and of a double silver-air-silver MDM waveguide
σT2 (Fig. 6.11(a)), as a function of their total air core thickness (d for the single and 2d
for the double waveguide). The total width of the double waveguide is 2d+D = 1.1µm.

air-silver MDM waveguide would decrease (Fig. 6.5). In addition, the reflectivity

|r1|2 at the bottom side of the slit, and therefore the resonance enhancement factor

ηres1 would also decrease. Thus, the power incident at the junction between the slit

and the silver-silica-silver MDM waveguide would decrease.

In Fig. 6.6, I show the magnetic field profile for the structure of Fig. 6.1 when

the slit dimensions are optimized for maximum transmission cross section σT . I

observe that, since the transmission cross section of the silver-silica-silver MDM

waveguide σT ∼ 4.67w is larger than its geometrical cross-section w, the field in the

MDM waveguide is enhanced with respect to the incident plane wave field. I find

that the maximum magnetic field amplitude enhancement in the silver-silica-silver

waveguide with respect to the incident plane wave is ∼2.4 (Fig. 6.6).
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FIGURE 6.6. Transmission cross section σT for the structure of Fig. 6.1 as a function of
the slit length h calculated using FDFD (red circles) and scattering matrix theory (black
solid line). Results are shown for d = 220nm. All other parameters are as in Fig. 6.2.

6.4 Two-Section Slit Coupler

To enhance the transmission cross section σT of the silver-silica-silver MDM plas-

monic waveguide, I next consider a structure consisting of a two-section slit for

incoupling light into the waveguide (Fig. 6.7). The lengths h1, h2 and widths d1,

d2 of these slit sections are optimized using a genetic global optimization algo-

rithm in combination with FDFD [36, 114] to maximize the transmission cross

section σT of the silver-silica-silver MDM waveguide. As before, the width of the

incoupling structure is limited to less than 1.1µm. Using this approach, the maxi-

mum transmission cross section of the silver-silica-silver MDM waveguide for such

a two-section slit structure is found to be σT ∼ 10.75w (Table 6.1) for d1 = 410nm,

d2 = 1100nm, h1 = 230nm, and h2 = 540nm. I observe that for such a structure

the transmission cross section of the corresponding silver-air-silver MDM waveg-

uide (with air core thickness d1) is σT1 ∼ 12.33w (Table 6.1), which is ∼1.6 times

larger compared to the optimized single slit coupler. In other words, the upper slit
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FIGURE 6.7. Schematic of a structure consisting of a two-section slit for incoupling a
normally incident plane wave from free space into the fundamental mode of a MDM
plasmonic waveguide.

section can enhance the coupling of the incident plane wave into the lower slit sec-

tion, by improving the impedance matching between the incident plane wave and

the lower slit mode [115] . In addition, the resonance enhancement factor of the

optimized two-section slit structure is ηres1 ∼ 3.11 (Table 1), which is ∼1.9 times

larger compared to the optimized single slit coupler. I found that the increase in

the resonance enhancement factor ηres1 of this two-section slit structure is due to

larger reflectivities |r1|2 and |r2|2 at both sides of the lower slit section compared

to the optimized single slit coupler. On the other hand, the transmission coeffi-

cient of the T-shaped junction for the optimized two-section slit structure of Fig.

6.7 is Tsplitter ∼ 0.28 (Table 6.1), which is ∼1.3 times smaller than the one of the

optimized single slit structure. This is due to larger mismatch between the charac-

teristic impedance of the input waveguide Z1 and the load impedance ZL=2Z2 at

the T-shaped junction. Thus, overall the use of an optimized two-section slit cou-

pler (Fig. 6.7) results in 1.6× 1.9/1.3 ≃ 2.3 times larger transmission cross section
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σT of the silver-silica-silver MDM waveguide compared to the single-slit coupler

case (Fig. 6.1). In Fig. 6.8, I show the magnetic field profile for the structure of
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FIGURE 6.8. Profile of the magnetic field amplitude for the optimized structure of Fig.
6.7 with d1 = 410nm, d2 = 1100nm, h1 = 230nm, and h2 = 540nm, normalized with
respect to the field amplitude of the incident plane wave. All other parameters are as in
Fig. 6.2.

Fig. 6.7 with dimensions optimized for maximum transmission cross section σT of

the silver-silica-silver MDM waveguide. The field in the narrower lower slit section

is stronger than the field in the upper slit section. The maximum magnetic field

amplitude enhancement in the silver-silica-silver MDM waveguide with respect to

the incident plane wave is ∼ 3.6 (Fig. 6.8).

6.5 Double-Slit Coupler

To further enhance the transmission cross section σT of the silver-silica-silver MDM

plasmonic waveguide, I consider a symmetric double-slit structure for incoupling

light into the waveguide (Fig. 6.9). As before, the total width 2d+D of the structure
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FIGURE 6.9. Schematic of a double-slit structure for incoupling a normally incident
plane wave from free space into the fundamental mode of a MDM plasmonic waveguide.

is limited to less than 1.1µm. For such a double-slit coupling structure I found that,

if 2d+D ≤ 1.1µm, the maximum transmission cross section σT is obtained when

2d +D = 1.1µm. In the following I therefore set 2d +D = 1.1µm. In Fig. 6.10, I

show the transmission cross section σT of the silver-silica-silver MDM waveguide

in units of w for the structure of Fig. 6.9 as a function of the width d and length

h of the slits. For the range of parameters shown, I observe one transmission

peak in the silver-silica-silver MDM waveguide. The maximum transmission cross

section of σT ∼ 15.29w is obtained for such an incoupling structure at d = 200nm

(D = 700nm) and h = 250nm. I also note that for d ∼ 400nm (D ∼ 300nm)

the transmission into the silver-silica-silver MDM waveguide is almost zero (Fig.

