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Glossary 

 

Acceleration: The rate of change of velocity. It is a vector quantity.  

Biomechanics: Scientific study of living systems using physical principles. 

Canter: A three-beat gait, with a footfall sequence (with a left fore lead) of right hind, then left 

hind with right fore, followed by left fore.  

Center of mass: Point through which the weight of a body acts.  

Distal: Away from the center of the body. 

Elasticity: Ability of a body or material to resist deformation and to restore the original shape 

and size after it has been deformed. 

Force: A measure of the action of one body on another that tends to change a body‟s state of rest 

or uniform motion in a straight line. It is a vector quantity. 

Forward dynamics: It is a mathematical method to calculate the motion of the body based on 

known forces/torques. 

Free body diagram: Diagram of a body completely free of its environment, with all the forces 

acting on it shown as vectors. 

Ground reaction force:  External force exerted by the ground on a body in contact with it. 

Impulse: Function which has unit value only at time t = 0 and value is zero at time t ≠ 0.  

Impulse response: Output of any system for an impulse input. 

Inverse dynamics: It is a mathematical technique to determine forces and moments needed to 

produce kinematic motions. 

Joint reaction forces: the equal and opposite forces that exist between adjacent bones at a joint 

caused by the weight and inertial forces of the two segments. 

Kinematics: Branch of classical mechanics that describes the motion of bodies and systems. 
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Kinetics: Branch of classical mechanics describing the forces involved in creating and changing 

motion. 

Proximal: Towards the center of the body. 

Stance phase: Part of the stride when hoof is in contact with the ground. 

Stride: Complete cycle of limb movements during a gait. 

Stride time:  The period of time from one event (usually initial contact) of one limb to following 

occurrence of the same event with the same limb 

Swing phase: Part of the stride when the hoof has no contact with the ground.  

Trot: Two beat gait involving diagonal pairs of limbs. The right hind and left front move 

together, and the left hind and right front move together. 

Walk: Symmetrical, four beat, stepping gait with a lateral footfall sequence. Horse's legs follow 

this sequence: left hind limb left front limb, right hind limb, and right front limb. At the walk, the 

horse always has one foot raised and the other three feet on the ground. 
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Abstract 

 

Therapeutic horseback riding is a common component of physical therapy programs. 

Quantification of the horse back forces will provide vital information to match therapeutic riders 

with equine partners. To meet this medical need, a model to quantify the horse back forces from 

ground reaction forces was developed to test the hypothesis that the forces transferred to a static 

weight on the horse‟s back can be predicted given horse breed and weight. Simultaneous, real 

time kinetic, kinematic, and back force data on a static weight were collected from 7 adult 

horses: 3 thoroughbreds, 3 quarter horses, and 1 paso fino. An integrated system consisting of a 

force platform, an active motion detection system and wireless force transducers were used. Data 

was collected from a minimum of four successful trials from all horses at a walk (1.3-2.0 m/s). 

Inverse dynamic analysis was used to calculate the fore and hind limb joint forces to the shoulder 

and hip, taking into consideration all 4 limbs‟ motion per stride cycle. Virtual segments were 

created to model the equine back as a series of springs and dampers and joined to the limbs. 

Calculated forces from the inverse dynamics analysis were then input to the spring-damper 

model sequentially and at the same frequency as data collection. The energy absorption 

coefficients were derived by aligning the model output forces of the fore- and hind limb data 

with measured back forces. Horse back forces were simulated with different coefficients for each 

breed, and specifically for each horse. . Simulated results had a significant positive correlation (r 

= 0.81±0.04, p <0.001) with forces measured directly on the back. The data from this 

investigation will contribute to mechanisms to predict forces experienced by the rider during 

horse motion to advance the science of therapeutic riding.  
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1. Introduction  

Therapeutic horseback riding is a common component of physical therapy programs. The 

horse is used as a tool to provide the required forces to the rider. Physical forces and motion 

experienced by the therapeutic riding participant are transmitted through the horse back (Peham 

and Schobesberger 2004). Every individual who needs therapy has a specific set of needs for 

recovery. The amount of force is an inherent part of the exercises within each therapeutic 

regimen. As the participant improves, his or her needs will change. In therapeutic riding, 

improvement for the participant could limit the amount of benefits he can obtain from a given 

horse, and therefore he must be matched with a different horse for further treatment. The 

ultimate goal is to streamline and optimize the process of matching horse and rider to attain the 

most effective therapeutic results.  

In order to improve horse-rider pairing, it is useful to build a database of horses from where 

the users can identify the horse necessary for the best therapeutic results. The database would 

contain the forces that the horse would transmit to the rider. Given that it is impractical to 

measure the forces exerted by each individual horse, a different method to predict or simulate the 

forces is necessary. These forces may vary based on the horse size, breed, gender, gait and 

functional forces from the riders themselves. Interactions between the horse and the rider 

comprise a complex system of coupled dynamic body motion, and it is necessary to assume that 

the dynamic functional forces from the rider will vary among participants. While the exact 

measurement of the forces between the horse and the rider is a complex problem, it is important 

to solve one part of the system to reduce the problem (Lagarde, Peham et al. 2005). This study 

was focused on solving the horse component of problem.  
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To simulate the horse back forces using varied horse data, a mathematical model of the horse 

needs to be developed. Inverse dynamic analysis is a mathematical method used to compute the 

joint reaction forces and moments based on ground reaction forces (GRFs) and kinematics of 

linked segments. Each segmental limb is treated as a single free body diagram with inputs from 

the distal segment and an output to the proximal segment. The hoof segment input comes from 

the GRFs. Previous studies have analyzed the GRFs and their transmission through the lower 

equine limb by applying a similar model and inverse dynamic analysis (Clayton, Hodson et al. 

2000; Clayton, Hodson et al. 2001). Another study by C. Peham (Peham and Schobesberger 

2004) used a force sensor mat to directly measure the horse back forces, but this study focused 

on developing a better model for the horse back only. While both the limbs and the horse back 

have been analyzed separately before, the nature of their connection has not been studied. The 

pathway between the limbs and back cannot be modeled as a series of rigid segments since the 

scapula of the horse is connected to the shoulder with muscle tissue and not a joint. To overcome 

this problem, the horse the horse back can be represented using virtual segments that model 

springs and dampers. A mathematical model needs to be used in order to appropriately simulate 

the horse back forces.   

The forces exerted by a horse‟s back on a rider during motion are affected by the breed and 

weight of the horse. These forces are related to the ground reaction forces (GRFs), which can be 

measured using force platforms. The relationship however, has yet to be established. A 

prominent difficulty in establishing the relationship between the forces at the horse back and 

GRFs is due to the fact that there is no direct segmental connection between the equine back and 

the limbs (Phillips and Aspinall 2006). Since there is no direct connection, the GRFs cannot be 

used to directly solve for the back forces of the horse. Inverse dynamics has to be applied using 
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the mass, inertial properties, and acceleration of the horse limbs to calculate the forces that 

terminate at the scapula and hip. The analysis of the horse back brings forth more difficulties, 

since it has long back muscles that absorb and release energy; we have to assume that the back 

muscles do not change the forces being transferred. These forces are thus transferred through 

virtual segments consisting of springs and dampers onto the horse back. The back forces are then 

validated using data from customized force sensing equipment placed on horse back.   

