
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2011

Advanced semantics for accelerated graph
processing
Dylan Thomas Stark
Louisiana State University and Agricultural and Mechanical College, dstark@cct.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Stark, Dylan Thomas, "Advanced semantics for accelerated graph processing" (2011). LSU Doctoral Dissertations. 3131.
https://digitalcommons.lsu.edu/gradschool_dissertations/3131

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3131?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

ADVANCED SEMANTICS FOR ACCELERATED GRAPH PROCESSING

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Dylan Stark

B.S., Louisiana State University, 2004
M.S., Louisiana State University, 2007

May, 2011

Acknowledgements

I have made it as far as I have with the untiring support of my parents, Daniel and Beth

Stark, and my brother Michael. They have always supported me in my various endeavors,

no matter how long it takes. Also, I am very grateful for the good friends I made along the

way. In many ways they made the trip worth taking.

I thank my advisor, Professor Thomas Sterling, for providing me with such a great oppor-

tunity to work with him in the ParalleX group. His vision and determination were inspiring,

and his mentoring and support unwaivering. I am indebted to him for the chance to the see

through my personal goals. I would also like to thank my committee for the guidance and

support they have shown me throughout my graduate career.

I thank Dr. Gabrielle Allen and others at a newly formed Center for Computation and

Technology at LSU for giving me the opportunity to pursue graduate research in High

Performance Computing. Special thanks go to the Cactus Team: Dr. Allen, Dr. Seidel, Tom

Goodale, Thomas Radke, Eric Schnetter, and Yaakoub El-Kahmra.

Finally, I thank my colleagues in the ParalleX group at the Center for Computation and

Technology at Louisiana State University and Sandia National Laboratories. In particular,

Hartmut Kaiser, Chris Michael, and Phillip LeBlanc at LSU, for humoring me, and taking

me seriously, only at the appropriate times; and Rich Murphy, Arun Rodriguez, and Kyle

Wheeler, for the real world introduction to so many things multithreaded, message-passing,

and graph.

This work was partially supported by Sandia National Laboratories. Sandia National Lab-

oratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin

Company, for the United States Department of Energy’s National Nuclear Security Admin-

istration under contract DE-AC04-94AL85000.

ii

Table of Contents

Acknowledgements . ii

List of Tables . v

List of Figures . ix

List of Algorithms . x

Abstract . xi

Chapter 1: Introduction . 1
1.1 Research Objective . 3

1.1.1 Goal . 3
1.1.2 Hypothesis . 3
1.1.3 Objectives . 5

1.2 Technical Strategy . 6
1.3 Dissertation Outline . 7

Chapter 2: Background . 9
2.1 Graph-Based Application Processing . 9

2.1.1 Multithreaded . 14
2.1.2 Large Scale Parallel . 15

2.2 State of High Performance Computing System 16
2.2.1 Shared Memory Systems . 17
2.2.2 Distributed Memory Systems . 19

2.3 Future Directions . 21

Chapter 3: Data-Driven Computation with the ParalleX Execution Model 24
3.1 The Execution Model Elements . 24

3.1.1 Global Perspective . 24
3.1.2 Event-Driven Dynamic Multithreading 26

3.2 An Enabling Software Runtime System HPX 29
3.2.1 Implementation of the ParalleX Feature Set 30
3.2.2 Application Programming . 32

Chapter 4: Advanced Semantics for Graph Processing 41
4.1 Asynchronous Actions and Continuation Migration 43
4.2 Constraint-Based Coordination through Phased Use 48
4.3 Graph Traversal Strategies through Embedded Coordination 50

iii

4.4 Large-Scale Data through Distribution . 52

Chapter 5: A ParalleX Graph Library . 58
5.1 Decentralized Data Structures . 58

5.1.1 Construction . 59
5.1.2 Initialization . 60

5.2 Application Example: Scalable Data Generator 61
5.3 Auxiliary Structures . 64

5.3.1 Regions . 64
5.3.2 Distributions . 65
5.3.3 Containers . 66

5.4 Graph Structures . 68
5.4.1 Graphs . 68
5.4.2 Property Maps . 70

5.5 Data-Directed Constructs . 71
5.5.1 For-all . 71
5.5.2 Map . 72
5.5.3 Reduce . 72

Chapter 6: Experiments . 73
6.1 Large Set Classification . 76

6.1.1 Implementation . 77
6.1.2 Analysis and Results . 80

6.2 Subgraph Extraction . 83
6.2.1 Implementation . 93
6.2.2 Analysis and Results . 96

6.3 Computing Betweenness Centrality . 99
6.3.1 Implementation . 101
6.3.2 Analysis and Results . 104

Chapter 7: Conclusions . 111
7.1 An Approach to Graph Processing . 111
7.2 Role of the Execution Model . 113
7.3 Future Directions . 114

Bibliography . 116

References . 116

Vita . 121

iv

List of Tables

2.1 Shared Memory model . 17

2.2 Communicating Sequential Processes model 19

3.1 The ParalleX model . 24

v

List of Figures

2.1 The graph concept . 11

2.2 Notional graph example . 11

2.3 Example semantic network . 12

2.4 Parallel traversal of a graph . 13

2.5 Shared memory system with four cores per socket 17

2.6 Distributed memory system with four single-core nodes 19

2.7 Dominance of distributed memory computing 22

3.1 System with n+ 1 locality domains and an AGAS providing global naming . 25

3.2 ParalleX mapped to conventional systems 27

3.3 ParalleX work queue model with two policies 28

3.4 HPX software system architecture . 30

3.5 Plain action definition for Fibonacci . 32

3.6 Usage of HPX eager futures . 34

3.7 Multithreaded execution of Fibonacci code 35

3.8 Multilocality execution of accumulator code 37

3.9 Component server definition for accumulator 38

3.10 Component stub definition for accumulator 39

vi

3.11 Component client definition for accumulator 40

4.1 Execution of the recursive Fibonacci process Fib(4) 44

4.2 Execution of the CPS Factorial process Fact(3, k) 46

4.3 Execution of dataflow-variable example Algorithm 4.5 47

4.4 Comparison of graph kernel action execution 49

4.5 Execution of the parallel traversal of a graph structure 52

4.6 Illustration of the distribution construct . 54

4.7 Execution of the distributed processing of an edge list 55

4.8 Execution of the distributed traversal of a graph structure 57

5.1 Decentralized construction process for a distributed structure in the PXGL . 60

5.2 Decentralized initialization process for a distributed structure in the PXGL . 62

5.3 Main thread definition for Scalable Data Generator example 63

5.4 High-level dependencies in the Scalable Data Generator 64

6.1 Graph construction . 75

6.2 Illustration of SGAB Kernel 1 . 75

6.3 Large set classification action definition . 78

6.4 Edge filter action definition . 79

6.5 Filter edges partition action definition . 81

6.6 Illustration of SGAB Kernel 2 on a single locality 82

6.7 Kernel 2 strong scaling with 1 partition . 84

6.8 Kernel 2 strong scaling with 2 partitions . 84

6.9 Kernel 2 strong scaling with 4 partitions . 85

vii

6.10 Kernel 2 strong scaling with 8 partitions . 85

6.11 Kernel 2 strong scaling with 16 partitions . 86

6.12 Kernel 2 strong scaling with 32 partitions . 86

6.13 Kernel 2 strong scaling with 64 partitions . 87

6.14 Kernel 2 strong scaling with 128 partitions 87

6.15 Kernel 2 strong scaling for data set scale 19 88

6.16 Kernel 2 strong scaling for data set scale 20 88

6.17 Kernel 2 strong scaling for data set scale 21 89

6.18 Kernel 2 strong scaling for data set scale 22 89

6.19 Kernel 2 strong scaling for data set scale 23 90

6.20 Illustration of data-directed PSearch-enabled execution pattern 92

6.21 Illustration of SGAB Kernel 3 on a single locality 93

6.22 Kernel 3 main thread action definition . 94

6.23 Subgraph extraction action definition . 94

6.24 Subgraph generation action definition . 95

6.25 Kernel 3 total number of ParalleX threads 97

6.26 Kernel 3 ParalleX threads per second . 98

6.27 Kernel 3 strong scaling run time . 98

6.28 Kernel 4 main thread action definition . 102

6.29 Betweenness centrality scoring action definition 103

6.30 Betweenness centrality process begin action definition 105

6.31 Betweenness centrality process expand source action definition 106

viii

6.32 Betweenness centrality process expand target action definition 107

6.33 Betweenness centrality process contract target action definition 108

6.34 Betweenness centrality process contract source action definition 108

6.35 Illustration of SGAB Kernel 4 on a single locality 109

ix

List of Algorithms

4.1 Recursive Fibonacci action Fib(n) . 44

4.2 Continuation-passing style Factorial action Fact(n, k) 45

4.3 Continuation-passing style Factorial action Fact′(n, a, k) 45

4.4 Example using CPS Factorial action . 45

4.5 Example using dataflow-variable for anonymous producer/consumer execution 46

4.6 Example using forall to print multiples of 2 47

4.7 Example implementation of graph kernel action with future-values 48

4.8 Example implementation of graph kernel action with continuation-passing . . 49

4.9 Depth First Search action DFS(GC , s) . 51

6.1 A betweenness centrality algorithm . 100

x

Abstract

Large-scale graph applications are of great national, commercial, and societal importance,

with direct use in fields such as counter-intelligence, proteomics, and data mining. Unfor-

tunately, graph-based problems exhibit certain basic characteristics that make them a poor

match for conventional computing systems in terms of structure, scale, and semantics. Graph

processing kernels emphasize sparse data structures and computations with irregular memory

access patterns that destroy the temporal and spatial locality upon which modern processors

rely for performance. Furthermore, applications in this area utilize large data sets, and have

been shown to be more data intensive than typical floating-point applications, two properties

which lead to inefficient utilization of the hierarchical memory system. Current approaches

to processing large graph data sets leverage traditional HPC systems and programming mod-

els, for shared memory and message-passing computation, and are thus limited in efficiency,

scalability, and programmability.

The research presented in this thesis investigates the potential of a new model of execution

that is hypothesized as a promising alternative for graph-based applications to conventional

practices. A new approach to graph processing is developed and presented in this thesis.

The application of the experimental ParalleX execution model to graph processing balances

continuation-migration style fine-grain concurrency with constraint-based synchronization.

A collection of parallel graph application kernels provide experiment control drivers for

analysis and evaluation of this innovative strategy. Finally, an experimental software library

for scalable graph processing, the ParalleX Graph Library, is defined using the HPX runtime

system, providing an implementation of the key concepts and a framework for development

of ParalleX-based graph applications.

xi

Chapter 1

Introduction

Computation has been well established as a necessary component of scientific research in

the 21st century [1]. Theory and physical experimentation are enhanced by the ability to

simulate increasingly complex systems at greater modeling resolutions and with higher fi-

delity. Recently, projects such as the Sloan Digital Sky Survey [2] and the Human Genome

Project [3, 4], and data center proliferation for Web search engines, by Google, Microsoft,

and others [5, 6], serve as evidence for growing importance of large-scale data. Thus, data-

intensive applications — defined as those focused on the analysis of large data sets — have

emerged as a “fourth pillar” of science, necessary to manage the deluge of data and derive

information and understanding from it [7, 8].

In particular, so called graph-based applications are emerging as important. Traditional

science and engineering applications, out of necessity, are becoming more dynamic to deal

with higher resolution. Prime examples of this are Adaptive Mesh Refinement (AMR) for

Astrophysics and molecular dynamics [9, 10, 11] and high-fidelity, coupled oceanic and atmo-

spheric simulations, computational fluid dynamics, and other numeric applications [12]. In

the case of AMR, dynamic tree structures of computational spaces adapt to provide variable

levels of resolution across an evolving simulated space.

Another important class of graph-based applications is those dealing primarily with in-

formation or knowledge-processing problems. Examples of these include ontology-based se-

mantic analysis, social network analysis, data mining methods, natural language processing,

and AI pattern matching. In the case of ontology-based semantic analysis, queries are posed

in the form of a semantic network that is matched against a knowledge base (a dynamic

semantic network). The ontology provides valid transformations for deriving additional in-

1

formation from both the query and the knowledge base, and is used to dynamically update

both networks, expanding and contracting semantic relationships, as the process evolves.

Many problems arise when considering the characteristics of graph applications in the con-

text of high-performance computing. Graph-based applications are defined with concurrent

activities in the form of simultaneous queries, at the highest level, and independent branch-

ing of subproblems, at the low level. During execution, the amount of concurrent actions (the

instantaneous workload) will vary dependent on the structure of the graph and the stage of

the algorithm. Also, with the processing of graph structures, the flow control of the execution

is dictated by the structure of the graph data set (i.e., it is data-directed) and limited in

available computation, with the basic operations defined in terms of, and at the scale of, the

structural relationships between vertices and edges.

Irregular data access patterns lead to inefficient use of the memory hierarchy and program

control flow, and increased latencies. The lack of work relative to communication load exac-

erbates the effects of the memory wall (the disparity between processor and memory speeds).

Data-directed execution over an irregular data structure produces time-varying workloads

at runtime that the programmer is unable to predict or manage using static threading and

data-parallel programming constructs. And, high levels of exploitable concurrency over a

shared data structure increase the performance-limiting effects of contention.

Performance is determined by the ability to make effective use of the memory system by

exploiting available parallelism and managing synchronization of concurrent activities, and

above all, minimizing and mitigating the effects of latencies and overhead. These application

characteristics challenge approaches on conventional high-performance computing systems

that either rely on point-to-point message-passing between compute nodes, limiting efficiency,

or rely on a single shared memory, limiting scalability. With the ever expanding sizes of data

sets, the critical challenge is to improve scalability of problem size and efficiency in resource

utilization through the use of alternative techniques for extracting and managing parallelism

to improve performance.

2

1.1 Research Objective

1.1.1 Goal

This research establishes a new approach to scalable, highly concurrent, distributed graph

processing on high-performance computing systems. The core data structures and program-

ming constructs provided by the new graph library, PXGL, establish a framework for develop-

ing specific algorithms across all graph-based application domains. Researchers in proteomics

will have a tool for studying the complex interactions of protein structures, making possible

breakthroughs in the treatment of cancer and other systemic illnesses not addressed with

modern medical practices. And analysts and scientists in fields from social networks for pro-

ductization and market research, and ecology and large-scale food webs for environmental

conservation will be able to model and analyze interactions at greater scales and resolutions

for increased understanding. The co-design of algorithms, data structure, and application,

with the ParalleX model of computation means that the work is positioned to lead graph

algorithm design and application development to extreme-scale system architectures through

the peta-flops regime and into the exa-scale performance domain over the coming decades.

1.1.2 Hypothesis

Graph-based applications require distributed memory systems to achieve scalability. Compu-

tations require dynamic medium- to fine-grain multithreading to achieve efficient utilization

of system resources. And concurrent processing of shared mutable data structures requires

localized, embedded coordination mechanisms.

Current and anticipated application scales suggest that a shared memory approach cannot

provide the level of scaling necessary for this problem class. The necessary component that

must be carried over from the shared memory model is the notion of a global address space.

This must be supported for both locating and referencing individual elements of compound

distributed data structures (e.g., the vertices of a graph) from anywhere in the system. An

explicit notion of locality, providing the ability to reason about whether data is colocated

3

with an action, is necessary. Finally, an explicit concept of data distribution, providing the

logical mapping of global structure to system topology, must be a fundamental component

of the any approach.

Visiting the neighbors of a vertex is a common operation that can yield a number of

concurrent actions on many independent paths. Thus, the structural meta-data of the graph

data set dictates both the next set of tasks, and what activities can be done in parallel.

The guiding principle for graph algorithms, kernels, and applications utilizing fine-grain

data-directed threading over graph data structures must be to support continuously moving

the computation forward. Actions must carry with them the means of continuing execution

dependent on the data structure, producing follow-on actions that can independently progress

the computation. At finer-granularities, this will be expressed in a continuation-passing style

of computation. But at higher levels, data-directed techniques, such as parallel-forall and

map constructs express the pattern of computation, while leaving the particulars of dynamic

execution to an active runtime system adapting to the particular data structure.

Simultaneous actions accessing the same data create the possibility of race conditions and

increase the likelihood of contention to degrade performance. An example of this is two

separate search paths converging on the same vertex at the same time. In order to keep

the data structure and the processes in a coherent state, access to the data item must be

coordinated, and this must be addressed at two levels. Distributed data structures must

provide the interface and mechanisms for efficient, locality-aware, processing by algorithms,

and each member of such a structure must be able to maximize local information to work

in a decentralized manner whenever possible to reduce the effects of latency and overheads.

Likewise, when locally managing a collection of concurrent actions, the use of global barriers

to enforce some notion of coherence across the application must be replaced with localized

coordination mechanisms embedded in the data structure that support independent progress

at finer granularities.

4

1.1.3 Objectives

This dissertation studies the use of a novel execution model to enable high-performance

graph processing on current large-scale compute systems through consideration of the trade-

offs in latency, overhead, contention, and starvation necessary to achieve scalability. The

ParalleX model [13, 14] (Chapter 3) represents a break from the HPC conventions of message-

passing computation on distributed memory systems, and static multithreaded computation

on shared memory systems. This work builds upon the execution model, effectively inte-

grating into the co-design of software runtime and operating systems for conventional ar-

chitectures, and future extreme-scale systems. A path towards addressing current needs for

scaling-challenged problems is provided, beginning to answer the challenges posed by peta-

and exa-scale development platforms. In particular, this work defines semantic constructs

for graph processing independent of any particular language or library. Instead of matching

standard practice or an incremental development approach, the programming techniques

match the problem, leaving their exact implementation open; though one experimental soft-

ware system is defined as a proof of concept and vehicle for exploration. Mechanisms for

managing concurrency and synchronization of fine-grain, data-directed computation in a

message-driven, dynamic multithreading, distributed memory system are designed to ex-

tract and manage parallelism for scalable execution. Specifically, the following objectives are

outlined:

1. Move work to data and utilize local work queues with message-driven multithreading;

2. Manage locality for highly dynamic and distributed applications with a global address

space;

3. Replace global barriers with localized synchronization primitives embedded into the

graph structure;

5

4. Address contention on data and network with locality-aware algorithms combined with

a work-moving execution strategy; and,

5. Define constructs around graph meta-data that allow a programmer to express how

the computation should be parallelized with respect to the graph structure.

1.2 Technical Strategy

The technical strategy of exploring the application of a novel execution model for large-scale

graph processing comprises:

1. Introduction of advanced semantic constructs for graph processing;

2. Mapping of those semantics into the message-driven, multithreaded ParalleX model;

3. Development of an experimental graph library for the ParalleX model;

4. Implementation of exemplar application kernels in the ParalleX Graph Library; and,

5. Experimentation and analysis of initial performance and scalability.

Reconsideration of the semantics of graph processing addresses the challenges related to

parallelism and efficiency through the design of new graph data structures and parallel con-

structs. There are two dimensions to the problem of developing constructs for graph process-

ing. The first deals with semantic constructs for expressing and controlling parallelism, from

a programmatic standpoint. We address this by identifying and employing high-level tech-

niques for programming near fine-grain event-driven threads. An example is the adaptation

of data-directed techniques for traversal of graphs. The second dimension is concerned with

the data structures that are used to represent the graph concept. Extensions will be made

to support fine-grain event-driven multithreading in a distributed memory, global address

space system, with lightweight synchronization primitives. Examples include the embedding

6

of synchronization primitives into the graph data structure itself to localize contention and

to facilitate constraint-based coordination of concurrent access and update.

Mapping of the new semantic constructs for graph processing into the ParalleX execution

model defines the foundation for efficient parallel execution. Dynamic event-driven multi-

threading and lightweight synchronization primitives in a global address space model sup-

port the data-directed graph processing. This also enables the development of the ParalleX

Graph Library. This software implementation provides a framework for the development of

graph data structures and algorithms and that will support future research and development

of graph-based applications utilizing the ParalleX model. The PXGL will be implemented

using the high-performance software runtime system HPX.

A proof-of-concept for the PXGL as a programming framework for graph processing is a

set of graph-based problem benchmarks which may be used further for experimentation and

analysis. The benchmark used here is based on the SSCA#2 Graph Analysis Suite that was

developed as part of the DARPA HPCS project [15, 16]. The four kernels stress important

aspects of large scale graph processing. Finally, testing and evaluation of the graph con-

structs, implementation, and kernels will involve experimentation to establish initial results

on conventional systems.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 provides an overview

of scalable graph processing in high-performance computing, outlining current approaches

and the key challenges. Chapter 3 defines the ParalleX model of computation, and the soft-

ware runtime system, HPX. Chapter 4 presents the new semantic constructs for concurrent

processing of distributed graphs. Chapter 5 defines the ParalleX Graph Library (PXGL),

a software library for coding graph applications in the ParalleX model. Chapter 6 presents

a set of important graph kernels, the experimentations performed, and an analysis of the

7

results. Finally, Chapter 7 concludes by distilling the key contributions and impact of this

work, and identifying directions for future efforts in this area.