6.10). I found that this is due to the fact that for a slit distance of D ∼ 300nm

the incident light strongly couples into the silver-silica-silver waveguide resonator

between the slits. In addition, there is almost no light coupled into the left and right

propagating modes of the silver-silica-silver MDM waveguide, due to destructive
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FIGURE 6.10. Transmission cross section σT of the MDM plasmonic waveguide in units
of w for the structure of Fig. 6.9 as a function of the slit width d and length h calculated
using FDFD. The total width of the incoupling structure is 2d +D = 1.1µm. All other
parameters are as in Fig. 6.2.

interference between the wave directly coupled through the slit, and the wave

coupled through the silver-silica-silver waveguide resonator. I use again single-

mode scattering matrix theory to account for the behavior of the system. I use

FDFD to numerically extract the transmission cross section σT2 of a double silver-

air-silver MDM waveguide as in Fig. 6.11(a). I also use FDFD to extract the

complex magnetic field reflection coefficient r3 and transmission coefficients t2,

t3 of the fundamental mode of a silver-silica-silver MDM waveguide at the T-

shaped junction with a silver-air-silver MDM waveguide (Fig. 6.11(b)). Note that

t1 = t2 due to reciprocity [110]. Finally, I also extract the reflection coefficient

r4 at the interface between the silver-air-silver MDM waveguide and air, and the

transmission coefficient t4 into the other MDM waveguide, for the double MDM

waveguide structure (Fig. 6.11(c)). The transmission cross section σT of the silver-

silica-silver MDM plasmonic waveguide for the double-slit coupling structure of
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FIGURE 6.11. (a) Schematic defining the transmission cross section σT2 of two semi-in-
finite MDM waveguides when a plane wave is normally incident on them. (b) Schematic
defining the reflection coefficient r3, and transmission coefficients t2, t3 when the funda-
mental TM mode of a metal-dielectric-metal waveguide is incident at the junction with
a metal-air-metal waveguide. (c) Schematic of a structure consisting of two semi-infi-
nite MDM waveguides defining the reflection coefficient r4 of the fundamental TM mode
of one of the MDM waveguides at the waveguide/air interface, and the transmission
coefficient t4 into the other MDM waveguide.

Fig. 6.9 is then calculated using scattering matrix theory as:

σT = σT2ηres2Tsplitter, (6.2)

where Tsplitter = |t1|2 = |t2|2 is the power transmission coefficient of the T-shaped

junction, ηres2 = | exp(−γ1h)(1+t3A)
1−(r1+t1t2A)(r4+t4) exp(−2γ1h)

|2 is the resonance enhancement fac-

tor associated with the complex resonator formed by the two silver-air-silver slits

and the silver-silica-silver MDM waveguide resonator of length D between them,

and A = exp(−γ2D)+r3 exp(−2γ2D)

1−r23 exp(−2γ2D)
. [Equation (6.2) is proved in Appendix D]. Thus,
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I observe that the resonant enhancement factor ηres2 for such a complex res-

onator is similar to that of a Fabry-Pérot resonator with effective reflectivities

reff1 = r1 + t1t2A and reff2 = r4 + t4. In Fig. 6.12, I show the transmission cross

FIGURE 6.12. Transmission cross section σT for the structure of Fig. 6.9 as a function
of the slit length h calculated using FDFD (red circles) and scattering matrix theory
(black solid line). Results are shown for d = 220nm. All other parameters are as in Fig.
6.10.

section σT for the structure of Fig. 6.9 as a function of the slit length h calculated

using FDFD. Results are shown for d = 200 nm, which is the optimum slit width

as mentioned above. I observe that, as the slit length h increases, the transmission

cross section σT exhibits peaks, associated with the resonances of the double-slit

structure. The maximum transmission cross section σT of ∼ 15.29w is obtained at

the first peak (h = 250nm) associated with the first resonant length of the slits.

In Fig. 6.12, I also show σT calculated using scattering matrix theory (equation
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(6.2)). I observe that there is excellent agreement between the scattering matrix

theory results and the exact results obtained using FDFD.

I observe that for the optimized double-slit structure the transmission cross sec-

tion of the corresponding double silver-air-silver MDM waveguide (Fig. 6.3(d))

is σT2 ∼ 18.49w (Table 6.1), which is ∼2.4 times larger compared to the trans-

mission cross section σT1 ∼ 7.71w of the single silver-air-silver MDM waveguide

corresponding to the optimized single slit coupler (Fig. 6.3(a)). In Fig. 6.5, I show

the transmission cross sections of a single silver-air-silver MDM waveguide σT1

(Fig. 6.3(a)), and of a double silver-air-silver MDM waveguide σT2 (Fig. 6.11(a))

as a function of their total air core thickness (d for the single and 2d for the dou-

ble waveguide). I observe that a double silver-air-silver MDM waveguide collects

more light than a single silver-air-silver MDM waveguide with the same total air

core thickness. This is due to the fact that, when a plane wave is incident on a

semi-infinite MDM waveguide, surface plasmon waves are excited at the air-metal

interfaces. In the double MDM waveguide structure (Fig. 6.11(a)), the power of

these surface plasmon waves is partially coupled into the MDM waveguides, thus

increasing the total light power collected by the structure. In addition, the reso-

nance enhancement factor of the optimized double-slit structure ηres2 ∼ 2.02 (Table

6.1) is slightly larger than the resonance enhancement factor of the optimized sin-

gle slit coupler (ηres1 ∼ 1.64). Overall, the use of an optimized double-slit coupler

(Fig. 6.9) results in ∼ 3.3 times larger transmission cross section σT of the silver-

silica-silver MDM waveguide compared to the optimized single-slit coupler case

(Fig. 6.1). In Fig. 6.13, I show the magnetic field profile for the structure of Fig.

