
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2011

An intelligent Othello player combining machine
learning and game specific heuristics
Kevin Anthony Cherry
Louisiana State University and Agricultural and Mechanical College, kcherr1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Cherry, Kevin Anthony, "An intelligent Othello player combining machine learning and game specific heuristics" (2011). LSU Master's
Theses. 767.
https://digitalcommons.lsu.edu/gradschool_theses/767

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/767?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

AN INTELLIGENT OTHELLO PLAYER COMBINING 
MACHINE LEARNING AND GAME SPECIFIC 

HEURISTICS 
 

 

 

 

 

A Thesis 

 

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College  
in partial fulfillment of the 

requirements for the degree of 
Master of Science in Systems Science 

 
in 
 

The Interdepartmental Program in Systems Science 
 
 
 
 
 
 
 

by 
Kevin Anthony Cherry 

B.S., Louisiana State University, 2008 
May 2011  



 

ii 
 

Table of Contents 

ABSTRACT ..................................................................................................................... iv 

CHAPTER 1.  INTRODUCTION ...................................................................................... 1 
1.1  Introduction ........................................................................................................... 1 
1.2  Othello .................................................................................................................. 1 

CHAPTER 2.  COMMON METHODS ............................................................................. 4 
2.1  Introduction ........................................................................................................... 4 
2.2  Minimax ................................................................................................................ 4 
2.2.1  Minimax Optimizations ....................................................................................... 8 
2.3  Genetic Algorithms ............................................................................................... 8 
2.4  Neural Networks ................................................................................................... 9 
2.5  Pattern Detection ................................................................................................ 10 
2.6  Related Works .................................................................................................... 10 

CHAPTER 3.  GETTING STARTED AND USING GAME-SPECIFIC HEURISTICS ..... 13 
3.1  Study Common Methods – In General and Game Specific ................................ 13 
3.2  Simple Agent for Game: TIC-TAC-TOE .............................................................. 13 
3.3  Combining Common Methods ............................................................................ 14 
3.4  Choosing a Game ............................................................................................... 14 
3.5  Exploitation of Game Characteristics .................................................................. 14 
3.5.1  Pattern Detection ............................................................................................. 15 
3.5.1.1  Theory .......................................................................................................... 15 
3.5.1.2  Implementation ............................................................................................. 16 
3.5.2  Corner Detection .............................................................................................. 18 
3.5.3  Killer Move Detection ....................................................................................... 19 
3.5.4  Blocking ........................................................................................................... 19 
3.5.5  Blacklisting ....................................................................................................... 19 
3.6  Order of Exploits ................................................................................................. 20 

CHAPTER 4.  USING MACHINE LEARNING TECHNIQUES ....................................... 21 
4.1  Using Machine Learning Techniques .................................................................. 21 
4.2  Minimax and the Expected Min Technique ......................................................... 21 
4.2.1  Learning Influence Map for Evaluation Function .............................................. 23 
4.2.1.1  Using Genetic Algorithms ............................................................................. 24 
4.2.1.2  Fitness Function ........................................................................................... 25 
4.2.1.3  Genetic Algorithm Parameters ...................................................................... 26 
4.2.2  Learning Weights for Evaluation Function ....................................................... 28 
4.2.2.1  Why Use Genetic Algorithms? ...................................................................... 29 
4.2.2.2  Parameters ................................................................................................... 29 
4.2.2.2.1  Setup ......................................................................................................... 30 
4.2.2.2.2  Addition of Input Features .......................................................................... 30 
4.2.2.3  Quicker Training ........................................................................................... 31 



 

iii 
 

4.2.2.4  Plateau Effect ............................................................................................... 32 
4.2.2.5  Max Depth .................................................................................................... 32 
4.2.2.6  Optimizations ................................................................................................ 33 
4.2.2.7.1  Alpha Beta ................................................................................................. 33 
4.2.2.7.2  Other Techniques ...................................................................................... 34 

CHAPTER 5.  EXPERIMENTS ..................................................................................... 36 
5.1  Introduction ......................................................................................................... 36 
5.2  Test Agents......................................................................................................... 36 
5.2.1  Deterministic .................................................................................................... 36 
5.2.1.1  Greedy Agent ................................................................................................ 36 
5.2.1.2  Influence Map Agent ..................................................................................... 37 
5.2.1.3  Greedy Influence Agent ................................................................................ 37 
5.2.2  Non-Deterministic ............................................................................................ 37 
5.2.2.1  Random Agent .............................................................................................. 38 
5.2.3  Human ............................................................................................................. 38 
5.3  Results ................................................................................................................ 38 
5.3.1  Deterministic .................................................................................................... 38 
5.3.2  Non-Deterministic ............................................................................................ 41 
5.3.3  Human ............................................................................................................. 41 
5.4  Conclusion .......................................................................................................... 43 
5.4.1  Reason for Results .......................................................................................... 43 
5.4.2  Picking the Best Combination .......................................................................... 44 

CHAPTER 6.  CONCLUSION AND FUTURE WORK ................................................... 51 
6.1  Conclusion .......................................................................................................... 51 
6.2  Future Work ........................................................................................................ 51 
6.2.1  Cross Validation with Training Agents ............................................................. 51 
6.2.2  More In-Depth Static Evaluation Function ....................................................... 52 
6.2.3  More Minimax Optimizations............................................................................ 53 
6.2.4  Reinforcement Learning with Neural Networks ................................................ 53 
6.2.5  Move History .................................................................................................... 53 
6.2.6  More Patterns .................................................................................................. 54 

REFERENCES .............................................................................................................. 55 

APPENDIX: EXPERIMENT RESULTS ......................................................................... 58 

VITA .............................................................................................................................. 74 



 

iv 
 

Abstract 

 Artificial intelligence applications in board games have been around as early as 

the 1950‟s, and computer programs have been developed for games including 

Checkers, Chess, and Go with varying results. Although general game-tree search 

algorithms have been designed to work on games meeting certain requirements (e.g. 

zero-sum, two-player, perfect or imperfect information, etc.), the best results, however, 

come from combining these with specific knowledge of game strategies. 

 In this MS thesis, we present an intelligent Othello game player that combines 

game-specific heuristics with machine learning techniques in move selection. Five game 

specific heuristics, namely corner detection, killer move detection, blocking, blacklisting, 

and pattern recognition have been proposed. Some of these heuristics can be 

generalized to fit other games by removing the Othello specific components and 

replacing them with specific knowledge of the target game.  For machine learning 

techniques, the normal Minimax algorithm along with a custom variation is used as a 

base. Genetic algorithms and neural networks are applied to learn the static evaluation 

function. The five game specific techniques (or a subset of) are to be executed first and 

if no move is found, Minimax game tree search is performed. All techniques and several 

subsets of them have been tested against three deterministic agents, one non-

deterministic agent, and three human players of varying skill levels. The results show 

that the combined Othello player performs better in general.  We present the study 

results on the basis of four main metrics: performance (percentage of games won), 

speed, predictability of opponent, and usage situation.  



 

1 
 

Chapter 1 - Introduction 

1.1  Introduction 

 Artificial intelligence is a topic that can be found in multiple fields of study. It can 

be found in spoken language recognition [1], autonomous vehicle systems [2, 3], and 

even in the armed forces for training and other non-combative roles [4]. This thesis will 

explore its affects in the two-player, perfect information, zero-sum game called 

“Othello”. 

1.2  Othello 

 Inspired by the Shakespearean play of the same name, Othello was first created 

around 1883 and was first introduced in American culture around 1975 after the rules 

were changed to what we know of them today [5]. The game‟s slogan, “A minute to 

learn... a lifetime to master!” [6] explains why it can be problematic to attack from an 

artificial intelligence perspective since although the rules are simple, there are many 

strategies to consider. This thesis will present several techniques for accomplishing 

such a task and explain the relative merits of each by examining their aptitude when 

pitted against other artificial intelligence agents and human players. 

 The game is played on an 8x8 grid and the player with the most pieces in the end 

wins. A valid move is any piece placed on the grid that will cause one or more opponent 

pieces to be surrounded either vertically, horizontally, or diagonally by the player‟s 

pieces already on the board. After the move, all opponent pieces surrounded because 

of the newly placed piece are converted to the player‟s pieces. When the game starts, 

two white and two black pieces are placed in the center of the board (figure 1.1 part A). 



 

2 
 

The black player always goes first. His valid moves are shown in part B below and are 

the result of his already placed pieces at board locations (3, 3) and (4, 4). 

  

A B 

Figure 1.1 

A) Initial board state. B) Valid moves for black player. If the black player 
places one of his pieces at location (2, 4), his opponent‟s piece at (3, 4) 
will be surrounded vertically from this newly placed piece and black‟s 

piece at (4, 4), therefore this is a valid move. 
 

If this player were to place his piece at location (5, 3), his opponent‟s piece at (4, 3) will 

be surrounded vertically. This white piece will then be flipped over to a black piece and 

it will become the white player‟s turn (shown in Figure 1.2 part A). The white player will 

then have to choose from his set of valid moves shown in part B below. This is repeated 

until either the entire grid has been filled or either player has all his pieces flipped and 

therefore has no pieces left on the board. As mentioned the player with the most pieces 

at the end of the game wins. If during the game, a player does not have any valid 

moves on his turn, his turn is skipped. His opponent is then allowed to continue playing 

until the player has a valid move. 



 

3 
 

   

A B 

Figure 1.2 

A) Board state after black moves to (5, 3).  B) Valid moves for white 
player. 

 
 

 Othello is also known by the name of Reversi, however there are slight 

differences to the rules. The main one being that in Reversi, the board starts out empty, 

and players alternate turns to fill the center four locations [7]. 

 

  



 

4 
 

Chapter 2 – Common Methods 

2.1  Introduction 

 Before more detail can be stated about the approach and design, brief 

explanations on the algorithms used will be given. 

2.2  Minimax 

 Minimax is an exhaustive search approach to finding an ideal move among the 

valid choices [8]. For every one of a player‟s valid moves, the opponent‟s valid move list 

is evaluated. The player‟s valid move list in response to every one of its opponent‟s 

moves is then evaluated, and so on constructing a tree of board states. The player 

creating this structure is known as the “max” player and the opponent is “min”. To build 

the initial tree, the current board state is considered the root. Each of the player‟s initial 

valid moves become a child of that root, then each of the opponent‟s moves in response 

to the player‟s moves become children of that node, and so on. The tree construction 

stops when a certain depth has been reached (which is open for the implementer to 

decide). This basic structure is shown in figure 2.1. Each of the leaf nodes represents a 

possible board state that is the result of its parent‟s move, which is one of the results of 

its own parent‟s move, and so on. These leaf nodes get their value from a static 

evaluation function. This function takes in features of a board state and assigns a real 

value indicating how good that state is for each player. If this value is low (typically in 

the negative range), the state is more ideal for the min player; a high value (typically in 

the positive range) is more ideal for the max player; and a value close to zero (or in the 

middle of the function‟s range) represents a more neural board state. After assigning 



 

5 
 

values to each leaf node by running their represented board states through this 

evaluation function, these values must be propagated upwards. 

 

 

Figure 2.1 

Minimax tree structure for a depth of 3 
 

 

 

Figure 2.2 

Static evaluation function has been used on the leaf nodes to calculate a 
value for the board state they represent 



 

6 
 

 In figure 2.2 the level right above the leaf nodes is a max level, meaning that 

each of these nodes chose the maximum value from their children (shown in figure 2.3). 

The next level represents min‟s move and so the minimal value of each child node is 

chosen (figure 2.4). This happens because at each max node, the children represent 

possible moves for the max player and their values indicate how good the resulting 

board state will be for this player. Therefore the max player would want to take the path 

that maximizes this value. Min‟s children represent possible moves for the min player to 

take and therefore the minimal value is chosen as it is more ideal for this player. The 

final level is always max since we are evaluating a move for the max player. After this 

root node gets a value, the path becomes clear (figure 2.5). This path represents a 

board configuration after a certain number of moves that is the result of the max and 

min player playing optimally.  

 

 

Figure 2.3 

Values have been propagated up from the leaf nodes. Since it is at a max 
level, each parent takes the maximum node value of each of their children. 



 

7 
 

 

Figure 2.4 

Values have been propagated up to the min level. Min parent nodes take 
the minimal value of each of their child nodes. 

 

 

 

Figure 2.5 

The highlighted lines show the path from the root that leads to a board 
state 3 moves away. If the max player picks the best move during his turn 
(the move/child node with the maximum value) and the min player does 

the same (picking the move/child node with the minimum value), then this 
represents the resulting board state‟s evaluated value. 



 

8 
 

2.2.1  Minimax Optimizations 

 Normally with the Minimax algorithm, the greater the depth before the static 

evaluation function is applied, the more accurate the result. This comes at the expense 

of time, however, as the number of nodes grow exponentially resulting in an estimated 

total number of bd, where d is the maximum depth and b is the “branching factor” or 

average number of children for each node [9]. It is this reason that so many different 

optimizations were created and can be combined to allow one to search deeper without 

performing unnecessary computations. 

 Alpha-beta is among the most common of these optimizations [10]. The idea is 

simple - don‟t expand (i.e. create children) nodes that can‟t possibly change the final 

decision. 

2.3  Genetic Algorithms 

 Genetic algorithms are based on the notion of survival of the fittest [11]. If we 

take several solutions to our problem, evaluate their accuracy or fitness using some 

measurement, use the best of them to create a new set of solutions, and repeat this 

until some stopping criteria, the hope is that our latest set of solutions will be much 

better than the ones we started with. 

 To be more explicit, the set of solutions is called a population and the individual 

solutions are called chromosomes. Methods such as crossover and selection are used 

to create a new population from the previous one. Crossover takes two “parent” 

chromosomes and combines them to form two new “child” chromosomes. Selection 

simply selects the top x percent of the fittest chromosomes and puts them into the new 

population. Mutation can be applied after, in the hopes of creating a better 

chromosome, by introducing something into the population that wasn‟t there before. If 



 

9 
 

we randomly select a small amount of chromosomes in the new population and make 

some small random change to each one, we introduce something into the population 

that might not have otherwise formed. We can repeat this procedure, creating more and 

more populations until either the average fitness (judged by some evaluation function) 

over all chromosomes or the fittest chromosome in a population reaches a specified 

threshold. When this happens the fittest chromosome in this population holds the best 

solution. 