8

Chapter 2

Background

The emerging area of data-intensive applications, specifically graph processing, is gaining

in importance, and establishing new requirements for high-performance computing (HPC)

systems. Conventional HPC systems and applications have been focused on exploiting static

parallelism for processing regular (easily partitionable) data sets for scalable execution on

commodity-based systems. However, the recent proliferation of multicore and GPU technolo-

gies will not sustain the continued performance gains seen over the past 20 years. With this

intersection of changing application requirements and HPC system capability comes a new

set of problems and challenges for achieving high performance, both on available conventional

systems, and future extreme-scale systems. This chapter introduces the increasingly impor-

tant area of graph-based applications (Section 2.1), and the conventional high-performance

computing (Section 2.2) that supports them, to establish the necessary context for the work

undertaken.

2.1 Graph-Based Application Processing

Graph-based applications are emerging as important for STEM1 and symbolic informatics

problems, possibly replacing regular matrix computations as the dominant form of computing

in the next decade. Traditional science and engineering applications, out of necessity, are

becoming more dynamic to deal with higher resolution. Prime examples of this are Adaptive

Mesh Refinement (AMR) for Astrophysics and molecular dynamics [9, 10, 11] and high-

fidelity, coupled oceanic and atmospheric simulations [12], computational fluid dynamics, and

1Science, Technology, Engineering, and Math.

9

other numeric applications. In the case of AMR, dynamic tree structures of computational

spaces adapt to provide variable levels of resolution across an evolving simulated space.

Another important class of graph-based applications is those dealing primarily with in-

formation or knowledge-processing problems. Examples of these include ontology-based se-

mantic analysis, social network analysis, data mining methods, natural language processing,

and AI pattern matching. In the case of ontology-based semantic analysis, queries are posed

in the form of a semantic network that is matched against a knowledge base (a dynamic

semantic network). The ontology provides valid transformations for deriving additional in-

formation from both the query and the knowledge base, and is used to dynamically update

both networks, expanding and contracting semantic relationships, as the process evolves.

Semantic networks are the base model for such applications, which are defined as those

focusing on the processing of data sets which originate from information sources [17]. A

typical underlying representation, and the one which is the focus of this research, is the

attributed relational graph. A graph is a general abstraction for representing entities and

relationships between entities. The entities are represented by vertices, and the relationships

by pairs of vertices, called edges. In the field of Graph Theory, a graph is formally defined as

an ordered pair (V,E), where V = {u, v, w, . . .} is the set of vertices and E = {(u, v) : u, v ∈
V } is the set of edges. For each edge (u, v) ∈ E, we refer to the u as the source vertex and v

as the target vertex. A graph can be either undirected or directed, indicating whether the edge

represents a symmetric relationship or not. Figure 2.1 shows three example directed graphs,

a list (G1), a tree (G2), and a general graph (G3), along with their mathematical definitions.

This graph concept is sufficient for constructing arbitrarily complex graph structures, but

to make it useful for real-world problems, the definition is extended to include attributes on

the vertices and edges. An attributed graph is an ordered quadruple (V,E, t, w), with V and

E as before, t : V → L a functional mapping from vertices to vertex labels, and w : E → T a

functional mapping from edges to edge labels. Figure 2.2 shows a simple attributed graph, a

possible representation as an adjacency list, and the possible structure of a vertex. Semantic

10

V = {a, b, c, d}
E1 = {(a, b), (b, c), (c, d)}
E2 = {(a, b), (b, c), (b, d)}
E3 = {(a, b), (b, c), (b, d), (c, d)}

G1 = (V,E1) G3 = (V,E3) G2 = (V,E2)

Figure 2.1. The graph concept, graphical and mathematical notations.

user-defined
attributes

edge links &
address translation

contention &
arbitration

application

flow control

structureu v

a

b

1 2

3

u 1 v

2 a 3 b v

a

b

Figure 2.2. Notional examples of an attributed graph, it’s adjacency list representation,
and vertex structure.

networks are directed attributed graphs that encode knowledge, or information, by defining

a set of typed entities and a set of typed relationships between them.

A semantic network, such as the one in Figure 2.3, can be modeled using an attributed

graph, where the vertices are people, places, and things, and the edges denote particular

relationships between them. From the example diagram, the top left subgraph, labeled “Pat-

tern”, would have vertex and edge label sets:

L = {Factory,Person,House,Truck,Fertilizer}, and

T = {observe, reside, rent, buy}.

Graph-based applications for semantic network analysis all share similar structure and

characteristics. These applications are typically composed from kernels which provide traver-

sal/search, component-finding, and metric generation. Graph processing consists of fine-grain

actions and irregular memory accesses. These problems are notoriously difficult to optimize

because of their strong run-time dependencies. Computation is typically limited to testing

some predicate condition, and possibly updating a value, local to a single vertex. Thus, most

11

46 March 2004/Vol. 47, No. 3 COMMUNICATIONS OF THE ACM

tend to facilitate reasoning over the characteristics of
individual actors, graph representations facilitate rea-
soning over the relationships between actors. Subgraph
isomorphism and social network analysis are two
important graph-based approaches that will help ana-
lysts detect suspicious activity in large volumes of data.

Subgraph isomorphism algorithms search through
large graphs to find regions that are instances of a spe-
cific pattern graph [8]. The analyst defines, as a graph,
activity patterns that are believed to be indicative of

threatening activity. Once
those patterns are defined,
the algorithm identifies

regions of observed activity that match the patterns.
One possible pattern is shown in the figure here, along
with an inexact match to that pattern embedded in an
activity graph containing both threatening and innocu-
ous activity. Supporting evidence may come from
many different sources, but once evidence is incorpo-
rated into the global activity graph, the algorithm lets
the analyst quickly pinpoint subsets of activity that
warrant further attention. Without advanced search
algorithms like these, the analyst’s task of identifying
suspicious activity within a huge body of evidence is
much more difficult.

Being able to find inexact pattern matches is critical.
Foremost, analysts operate in an environment with lim-
ited observability. In addition, the analyst might need to
match a general pattern without knowing all of the

details, or the analyst may have defined some aspects of
the pattern incorrectly. Finding inexact matches also
alerts the analyst to activity that “breaks the mold” of
previous threats, and can prevent the kind of surprises
for which intelligence agencies have been criticized.

In our work, we have developed a set of genetic algo-
rithms that solve the exact and inexact subgraph iso-
morphism problem. The search algorithm distributes
nicely, allowing it to run on a server farm for improved
performance. This enables efficient searches for pat-

terns containing as many as
75 nodes and 107 different
possible realizations.

Social network analysis
(SNA) is the study of human
social interaction. Graph rep-
resentations are ubiquitous
throughout SNA—sequences
of interactions between peo-
ple are usually represented as
an ARG. SNA metrics quan-
tify different aspects of the
ARG’s topology, and the met-
ric values can be used to char-
acterize the roles of
individuals within a group, or
the state of a group or organi-
zation as a whole. The key
opportunity for intelligence
analysis is that “normal” social
interaction and the social
interaction of illicit groups
tend to exhibit significantly
different SNA metric values.

The geodesic assumption
and the redundancy assumption state that for human
interaction, “People with strong relationships usually
communicate via the shortest path” and “Normal social
networks are redundant.” Studies have shown that
both of these assumptions are typically false for groups
trying to hide their activities [1]. For those groups,
information compartmentalization and robustness to
the compromise of group members overrule the effi-
ciency concerns that otherwise lead to the geodesic and
redundancy assumptions. The resulting differences in
the groups’ structures can be quantified by SNA met-
rics. The SNA theory of homophily argues that most
human communication occurs between people similar
to each other. Thus people pursuing illicit activities are
likely to be found communicating with others pursu-
ing illicit activities. This “relational autocorrelation”
further drives these groups’ SNA metrics toward anom-
alous values [5].

Our work combines SNA metrics with statistical

Match to a pattern graph in
an activity graph.Figure 2.3. Example semantic network modeling the interconnections between a set of

people, places, and activities. Source: Graph-based Technologies for Intelligence Analysis,
Coffman et. al. [18].

of the time in a graph kernel is spent accessing memory as it traverses from one vertex to

another, following the graph structure.

An example of a general graph kernel is a parallel traversal, where the computation pro-

ceeds recursively by visiting a vertex, testing some predicate, and then visiting all the adja-

cent vertices. Figure 2.4 illustrates a parallel traversal of an undirected graph. The graph is

on the left, with distinguished start vertex s. The paths taken through the graph are depicted

by the tree in the middle. The spawning of “visit vertex” operations is depicted by the tree

on the right: dark circles denote when the operation was the first to visit a particular vertex,

in which case they spawned additional visits for each adjacent vertex; the light circles are

operations that visited a vertex after it had already been seen, in which case they did not

continue the traversal.

These graph-based applications constitute an important subfield of high-performance com-

puting, distinct from the more traditional simulations of physical phenomenon [17]. In those

cases, where the data sets are typically dense and/or well-structured, matrices and matrix

computations dominate the solution space. Conventional architectures and programming

models are particularly well suited for the physics applications which exhibit good temporal

12

s s

Figure 2.4. Parallel traversal of a graph from a start vertex, s, to all other vertices: the
undirected graph structure (left), the directed paths through the graph (center), and the
tree of visit actions (right).

and spatial locality and greater amounts of computation versus communication. The sparse

and irregular structure of the input data set meta-data, however, reduces the degree of spatial

locality. The heavy reliance on structural meta-data to direct the computation destroys use-

ful temporal locality. And the typical graph application is dominated by search or traversal,

doing very little computation, relative to the amount of memory accesses (communication).

Furthermore, graph applications have been shown to be more data intensive, distinct from

the more traditional matrix-based simulations [7]; i.e., the number of memory accesses of

unique data is very high with respect to the number of numeric operations performed. For

these reasons, graph processing needs an HPC system capable of supporting intense, irregular

access to the memory system, with limited computation to cover access latencies.

Robust support for large scale graph processing applications requires software libraries

specifically engineered for HPC systems. Two such solutions exist: the Parallel Boost Graph

Library (PBGL) [19, 20] and the Multi-Threaded Graph Library (MTGL) [21, 22]. The

PBGL is an extension of the sequential Boost Graph Library (BGL) [23] for distributed mem-

ory clusters. The Multi-Threaded Graph Library targets so-called massively-multithreaded

shared memory systems, while attempting to stay compatible with the BGL library interface.

Sections 2.1.1 and 2.1.2 introduce these two systems and their support for graph processing.

Together these libraries establish the current and future efforts in this area.

13

2.1.1 Multithreaded

The Multi-Threaded Graph Library was designed and developed at Sandia National Labo-

ratories to support research in high-performance graph processing. Their approach was to

deliver a graph library that presents the familiar BGL interface, but is tailored for massively-

multithreaded architectures, such as the Cray MTA/XMT (Section 2.2.1). As these systems

are specifically designed for addressing the requirements of processing large, sparse, irregular

data sets, the MTGL is particularly well suited for high-performance graph processing.

Recent work has been done to port the MTGL to commodity systems with new multi/many-

core processors, such as Sun’s Niagara T2 and Tilera’s TilePro64 [22]. This involved porting

the code base to use Qthreads [24], a low-level library for programming with lightweight

threads. While the MTGL/Qthreads implementation does not achieve the same performance

as with the Cray XMT, it does provide a means for developing and testing of graph appli-

cations on commodity systems before moving them to more expensive resources.

The key to achieving performance on this class of system is to always have enough work

to keep the processors and memory channels busy and to minimize the opportunity for con-

tention between concurrent tasks. The XMT’s parallelizing compiler is the principle means

of extracting parallelism from native MTGL codes. In the Qthreads version, the parallelizing

compiler is replaced by a combination of handwritten threads and parallel loop constructs

provided by Qthreads.

Ultimately, scalability is limited by the amount of shared memory that can be supported

by a single system. Though, given the scaling challenges for distributed memory machines,

and the ever increasing aggregate main memory capacity in shared memory systems, there

is limited discussion of scaling beyond shared memory What is needed is a solution that

extends the lessons learned from MMT to distributed memory systems.

14

2.1.2 Large Scale Parallel

The Parallel Boost Graph Library [20], developed in the Open Systems Laboratory at In-

diana University, is an extension of the Boost Graph Library, a popular graph library for

sequential graph processing. The PBGL is targeted at distributed memory message-passing

supercomputers, using the Message Passing Interface (MPI) [25] as the parallel abstraction

and communication layer. This approach has the immediate advantage of leveraging the

ubiquity of commodity clusters and MPPs across academic departments and research orga-

nizations in government laboratories and industry, as well as the wide availability of efficient

MPI implementations and the portability of MPI code bases.

However, there are recognized drawbacks which limit scalability and performance of graph

processing with commodity cluster computing [17]. First, the MPI programming model fa-

vors static allocation of long-running processes: typically each processor runs one process

for the entire duration of the application. Therefore, this approach does not lend itself to

the exploitation of fine-grain parallelism inherent in graph processing. Also, dynamic load

balancing of time-varying work is difficult to implement over static processes.

Partitioning the graph data structure over a distributed memory is cumbersome. Parti-

tioning the graph means that there will be some edges where the source vertex belongs to

one system node, and the target to another. The typical approach in such an environment

is to use ghost cells to cache information about the target local to the source. However,

the irregular structure of graph data means that there is little opportunity for finding the

optimal partitions that minimize the number of cross-process edges, in order to minimize

the amount of cached data and messages over the network.

A particular issue with power-law graphs [26, 27] is the existence of extremely high degree

vertices. Following the ghost cell strategy, a vertex with a high-degree vertex could easily

require more local memory for caching distant vertices than for its own local vertices. As

a result, it has been found that distributed memory machines cannot support graphs as

large as those on significantly smaller shared memory systems, which do not require such

15

ghost cell schemes. Though it should be noted that ghost cells are not a requirement, and

large-scale graph applications have been developed using other techniques, such as increasing

messaging to transfer data or hashing the mapping of vertices to nodes [28, 29]. But these

approaches still limit scalability by increasing the message buffers and necessary bandwidth,

and significantly increasing the computational overheads.

Finally, the key to achieving higher performance with the PBGL is to keep as much work

local as possible and to make effective use of spatial and temporal locality in the local

data. But this ultimately limits scalability by forcing an ill-suited programming model that

does not address the requirements of the application area, but, instead, the requirements

of the conventional computing platform. Ultimately, from a performance standpoint, the

PBGL demonstrates that the CSP/BSP model, and the use of MPI, over distributed memory

systems is a poor match for graph applications. Yet, it does show the benefits of a generic

programming for designing a robust and flexible library, enabling productive programmers.

2.2 State of High Performance Computing System

Conventional high-performance computing systems are those that serve the most extensive

sets of applications with the highest level of capability. Two classes of HPC systems establish

the convention in HPC — a broad, and always evolving, field with the introduction (and,

in some cases, reintroduction) of new technologies and strategies such as custom massively

parallel processors (MPPs), manycore processing elements, and graphics processing unit

(GPU) accelerators. The first class, comprising shared memory multithreaded systems, is

the most widely used for highly threaded computing. The second class, distributed memory

commodity clusters [30, 31, 32], is the most widely used platform for large-scale parallel

computing. Sections 2.2.1 and 2.2.2 introduce these two classes of systems.

16

2.2.1 Shared Memory Systems

The general system architecture of any shared memory system is a single main memory

shared by some number of processing units. Logically, each processing unit is able to access

any address in memory. Figure 2.5 illustrates a possible scenario for a uniform memory access

(UMA) shared memory system with 16 cores: each core has a private L1 and L2 cache, and

sets of four cores share an L3 cache on a socket. This is the basic architecture of both modern

high-end symmetric multiprocessors (SMPs) and multicore processor workstations. So called

non-uniform memory access (NUMA) shared memory systems provide an alternative system

architecture that preserves the shared access to all of main memory, but incorporates a notion

of proximity between a core and a given region of memory. For these systems, the specifics

of the system topology can dictate different performance penalties for access to different

regions of the address space.

Figure 2.5. Shared memory system with four cores per socket. The memory hierarchy shows
each core with private L1 and L2 cache, and each socket with its own L3 cache.

Table 2.1. Shared Memory model.
Cache-coherent shared memory MMT

Concurrency Medium-grained static threading Fine-grained dynamic threading
Coordination Shared state, locks, critical sections Shared state, mutex, FEB, etc.
Movement — —
Naming hardware-supported GAS hardware-supported GAS

The dominant performance bottlenecks of these systems come from contention for shared

resources, associated penalties in access latency, and the overheads associated with the man-

aging of threads. One approach is the use of static allocation of a fixed number of threads in

an application, combined with a programming model that supports simple data-parallel fork-

17

join semantics for partitioning the work over disjoint regions of the memory. This reduces

overheads in thread creation and destruction, and minimizes contention by providing guar-

antees of non-overlapping memory accesses. This style of shared memory processing has been

referred to as cache-coherent shared memory [29], exemplified by the OpenMP API [33, 34].

The primary limitations come in the form of starvation, as it is difficult to generate sufficient

parallelism to keep all processing units actively engaged [29], and the inability to mitigate

the effects of latencies associated with blocking threads.

Another approach is to use dynamic allocation and management of threads using a work

queue model, combined with a programming model that supports spawning concurrent tasks

independent of the number of processing units. This provides the opportunity for increased

levels of parallelism to keep the processing units engaged, and latency mitigation through

overlapping memory access with computation. The increased overheads imposed by the man-

agement of dynamic threads are reduced by specialized hardware support. This style of pro-

cessing has been referred to as massively multithreaded (MMT) shared memory [29]. Exam-

ples include the high-end Cray MTA/XMT [35, 21] architectures, as well as the Sun Niagara

processor for workstations. Though not as well formalized as the CSP and BSP models for

distributed memory processing, these two approaches are seen as the dominant execution

models for shared memory processing, and their properties are summarized in Table 2.1.

Application development for both classes of systems is at first aided by the shared mem-

ory view, which removes the need for explicit data partitioning. However, the major hurdle

becomes properly synchronizing concurrent operations to prevent race conditions, and sub-

sequently managing performance degradation incurred from managing contention on shared

resources. A race condition is present when an execution depends on the ordering of simul-

taneous operations by two or more parallel threads. If not properly managed with atomic

operations, locks, or critical sections, the resulting execution can be left in an inconsistent

state. Controlling shared access to simple data values is typically handled by the use of

atomic operations. Critical sections are imposed for managing execution of sequences of op-

18

erations that can only be executed by one thread at a time. Furthermore, the misuse of these

synchronization constructs can have the effect of raising contention, and even serializing ap-

parently parallel codes. All of this increases the burden on the programmer to manage the

sharing of resources in multithreaded applications both for insuring correct execution and

performance, which is notoriously difficult.

2.2.2 Distributed Memory Systems

The general system architecture of any commodity cluster is a collection of compute nodes,

linked by a dedicated network interconnect, as illustrated in Figure 2.6. Originally, compute

nodes presented little or no exploitable internal parallelism, favoring coarse-grain node-level

parallelism, with message-passing between nodes for coordination and data exchange: i.e.,

the Communicating Sequential Processes (CSP) model of computation2 [36, 37]. This model

supports general distributed computing, but for HPC, the focus on efficiency means the

reduction/management of latency and overheads.

Figure 2.6. Distributed memory system with four single-core nodes with interconnect.

Table 2.2. Communicating Sequential Processes model.
Concurrency Coarse-grained node-level parallelism
Coordination Message-passing
Movement Message-passing for data movement
Naming Disjoint local address spaces

The network interconnect provides the dominant performance bottleneck in terms of (rela-

tively) high communication latency and overhead. This favors an approach which minimizes

2See Table 2.2 for a synopsis of the CSP model.

19

communication and maximizes message payload (within some additional constraints, such

as messaging overheads and bisection bandwidth) through coarsening of work to reduce the

number of messages. Likewise, the dominant overheads would be associated with the man-

agement of sharing state (i.e., coordination and cooperation) between nodes. This favors an

approach where each participant (node) acts independently from the others, and synchro-

nization is kept to a minimum. These requirements are captured in the Bulk Synchronous

Parallel (BSP) [38] model, which became the primary strategy for expressing parallelism in

applications on large-scale commodity clusters.

A clean mapping between the model of computation and the application area led to the

success of commodity cluster computing for the last two decades. Traditional simulations of

physical phenomena [17] have large data sets that are well-structured. These exhibit good

temporal and spatial locality and greater amounts of computation versus communication.

