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Abstract

As the size of scientific datasets and the demand for interdisciplinary collaboration grow in mod-

ern science, it becomes imperative that better ways of discovering and placing datasets generated

across multiple disciplines be developed to facilitate interdisciplinary scientific research.

For discovering relevant data out of large-scale interdisciplinary datasets. The development and

integration of cross-domain metadata is critical as metadata serves as the key guideline for organiz-

ing data. To develop and integrate cross-domain metadata management systems in interdisciplinary

collaborative computing environment, three key issues need to be addressed: the development of a

cross-domain metadata schema; the implementation of a metadata management system based on

this schema; the integration of the metadata system into existing distributed computing infrastruc-

ture.

Current research in metadata management in distributed computing environment largely focuses

on relatively simple schema that lacks the underlying descriptive power to adequately address

semantic heterogeneity often found in interdisciplinary science. And current work does not take

adequate consideration the issue of scalability in large-scale data management.

Another key issue in data management is data placement, due to the increasing size of scientific

datasets, the overhead incurred as a result of transferringdata among different nodes also grow

into a significant inhibiting factor affecting overall performance. Currently, few data placement

strategies take into consideration semantic information concerning data content.

In this dissertation, we propose a cross-domain metadata system in a collaborative distributed

computing environment and identify and evaluate key factors and processes involved in a suc-

cessful cross-domain metadata system with the goal of facilitating data discovery in collaborative

environments. This will allow researchers/users to conduct interdisciplinary science in the context

of large-scale datasets that will make it easier to access interdisciplinary datasets, reduce barrier to

collaboration, reduce cost of future development of similar systems.

ix



We also investigate data placement strategies that involvesemantic information about the hard-

ware and network environment as well as domain information in the form of semantic metadata so

that semantic locality could be utilized in data placement,that could potentially reduce overhead

for accessing large-scale interdisciplinary datasets.
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Chapter 1
Introduction

1.1 Introduction

One of the key problems in scientific computing is the interoperability among different data sources

produced by different scientific disciplines or tagged by different metadata standards. As collabora-

tion among disciplines and research groups fast become the norm in modern science, management

and leveraging of metadata for projects involving cross-domain collaboration has become increas-

ingly urgent. Metadata enables physical data to be effectively discovered, interpreted, evaluated,

and processed, introduction of cross-domain metadata management is critical in extending the tra-

ditional functionalities traditionally provided by metadata to cover datasets which have become

increasingly cross-domain and cross-standards, furthermore, leveraging information provided by

metadata could also potentially help alleviate performance issues born out of having to access in-

creasingly large datasets in modern science by intelligently placing datasets to increase locality

and reduce overhead inherent in data transfer in distributed environments.

Today, the scientific research community faces new challenges in metadata management as com-

puting environments become increasingly large and complexand science requires more interdis-

ciplinary collaboration. For example, in the Atlas[18] andCMS[23] projects alone, more than 200

institutions from 50 countries use a data collection which increases by around 5 petabytes annu-

ally. These large collaborations involve not only domain scientists, but also computer scientists,

engineers, and visualization experts who need to access thedata to advance research in their own

fields. Traditional catalogue based metadata services havelimitations in such application scenarios.

It is difficult to handle data integration across different domains; management of domain schema

evolution often leads to confusion; and performance under peta-scale computing environment is

often not satisfactory.

1



Metadata refers to information about data itself, commonlydefined as “data about data”, and

it is essential for cross-domain scientific computing. Without proper metadata annotation, the un-

derlying data is meaningless to scientists. And in an interdisciplinary research environment, it is

essential for scientists to access data from domains different from his own efficiently and precisely.

Traditional domain-specific metadata schema is inadequatein meeting the demand of interdisci-

plinary collaborative scientific computing. Because of difference in perspective, tradition and terms

used, same item might be described completely differently in different domains. Therefore, it is

important to establish conceptual and semantic mapping among concepts from different domains

to facilitate cross-domain data access. On the other hand, it is unrealistic to expect to establish

a completely unified view of everything and reconcile all thedifferences among all the domains

without sacrificing relevance. Metadata schema also need totake into consideration possible future

extension to address possible addition of scientific domains. As discussed above, in cross-domain

metadata management, proper balance of integration, relevance and extensibility is essential for

enabling efficient and precise access to cross-domain data archive.

A successful cross-domain metadata management not only requires a proper metadata schema,

it also needs a powerful enough modeling schema to describe the metadata schema in machine-

understandable format. Different conceptual modeling schemas are available for building a meta-

data management service. Controlled vocabulary, schema, and ontology provide an increasing level

of description based on agreements concerning the meaning of terms, allowable data hierarchies,

and the overall data model.

Based on description logic [39], ontology describes the concepts and relations that can exist

for an agent or a community of agents in a given domain. Generally it consists of taxonomic

hierarchies of classes and the relations among these classes. Ontology has two key advantages

compared with traditional data modeling techniques: first,it has more expressive power than other

traditional data model techniques; secondly, efficient reasoners are available to enable discovery of

implicit knowledge and perform constraint verification andchecking. But its incompatibility with

2



most of the existing data intensive computing environment presents a problem for implementation.

Existing metadata management in distributed computing environment such as iCAT in iRODS [42]

offers compatibility with existing infrastructure in scientific computing. But their expressive power

is not powerful enough to accommodate what is needed in a cross-domain metadata schema.

Another factor we must take into consideration is the issue of scalability and performance, in

peta-scale computing, metadata schema must also be able to scale to peta-scale while still provide

reasonably satisfactory performance. A balanced approachis needed in both high-level architecture

as well as low level implementation in order to reach the desired scalability and performance

targets. For scalability, a distributed, loosely coupled system architecture is often required. For

performance, little research has been done with regard to the performance of key parameters of

metadata management in peta-scale computing, either for schema rich in expressive power such as

ontology, or for schema more traditionally associated withdistributed computing. Our experiments

[51] indicated that there are unresolved issues in both approaches.

Another untapped application area for metadata is scientific data placement in collaborative

distributed computing environments. Current data placement strategy for distributed system, for

the most part, simply places data archive physically on the sites physically housing the research

project, e.g. Numerical Relativity Group is a Center for Computation&Technology research group

at Louisiana State University-Baton Rouge, therefore, data archive for Numerical Relativity Group

is created and hosted on cluster located on LSU campus so thatspacial locality could be maximally

exploited for optimal performance if the researchers of Numerical Relativity Group were to access

their data archive. Potential drawbacks for the current data placement strategy include:

1. Due to increasingly distributed nature of modern science, physically concentrating data archive

on one location might negatively impact service performance for researchers located in another in-

stitutions.

2. The needs for replication to balance availability and performance as well as minimize repli-

cation overhead on system are not considered in current strategy.
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3. No consideration is granted to potential collaboration among different projects working on

similar domains, e.g. gulf coast oil spill simulation mightneed to work with hurricane prediction

group to make accurate assessment.

Semantically-Aware data placement and replication seek totake advantage of user-defined meta-

data information to optimally place and replicate data across the whole system so that better perfor-

mance, availability could be provided and overhead could beminimized. Specifically, by utilizing

user-defined metadata information, hopefully, data placement and replication strategy can take fac-

tors with real-world performance implications, such as semantic locality, to address issues raised

above with the ultimate aims of providing service with higher consistence, better performance and

higher availability.

In this thesis, we seek to investigate issues related to the development of cross-domain schema,

the implementation of cross-domain metadata schema in a collaborative distributed scientific com-

puting environment. We will also conduct tests on key parameters of our systems to better under-

stand the role played by these parameters on performance andscalability. We will also investigate

Semantically-Aware data placement strategies and algorithms to leverage cross-domain metadata

to improve data locality for better data-accessing performance.

1.2 Summary of Contribution

Large-scale data management has become increasingly centric in modern internet-scale, highly dis-

tributed computing environments, as proven by the rise of data-intensive computing in academia

and big data in industry, but in particular in industry. Traditional relation-based data model with

heavy focus on data consistency epitomized by relational database management system does not

provide sufficient horizontal scalability to keep up with the explosive growth of data. Various

NoSQL database and key-value stores have been developed to provide the necessary scalability

such as Google BigTable[22], Amazon SimpleDB[2] and ApacheHBase[3]. These industrial so-

lutions achieve high horizontal scalability and high availability by trading off strict consistency for

looser eventual consistency and by embracing key-value stores with little or not schema involved.
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They serve well in their respective domains. On the other hand, the problem facing scientific re-

search in academia differs from those facing industry, where most active work on large-scale data

management has been conducted, specifically:

1. Industrial solutions are often tailored for specific needs in a controlled environment, or pro-

vided as a highly abstract solution that requires substantial redevelopment by users to satisfy their

specific requirement. Industrial focus on scalability is concentrated on scaling up the number of

data items the system is capable of handling. Scientific management of large datasets, however,

often involves highly independent research groups collaborating with each other with little cen-

tral direction, and due to the nature of present day scientific research, a unique challenge in data

management in scientific community is the scaling up of the semantic ”understanding“ of the data

being managed, in another word, it is more focused on fusing wildly different data domains so that

scientists could understand each other better.

2. The data size in scientific community, while really large,still can not be compared to the data

size required in industry, which provides the opportunity for scientific data management to leverage

data models whose complexity would lead to overhead that could not be tolerated in industry.

These challenges are unique to scientific community, yet dueto the available resources, avail-

able datasets, difficulties in understanding and incorporating often implicit relations among differ-

ent scientific domains, the problems mentioned above have not been adequately addressed inside

academia while the explosive growth of data inside academiapresents the same set of problems to

scientific community as to industry.

In summary, this dissertation seeks to contribute to addressing the overall large-scale data man-

agement problem that has become the one of the most importantproblems in academia and industry

alike with specific focus on unique problems and challenges facing scientific community that in-

dustrial and open-source solutions of big data problem havenot adequately concentrated on. The

approach taken by this dissertation is mainly on making different trade-offs among key objectives:

scalability, availability performance, etc. to suit the unique needs of scientific community while

5



still maintaining sufficient attention to providing solution to large-scale data management common

to all.

1.3 Dissertation Outline

This dissertation is separated into the following parts:

1. Chapter 2 gives a overview of current status of research inkey related areas such as cross-

domain semantic modeling, scalability in metadata management and performance evaluation as

well as semantically-aware data placement. Chapter 3 provides summaries of key technologies

this dissertation leverage.

2. Chapter 4 and Chapter 5 discuss abstract models, metrics and approaches used used in system

design and implementation.

3. Chapter 6, 7 and 8 discuss details in design, implementation and evaluation of semantically-

aware data discovery.

4. Chapter 9 presents details on design, implementation andevaluation of semantically-aware

data placement.

7. Chapter 10 concludes the dissertation, discuss contributions. and future works.

6



Chapter 2
Background

2.1 Cross-Domain Metadata Management

Metadata management typically deals with defining, representing, storing, accessing properties to

be used for content descriptions. Kashyap et al. [34] classified metadata into Content Independent

Metadata and Content Dependent Metadata. Content Dependent Metadata can be further cate-

gorized into Direct Content-based Metadata, Content-descriptive Metadata. Content-descriptive

Metadata comes in two different flavors: Domain IndependentMetadata and Domain Dependent

Metadata. In interdisciplinary research, the hardest and the most meaningful part of metadata in

interdisciplinary collaboration is often Domain Dependent Metadata as it is often hard to describe

domain metadata in a clear, structured manner, but it is alsothe part of metadata information that

offers the biggest promise in establishing conceptual mapping among different terms from different

domains.