2.4  Neural Networks 

 Modeled after human brain activity, neural networks consist of multiple 

discriminatory functions contained in what are known as “perceptrons” [12]. Each 

perceptron takes input from multiple sources and produces a single output. Each input it 

receives is multiplied by its own weight value and the sum of these inputs form the final 

input that is given to an “activation function.” The result of this function is the output of 

the perceptron. If these perceptrons are chained together, making the output of one 

become part of the input of another, they form a neural network. Since perceptrons can 

receive multiple input values, many perceptrons can feed their output into the next 

perceptron, meaning it is possible to form “layers” of perceptrons that all calculate their 

value simultaneously so they can give their output to each of the perceptrons in the next 

layer. This hierarchical design allows for a final, arbitrarily complex decision 

boundary/boundaries to form, giving neural networks their incredible flexibility and 

power. The number of layers and perceptrons at each layer as well as the activation 

function within the perceptrons are free parameters and are up to the implementer to 

decide. Once a topology and function are chosen, the weights at each edge connecting 

perceptrons of different layers must be learned to increase the accuracy of the final 



 

10 
 

outcome. This is normally done using sets of target values corresponding to sets of 

input values, i.e. a training set. Common algorithms for training these networks include 

backpropagation and feedforward. If no known target values exist, “unsupervised” 

learning must occur in which the network attempts to adapt to its environment as much 

as possible and sometimes seeks to maximize a certain reward. This is significantly 

more challenging than supervised learning, however many real-world problems require 

unsupervised learning as quantifiable ideal outcomes are difficult to predict/calculate. 

2.5  Pattern Detection 

 In order to create the best agent for a particular game, one must find game-

specific information to exploit. General methods will work well for most cases, but can 

only go so far. Past this point specific knowledge of good plays in the game as well as 

subtle tricks and techniques known to experienced players must be mimicked by the 

agent. Since there can be literally billions of possible board states in a game (there are 

364 states in Othello), trying to recognize and take action on specific states is futile. A 

better approach is to recognize board patterns that could manifest themselves in 

several different board states and to have an ideal move ready when this pattern is 

matched. Then one can create a collection of patterns and ideal moves for each. 

2.6  Related Works 

 Now that the basic algorithms have been examined, we will look at some 

applications that show successful implementations. 

MOUSE (MOnte Carlo learning Using heuriStic Error reduction) is an agent built 

for Othello [13]. The paper explains that the main problem with using reinforcement 

learning for function approximation is in its inability for good generalization. To solve this 



 

11 
 

MOUSE uses reinforcement learning along with past experience. It‟s main decision 

making progress uses a series of 46 board patterns, each with its own weight value, 

formed from reflections and rotations of eleven unique cases. When handed a valid 

move, all patterns are checked and a value is produced from the sum of the weights of 

those that match. This sum represents an estimate of the “disc differential”, or the 

difference between the two player‟s pieces on the board at the end of the game. 

Supervised learning was used with training examples coming from games played by at 

least one good player. After training and after several adjustments were made, MOUSE 

became good enough to compete in a GGS Othello tournament, which holds the world‟s 

best human and artificial players. 

Another example of successful artificial intelligence implementations for well-

known board games comes from Gerry Tesauro [14]. Using temporal-difference 

learning [15], Tesauro developed TD-Gammon, an expert player for the game of 

Backgammon. Since this game has a branching factor of 400, searching to even a 

modest depth becomes impractical. Therefore instead of relying on a Minimax 

approach, TD-Gammon uses Neural Networks only on the current list of valid moves. 

This is performed in an interesting fashion as no patterns or special features are 

actually extracted from the board to be sent to the network, but instead the entire board 

is encoded in 198 input nodes. The first 192 come from the fact that there are 24 valid 

locations on the board, and the number of pieces the white or black player has at any 

one location is encoded in four input features. Therefore 24 locations with each location 

having four input features for white and four for black, gives an initial 192 features. Two 

more (one each for white and black players) were used to represent the number of 

pieces found on the “bar”, two for those removed from the board, and two for a bit 



 

12 
 

masked representation of whose turn it was (e.g. 01 for white and 10 for black). All 

feature values were scaled to a range of approximately zero to one. Online gradient 

descent backpropagation was used for training and after about 300,000 games played 

against itself, the system developed knowledge rivaling that of the best Backgammon 

programs at the time. Note that the previous best agents relied upon deep knowledge of 

the game, including one created by Tesauro himself. Without this knowledge the TD 

approach was still able to produce similar results.  



 

13 
 

Chapter 3 – Getting Started and Using 
Game-Specific Heuristics 

3.1  Study Common Methods – In General and Game Specific 

 The approach was to study many common techniques in board game artificial 

intelligence and see how each was used. It was also important to see some creative 

game-specific solutions for inspiration on developing custom techniques. After doing so 

as practice an agent was created for a very simple game. Simple heuristics were used 

with a mix of offensive and defensive approaches. 

3.2  Simple Agent for Game: TIC-TAC-TOE 

 The game of Tic-Tac-Toe was simple enough to serve as practice creating an 

agent. The concept of bit boards, that is, bit strings that represent different aspects of 

the current game board, was explored [16]. Four agents were created each with their 

own method for finding an ideal move. The simple agent scanned the board left to right, 

top to bottom to find the first available spot to take. The influence map agent uses an 

influence map, discussed later, to pick its move. The two other agents both evaluate 

each valid spot by examining its influence map value, how many “two-in-a-rows” it will 

create for both itself and its opponent, and if that spot will cause it to win or will block its 

opponent from winning. Each of these aspects is given a weight and after adding them 

all up, the spot with the highest value gets chosen. For the defensive agent, the weights 

are chosen to give more emphasis on preventing the opponent from winning. The 

offensive agent has higher weights for moves leading it to victory. Both these agents 

were able to successfully prevent anyone from winning a single game allowing, at best, 



 

14 
 

a tie. The same could not be said for the influence map and simple agents, however 

they were merely tests leading up to the other two agents. 

3.3  Combining Common Methods 

 The next step was to take common methods for two-player, zero-sum games and 

combine them into one agent. The methods chosen to combine were genetic 

algorithms, neural networks, and Minimax which will be discussed later. Custom 

methods were also added. These could be game-specific or game-independent. 

3.4  Choosing a Game 

 A game has to be chosen that is well known to the implementer and due to 

personal experience, Othello was selected. Throughout many times playing the game, 

several strategies including what board locations where better than others, which moves 

were good among the valid choices, which moves could end up tricking the opponent 

into making a bad decision, and which moves one should never take under certain 

circumstances were developed. 

 Knowing the chosen game well, one has an easier time coming up with exploits 

of specific game features to add to one‟s agent than would be for other games. 

3.5  Exploitation of Game Characteristics 

 The following are explanations of each game specific technique created as well 

as the motivation behind them. Although these are mostly only valid for the game of 

Othello, some may apply to other games if modifications are made. For instance, in the 

case of pattern detection, any board configuration, regardless of the game, where good 

moves are well known can be represented as a pattern. 



 

15 
 

3.5.1  Pattern Detection 

 In Othello a good player knows that the corners of the board are the best 

locations and will try his best to capture them. Therefore several patterns were created 

to enable the agent‟s next move to be a corner. 

3.5.1.1  Theory 

 

  

A B 

Figure 3.1 

The agent is the white player and its opponent is the black player. A) The 
agent‟s valid moves are shown as dotted circles. This board configuration 

is one of the ones that match one of the agent‟s patterns. The two 
opponent pieces that have white and red crosshairs on them are possible 
targets, meaning one of these must be flipped to satisfy the pattern. The 
pattern does not recognize the opponent piece at (1, 1) since overtaking 
that spot would give the opponent the corner. Piece (4, 4) is also not a 

target since the opponent could flip that piece right back over on its next 
turn due to it having a piece at (3, 3). Since one of the agent‟s valid moves 
takes the target opponent at (2, 2), that move is chosen. B) The result of 
overtaking a target piece. This gives the agent the corner as one of its 

valid moves for its next turn. Notice that the spot at (2, 2) cannot be taken 
back by the opponent‟s next move, as it is protected by the opponent‟s 

own pieces.  



 

16 
 

 The theory behind this is that corners are the best locations in the game. If the 

list of valid moves does not include a corner, we want the agent to be able to set itself 

up for a corner at a later time. Therefore a collection of patterns was created that would 

not only attempt to make its next valid move list contain a corner, but would try to 

guarantee it. This was accomplished by flipping over an opponent‟s piece that could not 

be flipped back over during the opponent‟s next move. That piece would create a 

diagonal capture line for the agent to one of the corners (figure 3.1 part A, above). Since 

the piece the agent targeted could not be flipped back over by its opponent, unless the 

opponent took the corner itself, it is certain that the agent‟s next valid move list would 

include that corner (figure 3.1 part B, above). 

3.5.1.2  Implementation 

 The problem with implementing patterns is that they are an abstract concept. 

They have to be flexible enough to represent multiple (perhaps hundreds) of different 

concrete board states. If a pattern only represents a single board state, the chances of 

that state appearing in a given game are extremely small and as such that pattern 

would be useless in practice. The original concept of a pattern was an xml file that used 

bit masking to represent a location‟s status. 1 was untaken, 2 was taken by the agent, 

and 4 was taken by the opponent. If a board location‟s status was of no concern, it was 

given a 7, which is the result of 1 + 2 + 4, or in other words, either untaken, taken by 

agent, or taken by opponent (the only three possible choices). 0 meant that its true 

value was inherited by a template. Templates were simply xml files used to store 

reoccurring values in different patterns so those values could easily be referred to in the 

specific pattern used. 



 

17 
 

 The xml file would contain a list of rows, cols, and bit masked states at each. For 

a pattern to match, each location, described by its row and col, would have to have a 

matching state to that of the actual board. So if a location had a state of 3, the location 

on the current board state would have to be either untaken or taken by the agent for the 

pattern to match that location. If all location states match for the current board state, that 

pattern is considered matched. To save computation time and pattern file complexity 

and length, any location not explicitly stated was considered a “don‟t care” or having a 

state of 7 and was not checked when the pattern was being evaluated. 

 This initial approach worked well for matching patterns, however there had to be 

some way of representing an ideal move if the pattern was matched. So to state the 

best move(s) for each pattern, a separate collection was used that stated the row and 

column of each move to try in the order they are specified (since some moves might be 

invalid). This didn‟t work too well, though, as there could be several good locations 

given similar board configurations and only differing in a couple locations. In fact most of 

the time a good move was not a specific location, but was a specific opponent piece 

that needed to be flipped. Since pieces can be flipped from at most 8 directions and up 

to 7 spots away, this means there could be several ideal moves that all target that 

specific piece. 

 The original approach to handling this was to create a string of conditions that 

must be met in order for a move to be selected. If a pattern was matched, the list of best 

moves each with its own conditional was checked. If any conditional statement 

evaluated to true, that move would be chosen. Due to the number of possible situations 

a board could be in, these conditionals grew very complex. An example of one 

conditional could be: 542 & (242 | (241 & 643)) & !(434 ^ 454) & !(354 ^ 534). Each 



 

18 
 

three tuple consisted of row, col, and state. So 542 meant that the location at row 5, col 

4 had to have a state of 2 for this to be true. &, |, and ^ were the bitwise and, or, and xor 

operations, respectively. ! was negation, and parentheses were used for grouping. This 

was very complex to figure out by hand for each location that could be used to attack a 

certain opponent piece as well as computationally expensive to parse. The conditionals 

were being used to ensure that a location was a valid move for the agent, something 

that probably should be decided in the game and not explicitly specified by the pattern. 

 A more abstract way of taking over a location was created. Instead of specifying 

the exact location of an ideal move, the pattern would specify which location it wanted to 

overtake. If this location was empty, the agent would simply place a piece there. If the 

location was taken by its opponent, it would look through its list of valid moves and 

choose one that would flip over that piece, thereby taking the location over. If no valid 

move could accomplish this, the pattern would be considered unmatched and the next 

pattern was evaluated. This allowed for the game itself to decide how to overtake a 

location using the list of valid moves. Now a pattern need only declare the target 

location and let the game (with its knowledge that the pattern doesn‟t possess) decide 

how. Several target locations could also be specified in order of precedence with the 

first location that could be overtaken picked. This allowed for a single pattern to state 

multiple ideal moves in a simple manner and allow the game to decide which, if any, it 

could take. This made patterns much more dynamic and easier to write as well as 

having a greater chance that they would be used in a given game. 

3.5.2  Corner Detection 

 Since we have patterns that will set the agent up to be able to take a corner 

location on its next turn, we need to make sure the agent would do just that. Corner 



 

19 
 

detection is therefore used to force the agent to take a corner anytime it is in the valid 

move list. 

 The main reason for this is so the agent doesn‟t pass up an opportunity to take a 

corner and have its opponent block that opportunity for its next turn, or have its 

opponent take the corner instead. 

3.5.3  Killer Move Detection 

 Since it is possible to win the game early, checking for moves that will eliminate 

all your opponent‟s pieces is important. This exploit performs an initial check to see if 

any of the agent‟s valid moves accomplish this. 

 The reason for this technique is simple; if the agent can win the game 

immediately after moving to a certain spot on the board, it should move there every time 

regardless of the benefits of the other move choices. 

3.5.4  Blocking 

 In Othello if a player does not have any valid moves on his turn, his turn is 

forfeited and control is returned to his opponent. For the blocking exploit, the agent 

checks to see if any of its valid moves will cause its opponent to forfeit his turn, thereby 

allowing the agent to go again. If such moves exist, the agent will arbitrarily take one of 

them. This action can be repeated as long as there are moves which prohibit its 

opponent from taking a turn. 

3.5.5  Blacklisting 

 If any of the agents valid moves set up its opponent to make a great move, that 

move should not be taken. The concept of blacklisting takes those moves and forbad 



 

20 
 

them from being picked. This technique should not be used too aggressively, however, 

as sometimes other methods, such as Minimax, will seem to give the opponent the 

edge, but is actually allowing a great move for the agent possibly several turns later. 