To relate the GRFs and horse back forces, we seek to construct a mathematical model that 

utilizes the horse breed, size, and weight to predict the forces at the back of the horse. In this 

study, the limbs were modeled as open-chain rigid body segments and the horse back was 

modeled as a series of springs and dampers. A mathematical model and a simulation module 

were developed to solve the equations of motion of the limb model, and compute appropriate 

spring and damper coefficients of the mechanical model of the horse back. This model has not 

been attempted before and should further the science of equine biomechanics in general. It also 

sets the foundation for future, more specialized and accurate equine models. A database 

developed using this model can streamline the process of pairing horse and rider for therapeutic 

riding.  
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2. Literature Review 

2.1. Therapeutic Riding 

The horse has been used as a therapeutic tool since at least the seventeenth century (Bliss 

1997). More than 700 therapeutic riding centers accredited by the North American Riding for the 

Handicapped Association (NAHRA) exist in US and Canada. These centers assist with a wide 

range of disabilities including spinal cord injury, cognitive deficits, cerebral palsy, emotional 

disorder and amputation (Bertoti 1988; All, Loving et al. 1999). Horses provide neuromuscular   

stimulation through their movement. The three dimensional rhythmical moment of the horse is 

very similar to the action of the human pelvis; the horse‟s stride moves the rider‟s pelvis with the 

same rotation and side-to-side movement that occurs with walking (Lessick, Shinaver et al. 

2006). This coupled rhythmical movement is utilized in various physical therapy programs 

(Hammer, Nilsagård et al. 2005).  

One of the benefits of horseback riding for children with physical disabilities is the facilitation 

of normal equilibrium reactions in response to the pelvic movement of the horse (MacPhail, 

Edwards et al. 1998). At least one variable from balance, gait, spasticity, functional strength, 

coordination, pain, self-rated level of muscle tension, activities of daily living and health related 

quality of life is improved with horseback riding (Hammer, Nilsagård et al. 2005). Not only does 

it improve the physical conditions of the children, but also provides lots of enjoyment 

(MacKinnon, Noh et al. 1995; Lehrman and Ross 2001).  

The amount of benefit an individual with a disability gains from horseback riding depends on 

various factors, such as the type and severity of disability as well as the match between horse and 

rider. In order to benefit a rider, the riding instructor must be able to choose a horse that will fit 

the individual‟s needs. As of now, the suitable horse is determined based on the best body type 
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and gait combination for the rider. It has always been desirable to determine the appropriate 

horse for each individual based on functional parameters of the horse and the rider. 

Unfortunately, there is no scientific method or algorithm to determine the best combination 

(Lessick, Shinaver et al. 2006).  

2.2. Ground Reaction Forces and Limb Kinematics  

Force platforms have been using from decades to measure ground reaction forces. The pattern 

and amplitude of the forces change from slow walk to canter in various breeds. Virtually all 

vertical force tracings are single peaked at all speeds, but for the slowest trials (<2 m/s) the hind 

limb vertical forces are double peaked. Fast speed range significantly affects the kinetic and 

timing parameters. Peak forces increase and stride duration decreases with speed. Equine 

forelimbs have greater peak vertical forces and impulses when compared with hind limbs 

(Biknevicius, Mullineaux et al. 2004). Breed differences also influence the force platform 

measurements in horses. Sound warmbloods load their limbs with more body weight than quarter 

horses and also warmbloods have higher peak vertical force (PVF) values than quarter 

horses(Back, MacAllister et al. 2007).  In a sound horse, the ground reaction forces of left and 

right limb pairs are almost identical. The accelerations and velocities of each segment of right 

and left limbs are symmetrical within the stride cycle.  The gait patterns of different horses of the 

same breed are also similar. The symmetry of the ground reaction force peaks and impulses of 

the vertical forces of contralateral limbs exceed 95 percent (Merkens, Schamhardt et al. 1986). A 

rider on the back affects the ground reaction force peaks of the horse. The cumulative increase in 

the weight of the overall system increases the vertical force peaks (Clayton, Lanovaz et al. 1999).  

Sagittal plain kinematic events of all anatomical joints with respect to GRFs of forelimb and 

hind limb were explained by E. Hodson (Hodson, Clayton et al. 2001; Hodson, Clayton et al. 
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2010). Stance phases of hind limbs and forelimbs coincide just after initial contact. Vertical 

GRFs decrease during the tripedal stance period and increase towards the end of the stance and 

the angle-time graphs of the fetlocks coincide with the vertical GRFs of the limbs.  

2.3. Forces and Net Joint Moments of the Fore and Hind Limbs during the Walk 

Net joint moments of the forelimbs and hind limbs of walking horses were analyzed by H.M. 

Clayton (Clayton, Hodson et al. 2000; Hodson, Clayton et al. 2001). During the stance phase, the 

shoulder and fetlock have the highest net joint moments whereas the coffin joint has the lowest. 

During the swing phase, peak joint moments occur at the coffin joint and decrease gradually to 

the shoulder. Since there is no ground contact, the swing phase joint reaction forces (JRFs) were 

much smaller in magnitude than the stance phase JRFs. The fetlock acts as a spring to store and 

release energy, and the coffin acts as a damper. The elbow generates the energy required to 

maintain forward movement, while the shoulder supports the trunk (Colborne, Lanovaz et al. 

1997; Clayton, Hodson et al. 2000). In the hind limb, the hip and tarsal joints are the main sites 

of energy generation, while the stifle joint absorbs energy throughout the walking stride. Tarsal 

and fetlock joints support the hip during stance and swing, respectively. The coffin joint acts as 

an energy damper during stance, whereas the stifle joint absorbs energy in the stance and swing 

phases(Colborne, Lanovaz et al. 1997; Hodson, Clayton et al. 2001). The upper limb is the main 

source of energy generation compared with lower during the stride.  

2.4. Inertial Properties 

The analysis of biomechanical models based on rigid body dynamics uses either inverse or 

forward dynamics. Both of these require a complete set of the inertial properties including mass, 

center of mass, and inertial tensor of various body segments. Segmental inertial data of living 

subjects can be estimated by two different methods. Using geometrical models, the shape of the  
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segments can be approximated and the inertial properties can be calculated from volume and 

density (van Gurp, Schamhardt et al. 1986; van den Bogert 1989). These models are very 

sensitive to measurement errors and do  not perform well for several segments (van den Bogert 

1989). The other category is regression models based on cadaver studies (Chandler, Clauser et al. 

1975; Buchner, Savelberg et al. 1997). For accurate estimations based on such analyses, a 

sufficiently large database and a maximal similarity between the test object and original cadaver 

segments is required (Hinrichs 1985).   

A complete set of three dimensional inertial properties of Dutch warmblood horses were 

determined to test the regression equations to the estimation of the center of mass, mass, and 

inertia in living horses (Buchner, Savelberg et al. 1997). Cadaver segments were separated at 

segment boundaries and mass, center of mass and density of each segment was found. Estimation 

of the segment mass, the total body mass (M) or the reference length (L) was used as an 

independent variable, while for the location of the center of mass (CoM), the reference length 

and axis components were used. It is impractical to use cadaveric segments of all horses to 

identify the inertial properties. Hence, the inertial data of Dutch warmblood horses is used as a 

reference for all the locomotion studies with different breeds (Clayton, Hodson et al. 2000; 

Hodson, Clayton et al. 2001).   

2.5. Kinematics and Kinetics of Equine Vertebrae and Scapula Junction 

There are several studies which provide the kinematic properties of equine vertebrae during 

the three horse gaits: walk, trot and canter. Kinematics of thoracic, lumbar, sacral vertebrae and 

tuber coxae were determined by the use of bone affixed (3D) and skin affixed markers (2D). 