6.9 with dimensions optimized for maximum transmission cross section. The max-

imum magnetic field amplitude enhancement in the silver-silica-silver waveguide

with respect to the incident plane wave is ∼ 4.2. The incoupling structures were
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FIGURE 6.13. Profile of the magnetic field amplitude for the structure of Fig. 6.9 for
d = 200nm and h = 250nm, normalized with respect to the field amplitude of the incident
plane wave. All other parameters are as in Fig. 6.10.

all optimized at a single wavelength of λ0 =1.55µm. In Fig. 6.14, I show the trans-

mission cross section σT of the silver-silica-silver MDM plasmonic waveguide as a

function of frequency for the optimized structures of Fig. 6.1 (single slit), Fig. 6.7

(two-section slit), and Fig. 6.9 (double slit). I observe that the operation frequency

range for high transmission is broad. This is due to the fact that in all cases the en-

hanced transmission is not associated with any strong resonances. In other words,

the quality factors Q of the slit coupling structures are low.

In Fig. 6.14, I also show the transmission cross section σT for the double-slit

structure, if the metal in the MDM waveguide is lossless (ϵmetal = Re(ϵmetal), ne-

glecting the imaginary part of the dielectric permittivity Im(ϵmetal)). I observe that

material losses in the metal do not significantly affect the transmission efficiency

of the incoupling structures. This is due to the fact that the dimensions of the

incoupling structures are much smaller than the propagation lengths of the fun-

damental TM modes in the silver-silica-silver and the silver-air-silver waveguides.
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FIGURE 6.14. Transmission cross section σT spectra in units of w for the three optimized
incoupling structures in Figs. 6.1 (single slit), 6.7 (two-section slit), and 6.9 (double slit).
Results are shown for the structure of Fig. 6.1 with d = 250nm, h = 205nm (black
line), for the structure of Fig. 6.7 with d1 = 410nm, d2 = 1100nm, h1 = 230nm, and
h2 = 540nm (red line), and for the structure of Fig. 6.9 with d = 200nm, h = 250nm
(blue line). Also shown are the transmission cross section σT spectra for the double-slit
structure (Fig. 6.9), if the metal in the MDM waveguide is lossless (blue dashed line).
All other parameters are as in Fig. 6.2.

I found that neither the coupling of the incident light into the silver-air-silver

slits nor the coupling between the slits and the silver-silica-silver MDM plasmonic

waveguide are significantly affected by material losses in the metal.

6.6 Conclusions

In this Chapter, I investigated compact slit-based structures for coupling free space

light into silver-silica-silver MDM plasmonic waveguides. In all cases, the total

width of the incoupling structure was limited to less than 1.1µm, which approx-

imately corresponds to one wavelength in silica λs = λ0/ns, when operating at
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λ0 =1.55µm. I first considered a coupling structure consisting of a single slit ex-

tending half way into the dielectric core of the MDM waveguide. I found that

the coupling efficiency of such a single slit structure is limited by a trade-off be-

tween the light power coupled into the slit, and the transmission of the slit-MDM

waveguide T-shaped junction.

To enhance the coupling into the silver-silica-silver MDM plasmonic waveguide,

I next considered a two-section slit structure. I found that for such a structure the

upper slit section enhances the coupling of the incident light into the lower slit

section, by improving the impedance matching between the incident plane wave

and the lower slit mode. In addition, the use of the optimized two-section slit

structure increases the reflectivities at both sides of the lower slit section, and

therefore the resonance enhancement factor. On the other hand, the transmission

of the T-shaped junction for the optimized two-section slit structure is smaller

than the one of the optimized single slit structure. Overall, the use of an optimized

two-section slit coupler resulted in ∼ 2.3 times enhancement of the coupling into

the MDM plasmonic waveguide compared to the optimized single-slit coupler.

To further enhance the coupling into the silver-silica-silver MDM plasmonic

waveguide, I considered a symmetric double-slit structure. I found that such a

structure greatly enhances the coupling of the incident light into the slits. This is

due to the fact that the incident light excites surface plasmons at the air-metal in-

terfaces. In the case of a double-slit structure these plasmons are partially coupled

into the slits, thus increasing the total light power collected by the structure. In

addition, the resonance enhancement factor of the optimized double-slit coupler is

slightly larger than the resonance enhancement factor of the optimized single slit

coupler. Overall, the use of an optimized double-slit coupler resulted in ∼ 3.3 times

enhancement of the coupling into the MDM plasmonic waveguide compared to the
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optimized single-slit coupler. I also found that, while the incoupling structures

were all optimized at a single wavelength, the operation wavelength range for high

coupling efficiency is broad. As final remarks, for wavelength-scale slit-based struc-

 

 

 

FIGURE 6.15. (a) Radiation pattern of the single slit structure, when this structure is
used to couple light from the MDM plasmonic waveguide into free space. (b) Radiation
pattern of the two-section slit structure. (c) Radiation pattern of the double-slit struc-
ture. In all cases I show the magnetic field amplitude profile above the slits. Results are
shown for the three optimized incoupling structures in Figs. 6.1 (single slit), 6.7 (two–
section slit), and 6.9 (double slit) for λ0 =1.55µm. All other parameters are as in Fig.
6.14.

tures the double-slit structure results in optimal coupling performance. I verified

that, if three or more slits are used in a wavelength-scale coupler, the performance
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is always worse due to destructive interference between the waves coupled through

the slits. Moreover, if a reflector is introduced in one of the two silver-silica-silver

MDM ouput waveguides, then all the incoupled power will couple into the other

silver-silica-silver MDM output waveguide. In addition, the proposed slit-based

structures can also be used to couple light from a MDM plasmonic waveguide

into free space. I found that, when the single slit structure is used to outcouple

light, the radiation pattern of the structure is approximately isotropic [116] (Fig.