Furthermore, the structure of the data set was not likely to change, so static partitioning

into equal sizes for load balancing could be done by the programmer to evenly distribute

the workload across the system; with only a relatively small amount of data needing to be

shared between time steps, for realistic size runs, resulting in scalable use of memory and

message payload sizes. All of this allowed applications such as physics simulations to take

advantage of the CSP/BSP model and scale to previously challenging problem sizes.

The success of CSP/BSP with distributed memory systems has meant the widespread de-

ployment of commodity clusters and the development of mature but modest software runtime

systems and libraries supporting a wide range of applications. In particular, the Message-

Passing Interface (MPI) specification [39] has become the dominant way to program these

systems for STEM3 science problems. So much so, that many equate distributed memory

applications using MPI with the CSP/BSP model. Though it is not necessary to design an

MPI application following the BSP model, it must be acknowledged that this is by far the

3Science, Technology, Engineering, and Math.

20

dominant trend. Indeed, the advanced features of MPI-2 receive little attention, outside of

the I/O package.

2.3 Future Directions

The principal leads of the Parallel Boost Graph Library are actively working to support

the use of active messages over the point-to-point message-passing and bulk data movement

provided by MPI. Their target is the AM++ communication library for general distributed

memory programming [40]. Though there are other active message [41] based software sys-

tems available, such as GASNet and Charm++ [42, 43], the developers of AM++ viewed

the available options as either too low-level or too high-level, meaning the end user either

received too little or too much support — with both cases hindering productivity. Initial

results by Lumsdaine, Edmonds, and Willcock for graph processing with AM++ [40] are

promising. Yet, further work is needed to see how the PBGL is adapted from a model fo-

cusing on coarse-grained static parallelism and bulk message transfer, to a model where

the asynchronous work-moving communication primitives are best served by medium- to

fine-grained dynamic threading.

The proliferation of multicore and accelerator technologies [44] provide new opportunities

and challenges for distributed memory programming. Figures 2.7a and 2.7b show the dom-

inance of distributed memory computing, with both commodity cluster and MPP systems,

and the degree of exploitable intra-node parallelism in these systems, respectively, over the

previous two decades of Top500 supercomputers [45].

There are two current approaches to leveraging the potential of intra-node parallelism:

mapping CSP processors to cores and taking a hybrid model approach. While semantically

clean, the former must account for the introduction of heterogeneous latencies between CSP

processors which will exacerbate the penalties associated with the use of global barriers —

the longest running CSP processors will always determine the runtime of a BSP fork-join

21

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(
)#
)#
*
*
%
"

&
)#
)#
*
*
&
"

$
)#
)#
*
*
'
"

#
$
)#
)#
*
*
'
"

#
!
)#
)#
*
*
(
"

+
)#
)#
*
*
,
"

(
)#
)#
*
*
+
"

&
)#
)#
*
*
*
"

$
)#
)$
!
!
!
"

#
$
)#
)$
!
!
!
"

#
!
)#
)$
!
!
#
"

+
)#
)$
!
!
$
"

(
)#
)$
!
!
%
"

&
)#
)$
!
!
&
"

$
)#
)$
!
!
'
"

#
$
)#
)$
!
!
'
"

#
!
)#
)$
!
!
(
"

+
)#
)$
!
!
,
"

(
)#
)$
!
!
+
"

&
)#
)$
!
!
*
"

$
)#
)$
!
#
!
"

#
$
)#
)$
!
#
!
"

#
!
)#
)$
!
#
#
"

-./0.1#"

(a) Proportion of Top500 systems over previous three decades that were distributed mem-
ory commodity clusters or MPPs.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

#" $" &" (")" *" #$" #("

+,-.,/#"

(b) Distribution of cores per node of all distributed memory systems on the November
2010 Top500 list.

Figure 2.7. Dominance of distributed memory computing over the past two decades and
the rise of intra-node parallelism.

22

style application, and those processors will still be the ones that must incur the inter-node

latencies.

Use of hybrid approaches and/or ad hoc solutions are typically limited to only special-

ized single use codes, and of these, most are demonstrations or proof-of-concept codes, not

for general use. As example, one hybrid approach is to use CSP/BSP, specifically MPI, to

orchestrate inter-node processing, and cache-coherent shared memory, specifically OpenMP,

to manage intra-node multithreading. Again, this suffers from managing the relatively high

latency inter-node communication. Though there is potential benefit from using a multi-

threading model locally, success has been limited on conventional applications [46, 47], and

the combination of models is not expected to be readily programmable as both number of

nodes and intra-node parallelism increase in the future [8]. Further complicating the issue

is code portability, which is limited by approaches that attempt incremental extensions to

only a portion of the computing stack.

Recently, efforts have begun to reconsider the execution model to directly address the

computation requirements and goals in terms of performance and efficiency, not adherence

to legacy codes or conventional practice [8]. It is considered that execution model co-design

will offer the best chance for future success, and that future efforts for extending graph

libraries, such as the PBGL and MTGL will eventually align with a future convergent model

of computation for scalable parallel computing. The ParalleX model discussed in Chapter 3

is proposed as one such approach, and is the model with which this work is aligned.

23

Chapter 3

Data-Driven Computation with the ParalleX
Execution Model

A parallel execution model provides a conceptual framework for considering design decisions

across the computing stack: programming languages, compilers, runtime, operating system,

as well as system architecture and hardware technology. The semantics of the execution model

allows for the co-design of the different layers in the stack by defining the core concepts that

are fundamental to computation and invariant across any implementation. The experimental

ParalleX execution model [13, 14] represents a break from the HPC conventions of message-

passing computation on distributed memory systems, and static multithreaded computation

on shared memory systems. Instead, it defines an approach for enabling massively multi-

threaded, message-driven computation on current high-end machines and future extreme-

scale systems. This chapter describes the major semantic elements of ParalleX (summarized

in Table 3.1), and the use of policies for managing aspects of the model that vary across

systems and applications.

Table 3.1. The ParalleX model.
Concurrency Dynamic event-driven multithreading
Coordination Lightweight, localized synchronization primitives
Movement Asynchronous one-sided messages for work migration
Naming Hierarchical processes and active global address spaces
Introspection First-class entities for run-time adaptivity

3.1 The Execution Model Elements

3.1.1 Global Perspective

An Active Global Address Space (AGAS) is defined as an extension to the Partitioned

Global Address Space (PGAS) model [48, 49] for naming and referencing objects across the

24

system. The AGAS provides the convenience of a shared memory model and the scalability

of a distributed memory programming model. In ParalleX, processes, threads, and data

are all named objects in this global namespace. The active element of the AGAS refers to

the support for migration of data across disjoint memory spaces without renaming. This

is important because it allows for an object to move from one physical domain to another

without invalidating any references to it that might be held by other data objects or processes.

The computational space is partitioned into a set of locality domains mapped onto a

physical system. For each locality, the response time for action execution is bounded, and

compound atomic operations on local state are guaranteed, providing an upper bound on the

extent of a locality on a given system. The notion of locality aids the programmer, or dynamic

runtime heuristic, in reasoning about the relative costs of local and remote actions. Figure 3.1

illustrates the relationship between locality domains and AGAS, providing a ParalleX system

view to the application. Between the localities is an asynchronous communication domain

through which messages pass from one locality to another. These messages, which are called

parcels, communicate actions to be performed from one locality to another.

L0 L1 … Ln Localities

AGAS

Figure 3.1. System with n+ 1 locality domains and an AGAS providing global naming.

ParalleX processes are a departure from the dominant practice in HPC, enterprise server,

and low-end computing. Most models reflect the notion of a process directly from their low-

level system operating environment, e.g., the concept of a process in a multi-processing OS.

This practice provides for one or more large, heavy-weight processes per physical device (a

node in a commodity cluster). In contrast to this, ParalleX defines the concept of parallel

25

processes that can span multiple physical domains (logically identified as localities). The

process provides the context for all computation and data in an execution. They also serve as

the front line for resource management, by interfacing the active elements of the computation

with the physical system in which it is executing.

Each ParalleX application starts a main process that serves as the initial context for data

and execution for the application. During the lifetime of the process, other subprocesses can

be instantiated in parallel to further encapsulate data and execution. The process hierarchy

provides protection for data and other named objects in the AGAS by defining the visible

scope of names across the system. Also, these processes are able to span multiple localities,

which is significantly different from other models, where processes are limited to a single

physical domain.

Policies deal with those specific aspects of a parallel computing system that vary across

application demands, algorithmic complexity, system architecture, and device technology. A

policy defines the operational characteristics of a specific aspect of the system for a specific

execution of an application. Policies can be asserted at both compile- and run-time. A par-

ticular strategy for the run-time load balancing of data is an example of a policy: the choice

of strategy will depend on the choice of underlying system and the characteristics of the

chosen application. Other examples include thread scheduling strategies, consistency models

for distributed shared data, and run-time load balancing of time-varying data sets.

3.1.2 Event-Driven Dynamic Multithreading

Messaging in the ParalleX model takes the form of parcels. Parcels enable the movement of

work (continuation of execution) from one locality to another, akin to an active message [41].

A parcel carries an action to perform, the name of a target object upon which to apply the

action, the necessary parameters for the action, and possibly a continuation to be performed

after the action completes. When an action is applied to remote data, a parcel is created which

communicates the action to the locality where the target data resides. Upon arrival, a parcel

26

L0 L1

P0

P1

P0 P1 P0

(a) ParalleX over a distributed memory system
with intra-node parallelism.

L0

P0

P1

P0 P1

(b) ParalleX over a shared memory system.

Figure 3.2. ParalleX mapped to conventional systems. The top-most block(s) depict local-
ities mapped to nodes, and the lower block the AGAS spanning all localities. The colored
regions labeled P0 and P1 depict processes.

is converted into the appropriate action to be performed local to the target data. The sending

of continuations with actions allows for migrating the flow of continued execution control

avoiding round-trip messages when unnecessary. Data can also be sent in bulk transfers via

parcels; typically modeled as remote gets and puts.

Locally, actions are managed using a work-queue model. When a new action is initiated

from an active thread or the arrival of a parcel, a new thread is created. If all preconditions

for the thread’s execution are met, then it is considered pending, and enqueued in the work

queue awaiting the allocation of a compute resource. Otherwise, the thread is considered to

be suspended and buffered, awaiting the satisfaction of some conditions before it is made

pending. Figure 3.3 depicts the flow of tasks through such a work queue model. Note that

ParalleX threads are expected to be short-lived, in comparison with other models that favor

statically allocated, long-running threads that can last for the lifetime of an application (e.g.,

OpenMP and UPC [33, 50]).

The realization of execution in the ParalleX model takes the form of a split-phase trans-

action. A split-phase transaction is an execution instance that can span multiple localities.

Each phase is realized by a thread, which acts only on local data (threads do not span local-

27

Thread SchedulerThread Scheduler

Execution contexts
(OS thread + core)

New remote action

New local action

Active task
Pending tasks
Thread scheduler

Local Work Queue Policy Global Work Queue Policy

Figure 3.3. ParalleX work queue model with two policies. The local policy (left) depicts
one work queue of pending tasks per execution context. The global policy (right) depicts one
queue for all available execution contexts.

ities, though they can access remote data). The transaction is split by potential long latency

requests, such as those for I/O or waiting for a result of separate (possibly remote) action.

This phasing, when combined with the work queue model, allows for exploiting medium- to

fine-grain parallel workloads.

Coordination of concurrent actions is managed through the use of lightweight primitives

called Local Control Objects (LCOs). LCOs are named objects that capture the semantics

of a variety of synchronization primitives, such as dataflow templates, full-empty bits, and

futures [51, 52, 53]. LCOs provide the framework for defining constraint-based coordination of

process execution by managing the conditions under which execution can proceed, selectively

suspending and invoking actions based on the local state information. This use of local

synchronization primitives replaces the global barrier constructs used by other models with

localized lightweight synchronization points that can be adapted to the particulars of the

algorithm to decrease unnecessary starvation of compute resources.

28

3.2 An Enabling Software Runtime System HPX

The HPX runtime system is a portable and modular, low-level software system implementing

the ParalleX model [14]. HPX provides a low-level interface for writing ParalleX applications

using a common abstraction over commodity multicore distributed memory clusters and

shared memory systems. Portability is stressed in two dimensions: operating system and

system architecture. HPX is tested and deployed across Linux, Mac OS X, and Windows

HPC operating systems. Also, it runs on systems ranging from single or multicore laptops

and workstations, to larger shared memory systems and commodity clusters — making it an

excellent platform for initial code development, debug testing, and large-scale science runs.

The experimental ParalleX Graph Library and all graph kernels demonstrated in this work

are implemented using the low-level programming interface exposed by HPX.

The design philosophy behind HPX is to provide a modular and tunable implementation

of the major semantic elements of the ParalleX model (See Figure 3.4). Modularity allows

for the selection of point implementations optimized for a given target architecture. An

example of this is the removal of the software implementation of global address translation

on shared memory systems in favor of the available hardware support. This also opens up

opportunities for integrating specialized hardware devices, such as an FPGA-based thread

scheduler or accelerators in the form of GPGPUs. Each module also exposes sets of tunable

parameters as policy interfaces. The thread scheduler alone allows for choosing the number

of operating system threads and work queues, the mapping between these, and different local

work stealing policies. All of this leads to a highly flexible system that can be tailored for

high performance.

The following sections document implementation and programming details relevant to this

work.

29

Interconnect
AGAS

translation

thread
manager

LCOs

parcel
port parcel

handler thread pool

action
manager

Figure 3.4. HPX software system architecture showing the primary modules providing key
functionality.

3.2.1 Implementation of the ParalleX Feature Set

Every instance of a running HPX executable is a locality, effectively mapping the notion

of a locality to the system-specific concept of a conventional process. On a shared memory

system, a single HPX runtime is instantiated, so the entire shared memory node is treated

as a single locality. In the case of a commodity cluster environment, a single HPX runtime is

instantiated on each node, so that each node is treated as a separate locality. HPX handles

the discovery and coordination of independent runtimes for multilocality runs, presenting a

single system view to the user application. This is done by setting up all AGAS and parcel

services, prior to executing the application’s main thread.

Every instance of a named object in ParalleX, and so in HPX, is associated with a globally-

unique identifier (GID). A GID is an unstructured 128-bit integer that can be used to

determine whether the object is local to the caller, which locality it is on, and what its

physical address is. This is all done through the AGAS module. HPX implements the AGAS

using a client-server model. One locality hosts an AGAS network service, implemented over

TCP/IP (for Ethernet), that maintains the mapping of all global identifiers (GIDs) to named

objects in the system (e.g., Threads, LCOs, etc.). All other localities participate as clients of

this AGAS service, sending queries to resolve the current location of an object. Local caching

of GID translation information is done when possible to improve scalability.

30

Parcel messaging support in HPX is divided between two modules: a parcel handler and

a parcel port. Each locality hosts a network service, implemented over TCP/IP, called a

parcel port and another module called the parcel handler. This service is responsible for

receiving incoming parcels from the network and sending new parcels generated from its

locality. Received parcels are either forwarded to the parcel port of a different locality or

passed to the parcel handler. The parcel handler interfaces between the parcel port and the

action manager, translating newly arrived parcels into actions to be executed on the locality,

or receiving newly created parcels destined for remote localities.

The action manager module translates action definitions (actions for short) into parcels

or threads. When receiving an action definition, the action manager queries the AGAS to

determine whether the action is to be performed locally or not. If it is to be executed

remotely, it passes the action to the parcel handler. Otherwise, it passes the action to the

thread manager, which is responsible for generating a ParalleX thread and enqueing it in

the work queue.

HPX implements the multithreaded work queue in a similar fashion as other popular

software systems, such as Cilk++, Intel’s Threaded Building Blocks, and Sandia’s Qthreads

packages [54, 55, 24]. Each thread manager has associated with it a set of OS threads and a

set of work queues. Each OS thread is mapped to a hardware resource (core), and provides the

actual execution context for a ParalleX thread. Each work queue is simply a data structure

holding threads which are ready to run, but have not yet been allocated an execution resource.

Depending on the policy selection, there will be one work queue serviced by all OS threads, or

a work queue per OS thread. In the later case, local work stealing is used for load balancing

work across the OS threads.

An executing thread will run non-preemptively until it reaches a synchronization point

or completes the action. A synchronization point can be reached by interacting with an

LCO, which has the ability to yield control of an execution resource by suspending the

calling thread. After completing an action, the thread will transfer the result to the action’s

31

continuation object (actually a reference to another LCO) and terminate. HPX provides a

collection of basic LCOs implemented on top of low-level system-dependent synchronization

primitives. These include mutexes, semaphores, full-empty bits [56], and futures [52, 53, 57],

among others.

3.2.2 Application Programming

Given that HPX is a generic C++ library, application development is necessarily restricted

to such. There is a separate effort underway to create a C language interface for development

of ParalleX applications, called the XPI, but it was not yet available for use in this work.

Instead, all development efforts for this work were coded through direct use of the HPX

library using the core constructs of plain actions and components, discussed here.

A plain action1 defines a task to be executed as a ParalleX thread. This is a wrapper around

a C++ function, defining type information for the return value and arguments, and holding

a reference to the function. If the function is to return a value, it is of type hpx::actions::-

plain result action<>, otherwise it is simply a hpx::actions::plain action<>. Fig-

ure 3.5 shows the definition of a simple function and an associated plain action description.

Definition of multithreaded Fibonacci

1 int fib(int);

2

3 typedef actions::plain_result_action< // Action type

4 int, // Return type

5 int, // Argument type

6 fib // Function name

7 > fib_action; // Action name

Figure 3.5. Plain action definition for Fibonacci. Line 4 specifies the return type of the
action, Line 5 the argument type, Line 6 the name of the function, and Line 7 the name of
the action.

1The term plain action is used to differentiate it from a component action, discussed later.

32

HPX defines the apply construct as a low-level mechanism used for spawning actions. The

semantics are that an action is applied to a target object. If the target is local to the action,

a thread is created and added to the local work queue. Otherwise, in the case where the

object is not local, a parcel is created and the action is sent to the destination locality, where

a thread will be created and added to that remote work queue. This has the benefit of hiding

the tasks of determining the locality of an object and creating threads/parcels, and allowing

for optimization of those operations by the runtime system implementation. A plain action,

which does not return a result, can be invoked by calling hpx::applier::apply<act>(tgt,

...) method, where act is the action to complete, tgt is the target object, and ... is a list

of zero or more arguments for the action.

The apply construct can also take a continuation object for handling the result of an action.

In HPX, a continuation is a type of object that can be triggered (updated) and, as a result,

can cause other actions to occur. In the case of applying an action that returns a value, the

continuation is used as the destination for the result value returned by the executing function.

The interface for this version of apply is hpx::applier::apply c<act>(tgt, ..., cont).

These are the same arguments associated with the apply<>() version, but with the addition

of the cont argument providing the continuation.

The application programmer is not likely to use the apply c() interface directly. Instead,

most HPX codes utilize the higher-level futures construct to spawn actions and retrieve the

result value. The semantics here are that the action is spawned and the caller immediately

receives a future-value LCO and continues execution. This future value acts as a promise of

the result from the action. When the calling thread needs this value, it evaluates the future

value, resulting in one of two scenarios, depending on whether the result value is available.

If the spawned action completed and triggered its continuation (the future value) with the

result value, then evaluating the future value simply returns the value to the calling thread.

However, if the spawned action has not completed, then evaluating the future value will

cause the calling thread to suspend, pending the availability of the result value — the thread

33

is sometimes referred to as being in a depleted state. Eventually, when the spawned action

completes and triggers the future value with its result, the future value LCO will reactivate

the suspended caller. Figure 3.6 shows the use of futures in implementing a multithreaded

version of the Fibonacci function in HPX. HPX defines two classes for working with futures:

Definition of multithreaded Fibonacci

1 int fib (int n)

2 {

3 if (n < 2)

4 return n;

5

6 hpx::lcos::future_value<int> n1 =

7 hpx::lcos::eager_future<fib_action>(here(), n - 1);

8 hpx::lcos::future_value<int> n2 =

9 hpx::lcos::eager_future<fib_action>(here(), n - 2);

10

11 return n1.get() + n2.get();

12 }

Figure 3.6. Usage of HPX eager futures in calculating the nth Fibonacci number.

hpx::lcos::eager future<> and hpx::lcos::future value<>. In order to create a future

value, the user calls hpx::lcos::eager future<act>(tgt, ...). (Note: all the arguments

are the same as those for the apply<>() method.) The result of this call is an instance of

a future value<>. In order to retrieve the value of the future (i.e., to evaluate it), the user

can call the future value<>::get() method. From the perspective of the calling thread,

such a call always returns the result: any suspension of the thread is handled transparently.