Therefore this should only be used if the agent‟s opponent will be able to make a game 

changing or other type of ideal move in response to the agent‟s choice. For the 

experiments discussed later which use this technique, it attempts to ban the agent‟s 

opponent from taking a corner. The agent scans through all of its valid moves and any 

move that allow its opponent to take a corner on his next turn would be blacklisted. If all 

valid moves ended up being blacklisted, then this was unavoidable and the blacklist was 

cleared. At this point the agent would just try to pick the best move knowing its 

opponent will have a chance to take a corner no matter what it did. 

3.6  Order of Exploits 

 If all exploits are active, killer move detection is used first followed by corner 

detection, blocking, pattern detection, and finally blacklisting. 

 

  



 

21 
 

Chapter 4 – Using Machine Learning 
Techniques 

4.1  Using Machine Learning Techniques 

 If all game-specific exploits fail to find an ideal move, we fall back onto Minimax. 

Minimax is guaranteed to choose a move, even if it is not always optimal, and works for 

any zero-sum game. 

4.2  Minimax and the Expected Min Technique 

 Before Minimax could be implemented, there is a drawback that needs to be 

addressed, that is its assumption of what move the min player will choose. This is the 

motivation behind “expected min”. Normal Minimax will choose the child node with the 

least value for the min parent. This will result in the agent choosing a move under the 

assumption that its opponent will always choose the best move for him among the valid 

choices. There are two main problems with this. First, there is no guarantee the min 

player will always choose this path and second, the “ideal” min move is chosen by a 

subjective static evaluation function and may not represent the actual best move for the 

min player or at least what the min player thinks is the best move. So basically the min 

player must play exactly like the max player for the max player to have an accurate 

estimate of the min player‟s behavior. The expected min technique was therefore 

created to help account for the uncertainty of the min player and help to lessen the 

stringent assumptions being made. Instead of choosing the smallest value for the min 

player, all values are taken into account and are given weights according to how likely 

the min player is to choose them. The algorithm is as follows: 



 

22 
 

1. Take all child node values 

2. Subtract each value by the maximum of those values plus 1 (e.g. if we have 1, 2, 

and 3 then produce (1 – 4), (2 – 4), and (3 – 4) to get -3, -2, and -1). The reason 

for this is due to both the desire to end up with higher weights on lower numbers, 

and also to allow values of zero to have some contribution to the weight 

distribution. 

3. Sum these new values up and divide each value by that sum (e.g. for the -3, -2, 

and -1 values from above, we have (-3 / -6), (-2 / -6), (-1 / -6) to get 0.5, 0.333, 

0.1667) 

4. Multiply the original values by these weights (e.g. our original value 1, 2, and 3 

become (1 * 0.5), (2 * 0.333), and (3 * 0.1667) to get 0.5, 0.667, 0.5) 

5. Sum these values up to get the min parent‟s value (e.g. 0.5 + 0.667 + 0.5 = 

1.667) 

This is in contrast to a value of one that normal Minimax would assign. This new 

number attempts to give a more accurate value for that parent node since it merely 

applies more weight to lower values instead of automatically choosing the lowest. 

Experimental results will be shown later that state how well this performs and 

conclusions on which situations this technique is best applied will be made. 

 In the game of Othello, having the most pieces in the beginning or middle game 

states alone is not a good indication of how well one is doing [17]. This is due to the fact 

that any one move may flip over several pieces, possibility from several different 

capture lines, and can change the score dramatically. Therefore heuristics must be 

developed to decide if a player is truly winning during any game state. This is the 

purpose of the static evaluation function.  



 

23 
 

 The original equation involved a simple weight vector and four input features: an 

influence map (discussed later) sum of all board positions held by the agent and 

opponent and the total number of unique pieces that could be flipped by the agent‟s and 

opponent‟s next set of moves if their move was to immediately follow. These input 

features were used to decide not only how many pieces a player has, but also a 

heuristic on how important their locations are and how easily they can be flipped in the 

next move. This gives some indication on how quickly the game can change in the next 

few moves and aims to prevent the false security the currently winning player often 

feels. 

The equation started out taking this form: 

    (           )                          

Where   is the weight vector (discussed later),    is the influence map sum for the 

agent,    is the influence map sum for the opponent,    is the sum of the unique agent‟s 

pieces flipped by the opponent‟s next valid move set,    is the sum of the unique 

opponent‟s pieces flipped by the agent‟s next valid move set. Before the weights could 

be learned, good influence map values had to be established. 

4.2.1  Learning Influence Map for Evaluation Function 

 An influence map is a matrix that holds a value for each location on the board 

[18]. This value, from 0 to 10 in this case, indicates how valuable that location is to 

gaining the upper hand during a game. A corner spot, for example, would be given a 

value of 10 due to it being the best location on the board. The sides of the board would 

also be given a high value. The location right next to the corner, however, is probably 

the worst spot on the board if one does not have the corresponding corner. Taking a 



 

24 
 

spot right next to a corner drastically increases the chances of your opponent having 

that corner as one of his valid moves. All these values are generated from knowledge of 

the game and, as such, can be very subjective. 

 Multiple intuitive values were tried and tested for performance, but none proved 

to be very successful. We therefore turn to genetic algorithms to find a more ideal set of 

values. 

4.2.1.1  Using Genetic Algorithms 

 The original generation contains a population of chromosomes each with their 

own influence maps created randomly. Since each location can have an integer value 

from 0 to 10 and since there are 64 board locations, the search space becomes 1164. To 

reduce the size of this space, we have to observe a few game specifics aspects. First, 

the corners should have the highest value. There are four corners, therefore that brings 

the search space down to 1160. Next, the four spots in the center of the board are 

occupied right when the game starts. This means those locations will never appear in 

either player‟s valid move list and so do not need a value. This brings it down to 1156. 

Finally, the influence map matrix should be symmetric. Each quadrant of the board 

contains the same values and is just a mirror of one another. This is due to the fact that 

each quadrant is just as important as the next and only changes due to the locations 

owned by the players. In fact each of them forms a symmetric matrix of its own. This 

makes the entire matrix not only symmetric about its main diagonal, but symmetric 

about its cross diagonal too. This puts our space at a relatively small size of 118 which 

is 214,358,881. This drastically speeds up the time taken by the genetic algorithm as it 

only needs to learn 8 values.  



 

25 
 

 

Figure 4.1 

Influence map. 
The numbers on the outside in bold are indices, the corners are given the 
max amount, and the center locations are “don‟t care” values as they are 

taken when the game starts. The quadrants have bold borders around 
them. A, B, C, D, E, F, G, and H are the values that the genetic algorithm 
learns. With the highlighting on both diagonals, one can clearly see the 

extreme symmetry of the matrix. 

4.2.1.2  Fitness Function 

For the fitness function we have: 

       (                  )  (         )  (              )  (      ) 

       

  {
                   
                      

 

  {
                    
                      

 

   {
    (

                   
                 ⁄      )                                     

                                                                                                                                                                 

 



 

26 
 

   {
    (

                 
                   ⁄      )                                  

                                                                                                                                                          

 

   {
                                      
                                                             

 

   {
                                   
                                                      

 

                                   

The parameters    ,    , and     are the weights for   ,   , and   , respectively and 

were set at 5, 5, 2, respectively. These values represent heuristic estimates. In 

situations where multiple games are played, the fitness becomes the average over all 

games. The range of this function is from -10 to +18 with a winning agent receiving no 

less than 1.06 and a losing agent receiving no more than 6.94. This overlap between 

the two scores is due to the addition of the corners taken by the agent as a losing agent 

could potentially have taken all four corners and a winning agent could have taken 

none, although these are rare circumstances. Basically if the agent lost, we still want to 

reward it if it took some corners. If the agent lost but took all four corners, this could be 

the result of a few bad moves and not the result of an overall bad strategy and therefore 

the agent should still receive some reward. Ties were considered a loss for both 

players. 

4.2.1.3  Genetic Algorithm Parameters 

 The population size was set at 21 (a small value so each generation would run 

quickly and many of them could be produced) with a crossover rate of 0.75 and a 

mutation rate of 0.05. At a rate of one minus the crossover rate, the chromosomes were 

selected to move onto the next generation, while the rest underwent the crossover 



 

27 
 

operation. To be more specific, 5 chromosomes were moved to the next generation 

while 16 participated in crossover. Wanting most of the chromosomes to undergo 

crossover, this seemed to be a good balance. A crossover rate of 0.60 was also tested, 

but 0.75 was found to be a better value. The selection was random with each 

chromosome‟s normalized fitness (fitness divided by the total population‟s fitness) 

weighing its chances of being picked, so the more fit chromosomes had a better 

chance. This procedure is called fitness proportionate selection [19]. Single-point 

crossover was then used were a random value from 1 to 7 (one less than the number of 

values representing each chromosome‟s knowledge as stated previously) was chosen 

as the swapping index. Mutation was then run and caused a single chromosome 

chosen randomly without weighting to have a random value in its knowledge to be 

changed to a random number from 0 to 10 (the range of any valid value). Mutation 

shouldn‟t be a big factor in the learning process and is why a rate was chosen purposely 

to allow only one chromosome to be affected. 

 The simulation ran for 1,000 generations as shown in figure 4.2. The fitness was 

found by using the above formula and putting an influence agent with the chromosome‟s 

knowledge against a greedy agent (explained later). Since they are both are 

deterministic, each game only needed to be ran once to get an accurate fitness value 

(since all games would produce the same results) although there were two games per 

test; one where the influence agent was the white player, and one where it was the 

black player. The fitness from the two games was averaged. The stopping point was set 

at a maximum fitness of 18, the highest attainable value, meaning that a chromosome 

would have to overtake all corners and flip over all of its opponent‟s pieces. Since it was 

only tested against a single agent, this was not an impossible task. After reaching this 



 

28 
 

goal, the knowledge of that chromosome (the fittest) was taken and made into a new 

target agent. The genetic algorithm was then restarted with a new initial population and 

all chromosomes would play against this new target agent. The criteria remained the 

same. This repeated for approximately six times as after that, the fittest chromosome‟s 

knowledge was taken and locked in as the final influence map values to be used by any 

influence map agent and by the main agent. Exactly how many generations each restart 

took was not recorded; however the true value was between 500 to 1,000. Fortunately 

each generation only took around 5 seconds. 

 

Figure 4.2 
 

Graph of genetic algorithm learning an ideal set of influence map values. 
“Gen 986” means it is on its 986th generation and the max fitness of that 

generation is around 8.6, as shown in red. The white line shows the 
different from the initial generation to the current one. The fitness is found 

from playing against a greedy agent. 
 

4.2.2  Learning Weights for Evaluation Function 

 After learning the influence map, we need to learn a good set of weights to for an 

accurate evaluation of the board. Seeing as how the equation was basically a single 

perceptron with an activation function of f(x) = y, this could easily be expanded to a 



 

29 
 

more flexible neural network. Since learning can take a long time and since this is a 

more powerful approach, we go with the neural network without attempting to learn the 

weights of the original linear formula. 

 Four input nodes were used corresponding to the four input features of the 

formula along with one five-node hidden layer and one output node. Sigmoid was 

chosen as it is the most common activation function [20] and values below 0.1 were set 

to zero while values greater than 0.9 were set to one. This range adjustment is due to 

the fact that total saturation values can only theoretically occur at –infinity and +infinity 

and so adjustments must be made to treat values closer than a given threshold to the 

asymptotic boundary as that boundary‟s value. Since there weren‟t any training 

examples, heuristics relating an ideal number of weights to the size of one‟s training set 

were not applicable [21]. So without such guidance, the approach was to use a small 

number of hidden layers and nodes to reduce training time. 

4.2.2.1  Why Use Genetic Algorithms? 

 Since no target values existed to train the neural network with, unsupervised 

learning algorithms had to be taken into account [22]. The code for training using 

genetic algorithms was already implemented and was used to successfully learn the 

influence map values, so it was tried on the neural network weights. It performed well so 

a different approach didn‟t seem to be needed. Therefore the unsupervised methods 

studied were not implemented. 

4.2.2.2  Parameters 

 Since this was to be an influential part of the agent‟s decision making process 

and since the search space is larger, we increase the population size over what was 



 

30 
 

used for the influence map. A population size of 100 was decided upon as crossover 

stayed at 0.75 since that seemed to do well. Mutation started out low, around 0.01, but 

later on (as will be discussed) it was slightly raised. Since the chromosomes‟ knowledge 

is similar to that of the influence map only with floating point numbers and more of them, 

the same selection, crossover and mutation operations were used. We initialize all 

weights to random values from -1 to 1. 

4.2.2.2.1  Setup 

 The final weights must work well against all types of testing agents. It must also 

work well regardless of whether the agent goes first or second when the game begins. 

Therefore each chromosome played against each of the three different training agents 

as the white player and again as the black player for a total of 6 games. The fitness 

scores over these games were averaged and that became the chromosome‟s fitness 

value. 

4.2.2.2.2  Addition of Input Features 

 Initially only a single laptop was used to run the genetic algorithm and was used 

as often as practical. It ran a total of about 1,500 generations receiving a max fitness of 

any generation at 10.58 (absolute maximum being at 18) using the same fitness 

function from learning the influence map. This wasn‟t too bad but it could have been a 

lot better. Therefore to improve the accuracy, four more input features were added to 

the neural network running the static evaluation function: number of corners held by 

agent and opponent and number of sides held by agent and opponent. Although this 

meant retraining the network, this time other machines were used. Using a single laptop 

took too long to be practical to run all those generations again, so instead the program 



 

31 
 

was executed on four different desktop machines, each more powerful than the original 

laptop. They ran for an entire weekend and produced the results shown below: 

 

Total number of generations 14,608 11,769 11,808 12,597 

Maximum fitness of any generation 8.95 14.21 14.22 11.24 

 
Figure 4.3 

 
GA Learning Results. 