6.15(a)). On the other hand, I found that two-section slit and double-slit structures

introduce anisotropy in the radiation pattern, with stronger radiation in the nor-

mal direction [116] (Fig. 6.15(b) and 6.15(c)). Finally, I note that there are some

analogies between the proposed coupling structures and the slot antennas used in

the microwave frequency range [117].
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Chapter 7
Summary and Suggestions for Future
Work

7.1 Summary of Results

I first introduced subwavelength slow-light waveguides for enhanced light-matter

interaction, based on a plasmonic analogue of EIT. Such waveguides support a

subwavelength slow-light mode, and exhibit a small group velocity dispersion. The

waveguiding structure consists of a periodic array of two MDM stub resonators

side-coupled to a MDM waveguide. I found that decreasing the frequency spac-

ing between the two resonances increases the slowdown factor and decreases the

bandwidth of the slow-light band. I also showed that there is a trade-off between

the slowdown factor and the propagation length of the slow-light mode. Unlike

previously proposed structures, such waveguides exhibit a small group velocity dis-

persion and a large slowdown factor over a broad wavelength range, features which

are highly desirable for practical applications of slow-light devices. In addition, if

these waveguides are combined with gain and tunable refractive index materials,

they could enable stopping and storing light in a subwavelength volume.

I next considered MZI sensors in which the sensing arm consists of a slow-light

waveguide based on a plasmonic analogue of EIT. I showed that a MZI sensor using

such a waveguide leads to approximately an order of magnitude enhancement in

the refractive index sensitivity, and therefore in the minimum detectable refractive

index change, compared to a MZI sensor using a conventional MDM waveguide.

I also investigated compact slit-based structures for coupling free space light

into silver-silica-silver MDM plasmonic waveguides. In all cases, the total width

of the incoupling structure was limited to less than 1.1µm, which approximately
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corresponds to one wavelength in silica λs = λ0/ns, when operating at λ0 =1.55

µm. I first considered a coupling structure consisting of a single slit extending half

way into the dielectric core of the MDM waveguide. I found that the coupling

efficiency of such a single slit structure is limited by a trade-off between the light

power coupled into the slit, and the transmission of the slit-MDM waveguide T-

shaped junction.

To enhance the coupling into the silver-silica-silver MDM plasmonic waveguide,

I next considered a two-section slit structure. I found that for such a structure the

upper slit section enhances the coupling of the incident light into the lower slit

section, by improving the impedance matching between the incident plane wave

and the lower slit mode. In addition, the use of the optimized two-section slit

structure increases the reflectivities at both sides of the lower slit section, and

therefore the resonance enhancement factor. On the other hand, the transmission

of the T -shaped junction for the optimized two-section slit structure is smaller

than the one of the optimized single slit structure. Overall, the use of an optimized

two-section slit coupler resulted in ∼ 2.3 times enhancement of the coupling into

the MDM plasmonic waveguide compared to the optimized single-slit coupler.

To further enhance the coupling into the silver-silica-silver MDM plasmonic

waveguide, I considered a symmetric double-slit structure. I found that such a

structure greatly enhances the coupling of the incident light into the slits. This is

due to the fact that the incident light excites surface plasmons at the air-metal

interfaces. In the case of a double-slit structure these plasmons are partially cou-

pled into the slits, thus increasing the total light power collected by the structure.

In addition, the resonance enhancement factor of the optimized double-slit coupler

is slightly larger than the resonance enhancement factor of the optimized single

slit coupler. Overall, the use of an optimized double-slit coupler resulted in ∼ 3.3
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times enhancement of the coupling into the MDM plasmonic waveguide compared

to the optimized single-slit coupler. I also found that, while the incoupling struc-

tures were all optimized at a single wavelength, the operation wavelength range

for high coupling efficiency is broad.

7.2 Suggestions for Future Work

One of the potential future research directions is to perform shape optimization

of plasmonic structures for slowing down light, sensing, and coupling to free space

light. In this dissertation, I showed that the introduced slow-light waveguides based

on a plasmonic analogue of EIT exhibit a small group velocity dispersion and a

large slowdown factor over a broad wavelength range. Further optimizing the shape

of the waveguiding structure could for example expand the wavelength range of

large slowdown factors. Similarly, I showed that sensors using slow-light waveg-

uides lead to large enhancements in the refractive index sensitivity compared to

sensors using conventional MDM waveguides. And I also showed that the use of a

double-slit coupler results in large enhancement of the coupling into a MDM plas-

monic waveguide compared to a single-slit coupler. While the sensor and coupler

structures that I introduced exhibit superior performance compared to previously

introduced structures, using shape optimization could further enhance their per-

formance. In addition, it would be interesting to identify the optimum structure

geometry for specific device applications, and fundamental limits for their perfor-

mance.

