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Abstract

Data transferring in scientific workflows gradually attracts more attention due to large amounts of

data generated by complex scientific workflows will significantly increase the turnaround time of the

whole workflow. It is almost impossible to make an optimal or approximate optimal scheduling for

the end-to-end workflow without considering the intermediate data movement. In order to reduce the

complexity of the workflow-scheduling problem, most researches done so far are constrained by many

unrealistic assumptions, which result in non-optimal scheduling in practice. A constraint imposed by

most researchers in their algorithms is that a computation site can only start the execution of other

tasks after it has completed the execution of the current task and delivered the data generated by

this task. We relax this constraint and allow overlap of execution and data movement in order to

improve the parallelism of the tasks in the workflow. Furthermore, we generalize the conventional

workflow to allow data to be staged in(out) from(to) remote data centers, design and implement an

efficient data-aware scheduling strategy. The experimental results show that the turnaround time is

reduced significantly in heterogeneous distributed systems by applying our scheduling strategy.

To reduce the end-to-end workflow turnaround time, it is crucial to deliver the input, output and

intermediate data as fast as possible. However, it is quite often that the throughput is much lower than

expected while using single TCP stream to transfer data when the bandwidth of the network is not

fully utilized. Multiple TCP streams will benefit the throughput. However, the throughput does not

increase monotonically when increasing the number of parallel streams. Based on this observation,

we propose to improve the existing throughput prediction models, design and implement a TCP

throughput estimation and optimization service in the distributed systems to figure out the optimal

configurations of TCP parallel streams. Experimental results show that the proposed estimation and

optimization service can predict the throughput dynamically with high accuracy and the throughput

can be increased significantly. Throughput optimization along with data-aware workflow scheduling

allows us to minimize the end-to-end workflow turnaround time successfully.
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Chapter 1
Introduction

1.1 Preliminaries of Data-aware Scheduling

With the rapid deployment of Grid infrastructures and the collaborations between these different Grid

organizations, such as LONI and TeraGrid [38], it becomes feasible and promising to run scientific

workflow applications on these large scale distributed infrastructures. A workflow is a group of tasks

with interdependencies. After the execution of one task in the workflow, it will produce some data

that will be used as input data of one or more tasks in the workflow. Also one task might need data

produced by more than one tasks. We call the task that produces data a predecessor of the tasks that

consume the data, and call the task that consumes the data a successor of the tasks that produce

the data. Each task might have more than one successor or predecessor.

In the cloud computing paradigm [20] [17], a user can apply for a certain amount of computing

resources dedicated for its application. The user is responsible to pay the cloud provider according

to the amount of computing resources and the service time. There are several successful cloud com-

puting platforms such as Amazon EC2 [1] and Microsoft Azure [5]. When a workflow application

is submitted to the cloud, the user expects a shortest execution time for the whole workflow. The

workflow scheduler will dispatch each individual task to a certain site for execution and the inter-

mediate data will move around the data cloud through the network. Hence it is important to fully

utilize the available bandwidth to shorten the data placement time. Furthermore, different scheduling

schemes will result in different turnaround time of the workflow. To be cost effective, an optimal or

approximate optimal scheduling is essential.

A workflow comprises many small tasks, of which the independent tasks can be dispatched to

different computation sites in the distributed systems and executed in parallel. Once the workflow

is submitted to the Grid or Cloud system, it will be executed automatically without the user’s

intervention. With the transparency, the user avoids manually operating on each individual task. Data

intensive workflows have been applied in many fields such as astronomy [14], bioinformatics [37] and

1



high-energy physics [33]. In these applications, terabytes of data will be processed by the workflow

and some important intermediate data need to be stored for future use. Workflow scheduling problem

has been studied for decades; however, to our best knowledge, none of the existing algorithms can

give an optimal solution for the data intensive workflows. Along with the increasing data size in the

workflow applications, it is imperative for us to develop a new algorithm to address this scheduling

problem with an optimal approach.

To address the data-aware workflow-scheduling problem, we need a sophisticated algorithm to take

care of the dependencies of these tasks. Each task must be scheduled before its successors and after

its predecessors. At a specific moment, there might be more than one ready task, if the number of

computational sites are less than the number of ready tasks, the order of scheduling them will affect

the turnaround time of the workflow. Meanwhile, for each ready task, there will be more than one

computational site that can be mapped to. Due to the heterogeneous nature of the network bandwidth

and the computation power, different mapping schemes will affect the end-to-end turnaround time.

1.2 Data Throughput of Workflow

In a widely distributed data-aware computing paradigm, data delivery between participating com-

putation sites may become a major performance bottleneck [22]. An optimized TCP throughput will

definitely benefit the data-aware workflow scheduling algorithm. Today, many regional and national

optical networking initiatives such as LONI [3], ESnet [2] and Teragrid [4] provide high speed net-

work connectivity to their users. However, it is quite often that users cannot fully utilize the available

bandwidth due to misconfigurations.

The end-to-end performance of a data transfer over the network depends heavily on the underlying

network protocol used. TCP is the most widely adopted transport protocol, however, its AIMD

property, which aims to maintain fairness among streams sharing the network, prevents TCP to fully

utilize the available network bandwidth. This becomes a major problem, especially for wide area

network (WAN) with high latency. There have been different implementation techniques both in the

kernel and application levels to overcome the poor network utilization of TCP. In the transport layer,

different variations of TCP have been implemented [16, 24, 26] to utilize high-speed networks, but

2



there is not a single adopted protocol to replace the regular TCP. At the application level, opening

parallel streams is one way of doing that and is widely used in many application areas.

Parallel streams are able to achieve high throughput by behaving like a single large stream that is

the combination of n streams, and can get an unfair share of the available bandwidth [8, 15, 19, 25,

29,31,41]. However, using too many streams can bring the network to a congestion point very easily,

especially for low-bandwidth networks. It is important to find the optimal parallelism level where the

network is saturated and the throughput remains stable. Unfortunately, it is difficult to predict this

optimal point.

In this research, a service is proposed to provide the data-aware workflow scheduler with the

optimal parallel stream number and a provision of the estimated time and throughput information

for a specific data transfer. The optimal stream number is calculated using a novel mathematical

model that we have developed in [49]. With this estimation and optimization service, data can be

delivered much faster.

1.3 Contributions

In this research, a data-aware scheduling algorithm is proposed for the data intensive workflows.

A throughput estimation and optimization service is implemented as an integral part of the data

intensive workflow scheduling. More specifically, the major contributions include the following:

• Design a novel queue based data-aware model for data intensive workflows and optimize the

turnaround time by allowing overlap of task execution and data placement. The turnaround

time is reduced and the time efficiency of the algorithm is improved significantly.

• Design and implement a data-aware co-scheduling algorithm by considering external data, in-

termediate data and computing for both homogeneous and heterogeneous distributed systems.

The turnaround time is reduced in both scenarios.

• Improve a TCP throughput prediction model and prove the correctness experimentally and

theoretically. The precision is the best compared with the existing models.

3



• Design and implement a throughput estimation and optimization service (EOS) in the dis-

tributed environments for the data-aware workflow scheduling. The EOS service can make the

workflow fully utilize the available bandwidth and the throughput is improved significantly.
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Chapter 2
Background and Related Works

The workflow scheduling problem has been well studied for many years and today it is still a very

active research area. In order to minimize the turnaround time, many approximation algorithms have

been proposed, such as genetic algorithms [45, 47, 51], simulated annealing algorithms [50] and ant

colony algorithms [36]. There are some common features of these algorithms. Even through they do

not guarantee an optimal solution, they guarantee to generate an acceptable solution in a timely

manner. The quality of the solution is controlled by a series of parameters.

There are also several approaches that aim to find the optimal solution of the workflow scheduling

problem. In [10] Chou and Chung proposed to find the optimal scheduling for workflows on mul-

tiprocessors. However, the communication cost is ignored due to low latency between processors.

In [9], Chang and Jiang proposed a state space search algorithm to address the problem. They used

the critical path length as an underestimate of the actual cost function to guide the expansion of

the state during the solution exploring process. In their research, the communication cost between

tasks is also ignored. Kwok and Ahmad [28]proposed a parallel state space search approach based

on A-Star algorithm. Also they applied state-pruning techniques to reduce the search space. In their

work, they assumed that the bandwidth between different processors are homogeneous.

Wang and Tsai [46] proposed a state space search approach based on A-star algorithm to solve

the workflow scheduling problem in a distributed system. In their research, they assumed that the

computation power of the computational sites and the network bandwidth between them are het-

erogeneous. They claimed that their solution to be optimal. Lin [30] studied the same problem and

pointed out that Wang’s solution is not optimal in some cases. Wang and Tsai assumed that one of

the immediately preceding communications of a task must be performed just before the execution

of the task. Lin relaxed this constraint and rearranged the task execution and task communication

orders in order to get the optimal scheduling.
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Both Lin and Wang et al have assumed that the computation sites should be in either execution

state or communication state. It cannot overlap execution and data transfer. With this constraint,

the problem can be simplified, however, the scheduling turns out to be non-optimal in some cases. It

makes sense that a computation site can receive input data for a task when it is executing another task.

The data will be ready at the execution finish time of the previous task. Based on this investigation,

we further remove that constraint and decrease the turnaround time by overlapping the execution

and data placement.

In all of these previous works mentioned above, the authors paid little attention to the data

placement. None of them mentioned about how to deal with the scheduling problem when there are

extra data that need to be staged in from remote site or to be staged out to a remote site for a task.

To our best knowledge, most of works done so far on this research fall on non-optimal solu-

tions [34, 35].We extend the state space search algorithm to find an optimal scheduling for the data

intensive workflows. Our experiments show that the turnaround time of the workflow can be reduced

significantly when the network bandwidth is heterogeneous.

The studies that try to find the optimal number of streams are so few and they are mostly based on

approximate theoretical models [7,11,18,27,32]. They all have specific constraints and assumptions.

Also the correctness of the proposed models are mostly proved with simulation results only. Hacker

et al. claim that the total number of streams behaves like one giant stream that transfers in capacity

of total of each streams’ achievable throughput [18]. However, this model only works for uncongested

networks. Thus, it cannot provide a feasable solution for congested networks. Another study [11]

declares the same theory but develops a protocol which at the same time provides fairness. Dinda

et al. [32] model the bandwidth of multiple streams as a partial second order equation and require

two different throughput measurement of different stream numbers to predict the others. However,

this model cannot predict the optimal number of parallel streams necessary to achieve best trans-

fer throughput. In another model [7], the total throughput always shows the same characteristics

depending on the capacity of the connection as the number of streams increases and 3 streams are

sufficient to get a 90% utilization. A new protocol study [27] that adjusts sending rate according to
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calculated backlog presents a model to predict the current number of flows which could be useful to

predict the future number of flows.

All of the models presented have either poor accuracy or they need a lot of information to be

collected. Unfortunately, users do not want to present this information or have no idea what to

supply to a data transfer tool. They need a means to make a projection of their data transfer

throughput and must gather the information to optimize their transfer without caring about the

characteristics of an environment and the transfer at hand. For individual data transfers, instead

of relying on historical information, the transfers should be optimized based on instant feedback.

In our case, this optimization is achieving optimal number of parallel streams to get the highest

throughput. However, an optimization technique not relying on historical data in this case must

not cause overhead of gathering instant data that is larger than the speed up gained with multiple

streams for a particular data size. Gathering instant information for prediction models could be done

by using network performance measurement tools [23, 39, 40, 42, 48] or doing a miniature version of

the transfer.

In the proposed service, Iperf [48] or GridFTP [6] is used to gather the sampling information to

be fed into the mathematical models. Both of the tools are widely adopted by the Grid community

and convenient for our service since they both support parallel streams. With GridFTP, it is also

very convenient to perform third-party transfers. By using the mathematical models and the instant

sampling information, the proposed service will give the optimal parallel stream number with a

negligible prediction cost.
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Chapter 3
Data Intensive Workflow

Task scheduling problem has become a more and more important issue with the advance of distributed

computing research. As new computation paradigms emerge such as many-task computing and cloud

computing, the scheduling problem has become a major bottleneck in improving the performance of

the proposed system.

The problem of interest can be described as the following. We are given a group of tasks with

dependencies, the data sites for each individual task, the computation power of each computation

site in the heterogeneous system and the capacities of each link connecting these sites, the objective

is to minimize the turnaround time of these group of tasks considering how to assign these tasks to

different computation sites, in which order these tasks should be executed, and how the data flow

between these tasks should be scheduled.

3.1 Distributed Systems Notation

Let Nc be the number of computation sites. Nd is the number of data sites. Nt is the number of task

modules. P is a set of computation sites pi. P = {pi} i = 1, 2, · · · , Nc. D is a set of data sites of di.

D = {di} i = 1, 2, · · · , Nd. C is a set of computation links between computation sites cpipj , data sites

cdkdl , and computation-data sites cpidk . C = {cpipj , cdkdl , cpidk} i, j = 1, 2, · · · , Nc; k, l = 1, 2, · · · , Nd.

S is a distributed system which consists of P,D,C. S = (P,D,C). A typical distributed system of

interest can be illustrated in Figure 3.1.

3.2 Conventional Workflow Notation

Let W represent the workflow which consists of a group of tasks. W = {ti}. Some of these tasks have

dependence relationship and the workflow is demoted by a directed acyclic graph (DAG). Task ti is

immediately dependent on task tj if the output of tj is the input of ti. The immediate predecessor

of ti is a set of tasks on which ti is immediately dependent on. Use Pre(ti) to denote the immediate
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FIGURE 3.1: Distributed systems

predecessor. The immediate successor of ti is a set of tasks which are immediately dependent on ti.

Use Suc(ti) to denote the immediate successor of ti. Clearly if ti ∈ Pre(tj), then tj ∈ Suc(ti).

3.3 Extended Workflow Notation

The conventional workflow only consists of a group of tasks and the dependencies between them. Be-

sides the data needed from the output of dependent tasks, one task might need some extra data stored

in remote storage sites. In order to execute the task, the extra data might be staged in to the local

cache before execution of the current task. Also the output of some tasks might be important so that

it should be staged out to remote storage sites after execution. We extend the conventional workflow

to consist of stage in and stage out phases. The immediate predecessor of a task ti is the union of the

predecessor of ti in the conventional workflows and a set of data sites from which extra data should

be staged in before execution. Use ExPre(ti) to denote the immediate predecessor of ti. Expre(ti) =
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FIGURE 3.2: Extended workflow

Pre(ti)∪{di : di stores data should be staged in before execution of ti}. Use ExSuc(ti) to denote the

immediate successor of ti. ExSuc(ti) = Suc(ti)∪{di : di stores data should be staged out after execution of ti}.