This support is sufficient for designing and executing multithreaded codes in HPX. Fig-

ure 3.7 illustrates the execution of the example Fibonacci code. The top-most ParalleX thread

represents the initial execution of fib(4). The two arrows originating from this ParalleX

thread indicate the spawning of the fib(3) and fib(2) actions, corresponding to lines 6–9 in

Figure 3.6. The initial thread is then suspended, at line 11, when it attempts to retrieve the

value of the fib(3) action, which is not ready. This pattern is recursively applied for values

34

of n greater than or equal to 2, at which point final values become ready and the suspended

threads are reactivated. As illustrated, the circles and diamonds labeled ‘v’ denote the future

LCOs providing the coordination for this multithreaded computation.

vv
v

v

v

v v

v

v

v

v v v

active thread

suspended thread

message (comm. or sync.)

local control object

Figure 3.7. Multithreaded execution of Fibonacci code showing the spawning of Par-
alleX threads interdependencies through suspension and synchronization, for an execution
of fib(4).

However, plain actions and LCOs do not provide the means for defining application-

specific persistent named data structures. That is where HPX’s component model comes

in. A component encapsulates data and exposes a set of actions that can be used to query

and/or update the component. The component actions are effectively the same as the plain

actions discussed earlier, except that they can only target an object of a specific component

type.

Coding of a component requires the definition of the core functionality and the actions.

These are typically defined in a single class, by convention called the component’s server

implementation. Figure 3.9 is an example of a server implementation of a component. This

component has associated with it a single integer value and actions for initializing, adding

to, querying, and printing this value. Given the GID for an instance of this component, the

programmer could add 42 to the internal value and then query for the updated value as

follows:

35

1 hpx::applier::apply<accumulator_server::add_action>(gid, 42);

2 x = hpx::lcos::eager_future<accumulator_server::query_action>(gid).get();

Optionally, the programmer also can code stub and client implementations. The stub

implementation is a class providing the component interface as a set of static C++ methods

that encapsulate the use of the apply<>() and eager future<>() methods for interacting

with the server (seen above). The client implementation is another class providing the same

interface, but this time it encapsulates the use of the stub interface. Figures 3.10, and 3.11

round out the full implementation of the component in HPX. The following code shows how

to create a new instance of the component, initialize it, add 42, and then query for the

internal value, and retrieve the GID using the client interface (lines 2–9); the use of the stub

interface is also shown (lines 12 and 13).

1 // Client interface

2 accumulator_client accu;

3 accu.create(next());

4

5 accu.init(0);

6 accu.add(42);

7 long x = accu.query();

8

9 hpx::naming::id_type gid(accu.get_gid());

10

11 // Stub interface

12 accumulator_stub<accumulator_server>::add(gid, 42);

13 x = accumulator_stub<accumulator_server>::query(gid);

The execution of the above user code for a multilocality run is illustrated in Figure 3.8.

The single ParalleX thread in locality L0 (far left) represents the execution of the user

code. Creation of the accumulator component (line 3) is a synchronous action that spawns

a ParalleX thread on L1
2 to create the new component instance there; hence the suspension

of the thread during the remote action. When the component is ready, lines 5–7 spawn

2In a multilocality configuration, HPX maps the set of N localities to a vector 〈L0, L1, . . . , LN−1〉. The method next() is a

helper routine that, when called from locality Li, returns the GID of locality Lj , where j = (i+ 1) mod N .

36

two asynchronous remote actions and one synchronous remote action. These details are

obscured by the high-level interface exposed by the client implementation, but review of

the stub implementation (Figure 3.10) shows that the init() and add() methods use the

apply<>() interface for spawning their respective component actions, while query() uses

an eager future<>() LCO.

L0 L1

?
arg_

Suspended px
thread
Message
(comm. or sync.)

?
arg_

Locality

Component

Data

Legend

Active px thread

Figure 3.8. Multilocality execution of accumulator code.

37

Definition of Accumulator component

1 class accumulator_server

2 : public hpx::components::detail::managed_component_base<accumulator>

3 {

4 public:

5 enum actions

6 {

7 accumulator_init = 0,

8 accumulator_add = 1,

9 accumulator_query_value = 2,

10 accumulator_print = 3

11 };

12

13 void init() { arg_ = 0; }

14

15 void add (long arg) { arg_ += arg; }

16

17 long query() { return arg_; }

18

19 void print() { std::cout << arg_ << std::endl; }

20

21 typedef hpx::actions::action0<

22 accumulator, accumulator_init, &accumulator::init

23 > init_action;

24

25 typedef hpx::actions::action1<

26 accumulator, accumulator_add, long, &accumulator::add

27 > add_action;

28

29 typedef hpx::actions::result_action0<

30 accumulator, long, accumulator_query_value, &accumulator::query

31 > query_action;

32

33 typedef hpx::actions::action0<

34 accumulator, accumulator_print, &accumulator::print

35 > print_action;

36

37 private:

38 long arg_;

39 };

Figure 3.9. Component server definition for accumulator. Source: HPX code base
examples/accumulator/accumulator/server/accumulator.hpp.

38

Definition of Accumulator component

1 struct accumulator_stub : hpx::components::stub_base<accumulator_server>

2 {

3 static long query(hpx::naming::id_type const& gid)

4 {

5 typedef accumulator_server::query_action action_type;

6 return hpx::lcos::eager_future<action_type>(gid).get();

7 }

8

9 static void init(hpx::naming::id_type gid)

10 {

11 hpx::applier::apply<accumulator_server::init_action>(gid);

12 }

13

14 static void add (hpx::naming::id_type gid, long arg)

15 {

16 hpx::applier::apply<accumulator_server::add_action>(gid, arg);

17 }

18

19 static void print(hpx::naming::id_type gid)

20 {

21 hpx::applier::apply<accumulator_server::print_action>(gid);

22 }

23 };

Figure 3.10. Component stub definition for accumulator. Source: HPX code base
examples/accumulator/accumulator/stubs/accumulator.hpp.

39

Definition of Accumulator component

1 class accumulator_client

2 : public client_base<accumulator, accumulator_stubs>

3 {

4 typedef client_base<accumulator, accumulator_stubs> base_type;

5

6 public:

7 accumulator(hpx::naming::id_type gid)

8 : hpx::components::base_type(gid)

9 {}

10

11 void init()

12 {

13 this->base_type::init(gid_);

14 }

15

16 void add (long arg)

17 {

18 this->base_type::add(gid_, arg);

19 }

20

21 void print()

22 {

23 this->base_type::print(gid_);

24 }

25

26 long query()

27 {

28 return this->base_type::query(gid_);

29 }

30 };

Figure 3.11. Component client definition for accumulator. Source: HPX code base
examples/accumulator/accumulator client.cpp.

40

Chapter 4

Advanced Semantics for Graph Processing

A directed graph is a general abstraction for representing entities and relationships between

entities. The entities are represented by vertices, and the relationships by pairs of vertices,

called edges. In the field of Graph Theory, a directed graph is formally defined as an ordered

pair (V,E), where V = {u, v, w, . . .} is the set of vertices and E = {(u, v) : u, v ∈ V } is

the set of edges. Vertices are the principal structural element of the graph. In a directed

graph, each vertex has associated local meta-data defining the sets of out-going edges and

neighboring vertices. The total number of vertices in a graph is refered to as the order of the

graph. An edge e = (s, t) represents a single piece of structural meta-data, the relationship

between two vertices. In this case, e is said to have source s and target t. Likewise, s is said

to have out-going edge e and neighboring vertex t. The total number of edges in a graph is

refered to as the size of the graph.

An attributed graph is defined as a graph with one or more associated attribute maps. An

attribute map is a functional mapping either from vertices to vertex labels or from edges to

edge labels. This definition supports many separate views of the same structure by keeping

the structure of the graph seperate from any particular labeling of vertices and/or edges. A

social network indicating friendship between individuals has the same structure independent

of whether the vertices are labeled with the individual’s name, home zipcode, or some other

value relevant to an end user analyst. This is important because multiple simultaneous

views of the network support different concurrent algorithms: a Breadth First Search might

color vertices as it traverses the network finding shortest paths from an individual, while a

component finding algorithm would label vertices with their respective component.

41

Common operations on graph structures can be classified as simple actions that access

elements of the graph or return structural metrics, and compound actions that traverse

or search the graph. Simple actions are primarily concerned with querying the graph for

certain measures, such as the order of the graph or the degree of a vertex, or accessing

individual vertices and edges. Traversal operations either involve the vertex and edge sets,

or the structural meta-data. An example of the former is searching for a specific vertex in

the vertex set. Graph algorithms for solving the Single Source Shortest Paths problem or

performing a Breadth First Search are examples involving the latter.

Graph-based applications compose many graph operations along with auxiliary actions and

data structures for constructing and storing problem solutions. An example graph kernel is

used throughout this chapter to define the requirements for scalable graph processing and

present the approach taken in this work. The kernel is concerned with performing many

concurrent subgraph extractions1. A graph G = (V,E), a set of edges L ⊆ E, and a depth

value d are given. The solution is a collection of subgraphs S = {H0, H1, . . . , H|L|−1}. The

problem is to populate S with subgraphs Hi corresponding to each ei ∈ L.

The following sections define a new approach to graph processing designed to support

these requirements using the ParalleX execution model. Section 4.1 establishes the use of

asynchronous actions in a continuation-migration style of algorithm design for graph appli-

cation programming. Section 4.2 presents the phased use semantics for coordinating highly

concurrent execution over shared data structures. Section 4.3 defines a technique for sup-

porting graph traversal strategies with embedded control objects. And Section 4.4 discuses

supporting scalable execution over distributed memory systems.

1This is the third graph application kernel defined in the parallel graph benchmark, and is covered in more detail in
Section 6.2.

42

4.1 Asynchronous Actions and Continuation

Migration

The approach taken to graph processing in this work encourages fine-grain asynchronous

actions that carry continuations. A basic apply construct [58] is used for invoking an asyn-

chronous action. This is the same apply construct provided by the HPX apply<>() and

apply c<>() methods (Section 3.2), and has the general form:

apply(<target> : <action> [, <arg>]* [-> <continuation>]);

A target specifies the object on which the action should be applied. The target can be a

data object, such as a vertex, or a locality domain. Either way, the target determines where

the action is executed. An optional argument list and continuation can be specified. The

continuation is embodied as an local control object (LCO) that will receive the return value

result through an implicit follow-on call to apply(continuation : set, (result)).

The futures construct [52, 53] can be used for invoking an asynchronous action and syn-

chronizing on the result. This is done by creating a future-value LCO and passing that as

the continuation of an apply. When the result of the action is required, the future-value is

evaluated. If the result value is not available, evaluation will suspend the calling thread until

the value becomes available. The creation of the future-value and the spawning of the action

are encapsulated by using the eager keyword2, as seen in the following example.

The naive Fibonacci action introduced in Section 3.2 provides a good example of the use of

futures. Algorithm 4.1 defines the Fib(n) action in terms of the semantics just defined. Lines

4 and 5 spawn asynchronous actions to compute fib(n−1) and fib(n−2). Line 6 synchronizes

on the two future-values, sums them, and returns its value. Figure 4.1 illustrates the execution

pattern using futures. The circles labeled v denote the setting of a future-value, while the

diamonds and small empty circles denote an evaluation of a future-value. The dashed arrow

2This corresponds to the eager future<>() method in the HPX runtime system.

43

identifies a causal relationship between the setting and evaluation of a particular future-value.

The straight lines show suspension of a thread pending the availability of a future-value.

input : integer n

1 if n < 2 then
2 return n
3 end

4 n1 ← eager Fib(n− 1)
5 n2 ← eager Fib(n− 2)

6 return eval(n1) + eval(n2)
Algorithm 4.1: Recursive Fibonacci action Fib(n).

vv
v

v

v

v v

v

v

v

v v v

active thread

suspended thread

message (comm. or sync.)

local control object

Figure 4.1. Execution of the recursive Fibonacci process Fib(4).

Futures provide a useful method for spawning asynchronous actions and synchronizing

on their associated return values. However, the binding of action and return value is not

applicable in all situations. Some actions are better designed using a more general strategy

of moving the continuation into the action, as opposed to passing the continuation along

with the action as the continuation parameter of an apply. This can increase flexibility

by allowing an action to choose between multiple continuation paths. It also removes the

need to design actions around return values, which is required by the future-value approach.

The dataflow-variable construct [59] is introduced as a replacement for future-values when

anonymous producer/consumer execution is preferred. A dataflow-variable is similar to a

44

future-value in that it can be assigned a value, and evaluation will suspend the caller until

a value is available. The difference is that there is no producer action associated with a

dataflow-variable.

A simple example of anonymous producer/consumer continuation migration is demon-

strated by a recursive algorithm for calculating the factorial of a positive integer, as defined

by the Fact and Fact′ actions (Algorithms 4.2 and 4.3, resp.). Algorithm 4.4 shows the

use of a dataflow-variable k to synchronize on the result of a call to Fact(6, k) (Figure 4.2

illustrates the execution). The dataflow-variable k is passed from one short-lived action to

the next, until the tail of the recursive process is reached, and k is assigned the solution

value. No call chain is maintained between threads, and it is likely that the system will have

retired nearly all previous instances of the Fact and Fact′ actions by the time final action

executes. This leaves the dataflow-variable k as the connection between the caller and the

solution.

input : integer n, LCO k

1 apply (Fact′, (n, 1, k))
Algorithm 4.2: Continuation-passing style Factorial action Fact(n, k).

input : integer n, integer a, LCO k

1 if n = 1 then
2 apply (k, set, (a))
3 else
4 apply (Fact′, (n− 1, n · a, k))
5 end
Algorithm 4.3: Continuation-passing style Factorial action Fact′(n, a, k).

1 k ← dataflow-variable
2 apply (Fact, (3, k))

// Intermediate work not depending on the value of Fact(3)

3 v ← eval (k)
Algorithm 4.4: Example using CPS Factorial action.

45

k

k

Fact(3, k)

Fact'(3,1, k)

Fact'(2, 3, k)

Fact'(1, 6, k)

Figure 4.2. Execution of the CPS Factorial process Fact(3, k).

The execution pattern seen in Figure 4.2 is not possible using the future construct. This

is because the futures construct provides a simple synchronization point on the completion

of a specified action. The spawning of the action is combined with the creation of the LCO,

effectively tying creation and initialization. The dataflow variable construct provides a more

general synchronization point where creation, initialization, and use are all independent.

Algorithm 4.5 defines a classic example demonstrating this point. A new dataflow-variable d

is created and passed off to four asynchronous threads. The first three threads (spawned on

Lines 2–4) attempt to print the value of the d. The final thread (spawned on Line 5) sets the

value d. The order of execution of these four threads does not matter because each of the

printing threads waits for the value of d to be set by the final thread. Figure 4.3 illustrates

this independence in the execution pattern.

// Create dataflow variable ‘d’

1 d← dataflow-variable

// Spawn actions that use value of ‘d’

2 apply (λ x.(print eval (x)), (d))
3 apply (λ x.(print eval (x)), (d))
4 apply (λ x.(print eval (x)), (d))

// Spawn action to initialize value of ‘d’

5 apply (λ x.(apply (x : set, (42))), (d))
Algorithm 4.5: Example using dataflow-variable for anonymous producer/consumer
execution.

46

print d

d

d d
d

create d

eval(d)

set(d)

Figure 4.3. Execution of dataflow-variable example Algorithm 4.5.

Now that the basic constructs for asynchronous actions, continuation migration, and syn-

chronization have been introduced, loop abstraction is provided to complete the consideration

of basic support necessary for this approach to graph processing. Loop abstractions encap-

sulate patterns of concurrent execution. By raising the level of abstraction they provide the

programmer with a tool that simplifies the program and enhances their ability to reason

about their concurrent execution. The policy and runtime implementers are able to use this

raised abstraction to provide optimized solutions that best match the requirements of the

programmer with the reality of the target operating environment (e.g., OS, architecture,

technologies).

The forall construct is an example of a loop abstraction that maps an action to each item

in a container. The container can be a set of edges, as in the graph example, or a range

of integers. An example of the latter is shown in Algorithm 4.6, which is an extension of

Algorithm 4.5. The print actions are now spawned from a forall over the range [0, 1000). As

before, the synchronization is managed by a dataflow-variable, demonstrating the use of this

construct as a general barrier. More loop abstractions are covered in Section 5.5, and used

extensively in the implementation of the benchmark graph application kernels in Chapter 6.

1 forall the i ∈ [0, 1000) do
2 apply (λ x.(print eval (x) · i)), (d))
3 end
4 apply (λ x.(apply (x : set, (2))), (d))

Algorithm 4.6: Example using forall to print multiples of 2.

47

4.2 Constraint-Based Coordination through Phased

Use

Returning to the example, the subgraph extraction graph kernel is considered in terms

of the approach outlined in the previous section. The main kernel action can be reduced

to the spawning of |L| asynchronous subgraph extractions, since each subgraph Hi can be

computed in parallel. The typical means for this is to fork asynchronous subgraph extraction

actions, and wait on each to join back to the calling thread. Each returned subgraph is then

inserted into the solution set of subgraphs S. The action terminates when all subgraphs

have been added. This execution pattern can be expressed concisely with future-values as in

Algorithm 4.7.

// F an empty set of future-values

1 forall the e ∈ L do
2 F ← eager ExtractSubgraph(e, d)
3 end
4 forall the f ∈ F do
5 S ←eval (f)
6 end

Algorithm 4.7: Example implementation of graph kernel action with future-values.

To increase the efficiency in a dynamic multithreaded model such as ParalleX, opportu-

nities for increased asynchronous actions and continuation-migration must be exploited. If

the action of inserting Hi in S is moved into the corresponding subgraph extraction action

as the continuation, then the insertions will happen as soon as possible in parallel. Algo-

rithm 4.8 presents the updated approach. Note that there is no longer any synchronization

performed in this action. The future-values were removed, and a simple asynchronous apply

is used. Proper synchronization is still maintained, but now it is between the producers of

the subgraphs which initialize S, and the consumers of S. Figure 4.4 shows the difference

in the execution pattern between these two approaches, highlighting S (the blocks in the

figure) as a synchronization point.

48

1 forall the e ∈ L do
2 apply (ExtractSubgraph, (e, S, d))
3 end

Algorithm 4.8: Example implementation of graph kernel action with continuation-
passing.

vv vvv v

Figure 4.4. Comparison of graph kernel action execution.

This approach encourages the design of self-coordinating actions in place of programmer-

managed actions. There is no longer a need to explicitly synchronize on the completion

of the subgraph extraction actions, as all actions must have completed before S is fully

initialized. Moving the continuation of execution into the subgraph extraction action makes

S the natural synchronization point for the application, not the joining of the asynchronous

extraction actions. This also means that the action which spawned the subgraph extraction

kernel does not need to wait on the action to complete before moving forward. Instead, it

only waits (synchronizes) if it needs to use S before it is initialized.

Synchronization on S is supported by a so-called phased use semantics, which is an ex-

tension of the dataflow-variable semantics to compound data structures. Phased use refers

to two properties of a data type. First, an instantiation of a data type may be in one of

three phases: construction, initialization, and use. Second, all actions over the data type are

associated with one or more phases. The set S supports insertion of items, but that action is

only permitted when S is in the initialization phase. This prevents attempts to insert before

49

the data structure has been constructed. Likewise, S supports access of items, but that is

not permitted until S has reached the use phase. Invoking an action before the target data

has reached the associated phase will cause the instance of the action to suspend. When

the container reaches a new phase, it releases all actions suspended on that phase. Properly

used, the phased use semantics can increase the level of exploitable parallelism while remov-

ing a principal opportunity for observable nondeterminism and associated data races when

processing shared data structures such as graphs.

4.3 Graph Traversal Strategies through Embedded

Coordination

The implied linear ordering of items in an array allows for traversing the array either forward

or backward from any given item. The foreach loop construct can be used to access each

item in the array in order. A set lacks any defined ordering over items. However, the foreach

construct can still be used over a set, with the order in which items are accessed generally

undefined. A graph, which is a collection of vertices and edges, does not have a single ordering,

but many possible orderings. The two mechanisms for traversing a graph are iteration through

the vertex or edge sets, and path finding through the graph meta-data structure. The set of

vertices and the set of edges can be traversed when the goal is to simply access each vertex or

edge, regardless of order and irrespective of the graph structure in both cases. In the case of

identifying all edges with a weight greater than a specified value, it is likely that the action

would work over the edge set of the graph.