It would also be interesting to investigate alternative plasmonic sensor and cou-

pler geometries. Coupled waveguide-cavity systems which are widely implemented

in dielectric waveguide sensors could also be considered for plasmonic sensors. In
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addition, an extension of the proposed slit-based couplers which are highly compact

in one dimension, could be highly compact aperture-based coupling structures with

wavelength-scale length and width. Moreover, the coupling structures considered

here are polarization dependent. However, it should be possible to design circular

aperture structures to provide polarization-independent coupling.
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Appendix A: Proof of Eq.(4.1)

 

 

 

FIGURE A.1. Schematic defining the amplitudes and phases of the fundamental TM
modes of the MDM waveguide that arrive at each port of a MDM plasmonic waveguide
side-coupled to two MDM stub resonators, H+, and the amplitudes and phases of the
modes that propagate away from each port, H−.

I consider a waveguide crossing as in Fig. A.1. The scattering matrix relates the

amplitudes and phases of the modes that arrive at each port,H+, to the amplitudes

and phases of the modes that propagate away from each port, H−:
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S31 S32 S33 S34

S41 S42 S43 S44





H+
1

H+
2

H+
3

H+
4


. (A.1)

I consider the complex magnetic field reflection coefficient r1, and transmission

coefficients t1, t2, t3 when the fundamental TM mode of the MDM waveguide is

incident at a waveguide crossing (Fig. 4.2(a)). I have

S11 =
H−

1

H+
1

|H+
2 =H+

3 =H+
4 =0,

103



S22 =
H−

2

H+
2

|H+
1 =H+

3 =H+
4 =0,

S33 =
H−

3

H+
3

|H+
1 =H+

2 =H+
4 =0,

S44 =
H−

4

H+
4

|H+
1 =H+

2 =H+
3 =0,

and because of symmetry, I obtain

S11 = S22 = S33 = S44 = r1. (A.2)

When H+
2 =H+

3 =H+
4 =0, I have

H−
2 = S21H

+
1 , H

−
3 = S31H

+
1 , H

−
4 = S41H

+
1 .

When H+
1 =H+

3 =H+
4 =0, I have

H−
1 = S12H

+
2 , H

−
3 = S32H

+
2 , H

−
4 = S42H

+
2 .

When H+
1 =H+

2 =H+
4 =0, I have

H−
1 = S13H

+
3 , H

−
2 = S23H

+
3 , H

−
4 = S43H

+
3 .

When H+
1 =H+

2 =H+
3 =0, I have

H−
1 = S14H

+
4 , H

−
2 = S24H

+
4 , H

−
3 = S34H

+
4 .

Because of symmetry, I have

S14 = S41 = S23 = S32 = t1, (A.3)

and

S11 = S21 = S13 = S31 = S24 = S42 = S34 = S43 = t2. (A.4)

Inserting equations (A.2), (A.3) and (A.4) in (A.1) gives



H−
1

H−
2

H−
3

H−
4


=



r1 t2 t2 t1

t2 r1 t1 t2

t2 t1 r1 t2

t1 t2 t2 r1





H+
1

H+
2

H+
3

H+
4


. (A.5)
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Considering the reflection at the boundary of a short-circuited MDM waveguide

(Fig. 4.2(b)), I have

H−
2 = s1H

+
2 , (A.6)

H−
3 = s2H

+
3 . (A.7)

Here, si = r−1
2 exp(2γMDMLi), i = 1, 2, r2 is the magnetic field reflection coefficient

of the fundamental TM mode of the MDM waveguide at the boundary of a short-

circuited MDM waveguide (Fig. 4.2(b)), and γMDM = αMDM+iβMDM is the complex

wave vector of the fundamental propagating TM mode in a MDM waveguide of

width w. Substituting equations (A.6) and (A.7) into (A.5) gives

H−
1 = r1H

+
1 + t2H

+
2 + t2H

+
3 + t1H

+
4 , (A.8)

s1H
+
2 = t2H

+
1 + r1H

+
2 + t1H

+
3 + t2H

+
4 , (A.9)

s2H
+
3 = t2H

+
1 + t1H

+
2 + r1H

+
3 + t2H

+
4 , (A.10)

H−
4 = t1H

+
1 + t2H

+
2 + t2H

+
3 + r1H

+
4 . (A.11)

Using equations (A.9) and (A.10), I obtain

H+
3 = (

t1 − r1 + s1
t1 − r1 + s2

)H+
2 . (A.12)

Substituting equation (A.12) into (A.8) gives

H−
1 = r1H

+
1 + t2(1 +

t1 − r1 + s1
t1 − r1 + s2

)H+
2 + t1H

+
4 . (A.13)

Substituting equation (A.12) into equation (A.9), one gets

0 = t2H
+
1 + (r1 − s1 + r1

t1 − r1 + s1
t1 − r1 + s2

)H+
2 + t2H

+
4 . (A.14)
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Using equations (A.13) and (A.14) and eliminating H+
2 , I obtain

(
t1
A

− t2
B
)H+

4 = (
t2
B

− r1
A
)H+

1 +
1

A
H−

1 , (A.15)

where A = t2(1 +
t1−r1+s1
t1−r1+s2

), and B = r1 − s1 + r1
t1−r1+s1
t1−r1+s2

.

Furthermore, using equations (A.8) and (A.11), gives

(t1 − r1)H
+
1 +H−

1 = (t1 − r1)H
+
4 +H−

4 . (A.16)

Combining equations (A.15) and (A.16), I obtain the system t1 − r1 1

t1
A
− t2

B
0


 H+

4

H−
4

 =

 t1 − r1 1

t2
B
− r1

A
1
A


 H+

1

H−
1

 . (A.17)

Using equation (A.17), I finally obtain H+
4

H−
4

 = M

 H+
1

H−
1

 , (A.18)

where

M =

 M11 M12

M21 M22

 =

 t1 − r1 1

t1
A
− t2

B
0


−1  t1 − r1 1

t2
B
− r1

A
1
A

 . (A.19)

By definition, the power transmission coefficient T =
∣∣∣H−

4

H+
1

|H+
4 =0

∣∣∣2= ∣∣∣H−
1

H+
4

|H+
1 =0

∣∣∣2
due to symmetry. Therefore, the power transmission spectra T of the two-cavity

system can then be calculated using scattering matrix theory as

T =
∣∣∣ 1

M12

∣∣∣2= ∣∣∣M21 −
M11M22

M12

∣∣∣2= ∣∣∣t1 − t22(2t1 − 2r1 + s1 + s2)

t21 − (r1 − s1)(r1 − s2)

∣∣∣2. (A.20)
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Appendix B: Proof of Eq.(4.2)

 

FIGURE B.1. Schematic showing a period of the plasmonic waveguide system of Fig.
4.5.