There is a strong correlation between the results of 2-D and 3-D calculations in terms of flexion-

extension (FE), abduction-adduction and lateral bending at both the walk and the trot. The direct 
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linkage between the hind limbs and vertebral column (i.e., sacroiliac joint) allows only a small 

amount of mobility. This limitation stems from the fact that the horse is quadruped, and although 

capable of rearing, rearing is not a component of normal gait and stance. An indication that 

flexion-extension is generated by the hind limbs comes from the pronounced shift in the timing 

of the minimum and maximum values (Faber, Schamhardt et al. 2000; Faber, Schamhardt et al. 

2001).  

P. Cocq (Cocq, Weeren et al. 2004) presented  a study to find the influence of equipment and 

weight on the horse back kinetic and kinematic properties. This study concluded that there is no 

influence on any of the variables of the back measured at walk with surcingle or a saddle. 

However, overall extension of the back was increased by a „saddle with 75 kg weight‟, which 

sufficiently simulate the saddle with a rider (Cocq, Weeren et al. 2004).  

C. Peham (Peham and Schobesberger 2004) measured the exterior vertical forces on the horse 

back using a saddle sensor mat to investigate the internal forces and torques at horse back during 

different load scenarios of the equine back, such as with and without a rider. They reduced the 

complex anatomy of the equine back to two fundamental components: the vertebral column and 

the long back muscles. This simplified model consisted of 20 cylindrical segments, representing 

the thoracolumbar spine from thoracic vertebra T5 to lumbar vertebra L6, coupled to each 

neighboring segment with a central spherical joint and 4 springs. Model input consisted of the 

Electromyography (EMG) signal from the long back muscle and the load of the rider measured 

with the sensor mat. The resultant internal forces were computed using a built-in differential 

equation solver with variable step size optimized for mechanical multi-body simulation using 

ADAMS software and found that there was no change in maximal traversal forces with the rider 

at walk and trot (Cocq, Weeren et al. 2004; Peham and Schobesberger 2004). 
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An interesting fact is that the horse's shoulder is not attached to the spine by a collar bone as it 

is in humans. Instead, the shoulder is attached to and supports the weight of the front end by 

sheets of muscle. These sheets of muscle attach the shoulder blade from various points along the 

cervical vertebrae (bones of the neck), the thoracic spine, and to the ribs. As a result, the muscles 

attached to the shoulder are responsible for absorbing the concussion of the horse (Phillips and 

Aspinall 2006). When the horse travels forward, the middle and base of the scapula are pulled 

forward by muscles in the neck, bringing the foreleg forward, and thus slopes the upper part of 

the scapula slightly backwards as it is pulled by muscles behind the withers. As that leg becomes 

weight bearing during motion, the muscles along the back of the scapula that attach it to the ribs 

and thoracic spine pull the middle and base of the scapula backwards. These muscles play an 

important role in the forelimb movement of the horse. 

2.6. Inverse Dynamic Analysis 

Inverse dynamics is a primordial technique used in biomechanical and gait analysis. It is 

primarily used to calculate the net forces and torques involved in the kinematic motions, and 

through this kinetic data gain insight on the joint torques and power used by a biological body. 

Inverse dynamics is the preferred kinetic analysis method because it is non-invasive for the 

participant. Motion capture and force platform data are the information required to perform 

inverse dynamic analysis. The use of inverse dynamics involves several assumptions: body 

segments are rigid bodies, joints are frictionless, uniform mass distribution in bones, and joints 

only have one degree of freedom (in 2-dimensional case). There are various mathematical 

methods that accomplish the inverse dynamic analysis.  

The classical method of inverse dynamic analysis uses the vectorial Newton – Euler method 

for computing the intersegment moments and forces (Apkarian, Naumann et al. 1989; Vaughan 
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1992; Janice and David 1995; Glitsch and Baumann 1997). The movement of each segment in 

3D gait is assumed to have six degrees of freedom (three Cartesian coordinates and three angles 

of rotation). Functions of derivatives of joint angles are considered in the iterative Newton-Euler 

method. Coordinate transformations and inverse kinematics are applied to compute the crucial 

gait variable and joint angles. The problem of redundancy of the musculoskeletal system is 

resolved by inverse dynamics with classical Newton-Euler equations.  

The Cartesian coordinate‟s method is another new approach for inverse dynamic analysis 

(Silva and Ambrósio 2002). In this approach, the anatomical body is defined by a rigid segment 

model. The joint between two adjacent segments is defined using an anatomical point and a joint 

direction unit vector (Silva, Ambrosio et al. 1997). In order to correctly represent the physical 

characteristics of the equine body, the principal physical properties of each anatomical segment 

such as mass, principal moments of inertia, segment length and center of mass (CoM) position 

must be specified. The position and orientation of a rigid body in the global reference frame are 

defined using the Cartesian coordinates of a set of basic points and direction unit vectors (De 

Jalon and Bayo 1994). In order to calculate the reaction forces and moments at the joints 

systematically, an expanded mechanical model that models the limbs and horse back are used. 

This model overcomes the rigid body constraints like maintenance of constant distances between 

pairs of points on a rigid body, constant angles between pairs of unit vectors, or between two-

point segments and unit vectors (Silva and Ambrósio 2002). 

The homogenous matrix method is also based on an iterative Newton–Euler formulation. It 

has the advantage of computing the moments and forces from simultaneous video and force 

platform data without requiring any assumption on the joint kinematics. To implement this 

method, a generalization of the homogeneous operator in dynamics was proposed by Legnani 
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(Legnani, Casolo et al. 1996). In this approach, mathematical operations are performed on three 

matrices: force platform measured ground/foot action matrix, gravity matrix and pseudoinertial 

matrix in order to compute the joint moments and forces (Doriot and Cheze 2004).   

Conventional inverse dynamic methods yield separate computations of the forces and 

moments with successive coordinate system transformations. Body segment parameters are 

defined based on the assumption that the inertia tensor is the reference segment and the center of 

mass is located between the proximal and distal ends. 2D conventional methods can compute the 

net joint moment and forces of equine fore and hind limbs in the sagittal plane (Clayton, Hodson 

et al. 2000; Hodson, Clayton et al. 2001). In contrast, the 3D method uses Euler or Cardanic 

angles that are sequence dependent and suffer from singularities. Moreover, the conventional 

methods are not applicable for terminal segments as the GRFs are applied at the center of 

pressure instead of the segment distal end. Using wrench notation (Dumas, Aissaoui et al. 2004) 

overcomes these issues, where an optimized one step inverse dynamics method is used instead of 

the conventional three step approach (Apkarian, Naumann et al. 1989; Vaughan 1992; Janice and 

David 1995; Glitsch and Baumann 1997).The results of comparison among these methods reveal 

that the patterns and amplitudes of joint forces and moments are similar (Dumas, Nicol et al. 

2005). 

2.7. Biomechanical Structures of Living Animals as Springs and Dampers 

Many mechanical and biomechanical structures can be modeled as a sum of spring and 

damper components. A dashpot in conjunction with a spring acts as a shock absorber and 

controls the movement. According to Hooke‟s law, extension or compression of the spring is 

directly proportional to the applied load. The force exerted by the spring divided by the distance 
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it travels is defined as the spring constant. The spring constant defines the elasticity of the 

system, whereas damping coefficients determine the decay time of the oscillations of the system.  

Mass and spring models have been used in various studies to characterize the biomechanical 

features of equine limbs and muscles (Lee, Koo et al. 1998). Viscous damping helps absorb 

shocks and limit from oscillations. Viscous damping and stiffness of the body can be quantified 

by dashpot-spring-mass models (Zhang, Xu et al. 2000). 