The extended workflow can be depicted by Figure 3.2.

3.4 Constraints and Assumptions

1) A task can only be executed after it obtained all the data required from remote data sites and

all the intermediate data from the computational sites where tasks belonging to its predecessors are

executed.

2) Each task consists of two phases, one of which is computation and the other is intermediate

data transfer. Once a task starts execution, it cannot be stopped until the computation work is done.

Once an intermediate data transfer is started, it cannot stop until this transfer is finished.

3) The intermediate data transfer is not necessary to be started immediately after the computation

work is done.
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4) A computation site can execute another ready task tj once the current task ti finishes its

computational phase. The computational phase of tj can be overlapped with the intermediate data

transfer phase of task ti.

3.5 Objective Function of the Scheduling

Each task ti needs a finite amount of time tij to finish if it can be scheduled to computation site p.

Define

EXT (ti, pj) =

tij ti is applicable on pj

∞ otherwise

Define the task computation matrix on the computational sites as:

Mc =



EXT11 EXT12 · · · EXT1Nc

EXT21 EXT22 · · · EXT2Nc

· · · · · · · · · · · ·

EXTNt1 EXTNt2 · · · EXTNtNc


= [EXTij]1≤i≤Nt,1≤j≤Nc

Use THij to denote the throughput between sites i and j. Define the throughput matrix between

the computational sites as:

Mt =



TH11 TH12 · · · TH1Nc · · · TH1(Nc+Nd)

TH21 TH22 · · · TH2Nc · · · TH2(Nc+Nd)

· · · · · · · · · · · · · · · · · ·

TH(Nc+Nd)1 TH(Nc+Nd)2 · · · TH(Nc+Nd)Nc · · · TH(Nc+Nd)(Nc+Nd)


= [THij]1≤i≤Nc+Nd,1≤j≤Nc+Nd

Use IMDij to denote the intermediate data between tasks ti and tj. Define intermediate data

matrix as:
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Mimd =



IMD11 IMD12 · · · IMD1Nt

IMD21 IMD22 · · · IMD2Nt

· · · · · · · · · · · ·

IMDNt1 IMDNt2 · · · IMDNtNt


= [IMDij]1≤i≤Nt,1≤j≤Nt

Use SIDij to denote the stage in data from data site dj to task ti. Define stage in data matrix as:

Msid =



SID11 SID12 · · · SID1Nd

SID21 SID22 · · · SID2Nd

· · · · · · · · · · · ·

SIDNt1 SIDNt2 · · · SIDNtNd


= [SIDij]1≤i≤Nt,1≤j≤Nd

Use SODij to denote the stage out data from task ti to data site dj. Define stage out data matrix

as:

Msod =



SOD11 SOD12 · · · SOD1Nd

SOD21 SOD22 · · · SOD2Nd

· · · · · · · · · · · ·

SODNt1 SODNt2 · · · SODNtNd


= [SODij]1≤i≤Nt,1≤j≤Nd

Workflow scheduling is essentially a mapping from workflow W to the distributed systems S. Assign

each task to an applicable computational site, and transfer data between computational sites and

data sites accordingly. Figure 3.3 illustrates the mapping from W to S. t1 and t2 are assigned to p1.

Use Ax(t1) = p1, Ax(t2) = p1 to denote this assignment. Similarly, Ax(t3) = p2, Ax(t4) = p3. Define

EST (ti, p) to be the earliest time that computational site p can execute task ti.
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FIGURE 3.3: Mapping from DAG to sites

Define WT (ti, p) to be the time that task ti have to wait on computational site p after p has finished

the latest task. Define SOT (ti, p) to be the time at which the stage out process has done for task ti

on computational site p. Define PT (p) to be the time at which tasks scheduled on computation site

p has been done. Define AS(W, p) to be a set of tasks that are assigned to computational sites p in

the mapping process. Define the turn around time of the workflow W corresponding to a particular

mapping m as TR(W,m).Then we have:

PT (pi) = max

 ∑
j∈AS(W,pi)

(EXT (tj, pi) +WT (tj, pi)) ,MAXj∈AS(W,pi)(SOT (tj, pi))

 (3.1)

TR(W,m) = MAXi=1,2,··· ,Nc(PT (pi)) (3.2)

The objective function is:

MINfor all possible mapping m(TR(W,m)) (3.3)

3.6 Stage-in Data Placement Optimization

When there is a large data set in the data intensive workflow, there could be many mappings from

data set to storage site. Picture 3.4 shows one possible mapping from tasks to computing site and
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FIGURE 3.4: Mapping data files to storage sites

from stage in data to storage site. A poor task scheduling will increase the turnaround time of the

workflow, resulting in an inefficient utilization of the computing resource. Similarly, a poor mapping

from stage in site to storage site will degrade the overall performance since it will require a longer

time to deliver the data to the computing site.

To formalize the stage in data location optimization problem, we assume there are a number of

storage sties and computing sites connected by homogeneous or heterogeneous network as shown in

Picture 3.5. There are many data files with different size to be delivered between the storage site and

the computing site. Each file a fixed destination. The question is where to put each data file such

that the deliver time for all the data files is minimized.

It is impossible to find an true optimal solution in polynomial time. In this research, a close to

optimal algorithm is proposed. The main idea is to distribute data to each storage site proportional

to the bandwidth between the storage site and the computing site. Make the data amount distributed
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FIGURE 3.5: Formalizing the data placement optimization problem for data intensive workflow

to each storage site as close as possible to the desired portion. Make a replica of each data file when

conflict occurs for placing a particular data file which is to be delivered to multiple computing site. In

this case, this data file is the input for multiple tasks. Algorithm ?? describes the details to address

the stage in data location optimization problem.

Algorithm 1 Stage in data location optimization

for all Computing site Pi that has data to be staged in do
Sort all the data files to be delivered to Pi in descending order.
Sort the bandwidth from all storage sites to Pi in descending order.
for all Storage site with connection to the computing site do

First distribute data to the storage site with a higher bandwidth
Distribute the larger data as early as possible.
The data distributed to each storage site should be proportional to its bandwidth.
Find the largest k such that the sum of the first k data are less than or equal to the desired
data amount.
Distribute them to the corresponding storage site.
From the rest of the data, binary search the data closest to the difference between the
portioning data and the sum of the first k data.
Distribute the data to the corresponding site.

end for
end for

The transfer time lower bound for the data to be delivered to a computing site is the quotient of

the summation of the data amount and the summation of the bandwidth from each storage site to the

computing site. The transfer time lower bound for all these computing sites is the maximum among

them. Figure 3.6 and Figure 3.7 shows the experimental results for different number of data files.
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FIGURE 3.6: Optimizing the stage-in data location for homogeneous distributed systems

FIGURE 3.7: Optimizing the stage-in data location for heterogeneous distributed systems

The transfer time is surprisingly close to the lower bound for both homogeneous and heterogeneous

distributed systems.
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Chapter 4
Data-aware Optimal Scheduling

4.1 State Space Construction

The scheduling problem is essentially a state space search problem with precedence constraints. The

constraints can be resolved by using topological sort with respect to the tasks. The order of task

sequences obtained by applying topological sort is not unique. There might be many other complete

task sequences in compliance with the topological sort. For instance, there are two legitimate task

sequences for the task DAG in Figure 3.2, one of which is t1, t2, t3, t4 and the other is t1, t3, t2, t4.

These legitimate task sequences form a large topological tree of the DAG. For instance, Figure 4.1

depicts the topological tree of this DAG. It can be observed that the depth of the topological tree

is the number of the tasks of the DAG. The root of the tree is the first executable task and the leaf

node is the last executable task.

FIGURE 4.1: Topological tree

To construct a state space, first assign the root task to all the execution sites and check the

legitimacy of the assignment. Only the legitimate one will be kept for further extension and the rest

branches will be pruned. Each assignment from a task to an execution site corresponds to one node

in the state space. For each node in the state space in appliance with the legitimacy constraints find
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the corresponding node in the topological tree, assign each child of the node in the topological tree

to all computational sites, make all these assignments as child node of the node in the state space

and check the legitimacy for further extension. Repeat the previous extension until the last node in

the topological tree is assigned. An assignment is said to be legitimate if the following conditions are

satisfied.

1. There exists a communication link between the assigned computational site of this task and

the computational site where each task in its predecessor is assigned if it needs intermediate

data from tasks belonging to its predecessor.

2. There exists a communication link between the assigned computational site of this task and

the stage in data site if it needs extra data from remote sites.

3. There exists a communication link between the assigned computational site of this task and

the stage out data site if it needs to store intermediate data to remote sites.

More Formally,

Ax(t) = p is legitimate ⇐⇒ cAx(ti)p ∈ C, ∀ti ∈ Pre(t)

∧ cdip ∈ C, ∀di ∈ (ExPre(t)− Pre(t))

∧ cdip ∈ C, ∀di ∈ (ExSuc(t)− Suc(t))

A state space for a workflow and distributed system in Figure 3.3 is shown in Figure 4.2.

4.2 State Space Search

Each path from the root to the target is a solution for the scheduling problem. The number of solutions

is proportional to NNc
t , which makes it impossible to find the optimal or approximate optimal solution

with a brute force approach such as breadth first search(BFS). A uniform cost search(UCS) approach

maintains a priority queue which keeps the candidate states for expansion and the cost from the start

state to the current state. Each time pop the states with the least cost and push the successors of

that state into the priority queue. Continue this process until the goal state is reached. Although

UCS avoids traverse the whole state space, it still needs to traverse upto an exponential magnitude

of states.
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FIGURE 4.2: State space

A greedy search approach determines the next best state to visit by using a heuristic function

which makes a best estimation of the cost from the current state to the goal state. For each successor

of the current state, the cost is evaluated by the heuristic function, and the one with the least cost is

treated as the best candidate state. Continue this process until the goal state is selected as the best

candidate state.

The uniform cost search approach is not time efficient though it guarantee an optimal solution. On

the contrary, the greedy search approach is time efficient although it does not guarantee an optimal

solution. The A-star approach combines the advantages of UCS and greedy search approaches together

by taking account of both efficiency and accuracy.

4.3 A-star Search

Similar to uniform cost search, A-star algorithm also has a priority queue which keeps a state and

cost pair. However, the calculation of the cost is different. In the uniform cost search approach, the

cost is measured by the cost from the start state to the current state, while in the A-star approach,

the cost is measured by the summation of the cost from the start state to the current state and the

estimated cost from the successor of the current state to the goal state.
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Formally, use f(x) to denote the cost function of state x. Use g(x) to denote the actual cost from

the start state to the current state. Use h(x) to denote the underestimation from the successor to

the goal state and h∗(x) to denote the corresponding actual cost. Then we have, f(x) = g(x) + h(x).

It is impossible to know exactly the value of h∗(x), otherwise the optimal solution is strait forward

and we do not need to search the state space. What can be done is to make a best estimation of

h∗(x). Let err = h∗(x) − h(x), then the smaller err is, the faster to reach the goal state. The most

important thing in the A-star algorithm is to calculate g(x) and h(x).

4.4 Overlap of Task Execution and Data Movement

The workflow scheduling problem has been studied by many researchers and scientists. Most of

them have assumed that the execution and data placement can not be overlapped. Based on this

assumption, if two tasks ti and tj are scheduled on the same processor p, tj cannot start execution

when ti has finished the computational part of the task even if all the data needed by tj has arrived

at p. The execution of tj has to be postponed until ti has transferred all the intermediate data to the

computational sites where its successors are executed. In this study, this constraint is removed.

Each processor pi maintains a list of queues corresponding to the rest computational sites, namely

CQ1, CQ2, · · · , CQi−1, CQi+1, · · · , CQNc , and a list of queues corresponding to the data sites, namely

DQ1, DQ2, · · · , DQNd
. When ti finishes the computational part, for any task tj ∈ Suc(ti), insert the

intermediate data transfer task to CQAx(tj). Also for any d ∈ (ExSuc(ti)− Suc(ti)), insert the stage

out task to DQd. The data placement tasks within the same queue should be done sequentially, while

the tasks in different queues can be done in parallel.

Define ICT (ti, tj, Ax(ti), Ax(tj) to be the intercommunication time for the intermediate data trans-

fer when ti is assigned to Ax(ti) and tj is assigned to Ax(tj). Define SIT (ti, Ax(ti), d) to be the time

spent on data stage in when ti is assigned to Ax(ti) and the data is stored in remote data site d.

Define SOT (ti, Ax(ti), d) to be the time spent on data stage out when ti is assigned to Ax(ti) and

the data is supposed to be stored in remote data site d. Define IND(pi) to be the index of pi, i.e,
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IND(pi) = i. Clearly, we have the following equations.

ICT (ti, tj, Ax(ti), Ax(tj)) =


IMDij

THIND(Ax(ti))IND(Ax(tj))
Ax(ti) 6= Ax(tj)

0 otherwise

SIT (ti, Ax(ti), dj) =
SIDjIND(Ax(ti))

THjIND(Ax(ti))

SOT (ti, Ax(ti), dj) =
SODIND(Ax(ti))j

THIND(Ax(ti))j

Use Ax to denote the partial assignment from the start state to the current state x in the state

space. PT (pi) is the already known definitely processing time of processor pi with respect to Ax.

DT (di) is the already known definitely data transfer time of remote data site di. Api is the set of

tasks that are assigned to processor pi with respect to Ax. Define SPti to be a set of processors that

consist of the processors to which the predecessors of ti are assigned, excluded the one to which ti is

assigned.

SPti = {Ax(t) : ∀t ∈ Pre(ti) Ax(t) 6= Ax(ti)} (4.1)

Define Rpi to be a set of tasks that are assigned to a processor pi ∈ SPti and will transfer intermediate

data to Ax(ti). Define SAx(ti) to be a set of tasks that consumes the intermediate data from tasks in

Rpi .

Rpi = {tα1 , tα2 , · · · , tαm : tα1 , tα2 , · · · , tαn are in the order of appearance in Ax} (4.2)

SAx(ti) = {tβ1 , tβ2 , · · · , tβm : tβi corresponds to tαi
, 1 ≤ i ≤ m} (4.3)

Define ETT (tαi
) to be the earliest time to transfer data produced by tαi

.