Currently, widespread application of metadata in the management of various entities in vari-

ous computing environments have produced myriad metadata standards, modeling schemas, etc.

describing every kind of metadata. For example, Dublin Core[6] lists 15 key properties such as

Title, Creator and Subject that are common elements shared by most entities in most computing

environment. However, the success of this kind of minimalistic approach also means it relies too

much on textual description, which can be problematic in an interdisciplinary research environ-

ment. In an interdisciplinary environment, scientists often need to access data from other scientific

domains annotated by metadata described in different vocabulary, which requires metadata to cap-

ture the underlying concepts, which in turn, require mapping and integration of terms in different

domains based on the similarity of underlying concepts. Projects such as those conducted by Mid-

America Heart Institute [41] do support mapping and integration of concepts and terms to capture

7



the common concepts behind heterogeneous terms, but they operate in single domain environment,

while heterogeneity does exist in such environment, it can not be compared to an interdisciplinary

environment covering diverse scientific domains.

According to National Center for Supercomputing Applications [25], it is critical to identify

communities of scientific data producers and consumers, because most of the current metadata re-

search is conducted within the confinement of single data collection, which is clearly not sufficient

in modern interdisciplinary research environment, but thesheer diversity of the entire scientific dis-

cipline means that it is not realistic to integrate all the scientific data collections without glossing

over significant details, in short, science as a whole and allthe players in science, such as scientists,

academic institutions, funding agencies, etc. are simply too diverse to be organized and integrated

into an single framework at this stage. Also philosophically speaking, it is hard to imagine the

existence of a god-like know-it-all entity, no such entity exists in human society, it would be diffi-

cult to contemplate the creation and maintenance of such an entity in a conceptualized world whose

knowledges and capabilities, so far, all come from its humancreators. Fundamentally speaking, the

need to “go deep” and the need to “go broad” demand contradictory approaches, it is hard, if not

impossible to accommodate both demands to their maximum without introducing unmanageable

complexity. Hence, identification of appropriate scientific communities whose data collections are

integrable via metadata is a critical first step in the designand implementation of cross-metadata

management framework.

Under Grid environment, metadata management is also considered a critical part. iRODS [42]

data grid software developed by San Diego Supercomputer Center stores system-related metadata

in a central database called iCAT while users can define theirown sets of metadata in Subject-

Predicate-Object triples format by using iRODS command. This approach only provides anset of

tools for users to develop their own metadata without an set of commonly agreed terms, relation-

ships and concepts, as a result, it is very difficult, if not impossible to integrate metadata arbitrarily

defined by scientists from different disciplines or even scientists from the same disciplines.

8



Metadata Catalog Service [44] developed at Information Science Institute, University of South-

ern California incorporated metadata schemas that describe properties of logical file, logical col-

lection and provenance. Extensive experiments on scalability and performance of MCS under data-

intensive environment was also conducted on up to 5 million logical files each associated with 10

attributes. But not enough research in MCS was done regarding building, mapping of terms and

concepts of domain-dependent ontology, which can help facilitating interdisciplinary research by

unearthing deeper connections among terms and concepts from different domains.

Earth Science Modeling Framework (ESMF) [8] is a set of programming libraries designed to fa-

cilitate the building and coupling of earth science simulation modeling. Its metadata system mainly

appears in the form of Attribute, here Attribute refers to name-value pairs. Attribute in ESMF can

be uniquely identified by its name, its convention and its purpose, sets of Attributes with iden-

tical convention and purpose can be grouped together into Attribute packages. Usually Attribute

packages describe community standard so that users can denote datasets and other programming

objects with terms widely used in their respective science domains. Attribute packages can also be

nested inside each other to create basic layered structure.Extensive testing and performance bench-

marking under distributed environment have been conductedon ESMF Attribute system, though

its simple representation of metadata (name-value pair) and lack of complex structure contribute to

better performance in distributed computing environments, they also render cross-domain access

of data archive extremely difficult as there is no support forcross-domain semantic mapping of

terminologies.

While metadata management is often associated with large-scale scientific datasets, Other areas

of computer science touch upon this topic as well. For example, lots of research has been done in

the area of Semantic Web [50] whose objective is partially tobuild an structured, well-defined vo-

cabulary to inject machine-understandable semantic meaning into traditional only human-understandable

web pages. Ontology is a modeling scheme used in Semantic Webto explicitly represents a set of

concepts within a domain and the relationships among these concepts [30]. It provides rich de-
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scriptive capabilities which can be utilized as a metadata modeling scheme to potentially integrate

highly heterogeneous data set.

One common use case is the Gene Ontology [29] in which an structured representation of gene

functions is used in a uniform way to be queried across different gene databases. Gene Ontology is

an important collaborative effort and it is arranged in a hierarchical manner using directed acyclic

graph. A controlled vocabulary is provided by analyzing thesemantic structures of the data and

then implementing a uniform representation of metadata information. The metadata can be queried

at different levels over many databases that span the world [29]. Despite its potentials, current

research primarily focuses on the development of ontology that defines vocabulary to describe

concepts specific to single domain.

Luis E. Bermudez presented an Ontology Metadata Framework in his PhD thesis [36] to fa-

cilitate the semantic interoperability among different hydrological metadata specifications. With

regard to domain-dependent ontology integration, Stuckenschmidt et al. proposed integrating dif-

ferent domain ontologies for data integration [47] and identified different mapping approaches for

concepts in different ontologies.

Jeffrey et al.[32] developed an ontology enabled semantic search engine for the SRB/MCAT

[20] system to handle heterogeneous data sources. Their system allows user to load different on-

tology instance datasets into a mySRB interface enabling user to search on heterogeneous ontology

repositories. However, their research did not cover the critical issues of extensibility, limit of ex-

tensibility, scalability and performance in a data-intensive environment.

The Pegasus group developed a virtual metadata catalog which provides semantic-rich infor-

mation for the metadata catalogue [27]. They integrated datasets from three disciplines by con-

structing one virtual metadata catalog which hides all the underlying distributed domain ontologies

from the query mediator. Again, their system didn’t adequately address how to integrate metadata

of new domains into existing metadata framework with minimal disruption of service. Performance

of their system in a terabyte or even petabyte environment was not explored either.
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The Earth Science Curator[7] seeks to develop community wide metadata standards. The meta-

data being developed includes such topics as simulation genealogy, component-level scientific and

numerical properties. The Earth Science Curator ontology supports classification of datasets as

well as network access of data archives. But the structure ofthe ontology is essentially flat and

the domain covered by it only extends within geo-science community. As a result, there is no

support for cross-domain metadata management in ESC and theproblems of including it in large-

scale computing infrastructure as well as its performance in large-scale, data-intensive computing

environment are yet to be resolved.

The CUAHSI Hydrologic Information System (CUAHSI-HIS)[4]provides low-level metadata

management in the form of Observation Data Model (ODM), a relational database schema encoded

with metadata in Hydrology community; data transmission standard in the form of Water Mark-

up Language (WaterML) to hide the underlying heterogeneityrelated to differences in metadata

standard; controlled vocabulary contained in an ontology to guide access to federated, geographi-

cally distributed data archives. The CUAHSI-HIS has the most complete metadata management in

large-scale distributed environment at this moment, but like the Earth Science Curator and many

other systems, it is designed to focus on metadata management in an single domain, attempts to

introduce cross-domain management have been initiated butat this moment, it is still at very early

stage and progress thus far is limited.

Z. Kaoudi et al [33] designed a p2p-based network for storing, querying and updating RDF

metadata describing web or grid resources. It is a web service oriented architecture focusing on

describing and accessing service providing nodes. The challenges posed by the existence of large-

scale data in the network as well as providing access to not just nodes hosting these data but also

access to specific data archive within the nodes are not addressed.

As discussed above, scalability and performance are very important factors in the design and

implementation of metadata system in a data-intensive environment. Especially so in modeling

schemes rich in expressive power such as ontology. iRODS enabled federated iCAT since ver-
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sion 1.2 that can distribute load to multiple iRODS servers to avoid bottleneck, thus increasing

performance and scalability. Metadata Catalog Service project did extensive experiment on scal-

ability and performance on query and addition on up to 5 million instances with 10 attributes

each deployed on an single node. It did not, however, measureperformance and scalability of

information-rich metadata which is necessary for domain-dependent metadata integration.

Pan et all. [40] experimented with loading 4,1741 ontology,approximately 45 million triples

into relational database in approximately 15 days. While their experiment clearly showed ontology

offered the scalability to handle large number of metadata instances needed for peta-scale data

grid, the experiment was not expanded to include performance benchmarking on adding, deleting,

modifying and querying metadata stores and what, if necessary, needs to be done to overcome per-

formance bottleneck. Also, their experiments did not test scalability and performances on ontology

deployed on multiple geographically distributed nodes. Distributed Ontology can increase scalabil-

ity and flexibility, but it also introduces added complexities of managing the evolution of multiple

ontologies and maintaining consistency because local replication is often needed for performance

purposes.

A.Maedche and others [38] discussed an integrated framework implemented in KAON [9] for

managing distributed ontology in Semantic Web context, their framework adopted the pull ap-

proach for synchronizing ontology and replicas residing ondifferent nods and evolution log for

updating ontology replicas.

All of the above works have something to contribute to cross-domain distributed metadata man-

agement in collaborative computing environment. However,none of them adequately addresses

challenges presented by interdisciplinary scientific research often dealing with hundreds of ter-

abytes or even petabytes of data. in this work, we mainly seekto address cross-domain meta-

data modeling, implementation of cross-domain metadata, benchmarking and evaluation of perfor-

mance and scalability for real-world usage.
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2.2 Semantically-Aware Data Placement

In his dissertation [26], Lei Cao proposed to employ semantically-aware replication to support edge

service architecture to achieve optimal mix of Consistency, Availability, Response time and Parti-

tion resilience. Semantic-aware replication (SAR) seeks to replicate data based on the awareness

of properties of the replicated data so that further access of separate replication node or database

service could be minimized. The SAR encapsulate information into different distributed data ob-

jects based on application requirement so that different replication strategy could be employed to

replicate data to ensure optimal trade-off among Consistency, Availability, Response time and Par-

tition. In the prototype which encapsulates semantic information about an e-commerce system in

the form of distributed objects: catalog, order, user profile, inventory and best-seller. Distributed

object holds both front end interface, business logic as well as backend data. Different replication

strategy is employed to replicate different object, e.g. one to many update is required for catalog

object; order object implements the abstraction of the single-reader/multi-writer scenario.

Yu Hua, et al. proposed SmartStore [31], a new generation of distributed semantic-aware file

system that enables range query as well as Top-K query with improved performances. Instead

of traditional directory-based file system, SmartStore groups file metadata into multiple semantic

R-Trees that each represents a ”view” of the distributed data archive based on selected metadata

parameters. Metadata represented in R-trees include physical and behavior attributes of files such

as access frequency, amount of read and write operations (these two can be grouped together be-

cause they both change frequently) filename, creation time (they can be grouped together because

they change infrequently), content-based metadata can be grouped according to their level of cor-

relation, such as metadata about files under the same directory could be grouped together because

application is more likely to access file under the same directory repeatedly. Because of semantic

locality offered by semantic grouping of metadata in R-Treebased data view, SmartStore limits

searches to a limited scope of semantically related groups,thus improving system scalability and
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reducing performance latency. SmartStore also provides insertion and deletion services so that load

on R-Tree nodes could be managed to ensure efficiency and performance.

Hong Tang, et al. adopted Base Scheme [49] in Sorrento, an self-organizing storage cluster,

as data placement and migration strategy to balance I/O loadand storage usage among distributed

nodes. Base Scheme allocates storage based on weight value assigned to available storage providers,

weight value of a provide is calculated based on its current workload and available resources.

Based on empirical evidence, the storage factor is calculated as the logarithm of the ratio between

the available space and the segment size. The load factor is calculated as the inverse of the current

workload. The system, upon receiving requests for data placement, will choose storage provider

randomly so that each storage provider has a chance of being selected proportional to its weight.

Muthian Sivathanu, et al. developed [46] semantically-smart disk system that leverages higher

level information from the file systems to provide better functionalities and improved performance.