Muscular control of the complex musculoskeletal system is based on the understanding of 

physical principles of musculotendon actuator action. The muscle is assumed to consist of two 

components: an active force generator and parallel passive component. The muscle‟s contractile 

element produces the active force and non-contractile contributes the passive. The passive 

component is assumed to include a parallel elastic element that represents the passive muscle 

elasticity and a damping component which corresponds to the passive muscle oscillations. The 

contractile element is parallel to the spring and damper to produce active force. The tendon 

attached to the muscle can be considered as a spring like structure which is in series with active 

and passive elements (Crowe 1968; Martin and Schovanec 1998; Erdemir, McLean et al. 2007).  
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3. Model Selection and Outline of the Study 

Various models have been used in order to analyze the forces related to equine motion. H. M. 

Clayton (Clayton, Hodson et al. 2000; Clayton, Hodson et al. 2001)  has applied biomechanical 

models and conventional inverse dynamics to analyze GRFs and calculate JRFs at the limbs. C. 

Peham (Peham and Schobesberger 2004) has modeled the horse back as springs and cylinders to 

determine how the rider‟s weight affects the horse back. The purpose of this study is to simulate 

the horse back forces of three breeds of horses. It is thought that applying a linked segment 

biomechanical model in conjunction with a series of springs and dampers will yield the horse 

back forces.  

In order to develop a biomechanical model of the limbs and a mechanical model of the horse 

back, ground reaction forces, horse motion data, and horse back forces were collected  at 200Hz 

simultaneously using three separate systems that were synchronized.  To collect ground reaction 

forces, the horses were walked across a force platform which measures forces acting on its 

surface.  Horse motion data was collected with a wireless motion capture system consisting of a 

series of 22 led markers attached to the left side of the horses at specific anatomical landmarks 

which generated a stick figure model of the horse.  Horse back forces were measured with a 

wireless force sensing system and a custom modified equipment to hold a 12 kg lead weight in 

an aluminum box.  Four wireless force sensors were placed under the four corners of the weight 

to measure the horse back forces.   

The inertial properties of the limb segments were determined using published literature. The 

biomechanical model of the limbs was created by dividing the limbs into rigid link segments.  

The collected ground reaction forces, accelerations, and inertial properties were analyzed using 

the inverse dynamic approach.  Inverse dynamic analysis is based on Newton-Euler equations 
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which computed the joint reaction forces at every joint up to the shoulder and hip.  The joint 

reaction forces, which were only computed from the left side of the horse, were applied to the 

right side and adjusted for the horse‟s stride cycle to create a complete limb model of the horse.   

The mechanical horse back model was composed of a series of springs and dampers. The 

algebraic sum of the joint reaction forces of all four limbs was applied to this mechanical model.  

The spring and damper coefficients were determined by systematically inserting the spring and 

damper coefficients into the equations until the output was within 10 N of the measured horse 

back forces.   
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4. Materials  

4.1. Horses 

The experimental protocol was approved by the Animal Care and Usage Committee of 

Louisiana State University, Baton Rouge, LA. Six clinically sound horses (One paso fino, three 

quarter horses and two thoroughbreds) and one lame thoroughbred from the Equine Health 

Studies Program were used in this study (Table 1). The age of the horses was 9.8±4.9 

(Mean±SD) yr, mass was 488.2±73.2 (Mean±SD) kg and height, measured at the withers was 

1.56±0.19 (Mean±SD) m.  All the horses were housed in 1-acre separate pastures during the 

study.  

Table 1: Weight, height, gender and age of thoroughbred, quarter horse and paso fino horses 

included in the study. 

 Thoroughbred (TB) Quarter Horse (QH) Paso Fino (Paso) 

Weight 

 (kg) 

Height 

(m) 

Age 

(years) 

Gender Weight 

(kg) 

Height 

(m) 

Age 

(years) 

Gender Weight 

(kg) 

Height 

(m) 

Age 

(years) 

Gender 

H1   576 1.7 9 Mare 454 1.5 18 Gelding 368 1.29 13 Gelding 

H2 535 1.85 4 Gelding 541 1.42 10 Gelding  N/A N/A N/A N/A 

H3 431 1.67 4 Gelding 513 1.5 11 Gelding N/A N/A N/A N/A 

 

4.2. Force Platform  

A force platform was used to measure the GRFs of the horses. It is an AMTI Model 

BP900900 force platform with a vertical capacity of 4450N (Advanced Mechanical Technology, 

Inc., Watertown, MA) (Figure 1). This force platform uses strain gages mounted on four 

precision strain elements to measure forces. AMTI‟s MSA-6 and DSA-6 amplifiers provide high 

excitation and amplification for multiple channels. It measures the three orthogonal force 
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components along the mediolateral (X), craniocaudal (Y) and vertical (Z) directions (motion) at a 

maximum of 800Hz. This study focused on the sagittal plane alone; therefore, craniocaudal and 

vertical forces were only used. This force platform was integrated to a wireless motion tracking 

system. 

 

Figure 1: Force platform mounted on concrete runway to measure the ground reaction forces of 

large animals in mediolateral, craniocaudal and vertical directions. 

4.3. Wireless Motion Detection System 

 Hardware 

A wireless motion system (Codamotion system, Codamotion Charnwood Dynamics Ltd, 

Leicestershire, UK) was used to track the horse's motion in terms of position, acceleration, 

velocity and joint angles at a sampling rate of 200 Hz with 22 infra-red LED markers. These 

LED markers were attached to the left side of the horse at 22 anatomical landmarks.  This system 

used consists of two synchronized Codamotion Cx1 scanner units. Each Coda scanner contains 

three pre-aligned cameras to detect the position of a number of active infrared (IR) LED markers 

powered by drive-boxes (Figure 2). All the drive boxes contain a battery and sophisticated 

circuitry which responds to synchronizing infrared pulses sent out from the infrared light emitter 

at the Coda scanner units. The system flashes each marker and captures the infrared light from 
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each marker sequentially within each sample period, in order to generate one data set per sample. 

The motion detection data are sent to the host computer which is connected via a RS-422 serial 

port interface through an active hub (Figure 2).   The active hub is used to provide a high speed 

serial communications link to the Coda scanner unit via the Coda interface cable and then to the 

host computer using a serial cable. It can support up to two Coda Cx1 scanner units. When the 

two Coda units are connected to a single hub, they are automatically synchronized 

(Codamotion). 

(a)        (b)    

(c)         (d)  

Figure 2: Codamotion system (Wireless active motion sensing system) a) Two Cx1 Scanners b) 

Active Hub c) Marker d) Driver Box. 

Charnwood Dynamics claims the angular resolution of each camera is about 0.03 mrad (0.002 

degrees) which results in a lateral position resolution of about 0.05mm at 3 meters distance 

(horizontally and vertically), and a distance resolution of about 0.3mm. The measurement 
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volume extends from a distance of 2.0m to about 6.0m in front of the measurement unit, at a 

width and height approximately 1.6 times the distance. These values are assumed to be at an 

ideal condition where the markers are not moving. The Codamotion manual and website do not 

specify at which conditions these values are applicable.  

 Software 

The Codamotion Analysis software provides the user-interface to the Coda hardware for real-

time data display, data acquisition (marker position and ground reaction force), and also the data 

processing functions for analyzing the data (Figure 3).  

 

Figure 3: Codamotion platform with marker stick figure, ground reaction forces and marker 

acceleration. 

4.4. Custom Force Sensing Equipment 

Force sensing equipment was built to hold a lead brick of dimensions 8” x 4” x 2” and 12 kg 

weight on the back of a moving horse. The equipment allowed the weight to move only in the 

Stick Figure 

Ground Reaction Forces 

Acceleration
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vertical direction. Two surcingles of width 4” were held together using two PVC plates 15” wide 

x 10” long. One PVC platform was placed on and fastened to the surcingles with bolts. The 

second PVC platform was placed on top of the first. To prevent injury to the horse, a foam pad 

was glued between the bolt heads and the horse back with a leather patch. An open top- 

 

         

Figure 4: Schematic of custom force sensing equipment with and without weight. 