These are the results of running the genetic algorithm designed to find the 
weights of the neural network on four different machines. They were 

started at slightly different times and hence have different numbers of total 
generations run (the 14,608 machine started hours before the others). The 
average running time was around 80 hours. Each machine generated its 

own set of initial weights. 
 

 The maximum fitness attained this time was 14.22; much better than 10.58 found 

before. It is uncertain whether this is the result of adding more input features or running 

the algorithm for significantly more generations with four different starting points, but 

either way this is a more respectable value than before. With this new value, training 

was stopped. 

4.2.2.3  Quicker Training 

 It is interesting to note that since each chromosome plays six games, each 

population contains 100 chromosomes, and the total number of generations combined 

from the four machines was 50,782, the resulting total of games played was 30,469,200 

(with each game taking around 38ms)! This was accomplished by using some intuition 

to speed up Minimax. Since we are only interested in Minimax‟s ability to accurately 

estimate the value of any board state, taking it to a depth of one should suffice during 

training. The only reasons to go deeper than that is to get closer to an end game state, 



 

32 
 

in which case the estimation might be more accurate, and to help avoid unpredictable 

and undesirable board states in the next few moves [23]. However, giving the Minimax 

an end game state would only lessen the need for very accurate weights and 

undesirable board states should only arise if a less than ideal move is chosen, 

something the weights should help the agent avoid anyway. Therefore it was only 

necessary to evaluate each of the current moves and try to make that evaluation as 

accurate as possible. This decision caused the training to go a lot faster and more 

generations could be created and examined in a shorter period of time allowing for more 

instances in the search space to be covered. 

4.2.2.4  Plateau Effect 

 A problem was encountered while training where the maximum fitness of the 

population would stagnate. Knowing that this most likely represents a local maximum in 

the search space, the training was stopped, mutation rate was increased to around 

0.02, and then training was allowed continue where it left off. Genetic algorithms main 

strongpoint is its ability to overcome local minima/maxima by using this mutation rate 

and so by increasing it, this problem could be mitigated.  

4.2.2.5  Max Depth 

 After training a representative depth had to be chosen for testing. Since the 

agent should be tested under many different settings, a range of depths were chosen 

instead. The lower bound was one and the upper bound was decided by the average 

amount of time taken per move. Without any optimizations a depth exceeding four 

seemed to take too long, however after adding alpha beta (discussed later), that was 

able to increase to six. Therefore each test done against another computer agent was 



 

33 
 

repeated for all depths between one and six inclusively. For tests performed with human 

players, only two depths could be chosen to make the number of tests reasonable for a 

human to perform. Those depths were one and six, chosen to test the two extremes of 

the Minimax algorithm. 

4.2.2.6  Optimizations 

 As mentioned above the maximum depth that was practical without optimizations 

was four. Due to the exhaustive nature of the algorithm, in most situations, basic 

optimizations must be added to achieve a satisfactory depth. Therefore alpha beta was 

added. 

4.2.2.7.1  Alpha Beta 

 Alpha beta is among the most common optimization to add to Minimax [10]. Its 

concept and implementation are simple and its impact can be heavy. Say one has 

multiple child nodes, one of which has a value of four and the others have not been 

evaluated yet. Their parent is a min node with a sibling node having a value of five. 

Since both parents have a parent max node, that node will choose the higher of the two 

parent nodes and since one of them already have a value of five, the other parent node 

must have a value greater than that for it to be chosen. Since that parent is a min node 

and has a child with a value of four, the highest it can be is four, since any child node 

with a lesser value will be chosen and any with a higher value will be discarded. 

Therefore since this parent node will never have a value exceeding five, it will never be 

chosen regardless of the value held by its other child nodes, and therefore those child 

nodes do not need to be evaluated. These nodes whose evaluations do not affect the 

selection of the ideal path from the root (or “principle variation” [24]) are considered 



 

34 
 

pruned and are ignored. It is because of this pruning that alpha beta can search the 

same depth in less time than regular Minimax. 

 This brings up one of the shortcomings of the expected min approach talked 

about earlier. For that approach to be successful, alpha beta cannot be used as each 

child value is taken into account to produce the final min parent value. Therefore other, 

non-pruning techniques are the only optimizations allowed. Even though depths past 

four without alpha beta take a long time, it was allowed to run at depth five for tests 

involving expected min. At depth six out of memory exceptions occur and so alpha beta 

had to be used. 

4.2.2.7.2  Other Techniques 

 Due to alpha beta‟s popularity, there were several other optimizations that were 

created for Minimax. Only alpha beta was implemented as it is the most common, 

however other optimizations such as Negascout [25], created in 1983 by Dr. Alexander 

Reinefeld, have been proven to search as many nodes or less than alpha beta [26]. 

Negascout uses Negamax [27], a variation on Minimax where each of min‟s child nodes 

have their value negated. Picking the minimum from several values is the same as 

picking the maximum of the negation of those values, therefore each node becomes a 

max node. Having all max nodes means not having to check whether the min or max of 

each child value must be taken and can therefore speed up the amount of time spent 

per node. Negascout is similar to alpha beta however it not only uses this slight 

improvement, it also can search less nodes under certain circumstances. Since the 

order of the child nodes for any parent will not affect the final outcome, it can be 

manipulated. If child nodes can be arranged from best to worst, the principal variation 

would be the first depth-first path down the tree. This ordering can be approximated by 



 

35 
 

various heuristics such as results from previous searches and pre-evaluating nodes 

[25]. In this case alpha beta would prune most of the nodes during search. Negascout, 

however, uses initial values that form a narrower “window” (narrower than the range 

from alpha to beta) in an attempt to prune the most nodes. In fact it examines the case 

where alpha is equal to beta, forming what is known as a “scout window.” With this 

window size, exploration is much quicker. To see if the current ordering is truly ideal and 

the first nodes are in the principal variation, Negascout uses this scout window on the 

other nodes. If it turns out that the ordering is not ideal, Negascout starts over 

performing normal alpha beta. Therefore if the nodes are sorted ideally, Negascout will 

finish in less time than alpha beta, however if not, Negascout will actually be slower as 

the initial test would have been in vain.  

 

  



 

36 
 

Chapter 5 - Experiments 

5.1  Introduction 

 There were several experiments conducted to gauge the overall performance of 

the agent as well as to determine under what conditions did the agent excel and fall 

short. These experiments consisted of several test games played against four agents 

(three deterministic, one non-deterministic) as well as human players of different, self-

imposed levels of competence. 

5.2  Test Agents 

 Four test agents were designed that all use simple approaches and are used as 

a base to grade performance on. Some of them were used during training. 

5.2.1  Deterministic 

The first three agents are deterministic. All three of these agents were involved in 

at least one of the learning phases of the main agent (i.e. influence map and neural 

network weights). 

5.2.1.1  Greedy Agent 

 The first agent takes a greedy approach to picking a move. It goes through its list 

of valid moves and chooses the one that flips over the most opponent pieces. In the 

game of Othello, the number of pieces one has in the beginning and middle of the game 

is often a poor indication of how well one is actually performing. Therefore, an agent 

that makes its decisions based solely on the number of pieces it can flip will not do well. 

This agent was therefore the easiest of the three to beat. 



 

37 
 

 The other two agents, which will be discussed shortly, rely on influence maps to 

help make their decisions. When creating the influence maps for these agents and for 

the main agent (using genetic algorithms as discussed earlier), this greedy agent was 

used for testing. 

 This agent was also used as a test agent to train the weights of the static 

evaluation function‟s neural network. 

5.2.1.2  Influence Map Agent 

 The influence map agent uses nothing but the learned influence map values, 

stated previously, to make its decisions and disregards the current board state, i.e. the 

arrangement and placement of any of its or its opponent‟s pieces. It basically just gets 

the corresponding influence map value for each of its valid moves and chooses the 

move with the maximum value. 

 This agent was used in the continual learning process for the values of the final 

influence map and also in learning the weights for the neural network.  

5.2.1.3  Greedy Influence Agent 

 The next agent combines both these approaches. It retrieves the influence map 

value of each of its valid moves then multiplies this by the number of opponent pieces 

that move would flip. This turns out to be a pretty decent approach for its simplicity and 

is the strongest test agent. It was used to train the weights of the neural network. 

5.2.2  Non-Deterministic 

The final agent was non-deterministic and was not used to train the main agent 

or any other agent. 



 

38 
 

5.2.2.1  Random Agent 

 The random agent is the simplest agent as it just picks a move at random from 

the list of valid moves. Since the other three agents are all deterministic, there needed 

to be at least one agent that wasn‟t, therefore this agent was created. 

5.2.3  Human 

 Lastly, actual human players tested their skills against the agent. Since humans 

are the most unpredictable and non-deterministic, this served as a true test of the 

agent‟s capabilities. There were three players at self-imposed skill levels of one, five, 

and seven out of ten (with ten being an expert player and one being a newcomer) who 

played a total of two, five, and two games respectively. The agent and their scores were 

averaged for each run under the same agent configuration and the winner was the one 

with the higher score. Each human player played as the white and black player against 

the agent with configurations of Minimax only at depths one and six, with and without 

expected min; and with all exploits active at Minimax depths one and six, with and 

without expected min. 

5.3  Results 

The following shows the results of the tests ran over the deterministic, non-

deterministic, and human test agents. 

5.3.1  Deterministic 

Since the agents are deterministic, each test performed against these agents 

was only run once. The results are summarized in figure 5.1 below. The full results can 

be found in the appendix. 



 

39 
 

Without  EM 

 
M MCK MCKBoBa MCKBoP ALL Total Avg Per 

1 6 6 5 5 5 27.0 5.40 90% 

2 4 4.5 4 4 3 19.5 3.90 65% 

3 4 4 4.5 4 4.5 21.0 4.20 70% 

4 3 4 6 5 6 24.0 4.80 80% 

5 4 4 6 5 6 25.0 5.00 83% 

6 5 5 3 6 4 23.0 4.60 77% 

Total 26.0 27.5 28.5 29.0 28.5 
 

  

Avg 4.33 4.58 4.75 4.83 4.75 
 

  

Per 72% 76% 79% 81% 79%    

 

With  EM 

 
M MCK MCKBoBa MCKBoP ALL Total Avg Per 

1 6 6 5 5 5 27.0 5.40 90% 

2 1.5 2 4 1 4 12.5 2.50 42% 

3 3 3 5 3 5 19.0 3.80 63% 

4 3 5 6 4 5 23.0 4.60 77% 

5 6 5 6 6 6 29.0 5.80 97% 

6 4 5 4.5 5 4.5 23.0 4.60 77% 

Total 23.5 26.0 30.5 24.0 29.5      

Avg 3.92 4.33 5.08 4.00 4.92      

Per 65% 72% 85% 67% 82%       

 
Figure 5.1 

Summary of tests ran against influence, greedy, and greedy influence 
agents. Each cell represents how many games out of six were won (1 

game for each of the three agents as the white player, and 1 game each 
as the black player. Ties count as half a point). „M‟ stands for tests using 

only Minimax; „MCK‟ is Minimax, corner, and killer move detection; 
„MCKBB‟ is Minimax, corner, killer, blocking, and blacklisting; „MCKBoP‟ is 
Minimax, corner, killer, blocking and pattern recognition; and „ALL‟ is for all 
techniques. The number on the left of each chart represents the maximum 
Minimax depth searched to and the chart heading shows whether or not 
the “expected min” technique was used. „Total‟ was the total number of 
games won (the sum of the appropriate cells), „Avg‟ is the average, and 

„Per‟ is the percent won. This was applied to the different combinations of 
techniques (shown on the bottom of each chart) and to the different 
Minimax depths (shown on the right of each chart). Finally, the cells 

shaded in green represents situations were all six games were won by the 
agent, cells in red mean half or less of the games were won, and cells in 
gray represent the best Minimax depth or best combination of techniques 

for that chart. 



 

40 
 

 When using the expected min approach, alpha beta pruning was turned off since, 

as mentioned earlier, all child nodes must be considered to propagate a value to its min 

parent. However, as stated previously, it had to be used at a Minimax depth of six. 

Therefore while depths one to five are accurate, depth six is more of an approximation. 

 Overall it was quite successful. Looking at the summary we see different results 

for the two approaches, with one using expected min and the other using the normal 

Minimax approach. The two best depths are one and five and the two best technique 

combinations have Minimax (which is required), corner detection, killer move detection, 

and blocking in common. Adding blacklisting causes the best results when using 

expected min and patterns are the best addition for the case with normal Minimax. 

Overall the expected min approach performed worse, however it had the highest 

maximum values (i.e. 97% compared to 90% for the different depths and 85% over 81% 

for combinations of techniques). The worse technique combination on both was using 

Minimax alone and the worse depth was two by a decent margin. 

 These results may be misleading, however, as these same agents were used in 

training, just not with the different parameter value combinations. It is this reason that 

the results of each depth and technique combination are summarized. It is not enough 

to just pick a parameter combination that results in the agent winning six out of six 

games, since this may not be the case against every type of test agent. Instead we use 

the parameter combination and depth that has the best overall performance. This is 

shown in gray in figure 5.1. The highest values were obtained by using expected min at 

a depth of five with the techniques of Minimax, corner detection, killer moves, blocking, 

and blacklisting. Without using expected min, the ideal approach would be using a 

depth of one with Minimax, corner detection, killer move detection, blocking and pattern 



 

41 
 

recognition. To see what kind of results the agent could obtain if it was tested over 

unseen agents, we use the random agent. 

5.3.2  Non-Deterministic 

 The random agent tests were run much the same as with the deterministic 

agents with the exception that ten games instead of one were ran with each parameter 

combination. The average of these ten games became the final value (shown in the 

appendix). These tests were widely successful as every parameter set resulted in an 

overall win over the ten games. This proves the agent can adapt to an opponent making 

random choices and that some strategy must be used if the opponent is to have a 

chance at winning. Human players are truly the most unpredictable of all and therefore 

the next tests involve playing against several of them with different skill levels. 

5.3.3  Human 

 The agent proved to be quite a formidable opponent against even experienced 

human players as shown in figure 5.2 below. At depth one with only Minimax, it won half 

of the games and as depths increased and all techniques were added, the performance 

improved. This leads to the conclusion that the agent works well in unpredictable 

circumstances both with and without the expected min approach. 