SDS does not change the interface between file system and disksystem, SDC relies on EOF (Ex-

traction of File System) to automatically extract information and layout of file system. Information

extracted includes type of blocks (file, directory, etc.), how many and which data blocks consti-

tute a file, etc. By exploiting information extracted, the system also implemented a few functions

such as secure delete, structural caching and journaling that are not available under traditional disk

system.

Muthian Sivathanu, et al. sought to apply semantically-smart storage technologies to relational

database systems.[45] Via log-snooping and explicit access statistics, the system gathers up static

and dynamic information about database system to be used by underlying storage system. Informa-

tion gathered includes block ownership by tables and indices, block type information (tables, in-

dices) as well as information about various access patterns. By implementing an optimistic strategy

or a pessimistic strategy, the system deals with observed dynamic information with correctness or

performance prioritized respectively. In three case studied, the system implemented three different

semantically-smart storage systems, D-GRAID, , FADED, X-RAY, underneath database system to
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evaluate if benefits achieved by these semantically-smart storage systems could be achieved under

database systems and the cost of such improvements. The results show that semantically-smart

storage could be applied to database system with, dependingon functionalities, various levels of

overhead.

Zhichen Xu, et al. proposed a generic data model to capture the needs of users and applications

of semantic-aware file store.[52] The generic data model proposed seeks to be extensible and ca-

pable of handling dynamic evolvement of file store semantics. It is based on Resource Description

Framework (RDF), namely, subject-predicate-object triple data model. Metadata described in the

proposed data model includes: file versioning, hierarchical name space, arbitrary sets of dependen-

cies, associative semantics and context information. The data model also exploits RDF capabilities

such as inheritance, namespace, etc to handle changes and evolution of metadata schema during its

life time.

Pinar Alper, et al. gave an overview of existing semantic grid middleware in [17]. It discusses

semantic grid middleware such as S-SRB, GRIMOIRES, SMDS, etc. Systems examined here were

developed mainly to facilitate resource discovery and resource access as well as resource integra-

tion via intelligence application of Semantic Web technologies such as ontology and reasoning.

There is not sufficient discussion about data placement and corresponding gains in performance.

The paper also examines problems related to high-level and abstract view of issues and requirement

related to the development of semantically-aware grid middleware.

Sharad Agarwa, et al. developed a data placement system, Volley[43] for cloud services that

seeks to decrease inter-datacenter traffic and latency. By exploiting previously unexploited param-

eters such as network bandwidth among data centers, data inter-dependency, data sharing, etc.

Volley incorporate an iterative algorithm that analyzes log files containing IP address, call tree (de-

scribing data inter-dependence.), if migration is found tobe worthwhile, Volley triggers application

specific data migration mechanism. Experiments were conducted on log of Microsoft Live Mesh

and Live Messenger services that show significant reductionin inter-data center traffic and latency.

15



Current strategies for semantically-aware data placementand replication include:

1. By analyzing access behavior, data archives are replicated in such a way that potential users of

data have access to replications that are closer to users than the originals. Benefit of this approach

is obvious, by exploiting factors that impact data access performance such as network traffic and

topology , data users could be directed to use replication that offers the best performance. On the

other hand, dynamic analysis of access behavior is needed toextract patterns so that strategies and

replications could be updated to reflect the current user environment. E.g. [26]. For example, the

UcOMS project archive is hosted on PetaShare under one single virtual collection while UcOMS

team is spread throughout LSU Baton Rouge, ULL and Southern University, each with its own

PetaShare site, it is conceivable that original archive uploaded at each site should be stored at its

local server while a behind-scene service be developed to catalogue access patterns of different sub-

collections by different UcOMS groups located at differentsites so that a behavior profiles could

be in place to facilitate replication, e.g. most frequentlyremotely accessed files in a week should

be replicated to local server, files not frequently accessedby multiple group at different locations

should not be replicated to reduce synchronization overhead. Or users could take advantage of the

tagging mechanism in PetaShare’s metadata management system to tag the file by its possibility of

being accessed in the future by other groups so that the system could be informed to perform the

necessary replications for performance optimization. Dueto the availability of rule-based system

in PetaShare, it is conceivable that services that record access behavior by different groups could

be developed to provide the necessary profile based on which data placement strategies can be

developed and tweaked. For example, the system can detect data collections accessed remotely, if

certain threshold were crossed, the data collection in demand can be replicated to servers closest

to groups that access it and new data posted into the collection can be placed in serves closest to

where it is most in demand.

2. By exploiting semantic locality, in another word, in exploiting the fact that users who are ac-

cessing the current data archive are also likely to be interested in accessing data archive of similar

16



domains, data archives of similar domains can be placed close to each other to optimize perfor-

mance of repeated access. This approach can potentially improve the performance of repeated

accesses, if applied to replications, synchronization overhead could be limited to only part of the

system and potentially be reduced. Again, to successfully implement this strategy, dynamic anal-

ysis of accessing pattern as well as semantic relations among different data archives are needed.

[31] and [43] implement this approach. The key to this approach, like the previous one, is to build

up views of the data archive, how to determine if two archivesor sub-archives are related, and

to what degree they are related, this could be achieved by observing access pattern over a period

so that factors such as if files were uploaded to the same collections, if two sub-collections share

same keywords, etc. are collected so that a dynamically updatable graph/ontology could be built

up containing the semantic relations observed with regard to one particular archive, future data

placement and replication could be determined by performing an analysis of the graph/ontology.

User groups can also be given direct access to this graph/ontology so that they could directly put

metadata terms and relations related to archive into it for future consideration in data placement

and replication. Datasets on hurricanes such as hurricane on PetaShare and datasets that might be

considered incoming hurricanes impacting, such as the oil spill collection on PetaShare can take

advantage of placement strategies based on semantic locality.

3.By exploiting hardware information such as available network bandwidth, I/O bandwidth,

available resources, etc. data could be placed and replicated to balance volume of usage and re-

sources available, thus improving performance and increasing throughput. [26] and [49] implement

this strategy. Just like the previous two approaches, this approach depends heavily on acquiring the

right information and dynamically adjust data placement and replication. Key effort include acqui-

sition of metadata information and more importantly, how tomake the decision regarding actions

need to be taken to facilitate improved performance and throughput.

4. Overall, to design and implement semantically-aware data placement and replication, meta-

data about the system such as physical topology, network bandwidth, I/O bandwidth as well as
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semantic metadata about data archives need to be collected and analyzed dynamically to produce

a overall view of the system, [31] organizes metadata into semantic R-Trees while others such as

[52] model context and content metadata with RDF.

To test different strategies, a controlled experimental environment with controlled sets of data

collections from controlled set of domains should be set up to test various access behaviors and

corresponding placement strategies, such as:

1. If disk and bandwidth resources were sufficient, it is desirable to place data on server local to

the institution hosting the research project.

2. If data collection were accessed by multiple groups that belong to the same discipline, depend-

ing on access behavior (if one particular group access the data collection frequently or infrequently,

the former may warrant a replication job to be performed while the latter may not.) and available

resources, certain part of the data collection should be replicated to servers closest to these groups.

3. If two collaborating group opt to share data, relations should be established either by these

group or by system itself in the relation group/tree/ontology which will be consulted by the system

periodically for dynamically adjusting data placement andreplication strategies, upon sensing the

existence of relations among groups, changes to the defaultstrategies can be implemented, for

example, data posted by these group could be placed on their respective local servers and server

local to their respective collaborating partner.

4.If profile of the system, in term of available resources andnetwork bandwidth, for example, a

server goes down, or resources on the server becomes scarcer, etc. changes, another set of place-

ment and replication strategies should be put in place to deal with it, for example, certain rarely

accessed data can be replicated to other servers to free up resources for new data from local group,

or replications of remote resources can be deleted, etc.

5.If certain data collection were accessed by groups of different domains frequently, relations

could be automatically added so that data placement strategies from 3 could be performed, e.g. if

the cross-group/discipline access were two way, data from both groups should be placed on servers
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local to both groups; or data from the group being accessed beplaced on servers local to group

accessing these data.

Above are some some of the scenarios that could potentially take advantage of semantically-

aware data placement and replication to improve performance, as they show, different strategies are

available for different scenarios and successful implementation largely depends on the acquisition

of semantic metadata information on hardware context, resource availability, access behavior, users

profile. Depending on the frequency of change, these metadata can either be developed, hard-

coded and changed periodically to reflect changes or be builtup dynamically by observing system

behavior during a period.
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Chapter 3
Overview of Key Technologies

In this section, I will present a brief overview of key technologies employed in my research . Meta-

data modeling schemes such as ontology, OWL, an ontology representing language [11], Sparql

[14], an ontology query language and Protege [12], an ontology development tool are covered. We

also give a brief introduction to function and application of iRODS [42] and iCAT. PetaShare, the

principle data-intensive distributed infrastructure forthe testing and integrating our research work,

is also discussed.

3.1 PetaShare

PetaShare [19] is a state-level data sharing cyber-infrastructure effort in Louisiana. It aims to en-

able collaborative data-intensive research in different application areas such as coastal and environ-

mental modeling, geospatial analysis, bioinformatics, medical imaging, fluid dynamics, petroleum

engineering, numerical relativity, and high energy physics. PetaShare manages the low-level dis-

tributed data handling issues, such as data migration, replication, data coherence, and metadata

management, so that the domain scientists can focus on theirown research and the content of

the data rather than how to manage it. Currently, there are seven PetaShare sites online across

Louisiana: Louisiana State University, University of New Orleans, University of Louisiana at

Lafayette, Tulane University, Louisiana State University-Health Science Center at New Orleans,

Louisiana Tech University, and Louisiana State University-Shreveport. They are connected to each

other via 40Gb/s optical network, called LONI (Louisiana Optical Network Initiative). In total,

PetaShare manages 250TB of disk storage and 400TB of tape storage on these sites. PetaShare is

a data-aware resource management system. In light of increasing size of scientific datasets, ser-

vices such as data-aware scheduler, Stork [35], resource allocation, workflow planner and manager

are included in PetaShare to facilitate efficient and effective data access. At each PetaShare site,
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an iRODS server is deployed, which manages the data on that specific site. Each iRODS server

communicates with a central iCAT server that provides a unified name space across all PetaShare

sites. The clients can access PetaShare servers via three different interfaces: petashell, petafs, and

pcommands. These interfaces allow the injection of data object metadata information (i.e. any

keywords describing files in datasets) to iCAT managed data object metadata store whenever a

new file is uploaded to any of the PetaShare sites. The physical metadata information (i.e. file

size and location information) is inserted to iCAT using theiRODS API. As part of the PetaShare

project, works described in this dissertation enable an semantically-enabled metadata management

and query system. It provides an extendable metadata framework that gives a unified view over

multidisciplinary datasets; The system also provides fastand efficient metadata query services for

physically and conceptually distributed data set of peta-scale.

3.2 Ontology and Metadata

Metadata refers to information about data itself, often defined colloquially as “data about data”.

For data intensive computing, a well-defined and well-implemented metadata system is essential

for scientists to access large datasets distributed acrossdifferent physical locations and multiple

scientific domains. In the context of computer science, the often cited definition for ontology is:

“ontology is a specification of conceptualization” [30] . Ontology is a model that explicitly rep-

resents a set of concepts within a domain and the relationships among these concepts [30]. One

common use case is the Gene Ontology [29] in which a structured representation of gene functions

is used in a uniform way to be queried across different databases. A controlled vocabulary is pro-

vided by analyzing the semantic structure of the data and then implementing a uniform representa-

tion of metadata information. Based on description logic [21] ontology describes the concepts and

relations in given domains. It often consists of taxonomic hierarchies of classes, relations among

these classes and individuals that belong to one or more of these classes. Comparing to traditional

modeling scheme, the main advantages of ontology include:

1. Ontology is theoretically logic-based. As result, automatic inference is supported.
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2. Ontology allows relations among concepts to be defined arbitrarily, as a result, expressive

power is greatly enhanced. At the same time, ontology still maintains computational decidability.

Ontology modeling has the potential to greatly benefit scientific data management.