 

-aluminium box of size 8 ¼”x4 ¼” was affixed to the top PVC sheet with a series of small bolts. 

A handle was attached to the top of the lead weight so that the weight could be moved in and out 

of the aluminium box with ease (Figure 4). This customized system is used to measure the forces 

from the horse back on a 12 kg weight. 

Surcingles

ss 

Two PVC 

platforms 

Aluminium box 

Lead brick 

Transmitters and 

force sensors 
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4.5. Wireless Force Sensing System 

A wireless force sensing system (Wireless Economic Load and Force System, Tekscan Inc.) 

was used to measure the horse back forces due to 12 kg lead weight. Each ELF system consists 

of wireless ELF software, transmitter, receiver, and flexible force sensors (Figure 5). The 

application of force to the active sensing area of the sensor results in a change in the resistance of 

the sensing element in inverse proportion to the force applied. Force sensors with a 1” diameter 

and a range of 0-111 N were used to measure the static forces (Tekscan). The transmitter, which 

is connected to the flexi force sensor, sends a signal to the receiver which is connected to a 

computer through a USB hub. After a simple calibration, the force is recorded in Newtons 

(Tekscan).  

 

Figure 5: Wireless ELF system (Force sensors, Transmitter and Receiver) is used to measure the 

static forces. 

The ELF software allows the user to view a graphical representation of the force on each 

sensor in real-time, record this information as a series to review and analyze it later. The data 

was displayed as a strip graph in the software and later saved as ASCII files to import into 

Microsoft Excel(Tekscan).  
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4.6. Double Mouse  

The motion detection system and force platform were integrated into one host computer and 

synchronized with a proper configuration and setup files. A double mouse was built to 

synchronize the force sensing system with the other two by starting data collection on all the 

systems with only one mouse click (Figure 6). A double pole switch was connected to both Ps/2 

mouses to turn them „ON‟ simultaneously. One end of the USB adapters from the mouses was 

connected to the serial cables from the mouses and the opposite ends were connected to the 

computers one of which had Codamotion software (Codamotion) and the other Tekscan software 

(Tekscan ; Tekscan ; Tekscan). A double pole switch “ON” was used to trigger a mouse left click 

on both systems simultaneously. 

 

Figure 6: A double mouse composed of two mouses and one double pole switch. Active and 

ground pins of both the mouses were connected to the corresponding pins in the double pole 

switch to activate both the mouses with double pole switch. 
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5. Methods 

5.1. Data Collection and Retrieval  

The horses were trained to walk over the force platform prior to data collection. The infrared 

LED markers were attached to the clipped skin of each animal by adhesive velcro over twenty-

two anatomical landmarks on the left forelimb, back, and left hind limb as described in the 

literature(Clayton, Hodson et al. 2000; Clayton, Schamhardt et al. 2000; Hodson, Clayton et al. 

2001): 1) Proximal hoofwall on distal interphalangeal joint, 2) Proximal P3, 3) Metacarpal 

attachment of lateral collateral ligament (LCL), 4) Head of fourth metacarpal bone, 5) Ulnar 

carpal bone, 6) Radial insertion of LCL, 7) Lateral epicondyle of humerus at LCL, 8) Greater 

tubercle of the humerus, 9) Distal aspect of scapula, 10) Proximal aspect of scapula  11) Withers, 

12) 12
th

  thoracic vertebra, 13) 18
th

 thoracic vertebra, 14) Tuber coxae, 15) Femoral greater 

trochanter, 16) Femoral origin of lateral patellar ligament (LPL) 17) Tibial insertion of the lateral 

patellar ligament(LPL), 18) Lateral malleolus, 19) Head of the 4
th

 metatarsal bone, 20) 

Metatarsal origin of LCL 21) Metatarsal attachment of the lateral patellar ligament(LPL) of the 

fetlock and 22) Rear proximal hoof wall over the distal interphalangeal joint(DIJ)(Figure 7). The 

drive boxes were attached in the middle of each segment with adhesive velcro, between the 

markers. The Coda sensors were connected to the active hub on the host computer through the 

serial port. These two Cx1 sensors were kept 2m apart to capture the motion of the horse on at 

least 15m of runway and across the force platform. The horse was then positioned motionless in 

front of the Cx1 sensors in order to confirm all markers were working and being captured by the 

system. The data flowchart is shown in Figure 8. 
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Figure 7: Location of infrared markers and connecting stick figure.  

Horses were walked across the force platform at 1.2 – 2.0 m/s by a trained handler. Data was 

collected under three different conditions: 1) No equipment, 2) Surcingle only, 3) Surcingle box 

containing 12kg weight (Figure 9). In the third condition, four force sensors were placed under 

the weight at each corner to measure the horse back forces. The force sensors were calibrated 

with a mechanical testing system (Instron Dynamight 8841). The system was calibrated 

according to the manufacturer‟s calibration procedure. First, the calibration module is initialized 

in the Wireless ELF software. A mass of 0.5, 1, 2 and 5 Kg was applied sequentially to the force 

sensors using the Instron machine. A curve was then fitted in the calibration module to complete 

calibration. The double mouse was used to activate data collection in motion detection system 

embedded with force platform and the force sensing system at the same time. The wireless force 

sensor‟s receiver collected the force signals from the force sensor transmitter attached to the 

aluminium box. The signals of the force platform and LED markers were transmitted to the host 

computer. In a successful trial, fore hoof followed by the ipsilateral hind hoof landed entirely on 
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the force platform, with only one hoof contacting the force platform at a time. Trials that didn‟t 

meet the criteria were discarded. A minimum of four trials per side were collected for analysis. 

The GRFs and horse motion data in terms of marker position, velocity and acceleration were 

imported into Excel spreadsheets.  

 

 

Figure 8: Block diagram of the data transfer from the force platform, motion detection system 

and force sensing system. 

To reduce the discrepancies of motion of skin with respective to skeletal landmarks, the 

length of each segment was computed by taking the root mean square value of the distance 

between the markers of each segment over a stride cycle (Bobbert, Gómez Álvarez et al. 2007). 

The position of the center of mass (CoM) of each segment was represented with a virtual marker. 

The position of the virtual marker of each segment was computed using physical ratios obtained 

from the Dutch warmblood horses (Buchner, Savelberg et al. 1997) and compiled in 

MATLAB2010a. The acceleration of the virtual marker was obtained from the Codamotion 

software, and considered as the segment acceleration.  
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 (a)    (b)  

     

      (c)  

Figure 9: Pictures of all 3 conditions: a) No equipment; b) Surcingle only; c) Surcingle with 12kg 

weight inside the box. 

5.2. Data Interpolation 

Data from four flexi force sensors was interpolated to create continuous data from 

discontinuous. The results of the measurements were placed in a 2x2 matrix to represent the 

actual placement of the sensors. A virtual 4x8 matrix can be derived using appropriate ratios 

(Figure 10). 

The virtual forces were derived using the following formulas: 
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       ∑∑    

 

   

 

   

 

     is the individual sensor force of the i
th

 row‟s and j
th

 column‟s sensor.        is the derived 

total horse back force due to 12kg weight. The virtual sensors are assumed to have a square area 

to take into account the entire force under the surface of the lead brick. The area under the 

circular sensors was approximated with the area of a square by multiplying by a scaling factor 

of 
 

 
. 

This technique is used for data interpolation from small samples. It is more appropriate if the 

data is acquired at each individual point. This study however, is considering the cumulative force 

at a single point which is easily computed by adding the real force sensed data from four sensors 

and multiplying with the scale factor 
  

 
 (area under the brick is 8 x 4).  