In Fig. B.1, I show a single period of the plasmonic waveguide system of Fig.

4.5. The magnetic field for −d1 < z < 0 is given by

Hy(x, z) = [H+
1 exp(−γMDMz) +H−

1 exp(γMDMz)]ϕ(x). (B.1)

Using Maxwell’s equation ∇×H− jωϵE = 0 we obtain

Ex(x, z) =
−1

jωϵ

∂Hy(x, z)

∂z

=
−γMDM

jωϵ
[−H+

1 exp(−γMDMz) +H−
1 exp(γMDMz)]ϕ(x), (B.2)

where γMDM and ϕ(x) are the complex wave vector and the field profile of the

fundamental TM mode in the plasmonic waveguide, respectively. Setting H∗
1 =

Hy|z=−d1 and E∗
1 = Ex|z=−d1 , I have

H∗
1 = [H+

1 exp(γMDMd1) +H−
1 exp(−γMDMd1)]ϕ(x), (B.3)
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E∗
1 =

γMDM

jωϵ
[H+

1 exp(γMDMd1)−H−
1 exp(−γMDMd1)]ϕ(x). (B.4)

Combining equations (B.3) and (B.4), I obtain H∗
1

E∗
1

Z0

 = Ti

 H+
1

H−
1

ϕ(x), (B.5)

where

Ti =

 1 1

γMDM

jωϵZ0

−γMDM

jωϵZ0


 exp(γMDMd1) 0

0 exp(−γMDMd1)

 , (B.6)

and Z0=(µ0

ϵ0
)−

1
2 .

Similarly, the magnetic field for 0 < z
′
< d2 is given by

Hy(x, z
′
) = [H+

4 exp(γMDMz
′
) +H−

4 exp(−γMDMz
′
)]ϕ(x). (B.7)

Using Maxwell’s equations again, I obtain

Ex(x, z
′
) =

−1

jωϵ

∂Hy(x, z
′
)

∂z′

=
−γMDM

jωϵ
[H+

4 exp(γMDMz
′
)−H−

4 exp(−γMDMz
′
)]ϕ(x). (B.8)

Setting H∗
4 = Hy|z′=d2

and E∗
4 = Ex|z′=d2

, I have

H∗
4 = [H+

4 exp(γMDMd2) +H−
4 exp(−γMDMd2)]ϕ(x), (B.9)

E∗
4 =

γMDM

jωϵ
[−H+

4 exp(γMDMd2) +H−
4 exp(−γMDMd2)]ϕ(x). (B.10)

Combining equations (B.9) and (B.10), I obtain H∗
4

E∗
4

Z0

 = To

 H+
4

H−
4

ϕ(x), (B.11)
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where

To =

 1 1

−γMDM

jωϵZ0

γMDM

jωϵZ0


 exp(γMDMd2) 0

0 exp(−γMDMd2)

 . (B.12)

Then, using equation (A.18), I obtain H∗
4

E∗
4

Z0

 = ToMT−1
i

 H∗
1

E∗
1

Z0

 . (B.13)

Here, ToMT−1
i is the transfer matrix for a single period of the EIT-like system of

Fig. 4.5.

On the other hand, by Bloch theorem I have H∗
4

E∗
4

Z0

 = exp(γd)

 H∗
1

E∗
1

Z0

 , (B.14)

where γ = α+ iβ is the Bloch wave vector. In fact, both exp(γd) and exp(−γd) are

eigen-values of the transfer matrix. Thus, for the two eigen-values of the transfer

matrix, I have

exp(γd) + exp(−γd) = tr(ToMT−1
i ). (B.15)

By substituting equations (A.19), (B.6), and (B.12) into (B.15), I finally obtain

cosh(γd) =
A

2
exp[−γMDM(d− w)] +

B

2
exp[γMDM(d− w)], (B.16)

where A = (t1 − r1)
t1+r1−2C

t1−C
, and B = (t1 − C)−1.
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Appendix C: Proof of Eq.(6.1)
 

  

 

FIGURE C.1. Schematic showing a plane wave which is normally incident from free
space on a semi-infinite MDM plasmonic waveguide.

I consider a plane wave which is normally incident from free space on a semi-

infinite MDM waveguide (Fig. C.1). For z > 0, the field components of the TM-

polarized incident plane wave are

HPW
y (x, z) = H+

PW exp(−jk0z), (C.1)

EPW
x (x, z) =

−1

jωϵ0

∂HPW
y (x, z)

∂z
= E+

PW exp(−jk0z), (C.2)

where k0 = ω
√
ϵ0µ0, and E+

PW = H+
PW

√
µ0

ϵ0
.

For z < 0 I have

HM
y (x, z) = H−

MDM exp(−γ1z)ϕ(x), (C.3)

EM
x (x, z) =

−1

jωϵ0

∂HM
y

∂z
= E−

MDM exp(−γ1z)ϕ(x), (C.4)

110



where E−
MDM = γ1

jωϵ
H−

MDM , and γ1 and ϕ(x) are the complex wave vector and field

profile of the fundamental TM mode in the plasmonic waveguide, respectively.