ETT (tαi
) =


EST (tαi

, Ax(tαi
)) + EXT (tαi

, Ax(tαi
)) i = 1

max(EST (tαi
, Ax(tαi

)) + EXT (tαi
, Ax(tαi

)),

ETT (tαi−1
) + ICM(tαi−1

, tβi−1
, Ax(tαi−1

), Ax(tβi−1
))) 1 < i ≤ m

(4.4)

Define SIti to be a set of data sites from which data will be staged in to the computational sites

Ax(ti) where ti is scheduled.

SIti = {I1, I2, · · · , INsi
} (4.5)

Define ΓSIk to be a set of tasks which need data to be staged in from remote site Ik to Ax(ti).

ΓSIk = {tγ1 , tγ2 , · · · , tγm : tγ1 , tγ2 , · · · , tγm are in the order of appearance in Ax} (4.6)
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Define ESI(tγi , Ij) to be the earliest time to stage in the data of tγi from Ij.

ESI(tγi , Ij) =

0 i = 0∑i−1
i=0 SIT (tγi , Ax(tγi), Ij) i > 0

(4.7)

Define SOti to be a set of data sites to which data will be staged out from the computational sites

Ax(ti) where ti is scheduled.

SOti = {O1, O2, · · · , ONso} (4.8)

Define ∆SOk
to be a set of tasks which generate intermediate data to be staged out to the remote

site Ok from Ax(ti).

∆SOk
= {tδ1 , tδ2 , · · · , tδm : tδ1 , tδ2 , · · · , tδm are in the order of appearance in Ax} (4.9)

Define ESO(tδi , Oj) to be the earliest time to stage out the data of tδi to Oj.

ESO(tδi , Oj) =


EST (tδi , Ax(tδi)) + EXT (tδi , Ax(tδi)) i = 1

max(ESO(δi−1, Oj) + SOT (tδi−1
, Ax(tδi−1

), Oj),

EST (tδi , Ax(tδi)) + EXT (tδi , Ax(tδi))) i > 1

(4.10)

Define α(.) to be a function mapping a task ti to a task in Rpk .

α(ti) = tαj
⇔ ti = tαj

(4.11)

Define γ(.) to be a function mapping a task ti to a task in ΓSIk .

γ(ti) = tγj ⇔ ti = tγj (4.12)

Define δ(.) to be a function mapping a task ti to a task in ∆SOk
.

δ(ti) = tδj ⇔ ti = tδj (4.13)

We can derive the following equation.

EST (ti, Ax(ti)) = max

 MAX
∀Ix∈SIti

(ESI(γ(ti), Ix) + SIT (ti, Ax(ti), Ix)),

MAX
∀tj∈Pre(ti)

(ETT (α(tj)) + ICT (tj, ti, Ax(tj), Ax(ti)))

 (4.14)
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PT (pi) = max

MAX
∀tj∈Api

MAX
∀Oj∈SOtj

(ESO(γ(tj), Oj) + SOT (tj, Ax(tj), Oj)),

MAX
∀tj∈Api

(EST (tj, Ax(tj)) + EXT (tj, Ax(tj)))

 (4.15)

Define URT (ti) to be an under estimated remaining execution time from a child of the current

task ti to the end of the workflow.

URT (ti) =


0 if ti is the last task

MAX
∀tj∈Suc(ti)

(MIN
∀pk∈P

(EXT (tj, pk) + URT (tj))) otherwise
(4.16)

Define UTT (tj, Ax) to be the underestimated turnaround time corresponding to a partial assign-

ment Ax where tasks from the root to tj has been scheduled and the execution time of the rest tasks

are underestimated.

UTT (tj, Ax) = max


MAX
∀tj∈Api

(EST (tj, Ax(tj)) + EXT (tj, Ax(tj) + M IN
∀tk∈Suc(tj)∧tk /∈Ap,∀p∈P

(EXT (tk, p) + ICT (tj, tk, Ax(tj), Ax(tk)) + URT (tk))),

MAX
∀pi∈P

PT (pi)

 (4.17)

4.5 The Algorithm for Co-scheduling

In order to find an optimal task mapping, a naive way is to compare the turnaround time of all the

possible mappings and choose the one leading to the shortest turnaround time. The naive approach

will definitely find the optimal solution, however, the computation complexity could be of unpre-

ventably high magnitude, which makes it impossible to apply the brute-force technique when the

workflow or the distributed system is in large scale.

Each mapping is essentially a process of assigning each task of the workflow to a appropriate

computational site, step by step, in compliance with the dependency constraints. It is a full assignment

from the first step to the last step. At each intermediate step, it is a partial assignment. At each

step, we can estimate an upper bound of the turnaround time for the workflow. This estimation

consists of the actual time cost for the tasks from the first assignment to the current step and an

underestimate time cost from the current step to the last step. Considering all the possible partial

assignments, at each step, determine the one with the lowest upper bound, which is considered to be

on the potentially optimal mapping path with high probability. Then we will move forward one step
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further from that step by mapping all the ready tasks to all the possible computational sites. Update

the underestimated turnaround time and determine the new state with a lowest upper bound. Repeat

this process until a full assignment for a particular mapping is reached and the turnaround time for

this full assignment is less than or equal to the underestimate turnaround time at the current step of

any partial assignment for all the rest mappings. The detail of the algorithm is shown in Algorithm

2.

Algorithm 2 Heuristic Search

1. initialize a root node for state space search tree without any task assignment
2. set current node curNode to be the root node
3. calculate the set of ready for execution tasks Sready = CalReadySet(root, curNode)
4. while Sready 6= ∅ do
5. for all ti ∈ Sready do
6. for all pj ∈ P do
7. if the assignment of ti to pj is legitimated then
8. expand the state space search tree by generating a new node Nij = (ti, pj)
9. set Nij as the child of the current node

10. calculate UTTij of Nij and insert UTTij into a queue
11. end if
12. end for
13. end for
14. extract the element with the smallest UTT from the queue
15. identify the corresponding node of the state space search tree
16. update the current node curNode as the corresponding node
17. calculate the set of ready for execution tasks Sready = CalReadySet(root, curNode)
18. end while

To better illustrative the algorithm, we describe a simple example in the following. The workflow

and distributed system are the same as which are described in Figure 3.3. The task computation time

matrix, intermediate data matrix, data stage in and stage out matrix are also given as following.

Mc =



10 200 400

20 300 500

300 10 400

300 500 10


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Mimd =



0 10 10 0

0 0 0 20

0 0 0 10

0 0 0 0



Msid =


0 20 0 0

0 0 20 0

0 0 0 0



Msid =



0 0 0

0 0 0

0 0 0

0 0 10



Assume the throughput of the links for computational sites to computational sites, computational

sites to data sites are unit one. Then we can derive the following state space search tree (Figure 4.3).

4.6 Data-aware Algorithm Evaluation

The evaluation of the proposed algorithm consists of two scenarios. In scenario one, we assume that

there is no stage in and stage out data. There are only intermediate data between tasks. In scenario

two, we assume that there are some tasks need data to be staged in before execution, and that some

tasks need data to be staged out after execution.

4.6.1 Overlap of Execution and Data Transfer

In [46], the authors assume that the task execution process is immediately started after all the data

from the dependent tasks, and that during the data transfer process, both the sending and receiving

sites should be free from execution any other tasks. In [30], the author assumes that it is not necessarily

to start the execution of a task immediately even though the data are ready. Contrarily, the execution

of the ready task can be postponed until some data required by other tasks are transferred.
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FIGURE 4.3: State space search tree

Increasing the flexibility of data transfer orders will shorten the turnaround time of the workflow

in some cases. However, the computation complexity will increase dramatically since it will consider

all the possible data transfer and task execution orders for the tasks assigned to one particular

computational site.

Even though the resulting scheduling is optimal under their particular assumptions, neither of these

assumptions are ideal. We aim to find a way to minimize the turnaround time as much as possible,

meanwhile not to increase the time complexity. It is possible to achieve this goal by allowing overlap

of the execution of a task and data transfer of another independent task. Under this assumption, we

can achieve a comparable performance with the one in [30] and a similar time complexity with that

in [46].

This example is the same to that in [46] and [30]. Figure 4.4 shows the workflow and the distributed

system. The number besides the edge of the workflow represents the intermediate data amount

between dependent tasks. Mc is the task computation time matrix. The throughput of each network

link shown in the distributed system is one.
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FIGURE 4.4: Workflow DAG and computational sites

Mc =



300 50 400

60 400 600

70 500 700

800 80 900



Figure 4.5 illustrates the state space search tree in the process of solving the problem under our

assumption. Figure 4.6 compares the optimal turnaround time under different assumptions. Figure

4.6(a)-(c) represents the results derived from assumptions of [46], [30] and ours. In Figure 4.6(c), the

dotted line represents the data transfers and the solid line represents the task executions. The dotted

line is placed parallel above the solid line, meaning that the data transfer can be overlapped with

the task execution. As we expected, the turnaround time will be much shorter if we allow overlap of

data transfer and task execution as shown in Figure 4.6.

4.6.2 Taking Account of Stage-in and Stage-out Data

Most of the works done so far consider only the intermediate data transfers with the aim to minimize

the turnaround time of the workflow. However, in the reality, some tasks might need extra data to be

staged in from remote data sites as input before execution. Similarly, some tasks might need to stage

out some intermediate data, which might be valuable to some users, to the remote sites. The optimal
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FIGURE 4.5: State space search tree

scheduling derived without considering the stage in and stage out is not always optimal when they

are considered. In the following, we will give an example to verify this statement.

Figure 4.7 depicts the workflow and the distributed system, which consists of heterogeneous in-

terconnected computational sites and data sites. The numbers appear on the edge of the workflow

reflect the data amount to be transferred and the numbers appear on the link of the sites represent

the estimated throughput of that link. The task execution time matrix is represented by Mc in the

following.

Mc =



10 100 200

10 20 400

200 10 300

400 10 20


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FIGURE 4.6: Turnaround time of workflow
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FIGURE 4.7: Workflow DAG and sites

Now let’s compare two scheduling schemes, namely scheduling 1 and scheduling 2. For scheduling

1, tasks t1 and t2 are mapped to computational site p1, tasks t3 and t4 are mapped to computational

site p2. For scheduling 2, task t1 is mapped on computational site p1, tasks t2 and t3 are mapped to

computational site p2, task t4 is mapped to computational site p3.

Suppose we have another workflow which is exactly the same as described in Figure 4.7 except

that there is no data stage in and stage out, then we can derive that scheduling 1 is the optimal

solution. For the workflow described in Figure 4.7 we can derive that scheduling 2 is the optimal

solution when we consider the data stage in and stage out. Figure 4.8 compares the turnaround time

for scheduling 1 and scheduling 2 without considering the stage in and stage out. It turns out the

scheduling 1 is better than scheduling 2. Figure 4.9 compares the turnaround time for scheduling 1

and scheduling 2 when considering the stage in and stage out. It turns out the scheduling 2 is better

than scheduling 1. Most of the current works neglect the importance of taking account of the stage

in and stage out data, hence they will lead to scheduling 1 for the workflow described in Figure 4.7,

which is not optimal. However, with our approach, we can derive an optimal solution for the workflow

described in Figure 4.7 as scheduling 2.
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TABLE 4.1: Two scheduling schemes comparison

scheduling 1 t1 → p1 t2 → p1 t3 → p2 t4 → p2
scheduling 2 t1 → p1 t2 → p2 t3 → p2 t4 → p3

FIGURE 4.8: Turnaround time without co-scheduling
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FIGURE 4.9: Turnaround time with co-scheduling

TABLE 4.2: Terms defined for problem input

Terms Definition
P = {pi} A set of computational sites
D = {di} A set of data sites

C = {cpipj , cdkdl , cpidk} A set of links between computational sites and data sites
Nc Number of computation sites
Nd Number of data sites

EXTij The execution time of ti on pj
THij The throughput between site i and site j
IMDij The amount of intermediate data between ti and tj
SIDij The amount of stage in data from data site di to task tj
SODij The amount of stage out data from task ti to data site dj
Mc The task computation matrix
Mt The throughput matrix
Mimd The intermediate data matrix
Msid The stage in data matrix
Msod The stage out data matrix
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TABLE 4.3: Terms defined during calculation

Terms Definition
Pre(ti) A set of immediate predecessors of ti in a conventional workflow

ExPre(ti) A set of immediate predecessors of ti in an extended workflow
Suc(ti) A set of immediate successors of ti in a conventional workflow

ExSuc(ti) A set of immediate successors of ti in an extended workflow
Ax(ti) The computation site which ti is assigned to

EXT (ti, pj) The execution time when ti is assigned to pj
ICT (ti, Ax(ti), tj, Ax(tj)) The intermediate data communication time

SIT (ti, Ax(ti), dj) The stage in time from dj to Ax(ti)
SOT (ti, Ax(ti), dj) The stage out time from Ax(ti) to dj

EST (ti, pj) The earliest time that ti can start execution on pj
ETT (tαi

) The earliest time to transfer the data generate by tαi

ESI(tγi , Ij) The earliest time to stage in the data needed by tγi from data site Ij

4.7 Experimental Results

In order to examine the benefits of applying overlap scheme in the data-aware scheduling algorithms,

we compare both the turnaround time and the number of nodes expanded during the state space

searching process. In this simulation, we choose the DAG structure similar to the one in Figure 4.10(a)

except that there is no stage in and stage out data in this simulation. We set up the computation

time for each task on each computational site as a uniform distribution. The mean is 720 and the

upper bound is 10% higher and the lower bound is 10% lower. The intermediate data between tasks

are also uniform distribution. We consider 5 cases, the mean for these 5 case are separately 1/2, 1/3,

· · · , 1/6 of 720, and the upper bound is 10% higher and the lower bound is 10% lower. Figure 4.12(a)

reflects the turnaround time of these 5 cases. It shows that the turnaround time can be decreased

around 20 percents when the intermediate communication time is around 1/2 of the computation

time.

Figure 4.12(b) depicts the number of nodes expanded during the state space search process. Since

the algorithm proposed by Lin [30] extended the workflow by adding a communication node between

every tow tasks, the problem size will be doubled. Also during the state space search process, all
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possible orders should be considered, hence the state space will be very huge. The result shows that

our design is quite efficient in time.