                   

                 
  

 
 

   ,        and    are measured forces from four sensors.        is the derived total back force 

under the 12 kg weight.  
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Figure 10: Virtual matrix derivation from real matrix. 

5.3. Biomechanical Model to Quantify the Forces 

A biomechanical model of the limbs in series with a mathematical model of the back is 

developed to derive the mathematical relationship between the GRFs and the horse back forces. 

A sagittal, two dimensional, symmetric horse model is constructed as a series of rigid links 

(Figure 11). Fore- and hind limbs are modeled as 5 and 4- rigid open chain links to the level of 

shoulder and hip, respectively. The back is modeled as a series of spring and damper components 

which are located over virtual segments. Forces from the neck and the head are not considered.  
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Kinematic data, GRF and inertial properties of limb segments are used to calculate net joint 

reaction forces (Buchner, Savelberg et al. 1997). Since it is not practical to directly measure mass 

and Center of Mass(CoM) position of each segment from the horses used in this study, mass and 

CoM components were determined from the published data based on the assumption that 

segment mass, CoM position and length of the experimental horses were proportional to the 

horses used for the published study according to the following formula  (Buchner, Savelberg et 

al. 1997; Clayton, Hodson et al. 2000; Hodson, Clayton et al. 2001).  

    
      

     

    
 , i = 1,2,3,….9       

                
       

     
 

  
   , i = 1,2,3…..9  

              
       

     
 

  
   , i = 1,2,3…..9  

               
       

     
 

  
   , i = 1,2,3…..9        

Where   
  and   

   are the mass and length of     segment sample horse.   
   

  and    
   

 are the 

mass and length of     segment of reference.      and    are the total masses of reference and 

current horses, respectively.     
   

 ,     
   

 and     
   

 are the x, y, and z components from 

segment distal end to CoM position of the reference horse whereas     
  ,     

  and     
  are 

the x, y, and z components from segment distal end to center of mass position of  the currently 

using horse. CoM x, y, and z components of each segment were used to point the virtual markers 

in the Codamotion software in order to obtain segment accelerations. Virtual marker acceleration 

was considered as the segment acceleration.  
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Figure 11: Combined biomechanical and mathematical models of the horse. All the segments of 

both the limbs to the level of the scapula and thigh are modeled as nine rigid open chain links 

with segmental inertial properties and the rest of the body is modeled as a sum of spring and 

damper components. 

The transferred forces from ground to shoulder and hip joint are computed at the rate the data 

was collected over a complete stride cycle through inverse dynamic calculations. The joint 

reaction forces of fore and hind limb segments are computed for 5 and 4-rigid open chain-link 

models, respectively. The conventional 2D inverse dynamic method (Figure 12a) is applied to 

the model  by utilizing 2
nd

 order Newton-Euler formulation recursively in the sagittal plane 

(Vaughan 1992). Measured ground reaction forces are combined with the acceleration values 

virtual marker accelerations and inertial properties of each segment. 
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and,         ( )   √    ( )      ( )  

  

     and      are the forward and vertical  joint reaction forces and accelerations of     segment. 

     and     are the forward and vertical accelerations of     segment.        and        are the 

forward and vertical ground reaction forces(GRFs).        is the net joint reaction force at the     

segment. The vector amplitude of forward and vertical force component is considered to get the 

net JRF amplitude.         is the resultant joint reaction force due to vertical and forward 

components of the     segment. 

For example, to begin an inverse dynamic analysis, the external forces at the terminal segment 

must be known. Once these forces are determined, a free body diagram must be constructed on a 

rigid body segment representative of the actual anatomical segment. This free body diagram 

should contain all the anatomical forces within the segment, i.e. weight at the CoM, and the 

external forces at the terminal point of the segment. A new free body diagram is now constructed 

that simplifies the anatomical forces into one net force, and also simplifies the external forces. 

The net anatomical force should be drawn about the proximal end of the segment, and the net 

external force should be drawn about the distal end of the segment that is in contact with the 

external forces. To obtain the magnitude and direction of these net forces, the corresponding 

component forces are added together. The net anatomical force is unknown but can be solved for 

by knowing the CoM, weight, and external forces on the limb. Once the net anatomical force is 
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calculated, it can be applied as the „external force‟ for the following segment, and the process 

repeated (Figure 12b).  

(a)  (b)  

Figure 12: Inverse dynamic rigid link model. (a) Rigid open chain link model of pastern, 

metacarpus and the forearm of the horse; (b) Free body diagram of Pastern 

It is assumed that horse is symmetrical in the sagittal plane. The foot fall sequence at walk 

over a stride cycle is as follows: left forelimb, right hind limb, right forelimb and left hind limb 

and the stance phase of each limb occupies 62.5% of total stride cycle. The computed net JRFs at 

left side limb segments were applied to the right side limb segments and adjusted for the horse‟s 

stride cycle to create a complete horse limb model. 

It is assumed that the horse back is a rigid body with 2 degrees of freedom (2-DOF). The axial 

rotation (roll) of the back is the absolute difference between the position of left and right limbs. 

The flexion and extension (pitch) is the absolute difference between back position for front and 
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hind limbs. This 2-DOF of horse back can be represented by taking the absolute difference of 

front and back spring-damper system outputs for left and right shoulder and hip JRFs. 

The net JRFs over a stride cycle are fed to the spring-damper are fed to the spring The net 

joint force at the left shoulder joint f1(t) is applied to the spring in parallel to the damper model 

(Figure 13). The resultant displacement of the spring is x1(t). The system equations and transfer 

function of the system can be modeled as below with spring and damper coefficients ks1 and bs1. 

  ( )       ( )     
   ( )

  
 

Figure 13: Spring and damper system with the coefficients ks1 and bs1 

   Apply Laplace transform on both sides to get the system transfer function 
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Apply inverse Laplace transform to get final displacement 
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For the force f2(t) from the left hip joint applied to another spring-damper system results the 

displacement x2(t).  The system equation and transfer functions are same as the first system with 

different spring and damper coefficients, kh1 and bh1 respectively. The displacement x2(t) can be 

written as 

     ( )     ( )   
  *  ( )+ 

     ( )     ( )   
     

    /     

   Where  
  ( )

  ( )
   ( )   

 

(         )
 

If the stride time with respect to the left forelimb is T, then x1(t±T/2), f1(t±T/2), x2(t±T/2) and 

f2(t±T/2) are the applied force and displacement of the system for right front and rear of the 

horse. The resultant peak-to-low force     ( )  on to the weight at the horse‟s back can be 

obtained by   

    ( )  |  ( )   
    
   

 
         (     )   

    
   

 
      | 

    ( )  |  ( )   
     

            (     )   
     

         | 

       ( )   |  ( )    ( )| 

    ( )   ||  ( )   
    
   

 
        (     )   

    
   

 
     |  |  ( )   

     

         

  (     )   
     

        ||         

The cumulative force on any weight is the summation of the weight (offset) and „peak-to-low‟ 

(p_l) force.  The offset force can be computed as follows: 
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Left shoulder joint JRF f1(t)  is applied to the system transfer function H1offset(s) to get the offset 

displacement x1offset(t).  

Where 

        ( )   
 

(         )
   

and 

        ( )     ( )   
  {        ( )} 

        ( )     ( )   
    
   

 
 /     

In the similar manner left hip side transfer function and displacements can be written as 

        ( )   
 

(         )
   

and 

        ( )     ( )   
  {        ( )} 

        ( )     ( )   
    
   

 
 /     

Offset 

       ( )           ( )          ( )          (      )          (      ) 

Where         (      )and         (      ) are right shoulder and hip side displacements. 