 

Without  EM 

 
M ALL Total Avg Per 

 
3 5 8.0 4.00 67% 

6 6 6 12.0 6.00 100% 

Total 9.0 11.0 

 
  

Avg 4.50 5.50 

 
  

Per 75% 92%    



 

42 
 

With  EM 

 
M ALL Total Avg Per 

1 3 5 8.0 4.00 67% 

6 3 6 9.0 4.50 75% 

Total 6.0 11.0 

 
  

Avg 3.00 5.50 

 
  

Per 50% 92%    

 
Figure 5.2 

Summary of tests ran against human testers. The format is the same as 
that of figure 5.1. 

 

 Like the tests ran against the three initial agents, at a depth of six when expected 

min was used, alpha beta pruning was turned on. This would mean that the results at 

that depth with expected min would be an estimate, however this shouldn‟t necessarily 

be considered a bad thing. Tests were ran against the deterministic agents using 

expected min with alpha beta active at all depths. The results are shown in figure 5.3 

below. 

 

EM with Alpha Beta Pruning 

 
M MCK MCKBoBa MCKBoP ALL Total Avg Per 

1 6 6 5 5 5 27.0 5.40 90% 

2 1 1 2 3 1 8.0 1.60 27% 

3 3 0.5 5 4 5 17.5 3.50 58% 

4 4 3 6 3 6 22.0 4.40 73% 

5 4 5 3 4 3 19.0 3.80 63% 

6 4 5 4.5 5 4.5 23.0 4.60 77% 

Total 22.0 20.5 25.5 24.0 24.5    

Avg 3.67 3.42 4.25 4.00 4.08    

Per 61% 57% 71% 67% 68%    

 
Figure 5.3 

Same as expected min chart in figure 5.1 only with alpha beta pruning 
turned on. These results are equivalent or better than those in figure 5.1 

with alpha beta off. The format is the same as that in figure 5.1. 



 

43 
 

Comparing this to figure 5.1, we see that the performance was either the same or 

worse than with alpha beta turned off. Therefore, the results of tests ran using human 

players at depth six with expected min using alpha beta could only be improved by not 

using alpha beta. Since with all techniques on, the agent had an overall higher score on 

six out of six games than its opponent, this distinction should matter. 

5.4  Conclusion 

 The agent seems to have performed very well in all three situations, i.e. against 

artificial deterministic agents, an artificial non-deterministic agent, and human agents. 

There were, however, some anomalies in the results that must be explained. 

5.4.1  Reason for Results 

 The reason for the high performance over the three deterministic agents at a 

Minimax depth of one, could be, as stated earlier, due to the agent being trained at a 

depth of one using those same agents. This is further proven by the fact that in human 

trials, a depth of one scored the lowest. Had those same agents not have been used 

and/or had the training not occurred at depth one, it should have a performance lower 

than that of depth two. This would complement the expected result of having the 

performance increase with depth as is the case from depths two to five. If we look at the 

expected min case, neglecting a depth of one due to the reasons above, we see that 

from depths two to five that not only does the overall performance increase, the number 

of games won increases or remains the same for every combination of techniques. We 

notice, however, that at depth six, the performance degrades considerably. This can be 

explained by the use of alpha beta pruning at that depth as this can negatively affect the 



 

44 
 

decisions of the expected min algorithm. To explain the drop in performance when using 

normal Minimax, we have to examine each set of techniques. Notice that for three of the 

five columns/sets of techniques, the performance actually increases. The decrease only 

comes when blacklisting is used. Therefore it seems as though blacklisting might be 

removing valid choices that would have otherwise been chosen by the more accurate 

decisions of the depth six Minimax. This sort of scenario complements the warning 

mentioned when describing the blacklisting technique; that making blacklisting (or many 

other game specific heuristics) too aggressive could override a better decision made by 

Minimax. Unfortunately, there isn‟t really a good way to tell whether Minimax or the 

other techniques result in the better move, therefore all techniques are to be used with 

caution and plenty of forethought into the various possible scenarios. 

 Knowing the results of different experiments and reasons for them is not enough, 

though. One must think critically about choosing the right technique combination that 

not only satisfies the desired performance threshold, but also is ideal for the chosen 

environment. Therefore the next section examines the different metrics needed to make 

that decision and offers up some suggestions on ideal parameter and techniques 

combinations. 

5.4.2  Picking the Best Combination 

 Figure 5.4 below shows graphically the performance of using over not using 

expected min. At depth one only max is checked and therefore both expected and 

normal min Minimax have the same accuracy. For depths two, three and four, normal 

min performs better. Depth five shows expected min giving better results and depth six 

shows equal accuracy for both.  



 

45 
 

 

Figure 5.4 

This shows how the accuracy of the move choice varies with the Minimax 
maximum depth searched. “NM” is for normal Minimax and is shown in 
green and “EM” is for expected min Minimax and is shown in blue. The 

data for this table is taken from figure 5.1. 
 

 The main problem with the expected min approach is that fact that using Alpha 

Beta with it can reduce its performance (as shown at depth 6 in figure 5.4). Most 

optimizations for Minimax involve pruning and none of these can be used, therefore the 

number of nodes searched and the time it takes to make a decision increases 

dramatically. It is important, then, to know what application the agent is going to be used 

in before choosing an ideal set of parameters. 



 

46 
 

 If the agent is going to be placed in an Othello game meant for human users (e.g. 

as an online or store bought game), then speed will need to be taken into account. In 

this case move accuracy is negotiable since one would want to give users some sort of 

difficulty choice. One might therefore choose different parameter combinations keeping 

speed in mind. If giving the users choices such as easy, medium and hard difficulty, 

choosing expected min, Minimax only, and searching to a depth of 2 for easy; normal 

min, Minimax with corner and killer move detection, and a depth of 3 would do well for 

medium; and normal min, all techniques, and depth of six for hard (due to its 

performance in human testing). 

 On the other hand, if move accuracy is more important than move time, such as 

the case where the agent will be put against other computer agents, then a good 

combination could be: expected min, Minimax, corner detection, killer move detection, 

blocking, and blacklisting to a depth of five as it scored the highest over the trials 

against the deterministic agents and matched performance with other parameter 

combinations in the random agent trials. Due to an average move time of over nine 

seconds, this wouldn‟t be ideal for human players to play against. 

 The following figures show total and average move times and total and average 

nodes searched for different Minimax depths used with and without the expected min 

algorithm. As mentioned it is important to figure out whether memory, time, or accuracy 

is the most important factor in one‟s own implementation. Figure 5.4 gives a good 

indication of accuracy, while the figures below give detailed information about memory 

consumption and execution time. Striking a balance between all three factors should be 

the goal, however if one factor is more important than the rest, this data can help one 

understand the tradeoffs one is making. 



 

47 
 

 

Total Move Times (sec) 
 1 2 3 4 5 6 

NM 0.081 0.254 2.032 6.325 20.098 67.553 

EM 0.080 0.608 4.555 43.278 288.101 798.370 

 

Figure 5.5 

This graph shows how the total move time varies with the depth for normal 
and expected min Minimax. The total move time refers to the cumulative 
amount of time spent during each of the agent moves in a single game 
(not counting its opponent‟s moves). The data for the graph is shown in 

the table below it. Note that since expected min could not be run at depth 
six without alpha beta, the value for that cell was approximated using the 
data from depths one to five and a third order polynomial (decided from 

testing different methods using Excel). 



 

48 
 

 

Average Move Times (sec) 
 1 2 3 4 5 6 

NM 0.002 0.008 0.063 0.197 0.609 2.179 

EM 0.002 0.019 0.151 1.396 9.293 25.749 

 

Figure 5.6 

This graph shows how the average move time varies with the depth for 
normal and expected min Minimax. The average move time refers to the 

cumulative amount of time spent during each of the agent moves in a 
single game (not counting its opponent‟s moves) divided by its total 

number of moves during that game. The data for the graph is shown in the 
table below it. Note that, like in figure 5.5, a third order polynomial was 

used to find data for a depth of six for expected min. 



 

49 
 

 

Total Nodes Searched 
 1 2 3 4 5 6 

NM 215 828 6,995 22,851 67,223 233,976 

EM 215 2,049 14,916 139,552 894,735 2,464,762 

 

Figure 5.7 

This graph shows how the total number of nodes searched varies with the 
depth for normal and expected min Minimax. The total number of nodes 
searched refers to the cumulative amount of Minimax tree nodes built 

during each of the agent moves in a single game (not counting its 
opponent‟s moves). The data for the graph is shown in the table below it. 
The data for depth six using expected min was approximated using the 

same technique as in the figures above.  



 

50 
 

 

Average Nodes Searched 
 1 2 3 4 5 6 

NM 7 28 219 714 2,037 7,548 

EM 7 66 497 4,502 28,862 79,496 

 

Figure 5.8 

This graph shows how the total number of nodes searched varies with the 
depth for normal and expected min Minimax. The total number of nodes 
searched refers to the cumulative amount of Minimax tree nodes built 

during each of the agent moves in a single game (not counting its 
opponent‟s moves) divided by its total number of moves during that game. 

The data for the graph is shown in the table below it. The data for depth 
six using expected min was approximated using the same technique as in 

the figures above. 
 

  



 

51 
 

Chapter 6 – Conclusion and Future 
Work 

6.1  Conclusion 

 The research and approach to tackling the problem of artificial intelligence in the 

game Othello has been shown. Five different types of game specific heuristics, namely 

killer move detection, corner detection, blocking, pattern detection, and blacklisting were 

developed along with a variation on normal Minimax and a creative mix of genetic 

algorithms and neural networks to form Minimax‟s static evaluation function. Tests were 

run on several combinations of these game specific techniques, with and without using 

the Minimax variation and at several Minimax search depths. These tests have covered 

already seen cases as well as unseen and very unpredictable cases. These results 

have been summarized and explained and suggestions were given on how best to 

utilize the techniques on those bases. Overall the agent performed quite well on all tests 

presented to it. 

6.2  Future Work 

 There are always ways to improve upon techniques being used. The following 

are ideas for further work in this area that could be used to improve upon existing 

performance. 

6.2.1  Cross Validation with Training Agents 

 As mentioned some of the same agents used for testing were used in training 

and although the parameters were varied, this did influence the testing results. 



 

52 
 

Introducing a new, non-deterministic agent as well as testing against human agents 

helped to establish more accurate results, however other methods could have also been 

used. A variation on the “leave-one-out” cross-validation algorithm could help wherein 

two of the three agents would be used for training with the third used for testing. For 

example, greedy and greedy influence agents could be used in genetic algorithm 

training while the influence map agent will be used for testing. This would be repeated 

for all three agents using a different one for testing each time. 

6.2.2  More In-Depth Static Evaluation Function 

 Initially only a few board features were taken as input into the neural network for 

the static evaluation function. When more were added and learning restarted, the final 

results were better. This creates the assumption that adding more input features could 

improve the performance, although only up to a point and only with certain features. 

Some features to consider are: using a normalized value for the number of unique 

pieces flipped by all of the opponent‟s next moves as it may be misleading without it; 

taking the average or maximum number of pieces flipped by the opponent‟s next 

move(s) to gauge how good his next move(s) are; number of pieces in straight lines of 5 

or more as this indicates a strong collection of pieces that are hard to overtake; and 

using that same logic, pieces forming a 3 by 3 square are also strong collections. For 

the line to be strong, at least one of the vertices needs to lie on a corner or side of the 

board. This will guarantee that an opponent‟s piece placed at the end of that line cannot 

be used to capture the entire line. However, if both vertices are found on the side of the 

board, an opponent can still overtake the entire line. This only happens if both vertices 

are on the same side as vertices on different sides form a strong line. Therefore multiple 

cases must be taken into account and only strong lines should be counted. 



 

53 
 

 Keep in mind that each added feature means retraining the neural network from 

scratch and will take longer to reach a level greater than the one it was previously at. 

Also note that the added feature may not even help the overall performance. 

6.2.3  More Minimax Optimizations 

 Since speed wasn‟t a big concern, no optimizations past alpha beta were 

implemented. However if more were used, searching deeper may have been possible 

and could have been beneficial. Some of the more common approaches are Negascout 

(discussed earlier) and aspiration search, to allow for deeper searching on specific 

nodes where certain criteria is meet. This quote from Singer explains his approach on a 

variation of aspiration search, “Othello has a nice property: with each move made, the 

number of empty squares left on the board decreases by one. Therefore, once the 

game reaches the point where there are only a handful of empty squares left on the 

board, the remaining game-tree can be completely calculated” [28]. Basically if there are 

only a few moves left before the game ends, expand the tree all the way on that node to 

get a truer value of the board state. 

6.2.4  Reinforcement Learning with Neural Networks 

 Normally, backpropagation or feedforward methods are used to train neural 

networks, however a genetic algorithm was used instead. The maximum fitness attained 

was pretty high using this method, yet proper unsupervised neural network learning 

algorithms may still yield better results. 

6.2.5  Move History 

 A history table is basically a lookup table for known good moves that were found 

by the agent during training. These moves could be repeated if ever the same board 



 

54 
 

features occur in later games. This can complement algorithms such as Minimax by 

remembering node values of earlier trees and using them instead of recalculating. This 

can also be used to search deeper without as many calculations. The agent might 

benefit from storing such moves and/or node values. 

6.2.6  More Patterns 

 The patterns implemented were solely used for capturing corners on the agent‟s 

next move. With the flexibility of the pattern implementation, more patterns could be 

created to improve performance. This has to be done with caution, however, as 

sometimes allowing the Minimax algorithm to choose a move is a better idea. Therefore 

to truly see if adding more patterns are beneficial, one would need to add them one at a 

time and run tests after each addition to see how the agent‟s performance is affected. If 

there is no effect, then either more tests must be run or the pattern is too specific. If 

there is a negative effect on some tests and positive on others, it must be determined 

why and under what situations is that pattern productive. It may even be the case that 

increasing the Minimax depth by one results in better gameplay than adding more 

patterns. 