Simply processing the vertex and edge sets is common in graph applications, but the

traversal of graph meta-data is at the core of many important graph algorithms. The task

of finding all shortest paths from a given vertex s is often described in terms of a traversal

from s to all reachable vertices using a Breadth First Search (BFS). The solution for finding

components in a graph can use a Depth First Search (DFS) from a vertex to identify the

50

component. In each case, the graph algorithm is an adaptation of a particular traversal

strategy. The point is demonstrated by a simple algorithm for coloring all vertices found in

a DFS from start vertex s, such as in Algorithm 4.9, that could be used to color all vertices

in a component3.

input : attributed graph GC , vertex s

1 if C[s] = white then
2 C[s]← black
3 forall the v ∈ s.neighbors() do
4 DFS(GC , v)
5 end

6 end
Algorithm 4.9: Depth First Search action DFS(GC , s).

A given traversal strategy can be adapted by defining actions that should occur at certain

event points. This is captured in the algorithm visitor [60, 21] pattern. A visitor is an object

that embodies a specific traversal pattern and exposes a set of event points that can be

used to invoke specified actions at different stages of the traversal. This work leverages the

Local Control Object (LCO) construct to embed the visitor pattern into the graph structure.

This integrates the control of the traversal and management of continuations into the graph

structure using the constraint-based coordination provided by the ParalleX model.

In the running example, the subgraph extraction involves identifying a subgraph in G

about a given edge ei and creating a new graph structure Hi. A subgraph is identified as

all vertices and edges along any path of length d originating from ei. This traversal strategy

is embodied by a Parallel Search (PS). The necessary modifications to the PS are ending

traversal when a path has reached the specified depth d and inserting new vertices and edges

into Hi as they are found in G. This only requires adapting three event points: first visit

to a vertex, subsequent visit to a vertex, and first encounter of an edge. When a path first

visits a vertex in G, the vertex is labeled with the remaining depth of the path and inserted

3Note that a graph G with attribute map C : V → {black, white} is denoted GC .

51

into Hi, and the search is continued along each out-edge in parallel. Subsequent visits to

a vertex will check the label to determine if it should continue to the neighboring vertices:

if a longer search path has already encountered the vertex, this search path is abandoned;

otherwise, the label is updated with the remaining depth of this path, and the search is

continued. When a path crosses an edge for the first time, the edge is inserted into Hi These

simple extensions of PS provide a concise definition of subgraph identification and extraction

process. Figure 4.5 illustrates such a parallel search over a graph.

Parallel search over graph structure

Figure 4.5. Execution of the parallel traversal of a graph structure.

4.4 Large-Scale Data through Distribution

Large-scale shared data structures spanning the entire system are prevalent in graph-based

applications. As problem data set sizes continue to increase, graph-based applications will

require distributed memory solutions. Yet the use of the previously discussed semantic con-

structs should be uneffected by the specifics of the system topology or scale.

52

Transparently scaling applications to multiple locality domains introduces two primary

challenges: work migration for colocation of work and data, and distribution of the data

structures. The ParalleX model supports work migration through the use of parcels. A parcel

carries the necessary information to migrate the continuation of work local to the target data

residing on a different locality. The apply semantics is sufficiently high-level so that the use

of parcels is not seen to the programmer. If the programmer issues a query for the degree

of a vertex using “apply (v : degree(f))”, then the future-value f will eventually hold this

value. If v resides in the same locality, a new ParalleX thread will be instantiated and the

value of f set locally. If v resides on a different locality, a parcel will be created and sent to

instantiate the action local to v; the value of f will then be set using another parcel that

will migrate the set action local to the future-value. This means that the apply construct

is independent of the locations of the caller, target data, and subsequent continuation LCO.

The distribution construct is defined to aid in managing the physical distribution of con-

tainers (e.g., an edge list or graph) over the system. The distribution comprises a key space,

coverage, and distribution policy. The key space is the set of identifiers for the items in the

container. The coverage is the set of localities over which the container extends. And the

distribution policy defines the mapping from the key space into the coverage. Figure 4.6

depicts the role of a distribution in partitioning a container over a set of localities.

The key space refers to the domain of index values for items in a container. For an array

of size N , the key space is the integer range [0, N). For the directed graph, the distribution

policy is applied over the vertices, so the key space is the vertex set V . This is done because

a distribution over the edge set E might map edges (u, v) and (u,w) to different localities

in its coverage, effectively distributing the vertex u, and any edge distribution that prevents

such mapping is necessarily a distribution over V .

The coverage is the collection of locality domains allocated to a distributed structure.

This allows for both bounding the coverage to prevent two containers from overlapping or to

guarantee that two containers overlap. The latter is critical for aligning containers. Consider

53

…

L0 L1 … Ln

()

L2

() () Container members

CoverageL0 L1 … Lk

Partition strategy

System with n+1 locality domains

Execution over distributed container covering k locality domains

Figure 4.6. Illustration of the distribution construct.

the case of a graph G = (V,E) and an attribute map a : V → R defining real-valued weights

on the vertices of G. A process traversing the vertices of G is going to access both the

weight of the vertex and the structural information contained in the vertex. Therefore, it

is important to colocate the two. This is easily achieved by having the graph and attribute

map share a distribution over V , effectively aligning the local partitions of each distributed

structure.

The distribution policy defines the partitioning strategy for items in a container by map-

ping item identifiers to localities in the coverage. This is intentionally left as a policy decision

to allow for maximum flexibility and applicability to a broad range of applications. A simple

example would be selecting between a partitioning strategy that uses the modulo of the inte-

ger identifier to map an item to a specific locality in the coverage. A more complex example

would be a partitioning strategy that utilizes a full graph partitioning suite, such as Zoltan

or ParMetis [61, 62], to define a robust partitioning scheme minimizing edge cut set for a

particular data set. Either way, a balance must be found with respect to application and

data set that may not always be known a priori.

54

From the perspective of the programmer, no modifications are necessary to the use of the

concepts discussed in the previous section. The only difference is that the distribution must

be specified for a structure spanning multiple localities. In the running example, distributing

G, L, and S requires defining the distribution of each container. Since L ⊆ E, both L and

E should be distributed such that corresponding edges are located in the same physical

domain. Likewise, since each Hi ⊆ G, the subgraphs should also be aligned with G and L.

This is achieved by defining a distribution over the vertex set DV covering the available set

of localities, and sharing this distribution across G, L, and S.

Loop abstractions can utilize the distribution of a structure to cover multiple locality

domains. Given the edge list L has distribution DV , the forall in Algorithm 4.7 will partition

the work based on DV . This is illustrated in Figure 4.7 when the edge list is distributed over

k+1 localities. The algorithm is unchanged, as the forall manages the intermediate branching

of the execution to spawn local foralls to each locality.

…() () ()

…

…

For-all over distributed container

L0

Local work queues driving quad core processors

Edge list

L1 Lk

Figure 4.7. Execution of the distributed processing of an edge list.

55

The phased use semantics applied directly to distributed structure potentially creates a

distributed barrier. A decentralized approach is taken to reduce the effects of synchronization.

The container is defined as a collection of autonomous members. Each member is resident on

a single locality in the container’s coverage, and manages the local partition there. But the

member interface provides a global view of the container. Queries for information about the

container or access to items are always made to the member local to the caller. If a requested

item is managed by a different member, the action will be migrated to that member (located

using the container’s distribution), transparent to the caller. Properly implemented, this

will allow members on each locality domain to progress independently, only synchronizing

during construction and initialization to ensure that the container is internally consistent

and global information is propagated to each member. A particular implementation in the

ParalleX Graph Library for graph and vector containers is discussed further in Chapter 5.1.

Finally, any distribution of vertices and edges will also distribute the traversal strategy.

Embedding the coordination in the vertex means that the traversal strategy is naturally

distributed with the vertices. The previous parallel search example is illustrated again in

Figure 4.8 for the same graph distributed over k+ 1 localities. Each graph member contains

a disjoint subset of vertices and edges. When the parallel search is started on locality L1,

it spawns initial paths to three local vertices and one remote vertex on L0. The execution

pattern is the same as in Figure 4.5, showing the transparency of the distribution of the data

structure on execution.

56

…

L0 L1 … LnL2

System with n+1 locality domains

L0

Local work queues driving quad core processors

L1 Lk

…

… Graph members

CoverageL0 L1 Lk

Partition strategy

Figure 4.8. Execution of the distributed traversal of a graph structure.

57

Chapter 5

A ParalleX Graph Library

The ParalleX Graph Library (PXGL) is a software system focused on the utilization of

intrinsic phased use semantics and data-directed techniques for highly scalable message-

driven, dynamic multithreaded graph processing based on the ParalleX model of computa-

tion. The initial implementation of the PXGL was developed to directly leverage the High

Performance ParalleX (HPX) runtime system. Section 5.1 discusses the implementation of

distributed data structures in the PXGL employing phased use and decentralized coordina-

tion. Section 5.2 presents an example application code to demonstrate the use of the PXGL.

Sections 5.3–5.5 define the data structures and constructs supporting graph application de-

velopment with the PXGL.

5.1 Decentralized Data Structures

The distributed structures provided by the PXGL follow the phased use semantic introduced

in Section 4.2. An instance of a structure is always in one of three phases: construction,

initialization, or use. Each action on a data structure is associated with at least one of these

phases. If an action is applied to the instance before it has reached the required phase,

the action is suspended until the instance reaches that phase. This allows for actions over

distributed structures to be invoked without regard to the current phase of the target, as

the necessary coordination is integrated into the distributed structure.

The primary challenges presented by distribution are exploiting locality when possible and

localizing synchronization points to reduce global barriers. The approach taken in the PXGL

is to implement decentralized distributed structures. A distributed structure is decomposed

into a set of autonomous members, where each member acts as a proxy for a local portion of

58

the distributed structure. Internally, each member maintains a mapping to all other members

(its siblings). Global information such as the size and order of a distributed graph is also

kept at each member. This provides a local target for actions on each locality covered by the

distributed structure, preventing remote operations whenever possible.

Embedding the phased use semantic into a distributed structure increases the potential for

the blocking phases to create global barriers in the application code. The decentralized ap-

proach affords the opportunity to manage the phases for each member, instead of managing

a single phase across the entire coverage. Thus the construction and initialization processes

are designed to allow each member to advance phases independently. Some internal coordina-

tion is necessary to establish connections among members and distribute global information.

The following discusses balancing the necessary synchronization with the ability to advance

phases from construction to initialization and initialization to use.

5.1.1 Construction

A distributed structure must be constructed through a coordinated effort between concurrent

actions in order to create all members and establish the internal mappings between members.

Declaration of a distributed structure instantiates a new named member of that type on a

specified locality. The construction process begins when a distribution is defined for the initial

member. Using the distribution, new members (siblings) are declared on each locality in the

coverage. In order to construct the siblings, the initial member spawns an asynchronous

replicate action on each. After spawning the replicate actions, the member is finished with

construction and moves into the initialization phase.

The replicate action carries the distribution and the collection of sibling GIDs to each

member. Each replicate action sets the distribution and the internal siblings map for the

target member. Once completed, the member has finished the construction phase and moves

into the initialization phase.

59

Figure 5.1 depicts this decentralized construction process for a distributed structure over

four localities. The initial member is declared on locality L2. The only synchronization in-

volved in this process is the spawn and sync associated with creating members and collecting

their GIDs, which is necessary to establish the internal mappings between members. The

shaded areas denote the lifetime of each member from declaration to construction. And the

circles labeled c correspond to the completion of the construction phase for each member.

L0 L1 L2 L3

v
v v

v

c

c
c

c

v
v

Figure 5.1. Decentralized construction process for a distributed structure in the PXGL.

5.1.2 Initialization

Distributed structure initialization is organized as a coordinated effort of independent mem-

bers to establish a consistent global state across all members. The exact information that

needs to be exchanged is specific to the distributed structure, but the basic patterns of exe-

cution and coordination are the same across all implemented structures in the PXGL. In the

case of a vector, the global state is the total number of items in the global vector. When a

60

member is ready to use, this count will be available when querying any member, providing

fixed-cost look up of global size, with no chance of a remote request being generated.

The initialization process is more involved than that for construction. The process is

not initiated by one member, but independently for each member. Also, the members are

mapped to a logical d-ary spanning tree defining a single leader and at most d followers

for each member (note that the root of the tree has no leader). The process proceeds by

synthesizing local information up this logical tree to the root, and then inheriting the global

aggregate down the tree to all of the members.

When a member begins initialization it builds and populates the local data. Then it waits

to receive local information from each of its followers. Once the local information is received

by all followers, a synchronous update action is applied to the leader. This action is responsi-

ble for both sending the aggregate of local information to the leader and communicating the

global information back to this member. This pattern can be seen in Figure 5.2. The spawns

represent the synthesis of local information to the root member on L0. The synchronization

of future values (the v’s) represents the inheritance of the global information to the non-root

members. The shaded areas denote the lifetime of the initialization process for each member.

The diamonds labeled c represent the precondition that the distributed structure must have

been constructed before it can be initialized. And the circles labeled i correspond to the

completion of the initialization phase.

5.2 Application Example: Scalable Data Generator

The Scalable Data Generator (SDG) procedure provides an example of how to write a simple

application that takes advantage of the decentralized distributed structure and phased use

semantics. The procedure involves generating a graph data set and writing the edge list to a

file. The three main components to this procedure are the construction of a vector to store

the generated edges, the generation of the edge tuples and initialization of the edge tuples

61

L1 L0 L2 L3

cc

i

v
v

i

c

i

v

v

i

c

i

v

i

v

L0

L1 L2

L3The logical synchronization tree

Figure 5.2. Decentralized initialization process for a distributed structure in the PXGL.

62

vector, and the writing of the edges to the file. Code listing 5.3 provides the definition of

the main thread of execution. The application begins by constructing the edge tuple vector

(Line 5). This is an asynchronous action allowing the main thread to continue execution

while the distributed vector is built concurrently. Next, the generate rmat data action is

spawned (Line 7), again asynchronously. This action is responsible for generating the edge

data and initializing the edge tuples vector. Finally, the write action is applied to the vector,

this time using the blocking for all data-directed construct (Lines 8–10). This is done to

write each local portion of the distributed edge tuples vector to a local file.
Definition of Scalable Data Generator example

1 arbitrary_distribution<gid_type, range> et_dist(localities);

2

3 container_type edge_tuples;

4 edge_tuples.create();

5 edge_tuples.construct(et_dist);

6

7 apply<generate_rmat_data_action>(here, scale, edge_tuples);

8 blocking_for_all<

9 container_type, write_data_action

10 >(edge_tuples, filename);

Figure 5.3. Main thread definition for Scalable Data Generator example.

The only explicit synchronization in the entire SDG process is the use of the blocking

forall1. All other necessary synchronization is implicit in the use of the distributed edge

tuples vector. The data generator is able to run in parallel with the construction of the vector

because any attempt to initialize the vector before it is ready will simply suspend until the

vector finishes construction. Likewise, the file writer can be run concurrently because any

attempt to use the edge tuple vector will suspend until the vector has completed construction.

Figure 5.4a depicts a more traditional phasing of the three components, where construction,

initialization, and use are handled sequentially. This PXGL solution is shown in Figure 5.4b.

1The current runtime system implementation requires that the programmer guarantee termination of all threads before

application shutdown. The blocking forall is used to meet this requirement.

63

Construct
edge list

Generate
edges and
initialize list

Write
edge list

(a) Traditional phasing in Scalable Data Generator

Construct
edge list Generate

edges and
initialize list

Write
edge list

(b) PXGL-style phasing in Scalable Data Generator

Figure 5.4. High-level dependencies in the Scalable Data Generator.

5.3 Auxiliary Structures

5.3.1 Regions

A region models the set of identifiers for the items in a container. The PXGL defines the

Range class representing the integer range [0, N).

Associated Types

index type
The type of an item identifier.

size type
The type of a count.

Valid Expressions

region<Range>(n)
Constructs a region of n items modeling the range [0, n).

has index(i)
Returns a Boolean value indicating whether the index i is in the region.

size()
Returns the number of items in the region.

64

5.3.2 Distributions

A distribution comprises a region, set of localities, and partitioning strategy. The region

models the set of identifiers for the items in the container. The set of localities defines the

coverage over which the container extends. And the partitioning strategy defines the mapping

from the indices in the region to localities in the coverage.

The PXGL defines three partitioning strategies: ConstantDistribution, ArbirtraryDistribu-

tion, and BlockDistribution. The ConstantDistribution maps all items to a single locality, and

works over all regions. The ArbitraryDistribution maps items by index into congruence classes

modulo the extent of the distribution. Given coverage C = 〈L0, L1, . . . , Lm〉, the Arbitrary-

Distribution strategy simply maps items with index i to locality Lk, where k = (i mod |C|).
This works over regions, such as Range, where the index type supports modulo arithmetic.

Finally, the BlockDistribution maps contiguous disjoint segments of the index space to dis-

joint localities. Each locality will have either N/|C| or N/|C| + 1 contiguous items. This

works over regions, such as Range, where the index type supports the concept of sequential

ordering.

Associated Types

index type
The type of an index into the distribution.

locality id type
The type of identifier for a locality. In HPX, this is the GID type hpx::naming::id type.

locality ids type
The type of a collection of locality identifiers.

region type
The type of region.

Valid Expressions

distribution<P>(l,r)
Creates a new distribution over locality set l and region r, modeling partitioning
strategy P.

65

distribution(l)
Creates a new distribution over locality set l. No region is specified.

coverage()
Returns the collection of localities covered by this distribution.

locale id(i)
Returns the index in the coverage of the locality where the item with index i resides.

locale(i)
Returns the identifier of the locality where the item with index i resides.

ready()
Suspends the caller until this member of the structure reaches the use phase.

ready all()
Suspends the caller until all members of the structure reach the use phase.

region()
Returns the region defining the index space for the distribution.

size()
Returns the number of localities covered by this distribution.

5.3.3 Containers

A container is a distributed object with the phased use semantic. Each local member of

the distributed container holds a disjoint subset of items. The PXGL defines the Vector

container for holding indexed items. The Graph is another type of container and is introduced

in Section 5.4.1.

Associated Types

distribution type
The type of distribution used for this container.

id type
The type of a GID.

ids type
The type of a collection of GIDs.

item type
The type of item stored in the container.

66

items type
The type of a collection of items in the container.

size type
The type of a non-negative count.

Valid Expressions

container(d)
Initiates construction of the container with the distribution d.

construct()
Sets the container as constructed.

clear()
Clears the contents of the distributed container and frees all associated memory.

constructed()
Synchronizes on the construction of the container. The caller will suspend if the con-
tainer has not been constructed, and re-activate when it is ready.

get distribution()
Returns the distributions of the container.

init(i)
Initializes the container with a collection of items to add to this member.

items()
Returns the collection of items held by this container member.

local to(i)
Returns the GID of the container member on locality i.

ready()
Suspends the caller until this member of the structure reaches the use phase.

ready all()
Suspends the caller until all members of the structure reach the use phase.

size()
Returns the size of the container.

67

5.4 Graph Structures

5.4.1 Graphs

A graph is an ordered pair (V,E), where V = {u, v, w, . . .} is the set of vertices and

E = {(u, v) : u, v ∈ V } is the set of edges. This is a distributed object with the phased

use semantic. A graph is initialized by either providing a (distributed) list of edge tuples, or

inserting individual vertices and edges. The PXGL defines the CSRGraph graph representa-

tion using a partitioned Compact Sparse-Rows data structure.

Associated Types

Associated types for the distributed graph.

distribution type
The type of distribution used for this graph.

edge descriptor
The type of an edge identifier.

edge tuple type
The type modeling a tuple of edges.

edge tuples type
The type modeling a collection of edge tuples.

id type
The type of a GID.

ids type
The type of a collection of GIDs.

size type
The type of a non-negative count.

vertex descriptor
The type of a vertex identifier.

weight type
The type of an edge weight.

68

Valid Expressions

The directed graph interface.

graph<Representation>(d)
Creates a new graph following distribution d. Representation defines the internal
data structure to use to store the graph data.

add edge(e)
Adds the edge e to the graph.

add vertex(v)
Adds the vertex v to the graph.

clear()
Clears the contents of the distributed graph and frees all associated memory.

construct()
Sets the graph as constructed.

constructed()
Synchronizes on the construction of the graph. The caller will suspend if the graph has
not been constructed, and re-activate when it is ready.

edges()
Returns the edge set local to the target member.

get distribution()
Retrieves the distribution of graph.

init(L)
Initializes the graph from the collection of edges tuples L.

local to(i)
Returns the GID of the graph member on locality i.

neighbors()
Returns the neighbor set local to the target member.

order()
Returns the number of vertices in the graph.

ready()
Suspends the caller until this member of the structure reaches the use phase.

ready all()
Suspends the caller until all members of the structure reach the use phase.