3.3 OWL, Protege, Jena and Sparql

Since the emergence of ontology as a modeling scheme of greatinterest to Computer Science re-

searchers, various research teams have developed several ontology representing languages such as

SHOE [13], DAML-ONT [5], OWL. Among them, OWL is developed and promoted by World

Wide Web Consortium (W3C) as standard language to representontology. OWL provides rich sets

of axioms that can be used by developers to model concepts andrelations of targeted domains.

OWL has three sub-languages: OWL Lite, OWL DL and OWL Full. Each sub-language is tailored

to meet demands on expressive power and decidability in different application areas. Sparql [14]

is a recommended query language developed by W3C for querying ontology-based knowledge

stores. Sparql employs SQL-like syntax and supports queries across diverse data sources. Sparql

supports extensible testing of parameter constraint and can return result as either list style result

set or ontology files. Developed by HP Labs Semantic Web Program, Jena [1]is a Java program-

ming framework for building, modifying, querying ontology. Jena framework includes OWL API,

in-memory and persistent storage support and Sparql query engine and is widely used to develop

ontology applications. Jena is also adapted by other ontology modeling tools such as Protege as

basis of development API. Protege is developed by Stanford Center for Biomedical Informatics

Research as a free, open-source graphic development platform for domain modeling with ontol-

ogy and development of ontology applications. It includes agraphic ontology development tool

for domain-modeling and a set of Jena-based APIs for the development of ontology applications.

PetaShare’s cross-domain metadata management system is primarily developed with Protege, its

query system made extensive use of Jena-based Protege API and Sparql query languages.
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3.4 iRODS

iRODS (Integrated Rule-Oriented Data System) is a open-source data grid system developed at San

Diego Super Computing Center. iROBS is a follow-up system tothe widely deployed, also SDSC-

developed SRB (Storage Resource Broker) [20] data grid software. iRODS provides a unified

namespace to geographically distributed storage system. Under iRODS management, distributed

storage system such as those under PetaShare management will present itself to users and appli-

cations as a single virtual file system. This virtual file system would manage storage size equaling

accumulated size of storage of all 7 PetaShare sites. iRODS includes several modules, those used

in PetaShare are listed below:

1. iRODS sever are installed on all seven PetaShare sites, they are responsible for managing local

storages (data storage, data movement, data replications,etc), executing commands from clients

and handling communication.

2. iCAT (iRODS Metadata Catalog) is the metadata system of iRODS. It is responsible for

all metadata related activities in iRODS. Inside iCAT, there are system-defined metadata, mainly

related to physical attributes of files and other data entities, users can also make use of iRODS

command “imeta” to add metadata arbitrarily defined by users. iCAT is fast and efficient, but

lacks the expressive power of ontology-based system. One ofthe main focus of our research is the

integration of elements of ontology-based cross-domain metadata system with data object metadata

system we implemented that mainly based on iCAT.

3. iCommand is a set of unix-like commands provided by iRODS to help users access storage

managed by iRODS servers. Most of the common functionalities such as listing, creation, deletion

and copying of files and other data entities in Unix file systemis implemented in iRODS. Among

all the commands, “imeta” is provided for access to iCAT. Ourdata object metadata system is

based on a modified version of imeta.
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Chapter 4
Semantically-Aware Data Discovery and Placement
Model

Fundamentally speaking, the problem this dissertation is seeking to address can be viewed as

the introduction of interoperability into collaborative data management system via cross-domain

metadata, in particular, this dissertation seeks to leverage cross-domain metadata to address issues

of data discovery and placement in collaborative data management.

But how do we transform the above definition of problem into a set of measurable parameters

that can be benchmarked and evaluated in practice? To do that, a thorough overview of key system

parameters is needed.

4.1 Semantically-Aware Data Discovery

In practice, introducing interoperability into data discovery requires the creation of a cross-domain

metadata management system which needs to take into consideration following factors:

F(M, I ,S)

Here, M, I, S each represents certain aspect of metadata management: M denotes metadata

schema; I represents implementation; S factors in performance and scalability. Most important

parameters relevant to the overall quality of the system could be categorized into M, I or S. We

will explain in detail and discuss the parameters we choose to model the system as well as the

relations among the parameters.

In above function, variable M denotes actual metadata used to describe domains, simulation as

well as data archives: name of file, name of domain, file extension, factors pertinent to an sim-

ulation, etc. It is the most basic element in metadata management, namely, the vocabulary and

terminology used for description. M can be further divided into the following components:

Physical attribute metadataMp, such as name of file, file extension, etc are simple to describe

and often unambiguous in its meaning. It also has little direct relationship to the domain the data
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entity belongs to. In another word, physical metadata is often independent of domain, it can be

captured with a relatively small set of metadata terms organized in flat structure, and every data

entity should be uniquely described by this level of metadata.

Direct content-dependent metadataMc, such as keyword related to the actual content of the

data entity is almost boundless if no constraint were imposed. This kind of metadata is content-

dependent but not necessarily domain-dependent as similarterms could be utilized to describe

object in different domains. As almost all of the data entities need a brief description regarding its

content, the description should be kept very concise, one word optimal, to reduce potential extra

overhead.

Domain and cross-domain metadataMd, obviously, this kind of metadata is domain-dependent,

on the other hand, it also usually has no direct relationshipwith the data entities in storage, which

means that this level of metadata could be assigned the task of handling, in an structured way,

describing terms, relationships in academic domains as well as relationships needed for mapping

terms existed in different domains for the purpose of cross-domain access. And it should not be

too detail-oriented so avoid dwelling on too much details more relevant to actual data entity.

In previous mentioned formula, variable I denotes actual implementation of metadata schema in

a collaborative distributed environment. Factors can potentially impact decisions made regarding

implementation include:

Level of distribution Id, as distributed system is often easier to upgrade and scale.

Implementation compatibility Ic, sometimes, the difficulty and sacrifice in performance and

scalability required can be factor in scuttling preferred implementation strategy.

S denotes the overall quality of the system. To determine S, extensive performance and scala-

bility benchmarking need to be conducted. The benchmarkingtest will involve(Si,Sm,Sq,So,Sc),

which represents key performance and scalability benchmarks in a good metadata management

system. Represented benchmarks are:
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As discussed above, the main goal of this dissertation is theintroduction of interoperability into

collaborative system via the leveraging of cross-domain metadata system to help data discovery as

well as data placement. According to abstract model of metadata system provided above, perfor-

mance could be measured by benchmarking key performance-related system operations, based on

the abstract model, we use the following parameters and metrics to measure system performance:

Metadata insertion performance Si , we will use triple/second to measure insertion perfor-

mance.

Metadata modification performance Sm, we will use triple/second to measure modification

performance.

Metadata query performanceSq, we will use query/second to measure query performance.

Scalability mainly involves the ability of the system to expand further without seriously com-

promising performance. According to the abstract system model, there are three level of metadata

schema available in the system, in actual implementation, the first two levels of metadata schema

will be described by lower level triple-based data model while the domain and cross-domain meta-

data will be described by higher level ontology-based data model. For the lower level metadata

schema, because it is mainly utilized to describe actual data-object available in the system, whose

number can easily run up to multi-millions, which can seriously test the system’s ability to effec-

tively store, access and query these many triples, as a result, we will use the following parameter

to measure scalability on this level.

Data-object metadata scalabilitySo, the number of triples available throughout the system, in

another word, triple/system will be used to measure data-object metadata scalability.

On the other hand, the higher level domain and cross-domain metadata schema do not describe

actual data object in the system, it is mainly used to describe the domains involved as well as

establishing relations among related terms in different domains. Scalability here concerns more

about the ability of the system to handle domain-wise expansion rather than pure increase of size of

metadata schema. Due to the complexities of ontology model,increase in cross-domain metadata,
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in another word, increase in ontology can seriously impact the overall performance of the system

as ontology query generally takes longer than more basic database query.

Domain and cross-domain metadata scalabilitySc, scalability on this level mainly concerns

the ability of the system to scale up to include and integratemore science domains without increas-

ing cross-domain ontology to such a size that it seriously degrades system performance.

In sum, metadata management system in collaborative environment can be abstracted into the

following description:

F[(Mp,Mc,Md),(Id, Ic),(Si, ,Sm,Sq,So,Sc)]

4.2 Semantically-Aware Data Placement

For data placement strategy, interoperability means leveraging knowledge garnered from metadata

management system as well as information about current network conditions and available stor-

age to intelligently place semantically-related datasetscloser to their potential users. Assuming

semantic-relation has been detected and established in previously discussed data discovery phase,

the two factors impacting data placement strategy in a distributed collaborative environment are:

Network throughput Si j , hereSi j represents network throughput from node i to node j and node

i to node j are two nodes containing semantically-related datasets.

Available disk space on node iDi , hereDi represents disk space made available by node i for

data placement for other non-local datasets.

The goal of the dissertation regarding data placement is to leverage metadata system mentioned

above to intelligently place datasets to take advantage theabove two factors so that better perfor-

mance for data access among semantically-related datasetscould be yielded.

For data placement, the problem this thesis seeks to addressis to, for datasets semantically-

related to users of node i, achieveMin(
D j1
Si j1

+
D j2
Si j2

......+
D jm
Si jm

), here node j1 to jm represent candidate

nodes chosen for data placement, ordered by preference. If available space on nodej1 had enough

disk space for placing dataset semantically-related to users on node i.j1 would be chosen as the
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sole data placement node. If not, node j2, j3, j3, to jm would be chosen accordingly until all related

dataset were placed.
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Chapter 5
Methodology

For data discovery, the key objective is to achieve cross-domain data access in metadata man-

agement, to achieve “cross-domain” in metadata managementin any meaningful sense, extensive

amount of communication needs to be conducted with domain scientists to assess and evaluate

the practicality of establishing conceptual and/or semantic links between different domains. For

domains that can be linked together, metadata schema shouldbe developed in various encoding

formats to accommodate different requirement in differentcontext. For example, overly compli-

cated metadata modeling is not practical in the context of large, distributed datasets, while scien-

tists need some kind of controlled vocabulary to guide them through the query process, especially

if they were trying to access data of another domain. As a result, we need to develop a higher level

metadata vocabulary that is not dependent on any specific implementation. The current metadata

vocabulary we have include four specific science domains andwe have implemented it in ontology

format, with it in place, the ontology can serve as controlled vocabulary to guide users through the

query process. We also plan to implement the vocabulary in another, less complicated, closer to

infrastructure, format to enable more detailed and direct access. Finally, tests need to be done to

thoroughly evaluate the performance and scalability of oursystem.

For data placement, the key objective is to place datasets that are semantically-related, as deter-

mined by cross-domain metadata management system, closer to each other physically so that local-

ity could be maximumly exploited to reduce overhead involved in transferring datasets among ge-

ographically distributed storage nodes. We will identify key factors needed for semantically-aware

data placement, experimenting with different algorithms and conducting performance benchmark-

ing.
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5.1 Metadata Schema

We first design a high level metadata vocabulary that covers multiple domains. The domains cov-

ered in our current design include:

Coastal Science and Hurricane Predication, specifically, datasets generated by the SCOOP

project.

Numerical Relativity and Astrophysics, specifically, datasets generated by the NumRel project.

Petroleum Engineering, specifically, datasets generated by the UCoMS project.

Scientific Visualization, specifically, visualized files generated from DMA project.

The metadata schema can be roughly separated into three distinct levels:

Data object metadata schema, metadata that describes attributes of the data object and content

of data object.

Domain controlled vocabulary, logical relations among terms in domain controlled vocabulary

such as equal, subsume, subsumed-by.

Cross-domain concepts mapping, high-level terminology mapping out the overall specification

of conceptualization in domains involved.