   



 

55 
 

References 

[1] Waltz, David. “Artificial Intelligence.” University of Washington Computer Science & 
Engineering. 1996. NEC Research Institute and the Computing Research 
Association. 28 February 2011.  
<http://www.cs.washington.edu/homes/lazowska/cra/ai.html>. 
 

[2] Touretzky, David S. Advances in neural information processing systems 1. CA, 
USA: Morgan Kaufmann Publishers Inc, 1989. 305-313. Print. 
 

[3] “Autonomous Vehicle Systems.” Autonomous Vehicle Systems. 2004. Autonomous 
Vehicle Systems LLC. 28 February 2011. 
<http://www.autonvs.com/technology.html>. 
 

[4] BryanSpear. “Military Use of Artificial Intelligence | eHow.com.” eHow | How To Do 
Just About Everything! | How To Videos & Articles. 15 May 2010. eHow, Inc. 28 
February 2011. <http://www.ehow.com/about_6516343_military-use-artificial-
intelligence.html>. 
 

[5] Amrut Software. “Othello Origin – The History of Othello Game.” Latest information 
and latest videos on popular board games - Boardgaminginfo.com. 
BoardGaminginfo. 26 February 2011. <http://boardgaminginfo.com/othello.php>. 
 

[6] Mattel, Inc. Othello. California: J.A.R. Games Co, 2002. Print. 
 

[7] Rognlie Richard. “Reversi.” Gamerz.NET Enterprises. 26 February 2011. 
<http://www.gamerz.net/pbmserv/reversi.html#rules>. 
 

[8] “AI Horizon: Minimax Game Tree Programming, Part 1.” AI Horizon: Computer 
Science and Artificial Intelligence Programming Resources. AI Horizon. 27 
February 2011. <http://www.aihorizon.com/essays/basiccs/trees/minimax.htm>. 
 

[9] Rajiv Bakulesh Shah, “minimax,” in Dictionary of Algorithms and Data Structures 
[online], Paul E. Black, ed, U.S. National Institute of Standards and Technology. 10 
January 2007. 27 February 2011.  
<http://xlinux.nist.gov/dads//HTML/minimax.html>. 
 

[10] Shapiro, Stuart C. Encyclopedia of Artificial Intelligence. USA: Wiley-Interscience, 
1987. 4-7. Print. 
 

[11] Mitchell, Tom M. Machine Learning. Singapore: Mcgraw Hill, 1997. 249-270. Print. 
 

[12] Graupe, Daniel. Principles of Artificial Neural Networks. Singapore: World 
Scientific, 1997. 1-3. Print. 
 

[13] Tournavitis, Konstantinos. MOUSE(μ): A Self-teaching Algorithm that Achieved 
Master-Strength at Othello. Berlin: Springer, 2003. Pdf. 



 

56 
 

 
[14] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning. USA: A 

Bradford Book, 1998. 261-267. Print. 
 

[15] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning. USA: A 
Bradford Book, 1998. 133-176. Print. 
 

[16] “Bitboad – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 2 
November 2010. Wikipedia. 27 February 2011. 
<http://en.wikipedia.org/wiki/Bitboard>. 
 

[17] Rose, Brian. Othello: A Minute to Learn... A Lifetime to Master. Anjar Co., 2005. 
Pdf. 
 

[18] Matthews, James. “generation5 – Simple Board Game AI.” generation5 – At the 
forefront of Artificial Intelligence. 27 December 2004. Generation5. 27 February 
2011. <http://www.generation5.org/content/2000/boardai.asp>. 

 
[19] Mitchell, Tom M. Machine Learning. Singapore: Mcgraw Hill, 1997. 255. Print. 

 
[20] Shepherd, Adrian J. Second-Order Methods for Neural Networks. Great Britain: 

Springer, 1997. 3. Print. 
 

[21] Duda, Richard O., Hart, Peter E., and David G. Stork. Pattern Classification. USA: 
Wiley-Interscience, 2001. 310-311. Print. 
 

[22] Bishop, Christopher M. Pattern Recognition and Machine Learning. Spring, 2006. 
3. Print. 
 

[23] Smed, Jouni, and Harri Hakonen. Algorithms and Networking for Computer 
Games. Finland: John Wiley & Sons, Ltd, 2006. 80-82. Print. 
 

[24] “Variation (game tree) – Wikipedia, the free encyclopedia.” Wikipedia, the free 
encyclopedia. 4 September 2010. Wikipedia. 27 February 2011.  
<http://en.wikipedia.org/wiki/Variation_(game_tree)>. 
 

[25] “Negascout – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 
12 September 2010. Wikipedia. 27 February 2011. 
<http://en.wikipedia.org/wiki/Negascout>. 
 

[26] Reinefeld, Alexander. Die Entwicklung der Spielprogrammierung: Von John von 
Neumann bis zu den hochparallelen Schachmaschinen. Zuse Institut Berlin: 
Humboldt-Universität zu Berlin, 2005. 47-51. Pdf. 
 

[27] “Negamax – Wikipedia, the free encyclopedia.” Wikipedia, the free encyclopedia. 
11 February 2011. Wikipedia. 27 February 2011.  
<http://en.wikipedia.org/wiki/Negamax>. 
 



 

57 
 

[28] Singer, Joshua A. Co-evolving a Neural-Net Evaluation Function for Othello by 
Combining Genetic Algorithms and Reinforcement Learning. Stanford University: 
Springer, 2001. Pdf. 

 
  



 

58 
 

Appendix: Experiment Results 

 The next several tables detail the exact values for the trials against the three test 

agents and the random agent. Each test was done against each agent, at each depth 

from one to six, with and without the “expected min” approach, and as the white and 

black player. For the first charts, the agent is indicated in the first column as either “inf” 

for the influence map agent, “gre” for greedy, and “ginf” for greedy influence. The 

numbers from one to six at the top are the Minimax depths. The fitness and score 

values are for the “A” agent, and “O” opponent. The corners value is a ratio where the 

top number represents the number of corners taken by the agent at the end of the 

game, and the bottom represents those taken by the opponent. Those cells highlighted 

in green represent a win for the agent and red indicates a loss. For the first charts, the 

last two columns are the total and average values for each row. The last charts have 

total and average indicated in the first column. 

 

The tests over the influence, greedy and greedy influence agents were run using these 

parameters: 

A. Minimax only 

B. Minimax, corner detection, and killer move detection 

C. Minimax, corner detection, killer move detection, blocking and blacklisting 

D. Minimax, corner detection, killer move detection, blocking and patterns 

E. Minimax, corner detection, killer move detection, blocking, blacklisting, and 

patterns (i.e. all techniques) 

 

 



 

59 
 

The tests over the random agent were run using these parameters: 

F. Minimax only 

G. Minimax, corner detection, killer move detection, blocking, blacklisting, and 

patterns (i.e. all techniques) 

 

This data is provided only for completeness as summaries and useful trends are 

provided in previous figures and in the main text. 

 

  



 

60 
 

A. Minimax only 
 

White Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 1.78 0.63 6.76 13.00 6.56 7.27 36.00 6.00 

Fitness: O 6.22 7.37 1.24 -5.00 1.44 0.73 12.00 2.00 

Score: A 41 27 47 54 46 49 264.00 44.00 

Score: O 23 37 17 10 18 15 120.00 20.00 

Corners 0/4 1/3 2/2 4/0 2/2 2/2 11/13 1.83/2.17 

 

w/o em 

Fitness: A 1.78 4.20 1.78 5.56 -2.37 1.29 12.24 2.04 

Fitness: O 6.22 3.80 6.22 2.44 10.37 6.71 35.76 5.96 

Score: A 41 44 41 39 19 36 220.00 36.67 

Score: O 23 20 23 25 45 28 164.00 27.33 

Corners 0/4 1/3 0/4 2/2 0/4 0/4 3/21 0.5/3.5 

 

Gre 

w/ em 

Fitness: A 13.00 3.00 7.91 0.79 12.33 13.00 50.04 8.34 

Fitness: O -5.00 3.00 0.09 7.21 -4.33 -5.00 -4.04 -0.67 

Score: A 60 32 42 29 52 58 273.00 45.50 

Score: O 4 32 22 35 12 6 111.00 18.50 

Corners 4/0 2/2 3/1 1/3 4/0 4/0 18/6 3/1 

 

w/o em 

Fitness: A 13.00 7.56 10.56 7.27 10.82 6.37 55.57 9.26 

Fitness: O -5.00 0.44 -2.56 0.73 -2.82 1.63 -7.57 -1.26 

Score: A 60 39 46 49 53 45 292.00 48.67 

Score: O 4 25 18 15 11 19 92.00 15.33 

Corners 4/0 3/1 4/0 2/2 3/1 2/2 18/6 3/1 

 

GInf 

w/ em 

Fitness: A 8.33 -3.00 -3.27 3.91 4.20 6.05 16.22 2.70 

Fitness: O -0.33 11.00 11.27 4.09 3.80 1.95 31.78 5.30 

Score: A 52 16 15 42 44 43 212.00 35.33 

Score: O 12 48 49 22 20 21 172.00 28.67 

Corners 2/2 0/4 0/4 1/3 1/3 2/2 6/18 1/3 

 

w/o em 

Fitness: A 8.33 0.87 -1.37 -2.20 6.20 -1.67 10.16 1.69 

Fitness: O -0.33 7.13 9.37 10.20 1.80 9.67 37.84 6.31 

Score: A 52 30 27 20 44 24 197.00 32.83 

Score: O 12 34 37 44 20 40 187.00 31.17 

Corners 2/2 1/3 0/4 0/4 2/2 0/4 5/19 0.83/3.17 

 
  



 

61 
 

A. Minimax only 
 

Black Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 18.00 7.29 -1.06 -2.37 1.56 -2.37 21.04 3.51 

Fitness: O -10.00 0.71 9.06 10.37 6.44 10.37 26.96 4.49 

Score: A 64 36 31 19 39 19 208.00 34.67 

Score: O 0 28 33 45 25 45 176.00 29.33 

Corners 4/0 3/1 0/4 0/4 0/4 0/4 7/17 1.17/2.83 

 

w/o em 

Fitness: A 18.00 -1.56 0.09 4.05 -1.37 1.91 21.12 3.52 

Fitness: O -10.00 9.56 7.91 3.95 9.37 6.09 26.88 4.48 

Score: A 64 25 22 43 27 42 223.00 37.17 

Score: O 0 39 42 21 37 22 161.00 26.83 

Corners 4/0 0/4 1/3 1/3 0/4 0/4 6/18 1/3 

 

Gre 

w/ em 

Fitness: A 14.00 -10.00 3.06 2.22 5.21 7.13 21.62 3.60 

Fitness: O -10.00 10.00 4.94 5.78 2.79 0.87 14.38 2.40 

Score: A 38 0 33 23 35 34 163.00 27.17 

Score: O 0 13 31 41 29 30 144.00 24.00 

Corners 2/0 0/0 1/3 2/2 2/2 3/1 10/8 1.67/1.33 

 

w/o em 

Fitness: A 14.00 13.00 13.00 0.63 7.37 4.76 52.76 8.79 

Fitness: O -10.00 -5.00 -5.00 7.37 0.63 3.24 -8.76 -1.46 

Score: A 38 57 55 27 37 47 261.00 43.50 

Score: O 0 7 9 37 27 17 97.00 16.17 

Corners 2/0 4/0 4/0 1/3 3/1 1/3 15/7 2.5/1.17 

 

GInf 

w/ em 

Fitness: A 16.00 -10.00 -3.00 8.56 9.27 -10.00 10.82 1.80 

Fitness: O -10.00 10.00 11.00 -0.56 -1.27 12.00 21.18 3.53 

Score: A 53 0 16 46 49 0 164.00 27.33 

Score: O 0 13 48 18 15 13 107.00 17.83 

Corners 3/0 0/0 0/4 3/1 3/1 0/1 9/7 1.5/1.17 

 

w/o em 

Fitness: A 16.00 5.91 5.29 0.87 9.92 9.00 46.98 7.83 

Fitness: O -10.00 2.09 2.71 7.13 -1.92 -1.00 -0.98 -0.16 

Score: A 53 42 36 30 51 48 260.00 43.33 

Score: O 0 22 28 34 13 16 113.00 18.83 

Corners 3/0 2/2 2/2 1/3 3/1 3/1 14/9 2.33/1.5 

 
  



 

62 
 

B. Minimax, corner detection, and killer move detection 
 

White Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 1.78 0.63 6.37 11.27 6.56 6.56 33.16 5.53 

Fitness: O 6.22 7.37 1.63 -3.27 1.44 1.44 14.84 2.47 

Score: A 41 27 45 49 46 46 254.00 42.33 

Score: O 23 37 19 15 18 18 130.00 21.67 

Corners 0/4 1/3 2/2 4/0 2/2 2/2 11/13 1.83/2.17 

 

w/o em 

Fitness: A 1.78 5.91 1.78 5.78 -2.37 1.29 14.17 2.36 

Fitness: O 6.22 2.09 6.22 2.22 10.37 6.71 33.83 5.64 

Score: A 41 42 41 41 19 36 220.00 36.67 

Score: O 23 22 23 23 45 28 164.00 27.33 

Corners 0/4 2/2 0/4 2/2 0/4 0/4 4/20 0.67/3.33 

 

Gre 

w/ em 

Fitness: A 12.82 5.78 16.00 0.79 4.71 13.00 53.11 8.85 

Fitness: O -4.82 2.22 -10.00 7.21 3.29 -5.00 -7.11 -1.18 

Score: A 53 41 61 29 28 56 268.00 44.67 

Score: O 11 23 0 35 36 8 113.00 18.83 

Corners 4/0 2/2 3/0 1/3 3/1 4/0 17/6 2.83/1 

 

w/o em 

Fitness: A 12.82 7.78 7.27 7.91 8.76 6.37 50.91 8.48 

Fitness: O -4.82 0.22 0.73 0.09 -0.76 1.63 -2.91 -0.48 

Score: A 53 41 49 42 47 45 277.00 46.17 

Score: O 11 23 15 22 17 19 107.00 17.83 

Corners 4/0 3/1 2/2 3/1 3/1 2/2 17/7 2.83/1.17 

 