69

size()
Returns the number of edges in the graph.

vertices()
Returns the vertex set local to the target member.

5.4.2 Property Maps

A property map defines a mapping of keys to values. This is used in the context of graph

processing to associate values with the structural elements of the graph; e.g., the vertices

and edges. This is a distributed object with the phased use semantic. The PXGL defines the

PropertyMap container that supports vertex and edge attributes.

Associated Types

distribution type
The type of distribution used for this property map.

id type
The type of a GID.

ids type
The type of a collection of GIDs.

key type
The type of key, either vertex descriptor or edge descriptor.

size type
The type of a non-negative count.

value type
The type of value stored in the map.

values type
The type of a collection of values in the map.

Valid Expressions

PropertyMap<Key,Value>(d)
Initiates construction of the map with the distribution d.

clear()
Clears the contents of the distributed map and frees all associated memory.

70

construct()
Sets the property map as constructed.

constructed()
Synchronizes on the construction of the property map. The caller will suspend if the
property map has not been constructed, and re-activate when it is ready.

get distribution()
Returns the distributions of the property map.

init(i)
Initializes the map with a collection of items to add to this member.

item(i)
Returns a reference to the item held by this map with index i.

local to(i)
Returns the GID of the property map member on locality i.

ready()
Suspends the caller until this member of the structure reaches the use phase.

ready all()
Suspends the caller until all members of the structure reach the use phase.

size()
Returns the size of the distributed map.

5.5 Data-Directed Constructs

5.5.1 For-all

A forall spawns an action for each member in a distributed object. In the case of a container,

the action can be applied to each local item in parallel. A forall has the general form:

for all([<object>]+, <action> [, <arg>]*);

If invoked with more than one distributed object, each object must have aligned distributions.

The action is passed the GID of each object along with the argument list. The PXGL defines

the for all and blocking for all methods. The for all is asynchronous, returning control to the

caller immediately after spawning each action. The blocking for all is synchronous on the

spawned actions, suspending the caller until all actions have completed.

71

5.5.2 Map

The map construct takes one container (the source) and builds a new container (the target).

A specified action is applied to each item in the source and the result is inserted into the

corresponding index in the target. A map has the general form:

map(<target>, <source>, <action> [, <arg>]*);

The target and source must have compatible distributions. The PXGL defines the map and

blocking map methods. The map is asynchronous, returning control to the caller immedi-

ately after spawning each action. The blocking map is synchronous on the target structure,

suspending the caller until the target completes the initialization phase and is ready for use.

5.5.3 Reduce

The reduce construct performs a reduction over items in a given container with a specified

operator. This is an extension of the forall that uses an additional operator argument to

reduce return values. A reduce has the general form:

reduce([<object>]+, <operator>, <action>, <value> [, <arg>]*);

The operator is used to reduce a final result value, which is stored in value. The value should

be an LCO, such as a dataflow-variable, to provide synchronization. The PXGL defines the

reduce method. The reduce is asynchronous, returning control to the caller immediately after

spawning each action.

72

Chapter 6

Experiments

This chapter tests the semantics of parallelism postulated in the ParalleX model for graph

problems to dynamically expose near fine grain parallelism for adaptive scheduling to im-

prove efficiency and scalability. The PXGL provides the programming framework for the

implementation of a parallel graph benchmark suite. Each application kernel is evaluated

through consideration of the source code and ability to generate fine-grain actions and exe-

cution patterns that match the graph data structure.

The Scalable Synthetic Compact Applications (SSCA) benchmark suite [15, 16] was de-

fined as part of the DARPA High Productivity Computing Systems (HPCS) project. The

goal was to define benchmarks for different application classes, each one comprised of number

of kernels. The second benchmark in this suite, SSCA2, is concerned with the analysis of

sparse graph structures. The final revision of the SSCA2 benchmark was in 2007. In 2009,

the Scalable Graph Analysis Benchmark (SGAB) was introduced as a revision of the SSCA2.

The specification defines four kernels that operate over a static, weighted, directed graph.

The first kernel constructs the graph from a list of “source target weight” edge tuples

read in from a given file. The second kernel traverses the edge set of the graph to build a set of

edges with maximal weight. The third kernel uses the edges from the previous kernel to find

and extract subgraphs. And, the fourth kernel computes the betweenness centrality measure

of a subset of the vertices in the graph. This set of representative graph-based application

kernels are used to stress a broad set of application characteristics.

The first kernel, Kernel 1, involves generating a new graph data structure from given

input data. The input data format is a sequence of edge tuples. Each edge tuple includes an

identifier for the source vertex, an identifier for the target vertex, and a value for the edge

73

weight. The identifiers and the value are all of integer type. The form of the solution to the

problem is a new directed graph with integer edge weightings.

The goal of any approach to this problem is to quickly build a graph data structure that

is useful across the three subsequent kernels. Unfortunately, each of the kernels will stress

different aspects of graph processing, and, as the specification suggests, there is likely to be

no optimal data structure across all three kernels. Furthermore, the specification requires

that the graph data structure is not modified before or during any of the additional kernels.

The benchmark specification provides the following guidance concerning preprocessing of

the input data and the generation of the graph. The source of the input data may be a file

loaded from secondary storage, or a graph generator process, which generates the data at

execution time, given some set of parameters. Either way, the kernel implementer has the

option to first load all of the data into an in-memory model before beginning the timed

portion of the kernel. When building out the graph data structure, the kernel implementer

is also permitted to ignore input data that would create self-loops, multi-edges, or isolated

vertices. Finally, the specification states that there is no concurrent execution of subsequent

kernels over the graph, and the implementer is free to allocate additional structures in the

graph for handling marking and/or locking of the graph data structure.

The implementation of Kernel 1 (Code listing 6.1) begins by defining an arbitrary distri-

bution1 for the graph (Lines 1 and 2). The coverage is set so that the graph structure will

span all available localities. Next, the graph is declared (Lines 4 and 5). This is a synchronous

action that creates a named entry in the AGAS for the graph.

The graph is constructed following the procedure outlined in Section 5.1.1 (Line 6). Fi-

nally, the graph is initialized from a distributed edge list following the procedure outlined in

Section 5.1.2 (Line 7). Both construction and initialization are asynchronous actions, so the

main thread completes immediately after the call to graph type::init() returns.

1This distribution type is used because of the number of vertices and edges are not known beforehand. If that information

were available, a block distribution would have been preferable.

74

Graph Construction

1 arbitrary_distribution<gid_type, range>

2 dist(my_proc.localities());

3

4 graph_type graph;

5 graph.create(here);

6 graph.construct(dist);

7

8 graph.init(edge_tuples);

Figure 6.1. Graph construction.

The execution pattern for this process on a single localitity is given in Figure 6.2. The

shaded portions represent the construction and initialization phases for the graph structure.

It can be seen that the construction and initialization of the graph are concurrent, but

self-synchronized. This guarantees that the construction completes before the initialization

begins. In fact, ordering of Lines 7 and 8 in the code listing can be swapped with no effect

on the execution.

v
v

c

i

c

Figure 6.2. Illustration of SGAB Kernel 1.

75

The following sections cover the three remaining kernels. The design of each algorithm

is discussed in the context of the benchmark specification and requirements. The PXGL

implementation of the each kernel is then presented. Results of preliminary analysis are also

included to both verify the achievement of fine-grain data-directed execution and to assess

immediate opportunities for optimiation in this model.

6.1 Large Set Classification

Large set classification (Kernel 2) involves finding the maximum edge weight in a graph and

collecting the set of edges which have that weight. The input data is the graph generated

by Kernel 1. The form of the solution to the problem is a new set of edges. This so-called

large-set will be used as input for Kernel 3.

The goal of any approach to this problem is to quickly identify the set of edges in the graph

that have maximum weight. This requires identifying the maximum edge weight across the

graph and generating the collection of edges that have that weight. The specification does not

explicitly state how this large-set should be represented; i.e., as a list of edge tuples or simply

a set of edge identifiers. The use of the large-set in Kernel 3 implies that the requirements

for that kernel should be considered when deciding how to build this data structure.

This kernel involves processing the edge list of the graph. The process of finding the maxi-

mum edge weight and collecting the set of corresponding edges is naturally parallelizable. A

conventional divide-and-conquer approach is appropriate for this kernel, as local maxima can

be found and edge sets formed in parallel, and merged to form the final collection of edges.

The approach uses the meta-data associated with the distribution of the graph to partition

the process across each locality. The local workload is again partitioned across a collection

of local actions. This local partitioning follows a simple block partitioning heuristic that is

controlled by a runtime parameter specifying the number of local partitions.

76

In the case of a multi-locality run, a new local control object is defined for controlling the

distributed reduction. The so-called have-max LCO is designed as a coordination point for

determining the global maximum value from a set of local maxima. The LCO is initialized

with the total number of participants N . When a participant determines its local maximum,

it signals the LCO with that value and suspends while waiting for the return value (the global

maximum). When the LCO is signaled, the new value is used to update an accumulated

maximum. If this is not the Nth signal, the future-value (return value) is not set. When

the Nth signal arrives, the global maximum in known, and all pending future-values are set,

effectively resuming all suspended participants. The have-max LCO returns a Boolean value

to each participant indicating whether or not their local value is the global maximum.

The kernel completes after the global maximum is determined. Each set of local edges with

maximum weight are then added to the large-set. This operation is done in parallel for two

reasons. First, local insertion of the data does not require the expensive operation of moving

a collection of edges between localities. Second, by keeping edges local to where they were

found, the large-set is aligned with the graph, which preserves locality of data. Maintaining

this alignment between the graph and the large-set will be important in Kernel 3.

6.1.1 Implementation

The main thread of the large-set classification process is defined in Code listing 6.3. This

begins by constructing a new container of edge tuples (Lines 1–3). The distribution of the

graph is used to align the container with the graph. This provides the large-set with the

same coverage over the set of localities and the same partitioning strategy as the graph. This

property is critical for designing a process that can effectively utilize locality information to

minimize inter-locality actions.

The have-max local control object is also constructed with the distribution of the graph

(Lines 5–7). This provides it with the extent of the search, which is also the number of

participants in the distributed reduction. Note that in this case, the construction of the

77

Large Set Classification

1 container_type large_set;

2 large_set.create(here);

3 large_set.construct(graph.get_distribution());

4

5 have_max_type is_max;

6 is_max.create(here);

7 is_max.construct(large_set.get_distribution());

8

9 for_all<

10 graph_type, container_type, filter_edges_action

11 >(graph, large_set, is_max);

Figure 6.3. Large set classification action definition.

LCO includes initialization. The final step of the process is to asynchronously spawn the

filter edges actions over the graph to initialize the large-set. A forall is used to distribute

the action (Lines 9–11). The main thread completes after the asynchronous forall, though

the full large-set classification process is logically finished when the large-set is initialized

and ready for use.

Code listing 6.4 defines the filter edges action. An instance of this action is executed

on each locality covered by the graph and large-set. The local portion of the edge set is

accessed though the local graph member (Line 6). Since the action is aligned with the graph,

it can use that locality information to retrieve a reference to the local edges, instead of

a full copy. Note that this call uses the graph structure, so if the graph has not finished

initialization, this action will suspend until the graph is ready.

In order to increase the parallelism and reduce the granularity of the search space, an-

other forall is used to partition the local edge list. This time, a blocking forall is used to

wait for all of the searches to complete. The filter edges part action, defined in Code

listing 6.5, simply iterates over a contiguous block of the edge list and updates the local

maximum and edge set. Once completed, the local maximum is known and the have-max

LCO is triggered (Line 14). This initiates the distributed coordination procedure described

78

Filter Edges

1 void filter_edges(

2 graph_type graph,

3 container_type large_set,

4 have_max_type is_max)

5 {

6 graph_type::edge_tuples_type edges = graph.edges();

7

8 size_type max_weight = 0;

9 graph_type::edge_tuples_type local_edges;

10 blocking_for_all<

11 filter_edges_part_action

12 >(edges, &local_edges, &max_weight);

13

14 if (is_max.signal(max_weight))

15 {

16 local_edges.clear();

17 }

18

19 large_set.init(local_edges);

20 }

Figure 6.4. Edge filter action definition.

79

previously, and the thread may suspend. Once the signal have-max LCO is set by the final

signal, any suspended thread is resumed and the signal call releases. The local edge set is

discarded if that participant did not find the global maximum. Finally, all large-set members

are initialized with the local set of edges with the maximum weight (Line 19). The local

initialization of the large-set is an asynchronous call entering this large-set member in the

coordinated initialization procedure described in Section 5.1.1. The filter edges action

completes immediately after call to initialize, having moved the continuation of action for-

ward to the large-set initialization process. Figure 6.6 illustrates the entire process for a

single-locality execution.

6.1.2 Analysis and Results

The design of the algorithm and implementation of Kernel 2 demonstrates the ability to use

conventional data-parallel programming techniques with the PXGL. Parallelism is exploited

at both the system node and processing core levels. The distributed vector data structure

and the parallel forall construct enabled partitioning a set of actions over multiple locality

domains. Execution was further subdivided on each locality by a runtime variable parameter

controlling the task granularity. Continuation migration in the algorithm design is demon-

strated by propagating the work of filtering the edge list out and performing the initialization

of the large-set from the leaves of the execution tree.

Constraint-based synchronization was demonstrated by both the phased use semantics of

the global data structures and the custom have-max local control object. The phased use

semantics guaranteeing correct execution was maintained transparent to the runtime alloca-

tion and execution of individual tasks. The use of an explicit global synchronization point

to reach consensus on the maximum weight value provided coordination for independent

actions through a high-level abstraction. This abstraction relieves the burden on the pro-

grammer for implementing the control logic for the application. Also, optimization of the

underlying synchronization pattern is possible. The current implementation only uses a flat

80

Filter Edges Partition

1 void filter_edges_part(

2 graph_type::edge_tuples_type &edges,

3 size_type start, size_type stop,

4 graph_type::edge_tuples_type &local_edges,

5 size_type &max_weights)

6 {

7 graph_type::edge_tuples_type part_edges;

8 size_type part_max = 0;

9 for (size_type i = start; i < stop; i++)

10 {

11 graph_type::edge_tuple_type e = edges[i];

12

13 if (e > part_max)

14 {

15 part_edges.clear();

16 part_edges.push_back(e);

17 part_max = e.weight();

18 }

19 else if (e.weight() == part_max)

20 {

21 part_edges.push_back(e);

22 }

23 }

24

25 {

26 scoped_feb l(use_feb);

27

28 if (max_weight < part_max)

29 {

30 max_weight = part_max;

31

32 // Replace current set of local edges with this part

33 }

34 else if (max_weight == part_max)

35 {

36 // Add this part to set of local edges

37 }

38 }

39 }

Figure 6.5. Filter edges partition action definition.

81

c

i

c

i

c

i

Figure 6.6. Illustration of SGAB Kernel 2 on a single locality.

82

tree, or broadcast style. Future version for large numbers of localities could employ better

synchronization structures, such as the d-ary tree used in the initialization process.

Initial strong scaling results are now presented for this approach. The total number of

cores is varied from 1 to 32. The scales under consideration range from 19 to 23, which is 4

million edges to 67 million edges2. All scaling figures show total running time of the kernel as

a function of operating system thread count. Each OS thread corresponds to an HPX work

queue associated with a core on the system.

The first set of figures shows the effect on execution time and scaling for different num-

bers of partitions. As the number of partitions is increased, the number of parallel tasks

increases and the workload per task decreases. No scaling is achieved when the workload is

not partitioned (Figure 6.7). Figures 6.8–6.14 show strong scaling is achieved as the number

of partitions increases. A different view of scaling is given in Figures 6.15–6.19, which show

execution time for individual data sets. This allows for comparing the effect of varying the

number of partitions for a particular data set. It is again clear that execution time decreases

as parallelism (in terms of number of partitions) increases.

6.2 Subgraph Extraction

Subgraph extraction (Kernel 3) involves parallel identification and generation of subgraphs.

The input data is the graph generated by Kernel 1, the edge collection generated by Kernel

2, and a given depth value used to bound the diameter of a subgraph. The depth parameter

is a positive integer and the specification suggests a setting of 3. The form of the solution to

the problem is a new set of subgraphs.

The goal of any approach to this problem is to build a collection of subgraphs. The edges

found in Kernel 2 are used as seeds for subgraphs. For each edge, a subgraph is found which

comprises all paths originating from that edge and having length equal to the specified depth

2For the data sets studied, the number of edges |E| ≈ 8 · 2Scale.

83

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01
0.1

1

● ● ● ● ● ●

● ● ● ● ●
●

●
● ●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.7. Kernel 2 strong scaling with 1 partition.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1
●

● ● ● ● ●

●

● ●
●

● ●

●

● ●
● ● ●

●

●
● ●

●

●

● ●
●

●

●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.8. Kernel 2 strong scaling with 2 partitions.

84

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
● ● ● ● ●

●

●
● ●

● ●

●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.9. Kernel 2 strong scaling with 4 partitions.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
● ● ● ● ●

●

● ●
● ● ●

●

●

●
● ● ●

●

●

● ●
●

●

●

●

●

●

●

●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.10. Kernel 2 strong scaling with 8 partitions.

85

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
● ● ● ● ●

●

●
● ● ● ●

●

●

● ● ●
●

●

●

●
● ●

●

●

●

●
●

●

●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.11. Kernel 2 strong scaling with 16 partitions.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
●

● ● ● ●

●

●
● ● ●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

●

●
●

● ●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.12. Kernel 2 strong scaling with 32 partitions.

86

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
●

● ● ●
●

●

●
● ● ● ●

●

●

● ● ● ●

●

●

●
●

● ●

●

●

●

●
● ●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.13. Kernel 2 strong scaling with 64 partitions.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.01

0.1

1

●
● ● ● ●

●

●

●
● ●

● ●

●

●

● ● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

1 2 4 8 16 32

Scale

● 19

● 20

● 21

● 22

● 23

Figure 6.14. Kernel 2 strong scaling with 128 partitions.

87

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.03125

0.0625

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

1 2 4 8 16 32

Partitions

● 1

● 2

● 4

● 8

● 16

● 32

● 64

● 128

Figure 6.15. Kernel 2 strong scaling for data set scale 19.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.0625

0.125

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

1 2 4 8 16 32

Partitions

● 1

● 2

● 4

● 8

● 16

● 32

● 64

● 128

Figure 6.16. Kernel 2 strong scaling for data set scale 20.

88

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.125

0.25

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

1 2 4 8 16 32

Partitions

● 1

● 2

● 4

● 8

● 16

● 32

● 64

● 128

Figure 6.17. Kernel 2 strong scaling for data set scale 21.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.25

0.5
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

1 2 4 8 16 32

Partitions

● 1

● 2

● 4

● 8

● 16

● 32

● 64

● 128

Figure 6.18. Kernel 2 strong scaling for data set scale 22.

89

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

0.25

0.5

1
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
● ●

●

●

●

●

●
●

1 2 4 8 16 32

Partitions

● 1

● 2

● 4

● 8

● 16

● 32

● 64

● 128

Figure 6.19. Kernel 2 strong scaling for data set scale 23.

value. Unlike the previous two kernels, the subgraphs found by this kernel are not used in

subsequent kernels.

The process of this kernel is considerably more involved than that of Kernel 2. The large-

set is processed in parallel and, for each edge, a new subgraph is extracted. This is a similar

pattern to that already seen in Kernel 2 and in earlier examples. The subgraph extraction

uses a parallel search of the graph to find vertices connected to the end point of the edge in

the large-set. This process uses the graph meta-data to direct the actions. Also, edges and

vertices are inserted into the new subgraph during the traversal.

Each subgraph will be aligned with the original graph. Therefore, the subgraph will have

the same distribution as the graph. However, the subset of localities that will actually hold

vertices and edges for the subgraph is not known until after the parallel search completes.

The coverage of the new subgraph will match the implied coverage of the vertices discovered

during the parallel traversal. In the case of a graph covering a large number of localities, the

90

subgraph could potentially only span a relatively small number of localities. Given the latency

associated with coordinated construction and initialization, a lazy construction approach is

taken, which builds out the collection of distributed members only as needed.

The data structure used to model the subgraph is a partially dynamic graph data structure.

The phased use semantics still apply, but the construction and initialization phases are

integrated to support growing the coverage along with the addition of new vertices and

edges. Only the initial member is created when the subgraph is first constructed. Insertion

of an edge (s, t) in a dynamic graph structure may extend the physical coverage of the

structure. If the target vertex t resides on a remote locality, then the action must determine

if a sibling exists on that locality. If not, the structure is extended to cover the locality, and

an add-vertex operation is invoked to add the vertex. The add-vertex action has a similar

effect for vertices mapped to different localities.