       ( )     ( )   
    
   

 
/      ( )   

    
   

 
/      (     )   

    
   

 
       

  (     )   
       
   

 
 /        

The resultant force on the weight is: 

  ( )          ( )      ( )   
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5.4. Simulation of the Program  

A schematic of the computer model for forces at the horse‟s back is given in the figure below. 

As shown in the Figure 14, the entire model is composed of four parts: i) User input, and GRF 

and locomotion data; ii) Inertial properties and inverse dynamic calculations; iii) Simulation; and 

iv) Horse back forces as output. The inputs, the main stages of the program, the simulation 

model and the outputs are explained in detail.  

 

 

Figure 14: Schematic of the computer program to estimate the spring and damper coefficients for 

a given horse. 

The user inputs to the computer program are the horse‟s name, mass and the filename from 

where the horse‟s breed, gait, ground reaction forces and kinematic data can be read. Horse‟s 

inertial properties are calculated using reference Dutch warmblood horse‟s data within the 

computer program. All of the inputs mentioned above have direct impact on joint reaction forces 

and horse back forces as inverse dynamic equations are functions of horse‟s mass and horse‟s 

locomotion data. 
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The program consists of script programming and graphical programming. In the script 

programming, the equations which describe the horse limbs‟ open chain rigid link model are 

formed. As described previously, conventional 2-D Newton-Euler is used to develop the inverse 

dynamic equations. These equations are second order nonlinear ordinary differential equations 

describing horse locomotion in terms of joint forces resulting from horse locomotion. Horse 

inertial properties such as mass and center of mass of limb segments are calculated in the 

program as described above. When the program is called from within MATLAB prompt, it asks 

from user to provide answers to the following questions. 

 Enter the mass of the horse [kg] 

 Enter the file name where kinematic data is stored [filename.xlsx] 

 Enter the trial number 

 The resultant joint reaction forces of left fore- and hind-limbs are displayed graphically at 

this stage and stored in separate files. It is assumed that the left and the right side locomotion of 

the horse is symmetric over a stride cycle in terms of GRF and locomotion at the walk. Right 

limbs joint reaction forces are computed using symmetry. The four joint reaction force 

information files of the shoulder and hip on both sides are fed to a physical spring - damper 

model of the program. This model is developed using graphical programming using MATLAB 

Simulink2010a.  

The block diagram of the model is shown in Figure 15. Built-in transfer function modules are 

implemented in Simulink to process the data obtained from the inverse dynamic analysis. The 

modules can be customized to simulate springs and dampers by inputting the appropriate k and b 

values into the transfer function. The transfer functions are manually optimized within a 

reasonable range for the anatomical position of the simulated spring-damper system. Spring 
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coefficients, k, from 10-200N/m and 100-800N/m are tested for the forelimbs and hind limbs 

respectively. Damper coefficients, b, from 0.01 to 10Ns/m are tested for all transfer functions. 

Only the spring coefficients or the damper coefficients are tested at any time, that is, one of the 

coefficient sets is kept constant while the other is changed until the desired result is obtained. 

The simulated graph is compared with the measured results graph for accuracy with every 

combination of k and b values. After a suitable combination of k and b values is found, the 

results are varied in the same manner in order to find a suitable range of values. The value range 

is found suitable if the number of peaks in the simulated graph remains the same as in the 

measured results graph and the upper and lower limits do not vary more than 10 N. During the 

simulation all the results from the second stage are displayed on the screen as plots. To obtain the 

impulse response, a unit impulse is applied to the system with a built-in Simulink pulse 

generator. When this impulse response is convoluted with the input data, the simulation results 

graph is obtained.   

The outputs of the program are shown in the form of on-screen data and graphs. These outputs 

are listed as inertial properties of each segment of the limbs and joint reaction forces at the level 

of scapula and pelvis and simulated forces on the horse back.  

5.5. Statistical Analysis 

All the variables presented in this study are represented with mean±s.d. Linear correlation 

coefficient(r) of measured and simulated horse back forces was computed with Pearson‟s 

correlation test using GraphpadPRISM4.00 software (Graphpad software, CA, USA). 
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Figure 15: Block diagram of the Simulink (2010a) model to compute the horse back forces using 

the net joint reaction forces at the shoulder and hip joints. 
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6. Results 

    

Figure 16: Vertical ground reaction forces (GRFs) of left fore and hind limbs of thoroughbreds, 

quarter horses and paso fino (Unloaded, with surcingle only and with weight at the back). F- 

Fore, H- Hind. 
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Vertical GRFs of all seven horses at the walk for three different conditions are shown in 

Figure 16. There is no change in GRF pattern or amplitude among three conditions.  While no 

influence on GRF was observed in the situations with surcingle only and surcingle with weight, 

the net joint forces and are unaffected. These results prove that the GRFs are unchanged with a 

load that is less than 3% of the horse‟s weight applied at the horse‟s back. Consequently, the 

biomechanical and mathematical model coefficients of the horse are unaffected in this study. 

 

   

 

Figure 17: Left and right fore-hind individual limb GRFs of sound and lame thoroughbred over 

time (not stride cycle). F- Fore, H- hind. 

It has been shown that GRFs do not vary significantly from side to side in sound horses. The 

same does not apply for lame horses, however, as can be seen in Figure 17. Thoroughbred horses 

have the longest stride time followed by quarter horses and paso fino, respectively (Figure 18).  
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  Figure 18: Stride times of one horse per breed, at 1.5±0.1m/s. 

  Horse 1   Horse 2   Horse 3 

           

   

 

Figure 19: Left side vertical GRFs and net joint reaction forces at the shoulder and hip joint of 

three thoroughbreds over a stride cycle.   

The left fore and hind limb GRFs and net joint reaction forces (JRF) at the left shoulder and 

left hip joint of thoroughbreds, quarter horses and paso fino are shown Figure 19, 20 and 21, for 

a single stride. There is a minimal variation in the pattern of GRFs for each individual horse. 

Peak GRFs of fore- and hind limbs of two sound thoroughbreds are 6.3±0.1N/kg and 

4.2±0.07N/kg, respectively. Peak GRFs of fore- and hind limbs of three sound quarter horses are 

6.5±0.3N/kg and 4.2±0.2N/kg, respectively. Peak GRFs of fore- and hind limbs of paso fino are 
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7.1N/kg and 4.3N/kg, respectively. Peak GRFs of fore- and hind limbs of lame thoroughbred are 

6.6N/kg and 5.0N/kg, respectively. Paso fino has higher GRF than quarter horses followed by 

thoroughbreds. TB H3 load left limbs more due to lame on right. 