In order to verify the benefit of co-scheduling scheme in the data-aware scheduling algorithm,

we choose a DAG with the same structure to the one in Figure 4.12(c). The computation time for

each task and the intermediate data amount are both uniformly distributed with a mean of 720.

We vary the stage in and stage out data amount with a mean of 1, 2, · · · , 5 times of 360. First

we make the network bandwidth between the stage in/out data site and the computational data

site as homogeneous. Figure 4.12(d) shows the result. It seems that there are some benefit by using

co-scheduling algorithms, however, not significant. Then we set up the network bandwidth between

the stage in/out data site and the computational data site as heterogeneous, the turnaround time

will be significantly decreased when using co-scheduling algorithm.

We also vary the structure of the workflow and do a similar simulation as mentioned above.

The workflows we have considered are separately linear-structured, merging-structured, emission-

structured and merging-emission structured as shown in Figure 4.11. The turnaround time by using

our data-aware scheduling algorithm is much better than Lin’s optimal scheduling algorithm when

scheduling a workflow with stage in/out data to heterogeneous distributed systems.
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FIGURE 4.10: The workflow and the distributed systems

FIGURE 4.11: Typical workflow structures
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FIGURE 4.12: Comparison of Data-aware scheduling and Lin’s optimal scheduling
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Chapter 5
Data-aware Approximate Optimal Scheduling

Workflow scheduling is a very important problem in the distributed computing and Grid computing

research area. It has beed studied several decades by scientists aiming at finding an optimal solution

in an efficient manner or approximating optimal solution with high accuracy. In this study, a genetic

algorithm approach is proposed. Distinct from the past research, we develop a novel data-aware

evaluation function for each chromosome, a common augmenting crossover operator and a simple

but effective mutation operator.

5.1 Task Height

To facilitate the crossover and mutation operation, we define the task height similar to the definition

in [21,44,52].

Height(ti) =


0 if ti is root

max
tj∈pred(ti)

Height(tj) + 1 otherwise
(5.1)

From the definition, It is easy to see that if tj is an ancestor of ti, then Height(tj) < Height(ti). It

is always feasible that a task with a smaller height is executed before a task with a larger height and

tasks with the same height are executed in an arbitrary order. However, there are some occasions

that it is also feasible to execute a task with a larger height before a task with a smaller height. For

example, in Figure 5.1, the height of each task is shown in Table 5.1. The height of t2 is 1, the height

of t6, t7, t8 and t9 are greater than one, yet it is still feasible to execute t1 after them.

TABLE 5.1: Task height

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
Height 0 1 1 1 3 2 3 2 4 5
Heighteq 0 3 2 1 4 3 3 2 4 5
Heightsoft 0 2 1 1 3 3 3 2 4 5

In order to have a uniform relationship between task execution order and task height, we introduce

two additional height notations, heighteq and heightsoft. The height of a task is calculated topdown

and the equivalent height is calculated bottom up. A soft height is defined as a value in between the
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FIGURE 5.1: The workflow

original height and equivalent height. Heightsoft is the same as Height′ defined in [44]. The height

and equivalent height of a task are fixed, while the soft height can be different for each chromosome.

Since each chromosome will have a distinct task height array and the task execution orders are based

on the soft height, when we have a large number of chromosomes, we can explore a broad search

space for task execution orders and increase the probability of finding an optimal scheduling.

Heighteq(ti) =


Height(ti) if ti is end task

min
tj∈Suc(ti)

Heighteq(tj)− 1 otherwise
(5.2)

Heightsoft(ti) = Height(ti) + rand()%(Heighteq(ti)−Height(ti) + 1) (5.3)

5.2 Chromosome Encoding

A chromosome should contain the information of solution which it represents. For the workflow

scheduling problem, the solution is a complete scheduling, a mapping from each task to a processor.

For a complete scheduling, each task in the workflow will be assigned to one processor in a certain

order. The tasks on each process will be execute sequentially and the tasks on different processors
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TABLE 5.2: A complete scheduling

processor task
P1 2 5
P2 3 6 9
P3 4 8 7

will be executed in parallel. To represent the information of a particular scheduling, the processor on

which the tasks will be executed and the execution order on each processor should be considered.

In this study, we have the following assumptions for processor IDs and task IDs.

1. The start task ID is 1 and it is a dummy task with zero execution time and zero data transfer

to its successors. This will ensure the entire workflow will have a single start point.

2. The end task is a dummy task with zero execution time and zero data transfer between its

predecessors. This will ensure the entire workflow will have a single end point.

3. The processor ID is an integer and greater than zero. The will enable us to user zero as a

delimiter during encoding.

Since both processor ID and task ID are integer, it is very convenient for us to use integer repre-

sentation during encoding. We append the ID of each task assigned to a processor to the processor

ID and use zero as a delimiter for the task assignment for each processor. For example, the encoding

for the scheduling in Table 5.2 is: 0 1 2 5 0 2 3 6 9 0 3 4 8 7.

5.3 Population for Workflow Scheduling

The population is a set of chromosomes. To generate a chromosome, first calculate the soft height

for each task, and then assign tasks in order of the soft height randomly to a processor. Each

chromosome will maintains its own task soft height array and will govern the mutation process for

each chromosome. The process of generating the population is shown in Algorithm 3.

5.4 Crossover Operator

The crossover operation is performed on two chromosomes with the hope of generating new offsprings

with higher fitness. The genes in the conventional chromosome are independent to each other, which

makes the crossover operation simple and feasible. Taking two feasible chromosomes and intermingling
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Algorithm 3 Generate population

1: for i = 1 to population size do
2: calculate the soft height of each task
3: maxHeight ← the maximal soft height of the tasks for the current chromosome
4: for j = 1 to maxHeight do
5: for all task such that Heightsoft(task) = j do
6: randomly assign task to a processor
7: end for
8: end for
9: encoding the complete scheduling to a chromosome

10: add the chromosome to the population
11: end for

their genes will still generate two feasible chromosomes. However, in the workflow scheduling problem,

it is more complex. The chromosome is comprised of a set of genes representing task assignment,

processor ID and delimiter. Each chromosome represents a complete scheduling and should cover all

the task assignments. Simply exchanging gene segments is prone to result in incomplete chromosome

and gene duplication. For example, suppose we have the following two chromosomes:

chrom1 = 0 1 2 5 0 2 3 6 9 0 3 4 8 7

chrom2 = 0 1 2 9 0 2 3 6 7 0 3 4 8 5

After exchanging the first 4 integers of these two chromosomes, we get the following two offsprings:

offspring1 = 0 1 2 9 0 2 3 6 9 0 3 4 8 7

offspring2 = 0 1 2 5 0 2 3 6 7 0 3 4 8 5

It is easy to observe that offspring1 is incomplete since it lacks the information of where 5 is assigned.

Meanwhile, it has duplicate and inconsistent information since it indicates that 9 is assigned to both

processor 1 and 2. offspring2 has the same problem as offspring1.

Past research has been done to perform crossover to tasks assigned to each processor, do some

adjustment on the fly and finally output two feasible offsprings. This approach is little complex for

implementation. Besides, there is no clear evidence showing that such a complex crossover outper-

forms a simple operation by replacing some chromosomes of small fitness values with some new fresh

chromosomes.

In this work, a new approach is introduced to simplify the crossover operation. In this approach,

instead of replacing two parents with two new offsprings, the population will take one new offspring
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generated from two parents as well as keeping the parents. In the end, the population size will increase

to one and a half times of the original size. A ranking selection method can reduce the population

back to its original size.

In this new approach, if a task is assigned to the same processor in the parent chromosome, it

will remain this assignment in the offspring. The tasks having different assignment in the parent

chromosome will have a random assignment in the offspring. For example, an offspring could be

offspring = 0 1 2 9 0 2 3 6 5 0 3 4 8 7 if the parents are chromosome1 and chromosome2. The

detail of the operation is shown in Algorithm 4, 5

Algorithm 4 Crossover

1: for all (chomi, chromj) such that (chromi ∈ population) ∧ (chromj ∈ population) ∧ (chromi /∈
p) ∧ (chromj /∈ p) do

2: offspring ← GenerateOffspring(chromi, chromj)
3: add offspring, chromi, chromj to p
4: end for
5: population ← select the best populationsize chromosomes from p.

Algorithm 5 GenerateOffspring(chromi, chromj)

1: taskToProcessor[taskCount]← 0
2: for all t such that t is assigned to the same processor in both chromi and chromj do
3: taskToProcessor[t]← processorID
4: end for
5: randomly select the soft height of each task from parents
6: maxHeight ← the maximal soft height of the tasks
7: for j = 1 to maxHeight do
8: for all t such that Heightsoft(t) = j do
9: if taskToProcessor[t] 6= 0 then

10: assign t to taskToProcessor[t]
11: else
12: randomly assign t to a processor
13: end if
14: end for
15: end for
16: encoding the complete scheduling to a chromosome

5.5 Mutation Operator

The mutation operation in the workflow scheduling problem should ensure the chromosome after

mutation to be a complete scheduling without redundancy. Besides, the task execution order should

41



follow the data dependency constraints. Simply changing a task ID will cause the chromosome to

contain duplicate and inconsistent information. Moreover, the chromosome after this mutation is

incomplete since it lacks the task assignment for the task before mutation. Randomly exchange the

position of two tasks might violate the data dependency constraints.

In this work, a simple and effective mutation method is introduced. First randomly choose two

processors and perform a merge sort to the tasks according to their soft height, then randomly

assigned each task to these two processors sequentially. Algorithm 6 shows the detail of the mutation

operation.

Algorithm 6 Mutation

1: randomly choose two processors i and j.
2: perform a merge sort to the tasks assigned to processor i and j according to their soft height
3: for all task in the sorted task array do
4: randomly assign this task to processor i or j
5: end for

5.6 Fitness Function for Scheduling

The fitness is calculated based on the turnaround time of the scheduling represented by the chromo-

some. Since the objective is to find a scheduling with the shortest turnaround time, a chromosome

with shorter turnaround time will have higher fitness value. The fitness in this work is calculated

by the difference of the maximal turnaround time in the population and the turnaround time of the

current chromosome.

To get the turnaround time of scheduling represented by the chromosome, the task assignment and

execution order must be retrieved from the chromosome. The tasks assignment on each processor is

already sorted according to the soft height. Performing a merge sort to the task assignments on each

processor will output an array of task assignments in nondecreasing order of soft height.

5.7 Experimental Results
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Algorithm 7 RetrieveSched

sched← task assignment on processor 1
for pid = 2 to processor count do

merge tasks assigned to processor pid with sched according to softheight
end for
for all task in sched do

calculate the earliest stage in time
calculate the earliest start time
calculate the earliest time to transfer data
calculate the earliest stage out time

end for
for all processor do

calculate the finish time of the last task assigned to this processor
calculate the stage out finish time time of each task which has data to be staged out

end for
return the maximum of latest execution finish time and latest stage out finish time

FIGURE 5.2: Turnaround time comparison of GA and optimal scheduling
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Chapter 6
Parameterized Model for Optimizing Workflow
Data Throughput

6.1 Review of Existing Prediction Models
6.1.1 Dinda et al Model

In this model, the throughput(Thn) for n parallel streams is predicted in the following equation by

Dinda et al [32]. Note that there are two parameters on the right side of the equation, which are

separately a′ and b′.

Thn =
n
√
p′
n

=
n√

a′n2 + b′
(6.1)

6.1.2 Logarithmic Model

This model is proposed by Yildirim et. al [49]. There are also two parameters in this model, which

are separately a′ and b′. The only difference is the term in the denominator compared with the Dinda

et al Model. In this model, the square root term in the denominator is replaced with an exponential

term.

Thn =
n√
a′eb′n

(6.2)

6.1.3 Newton’s Model

This model is also proposed by Yildirim et al [49]. There are three parameters in this model, which

are separately a′, b′ and c′. It differentiates from Dinda et al model by placing an extra parameter

c′ in the denominator. Recall that in Dinda et al model, they assume that the highest order of the

tern in the square root is n2. In the Newton’s model proposed by Yildirim et al, the highest order is

relaxed by placing a new parameter c′. They intend to improve the precision of the prediction model

by finding the best order with respect to n.

Thn =
n√

a′nc′ + b′
(6.3)

6.2 An Improved Model: Full Second Order Model

By examining Dinda et al’s Model, we find that the square root terms in the denominator are partial

second order. An intuitive idea is adding a linear term b′ with respect to n in the square root. Then

44



there will be there parameters, which are separately a′, b′ and c′. We have done some experiments

on the Newton’s method mentioned above and find that the best value for c′ in equation 6.3 is very

close to 2 (2± 0.2). Hence in this proposed new model, we fix the highest order with respect to n in

the square root as 2. The theoretical study has been published in [49] and it has been widely used in

our fast data placement models [13] [12].

Thn =
n√
p′n

=
n√

a′n2 + b′n+ c′
(6.4)

Similar to the idea presented in [49], in order to instantiate the throughput prediction model, we

need to calculate the parameters. Since there are three parameters in this full second order model, if

we treat the number of parallel streams n and the the throughput thn corresponding to n as known

data, we can build an system of equations from a set of data pairs (n1, thn1), (n2, thn2), (n3, thn3)

and derive the parameters as the following.

a′ =

n2
3

Th2n3

− n2
1

Th2n1

n3−n1
−

n2
2

Th2n2

− n2
1

Th2n1

n2−n1

n3 − n2

(6.5)

b′ =

n2
2

Th2n2

− n2
1

Th2n1

n2 − n1

− (n1 + n2)a
′ (6.6)

c′ =
n2
1

Th2n1

− n2
1a
′ − n1b

′ (6.7)

6.3 Randomly Chosen Data Sets for Comparison

To evaluate the performance of different models by using some specified data set may not give us a

good approximation of the power of the models. In existence of the appropriate combination of data

sets, a model may give less error rates. However, for different sets of data, while some models give

accurate results the others may not. In the previous experiments we assumed that we have the total

throughput values of all parallelism levels, in our case, up to 40 streams. However, in practical cases,

it might not be possible to gather the whole data set information. The problem is whether we can use

the limited number of data to find the suitable coefficients for the prediction models. In this section,

we design an evaluation strategy which will use randomized datasets that will cover subsets of all
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FIGURE 6.1: Model evaluation based on predictability, sensibility and error rate.

the parallelism level information. Based on this strategy we also define new metrics and evaluate our

models based on them.