5.2 Multiple Implementation for Multiple Needs and
Environments

Our experiments on current implemented systems indicate that encoding over-complicated meta-

data to the level of individual file will entail severe degradation of performance and scalability. As

a result, multiple implementations of the metadata vocabulary geared toward addressing different

concerns of different environments should be developed to ensure acceptable performance. Differ-

ent level of details and cross-domain connectivity corresponding to the needs and requirement of

different implementations should be discussed to strike the right balance between expressiveness

and usableness. By implementing metadata management system in a layered approach similar in

concept to traditional memory hierarchy, as illustrated inFigure 5.1, we seek to establish a meta-

data hierarchy in the system so that different level of metadata query could be handled by different
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FIGURE 5.1: Metadata Hierarchy

layers in the metadata hierarchy. We currently envision twolayers of metadata in the implementa-

tion of metadata hierarchy:

Domain and cross-domain metadata accessimplemented in ontology format, this implementa-

tion should mainly cover with domain-level metadata that isused to describe the domain itself.

Expression of logical relations that establishes conceptual relationships among terms used to de-

scribe domains should also be implemented at this level. Components cross-domain metadata store

and domain metadata store in Figure 5.2 illustrate the role of domain and cross-domain metadata

played in the overall metadata management architecture.

Data Object metadata accessimplementation that encodes individual files and folders with nec-

essary metadata informations for more precise access to data archive, this implementation empha-

sizes lower level description of metadata information needed for individual or small batched access

of data archives. Component federated data-object metadata store in Figure 5.2 illustrates the role

of data object-level metadata played in the overall metadata management architecture.

5.3 Performance Evaluation

For the last stage, we will conduct thorough and systematic testing on parameters identified in

previous section to evaluate the performance and scalability.
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FIGURE 5.2: Proposed Implementation Architecture

5.4 Semantically-Aware Data Placement

Traditionally, data placement algorithms, whether as partof file systems in operation systems, or

as part of distributed system, only leverage properties of data file itself and hardware storages,

e.g. size of files and size of pages on hardware. Without taking advantage of semantic informa-

tion concerning the content and context of data, traditional data placement algorithms could po-

tentially introduce unnecessary overhead in a distributedcollaborative computing environment as

in modern collaborative research environment, the importance of semantic locality often requires

placing datasets with awareness of semantical closeness. Another factor to be considered is net-

work conditions such as network traffic and network throughput as intelligent data placement of

semantically related datasets need to be aware of the primary factors impacting efficient access

of data on remote storage, in another word, close semantic relationship requires dataset to be

intelligently placed so that physical closeness among datasets matches their respective semantic

closeness. Good semantically-aware data placement algorithms need to take into consideration the

following factors:
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1. Semantical relationship among terms used to tag datasets. As discussed in previous sec-

tion regarding data discovery using semantically-ware metadata, this relationship can be explicitly

marked by researchers; and be generated based on logic reasoning automatically by machines. For

the sake of simplification, we chose metadata standards fromWQX (Water Quality eXchange) and

National Water Information System (NWIS) used by Environmental Protection Agency (EPA), US

Geological Survey (USGS) respectively to tag hydrologic data collected by these agencies.

2.Physical closeness information among different nodes ofthe distributed system, in our ex-

periments, we primarily measure network throughput in datatransfer rate per second as well as

available storage on different nodes. The idea is to measurethese parameters periodically, then

create an set of candidate nodes upon which semantically-related datasets are to be placed so that

physical distance among dataset could be closely matched totheir respective semantic relationship,

thus reducing the overhead for semantically-related groups to access each other’s datasets.

.
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Chapter 6

Semantically-Aware Data Discovery1

6.1 Cross-Domain Metadata Schema

We have developed a ontology consists of metadata about dataarchives from four science projects

in Center for Computation& Technology (CCT), they are SCOOP, Numrel, DMA and UCoMS

archives. The structure of this ontology follows a general-to-specific conceptualization with gen-

eral concepts such as File, Archive serves as common concepts connecting metadata belonging to

different science projects.

Currently, our ontology-based cross-domain metadata schema incorporates domain-independent,

domain-dependent and provenance metadata of four science drivers: coastal hazard protection

(SCOOP) [15], reservoir uncertainty analysis (UCoMS) [10], numerical relativity (NumRel) [16]

as well as scientific visualization (Digital Media Archive -DMA) at Center for Computation and

Technology, LSU. The following are brief introductions of the four current guiding application

scenarios:

Coastal Modeling - SCOOP Archive.The SURA Coastal Ocean Observing and Prediction

(SCOOP) program is building a modeling and observation cyber-infrastructure to provide new

enabling tools for a virtual community of coastal researchers. Two goals of the project are to enable

effective and rapid fusion of observed oceanographic data with numerical models and to facilitate

the rapid dissemination of information to operational, scientific, and public or private users [37].

As part of the SCOOP program, the team at LSU has built an archive to store simulation and

observational data sets. Currently the archive contains around 300,000 data files with a total size of

around 7 Terabytes. Three main types of data files are held in the archive: wind files; surge (water

height) files; and data model files. The basic metadata information for these files are: the file type,

1Reprinted by permission of “International Journal of Grid and Utility Computing”, published by Inderscience Publishers
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FIGURE 6.1: Cross-Domain Metadata Schema

the model used to generate the file, the institution where thefile was generated, the starting and

ending date for the data, and other model related information.

Astrophysics - NumRel ArchiveThe Numerical Relativity group at LSU is building an archive

of simulation data generated by black hole models. One of themotivations is to analyze exper-

imental data from gravitational wave detectors such as LIGO. These simulations are typical of

many other science and engineering applications using finite element or finite difference methods

to solve systems of partial difference equations. The simulations often take many CPU hours on

large supercomputers and generate huge volumes of data. Software packages such as Cactus [28]

enables scientists to develop their code in a modular fashion. Each numerical library in the package
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defines a set of attribute names which can be used as controlled vocabulary. The attribute names

could describe input parameters or computation flags. Such information is crucial for user’s later

retrieval.

Petroleum Engineering - UCoMS Archive.Reservoir simulations in petroleum engineering

are used to predict oil reservoir performance. This often requires parameter sweeping, where large

numbers (thousands) or runs are performed.

In this scenario, users need to provide the initial range of parameter settings. In such a setting,

the important metadata can be expressed as follows: parameter name; the range of the parameter

in the simulation; the particular parameter value which is set for the run.

Visualization - DMA Archive. Scientific data, after being generated by simulations, needs to be

further analyzed. One important tool to help scientists is visualization. The Digital Media Archive

(DMA) at CCT is being built to store the resulting images fromscientific visualization, along with

other media such as movies, sound tracks, and associated information. Visualization metadata can

be fairly simple: Image Name, Image Size, Image Width, ImageHeight, and File Format.

As evidenced by the projects involved, our metadata schema currently covers multiple scientific

domains. Metadata described in our metadata schema spans simple domain-independent metadata

such as file type (txt, jpg, png, etc.), location (physical location or logical location) and file size,

domain-dependent metadata such as different observation in SCOOP (SURGE, WIND or Trans),

drilling and reservoir metadata in UCoMS, as well as provenance metadata that describes the steps

involved in the generation of data file. We also map files from different domains via content-

describing metadata such as the mapping of hurricane observation data from SCOOP to data visu-

alization produced by DMA. Our metadata schema is modeled asa taxonomy of classes, instances

and properties connected through relations such as subClassOf, equivalent-to and disjoint-with.

Figure 6.1 describes the classes, properties and relationsavailable in our current schema for the

description of aforementioned science domains.
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Another advantage our metadata schema holds over traditional metadata schema is its potential

logical reasoning capability thanks to strong logic foundation upon which ontology is based. Being

able to perform logical reasoning on ontology not only provides domain experts and system devel-

opers with a necessary tool to check and verify logical consistency, but also increases scalability.

In our system, we choose SWRL [48], submitted by the NationalResearch Council of Canada,

Network Inference and Stanford University, to represent logical constraint metadata schema has

to follow. SWRL provides a high-level abstract syntax for Horn-like rules in OWL DL and OWL

Lite.

FIGURE 6.2: Rules for logical inference in Ontology

In our current implementation, there are several scenariosunder which logical inference will be

needed to ensure the consistency of the ontology. For instance, in the SCOOP ontology, each in-

stance of a surge file requires a corresponding wind file to ensure its validity. According to the nam-

ing convention agreed upon by participants of the SCOOP project, the name of the surge file begins

with ”S”; and name of the wind file begins with ”W”. At the same time, the file name of the surge

file contains the file name of its corresponding wind file. For example, if there is a surge file named

SWW3LLFNBIO WANAFe01-UFL 20050825T000020050826T130020050826T130012hsT272Z.txt,

the name of its corresponding wind file would be WANAFe01-UFL20050825T000020050826T130020050826T1300

T272 Z.txt. The three SWRL rules shown in were written in Figure.6.2, upon processing by ontol-

ogy reasoner, will be used to check the validity of surge files, thus ensuring the logical consistency

of the SCOOP ontology.

6.2 Semantically-Aware Metadata System

Currently, we have implemented two metadata management andquery systems in based on Protege

[12] and iRODS respectively.
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As the current de facto standard of ontology design, Protegeprovides a complete set of tools

in support of the design and implementation of ontology-based systems. But the complex nature

of ontology and the implementation of Protege turn out to be inadequate to provide sufficient

performance.

iRODS, on the other hand, provides its own native metadata system, but the triple-based meta-

data representation is not powerful enough to satisfy the need for cross-domain metadata manage-

ment.

Both systems provide some unique advantages the other system currently does not support while

at the same time, both systems turn out to be inadequate on other fronts. Based on the model

introduced in Chapter 5, two layers of metadata management systems are developed to handle

cross-domain and data object metadata management respectively. Protege is chosen as the platform

upon which ontology-based cross-domain metadata schema isleveraged to provide cross-domain

data discovery capabilities while iRODS is chosen as the platform where data object metadata is

used to provide fine-grain query capabilties to the system.

6.2.1 Cross-Domain Metadata Management

The reason we chose to implement the upper layer of our metadata system based on Protege-API

and Protege-based database back-end is to take advantage ofthe semantic expressive power of

ontology. As the de facto standard for ontology design, Protege supports almost all the W3C stan-

dards and provides support for the whole range of ontology related functionalities, from graphic

ontology design interface to built-in reasoner all the way to ontology serialization into relational

database, which make Protege and Protege-related technologies good candidates for implementing

an semantic enabled cross-domain metadata system.

As shown in Figure 6.3, two different interfaces are available in our system. They are browser-

based and command-line-based respectively. The purpose ofbrowser-based metadata interface is

to provide an easy-to-use, easy-to-understand method of access so that scientists can query and

obtain small numbers of experimental files across multiple domains, while command-line-based
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interface can be combined with scripts and other programming tools so that more flexible, more

powerful access to bulk files is also available in our system.

FIGURE 6.3: Cross-Domain Metadata Management System

The core of our system are Protege Query Parser and Semantic Metadata Store. Protege Query

Parser is implemented to parse queries entered by users intoSparql [14] queries understandable to

Protege query engine. In Semantic Metadata Store, metadatadefinitions in the forms of ontological

classes and ontological instances are stored. Protege itself provides two ways of storing ontology:

file-based and relational database-based. The first approach essentially stores ontological classes

and instance definitions to text file, although it is easier toimplement and access file-based on-

tology, our experiment showed that file-based ontology can not scale to satisfy the data intensive

requirements of modern collaborative science, attempts toinsert metadata instances in excess of

ten thousands resulted in insufficient memory error. Even though increase of physical memory size

can partially alleviate this problem, the fact that Java Virtual Machine places limit on the amount
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of physical memory it can handle means text-based ontology can not scale as much as we want.

Another problem is it often takes more than a dozen hours to load text-based ontology with more

than ten thousands instances into memory. The causes of the failure to scale include:

1. The amount of memory required exceeds the maximum memory size Java Virtual Machine

is capable of handling.

2. System is saddled with too high a performance overhead as aresult of large numbers of file

accesses.

To overcome the above mentioned problems, we decided to takeadvantage of the second ap-

proach and store our ontology in regular relational databases, in our system, we chose MySQL as

the back end database in which all cross-domain metadata arestored in ontological form.