GInf 

w/ em 

Fitness: A 8.33 -3.00 -3.27 9.57 7.00 5.67 24.30 4.05 

Fitness: O -0.33 11.00 11.27 -1.57 1.00 2.33 23.70 3.95 

Score: A 52 16 15 50 48 40 221.00 36.83 

Score: O 12 48 49 14 16 24 163.00 27.17 

Corners 2/2 0/4 0/4 3/1 2/2 2/2 9/15 1.5/2.5 

 

w/o em 

Fitness: A 8.33 3.06 -1.37 -2.20 8.05 -1.67 14.21 2.37 

Fitness: O -0.33 4.94 9.37 10.20 -0.05 9.67 33.79 5.63 

Score: A 52 33 27 20 43 24 199.00 33.17 

Score: O 12 31 37 44 21 40 185.00 30.83 

Corners 2/2 1/3 0/4 0/4 3/1 0/4 6/18 1/3 

 



 

63 
 

B. Minimax, corner detection, and killer move detection 
 

Black Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 18.00 5.21 -1.06 5.29 1.56 6.20 35.19 5.86 

Fitness: O -10.00 2.79 9.06 2.71 6.44 1.80 12.81 2.14 

Score: A 64 35 31 36 39 44 249.00 41.50 

Score: O 0 29 33 28 25 20 135.00 22.50 

Corners 4/0 2/2 0/4 2/2 0/4 2/2 10/14 1.67/2.33 

 

w/o em 

Fitness: A 18.00 -1.56 0.09 4.05 11.00 1.91 33.49 5.58 

Fitness: O -10.00 9.56 7.91 3.95 -3.00 6.09 14.51 2.42 

Score: A 64 25 22 43 55 42 251.00 41.83 

Score: O 0 39 42 21 9 22 133.00 22.17 

Corners 4/0 0/4 1/3 1/3 3/1 0/4 9/15 1.5/2.5 

 

Gre 

w/ em 

Fitness: A 14.00 -10.00 8.56 10.56 10.37 7.13 40.61 6.77 

Fitness: O -10.00 10.00 -0.56 -2.56 -2.37 0.87 -4.61 -0.77 

Score: A 38 0 46 46 45 34 209.00 34.83 

Score: O 0 13 18 18 19 30 98.00 16.33 

Corners 2/0 0/0 3/1 4/0 4/0 3/1 16/2 2.67/0.33 

 

w/o em 

Fitness: A 14.00 9.85 12.82 8.37 4.22 13.00 62.25 10.38 

Fitness: O -10.00 -1.85 -4.82 -0.37 3.78 -5.00 -18.25 -3.04 

Score: A 38 50 53 45 23 61 270.00 45.00 

Score: O 0 13 11 19 41 3 87.00 14.50 

Corners 2/0 3/1 4/0 3/1 3/1 4/0 19/3 3.17/0.5 

 

GInf 

w/ em 

Fitness: A 16.00 -10.00 -3.00 8.20 9.27 -10.00 10.47 1.74 

Fitness: O -10.00 10.00 11.00 -0.20 -1.27 12.00 21.53 3.59 

Score: A 53 0 16 44 49 0 162.00 27.00 

Score: O 0 13 48 20 15 13 109.00 18.17 

Corners 3/0 0/0 0/4 3/1 3/1 0/1 9/7 1.5/1.17 

 

w/o em 

Fitness: A 16.00 3.00 11.00 0.09 9.57 11.57 51.23 8.54 

Fitness: O -10.00 3.00 -3.00 7.91 -1.57 -3.57 -7.23 -1.21 

Score: A 53 32 59 22 50 50 266.00 44.33 

Score: O 0 32 5 42 14 14 107.00 17.83 

Corners 3/0 2/2 3/1 1/3 3/1 4/0 16/7 2.67/1.17 

 
  



 

64 
 

C. Minimax, corner detection, killer move detection, blocking and 
blacklisting 
 

White Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A -1.29 9.91 6.05 10.73 16.00 6.20 47.60 7.93 

Fitness: O 9.29 -1.91 1.95 -4.73 -10.00 1.80 -3.60 -0.60 

Score: A 28 42 43 52 48 44 257.00 42.83 

Score: O 36 22 21 11 0 20 110.00 18.33 

Corners 0/4 4/0 2/2 3/0 3/0 2/2 14/8 2.33/1.33 

 

w/o em 

Fitness: A -1.29 2.44 11.27 7.91 5.37 -1.78 23.92 3.99 

Fitness: O 9.29 5.56 -3.27 0.09 2.63 9.78 24.08 4.01 

Score: A 28 25 49 42 37 23 204.00 34.00 

Score: O 36 39 15 22 27 41 180.00 30.00 

Corners 0/4 2/2 4/0 3/1 2/2 0/4 11/13 1.83/2.17 

 

Gre 

w/ em 

Fitness: A 12.82 13.00 11.00 8.20 13.00 8.20 66.22 11.04 

Fitness: O -4.82 -5.00 -5.00 -0.20 -5.00 -0.20 -20.22 -3.37 

Score: A 53 60 62 44 57 44 320.00 53.33 

Score: O 11 4 1 20 7 20 63.00 10.50 

Corners 4/0 4/0 3/0 3/1 4/0 3/1 21/2 3.5/0.33 

 

w/o em 

Fitness: A 12.82 11.00 13.00 16.00 10.76 10.37 73.95 12.33 

Fitness: O -4.82 -5.00 -5.00 -10.00 -2.76 -2.37 -29.95 -4.99 

Score: A 53 55 54 59 47 45 313.00 52.17 

Score: O 11 8 10 0 17 19 65.00 10.83 

Corners 4/0 3/0 4/0 3/0 4/0 4/0 22/0 3.67/0 

 

GInf 

w/ em 

Fitness: A 7.91 5.67 13.00 10.25 11.00 7.56 55.39 9.23 

Fitness: O 0.09 2.33 -5.00 -2.25 -3.00 0.44 -7.39 -1.23 

Score: A 42 40 60 51 58 39 290.00 48.33 

Score: O 22 24 4 12 6 25 93.00 15.50 

Corners 3/1 2/2 4/0 3/1 3/1 3/1 18/6 3/1 

 

w/o em 

Fitness: A 7.91 9.78 -1.67 9.92 11.00 -1.57 35.38 5.90 

Fitness: O 0.09 -1.78 9.67 -1.92 -5.00 9.57 10.62 1.77 

Score: A 42 41 24 51 55 14 227.00 37.83 

Score: O 22 23 40 13 7 50 155.00 25.83 

Corners 3/1 4/0 0/4 3/1 3/0 1/3 14/9 2.33/1.5 

  



 

65 
 

C. Minimax, corner detection, killer move detection, blocking and 
blacklisting 
 

Black Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 14.00 12.33 11.00 10.76 8.05 3.00 59.15 9.86 

Fitness: O -10.00 -4.33 -5.00 -2.76 -0.05 3.00 -19.15 -3.19 

Score: A 46 52 59 47 43 32 279.00 46.50 

Score: O 0 12 2 17 21 32 84.00 14.00 

Corners 2/0 4/0 3/0 4/0 3/1 2/2 18/3 3/0.5 

 

w/o em 

Fitness: A 14.00 -3.27 -1.00 9.00 10.56 -3.00 26.29 4.38 

Fitness: O -10.00 11.27 7.00 -1.00 -2.56 11.00 15.71 2.62 

Score: A 46 15 32 48 46 16 203.00 33.83 

Score: O 0 49 32 16 18 48 163.00 27.17 

Corners 2/0 0/4 0/4 3/1 4/0 0/4 9/13 1.5/2.17 

 

Gre 

w/ em 

Fitness: A 9.00 -10.00 9.21 14.00 10.37 10.37 42.94 7.16 

Fitness: O -1.00 10.00 -1.21 -10.00 -2.37 -2.37 -6.94 -1.16 

Score: A 54 0 35 49 45 45 228.00 38.00 

Score: O 10 13 29 0 19 19 90.00 15.00 

Corners 2/2 0/0 4/0 2/0 4/0 4/0 16/2 2.67/0.33 

 

w/o em 

Fitness: A 9.00 16.00 10.76 14.00 11.00 13.00 73.76 12.29 

Fitness: O -1.00 -10.00 -2.76 -10.00 -5.00 -5.00 -33.76 -5.63 

Score: A 54 59 47 38 57 61 316.00 52.67 

Score: O 10 0 17 0 4 2 33.00 5.50 

Corners 2/2 3/0 4/0 2/0 3/0 4/0 18/2 3/0.33 

 

GInf 

w/ em 

Fitness: A 11.00 -10.00 2.94 9.92 6.05 -10.00 9.91 1.65 

Fitness: O -3.00 10.00 5.06 -1.92 1.95 10.00 22.09 3.68 

Score: A 61 0 31 51 43 0 186.00 31.00 

Score: O 3 13 33 13 21 13 96.00 16.00 

Corners 3/1 0/0 2/2 3/1 2/2 0/0 10/6 1.67/1 

 

w/o em 

Fitness: A 11.00 10.20 16.00 5.46 11.00 8.37 62.03 10.34 

Fitness: O -3.00 -2.20 -10.00 2.54 -5.00 -0.37 -18.03 -3.00 

Score: A 61 44 52 38 55 45 295.00 49.17 

Score: O 3 20 0 26 8 19 76.00 12.67 

Corners 3/1 4/0 3/0 2/2 3/0 3/1 18/4 3/0.67 

 



 

66 
 

D. Minimax, corner detection, killer move detection, blocking and 
patterns 
 

White Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 1.78 0.63 13.00 9.92 9.00 11.00 45.34 7.56 

Fitness: O 6.22 7.37 -5.00 -1.92 -1.00 -3.00 2.66 0.44 

Score: A 41 27 62 51 54 60 295.00 49.17 

Score: O 23 37 1 13 10 4 88.00 14.67 

Corners 0/4 1/3 4/0 3/1 2/2 3/1 13/11 2.17/1.83 

 

w/o em 

Fitness: A 1.78 5.91 1.78 5.78 -2.37 1.29 14.17 2.36 

Fitness: O 6.22 2.09 6.22 2.22 10.37 6.71 33.83 5.64 

Score: A 41 42 41 41 19 36 220.00 36.67 

Score: O 23 22 23 23 45 28 164.00 27.33 

Corners 0/4 2/2 0/4 2/2 0/4 0/4 4/20 0.67/3.33 

 

Gre 

w/ em 

Fitness: A 11.00 13.00 5.46 0.79 16.00 13.00 59.25 9.88 

Fitness: O -3.00 -5.00 2.54 7.21 -10.00 -5.00 -13.25 -2.21 

Score: A 60 62 38 29 48 55 292.00 48.67 

Score: O 4 2 26 35 0 9 76.00 12.67 

Corners 3/1 4/0 2/2 1/3 3/0 4/0 17/6 2.83/1 

 

w/o em 

Fitness: A 11.00 13.00 12.33 11.00 9.00 11.00 67.33 11.22 

Fitness: O -3.00 -5.00 -4.33 -3.00 -3.00 -3.00 -21.33 -3.56 

Score: A 60 60 52 55 54 55 336.00 56.00 

Score: O 4 4 12 9 6 9 44.00 7.33 

Corners 3/1 4/0 4/0 3/1 2/1 3/1 19/4 3.17/0.67 

 

GInf 

w/ em 

Fitness: A -5.00 -3.00 -3.27 13.00 11.00 5.56 18.29 3.05 

Fitness: O 11.00 11.00 11.27 -5.00 -5.00 2.44 25.71 4.28 

Score: A 3 16 15 56 55 39 184.00 30.67 

Score: O 51 48 49 8 8 25 189.00 31.50 

Corners 0/3 0/4 0/4 4/0 3/0 2/2 9/13 1.5/2.17 

 

w/o em 

Fitness: A -5.00 -3.92 -1.37 -2.20 6.05 10.20 3.75 0.63 

Fitness: O 11.00 11.92 9.37 10.20 1.95 -2.20 42.25 7.04 

Score: A 3 13 27 20 43 44 150.00 25.00 

Score: O 51 51 37 44 21 20 224.00 37.33 

Corners 0/3 0/4 0/4 0/4 2/2 4/0 6/17 1/2.83 

 



 

67 
 

D. Minimax, corner detection, killer move detection, blocking and 
patterns 
 

Black Player 
  Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 9.00 -1.46 -1.06 5.29 2.05 6.76 20.57 3.43 

Fitness: O -5.00 9.46 9.06 2.71 5.95 1.24 23.43 3.90 

Score: A 54 26 31 36 43 47 237.00 39.50 

Score: O 1 38 33 28 21 17 138.00 23.00 

Corners 2/0 0/4 0/4 2/2 0/4 2/2 6/16 1/2.67 

 

w/o em 

Fitness: A 9.00 -1.56 0.09 4.05 11.00 1.37 23.95 3.99 

Fitness: O -5.00 9.56 7.91 3.95 -3.00 6.63 20.05 3.34 

Score: A 54 25 22 43 55 37 236.00 39.33 

Score: O 1 39 42 21 9 27 139.00 23.17 

Corners 2/0 0/4 1/3 1/3 3/1 0/4 7/15 1.17/2.5 

 

Gre 

w/ em 

Fitness: A 9.92 -10.00 8.20 12.82 9.57 10.37 40.88 6.81 

Fitness: O -1.92 10.00 -0.20 -4.82 -1.57 -2.37 -0.88 -0.15 

Score: A 51 0 44 53 50 45 243.00 40.50 

Score: O 13 13 20 11 14 19 90.00 15.00 

Corners 3/1 0/0 3/1 4/0 3/1 4/0 17/3 2.83/0.5 

 

w/o em 

Fitness: A 9.92 13.00 11.00 9.27 16.00 10.20 69.39 11.56 

Fitness: O -1.92 -5.00 -5.00 -1.27 -10.00 -2.20 -25.39 -4.23 

Score: A 51 56 47 49 54 44 301.00 50.17 

Score: O 13 8 3 15 0 20 59.00 9.83 

Corners 3/1 4/0 3/0 3/1 3/0 4/0 20/2 3.33/0.33 

 