The power density of the incident plane wave is given by the Poynting vector

∣∣SPW

∣∣ = ∣∣1
2
Re(E×H∗)

∣∣ = 1

2
|H+

PW |2
√

µ0

ϵ0
, (C.5)

while the power coupled into the MDM waveguide at z = 0 is

PMDM =

∫ ∞

−∞

1

2
Re(E×H∗)dx

=
1

2
Re(E−

MDM×H−∗
MDM)

∫ ∞

−∞
ϕ(x)ϕ(x)∗dx. (C.6)

Substituting equation (C.4) into the above equation leads to

PMDM =
1

2
Re(

γ1
jωϵ0

)|H−
MDM |2

∫ ∞

−∞
|ϕ(x)|2dx. (C.7)

Therefore, the transmission cross section σT1 of a semi-finite MDM waveguide,

defined as the total light power coupled into the right propagating fundamental

TM mode of the waveguide, normalized by the incident plane wave power flux

density, is

σT1 =
PMDM∣∣SPW

∣∣ = Re( γ1
jωϵ0

)|H−
MDM |2

∫∞
−∞ |ϕ(x)|2dx

|H+
PW |2

√
µ0

ϵ0

. (C.8)

Using equation (C.8), I obtain the transmission coefficient A ≡ |H−
MDM |

|H+
PW | when a

plane wave is normally incident on a semi-infinite MDM waveguide

A =
|H−

MDM |
|H+

PW |
= [σT1

√
µ0

ϵ0

Re( γ1
jωϵ0

)
∫∞
−∞ |ϕ(x)|2dx

]
1
2 . (C.9)

I now consider a plane wave which is normally incident on a single slit coupler as

in Fig. C.2. Based on scattering matrix theory, this system can be described by

the following three equations

H−
L = AH+

PW + r2H
+
L , (C.10)
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H+
L = S1H

−
L , (C.11)

H−
u = t

′

1H
−
L′ , (C.12)

where A is the transmission coefficient when a plane wave is normally incident on a

semi-infinite MDMwaveguide (Eq. (C.9)), S1 = r1 exp(−2γ1h),H
−
L′ = HL exp(−γ1h),

and γ1 is the complex wave vector of the fundamental propagating TM mode in

a silver-air-silver MDM waveguide. The reflection coefficients r1, r2 are defined in

Fig. 6.3. Using equations (C.10) and (C.12), I obtain

 

   FIGURE C.2. Schematic showing a single slit for incoupling a normally incident plane
wave from free space into the fundamental mode of a MDM plasmonic waveguide.

| H
−
u

H+
PW

| = | At
′
1 exp(−γ1h)

1− r1r2 exp(−2γ1h)
|. (C.13)

Using an approach similar to the one which was used to derive equation (C.8), I

obtain the transmission cross section σT of the horizontal MDM waveguide

σT =
Re( γ2

jωϵ
)|H−

u |2
∫∞
−∞ |ϕ2(x)|2dx

|H+
PW |2

√
µ0

ϵ0

, (C.14)
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where γ2 and ϕ2(x) are the complex wave vector and field profile of the fundamen-

tal TM mode in the horizontal plasmonic waveguide, respectively. Substituting

equation (C.13) into equation (C.14) leads to

σT = | At
′
1 exp(−γ1h)

1− r1r2 exp(−2γ1h)
|2
Re( γ2

jωϵ
)
∫∞
−∞ |ϕ2(x)|2dx√

µ0

ϵ0

. (C.15)

Substituting equation (C.9) into (C.15), I obtain

σT = σT1

Re( γ2
jωϵ

)
∫∞
−∞ |ϕ2(x)|2dx

Re( γ1
jωϵ0

)
∫∞
−∞ |ϕ1(x)|2dx

| t
′
1 exp(−γ1h)

1− r1r2 exp(−2γ1h)
|2. (C.16)

Since |t′1| = | H
−
u

H+

L
′
|, I obtain

σT = σT1

Re( γ2
jωϵ

)|H−
u |2
∫∞
−∞ |ϕ2(x)|2dx

Re( γ1
jωϵ0

)|H−
L′|2

∫∞
−∞ |ϕ(x)|2dx

| exp(−γ1h)

1− r1r2 exp(−2γ1h)
|2. (C.17)

Using equation (C.7), I obtain

σT = σT1
P2

P1

| exp(−γ1h)

1− r1r2 exp(−2γ1h)
|2, (C.18)

where P1 and P2 are power fluxes defined in figures C.1 and C.2. Finally, using the

fact that Tsplitter =
P2

P1
and defining ηres1 = | exp(−γ1h)

1−r1r2 exp(−2γ1h)
|2, I obtain

σT = σT1ηres1Tsplitter. (C.19)
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Appendix D: Proof of Eq.(6.2)
 

  

 

FIGURE D.1. Schematic showing a double-slit structure for incoupling a normally in-
cident plane wave from free space into the fundamental mode of a MDM plasmonic
waveguide.