Another part of our system is called Metadata-insertion interface. It is a Java-based command-

line program that can be utilized, with the help of script languages such as perl, to automatically

insert metadata about newly created experiment files.

For example, in large science science experiments, when an experiment file is created, metadata-

insertion interface can be triggered to automatically add appropriate metadata information, such as

name, keyword, time of creation, file type, etc, into Semantic Metadata Store. The system admin-

istrator can also choose to do bulk-inserting, as of now, we have successfully inserted metadata

about more than 1 million files.

Cross-Domain Metadata System offers support for ontology-based metadata query, ontology-

based automatic metadata insertion, as well as ontology-based file access through both browser

and command-line interfaces.

One typical use scenario is:

Assuming a meteorologist needs some monitoring data on Hurricane Katrina’s path of move-

ment, he also would like to see visualized pictures of the monitoring data. In real life, raw mon-

itoring and visualized data could belong to different project, different projects may have differ-

40



FIGURE 6.4: Cross-domain query result

ent vocabulary for describing data. The use of ontology in Cross-Domain Metadata Management

system can bridge the semantic differences that may exist among different science projects. We

assume here that raw and visualized data belong to differentprojects. In this use scenario, on our

FIGURE 6.5: Data fetched from Distributed Storage

system, the meteorologist could simply open his web browseror the specific command-line in-

terface. Here we assume he chooses the web browser route. Type ”Katrina“ into the search box,

and press the search button. Straight arrow in Figure 6.3 shows the data flow of his query. Cross-

Domain Metadata Management System will then search its metadata store and return a list of files

from both projects it thinks are related to Hurricane Katrina, as indicated in Figure 6.3 by dotted
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arrows. Then the meteorologist can simply click whatever file he wants to obtain, the metadata

system will send out request to actual storage of these files to fetch the file back into the machine

of the meteorologist. Figure 6.4 and Figure 6.5 illustrate query result and file fetched back from

remote storage respectively in our currently implementation. Typical workflow involved in query

operation is illustrated in Figure 6.6.

FIGURE 6.6: Workflow in Cross-Domain Metadata Management System

The biggest advantage for Cross-Domain Metadata Management System is the establishment

of a unified view of scientific data across different science projects or even different science disci-

plines. A unified data view can enable scientists to access data from multiple projects from multiple

disciplines, regardless of the differences in vocabulary.Such data view is critical in modern, in-

creasingly cross-disciplinary collaborative science.

Shortcoming of Cross-Domain Metadata Management System isclearly illustrated in Figure 6.3.

Basically, in exchange for the expressive power of ontology, we have to build another metadata

system independent of the iCAT [42] metadata system used by iRODS to provide fine-grain data

object metadata management. Doubtlessly, the extra set of metadata and everything related to its

management add overhead to overall performance of overall system. Also almost the entire set of
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technologies we employed to implement the system is Java-based, which introduces more overhead

to performance and more complications to achieve maximum scalability.

6.2.2 Data Object Metadata Management System

Unlike Cross-Domain Metadata Management System based on ontology, iRODS-based Data Ob-

ject Metadata System does not support a richly representative scheme, namely ontology, like Cross-

Domain Metadata Management System does. On the other hand, iRODS and its corresponding

iCAT metadata system serve as the backbone of our system. As aresult, metadata system based

on iRODS and iCAT is naturally integrated seamlessly. Also,unlike ontology technology which is

Java-based and was originally designed for Semantic Web with little prior consideration for perfor-

mance, iRODS and its corresponding metadata system iCAT were designed with the requirements

of data-intensive computing in mind. Better performance can be achieved as a result.

FIGURE 6.7: iRODS-based Data Object Metadata System

As Figure 6.7 shows, the framework of iRODS-based Data Object Metadata System is far sim-

pler. Only one extra layer of system is added to the existing iRODS-based distributed storage.

Clients have been developed to parse and remote-execute various iRODS commands. One such
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command is “imeta”, which is used for inserting and accessing metadata stored in iCAT. Detailed

documentation for imeta can be seen at [42].

Command “imeta” can be used to insert metadata about iRODS files, collections, resources and

users in the form of Attribute-Value-Unit triples (AVUs) Because iCAT also employs relational

database as back end storage and the fact that iCAT deals withmetadata far less expressive than

ontology does, we expect it to be able to be at least as scalable as ontology-based Cross-Domain

Metadata Management System. Our experiment indicates thatiCAT can easily handle file metadata

in the order of millions of files. In current implementation,command “imeta” can only insert

metadata one AVU at a time. To expand its functionalities, weimplemented another version of

command “imeta” that supports bulk-insertion function similar to the one provided by Metadata-

insertion interface in Cross-Domain Metadata Management System.

In iRODS-based Data Object Metadata System, a typical queryoperation would be users typing

in what they want to query as parameters of command “imeta”. “imeta” will do the query and

return a list of files, users then can use other iRODS commandssupported by clients to access the

files needed to be accessed. Figure 6.8 illustrates the workflow.

FIGURE 6.8: Workflow in iRODS-based Data Object Metadata System
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Chapter 7
Cross-Domain Data Discovery Performance and
Scalability Evaluation1

We have done performance and scalability benchmarking of Cross-Domain Metadata Management

System we built. The performance and scalability experiments are based on SCOOP data archive.

The purpose of the SCOOP project is to promote the effective and rapid fusion of observed oceano-

graphic data with numerical models and to facilitate the rapid dissemination of information to op-

erational, scientific, and public or private users [37]. To support SCOOP applications, the team

at LSU built a SCOOP archive which stores the related data sets. Currently it contains around

300,000 data files with a total size of around 7 Terabytes.

As discussed and illustrated in previous chapters, the two layer of metadata systems we built

offer different level of capabilities and performances. Inthis chapter, we will seek to investigate

the performances and scalabilities of Cross-Domain Metadata System based on the parameters laid

out in the model presented in previous chapter, namely, to determine performance S, extensive per-

formance and scalability benchmarking need to be conducted. The benchmarking test will involve

(Si,Sm,Sq,So,Sc), these parameters represent:

Metadata insertion performanceSi

Metadata modification performanceSm

Metadata query performanceSq

Data-object metadata scalabilitySo

Domain and cross-domain metadata scalabilitySc

In this chapter, tests will focus on performance comparisons of (Si ,Sd,Sm,Sq) between native

iRODS system and Cross-Domain Metadata Management System as well asSc, which represents

scalability of Cross-Domain Data Discovery.

1Reprinted by permission of “International Journal of Grid and Utility Computing”, published by Inderscience Publishers
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7.1 Performance Evaluation on Cross-Domain Metadata
Insertion

FIGURE 7.1: Performance Comparison of Metadata Insertion

We picked a test case involving the insertion of from 1 to 10000 sets of metadata corresponding

to 1 to 10000 experiment files produced by the SCOOP project. The program used in this exper-

iment are bulk insertion program we developed for Cross-Domain Metadata Management system

and modified “imeta” command for iRODS. The experiments wereconducted on a Dell Desktop

with a 2.40 GHz CPU, 512 M memory and Ubuntu linux installed.

As shown in Figure 7.1, as the size of insertion metadata set grows, Cross-Domain Metadata

Management System displays far superior performance than the system iRODS [42] has, the per-

formance discrepancy turned out to be a surprise for us as ontology-based Cross-Domain Metadata

Management system is required to handle semantically far more complicated data. Our prelimi-

nary conclusion is that the iRODS [42] system handles metadata insertion by repeatedly inserting

triples into databases, while Cross-Domain Metadata Management System based on existing on-

tology tools, namely Protege database, handles large set ofmetadata insertion by bundling them

together in the memory, then bulk-inserts them into the database.
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7.2 Performance Evaluation on Cross-Domain Metadata
Query

On the same testbed we used for evaluating performance of Cross-Domain Metadata Insertion. We

formulated queries for both systems that would return result sets with size ranging from 1 to 10000

files. The query we used in our experiment seeks to return filesin SCOOP project archive that

are related to Hurricane Katrina, here in this example, we assumed that all files created between

00:00:00 08/23/2005 to 23:59:59 08/29/2005 to be Katrina-related files. This query can be finished

by executing one Sparql [14] query on Cross-Domain MetadataSystem or one iRODS command

on iRODS system.

Our experiment result indicates, as illustrated by Figure 7.2, that very significant performance

gap exists between Cross-Domain Metadata Management System and iRODS system. As shown

by Figure 7.2, query performance of iRODS system is in the order of seconds, while query perfor-

mance of Protege-based system is in the order of hundreds of seconds. On the other hand, query

FIGURE 7.2: Performance Comparison of Metadata Query

time on iRODS system is positively correlated to the size of result set, as the size of the result

set grew, significantly more time was needed for the query to finish. In the case of Cross-Domain

Metadata Management System, however, relatively little performance fluctuations appeared among

query result sets of significant size differences. Coupled with our observation that in Cross-Domain
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Metadata Management System, most time was spent on execution of query while in iRODS sys-

tem, most time was spent on parsing and printing of query result, it appears that the performance

gap between the two systems can be largely attributed to the far more complicated and rich meta-

data representation in Cross-Domain Metadata Management System, even though in both systems,

metadata is ultimately stored in open source relational databases. (In Cross-Domain Metadata Man-

agement System, we adopted MySQL as database back end; In iRODS system, PostgreSQL is used

to store metadata; The two database system were chosen because they were the best supported re-

lational database system by Protege [12] and iRODS [42] respectively.)

Another observations of ours was that in Cross-Domain Metadata Management System, query

that would return tens of thousands of files often collapsed the system, and when it succeeded,

the performance was extremely bad, which indicated that thesize of available memory that can be

utilized by Java Virtual Machine is also a contributing factor to the far worse query performance

by Cross-Domain Metadata Management System.

7.3 Performance Evaluation on Cross-Domain Metadata
Modification

In this section, we attempted to test Cross-Domain MetadataModification performance. Experi-

ment environment remains the same as described in two previous sections. The metadata manage-

ment task we sought to benchmark this time is the modificationof value of metadata ”Keyword” in

both systems, the systems would try to modify value of ”Keyword” from void to ”Katrina” based

on the time the file was created. Size of files whose metadata are to be modified by the two systems

ranges from 1 to 10000.

As illustrated in Figure 7.3, when the amount of files systemstried to modify was relatively

small, from a few files to a few hundreds of files, performance of iRODS system is vastly su-

perior to that of the Cross-Domain Metadata Management System. Performance gap in this case

is comparable to the performance gap iRODS system achieved against Cross-Domain Metadata

Management System in previous section, which is consistentwith performance advantages iRODS
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FIGURE 7.3: Performance Comparison of Metadata Modification

system has over Cross-Domain Metadata Management System interm of underlying implementa-

tion and metadata complexity. But as the amount of the files grew closer to 10000, performance

gag between the two system rapidly got smaller, Cross-Domain Metadata Management System

even outperformed iRODS system when size of experiment file set reached 10000 even though

performance of Cross-Domain Metadata Management System followed a largely upwardly linear

trend. We believe the performance discrepancy displayed byiRODS system can be explained by

its lack of support for SQL or Sparql [14] style complex querylanguages, which meant iRODS

system needs to modify metadata for one single file at a time. The overhead of repeated query

to underlying relational database eventually outweighed the benefit generated by iRODS system’s

more efficient implementation and metadata simplicity.