GInf 

w/ em 

Fitness: A 11.00 -10.00 -3.00 2.94 9.57 -10.00 0.51 0.08 

Fitness: O -3.00 10.00 11.00 5.06 -1.57 12.00 33.49 5.58 

Score: A 58 0 16 31 50 0 155.00 25.83 

Score: O 6 13 48 33 14 13 127.00 21.17 

Corners 3/1 0/0 0/4 2/2 3/1 0/1 8/9 1.33/1.5 

 

w/o em 

Fitness: A 11.00 7.27 5.67 3.21 11.00 6.56 44.70 7.45 

Fitness: O -3.00 0.73 2.33 4.79 -3.00 1.44 3.30 0.55 

Score: A 58 49 40 35 56 46 284.00 47.33 

Score: O 6 15 24 29 8 18 100.00 16.67 

Corners 3/1 2/2 2/2 1/3 3/1 2/2 13/11 2.17/1.83 

 



 

68 
 

E. Minimax, corner detection, killer move detection, blocking, 
blacklisting and patterns (i.e. all techniques) 
 

White Player 

 
Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A -1.29 10.05 13.00 10.73 16.00 6.20 54.69 9.11 

Fitness: O 9.29 -2.05 -5.00 -4.73 -10.00 1.80 -10.69 -1.78 

Score: A 28 43 62 52 48 44 277.00 46.17 

Score: O 36 21 1 11 0 20 89.00 14.83 

Corners 0/4 4/0 4/0 3/0 3/0 2/2 16/6 2.67/1 

 

w/o em 

Fitness: A -1.29 2.44 11.27 7.91 7.06 -1.78 25.61 4.27 

Fitness: O 9.29 5.56 -3.27 0.09 0.94 9.78 22.39 3.73 

Score: A 28 25 49 42 33 23 200.00 33.33 

Score: O 36 39 15 22 31 41 184.00 30.67 

Corners 0/4 2/2 4/0 3/1 3/1 0/4 12/12 2/2 

 

Gre 

w/ em 

Fitness: A 11.00 13.00 5.78 11.92 16.00 10.56 68.26 11.38 

Fitness: O -3.00 -5.00 2.22 -3.92 -10.00 -2.56 -22.26 -3.71 

Score: A 55 62 41 51 48 46 303.00 50.50 

Score: O 9 2 23 13 0 18 65.00 10.83 

Corners 3/1 4/0 2/2 4/0 3/0 4/0 20/3 3.33/0.5 

 

w/o em 

Fitness: A 11.00 11.27 12.33 16.00 10.76 12.82 74.18 12.36 

Fitness: O -3.00 -3.27 -4.33 -10.00 -2.76 -4.82 -28.18 -4.70 

Score: A 55 49 52 59 47 53 315.00 52.50 

Score: O 9 15 12 0 17 11 64.00 10.67 

Corners 3/1 4/0 4/0 3/0 4/0 4/0 22/1 3.67/0.17 

 

GInf 

w/ em 

Fitness: A 11.00 11.00 9.78 13.00 11.00 9.00 64.78 10.80 

Fitness: O -5.00 -3.00 -1.78 -5.00 -5.00 -1.00 -20.78 -3.46 

Score: A 61 56 41 56 55 48 317.00 52.83 

Score: O 1 8 23 8 8 16 64.00 10.67 

Corners 3/0 3/1 4/0 4/0 3/0 3/1 20/2 3.33/0.33 

 

w/o em 

Fitness: A 11.00 0.44 -1.67 12.33 6.05 10.20 38.35 6.39 

Fitness: O -5.00 7.56 9.67 -4.33 1.95 -2.20 7.65 1.27 

Score: A 61 25 24 52 43 44 249.00 41.50 

Score: O 1 39 40 12 21 20 133.00 22.17 

Corners 3/0 1/3 0/4 4/0 2/2 4/0 14/9 2.33/1.5 

 



 

69 
 

E. Minimax, corner detection, killer move detection, blocking, 
blacklisting and patterns (i.e. all techniques) 
 

Black Player 

 
Depth 1 2 3 4 5 6 Totals Avg 

Inf 

w/ em 

Fitness: A 9.00 5.46 8.56 1.00 11.27 3.00 38.28 6.38 

Fitness: O -5.00 2.54 -0.56 7.00 -3.27 3.00 3.72 0.62 

Score: A 54 38 46 16 49 32 235.00 39.17 

Score: O 1 26 18 48 15 32 140.00 23.33 

Corners 2/0 2/2 3/1 2/2 4/0 2/2 15/7 2.5/1.17 

 

w/o em 

Fitness: A 9.00 -3.27 -1.00 8.20 10.05 -3.00 19.98 3.33 

Fitness: O -5.00 11.27 7.00 -0.20 -2.05 11.00 22.02 3.67 

Score: A 54 15 32 44 43 16 204.00 34.00 

Score: O 1 49 32 20 21 48 171.00 28.50 

Corners 2/0 0/4 0/4 3/1 4/0 0/4 9/13 1.5/2.17 

 

Gre 

w/ em 

Fitness: A 9.00 -10.00 8.20 12.82 13.00 10.37 43.39 7.23 

Fitness: O -1.00 10.00 -0.20 -4.82 -5.00 -2.37 -3.39 -0.56 

Score: A 54 0 44 53 57 45 253.00 42.17 

Score: O 10 13 20 11 7 19 80.00 13.33 

Corners 2/2 0/0 3/1 4/0 4/0 4/0 17/3 2.83/0.5 

 

w/o em 

Fitness: A 9.00 13.00 9.00 13.00 13.00 10.20 67.20 11.20 

Fitness: O -1.00 -5.00 -5.00 -5.00 -5.00 -2.20 -23.20 -3.87 

Score: A 54 56 52 55 56 44 317.00 52.83 

Score: O 10 8 10 9 8 20 65.00 10.83 

Corners 2/2 4/0 2/0 4/0 4/0 4/0 20/2 3.33/0.33 

 

GInf 

w/ em 

Fitness: A 11.00 -10.00 1.80 5.78 9.27 -10.00 7.85 1.31 

Fitness: O -3.00 10.00 6.20 2.22 -1.27 10.00 24.15 4.03 

Score: A 61 0 20 41 49 0 171.00 28.50 

Score: O 3 13 44 23 15 13 111.00 18.50 

Corners 3/1 0/0 2/2 2/2 3/1 0/0 10/6 1.67/1 

 

w/o em 

Fitness: A 11.00 7.27 11.00 5.46 11.00 13.00 58.73 9.79 

Fitness: O -3.00 0.73 -5.00 2.54 -5.00 -5.00 -14.73 -2.45 

Score: A 61 49 57 38 55 56 316.00 52.67 

Score: O 3 15 6 26 8 8 66.00 11.00 

Corners 3/1 2/2 3/0 2/2 3/0 4/0 17/5 2.83/0.83 

 
  



 

70 
 

F. Minimax only 
 

White Player 

 
Depth 1 2 3 4 5 6 

Totals 

w/ em 

Fitness: A 34.99 55.85 61.82 65.89 97.02 60.91 

Fitness: O 45.01 18.15 18.18 6.11 -17.02 11.09 

Score: A 330 396 430 429 501 394 

Score: O 310 242 209 165 138 198 

Corners 16/24 22/17 20/20 24/12 30/10 25/11 

 

w/o em 

Fitness: A 57.59 64.01 72.46 71.02 90.89 55.60 

Fitness: O 18.41 15.99 7.54 6.98 -10.89 24.40 

Score: A 375 412 445 430 500 383 

Score: O 250 228 195 210 140 257 

Corners 20/18 22/18 24/16 24/16 28/12 22/18 

 

Averages 

w/ em 

Fitness: A 3.50 5.59 6.18 6.59 9.70 6.09 

Fitness: O 4.50 1.81 1.82 0.61 -1.70 1.11 

Score: A 33 40 43 43 50 39 

Score: O 31 24 21 17 14 20 

Corners 1.6/2.4 2.2/1.7 2/2 2.4/1.2 3/1 2.5/1.1 

 

w/o em 

Fitness: A 5.76 6.40 7.25 7.10 9.09 5.56 

Fitness: O 1.84 1.60 0.75 0.70 -1.09 2.44 

Score: A 38 41 45 43 50 38 

Score: O 25 23 20 21 14 26 

Corners 2/1.8 2.2/1.8 2.4/1.6 2.4/1.6 2.8/1.2 2.2/1.8 

 
  



 

71 
 

F. Minimax only 
 

Black Player 

 
Depth 1 2 3 4 5 6 

Totals 

w/ em 

Fitness: A 54.59 45.87 84.30 104.96 84.35 90.77 

Fitness: O 23.41 32.13 -4.30 -24.96 -4.35 -10.77 

Score: A 384 359 474 495 472 470 

Score: O 256 281 166 145 168 170 

Corners 22/18 20/20 26/14 35/5 28/12 31/9 

 

w/o em 

Fitness: A 65.30 78.81 88.27 85.95 79.00 76.64 

Fitness: O 14.70 -0.81 -10.27 -5.95 -1.00 3.36 

Score: A 406 460 499 474 458 440 

Score: O 232 179 138 166 181 200 

Corners 24/16 25/14 26/13 28/12 25/14 26/14 

 

Averages 

w/ em 

Fitness: A 5.46 4.59 8.43 10.50 8.44 9.08 

Fitness: O 2.34 3.21 -0.43 -2.50 -0.44 -1.08 

Score: A 38 36 47 50 47 47 

Score: O 26 28 17 15 17 17 

Corners 2.2/1.8 2/2 2.6/1.4 3.5/0.5 2.8/1.2 3.1/0.9 

 

w/o em 

Fitness: A 6.53 7.88 8.83 8.59 7.90 7.66 

Fitness: O 1.47 -0.08 -1.03 -0.59 -0.10 0.34 

Score: A 41 46 50 47 46 44 

Score: O 23 18 14 17 18 20 

Corners 2.4/1.6 2.5/1.4 2.6/1.3 2.8/1.2 2.5/1.4 2.6/1.4 

 
  



 

72 
 

G. Minimax, corner detection, killer move detection, blocking, 
blacklisting and patterns (i.e. all techniques) 
 

White Player 

 
Depth 1 2 3 4 5 6 

Totals 

w/ em 

Fitness: A 90.34 83.68 99.31 126.36 113.64 98.02 

Fitness: O -14.34 -5.68 -23.31 -48.36 -35.64 -22.02 

Score: A 430 420 463 540 514 470 

Score: O 189 219 174 91 119 157 

Corners 31/7 32/7 35/3 39/0 37/2 31/7 

 

w/o em 

Fitness: A 109.52 104.04 122.11 109.53 99.34 103.62 

Fitness: O -37.52 -24.04 -44.11 -35.53 -39.34 -27.62 

Score: A 467 477 540 491 485 497 

Score: O 142 163 96 120 79 137 

Corners 32/4 36/4 37/2 31/6 29/1 33/5 

 

Averages 

w/ em 

Fitness: A 9.03 8.37 9.93 12.64 11.36 9.80 

Fitness: O -1.43 -0.57 -2.33 -4.84 -3.56 -2.20 

Score: A 43 42 46 54 51 47 

Score: O 19 22 17 9 12 16 

Corners 3.1/0.7 3.2/0.7 3.5/0.3 3.9/0 3.7/0.2 3.1/0.7 

 

w/o em 

Fitness: A 10.95 10.40 12.21 10.95 9.93 10.36 

Fitness: O -3.75 -2.40 -4.41 -3.55 -3.93 -2.76 

Score: A 47 48 54 49 49 50 

Score: O 14 16 10 12 8 14 

Corners 3.2/0.4 3.6/0.4 3.7/0.2 3.1/0.6 2.9/0.1 3.3/0.5 

 
  



 

73 
 

G. Minimax, corner detection, killer move detection, blocking, 
blacklisting and patterns (i.e. all techniques) 
 

Black Player 

 Depth 1 2 3 4 5 6 

Totals 

w/ em 

Fitness: A 80.33 116.14 119.57 109.98 130.87 108.64 

Fitness: O -2.33 -40.14 -47.57 -33.98 -56.87 -28.64 

Score: A 423 498 484 530 548 492 

Score: O 216 117 125 104 74 148 

Corners 30/9 35/3 34/2 34/4 36/1 37/3 

 

w/o em 

Fitness: A 109.05 116.45 115.83 114.69 112.88 116.61 

Fitness: O -37.05 -38.45 -45.83 -38.69 -38.88 -42.61 

Score: A 490 526 529 521 502 516 

Score: O 128 113 83 112 111 111 

Corners 34/2 38/1 32/3 35/3 32/5 36/1 

 

Averages 

w/ em 

Fitness: A 8.03 11.61 11.96 11.00 13.09 10.86 

Fitness: O -0.23 -4.01 -4.76 -3.40 -5.69 -2.86 

Score: A 42 50 48 53 55 49 

Score: O 22 12 13 10 7 15 

Corners 3/0.9 3.5/0.3 3.4/0.2 3.4/0.4 3.6/0.1 3.7/0.3 

 

w/o em 

Fitness: A 10.90 11.64 11.58 11.47 11.29 11.66 

Fitness: O -3.70 -3.84 -4.58 -3.87 -3.89 -4.26 

Score: A 49 53 53 52 50 52 

Score: O 13 11 8 11 11 11 

Corners 3.4/0.2 3.8/0.1 3.2/0.3 3.5/0.3 3.2/0.5 3.6/0.1 

 
  



 

74 
 

Vita 

Kevin Cherry was born in June, 1983, in Baton Rouge, Louisiana. He earned his 

bachelor of science degree in computer science at Louisiana State University in May 

2008. In January 2009 he came back to Louisiana State University to pursue graduate 

studies in systems science. He is currently a candidate for the degree of Master of 

Science in Systems Science, which will be awarded in May 2011. 

 


	Louisiana State University
	LSU Digital Commons
	2011

	An intelligent Othello player combining machine learning and game specific heuristics
	Kevin Anthony Cherry
	Recommended Citation


	tmp.1483774927.pdf.8nVV3