I consider a plane wave which is normally incident on a symmetric double slit

coupler as in Fig. D.1. Such a system can be described by the following equations

H−
L = AH+

PW + r4H
+
L + t4H

+
L , (D.1)

H+
L = r1e

−2γ1hH−
L + t2e

−γ1hH+
d , (D.2)

H−
d = t1H

−
L′ + r3H

+
d , (D.3)

H+
d = t1e

−γ2DH−
L′ + r3e

−2γ2DH−
d , (D.4)

H−
u = t3H

+
d + t1H

−
L′ . (D.5)
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Eliminating H−
d from equations (D.3) and (D.4), I obtain

H+
d =

t1e
−γ2D(1 + r3e

−γ2D)

1− r23e
−2γ2D

H−
L′ . (D.6)

Substituting this equation into equations (D.2) and (D.5), I get

H+
L = r1e

−2γ1hH−
L + t1t2

e−γ1he−γ2D(1 + r3e
−γ2D)

1− r23e
−2γ2D

H−
L′ , (D.7)

H−
u = t1[1 + t3

e−γ2D(1 + r3e
−γ2D)

1− r23e
−2γ2D

]H−
L′ . (D.8)

Substituting equation (D.7) into (D.1), I obtain

H−
L = (r4 + t4)[r1e

−2γ1hH−
L + t1t2

e−γ1h−γ2D(1 + r3e
−γ2D)

1− r23e
−2γ2D

H−
L′ ]

+ AH+
PW . (D.9)

Substituting H−
L′ = H−

L e
−γ1h in equations (D.8) and (D.9) results in

H−
u = t1e

−γ1h[1 + t3
e−γ2D(1 + r3e

−γ2D)

1− r23e
−2γ2D

]H−
L , (D.10)

H−
L = (r4 + t4)[r1e

−2γ1hH−
L + t1t2

e−2γ1h−γ2D(1 + r3e
−γ2D)

1− r23e
−2γD

H−
L ]

+ AH+
PW . (D.11)

Solving for H−
L , I obtain

H−
L =

AH+
PW

1− (r4 + t4)[r1e−2γ1h + t1t2
e−2γ1h−γ2D(1+r3e−γ2D)

1−r23e
−2γ2D

]
. (D.12)

Using equations (D.10) and (D.12), I obtain

H−
u

H+
PW

=
At1e

−γ1h[1 + t3
e−γ2D(1+r3e−γ2D)

1−r23e
−2γ2D

]

1− (r4 + t4)[r1e−2γ1h + t1t2
e−2γ1h−γ2D(1+r3e−γ2D)

1−r23e
−2γ2D

]
. (D.13)

Using equation (D.13) and an approach similar to the one which was used to obtain

equation (C.19) from (C.14), I obtain

σT = σT2ηres2Tsplitter, (D.14)
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where ηres2 = |
e−γ1h[1+t3

e−γ2D(1+r3e
−γ2D)

1−r23e
−2γ2D

]

1−(r4+t4)[r1e−2γ1h+t1t2
e−2γ1h−γ2D(1+r3e

−γ2D)

1−r23e
−2γ2D

]
|2, Tsplitter =

P
′
2

P
′
1

, and P
′
1, P

′
2

are power fluxes defined in Figs. D.1 and D.2. 

  

 

FIGURE D.2. Schematic showing a plane wave which is normally incident from free
space on two semi-finite MDM plasmonic waveguides.

Finally, we discuss how to calculate t1, t2. In order to extract t1t2, I focus on

a symmetric junction between the silver-silica-silver waveguide and the silver-air-

silver waveguide as in Fig. D.3. Based on the scattering matrix theory, I can write
H−

1

H−
2

H−
3

 =


r1 t2 t2

t1 r3 t1

t1 t3 r3




H+
1

H+
2

H+
3

 , (D.15)

where r1, r3, t1, and t2 are defined in Fig. 6.11. Since the two MDM waveguides

have different field profiles, to extract t1t2 I terminate the simulation domain at

the plane of both output ports with perfect electric conductor boundary conditions

(Fig. D.3). Such terminations result in zero tangential electric fields, and therefore,

give +1 for the reflection coefficient of the transverse magnetic field Hy. Thus, I

get H+
2 = H−

2 e
−2γ2L and H+

3 = H−
3 e

−2γ2L.
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FIGURE D.3. Schematic related to the calculation of t1 and t2.

Substituting these equations in (D.15) gives
H−

1

H−
2

H−
3

 =


r1 t2 t2

t1 r3 t1

t1 t3 r3




H+
1

H−
2 e

−2γ2L

H−
3 e

−2γ2L

 . (D.16)

Expanding the matrix one gets

H−
1 = r1H

+
1 + t2(H

−
2 +H−

3 )e
−2γ2L, (D.17)

H−
2 = t1H

+
1 + r3H

−
2 e

−2γ2L + t3H
−
3 e

−2γ2L, (D.18)

H−
3 = t1H

+
1 + t3H

−
2 e

−2γ2L + r3H
−
3 e

−2γ2L. (D.19)

Using equation (D.16), I obtain

R ≡ H−
1

H+
1

= r1 + t2(
H−

2

H+
1

+
H−

3

H+
1

)e−2γ2L. (D.20)

Note that H−
2 =H−

3 due to symmetry. Using equations (D.18) and (D.19), I obtain

H−
2

H+
1

=
H−

3

H+
1

=
t1 +

t1t3e−2γ2L

1−r3e−2γ2L

1− r3e−2γ2L − t23e
−4γ2L

1−r3e−2γ2L

. (D.21)
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Substituting equation (D.21) into equation (D.20), I obtain

R =
H−

1

H+
1

= r1 + 2t1t2[
1− r3e

−2γ2L + t3e
−2γ2L

(1− r3e−2γ2L)2 − t23r3e
−4γ2L

]e−2γ2L. (D.22)

Solving equation (D.22) for t1t2 finally gives

t1t2 =
R− r1

2[ 1−r3e−2γ2L+t3e−2γ2L

(1−r3e−2γ2L)2−t23r3e
−4γ2L

]e−2γ2L
. (D.23)
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