Since the number of data used for model evaluation will affect the accuracy of our prediction, we

will try different numbers of data in the evaluation procedure. We use a data file that keeps all the

data we get from the experiments we have conducted. We call all the data in this file which includes

the throughput values of all parallelism levels up to 40 the population, from which we get samples

with different numbers of data for our evaluation procedure. The sample data sets are taken from

the population randomly.

6.3.1 Comparison Metrics

For each sample data set, we calculate the coefficients and get the equation to predict the throughput.

The coefficients are obtained from the sample data set, however, we will make the comparison based

on both the data from the population and the data from the sample.
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The predicted throughput can not be calculated for some paralelism levels with the coefficients

derived from a specified stream combination selection as they will make the term of the square root

less than zero or make the denominator equal to zero. So we call those stream numbers out of the

domain. We say that the Predictability of a specified equation is poor if the number of streams out of

the domain is large in proportion. We use Ppre[m i] to stand for the predictability of a specified equation

derived from the data set named m i where m represents the number of data and i represents the

ith set. Let the number of streams within domain be represented by Nind and the number of streams

out of domain be represented by Noutd, then we define Ppre[m i] as follows:

Ppre[m i] =
Nind

Noutd +Nind

(6.8)

The equation solved by some combinations of parallelism level data will cause the predictability to

be in a poor situation, while some other combinations may cause the predictability to be stronger. If

there are lots of combinations of data which make the predictability to be in a poor situation, then

we say that this prediction model is sensitive to data. Let Psen[m i] to be denoted as the sensitivity

of the sample data set, the number of combinations which make Ppre[m i] = 1 to be denoted as Neff

and the number of all the combinations of a sample data to be denoted as Nsam, then we calculate

Ppre[m i] as follows:

Psen[m i] =
Neff

Nsam

(6.9)

For evaluation of accuracy of the models, we use the quadratic average of the distance metric that

was used in BFC Algorithm for stream values within the domain.

Err[m i] =

√∑Nind

k=1 ε
2
k

Nind

(6.10)

We propose to find a best fitted combination of data for the data set m i such that Ppre[m i] = 1 and

Err[m i] gets the minimum value compared with all possible combinations for the sample data. The

following equation represents the best error rate value among different combinations of parallelism

levels.

Errbest[m i] = minNeff

(
Err[m i]

)
(6.11)
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Finally, by taking the average of results for all random data sets, we compare our models. In the

following equations km represents the number of data sets of m data.

Psen[m]ave =

∑km−1
i=0 Psen[m i]

km
(6.12)

Ppre[m]ave =

∑km−1
i=0 Ppre[m i]

km
(6.13)

Errbest[m]ave =

∑km−1
i=0 Errbest[m i]

km
(6.14)

6.3.2 Evaluation

In this section, we present the results based on the evaluation metrics we defined above. Figure 6.1.a

shows the sensibility of data that is used for prediction using all models as the number of data is

increased in the samples. We select one combination of parallelism level data each time to get the

coefficients of the throughput equation. The y-axis is the probability of the effectiveness of these

combinations. If the equation derived from a specified combination can predict the throughput of

each number of stream, i.e., Ppre[m i] = 1, we say this combination is effective in the data set m i.

The sensibility is inversely related to the effectiveness of the combinations. From Figure 6.1.a we can

see that the logarithmic and the averaging model is not sensible to the data. So they are the most

stable models. Newton’s Iteration follows them with a high probability of effectiveness. Full second

order, break function and Dinda et al. models are the most sensible to data. Another observation is

that as the number of data increases, the combinations become more sensitive to data.

Figure 6.1.b presents the predictability of a throughput equation with specified coefficients. Once

the equation is applied with the coefficients, the throughput value for some number of streams can

not be calculated as the denominator becomes equal to zero or the term inside the square root is less

than zero. In this case, we say that those stream numbers are out of the domain. We can not predict

the throughput of a stream number if it is out of the domain. From the figure, it can be seen that

logarithmic and averaging models are the most predictable while Newton’s Iteration Model, Dinda

et al Model and Full Second Order Model can only reach them for large number of data. The worst

performance is with the break function model.
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Figure 6.1.c presents the average error for the population data, in which case the predicted through-

put is calculated for every parallelism level and compared to the whole data set of experimental results.

According to the figure, the best results are taken with Full Second Order and Newton’s Iteration

and the worst ones are taken with logarithmic model.

When the predicted results are calculated for only the parallelism level existing in the sample,

break function model gives the best results and Full Second Order and Newton’s Iteration follows

it (Figure 6.1.d). The worst are again taken with logarithmic model. The results are similar when

comparison is made for population and sample data sets. This is a strong proof of the correctness of

our scheme of using a subset of the pupulation data to predict the throughput of the population.

6.4 Decreasing Dataset Size with Intelligent Selection of

Parallelism Levels

In the previous evaluation sections, we have presented the power of the models for randomly cho-

sen parallelism levels and randomly chosen data sets. When we choose a random combination of

parallelism levels, it is a high possibility that the chosen levels may not reflect the characteristics

of the throughput curve. The algorithm we have presented solves this problem by finding the best

coefficients. However it tries a large number of combinations to reach a steady result and it may need

a certain size of historical data set to give a good prediction hence can not be used with an online

strategy which uses the prediction results of tools rather than past historical transfers.

In this section, we provide an intelligent selection strategy which decides on less number of data

and can be used with an online model as well. Our previous experiences showed that it is better

if we choose the parallelism levels not close to each other. So we applied an exponential increase

strategy by selecting the stream numbers that are power of 2: 1, 2, 22, 23, ..., 2k. Each time we double

the number of streams until the throughput starts to drop down or increase very slowly compared to

the previous level. After k+1 steps we gather k+1 parallelism level throughput data and apply the

Best-fitted Coefficient Algorithm to find the best parallelism levels. In this case we only need a data

size of O(log 2k) and hence do less number of comparisons.

This strategy (best fit coefficient) focuses on better prediction of the optimal parallelism level

which is the peak point of the curves. While the basic algorithm gives better results for the average
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throughput distances in most of the cases, with exponential increase strategy we are able to better

predict the peak throughput point hence the number of streams that gives it. More importantly, we

could find this point with a small size dataset of exponentially increasing points. According to the

figure, only 4 points (1,2,4 and 8) seems to be enough to get a good prediction curve. Best results are

taken with Full Second Order model in terms of both throughput distance and peak point prediction.

Newton’s Iteration and Logarithmic models can predict the peak point well, however with a trade of

high throughput distance between GridFTP and prediction results.

6.5 Validating Prediction Model

To figure out whether a certain combination of data points is good or not before we try to use it

to calculate the optimum parallel stream numbers, we examine the coefficients a′,b′ and c′ derived

from application of the model by using the certain combination of data points. If the coefficients

meet some requirements for each model, then we can use this combination to calculate the optimum

parallel stream number, otherwise we need to get another combination of data points. But we have to

keep in mind that, we may still be far from the combination that will give the most accurate model.

In the following subsections we give out the requirements of the coefficients that should be met so

that they can correctly reflect the relationship between the throughput and parallel stream number

for the models. Since we have based our model improvements on Dinda et al model [32], we consider

this model as a base while comparing our models. Also we present a short proof for the Full Second

Order Model.

6.5.1 Statements of the Coefficients Requirements

i)For Dinda et al model:

• a′ > 0

• b′ > 0

ii)For Newton’s Method Model:
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• a′ > 0

• b′ > 0

• c′ ≥ 2

•
(

2b′

a′(c′−2)

) 1
c′
> 1

iii)For Full second order Model:

• a′ > 0

• b′ < 0

• c′ > 0

• 2c′ + b′ > 0

6.5.2 Proof of Dinda et. al Model Parameter Requirements

Th′din =
b′

(a′n2 + b′)
3
2

> 0

⇒

b
′ > 0

a′n2 + b′ > 0 ∀n ∈ N+, n ≤ optnum

⇒

a
′ > 0

b′ > 0

Furthermore,

lim
n→∞

n√
a′n2 + b′

= lim
n→∞

√
a′n2 + b′

a′n

= lim
n→∞

√
a′ + b′

n2

a′

=

√
a′

a′
(6.15)

Then we conclude that the throughput function of Dinda et. al Model increases monotonically with

an upper bound
√
a
′

a′
.
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6.5.3 Proof of Newton’s Method Model Coefficients Requirements

For Newton’s Method Prediction Model, we expect a prediction curve that will increase first to a

peak value, and then decrease gradually to a lower bound.

Based on Equation 6.3, we know that c′ ≥ 2, otherwise, the limit of the throughput function will be

infinity. When c′ = 2, the throughput equation will be the same as the Dinda et al Model. From the

discussion about Dinda et al Model, we know that the throughput function of that model increases

monotonically. In this case, in order to get a throughput prediction curve with a peak value c′ must

be greater than 2.

Also we must ensure that a′ > 0, otherwise, the term inside the square root will be less than zero.

To meet the increasing and decreasing properties of the throughput curve, the first derivative

should be positive initially, in the peek point it should become zero, and finally become negative.

Since the denominator is positive, we only need to control the numerator of the throughput function.

If b′ ≤ 0, the numerator will be negative, thus we conclude that b′ > 0.

When we equalize the numerator to 0, we find that n =
(

2b′

a′(c′−2)

) 1
c′

. Since the throughput will

increase along with the stream number firstly. So the optimum value of n should be greater than 1.

Thus we get
(

2b′

a′(c′−2)

) 1
c′
> 1.

6.5.4 Proof of Full Second Order Model Coefficients Requirements

In order to get a curve which increases first and then decreases monotonically, we should guarantee

that the throughput function is positive first and when it reaches the peak point, becomes zero,

finally decreases into negative value.
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Th′ful =



b′
2
n+c′

(a′n2+b′n+c′)
3
2
> 0 n < optnum

b′
2
n+c′

(a′n2+b′n+c′)
3
2

= 0 n = optnum

b′
2
n+c′

(a′n2+b′n+c′)
3
2
< 0 n > optnum

⇒



b′

2
n+ c′ > 0 n < optnum

b′

2
n+ c′ = 0 n = optnum

b′

2
n+ c′ < 0 n > optnum

a′n2 + b′n+ c′ > 0 ∀n ∈ N+

⇒



a′ > 0

b′ < 0

c′ > 0

optnum = −2c′
b′

> 1

⇒



a′ > 0

b′ < 0

c′ > 0

2c′ + b′ > 1

Furthermore

lim
n→∞

n√
a′n2 + b′n+ c′

= lim
n→∞

2
√
a′n2 + b′n+ c′

2a′n+ b′

= lim
n→∞

√
a′ + b′

n
+ c′

n2

a′

=

√
a′

a′
(6.16)

According to the above equalities and inequalities we conclude that Full second order Model

increases first, then reaches a peak value, later decreases with a lower bound
√
a′

a′
.
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Chapter 7
Regression Model for Optimizing Workflow Data
Throughput

Along with the advance of high throughput computing (HTC), high performance computing (HPC),

and Many-task computing (MTC), more attention has been drawn to reduce the impact on the

overall performance caused by the low data transferring rate. In the grid environment, data can be

transferred with parallel TCP streams in order to fully utilize the underlying network bandwidth. It

is crucial to figure out the optimal number of parallel streams efficiently and effectively. In this study,

dynamic models and stochastic models based on data mining models such as linear regression and

Gaussian process regression are introduced and compared. Also a framework to predict the optimal

number of parallel streams is designed and implemented, which is feasible to variate models presented

in this study.

7.1 Introduction

Gridftp is widely used in the grid environment for data movement due to its high transferring rate

and the reliability. Globus is a toolkit using gridftp as its underlying protocol for data movement.

In the implementation of Globus, it allows the user to specify the number of parallel TCP streams

in order to fully utilize the network bandwidth. There exists an optimal number with which the

throughput reaches the peak value. Transferring with a number less than the optimal value will

result in a drastically lower throughput. On the other hand, transferring with a number greater than

the optimal value will not lead to higher throughput; nevertheless, it will incur a higher resource

utilization of the system. The Globus toolkit does not provide the user with the optimal value

automatically since it fluctuates along with the changing of the network traffic. Hence it is crucial to

predict the optimal value based on some effective mathematical models.

In the study [32], a partial second order model was introduced to model the throughput variance

with respect to increasing the number of parallel streams. In this model, the throughput increases

drastically when the number of parallel streams is small, and then it becomes stable. The throughput

is monotonically increasing with respect to the number of parallel streams according to the model

54



presented in [32]. However, this model is biased since in most cases the throughput does not exhibit

monotonically increasing behavior. Alternatively, the throughput tends to decrease gradually when

the number of parallel streams exceeds a certain number, which is the optimal number of parallel

streams.

A full second order model was introduced to improve the accuracy of the partial second order

model in the previous chapter. In the full second order model, p′n [32] is related to a full second order

polynomial, other than the partial second order one which was presented before. The full second

order model can predict the first increasing and then decreasing behavior of GridFTP throughput

as the number of streams increases. Experiments show that full second order can give better results

than the partial order.

7.2 Problems of the Three-point Prediction Approach
7.2.1 Sensibility of Data Selection

As presented above, the full second order model requires three data pairs to calculate the unknown

variables in order to instantiate the model. Unfortunately, the choice of these three data pairs affects

the prediction results significantly. Some combination of three data pairs is able to construct a very

accurate model, while others not. Even worse, it is possible that a improperly chosen combination of

data pairs does not give a correct model.
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Figure 7.1 depicts the sensibility of data pairs selection. The horizontal axis is the number of

parallel streams and the vertical axis is the corresponding throughput. The crossed points shown in

the figure represents the observation data, which are measured between two clusters (Eric and Oliver)

residing in the LONI optical network. The curve produced by using the throughput with respect to

the parallel number of streams of 1, 3 and 11 agrees with the observation data very well. However,

the curve produced by using the throughput corresponding to the number of parallel streams of 1, 2

and 4 deviates from the observations drastically.

7.2.2 Time Efficiency of Sampling

In order to overcome the sensibility problem, more data are measured in the sampling process instead

of just providing three data pairs. An effective way is to measure the throughput with respect to an

exponentially increasing number of parallel streams until the throughput does not increase compared

with the previous sampling. For instance, gradually measure the throughput with respect to 1, 2,

4 and 8. If the throughput with respect to 8 is less than the throughput of 4, then stop sampling.