7.4 Scalability Evaluation on Cross-Domain Metadata
Management System

In previous section, we presented our work on benchmarking and comparing performances of

Cross-Domain Metadata Management System in the context of datasets of limited size, namely,

datasets with 10000 files were utilized to evaluate performances. In this section, we will present the

work we have done to test the limit of scalability of Cross-Domain Metadata Management System

in large scale data-intensive distributed environment. Wewill conduct our tests with a datasets

containing 1 million dummy files.
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As presented in previous section, Cross-Domain Metadata Management is based on ontology

and Java. During our experiment, as we attempted to test the limit of the scalability of Cross-

Domain Metadata Management System. The conflict of a Java-based system and the memory re-

quirement for data-intensive applications was laid bare: Java Virtual Machine can only use at most

2 GB of memory in Linux system, which is hardly enough for a ontology containing metadata

for tens of thousands of files. We experimented on inserting metadata for 1 million files in Cross-

Domain Metadata Management System, the experiment ran 19 hours 12 minutes and 46.623 sec-

onds, it succeeded in inserting metadata for 684632 files, then the process crashed when another

Java-based program was launched. Another attempt ended with metadata for 734845 files inserted

in 24 hours 43 minutes and 53.838 seconds, the process crashed again presumably because of

memory hog. After changing the backend to relational database, we successfully tested insertion

of 1 million instances on a workstation with 4 GB memory, Our experiment showed that 1 million

instances could be inserted in 6898 minutes 59 seconds, approximately 5 days, sufficient to handle

demands of scientific projects the system works with. It is also been observed that as the number of

metadata grew, the execution of the insertion programs became extremely slow and unresponsive.

It is clear that as the size of ontology grows, Cross-Domain Metadata Management System would

encounter scalability problem but with proper backend datastore, sufficient scalability could be

achieved to satisfy demand.
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Chapter 8
Data Object Discovery Performance and Scalability
Evaluation1

8.1 Testbed

We implemented and tested our Data Object Metadata System onPetaShare, which is an state-

level distributed data sharing cyber-infrastructure in Louisiana. It aims to enable collaborative

data-intensive research in different application areas such as coastal and environmental model-

ing, geospatial analysis, bioinformatics, medical imaging, fluid dynamics, petroleum engineering,

numerical relativity, and high energy physics. PetaShare manages the low-level distributed data

handling issues, such as data migration, replication, datacoherence, and metadata management, so

that the domain scientists can focus on their own research and the content of the data rather than

how to manage it.

Currently, there are seven PetaShare sites across Louisiana: Louisiana State University, Uni-

versity of New Orleans, University of Louisiana at Lafayette, Tulane University, Louisiana Tech

University, Louisiana State University-Health ScienciesCenter at New Orleans, and Louisiana

State University-Shreveport. They are connected to each other via 40Gb/s optical network, called

LONI (Louisiana Optical Network Initiative). In total, we have 300TB of disk storage and 400TB

of tape storage on these sites. At each PetaShare site, we have an iRODS server deployed, which

manages the data on that specific site.

Here, we use iRODS metadata system: iCAT, to store data object metadata. iRODS version in

tested system is 2.2. iRODS is chosen because it is the decedent of SRB which was previously

used in our group for data storage. Data Object Metadata System is replicated throughout the 7

PetaShare sites to avoid single point of failure at the expense of extra overhead on network band-

width. The tests were done by piping all addition, deletion,etc. commands into imeta command.

1Reprinted by permission of “Scientific Programming”, published by IOS Press
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TABLE 8.1: Testbed Sites Metrics

Testbed Sites Metrics
Cluster Peak Performance# of nodes Memory Location
Eric 4.772 TFlops 128 4 GB/node LSU
Oliver 4.772 TFlops 128 4 GB/node ULL
Poseidon 4.772 TFlops 128 4 GB/node UNO
Louie 4.772 TFlops 128 4 GB/node Tulane

TABLE 8.2: Selective Data-Object Metadata

Selective Data-Object Metadata
location dateOfcreation filetype size name
institution creator resolution department project

Table 8.1 illustrates metrics at some of the PetaShare sites. Table 8.2 provides a selective set of

data-object metadata we use for performance and scalability benchmark testing, the set includes

ten triples describing some of the data-object properties in our system.

8.2 Performance Benchmarking

Algorithm 1 Data-Object Metadata Insertion Performance BenchmarkingProcess

1: while BATCH INSERTION FILE NOT PROPERLY GENERATEDdo
2: recursively list all data objects need data object metadataannotation
3: formulate insertion commands for all data objects
4: output result to batch file
5: end while
6: execute batch file on data-object metadata store

For performance benchmarking, algorithms 1, 2, and 3 detailthe process we employ to bench-

mark Si ,Sm,Sq respectively on testbeds described in the previous section. Figure 8.1, 8.2, 8.3

contain benchmarks of five rounds of performance tests onSi,Sm,Sq respectively.

Each round of test consists of tests ranging in size from 1 to 10000 data objects, since metadata

attached to each data object in our benchmarking tests consist of 10 triples, the maximum number

of triples benchmarked in these tests is 100,000.

As illustrated in Figure 8.1, 8.2, as expected, performanceof insertion and modification of

data object metadata shows strong linear positive correlation to the number of triples involved.
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Algorithm 2 Data-Object Metadata Modification Performance Benchmarking Process

1: formulate batch commands based on metadata triples need modification
2: execute batch file on distributed data sets

Algorithm 3 Data-Object Metadata Query Performance Benchmarking Process

1: while NOT SATISFIED WITH QUERY RESULTdo
2: formulate query
3: execute query on data-object metadata store
4: return query in plain text
5: end while
6: formulate file access query
7: execute query on distributed data sets
8: acquire data object for further processing

The performance of insertion, improved considering the size of triples in data object metadata

store increases ten times while the time taken to insert similar number of triples only doubles.

Performance of modification, however, significantly deteriorates, even after considering the much

more data intensive environment.

On the other hand, performance of query of data object metadata largely remains constant as

the number of triples involved increases. In terms of absolute performance, however, query of data

object metadata does not perform as well as hoped as time taken to finish a query that returns

relatively small number of data objects still reaches several minutes, the relatively unsatisfactory

performance of data object query is related to the size of thedataset, namely, dataset contains up to

1 million data objects and metadata store has up to 10 millions triples stored, in a less data intensive

environment, performance of query operation should conceivably improve.

8.3 Scalability Benchmarking

Our attempts to scale our previous primarily ontology-based metadata schema to one million in-

stances, each instance contains all the metadata pertinentto one individual data object in the sys-

tem, failed dozens of times because of the extra overhead needed for accommodating ontology-

based metadata schema in fine granularity. In this section, we mainly present our scalability bench-

marking result conducted based on the new layered metadata management system illustrated in
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FIGURE 8.1: Data Object Insertion Performance Benchmarking
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FIGURE 8.2: Modification Performance Benchmarking
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FIGURE 8.3: Query Performance Benchmarking

TABLE 8.3: So Before and After Each Round of Test

So Before and After Each Round of Test
Round of Test So before Test So after Test
1 0 100,000
2 100,000 300,000
3 300,000 600,000
4 600,000 1,000,000

previous section. Specifically, we conduct tests on data-object metadata scalabilitySo, as data-

object metadata scalability are the primary piece of metadata information that every individual

data object in the system needs to be annotated with, it is thebiggest factor in degrading perfor-

mance of metadata management system in a data-intensive computing environment. In our tests,

we conducted four rounds of tests.

First round consists of attaching data object metadata to 100,000 data objects; second round

consists of attaching data object metadata to 200,000 data objects; third and fourth rounds each

consists of attaching data object metadata to 300,000 and 400,000 data objects respectively. As

illustrated in Table 8.2, each individual data object will be attached with an set of ten triples data
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object metadata. So together, after 4 rounds, the system contains ten millions triples in total. As

a result, data-object metadata scalabilitySo will be assigned a valueSo = 10,000,000, a vastly

improved scalability benchmark than our previous experiment results. Number ofSo in the system

before and after each round of test is listed in Table 8.3 .
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Chapter 9
Semantically-Aware Data Placement

In this chapter, we describe different experimental scenarios and corresponding data placement

strategies we employ to improve performance and throughputof data access by various related

research groups.

9.1 Metadata Standards

In order to make our experimental scenarios as realistic as possible, we decide to take advantage

of real-world cases in which semantically-aware data placement could improve performance and

throughput. Below are brief introduction to the various data encoding standards, namely, NWIS

from USGS and WQX from EPA, we seek to employ in our experimental scenarios as well as

brief introduction of some of the current efforts to developa standardized metadata vocabulary for

hydrologic datasets.

In the US, Environmental Protection Agency (EPA), US Geological Survey (USGS) and Na-

tional Oceanographic and Atmospheric Administration (NOAA) are the primary sources of wa-

ter quality, quantity and climate datasets. While there areoverlaps in data offerings, NOAA is

the main source of meteorological data, USGS stands out withits extensive water quantity (sur-

face/subsurface) data whereas EPA focuses on datasets on environmental quality. Heterogeneity is

a major issue dealing with these datasets that are related yet tagged with different metadata stan-

dards.. USGS data is available, via the National Water Information System (NWIS) in different

formats including delimited text, HTML tables and USGS own HydroML markup language. EPA

is moving from delimited text to XML-based WQX (Water Quality eXchange) format. In addition

to different encodings, there is no common vocabulary either. Lack of standards for hydrologic data

exchange is a major problem a solution to which would eliminate the need for human involvement

in data retrieval thus not only saves valuable research timebut also makes it possible to implement

57



TABLE 9.1: NWIS Metadata and WQX Equivalents

NWIS Metadata and WQX Equivalence
NWIS Parameter ID Parameter Description Equvalent WQX Charactername
00004 Stream width, feet Instream features, est. stream width
00010 Temperature, water, degrees Celsius Temperature, water
00011 Temperature, water, degrees FahrenheitTemperature, water, deg F
00020 Temperature, air, degrees Celsius Temperature, air, deg C
00021 Temperature, air, degrees Fahrenheit Temperature, air, deg F

automated workflows. This has been the main motivation behind the water data services part of the

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydro-

logic Information Systems (HIS) project . The HIS project’sexperience in developing solutions to

standardized access to hydrologic data sources in the United States demonstrates the challenges

associated with establishing community semantics of hydrologic data exchange, formalizing the

main notions of hydrologic observations, and evolution towards compliance with general data ex-

change protocols for cross-domain interoperability.

9.2 Experiment Scenario

This is the simplest scenario in which semantically-aware data placement strategies are employed

to improve performance. In this scenario, we have one research group uploading observational

sensor data encoded in NWIS metadata to data centers, as a result of the existence of equivalence

relationships between NWIS standard and WQX standard, as partially described in Table 9.1, the

system intelligently places the observational dataset among data centers it manages to achieve

optimal performance/throughput for potential users of this dataset.

Below is description of testbed used for testing semantically-aware data placement strategies:

1. number of nodes in the system.

9 data storage nodes and one router node.

2. Node types and connectivity.

Node types:

Nodes belong to the same institutions.
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Nodes belong to different institutions.

Router nodes.

Connectivity:

Nodes in the same institutions connected via 1Gbps network.

Nodes in the same institutions connected via 100 Mbps network.

Nodes in the same institutions are connected with Switches.

Nodes in different institutions are connected via switchesand routers.

Routers connect different institutions via 100bps networkor 10Mbps network.

3. Project

Project can be randomly distributed across the whole network, namely, project can contain nodes

from the same or different institutions connected via fast or slow network.

Figure.9.1 illustrates the network topology used for test data placement strategies.