Since this initialization proceeds incrementally, a new strategy is needed for finalizing the

initialization phase so that the subgraph can be used. The init action is adapted for this

purpose to take no arguments and to simply signal that the structure can now be considered

as initialized. The only requirement is that there are no pending updates to the subgraph

that will be executed after the initialization action. Currently, this must be enforced by the

application code. This implementation presented here uses synchronous calls to add-edge

and add-vertex to handle this.

The actual creation of each subgraph is controlled by a parallel search over the graph.

A parallel search is started from the target vertex t of each edge (s, t) in the large-set.

Each search is performed concurrently, and many searches will possibly overlap. For a given

search, every path from t is traversed in parallel up to a given depth d. Figure 6.20 shows a

single parallel traversal. The directed graph (above) has labeled start vertex s. The parallel

traversal (below) begins from s and visits new vertices along all available paths. The dashed

arrows indicate a subsequent visit to a vertex, in which case the embedded LCO stops the

traversal. Note that this is the data-directed execution pattern described in Section 4.3.

91

s

PSearch from s

Figure 6.20. Illustration of data-directed PSearch-enabled execution pattern.

A so-called PSearch local control object is used to control the traversal of the graph.

These LCOs are embedded in the graph structure using an attribute, or property, map.

This property map also uses the lazy initialization strategy discussed for the subgraph.

The partially dynamic structure is used again for the same reason of forgoing the cost of

coordinated initialization over the entire coverage when only a fraction of the coverage might

actually be utilized. In this case, the PSearch LCOs are also built in a lazy fashion that

matches the traversal of the graph. This is crucial for space considerations when a parallel

search of a given depth may only cover 1000 vertices in a graph that contains over 25 million

vertices.

The PSearch LCO is extended to insert vertices and edges in an associated subgraph as

they are discovered. This utilizes the algorithm visitor pattern to ease the burden on the

programmer. The programmer is only responsible for extending the appropriate event points

and starting the search. From there the traversal discovers the subgraph and propagates the

actions to build the subgraph.

Figure 6.21 illustrates the subgraph extraction process for a single-locality execution. The

initial thread spawns asynchronous actions to construct the set of subgraphs and to spawn

92

the parallel search, then completes. The shaded triangles each represent a distinct parallel

traversal of the graph and generation of a new subgraph. The thread that spawns the con-

current traversals waits for each to finish. The entire process logically completes when the

collection of subgraphs has been initialized with all of the newly formed subgraphs.

i

c

i

i
i

i

c

Figure 6.21. Illustration of SGAB Kernel 3 on a single locality.

6.2.1 Implementation

The main thread of the subgraph extraction process is defined in Code listing 6.22. The

thread begins by constructing a new container to hold the individual subgraphs (Lines 1–3).

This container is aligned with the large-set generated in Kernel 2. This is done because each

subgraph is generated from one edge in the large-set. Following the spawn of the asynchronous

construct action, a forall is used to spawn individual extract subgraph actions (Lines 5–

8). As with the previous examples, the main thread terminates after spawning actions but,

logically, the process is finished when the subgraph container has finished initialization.

93

Kernel 3

1 graph_container_type subgraphs;

2 subgraphs.create(here);

3 subgraphs.construct(large_set.get_distribution());

4

5 for_all<

6 container_type, graph_type, graph_container_type,

7 extract_subgraphs_action

8 >(large_set, graph, subgraphs);

Figure 6.22. Kernel 3 main thread action definition.

The extract subgraphs action is defined in Code listing 6.23. The purpose of this action

is to further partition the local portions of the large-set. The blocking map construct is used

to spawn find-subgraph-actions and collect all of the GIDs for each subgraph built from

an edge on that locality (Lines 5–7). The local subgraph GIDs are then used to initialize the

container of subgraphs (Line 9). Note that a blocking map is used because local subgraphs

is a standard vector, not a PXGL container with phased use semantics.

Subgraph Extraction

1 void extract_subgraphs(

2 container_type large_set,

3 graph_type graph,

4 graph_container_type subgraphs)

5 {

6 ids_type local_subgraphs;

7

8 container_type::items_type edges = large_set.items();

9

10 blocking_map<

11 find_subgraph_action

12 >(edges, local_subgraphs, large_set, graph);

13

14 subgraphs.init(local_subgraphs);

15 }

Figure 6.23. Subgraph extraction action definition.

94

The find subgraph action is defined in Code listing 6.24. This action is responsible for

spawning a parallel search over the graph and subsequent subgraph generation. For each

edge (s, t) in the large-set, this action is invoked local to the source vertex s. The action

begins by creating a new subgraph locally. The distribution of the graph is supplied to begin

the lazy construction/initialization phase introduced earlier (Lines 4–6).

Find Subgraphs

1 id_type find_subgraph(

2 graph_type graph,

3 container_type::item_type edge,

4 size_type depth)

5 {

6 graph_type::distribution_type graph_distribution =

7 graph.get_distribution();

8

9 subgraph_type subgraph;

10 subgraph.create(here);

11 subgraph.set_distribution(graph_distribution);

12

13 vmap_type vmap;

14 vmap.create(graph_distribution.locale(edge.target()));

15 vmap.construct(graph_distribution, graph, subgraph);

16

17 subgraph.add_edge(edge);

18

19 vmap.visit(edge.target(), depth);

20

21 vmap.init();

22 subgraph.init();

23

24 return subgraph.get_gid();

25 }

Figure 6.24. Subgraph generation action definition.

An embedding of the PSearch local control object is generated for the graph (Lines 8–11).

This again follows the lazy initialization semantics introduced earlier. Note that the property

map is actually created local to the target of the edge, which might be remote (Line 9). This

95

is done because the parallel search might not cover the locality where this action is executing.

The subgraph was created locally because it will necessarily include the start edge and start

vertex, which are local.

After the property map is established, the start edge is added to the subgraph (Line

12). The parallel search is initiated by visiting the target vertex (Line 14). The entire

process of the parallel search and corresponding subgraph generation is handled by the

embedded PSearch local control object described earlier. The calls to vmap.init() and

subgraph.init() are done to synchronize on completion of the parallel search and sub-

graph initialization (Lines 16–17). Finally, the GID of the new subgraph is returned (Line

19).

6.2.2 Analysis and Results

This design of the algorithm and implementation of Kernel 3 demonstrates the ability to

implement fine-grain data-directed execution using the graph meta-data. Parallelism is ex-

ploited at all levels by reducing the granularity of actions to the processing of individual

vertices and allowing the execution flow control to be determined by the graph structure.

Continuation migration in the algorithm design is demonstrated by migrating the initializa-

tion of the subgraph into the extract-subgraphs action, and the migration of the subgraph

creation into parallel search.

Constraint-based synchronization is demonstrated by both the phased use semantics of

the distributed structures and the embedding of local control objects in the graph data

structure. The phased use semantics synchronized the construction, initialization, and use of

the large-set and graph structures. The algorithm visitor pattern implemented as a custom

local control object shows how a highly parallel algorithm with dynamic flow control can be

programmed. In both cases, the responsibility for managing flow control is moved from the

application code to the PXGL.

96

Initial strong scaling results are now presented for this approach. The total number of

cores is varied from 1 to 32. The scales under consideration range from 16 to 21, which is 0.5

million edges to 16 million edges. The actual workload for Kernel 3 is best expressed as the

number of ParalleX threads executed. This is because of the fine granularity of actions, and

the fact that the choice of start edges determines quantity and size of subgraphs extracted.

Figure 6.25 shows the total number of ParalleX threads executed for each scale. The impor-

tant observation is that the total number of ParalleX threads is not directly proportional to

the scale of the data set. Also, note that the increase in ParalleX threads with OS thread

count is attributed to HPX runtime management. Figure 6.26 shows the average rate of

ParalleX threads processed per second. Finally, Figure 6.27 shows the execution time of the

kernel. Both of these figures show that the application is able to utilize increased in system

resources.

OS thread count

To
ta

l n
um

be
r o

f P
X

th
re

ad
s

1e+06

5e+06

●
● ●

● ● ●

●

●
●

●
● ●

●

● ●

●

●

●

●
●

●
● ●

●

●

●
●

●

●
● ●

1 2 4 8 16 32

Scale

● 16

● 17

● 18

● 19

● 20

● 21

Figure 6.25. Kernel 3 total number of ParalleX threads.

97

OS thread count

PX
 th

re
ad

s
pe

r s
ec

on
d

50000

1e+05

2e+05

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

1 2 4 8 16 32

Scale

● 16

● 17

● 18

● 19

● 20

● 21

Figure 6.26. Kernel 3 ParalleX threads per second.

OS thread count

To
ta

l r
un

ni
ng

 ti
m

e
(s

ec
)

1

10

50

●

●

●
● ● ●

●
●

●
● ● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●
●

1 2 4 8 16 32

Scale

● 16

● 17

● 18

● 19

● 20

● 21

Figure 6.27. Kernel 3 strong scaling run time.

98

6.3 Computing Betweenness Centrality

Kernel 4 involves calculating a betweenness centrality (BC) score for each vertex in a graph

and collecting the set of edges which have the highest score. The input data is the graph

generated by Kernel 1 and a specified K4Approx value, used to limit the problem size. The

K4Approx parameter is an integer in [1, SCALE]. When this value is less than SCALE a

random subset of the graph vertex set, of size 2K4Approx is used to provide an approximate

solution to the problem. The form of the solution is a scoring of each vertex and a new set

of vertices with the highest score. The scoring process works by calculating shortest paths

in the graph, with each vertex scored according to the number of shortest paths that pass

through it.

The specification for the benchmark suggests a solution formulated by Brandes [63, 64].

The process uses an adapted single source shortest paths (SSSP) algorithm to compute the

betweenness centrality scores. The definition of the algorithm from the benchmark specifica-

tion is reproduced as Algorithm 6.1. The specification authors note two levels of exploitable

parallelism: each SSSP computation can proceed in parallel, and fine-grain parallelism within

the SSSP can be exploited. The approach taken here extends this to exploit a third level of

parallelism by distributing the computation over a distributed memory system.

The approach described here demonstrates the adaptation of this graph algorithm to the

methodology outlined in this dissertation. The computation is characterized as a distributed

ParalleX process. The execution is still fine-grain data-directed actions, but the process

model is used to maintain persistent data structures. The distributed ParalleX process is

aligned with the graph G. The bookkeeping data structures σ, d, δ, and P are logically

divided across the members of the process. The queue Q and stack S are maintained in the

initial member of the process. The BC structure is not included in the process. It is instead

implemented as a property map labeling the vertices of the graph. This is done independent

of the process because BC represents the solution that will be used by the parent process

and other actions in post-processing.

99

input : graph G = (V,E)
output: array BC[1 . . . n]

1 forall the v ∈ V do
2 BC[v]← 0
3 end

// Let VS be a random subset of V of size 2K4Approx

4 forall the s ∈ VS do
5 S ← empty stack
6 P [w]← empty list, ∀w ∈ V
7 σ[t]← 0, d[t]← −1, ∀t ∈ V
8 σ[s]← 1, d[s]← 0

9 Q← s
10 while Q 6= ∅ do
11 v ← Q
12 v → S
13 forall the w ∈ neighbors(v) do
14 if d[w] < 0 then
15 w → Q
16 d[w]← d[v] + 1

17 end
18 if d[w] = d[v] + 1 then
19 σ[w]← σ[w] + σ[v]
20 v → P [w]

21 end

22 end

23 δ[v]← 0, ∀v ∈ V
24 while S 6= ∅ do
25 w ← S
26 for v ∈ P [w] do

27 δ[v]← δ[v] + σ[v]
σ[w]

(1 + δ[w])

28 end
29 if w 6= s then
30 BC[w]← BC[w] + δ[w]
31 end

32 end

33 end

34 end
Algorithm 6.1: A betweenness centrality algorithm.

100

The actual SSSP algorithm is implemented as a set of actions that can be called on the

ParalleX process. This is done to support moving work to data. The algorithm defines an

expansion phase where new vertices are visited in a breadth-first traversal out from a start

vertex. A subsequent contraction phase synthesizes intermediate values up the spanning tree

generated by the first phase. In a multi-locality execution of the algorithm, vertices might

not be colocated. Therefore these two phases cannot be stated as simply as they are in the

original algorithm. Instead, they must be recast as actions that migrate work to the target

vertices. The following implementation maps this algorithm into the PXGL.

6.3.1 Implementation

The main thread of the betweenness centrality implementation is defined in Code listing 6.28.

Lines 2–6 generate the distributed set of start vertices, bc vertices. This process follows a

similar parallel filter pattern as the one used for Kernel 2, and is not discussed further. The

relevant information is that the start vertices container is aligned with the graph structure.

Following this, the bc scores property map is constructed. This will map the calculated

betweenness centrality scores to the vertices in the graph. A blocking forall is used to start

the individual SSSP processes for each start vertex (Line 13). The remainder of the main

action filters the vertices to generate the set of maximum weight (betweenness centrality

score) vertices. This again follows a similar pattern as those already discussed and is left out

for brevity.

The score bc vertices action is defined in Code listing 6.29. This action spawns the

parallel SSSP computations and corresponds to the forall on Line 4 of Algorithm 6.1. The

action is invoked once for each member of the bc vertices container. For each vertex asso-

ciated with the local member, a SSSP process (bc sssp type) is instantiated (Lines 4, 7, and

8). ParalleX process instantiation follows a similar pattern as the distributed containers such

as the vector and graph discussed earlier. This is because the distributed ParalleX process

is designed with the same decentralized approach and phased use semantics. The instantia-

101

Computing Betweenness Centrality

1 // Find the set of starting vertices

2 bc_vertices_type bc_vertices;

3 bc_vertices.create(here);

4 bc_vertices.construct(graph.get_distribution());

5

6 for_all<select_bc_vertices_action>(graph, bc_vertices);

7

8 // Calculate the betweenness centrality scores

9 bc_scores_type bc_scores;

10 bc_scores.create(here);

11 bc_scores.construct(bc_vertices.get_distribution());

12

13 blocking_for_all<score_bc_vertices>(graph, bc_vertices, bc_scores);

14

15 // Find set of vertices with the max betweenness centrality score

16 bc_max_vertices_type bc_max_vertices;

17 bc_max_vertices.create(here);

18 bc_max_vertices.construct(bc_vertices.get_distribution());

19

20 have_max_type is_max;

21 is_max.create(here);

22 is_max.construct(bc_max_vertices.get_distribution());

23

24 for_all<find_max_bc_scores_action>(bc_scores, bc_max_vertices, is_max);

Figure 6.28. Kernel 4 main thread action definition.

102

tion takes care of the allocation and initialization of the bookkeeping structures and general

setup for the process. Each process is started with the call on Line 10, which supplies the

start vertex. Lines 13–17 block the action from completing until all parallel processes have

finished.
Score BC Vertices

1 void score_bc_vertices(

2 graph_type graph,

3 bc_vertices_type bc_vertices,

4 bc_scores_type bc_scores)

5 {

6 bc_vertices_type::items_type vertices = bc_vertices.items();

7 size_type num_vertices = vertices.size();

8

9 std::vector<bc_sssp_type> bc_sssps(num_vertices);

10 for (size_type i = 0; i < num_vertices; i++)

11 {

12 bc_sssps[i].create(here);

13 bc_sssps[i].instantiate(graph, bc_scores);

14

15 bc_sssps[i](vertices[i]);

16 }

17

18 for (size_type i = 0; i < num_vertices; i++)

19 {

20 bc_sssps[i].ready_all();

21 bc_sssps[i].ended();

22 }

23 }

Figure 6.29. Betweenness centrality scoring action definition.

The betweenness centrality process implements the core of the algorithm (Lines 5–33).

Code listing 6.30 defines the start action for the process. The call to ready() is a standard

idiom in the distributed structures in the PXGL. The call is used to prevent the action from

executing before the structure is in the use phase (i.e., ready for use). The code follows the

algorithm almost explicitly, except for Lines 16 and 30. Line 16 corresponds to the forall

103

in the algorithm that visits all of the neighbors of a vertex. That process is defined across

two actions: expand source and expand target (Code listings 6.31 and 6.32, resp.) The

two actions are needed to manage the locality of the vertices. The expand source action is

invoked with respect to the member of the process that is colocated with the source vertex.

Likewise for the contract target action that is invoked with respect to the process member

aligned with the target vertex.

The process of visiting neighboring edges to build out the breadth-first traversal of the

graph is implemented across the expand source and expand target actions. As stated, the

former is invoked on the process member aligned with the source vertex. When executing

expand-source, the current d and σ values for source are available because this is the process

member aligned with source. Next, a blocking map is used to visit all neighboring vertices in

parallel. The expand target action executes on the process member aligned with the target

vertex. This is the action that actually implements the conditional update of d[w] and P [w],

corresponding to Lines 14–21 in the original algorithm.

The contraction phase of the algorithm involves propagating the intermediate σ and δ

values back up the spanning tree P generated during the expansion phase. The actions are

designed along the same rationale as the expansion actions. The contract target action

executes local to the target vertex. The local values for σ[target] and δ[target] are collected

and sent along as arguments to the contract source action. This subsequent action exe-

cutes local to the source vertex and computes the updated σ[source] value. When all source

(predecessor) vertices have been updated, the betweenness centrality score associated with

the target vertex is updated (Line 14).

6.3.2 Analysis and Results

The complex interactions between parallel actions is illustrated in Figure 6.35. The three

shaded triangles represent the parallel ParalleX processes. Inside each parallel process is a

fine-grain data-directed execution of the SSSP algorithm over the graph and updating of the

104

BC SSSP Process Begin

1 void bc_sssp_type::begin(vertex_id_type start)

2 {

3 ready();

4

5 sigma_[start_id] = 1;

6 d_[start_id] = 0;

7

8 Q_.push(start);

9 while (!Q_.empty())

10 {

11 size_type source = Q_.front();

12 Q_.pop();

13

14 S_.push_back(source);

15

16 vertex_ids_type new_vertices = expand_source(source);

17

18 for (size_type i = 0; i < new_vertices.size(); i++)

19 {

20 Q_.push(new_vertices[i]);

21 }

22 }

23

24 // Synthesize BC scores back up the shortest paths tree

25 while (S_.size() > 0)

26 {

27 vertex_id_type target = S_.back();

28 S_.pop_back();

29

30 contract_target(target, start);

31 }

32

33 set_ended();

34 }

Figure 6.30. Betweenness centrality process begin action definition.

105

BC SSSP Process Expand Source

1 vertex_ids_type bc_sssp_type::expand_source(vertex_id_type source)

2 {

3 ready();

4

5 long d_source = d_[source];

6 size_type sigma_source = sigma_[source];

7

8 vertex_ids_type new_vertices;

9 blocking_map<

10 expand_target_action

11 >(source, d_source, sigma_source, neighbors, new_vertices);

12

13 return new_vertices;

14 }

Figure 6.31. Betweenness centrality process expand source action definition.

BC solution structure. Outside of the processes, the rest of the actions are self-synchronized

on the use of the BC structure.

The design of the algorithm and implementation of Kernel 4 demonstrates the ability

to translate traditional PRAM graph algorithms into the ParalleX model. This approach

shows how a traditional approach can be parallelized directly in the PXGL. Parallelism is

exploited at all levels by distribution of the ParalleX process and the fine-grain data-directed

actions over the distributed graph structure, as in Kernel 2. Continuation migration in the

algorithm design is demonstrated by the movement of the work to data during the expansion

and contraction phases of the algorithm.

Constraint-based synchronization was demonstrated by the phased use semantics of the

global data structure. The phased use is demonstrated by the implicit synchronization of the

bc vertices, bc scores, and bc max vertices structures. Each structure is constructed

in parallel, and all initializations are invoked in parallel. In the case of the bc-vertices and

bc-scores structures, the bc-sssp processes that initialize the bc-scores structure cannot start

106

BC SSSP Process Expand Target

1 vertex_id_type bc_sssp_type::expand_target(

2 vertex_id_type target,

3 vertex_id_type source,

4 long d_source,

5 size_type sigma_source)

6 {

7 ready();

8

9 vertex_id_type new_vertex;

10

11 if (d_[target] < 0)

12 {

13 new_vertex = target;

14 d_[target] = d_source + 1;

15 }

16

17 if (d_[target] == d_source + 1)

18 {

19 sigma_[target] += sigma_source;

20

21 {

22 scoped_use l(use_feb_);

23

24 P_[target_id].push_back(source);

25 }

26 }

27

28 return new_vertex;

29 }

Figure 6.32. Betweenness centrality process expand target action definition.