Choose the best combination from these 4 observations to construct a model which can be used to

predict the optimal number of parallel streams. This strategy could decrease the prediction failure

rate. However, it will increase the time spent on sampling.
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Figure 7.2 shows the time consumption with respect to the number of sampling times. The file

size for each sampling is 30MB and the number of parallel streams is exponentially increased. It
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costs around 7 seconds when the number of sampling times is 2 and 14 seconds when the number of

sampling times is 6. The reason that the time consumption is not linear with respect to the number

of sampling times is due to the exponentially increasing of the parallel streams. Generally the time

cost will be less with a greater number of parallel streams for the same size of data to transfer.

7.2.3 Fluctuation of the Network

The fluctuation of the network increases the difficulty of prediction. The basic idea of the prediction

model presented above is predicting the optimal number of parallel streams using the throughput

with respect to different number of parallel streams at a fixed time t. However, actually only one

throughput with respect to a certain number of parallel streams can be measured at time t. The other

sampling data are measured at different time. Hence the existing prediction models assume that the

throughput does not change along with the time even though it does.
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Figure 7.3 shows the fluctuation of the network measured at different time with respect to 1 and 2

parallel streams respectively. They are measured for 200 times with a 20 seconds time interval. The

throughput changes each interval for both 1 and 2 parallel streams.

Figure 7.4 shows the average throughput with respect to different number of parallel streams and

one specific case. The average throughput curve is smooth and easier to construct a prediction model

based on these observations. However, it is harder to construct a effective model based on the data
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of the specific case. Nevertheless, we can only obtain the data for one specific case when we try to

construct the prediction model. That increases the data sensibility during model construction.

7.3 Data Mining Approaches
7.3.1 Linear Regression

The objective of the prediction is to find the optimal number of parallel streams that makes the

throughput maximal at a given time. In order to achieve this goal, a naive approach could be: first

measure the throughput for each number of parallel streams and then figure out the one whose

throughput is the largest. The number corresponding to the largest throughput is claimed to be the

optimal value. Apparently this naive approach guarantees the accuracy, however, it is very expensive

in terms of time cost as presented in the previous sections.

Linear regression is widely used in solving data mining problems where the output depends linearly

on the input. In order to use linear regression approach, it is assume that the optimal number of

parallel streams depends linearly on the throughput of several number of parallel streams.

7.3.1.1 Basic Idea

The basic idea of this approach is using the history information to make a prediction of a new

observation based on some criteria. There exists some patterns concealed in the history information

that are not obviously. In order to make a accurate prediction about the new observation, one needs

to select the most significant features from the history data. Specifically, in the optimal number of
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parallel streams prediction problem, it is assumed that the optimal number is linearly related to a

set of throughput with respect to a set of number of parallel streams. Suppose there are k elements

in this set and use Xi to represent the throughput with respect to the set. opti represents the optimal

number of parallel streams with respect to the set. W is a column vector which consists of the weight

for each throughput.

Xi = [thi1, thi2, · · · , thik]T (7.1)

W = [w1, w2, · · · , wk]T (7.2)

opti =
k∑
j=1

wj ∗ thij = W TXi (7.3)

In this model, the throughput of a subset of the number of parallel streams is measured instead

of measuring the throughput for each number. Each data point is a multidimensional variable which

consists of the throughput with respect to a set of number of parallel stream. Suppose there are n

such data from the history data. X represents all the data points from the history data, which is a k

by n matrix. opt represents the corresponding optimal number of parallel streams, which is a column

vector.

X = [X1 X2 , · · · , Xn] (7.4)

opt = [opt1 opt2 , · · · , optn]T (7.5)

If there is a column vector W such that:

opt = W TX (7.6)

then this W is the optimal solution to this prediction model. In this situation, W perfectly agrees

with each data point. However, this rarely happens in the reality since the optimal number of parallel

streams is not exactly linearly related to the observed throughput. Hence a noise term σ is added
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into the linear model.

opti =
k∑
j=1

wj ∗ thij + σ = W TXi + σ (7.7)

In the real world, noise often follows a Gaussian distribution. Hence it is intuitive to model opti as

Gaussian distribution with mean W TXi and variance σ.

p(opti|Xi,W ) = N(W TXi, σ) (7.8)
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FIGURE 7.5: Distribution of the optimal number of parallel streams

This assumption also apples in this prediction model. Figure 7.5 depicts the distribution of the

optimal value. In Figure 7.5, the horizontal axis represents the optimal number of parallel streams and

the vertical axis represents the frequency observed for each optimal value. It turns out the probability

density function appears bell shape, which approximates to Gaussian distribution.

With the assumption that the optimal number of parallel streams are independent with each other

when measured at different time and they follow the identical normal distribution, the data likelihood

of the n observations from the history data are calculated as follows:

p(opt1, opt2, · · · , optn) =
n∏
i=1

p(opti) =

n∏
i=1

1√
2πσ

exp

{
− 1

2σ
(thi −W TXi)

2

}
(7.9)
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The log likelihood is calculated as follows:

ln(p(opt)) = −n
2
ln(2πσ)− 1

2σ

n∑
i=1

(thi −W TXi)
2 (7.10)

The objective of linear regression model is to find a W that best suits the data X and opt. This means

to minimize the non-consistence between the target value and the predicted value. This is equivalent

to maximize the data likelihood or log likelihood. Usually a good prediction model consists of two

features, one of which is accuracy and the other is simplicity. A complex model usually leads to over

fitting problems. Hence a regularization term is introduced to the linear model.

E = ED + λEW (7.11)

ED =
1

2

n∑
i=1

(thi −W TXi)
2 (7.12)

EW =
1

2
W TW (7.13)

ED comes from the log likelihood. Notice that:

∂p(ln(opt))

∂W
= − 1

σ

∂ED
∂W

(7.14)

EW expects the prediction model to be simple. It means it wants each wi to to smaller. λ balances

the these two terms. On one hand, it tries to make the model more accurate, and on the other hand

it expects the model to be as simple as possible. To minimize E, its partial derivative with respect

to W is calculated.

∂E

∂W
= 0 (7.15)

Solve Equation 7.15, get the optimal solution for W :

Ŵ = (λI +XTX)−1XTopt (7.16)

7.3.1.2 Mapping Function

In the linear regression model, in order to model a non linear relationship or improve the accuracy

it usually maps the independent variables X into another space. The mapping function is assumed,

tested and improved in each domain. In this prediction model, intuitively the optimal value is smaller

if the ratio of the throughput with respect to a larger number of parallel streams to that of a smaller
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one is larger. For instance, at time i, the data point obtained is Xi = (thi1, thi2, thi3) and at time

j the data point obtained is Xj = (thj1, thj2, thj3). If thi2/thi1 is greater than thj2/thj1, then it is

very possible that the optimal value corresponding to Xj is greater than that of Xi. Taking this

into account, a function mapping from the original throughput feature space into a new ratio based

feature space is introduced in Equation 7.17. Equation 7.19 is the solution to the parameter W .

Equation 7.20 is the decision function of the regression model.

Φ(Xi) = [Xi2/Xi1 Xi3/Xi2 · · · Xik/Xik−1]
T (7.17)

Φ = [Φ(X1) Φ(X2) · · · Φ(Xn)] (7.18)

Ŵ = (λI + ΦTΦ)−1ΦTopt (7.19)

yprediction = Ŵ TΦ(Xobservation) (7.20)

7.3.1.3 Feature Selection

When moving data from one site to another, a smaller number of parallel streams is tentatively used

to transfer partial of the whole data. Then increase this number by a small step and perform the

second tentatively transferring and so forth. These tentatively number of parallel streams and the

corresponding throughput will be used as the features for training and prediction.

Each tentative partial data movement will cost more time than using the optimal value, hence

the number of tentative transfer should be as small as possible in order to minimize the time cost

on the sampling phase. On the other hand, a relatively larger number of features will give a better

classification model. The precision and recall of the model will be relatively better.

It is really very hard to construct a good model that using only one tentative partial data movement.

However, a model with 2 tentative transfer can give a relatively good model. For instance, they can

obtained by transferring the data using 1 and 4. It is interesting to figure out Which two tentative

transfers can give the best model.
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7.3.1.4 Prediction Comparison

In order to predict the optimal number of parallel streams, the full second order model first constructs

a throughput function, and then calculate the rate of slop for each point. The point whose slop

approximates to zero is recognized as the optimal solution. This idea is workable theoretically while

it is difficult in practice. That is because it is very hard to decide the threshold for the rate of slop

where the optimal solution relies on. A specific threshold could be suitable for one case while not for

the other cases. Figure 7.6 shows the predicted results using full second order. The dots represent

the predicted optimal value for each test case. The stars represent the actual optimal solution. Many

predicted values are much larger than the actual ones as shown in the figure. That is because the

threshold for the slop is too small for these cases, where a larger number of parallel streams is

needed to make the slop reaches that threshold. A larger threshold may make these prediction values

approximate to the actual value. However, the originally correct predicted value will become smaller

meanwhile. Hence they will be too small than the actual value. In this situation, a fixed threshold is

hard to satisfy all cases and it is hard to decide a adaptive threshold.
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FIGURE 7.6: Predict the optimal number of parallel streams with full second order model

As contrasted to the prediction with full second order model, the linear regression model does not

have such issues. The model is feasible to make a prediction for each case with a smaller error rate

even using only two sampling data points. The prediction accuracy will increase when more data

points are provided. Figure 7.7 illustrates the prediction using two data points which correspond to
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the throughput measured with the number of parallel streams of 2 and 4 respectively. Figure 7.8

represents the prediction results using 20 data points as a contrast. In Figure 7.7 the predicted value

approximates to the mean of the actual value which is the most possible value for each case. In Figure

7.8 the predicted value approximates to the actual value much closer in most cases since more data

points are provided. The extra information leads the predicted values closer towards the actual value.

In practice a smaller number of data points is preferred other than a greater number such as 20 with

the consideration of sampling efficiency. Further more, a small error in the prediction of the optimal

number won’t degrades the performance significantly since the throughput measured with different

number of parallel streams near the optimal number approximates to each other very much.
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FIGURE 7.7: Predict the optimal number of parallel streams with linear regression model using two
data points [2 4]

7.3.2 Gaussian Process
7.3.2.1 Function Space View

Gaussian process is defined on a collection of random variables. In this prediction domain, the optimal

number of parallel streams for each case is treated as a random variable. It is assumed that any number

of these random variables are jointly Gaussian distributed.

[opt1 opt2 · · · optn]T ∼ N(u,K) (7.21)
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FIGURE 7.8: Predict the optimal number of parallel streams with linear regression model using 20
data points [1-20]

K is the n by n covariance matrix which is defined as the following.

K =



k(X1, X1) k(X1, X2) · · · k(X1, Xn)

k(X2, X1) k(X2, X2) · · · k(X2, Xn)

· · · · · · · · · · · ·

k(Xn, X1) k(Xn, X2) · · · k(Xn, Xn)


+ σ2

nI (7.22)

k(Xi, Xj) = σ2
fexp

{
−(Xi −Xj)

T (Xi −Xj)

2l2

}
(7.23)

σn is the noise variance. σf is the maximal allowable covariance, which should be larger if the random

variable covers a large range. l is the length parameter. These three parameters are named hyper-

parameters which can be adjusted dynamically according to the marginal likelihood.

Based on the assumption that any number of random variables follow jointly Gaussian distribution,

the predicted optimal number of parallel streams opt∗ with respect to the observation X∗ together

with the known history data are jointly Gaussian distributed.

[opt1 opt2 · · · optn opt∗]T ∼ N(u,K ′) (7.24)

K ′ =

 K K∗T

K∗ K∗∗

 (7.25)

K∗ = [k(X1, X
∗) k(X2, X

∗) · · · k(Xn, X
∗)] (7.26)
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K∗∗ = k(X∗, X∗) (7.27)

The conditional distribution of opt∗ is also a Gaussian.

opt∗|X∗, opt1, opt2, · · · , optn ∼ N(opt∗,Σ) (7.28)

opt∗ = K∗(K + σ2
nI)−1opt′ +mean(opt) (7.29)

opt′ =



opt1 −mean(opt)

opt2 −mean(opt)

· · ·

optn −mean(opt)


(7.30)

mean(opt) =
1

n

n∑
i=1

opti (7.31)

Σ = K∗∗ −K∗(k + σ∗nI)−1K∗T (7.32)

7.3.2.2 Prediction Results

Gaussian process allows each random variable to have a separate variance. It means these random

variables are not necessary to have an identical distribution. Hence it is convenient to figure out the

variance for each prediction as well as the confidence region.

Similar to the linear regression model, Gaussian process can make a prediction regardless of the

number of throughput measured with different number of parallel streams. The conventionality of

the input Xi corresponds to the sampling times. For instance, if the throughput with respect to the

number of parallel streams 1 and 2 is measured, then Xi is two dimensional.

Generally, the prediction accuracy increases with the increase of the number of throughput mea-

sured. However, the accuracy is obtained at the cost of time for sampling. Fortunately, it is possible

to make a good prediction with a smaller number of sampling times with Gaussian process. Figure

7.9 shows the prediction curve on the training data set with one sampling time. Figure 7.10 shows

the corresponding prediction results on the testing data set.

In Figure 7.9, the horizontal axis represents the throughput measured with 1 stream and the

vertical axis represents the optimal number of parallel streams for each case. It aims to draw a curve

representing the relation between the dependent variable (the optimal number of parallel streams)
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and the independent variable (the throughput at a certain parallelism level). The solid line represents

the best estimate of the target value at the given input. The shaded area shows the 95% confidence

region of the estimation. It can be seen that most of the data are covered by the 95% confidence

region.