9.3 Semantically-Aware Data Placement Strategies

In any data placement/replication strategy, the most important factor impacting data placement

strategy is the amount of available resource. Ideally, all relevant datasets should be placed on all

disks to achieve the highest locality and best possible performance. However, as the size of datasets

grows, it is clearly not realistic to implement the ideal strategy. This strategy would also incur the

heaviest overhead since all datasets need to be placed on allservers, thus placing the heaviest

workload on network whenever new data is generated. Assuming network throughput per second

from node i to node j isSi j and available disk space for data placement on node i isDi , goal of

data placement strategy would be to achieveMin(
D j1
Si j1

+
D j2
Si j2

......+
D jm
Si jm

), here node 1 to m denote

m nodes chosen for placing data set relevant to groups working on node i. One strategy to achieve

Min(
D j1
Si j1

+
D j2
Si j2

......+
D jm
Si jm

) would be to greedily choose node j to which node i has the highest

network throughput and place the largest files in dataset until D j is filled up.
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FIGURE 9.1: Network Topology

For example, assuming simulation data encoded in NWIS metadata standard has been produced

and locally stored on node ins1server1 and simulation data encoded in WQX metadata standard
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has been produced and locally stored in node ins3server2. Bymaintaining a periodically updated

network throughput matrix, as shown in Table 9.2 and Figures9.3, 9.4 and 9.5, the system

FIGURE 9.2: Network Throughput Matrix

would be able to place the semantically-related data set across available nodes to best reflect current

hardware conditions (available resource, network throughput, etc.) so that relevant parties would be

able to access these datasets in a optimal way, based on the network throughput matrix, the simplest

strategy would be to distribute NWIS and WQX data sets to ins1server1, inst1server2, ins1server3

to achieve optimal performance since the 3 nodes chosen would present the best possible nodes,

performance wise, for both ins1server1 and ins3server2, the original producers and users of NWIS

and WQX datasets. On the other hand, the optimal nodes chosenfor data placement need to have

sufficiently large disk space to handle the data, in scientific simulation, datasets can come in two

basic types:

1. Datasets with large individual files, such as visualization data set comprised of high-definition

video files.

2. Datasets comprised of small individual files, such a water, soil and atmosphere time period

observational files collected from tens of thousands of sensors spread across the nation.
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Greedy strategy dictates that largest files should be placedon nodes with the best throughput

to related project nodes, however, if datasets generated were comprised mainly of high-definition

video files as often the case in scientific visualization, it is entirely possible that file size would ex-

ceed available space on chosen nodes. For example, in the above mentioned example, if ins1server1

only had 100 MB of available space, it would not be possible toplace the largest file in the data

base, which are of larger size. To deal with the problem, the system needs to gather information on

available disk size on chosen nodes, then allocate files to nodes accordingly. Taken both through-

put and available disk space into consideration, we have thefollowing greedy algorithm that ensure

Min(
D j1
Si j1

+
D j2
Si j2

......+
D jm
Si jm

). Issues need to be resolved before data could be placed include:

1. Which subset of nodes should be selected for data placement?

2. How to place different files to different nodes?

3. Is this strategy optimal?

FIGURE 9.3: Access Performance
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FIGURE 9.4: Access Performance (Continued)

FIGURE 9.5: Access Performance (Continued)

For issue 1, first the system needs to weed out all nodes with available disk space smaller than the

smallest files in dataset so that the system will not select a node that physically can not accept any

file from the dataset; then the system needs to select a candidate set of nodes that could collectively

store the dataset and achieve optimal performance for all relevant projects. Figures 9.6 shows

nodes selected when size of candidate set of nodes is 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. In the
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FIGURE 9.6: Candidate Selection

figures, each row of nodes is sorted in ascending order, to getcandidate nodes, as shown in figures,

is equivalent to solving two problems:

1. the candidate nodes collectively are sufficient for placing the whole data set.

2. the candidate nodes ensure optimal performance for relevant projects.

The first problem can be solved by only choosing minimal number of nodes needed for data

placement, in another word, to achieveMin(Sum(D j1+D j2......+D jm)−Sdataset), hereD j1 to

D jm are available space on respective nodes andSdatasetis size of dataset. The second problem can

be solved by algorithm 4:
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Algorithm 4 Algorithm to Generate Candidate Nodes

1: create hash table T with node name as key and set all values in Tto 0
2: select leftmost node as current
3: while current is smaller than size of node listdo
4: T[current] = T[current] + 1
5: Scurrent = Scurrent - Dcurrent

6: if Scurrent > 0 and T[current] == 2]then
7: add current node to candidate list
8: end if
9: current = current + 1

10: end while

The above algorithm only has to traverse through each row once to produce the candidate list

that, assuming all relevant projects have equal probability of accessing the dataset, ensures optimal

performance to relevant projects as a whole. Hence, the timecomplexity of algorithm 4 is O(n)

with n denotes the number of nodes in the system.

After candidate nodes list is generated, algorithm 5 can be used to optimally place dataset to

candidate nodes:

Algorithm 5 Greedy Data Placement Algorithm

1: gather available disk space information on nodes inside thesystem
2: create file list according to file size
3: sort file list in descending order
4: create nodes lists from all relevant rows in throughput matrix, only include nodes where avail-

able disk space were larger than the smallest file
5: sort the nodes lists in descending order
6: create candidate nodes list out of nodes lists using algorithm 4
7: choose the first file from file list as current file
8: choose the first node from candidate nodes list as current node
9: while file list not empty do

10: while available space on current node smaller than size of currentfile do
11: if available space on current node smaller than size of currentfile then
12: choose next node from candidate nodes list as current node
13: else
14: place current file to current node
15: reduce available space on current node in candidate nodes list accordingly
16: end if
17: choose next file from the file list as current file
18: end while
19: choose leftmost available node from candidate nodes list ascurrent node
20: end while
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FIGURE 9.7: Performance Comparison Between Default Placement and Greedy Placement

Assuming there are n nodes in the system and m files in dataset,time complexity for step 1 would

be O(n), for step 2 and step 3 will be O(m) + O(lnm) = O(lnm). Time complexities for step 4, 5

would be O(n) + O(lnn) = O(lnn), for step 6 would be O(n) as discussed above. Time complexity

for step 7 to step 18 would be O(nm). Therefore, overall time complexity for algorithm 5 = O(n) +

O(lnm) + O(lnn) + O(nM) = O(nm).

In Figure 9.7, expected performance comparisons of greedy placement discussed above and

default placement, which automatically places all locally-produced on local nodes, are shown.

Left side figure of Figure 9.7 shows expected performance comparison, depending on number of

nodes greedy placement distributes data to, in the example discussed above, namely, when node

ins1server1 trying to access data generated at node ins3server2, in the figure, red line indicates

time required to access a file of size 186 MB stored on ins3server2 from ins1server1 and blue

line indicates expected time required to access file of the same size placed by greedy strategy.

As illustrated in the figure, as the number of nodes placed with data grows, the performance of

acquiring file with a set size also deteriorates, clearly because addition of nodes with worse network

throughput increases expected overhead. Still, greedy placement overall offers markedly better

expected performance than default placement. In this case,it is obvious that greedy placement is a

much better fit to place data locally stored on node ins3server2 for node ins1server1 to access.
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On the other hand, the right half of Figure 9.7 shows that whenit is node ins3server2 accessing

data generated at node ins1server1, default placement offers better performance than the expected

performance of greedy placement. Clearly, in this case, it is not worth the effort to apply greedy

placement to data generated at node ins1server1, node ins3server2 could be better served by asking

node ins1server directly for data.

The difference between the two scenarios illustrated in Figure 9.7 shows that even though it is

desirable to apply greedy placement under certain circumstances, it is also likely that default place-

ment offers better performance under difference circumstances. The factor determining choice of

placement strategy here is network throughput between nodegenerating the data and node that

might need to access the data. As shown in network throughputmatrix 9.2, in the scenario dis-

cussed above, there is significant difference between performances in the case of node ins1server1

accessing node ins3server2 and reverse. Node ins3server2 accessing node ins1server1 already en-

joy near optimal network throughput, therefore, placing data on other nodes will not improve per-

formance significantly, on the contrary, it will actually force node ins3server2 to access data placed

on node with worse network throughput. Therefore, to help the users access node optimally, the

system needs to make intelligent choice in choosing the dataplacement strategies.
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Chapter 10
Conclusions

10.1 Contributions

In this dissertation, we seek to leverage semantically-aware metadata to enhance data discovery and

placement to improve efficiency and performance of data management in collaborative computing

environment. The dissertation will contribute to the aforementioned topics in the following ways:

1. Our system boosts scientists’ ability to interoperate with each other by relieving them from

the need to manually conduct the necessary mapping and ”translation” required for accessing data

archives covering multiple domains, while at the same time still affording scientists continued use

of familiar terms and vocabularies. Scientists of one domain will be empowered to access data

annotated and described by not only terms and vocabularies familiar to them, but also data from

other domains annotated with vocabularies commonly used inrespective domains. We achieve this

goal by developing a metadata schema elastic enough to include metadata related to describing

characteristics of scientific domains, metadata description of features of individual files/folder as

well as conceptual and semantic mapping required for the integration of terminologies of different

scientific domains.

2. Avoiding the pitfalls plaguing some of the previous systems, namely, the conflicts arise out

of the need to be more descriptive in metadata development and the increasing burdensome over-

head created by increasingly more descriptive metadata andincreasingly larger datasets, our lay-

ered approach toward system implementation leads to lower footprint for metadata management

in the overall data intensive collaborative computing infrastructure. We achieve this objective by

implementing a metadata management system in a data-intensive collaborative distributed comput-

ing environment through a layered approach, we will separate high-level terms and vocabularies,

which are needed to describe the domain as well as providing contextual information about data
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object in its respective domain, from more technical metadata related to simulation and physical

characteristics of actual data object such as files and folders, thus removing the need to attach

high-level metadata not directly related to data objects which have become increasingly numerous

as the size of data archive grows.

3. We conduct evaluation and benchmarking of the system we developed to test the efficiency

and effectiveness of our implemented system, we describe a model with parameters most important

to the overall quality of metadata management system so thatfuture developer of similar system

could be helped in the design process.

4. We also leverage semantically-aware metadata to help data placement become more intelli-

gent. As data management in collaborative environment not only requires data to be discovered,

it also requires data to be acquired in an efficient and cost-effective fashion. In this dissertation,

we also propose and experiment with data placement algorithms that leverage semantically-aware

information that include hardware semantics like available disk space and network traffic, but also

semantic metadata that could increase semantic locality. As our literature review indicates, so far,

none of the current data placement strategies leverage suchinformation.

5. The work also contributes to system engineering addressing data management problems in

the context of scientific computing, which presents unique challenges that current available com-

mercial and open-source solutions do not tackle sufficiently.

To sum it up, this dissertation describes important challenges facing the management of large-

scale datasets in collaborative computing environment in scientific computing, namely, the issue

of discovering data relevant to users as well as the issue of placing data so that users could access

efficiently, examines existing works done to address these issues, presents and discusses our novel

approaches and conducts experiments to test performance and scalability of proposed solutions.

10.2 Future Works

As presented in this dissertation, the system presented andthe problems the system attempts to

address are distributed and scalable, but the scalability achieved is far from what a truly national
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or even international cyber-infrastructure for science need to possess. The compromise and design

decisions made as part of this work have not been, due to the limitation of resources and datasets,

been tested on an scale on par with solutions provided by industry to problems of similar nature.

Therefore, the most important part of future works should beto scale up the system, both in term

of hardware and dataset, but also regarding number of disciplines and metadata standards, in an-

other word, both system and semantic scalability need to be tested in a much bigger scale, as the

system scales up, the system also needs to consider the threat of node failures and how best to

build sufficient redundancy into the system so that failureswould not fatally affect availability

and redundant resources are not seriously underutilized. Also, this work does not touch upon the

problem of data processing, integration of data processingcapabilities into the system is critical to

the construction of a full-spectrum data management system. On the theoretical side, the task of

modeling such a highly distributed system, in term of performance, scalability, and extensibility is

a very hard problem, which is also a hot research topic and necessary part of the future works if

commonalities were to be extracted for devising solutions to solutions to similar problems in the

future. Specifically, the future works are needed:

1. Increase the number of and heterogeneity of projects and metadata standards involved in tests

2. Increase size of, number of and level of distribution of datasets involved in tests.

3. Using new test data to reexamine the compromises and design decisions.

4. Integration of failure-handling mechanism to handle constant node failures, which are in-

evitable in a large-scale distributed system.

5. Integration of existing data processing systems such as Apache Hadoop[24].

6. Building a continuous monitoring module to monitor the system with the hope that with

enough historical data, a more concrete and stable model could be built to assess the quality of

solutions to similar problems.
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