107

BC SSSP Process Contract Target

1 void bc_sssp_type::contract_target(

2 vertex_id_type target,

3 vertex_id_type start)

4 {

5 ready();

6

7 size_type sigma_target(sigma_[target]);

8 double delta_target(delta_[target]);

9

10 blocking_for_all<

11 contract_source_action

12 >(P_[target], target, sigma_target, delta_target);

13

14 if (target != start)

15 {

16 pxgl::util::scoped_use l(use_feb_);

17

18 bc_scores_.init_incr(target, delta_[target]);

19 }

20 }

Figure 6.33. Betweenness centrality process contract target action definition.

BC SSSP Process Contract Source

1 void bc_sssp_type::contract_source(

2 vertex_id_type source,

3 vertex_id_type target,

4 size_type sigma_target,

5 double delta_target)

6 {

7 ready();

8

9 delta_[source] +=

10 (sigma_[source] / sigma_target) * (1 + delta_target);

11 }

Figure 6.34. Betweenness centrality process contract source action definition.

108

i

i
i

i

c

c

i

c

i

i

c

i

i

i

c

Figure 6.35. Illustration of SGAB Kernel 4 on a single locality.

109

until the bc-vertices structure has completed initialization. The phased use of the BC struc-

ture allows subsequent actions to implicitly synchronize on the completion of the process.

110

Chapter 7

Conclusions

This research establishes a new approach for highly concurrent, distributed execution for

scalable graph processing. Consideration of the requirements of graph-based applications

drove the specification of a set of data structures and parallel programming constructs. The

features of the ParalleX execution model provided the foundation for the execution of graph

algorithms in terms of message-driven dynamic multithreading. Together, this approach to

graph programming and the execution model provide a complete strategy for enabling future

scalable graph processing.

7.1 An Approach to Graph Processing

Reconsideration of the semantics of graph processing addresses the challenges related to

parallelism and efficiency through the design of new graph data structures and parallel

constructs. Graph semantics involve the definition of the primitive elements and actions

performed on those elements with respect to the objectives of distributed, dynamic mul-

tithreading graph processing. The graph, vertex and edge sets, vertices, and edges were

represented. Also the fundamental actions, such as visiting a vertex or edge, and the com-

pound operations, such as traversing or searching a graph, were designed to support the

objectives of continuation-passing style computation focused on moving work to data and

localized constraint-based coordination.

The guiding principle for graph algorithms, kernels, and applications utilizing fine-grain

data-directed threading must be to support continuously moving the computation forward.

Actions must carry with them the means of continuing execution dependent on the data

structure, producing follow-on actions that can independently progress the computation. At

111

finer-granularities, this is expressed in a continuation-passing style of computation. But at

higher levels, data-directed techniques, such as parallel-forall and map constructs express

the pattern of computation, while leaving the particulars of dynamic execution to an active

runtime system.

Current and anticipated application scales suggest that a shared memory approach cannot

provide the level of scaling required for this problem class. The necessary component that

must be carried over from the shared memory model is the notion of a global address space.

This must be supported for both locating and referencing individual elements of compound

distributed data structures (e.g., the vertices of a graph) from anywhere in the system. An

explicit notion of locality, providing the ability to reason about whether data is colocated

with an action, is necessary. Finally, an explicit concept of data distribution, providing the

logical mapping of global structure to system topology, must be a fundamental component

of the approach. Distributed data structures must provide interfaces and mechanisms for

efficient locality-aware processing by algorithms. And each member of such a structure must

be able to maximize local information to work in a decentralized manner whenever possible

to reduce the effects of latency and overheads.

With the processing of graph structures, the flow control of the execution is dictated

by the structure of the graph data set (i.e., it is data-directed) and limited in available

computation, with the basic operations defined in terms of, and at the scale of, the structural

relationships between vertices and edges. Thus, the structural meta-data of the graph data

set dictates both the next set of tasks, and what activities can be done in parallel. Data-

directed execution over an irregular data structure produces time-varying workloads that

the programmer is unable to predict or manage using static threading and data-parallel

programming constructs.

Likewise, when locally managing a collection of concurrent actions, the use of global barri-

ers to enforce some notion of coherence across the application must be replaced with localized

coordination mechanisms embedded in the data structure that support independent progress

112

at finer granularities. Intrinsic constraint-based synchronization semantics is critical for effi-

cient graph processing. Data-flow variables, and compound structures with the phased use

semantics, aid the programmer in managing high degrees of asynchronous, dynamic concur-

rency. This is powerful because it allows the programmer to reason about concurrent actions

over shared values, without needing to explicitly manage synchronized access between pro-

ducers and consumers. Also, it achieves deterministic concurrency, with no race conditions,

no live-locks, and deterministic deadlocks.

7.2 Role of the Execution Model

A parallel execution model provides a conceptual framework for considering design decisions

across the computing stack: programming languages, compilers, runtime, operating system,

as well as system architecture and hardware technology. The semantics of the execution

model allow for the co-design of the different layers in the stack by defining the core concepts

that are fundamental to computation and invariant across any implementation. This work

builds upon the ParalleX execution model, effectively integrating into the co-design process.

Graph algorithm design and application development will thus benefit from a direct path

to extreme-scale system architectures through the Petaflops regime and into the Exascale

performance domain over the coming decades.

This also enables the development of the ParalleX Graph Library (PXGL). The experimen-

tal graph library PXGL was implemented as a proof-of-concept demonstrating the feasibility

of this approach for programming graph applications and realizing highly concurrent, dis-

tributed execution. The new semantic constructs for graph processing were mapped onto

the ParalleX execution model to define the foundation for efficient parallel execution. The

PXGL was implemented using the software runtime system HPX to allow for early pro-

totyping on conventional commodity cluster and shared memory systems. This supported

the initial experimentation shown which established the viability of the new approach to

113

graph processing, both in terms of semantic correctness and programmability. Ultimately,

the PXGL delivers a framework for the development of graph data structures and algorithms

and that will support future research and development of graph-based applications utilizing

the ParalleX model.

7.3 Future Directions

The focus on mapping the semantics of programming graphs to the semantics of the ParalleX

execution model presents an ideal foundation for future research. Both the data-intensive

applications and high-performance systems communities are experiencing a large amount of

growth. Graph-based applications will require extensions to the graph model proposed here

to support dynamic graphs. For that, the approach must be adapted to support mutating

the structural meta-data of the graph throughout the lifetime of the application. The graph

interface must be extended and the phased use semantics would have to be reconsidered to

support such operations.

Advanced features of the ParalleX model also need to be addressed as support for them is

added to the HPX runtime system. Of particular importance to large-scale graph processing

is the support for data movement. Data movement supported by the AGAS would enable

runtime load balancing of the distributed graph structures. This will be critical for achiev-

ing performance as dynamic graph manipulation will introduce data load imbalances, with

subsequent work load imbalances following from the data-directed execution style enabled

by this approach.

Finally, the implementation of the PXGL defines a solution for commodity cluster and

shared memory systems running the Linux operating system and the HPX runtime system.

Yet, these semantic constructs defined for graph processing are orthogonal to the choice

of hardware technology, system architecture, operating system, and even programming lan-

guage. By providing a high-level library interface, the PXGL can be used in the implemen-

114

tation of a broad class of applications. Thus, this work provides a platform for optimization

studies over a space of solution vectors for graph-based applications on current and future

systems and scalable architectures.

115

References

[1] J. Dongarra, D.A. Reed, R. Bajcsy, M.A. Fernandez, J.M. Griffiths, R.D. Mott, C.R.
Johnson, A.S. Inouye, W. Miner, M.K. Matzke, et al. Computational Science: Ensuring
America’s Competitiveness, 2005.

[2] D.G. York, J. Adelman, J.E. Anderson Jr, S.F. Anderson, J. Annis, N.A. Bahcall,
JA Bakken, R. Barkhouser, S. Bastian, E. Berman, et al. The sloan digital sky survey:
Technical summary. The Astronomical Journal, 120:1579, 2000.

[3] F.S. Collins, A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L.R. Walters.
New goals for the US human genome project: 1998-2003. Science, 282(5389):682, 1998.

[4] F.S. Collins and V.A. McKusick. Implications of the Human Genome Project for medical
science. JAMA: The Journal of the American Medical Association, 285(5):540, 2001.

[5] L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster
architecture. Micro, IEEE, 23(2):22–28, 2003.

[6] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz,
P. Patel, and S. Sengupta. VL2: A scalable and flexible data center network. ACM
SIGCOMM Computer Communication Review, 39(4):51–62, 2009.

[7] R.C. Murphy and P.M. Kogge. On the Memory Access Patterns of Supercomputer
Applications: Benchmark Selection and Its Implications. IEEE TRANSACTIONS ON
COMPUTERS, pages 937–945, 2007.

[8] ExaScale Computing Study: Software Challenges in Exascale Systems. Technical report.

[9] Carsten Burstedde, Omar Ghattas, Michael Gurnis, Tobin Isaac, Georg Stadler, Tim
Warburton, and Lucas Wilcox. Extreme-scale amr. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’10, pages 1–12, Washington, DC, USA, 2010. IEEE Com-
puter Society.

[10] J. Luitjens, B. Worthen, M. Berzins, and T.C. Henderson. Scalable parallel AMR for the
Uintah multiphysics code. Petascale Computing Algorithms and Applications. Chapman
and Hall/CRC, 2007.

[11] L.F. Diachin, R. Hornung, P. Plassmann, and A. Wissink. Parallel Adaptive Mesh
Refinement. SIAM, 2006.

[12] CD Fry, JV Eccles, and JP Reich. The Ensemble Space Weather Modeling System
(eSWMS): Status, Capabilities and Challenges. In AGU Fall Meeting Abstracts, vol-
ume 1, page 1755, 2010.

116

[13] G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. ParalleX: A Study of A New
Parallel Computation Model. Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1–6, 2007.

[14] M. Kaiser, H. Brodowicz and T. Sterling. Parallex: An advanced parallel execution
model for scaling impaired applications. Submitted to ICPC 2009., 2009.

[15] D.A. Bader. HPCS Scalable Synthetic Compact Applications 2 Graph Analysis, 2006.

[16] D.A. Bader, K. Madduri, J.R. Gilbert, V. Shah, J. Kepner, T. Meuse, and A. Krish-
namurthy. Designing scalable synthetic compact applications for benchmarking high
productivity computing systems. Cyberinfrastructure Technology Watch, 2, 2006.

[17] Bruce Hendrickson and Jonathan W. Berry. Graph analysis with high-performance
computing. Computing in Science and Engineering, 10(2):14–19, 2008.

[18] T. Coffman, S. Greenblatt, and S. Marcus. Graph-based technologies for intelligence
analysis. Communications of the ACM, 47(3):45–47, 2004.

[19] D. Gregor, N. Edmonds, B.W. Barrett, and A. Lumsdaine. The Parallel Boost Graph
Library. http://www.osl.iu.edu/research/pbgl, 2005.

[20] D. Gregor and A. Lumsdaine. The Parallel BGL: A generic library for distributed graph
computations. Parallel Object-Oriented Scientific Computing (POOSC), July, 2005.

[21] J.W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and Algorithms for
Graph Queries on Multithreaded Architectures. Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages 1–14, 2007.

[22] B.W. Barrett, J.W. Berry, R.C. Murphy, and K.B. Wheeler. Implementing a portable
Multi-threaded Graph Library: The MTGL on Qthreads. In Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing-Volume 00, pages
1–8. IEEE Computer Society, 2009.

[23] J. Siek, L.Q. Lee, A. Lumsdaine, L.Q. Lee, L.S. Blackford, J. Demmel, J. Dongarra,
I. Duff, S. Hammarling, M. Heroux, et al. The Boost Graph Library: User Guide and
Reference Manual. In Proceedings of the, volume 243, pages 112–121. Kluwer, 2002.

[24] K.B. Wheeler, R.C. Murphy, and D. Thain. Qthreads: An API for programming with
millions of lightweight threads. In Parallel and Distributed Processing, 2008. IPDPS
2008. IEEE International Symposium on, pages 1–8, 2008.

[25] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming with
the message-passing interface. the MIT Press, 1999.

[26] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM Computing Surveys (CSUR), 38(1), 2006.

117

[27] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet
topology. In Proceedings of the conference on Applications, technologies, architectures,
and protocols for computer communication, page 262. ACM, 1999.

[28] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and U. Catalyurek. A
Scalable Distributed Parallel Breadth-First Search Algorithm on BlueGene/L.

[29] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry. Challenges in Parallel Graph
Processing. Parallel Processing Letters, 17(1):5, 2007.

[30] T. Sterling, D.J. Becker, D. Savarese, J.E. Dorband, U.A. Ranawake, and C.V. Packer.
BEOWULF: A parallel workstation for scientific computation. In In Proceedings of the
24th International Conference on Parallel Processing. Citeseer, 1995.

[31] T.L. Sterling, P.C. Messina, and P.H. Smith. Enabling technologies for petaflops com-
puting. The MIT Press, 1995.

[32] T.L. Sterling. Beowulf cluster computing with Linux. The MIT Press, 2002.

[33] L. Dagum and R. Menon. Open MP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.

[34] B. Chapman, G. Jost, and R. Van Der Pas. Using OpenMP: portable shared memory
parallel programming. Scientific and Engineering Computation. The MIT Press, 2007.

[35] K.D. Underwood, M. Vance, J. Berry, and B. Hendrickson. Analyzing the Scalability of
Graph Algorithms on Eldorado. Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1–8, 2007.

[36] CAR Hoare. Communicating sequential processes. Communications of the ACM,
21(8):677, 1978.

[37] SD Brookes, CAR Hoare, and AW Roscoe. A theory of communicating sequential
processes. Journal of the ACM (JACM), 31(3):560–599, 1984.

[38] T. Cheatham, A. Fahmy, D.C. Stefanescu, and L.G. Valiant. Bulk synchronous parallel
computing-a paradigm for transportable software. In hicss, page 268. Published by the
IEEE Computer Society, 1995.

[39] MPI Forum. Mpi: A message-passing interface standard. http://www.mpi-forum.org,
Sep 2009.

[40] AM++: A Generalized Active Message Framework, Vienna, Austria, 09/2010 2010.
ACM.

[41] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: A mechanism for integrated communication and computation. In
19th International Symposium on Computer Architecture, pages 256–266, Gold Coast,
Australia, 1992.

118

[42] D. Bonachea. GASNet Specification Version 1.3, 2003.

[43] L. Kale, B. Ramkumar, A. Sinha, and A. Gursoy. The Charm Parallel Programming
Language and System: Part I—Description of Language Features. Urbana, 51:61801.

[44] R. Keller, D. Kramer, and J.P. Weiss. Facing the Multicore-challenge: Aspects of New
Paradigms and Technologies in Parallel Computing. Springer-Verlag New York Inc,
2010.

[45] J. Dongarra. Top500 supercomputing sites. http://www.top500.org/.

[46] P.D. Mininni, D.L. Rosenberg, R. Reddy, and A. Pouquet. A hybrid MPI-OpenMP
scheme for scalable parallel pseudospectral computations for fluid turbulence. Arxiv
preprint arXiv:1003.4322, 2010.

[47] G. Tang, E.F. D’Azevedo, F. Zhang, J.C. Parker, D.B. Watson, and P.M. Jardine. Ap-
plication of a hybrid MPI/OpenMP approach for parallel groundwater model calibration
using multi-core computers. Computers & Geosciences, 2010.

[48] K. Yelick, D. Bonachea, W.Y. Chen, P. Colella, K. Datta, J. Duell, S.L. Graham, P. Har-
grove, P. Hilfinger, P. Husbands, et al. Productivity and performance using partitioned
global address space languages. In Proceedings of the 2007 international workshop on
Parallel symbolic computation, pages 24–32. ACM New York, NY, USA, 2007.

[49] Yuri Dotsenko. Expressiveness, Programmability and Portable High Performance of
Global Address Space Languages. PhD thesis, Rice Univesity, January 2007.

[50] T. El-Ghazawi, W. Carlson, and J. Draper. UPC Language Specifications V1. 0, 2001.

[51] J.B. Dennis. Data Flow Supercomputers. Computer, 13(11):48–56, 1980.

[52] H.C. Baker Jr and C. Hewitt. The incremental garbage collection of processes. Pro-
ceedings of the 1977 symposium on Artificial intelligence and programming languages,
pages 55–59, 1977.

[53] R.H. Halstead. MULTILISP: a language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

[54] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN ’98 Conference on
Programming Language Design and Implementation, pages 212–223, Montreal, Quebec,
Canada, June 1998. Proceedings published ACM SIGPLAN Notices, Vol. 33, No. 5,
May, 1998.

[55] J. Reinders. Intel threading building blocks: outfitting C++ for multi-core processor
parallelism. O’Reilly Media, Inc., 2007.

119

[56] C.P. Kruskal, L. Rudolph, and M. Snir. Efficient synchronization of multiprocessors
with shared memory. In Proceedings of the fifth annual ACM symposium on Principles
of distributed computing, pages 218–228. ACM New York, NY, USA, 1986.

[57] R.S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Technical report, Technical Re-
port CSG Memo 265, Computation Structures Group, MIT Lab. for Computer Science,
Cambridge MA 02139, USA, July 1986.

[58] H. Abelson, G.J. Sussman, and J. Sussman. Structure and interpretation of computer
programs. Cambridge, Mass.: MIT Press, 1996.

[59] P. Van-Roy and S. Haridi. Concepts, techniques, and models of computer programming.
The MIT Press, 2004.

[60] D. Gregor and A. Lumsdaine. Lifting sequential graph algorithms for distributed-
memory parallel computation. In Proceedings of the 20th annual ACM SIGPLAN con-
ference on Object oriented programming systems languages and applications, volume 40,
pages 423–437. ACM New York, NY, USA, 2005.

[61] K. Devine, E. Boman, R. Heapby, B. Hendrickson, and C. Vaughan. Zoltan data man-
agement service for parallel dynamic applications. Computing in Science and Engineer-
ing, pages 90–97, 2002.

[62] G. Karypis, K. Schloegel, and V. Kumar. PARMETIS: Parallel Graph Partitioning and
Sparse Matrix Ordering Library Version 3.1. University of Minnesota, Minneapolis,
2003.

[63] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology, 25(2):163–177, 2001.

[64] D.A. Bader and K. Madduri. Parallel algorithms for evaluating centrality indices in real-
world networks. In Parallel Processing, 2006. ICPP 2006. International Conference on,
pages 539–550, 2006.

120

Vita

Dylan Stark was born in Kettering, Ohio, in 1980. He completed his B.S. in 2004 at Louisiana

State University, majoring in Computer Science. He completed his M.S. in System Science

in 2007 at Louisiana State University. While at Louisiana State University he had the good

fortune to work as a graduate researcher at the newly formed Center for Computation and

Technology. He also interned at Argonne National Laboratory for one summer and Sandia

National Laboratories for the final two years of his doctoral studies. At Argonne he worked

on the SPRUCE project under the guidance of Dr. Peter Beckman. At Sandia he worked in

the Scalable System Architectures group, where he developed the ParalleX Graph Library.

121

	Louisiana State University
	LSU Digital Commons
	2011

	Advanced semantics for accelerated graph processing
	Dylan Thomas Stark
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter Introduction
	Research Objective
	Goal
	Hypothesis
	Objectives

	Technical Strategy
	Dissertation Outline

	Chapter Background
	Graph-Based Application Processing
	Multithreaded
	Large Scale Parallel

	State of High Performance Computing System
	Shared Memory Systems
	Distributed Memory Systems

	Future Directions

	Chapter Data-Driven Computation with the ParalleX Execution Model
	The Execution Model Elements
	Global Perspective
	Event-Driven Dynamic Multithreading

	An Enabling Software Runtime System HPX
	Implementation of the ParalleX Feature Set
	Application Programming

	Chapter Advanced Semantics for Graph Processing
	Asynchronous Actions and Continuation Migration
	Constraint-Based Coordination through Phased Use
	Graph Traversal Strategies through Embedded Coordination
	Large-Scale Data through Distribution

	Chapter A ParalleX Graph Library
	Decentralized Data Structures
	Construction
	Initialization

	Application Example: Scalable Data Generator
	Auxiliary Structures
	Regions
	Distributions
	Containers

	Graph Structures
	Graphs
	Property Maps

	Data-Directed Constructs
	For-all
	Map
	Reduce

	Chapter Experiments
	Large Set Classification
	Implementation
	Analysis and Results

	Subgraph Extraction
	Implementation
	Analysis and Results

	Computing Betweenness Centrality
	Implementation
	Analysis and Results

	Chapter Conclusions
	An Approach to Graph Processing
	Role of the Execution Model
	Future Directions

	Bibliography
	References
	Vita