In Figure 7.10, the horizontal axis represents different testing cases and the vertical axis represents

the prediction of the optimal value. The actual value, the predicted value and the 95% confidence

region are all plotted.
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FIGURE 7.9: Train the Gaussian process model using 1 time sampling [1]
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FIGURE 7.10: Predict the optimal number of parallel streams with Gaussian process using 1 data
points [1]
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Figure 7.11 and Figure 7.12 are two figures for the training and testing process with Gaussian

process approach when using two times of sampling. In Figure 7.11, the horizontal axis represent the

throughput measured when the number of parallel streams is 1 and 2 separately and the vertical axis

represents the optimal number of parallel streams. It can be observed that similar throughput predicts

similar optimal number of parallel streams. The convex surface and concave surface corresponds two

groups of data. The data within the same group has high similarity in throughput and they have low

similarity in throughput between different groups.
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FIGURE 7.11: Train the Gaussian process model using 2 times sampling [1 2]

In this study, different approaches are introduced and compared to predict the optimal number

of parallel streams. This is a significant problem in the data intensive distributed computing area

since the throughput can be improved greatly with optimization. These approaches mainly falls into

two categories, one of which is a pure sampling based approach and the other is the history data

plus sampling approach. The full second order belongs to the first category. The disadvantage of this

approach is that it does not always give an effective result. Linear regression and Gaussian process

approaches belong to the second category. These two models always give an effective result and they

are time efficient. The accuracy of these two models are improved compared with the pure sampling
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FIGURE 7.12: Predict the optimal number of parallel streams with Gaussian process using 2 data
points [1 2]

based approach. Most importantly, the number of sampling times can be reduced to one or two with

these two novel approaches. Hence the time cost on sampling is reduced significantly and the accuracy

are guaranteed.
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Chapter 8
EOS Design and Implementation for Data
Scheduling

8.1 Sketch of the Optimization Service

Figure 8.1 demonstrates the structure of our design and presents two scenarios based on both

GridFTP and Iperf version of the service. Site A and site B represent two machines between which the

user wants to transfer data. For the GridFTP version, those machines should have GridFTP servers

and GSI certificates installed. For the Iperf version, those machines should have Iperf servers running

as well as a small remote module (TranServer) that we have implemented to perform third-party

Iperf sampling. Optimization server is the orchestrator machine designated to perform the optimiza-

tion of TCP parameters and store the resultant data. It also has to be recognized by the sites since the

third-party sampling of throughput data will be performed by it. Client/User represents the terminal

that sends out the request of optimization to the optimization server. All of them are connected via

WAN or LAN.

When a user wants to transfer data between site A and site B, the user will first send a request to

the optimization server, which process the request and respond to the user with the optimal parallel

stream number to do the transfer. At the same time, the optimization server will estimate the optimal

throughput that can be achieved and the time needed to finish the specified transfer between sites

A and B. This information is also returned back to the user.

In this implementation, Stork is extended to support both estimation and optimization tasks. A

task is categorized as an estimation task, if only estimated information regarding to the specific

data movement is reported without the actual transfer. On the other hand, a task is categorized

as optimization if the specific data movement is to be done according to the optimized estimation

results. Henceforth this service is named as EOS(Estimation and Optimization Service) in short.
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FIGURE 8.1: Sketch of the optimization service

Stork inherits ClassAds structure from Condor [43] batch scheduler which are used for submission

of jobs. We extend ClassAds with more fields and classify them as estimation or transfer by specifying

the dap type field. If it is an estimation type, it will be submitted directly to EOS, otherwise it will be

submitted to the Stork server. Since an estimation task takes much shorter time than an optimization

task, distinguishing the submission path by different task types enables an immediate response to

the estimation tasks. Optimization field is added to ClassAds in order to determine if the specified

transfer will adopt the optimization strategy supplied by EOS. If optimization is specified as Y ES,

then the transfer is done by using the optimized parameters acquired from EOS, otherwise, it will use

the default value. Another important field added to ClassAds is use history. This option enforces

EOS to search from the database which keeps the optimized parameters for the previous transfers

of one specified source and destination pair. If there is such a record, then Stork will use the history

information to perform transfers, otherwise, EOS should first perform optimization and store the

information into the database, then provide Stork with the optimized parameters.
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FIGURE 8.2: EOS adopted by Stork

8.2 Prediction Scheme

We have developed the full second order model to predict the aggregated throughput of parallel

streams that could make accurate predictions based on only 3 samplings of different parallelism

levels. The development of these models start from the foundations of the throughput equation:

Thn =
n√
p′n

=
n√

a′n2 + b′n+ c′
(8.1)

In order to obtain the values of a′, b′ and c′ presented in Equation 8.1, we need the throughput

values of three different parallelism levels (Thn1 , Thn2 , Thn3) which can be obtained through sampling

or past data transfers .

Thn1 =
n1√

a′n2
1 + b′n+ c′

(8.2)
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Thn2 =
n2√

a′n2
2 + b′n+ c′

(8.3)

Thn3 =
n3√

a′n2
3 + b′n+ c′

(8.4)

By solving the following three equations we could place the a′,b′ and c′ variables to Equation 8.1

to calculate the throughput of any parallelism level.

After we calculate the optimal number of parallel streams, we can calculate the maximum through-

put corresponding to that number. The optimization server needs to get at least three suitable

throughput values of different parallelism levels through sampling to be able to apply the models.

When the requests from the users come, the optimization server will initiate data transfers between

the expected source and destination supplied by the user. This procedure terminates when the opti-

mization server determines that it has obtained sufficient sampling data for an accurate prediction.

8.3 Implementation Technique

In this section, we present the implementation details of our service design. Depending on whether we

choose to use GridFTP or Iperf, the implementation slightly differs because while GridFTP supports

third-party transfers, and Iperf works as a Client/Server model. Considering the differences of the

two categories of data transfer tools, we will discuss the implementation of optimization server based

on both GridFTP and Iperf. The implementation technique used for these two data transfer tools

can be applied to other data transfer tools no matter it supports third-party transfers or not.

The implementation of optimization service based on tools supporting third-party transfers is

simply a typical Client/Server model. We have a client module running on the user site and an

optimization server module running on one of the machines that is part of the Grid. On the other

hand, the implementation of optimization service for data transfer tools not supporting third-party

transfers such as Iperf, we need an extra module running on the remote source and destination sites

to invoke the tool. The client module of the service is embedded into Stork client application and the
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FIGURE 8.3: Flowchart of the EOS service

requests are done by using ClassAdds. The server module on the other hand is independent of the

Stork server and able handle requests coming both from Stork client and Stork server.

Figure 8.3 shows a flowchart of the estimation and optimization module.

8.4 Optimization Server Module

The implementation of the optimization server module is more complicated than that of the client side

module. The server should support multiple connections from thousands of clients simultaneously.

The processing time for each client should be less than a threshold. Otherwise the user would prefer

to perform the data transfer using the default configurations since the time saved by using optimized

parameters cannot compensate the time waiting for the response from the optimization server.

There is a slight difference on the implementation based on tools supporting third-party transfers

and those do not. In common, the optimization server keeps listening to the request from clients at

a designated port. When a new request arrives, it accepts the connection and forks a child process
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to process that request. Then the parent process continues to listen to new connections leaving the

child process to respond to the client’s request.

Algorithm 8 The optimization server implementation

1: create a socket to be connected by the client
2: bind the socket to an empty port
3: listen to this port
4: while true do
5: if a new connection request arrives then
6: the optimization server accepts the connection from the client program
7: processId← fork()
8: if processId = parent processId then
9: back to listening to the designated port

10: else {processId = children processId}
11: receive the request information from the client
12: perform sampling transfers
13: build a mathematical model and process the sampling results
14: send back the optimized parameters to the clients
15: end if
16: else {no new connection request comes}
17: block until a new connection comes
18: end if
19: end while

The child process is responsible for sampling data transfers between the remote sites and get

the data pairs (throughput and number of parallel streams) from them. Then it will analyze the

data and generate an aggregate throughput function with respect to the number of parallel streams.

Finally it will calculate the maximum aggregate throughput with respect to the optimal number of

parallel streams and send back the information to the client. Algorithm 8 presents the outline of the

optimization server.

At step 13 in Algorithm 8, the performing of sampling transfers is different on data transfer tools

that support third-party transfers and tools that does not support third-party transfers. For the

implementation based on GridFTP, the child process is able to invoke globus-url-copy command to

control the data transfers between the remote sites. However, for the implementation based on Iperf,

the child process belonging to the optimization server has no privilege to control the data transfers

between the remote sites. We need an extra module running on the remote sites that can be connected

by the optimization server. So the optimization server plays dual roles. When a request comes from
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the client it acts as a server and when it asks the remote module to start Iperf transfers it acts as a

client.

8.5 Quantity Control of Sampling Data Transfers

The time interval between the arrival of a request from the client and an optimized decision made

for the corresponding request mainly depends on the time consumed on the sampling data transfers.

The cost of application of the mathematical model on the sampling data and derivation of optimal

parameters is negligible, around several milliseconds on a 2.4Ghz CPU. However, each sampling data

transfer takes nearly 1 second based on the sampling size. At least 3 sampling data transfers are

required because of the property of the mathematical model we propose. However relying only on 3

measurements makes the models susceptible to the correct selection of the three parallelism levels.

No
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request to arrive

fork a new 
process
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come?
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process?

perform sampling

double 
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point & 
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throughput1
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FIGURE 8.4: EOS sampling
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We propose to find a solution to satisfy both the time limitation and the accuracy requirements.

Our approach doubles the number of parallel streams for every iteration of sampling, and observe

the corresponding throughput. While the throughput increases, if the slope of the curve is below

a threshold between successive iterations, the sampling stops. Another stopping condition is if the

throughput decreases compared to the previous iteration before reaching that threshold. Figure 8.4

illustrates the role of sampling plays in EOS.

Let n be the number of parallel streams with respect to the maximum aggregated throughput of

the underlying network. According to our exponentially increasing scheme,the total sampling time s

is equal to the logarithm of n, i.e, s = log n. For example, if the optimal parallel number of streams

is less than 32, we only need less than 5 sampling iterations.

8.6 Scheduling of EOS

Generally speaking, an estimation type task costs less time than an optimization type task as the

former does not need to transfer the whole data from the source to the destination. Taking the variety

of time consumption into consideration, the estimation type task is submitted to the EOS directly

and the optimization type task is firstly submitted to the Stork server and then submitted to EOS

by the Stork scheduler. This makes sense since the shortest task is expected to finish as early as

possible. A strict shortest task first strategy guarantees that the total waiting time is minimized.

A triple of source, destination and arguments is introduced to characterize each individual task.

Triple(taski) =< Si, Di, Ai > (8.5)

S, D, and A represent source, destination and arguments separately. Triple(taski) is said to be

equivalent to Triple(taskj) if they have the same source, destination pairs as well as the arguments.

Triple(taski) = Triple(taskj)

⇐⇒

(Si = Sj ∧ Di = Dj ∧ Ai = Aj)

∨ (Si = Dj ∧ Di = Sj ∧ Ai = Aj)

(8.6)
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Two tasks are said to be identical if the Triple operations on them are equivalent, and they are said

to be orthogonal if none of the elements in the triple are identical.

taski = taskj ⇐⇒ Triple(taski) = Triple(taskj) (8.7)

taski ⊥ taskj ⇐⇒ (Si 6= Sj ∧ Di 6= Dj ∧ Ai 6= Aj)

∧ (Si 6= Dj ∧ Di 6= Sj ∧ Ai 6= Aj)

(8.8)

Furthermore, two tasks are said to be similar if they have one element in common in the source and

destination pairs, and they are said to be approximate to each other if their source and destination

pairs are identical while the arguments not.

taski ∼ taskj ⇐⇒ (Si 6= Sj ∧ Di = Dj)

∨ (Si = Sj ∧ Di 6= Dj)

∨ (Si = Dj ∧ Di 6= Sj)

∨ (Si 6= Dj ∧ Di = Sj)

(8.9)

taski ≈ taskj ⇐⇒ (Si = Sj ∧ Di = Dj ∧ Ai 6= Aj)

∨ (Si = Dj ∧ Di = Sj ∧ Ai 6= Aj)

(8.10)

Introduce a term cor(taski, taskj) to denote the correlation score between two tasks.

cor(taski, taskj) =



0 taski ⊥ taskj

α taski ∼ taskj

β taski ≈ taskj

1 taski = taskj

(8.11)

In Equation 8.11 α and β variate between systems. They satisfy the following constrains.

0 ≤ α ≤ β ≤ 1 (8.12)

If two tasks have the same source and destination pairs then their correlation score will be β or 1. In

other words, these two tasks have the equivalent to or approximate to relationship, indicating that
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they are closely related to each other. Tasks having such relationship are not allowed to be executed

parallel since they will affect each other. Actually, if two tasks have the equivalent to relationship,

then these two tasks have the same optimized parameters. Only one of them needs to be executed

and then the results are sent to both of them. If two tasks have the approximate to relationship, then

these two tasks should be done sequentially, otherwise the measured sampling throughput of two

tasks will be less if they are allowed to be executed concurrently. The inaccuracy of the throughput

has significant impact on the mathematical model which the estimation and optimization relay on.

On the contrary, if two tasks have different source and destination pairs, their correlation score

will be 0. And if they have one in common in the source and destination pairs, their correlation score

is identified as α. Definitely, two tasks are allowed to be executed parallel if their correlation score is

zero. However, it is hard to make a decision when their correlation score is α. In a low throughput

network,the network interface card (NIC) of 1Gbps is capable to handle hundreds of links concurrently

without affecting each other. However, in a high throughput network such as 10Gbps, it will be a

bottleneck. In this situation, α approximates to 0. Even if there are only two links connected, they

will affect each other’s transferring rate. In this situation, α approximates to 1.

The tasks that can be executed parallel should be maximized provided the system is not overloaded.

The maximal number of parallel tasks can be configured in the configure file of EOS. Meanwhile,

each task should be as representative as possible. A task is said to be representative to another task

if they are equivalent to each other. The more equivalent tasks it has the more representative it is.

equ(taski, taskj) =

1 taski = taskj

0 otherwise
(8.13)

rep(task1, task2, ..., taskn) =
n∑
i=2

equ(task1, taski) (8.14)

Introduce a term confusion score for the parallel tasks.

conf(task1, task2, ..., taskk) =
k∑
i=1

k∑
j=i+1

cor(taski, taskj) (8.15)

Each source or destination represents a host address. Also introduce a penalty term for each host.

ind(host, taski) =

0host 6= Si ∧ host 6= Di

1host = Si ∨ host = Di

(8.16)
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penal(host) =
k∑
i=1

α ∗ ind(host, taski) (8.17)

The penalty term indicates the frequency of one specified host appears in the source and destination

pairs of the parallel tasks list. For instance, if the tasks list is < h1, h2, a1 >,< h1, h3, a2 >,<

h2, h4, a3 >, then penal(h1) = penal(h2) = 2 ∗ α, and penal(h3) = penal(h4) = α. A threshold for

the penalty term, namely 5, is defined as the upper bound for each host appears in the k parallel

tasks. The penalty for each host should satisfy the following condition.

penal(hosti) ≤ 5 (8.18)

Suppose the maximal number of parallel tasks allowed to be executed concurrently by EOS is n.

There are s possible hosts that appear in these source and destination pairs. To get the optimal

solution for the EOS scheduling problem the number of parallel tasks should be as large as possible.

Meanwhile, the confusion score should be as small as possible and the constrain on the penalty term

of each host should be satisfied. Specifically,

(k̂; t̂aski) = argmax
k:k≤n

min
taski:1,...,k

conf(task1, task2, ..., taskk)

subject to : penal(hostj) ≤ 5 ∀j : 1 ≤ j ≤ s

(8.19)

To simplify the discussion, we use a sparse matrix to represent the tasks received by EOS at a

given time T . The first column vector consists of all the candidate parallel tasks. The tasks in each

line vector are not allowed to be executed parallel.

task =



task10 task11 task12 ... task1t1

task20 task21 task22 ... task2t2

... ... ... ... ...

taskN0 taskN1 taskN2 ... taskNtN


When a new task is submitted to EOS, the first column will be searched. If there exists one

task in the column vector such that it has the same source and destination pairs, then the new

task will be appended to the end of the corresponding line vector. Otherwise, the new task will

be appended to the end of the column vector. A brief description of how to add a new task is
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Algorithm 9 AddTask(newtask)

visit the column vector [task10, task20, ..., taskN0]
T

if ∃i such that cor(taski0, newtask) ∈ {1, β} then
append newtask to the end of the line vector,
[taski0, ..., taskiti ]← [taski0, ..., taskiti , newtask]

else
append newtask to the end of the column vector,
[task10, ..., taskN0]

T ← [task10, ..., taskN0, newtask]T

end if

Algorithm 10 DeterminParallelTasks-1(task, n, α, β,5)

i← 1
initialize the penalty term for each host to be 0 :
penal(host)← 0
while i ≤ N ∧ |taskpar| < n do

if penal(sourcei0) < 5 ∧ penal(destinationi0) < 5 then
append taski0 to the end of taskpar
penal(sourcei0)← penal(sourcei0) + α
penal(destinationi0)← penal(destinationi0) + α

end if
i← i+ 1

end while

shown in Algorithm 9. It is easy to verify that: for the first column vector: ∀i, j ∈ {1, 2, .., N}, we

have cor(taski0, taskj0) ∈ {0, α}. For any given line vector, e.g [taskk0, taskk1, ..., taskktk ], ∀i, j ∈

{0, 1, 2, ..., tk}, we have cor(taskki, taskkj) ∈ {1, β}.

The first column vector contains all the candidate tasks that can be executed parallel. Hence the

most efficient way to determine the parallel tasks is to traverse this vector. If adding one task from

this vector into the parallel tasks vector, the penalty constrain is not violated, then this task is added

to the parallel tasks vector. A brief description of this method is shown in Algorithm 10. The time

complicity of this algorithm is O(N) since each of the tasks in the column vector will be visited in

the worst case.

Algorithm 10 is time-efficient. However, it is not optimal since the confusion score of the parallel

tasks determined by this algorithm is not minimal. There might exist a parallel tasks vector such that

its confusion score is zero, but this algorithm gives a solution that has a larger confusion score. In

order to reduce the confusion score, an improved solution is shown in Algorithm 11. In this solution,

the first column vector is traversed to extract all the possible tasks such that they are mutually
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Algorithm 11 DeterminParallelTasks-2(task, n, α, β,5)

initialize the parallel tasks to be an empty vector: taskpar ← [ ]
i← 1
while i ≤ N ∧ |taskpar| < n do
j ← 1
while j ≤ |taskpar| do

if cor(taskpar(j), taski0) 6= 0 then
break;

else
j ← j + 1

end if
end while
if j = |taskpar|+ 1 then

append taski0 to the end of taskpar
mark taski0 as selected
penal(sourcei0)← α
penal(destinationi0)← α

end if
i← i+ 1

end while
i← 1
if |taskpar| < n then

while i ≤ N ∧ |taskpar| < n do
if taski0 is not selected ∧
penal(sourcei0) < 5 ∧
pelal(destinationi0) < 5 then

append taski0 to the end of taskpar
penal(sourcei0)← penal(sourcei0) + α
penal(destinationi0)← penal(destinationi0) + α

end if
i← i+ 1

end while
end if

Algorithm 12 ProcessParallelTasks(taskpar)

create a new thread for each task in taskpar
for each taskpar(i) ∈ taskpar
suppose taskpar(i) maps to taskk0 in task
j ← 0
while j ≤ tj do

if cor(taskk0, taskkj) = 0 then
send the optimized parameters to the owner of taskkj
remove taskkj from the line vector:
[taskk0, taskk1, ..., taskktj ]

T

end if
j ← j + 1

end while
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orthogonal. After this step the confusion score of the parallel tasks vector is zero. If the size of this

vector has reached its upper bound n, then it is done. Otherwise, traverse the first column vector a

second time to add more tasks into the parallel tasks vector. The time complicity for this algorithm

is O(n2 +N).

After the parallel tasks vector is set, then a new thread is created for each task in this vector.

All of them will be executed concurrently. For each of them, when it is finished, it should find the

corresponding entry in the first column vector and return the results back to all the tasks that have

the same arguments in that line vector and remove them from this vector. A brief description is

illustrated in Algorithm 12.

Define the performance gain as the ratio of the number of tasks done with a representative strategy

to that without it within a time unit. For instance, suppose the parallel tasks vector happens to be

the first column vector of task.

taskpar = [task10, task20, ..., taskN0]
T

The gain can be calculated as the following.

gain(task) =
N +

∑N
i=1 rep(taski0, taski1, ..., taskiti)

N
(8.20)

If most of the tasks in the line vectors have the same arguments, then we have:

conf(taskk0, taskk1, ..., taskktk) ∝ tk ∗ (tk + 1)

2
(8.21)

gain(task) ∝ N +
∑N

i=1 ti
N

(8.22)

On the contrary, if most of the tasks in the line vectors have different arguments, then we have:

conf(taskk0, taskk1, ..., taskktk) ∝ tk ∗ (tk + 1) ∗ β
2

(8.23)

gain(task) ∝ N

N
= 1 (8.24)

Fortunately, it turns out that the first case holds in most time since the users often use the default

arguments set by the system. Hence the performance can be improved significantly. Furthermore,

research is being done to deduce the optimal parameters according to the hidden rules between these

different parameters. Then it is possible to improve the gain significantly even in the second case.
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In the following, a simple example illustrates how the above algorithms work. T is the task matrix at

a given time. Tpar represents the parallel tasks vector. T1 represents the residual tasks after one round

scheduling. Suppose the maximal number of parallel tasks allowed by EOS is 3, and the threshold is

5 = 2α.

T =



< 1, 2, 1 >< 1, 2, 2 >< 1, 2, 1 >< 1, 2, 1 >

< 3, 4, 1 >< 3, 4, 1 >< 3, 4, 1 >< 3, 4, 1 >

< 1, 3, 1 >< 1, 3, 2 >< 1, 3, 2 >< 1, 3, 1 >

< 5, 6, 1 >< 5, 6, 2 >< 5, 6, 1 >< 5, 6, 2 >


Apply Algorithm 10, the following can be obtained:

Tpar = [< 1, 2, 1 >,< 3, 4, 1 >,< 1, 3, 1 >]T

T1 =


< 1, 2, 2 >

< 1, 3, 2 >< 1, 3, 2 >

< 5, 6, 1 >< 5, 6, 2 >< 5, 6, 1 >< 5, 6, 2 >


gain(T ) =

3 + (2 + 3 + 1)

3
= 3

Apply Algorithm 11, the following can be obtained:

Tpar = [< 1, 2, 1 >,< 3, 4, 1 >,< 5, 6, 1 >]T

T1 =


< 1, 2, 2 >

< 1, 3, 1 >< 1, 3, 2 >< 1, 3, 2 >< 1, 3, 1 >

< 5, 6, 2 >< 5, 6, 2 >


gain(T ) =

3 + (2 + 3 + 1)

3
= 3

8.7 The Framework Applied in Stork

Condor, which was developed in University of Wisconsin, works perfectly in Grid network environ-

ment. Users submit classAds to the condor server, and then the condor server process it. Stork is a

data scheduler in Condor which schedules and processes the classAds if they are transfer types. The

Stork server use the default settings of TCP. Hence an estimation and optimization service (EOS) is
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deployed to assist Stork server and Condor server to achieve high throughput and performance. Fig-

ure 8.2 illustrates the cooperation of Stork, and EOS. The Stork user simply indicates that whether

or not they will choose the optimization options in the job submission file (i.e. in a classAd), and

the Stork server will communicate with the EOS transparently. Since the Stork server puts all the

incoming requests into a job queue and usually there are many jobs, it will take a long time to

get the response from Stork server, which is not reasonable. Alternatively, the user can simply send

estimation and optimization request directly to the EOS since we have implemented the interface on

the Stork client side.

8.8 Experimental Results
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FIGURE 8.5: Data transfer time and job turn around time from Eric to Oliver
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FIGURE 8.6: Data transfer time and job turn around time from Painter to louie

The current implementation of EOS applies the pure sampling based approach. Experiments show

that the throughput can be improved significantly with optimization approaches in EOS. Figure

8.5 represents the data transfer time and job turn around time between two LONI clusters (eric
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FIGURE 8.7: Overall time comparison

and olvier). Figure 8.6 represents the measurement between another two LONI clusters (painter and

louie). The job turnaround time consists of the job waiting time and the throughput sampling time

when optimization is applied. It can be seen that the sampling time the bottleneck for optimization

especially when the number of sampling times is large (painter to louie). Figure 8.7 represents the

overall time for data transfers with and without optimization. The optimized approach outperforms

the non-optimized one even though the sampling time is nontrivial.
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Chapter 9
Conclusions

This research proposed a data-aware scheduling approach for the scientific data intensive workflow.

Different from the existing workflow scheduling algorithms, the proposed scheduling algorithm is data-

aware, which means the scheduling algorithm will consider all the data involved in the workflow, for

instance, the data to be staged in from remote data centers, the intermediate data generated by

the tasks in the workflow and the data to be staged out to the remote data centers. The proposed

data-aware scheduling algorithm allows data staging to participate in the scheduling process, which

will prevent a biased scheduling without considering data movement. The data-aware scheduling

is based on A-star algorithm and the most challenging problem is to design a efficient heuristics

function. On the other hand, since the workflow is data intensive, there will be large amount of data

moving between the computation sites during the execution of the workflow. Hence it is important to

guarantee the data to be delivered in an efficient manner. Also an approximate scheduling algorithm

based on genetic algorithm (GA) is proposed to address the data-aware workflow scheduling problem.

Data transfer rate directly affects the turnaround time of the whole workflow. It is crucial to deliver

the data as fast as possible in the workflow. To achieve this goal, several throughput optimization

models are proposal, compared and improved in this research. The major contributions made in this

research consists of the following aspects:

Improve the existing workflow scheduling algorithm

The existing workflow scheduling algorithms assume that task execution and data transfer are in

sequential. Based on these algorithms, when one task is transferring intermediate data to other

computation site from its execution site, the execution site is not allowed to execute other ready

tasks even the processor is free. The scheduling derived by these algorithms is not optimal especially

when the intermediate data amount are large. Results show that by overlapping the intermediate

data transfer and task execution, the turnaround time of the data intensive workflow can be reduced,

moreover, the algorithm is time efficient.
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Design and implement a data-aware scheduling algorithm

The existing optimal workflow scheduling algorithm only considers the intermediate data. In practical

applications, it is quite often that tasks in a data-intensive workflow need data to be staged in from

remote data centers for computation and will stage out some intermediate data to the remote data

centers for future use. With the existing workflow algorithm, the external data are expected to be

staged in first before the workflow execution, and the data of interest will be staged out after the

execution of the whole workflow. The scheduling process are divided into three phases, which couldn’t

guarantee a global optimal solution. In the proposed data-aware scheduling, the mapping from a task

to a processor is decided by all these factors matters, for instance, data to be staged in, data to be

staged out, intermediate data, network and computation power.

In order to evaluate the data-aware scheduling, we re-implement one of the best workflow scheduling

algorithms as a benchmark. Both homogeneous and heterogeneous distributed systems are evaluated.

Results show that the proposed data-aware scheduling algorithm indeed outperforms the existing best

scheduling algorithm in terms of turnaround time and efficiency.

Also the approach to find an approximate scheduling is proposed based on genetic algorithm. The

proposed GA based algorithm differs from the previous research in two significant ways. First, it is

data-aware. The fitness function considers all the data involved in the workflow, the stage in data,

stage out data, and the intermediate data. Second, the mutation and crossover operation are simple

but effective. Experiment results show that the GA based approach can give a scheduling close to

the optimal one.

Improve the existing throughput prediction model

To address the data-aware scheduling problem, a high throughput for data delivery in the distributed

system is essential. However, the current throughput prediction models are not accurate and not

suitable for the throughput optimization problem. Inspired by an existing model, a new model is

proposed and tested. Experiments show that the proposed model improves the accuracy of throughput

prediction.

In order to choose the best suitable model for throughput optimization, a comprehensive com-

parison has been done over the existing throughput prediction models. Experiments show that the
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improved throughput prediction model outperforms the other model both in accuracy and stability.

The improved throughput prediction model is able to sustain noise data to a certain degree while

other models are prone to make wrong predictions when noise data are presented.

Design and implement the estimation and optimization service (EOS)

The estimation and optimization service are designed to predict the optimal number of parallel

streams when the TCP throughput achieves peak performance and becomes stable. Given a source

and destination pairs of the data, EOS will perform data sampling varying the number of parallel

streams according a sophisticated sampling policy. Then the sampling data will be passed to the

mathematic model with three parameters. An algorithm is designed to figure out which sampling

data will give the best prediction model. Finally, the optimal number of parallel streams is derived

from the prediction model as well as the corresponding throughput.
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