Net joint reaction forces are the equal and opposite forces that exist between adjacent bones at 

those joints caused by the weight and inertial forces of lower segments. The net joint reaction 

forces at the shoulder and hip joint are the transferred GRFs from the ground through the lower 

limb segments.  The magnitude of the forces at both the shoulder and hip joints was proportional 

to the weight of the horse at similar velocity and accelerations. The net joint reaction forces at 

the hip and shoulder joint have a similar pattern of vertical GRFs with reduced amplitude during 

the stance phase. Peak JRFs of fore- and hind limbs of the two sound thoroughbreds with weight 

555.5±28.9kg are 3171.5±215.5N and 2080.6±63.3N, respectively. Peak JRFs of fore- and hind 

limbs of three quarter horses with weight 502.4±44.4kg are 3031.6±267N and 1863.6±265.6N, 

respectively. Peak JRFs of fore- and hind limbs of paso fino with weight 368kg are 2440N and 

1351N, respectively. Peak JRFs of fore- and hind limbs of the lame thoroughbred (weight 431kg) 

are 2632N and 1947N, respectively. The net JRFs at the shoulder joint of thoroughbreds, quarter 

horses and paso fino are 91.3±0.3%, 92.3±0.2% and 93.4±0.3% of forelimb GRFs, and the net 

JRFs at the hip joint are 86.5±0.7%, 89±0.8% and 91% of hind limb GRFs during each stance, 

respectively. The peak net JRFs during the stance phase are proportional to the weight of the 

horse. Higher amount of GRFs are transferred through the limbs in paso fino followed by quarter 

horses and thoroughbreds. Left and right fore- and hind limb net JRFs of one of the experimental 

horses over a stride cycle are shown in Figure 22. The JRFs from both left and right shoulder and 

hip joints are applied to the spring-damper system to obtain the horse back forces. 
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  Horse 1   Horse 2   Horse 3 

                

  

  

Figure 20: Left side vertical GRFs and net joint reaction forces at the shoulder and hip joint of 

three quarter horses over a stride cycle.   

Horse 1 

                      

    

  
 

Figure 21: Left side vertical GRFs and net joint reaction forces at the shoulder and hip joint of a 

paso fino over a stride cycle.  
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Figure 22: Net joint reaction forces at the shoulder and hip joints of all the limbs over a stride 

cycle of a sample horse 

Measured horse back forces beneath a 12 kg weight are shown in Figure 23, 24 and 25 for 

three breeds of horses. For all the horses, first peak value occurs within the 25- 50% of the stride 

cycle. Though the overall pattern of the force is similar for all the horses, there is significant 

variation in peak and low values from breed to breed and horse to horse. And also, these forces 

are multifactorial variable depending on age and breed. Two Thoroughbred horses of the same 

age showed similar force patterns. Peak forces from the 12kg weight on the horse back are 

136.5±1.1N, 143.6±3.1N and 153.5N for thoroughbreds, quarter horses and paso fino, 

respectively (Table 2). Paso fino produces 12.5% and 7% greater peak horse back force than 

thoroughbreds and quarter horses, respectively according to the measured forces. Whereas, 

quarter horses produces 5.2% more peak horse back forces than thoroughbreds. The force at 

horse‟s back is based on the breed of the horse and it doesn‟t show any significant variation with 

the weight of the horse (Table 2).  
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Table 2: Measured peak forces from 12kg weight on the horse back for three thoroughbreds, 

three quarter horses and one paso fino. 

 Thoroughbred 

(TB) 

QuarterHorse 

(QH) 

Paso Fino (Paso) 

Peak force from 12kg 

weight on the horse 

back (N) 

Peak force from 12kg 

weight on the horse 

back (N) 

Peak force from 12kg 

weight on the horse 

back (N) 

H1 135 140 153.5 

H2 137.3 143.3 N/A 

H3 137.1 147.5 N/A 

 
As mentioned in the methods, the algorithm was programmed in the MATLAB (2010a). The 

biomechanical model of the horse up to the level of shoulder and hip joint was programmed in 

scripting environment, whereas the mathematical model was executed in a graphical platform 

(Simulink). The sample outputs of the scripting program are net joint reaction forces at each joint 

of the limbs (Figure 26). The computed net JRFs at the shoulder and hip for all the seven horses 

are shown in above Figure 19, 20 and 21. Left shoulder and hip as well as right shoulder and hip 

net JRFs are fed to the graphical program at appropriate spring and damper coefficients (Ks, Bs, 

Kh and Bh) for each horse to get the horse back forces comparable to force sensor measured 

values. The simulated and measured test results can be found in Figure 23, 24 and 25. A 

significant correlation (p<0.001) is observed between measured and simulated values. The 

correlation coefficients are as follow: Thoroughbreds: 0.81, 0.80 and 0.77, Quarter Horses: 0.84, 

0.86, and 0.82, and Paso Fino: 0.75 for the given K and B values. Thoroughbred Horse3 showed 

significant correlation between simulated results and measured data. Visually however, a stark 

contrast can be easily discerned. This is due to the fact that Horse3 was found to be slightly lame, 

and this would lead to asymmetry in the legs which would throw off the simulated data. Here, 

the Ks1 and Kh1 values plays the role in determining the pattern and peak-to-trough output force 
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of the system, whereas Ks2 and Kh2 decides the offset values of the output force. Bs1, Bs2, Bh1 and 

Bh2 are important in determining the control of oscillations of the system and output patterns of 

the graphs.  

Horse 1   Horse2     Horse3 

   

    
 

Figure 23: Measured and simulated forces under 12kg weigh on horse back  for 

thoroughbreds 

Table 3: Spring and damper coefficients of the mathematical model for individual horses of 

thoroughbred, quarter horse, and paso fino(mean±sd). 

 Thoroughbred (TB) Quarter Horse (QH) Paso Fino(Paso) 

Ks1, 

Ks2 

(N/m) 

 

Bs1, 

Bs2 

(Ns/m)  

Kh1, 

Kh2 

(N/m) 

 

Bh1, 

Bh2 

(Ns/m) 

Ks1, 

Ks2 

(N/m) 

 

Bs1, 

Bs2 

(Ns/m) 

 

Kh1, 

Kh2 

(N/m) 

 

Bh1, 

Bh2 

(Ns/m) 

 

Ks1, 

Ks2 

(N/m) 

 

Bs1, 

Bs2 

(Ns/m) 

 

Kh1, 

Kh2 

(N/m) 

 

Bh1, 

Bh2 

(Ns/m) 

 

H1 131±3.4, 

34±2.8 

0.8±0.5, 

0.9±0.4 

225±10.6 

225±10.6 

5.3±4.8, 

8.2±2.1, 

 

61.5±2.1, 

31±2.3 

1.8±0.6 

0.9±0.3 

138±6.8 

138±6.8 

6.2±4.3, 

6.2±4.3, 

 

51.5±2.1 

21.5±2.4 

1.5±0.8 

1.3±0.9 

160±6.2 

160±6.2 

6.2±3.7. 

6.2±3.7 

H2 122±2.7, 

32±2.8 

2.5±1.3, 

1.8±0.8 

204±8.2, 

204±8.2 

10.2±3.5, 

7.5±2.4 

92.5±3.5, 

31.5±3.4 

0.8±0.5, 

1.2±0.2 

162±8.4

162±8.4 

7.2±3.5, 

7.2±3.5 

 

  - 

 

   - 

 

 - 

 

  - 

H3 71±2.7, 

34±1.5 

1.8±0.8, 

1.8±0.9 

184±7.0, 

184±7.0 

 

7.3±3.2, 

6.1±2.2 

68±3.1, 

73±3.8 

1.5±0.7, 

2.4±0.6 

168±7.3

168±7.3 

4.5±3.8, 

9.4±3.8 

 

  - 

 

   - 

 

  - 

 

  - 

 

Fore- and hind limb side spring coefficients of two sound thoroughbreds with weight 

555.5±28.9kg are 126.5±6.3N/m and 214.5±14.8N/m, respectively. Fore- and hind limb side 
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spring coefficients of three quarter horses with weight 502.4±44.4kg are 74±16.3N/m and 

156.3±15.8N/m, respectively. Fore- and hind limb side spring coefficients of paso fino with 

weight 368 kg are 51.5±2.1N/m and 150N/m, respectively. Fore- and hind limb side spring 

coefficients of lame thoroughbred with weight 431kg are 71±2.5N/m and 184±7.0N/m, 

respectively. Thoroughbreds have higher shoulder spring coefficients compared with quarter 

horses and paso fino. These coefficient values increase with the weight of the horse within the 

breed. The damper coefficients for all the horses vary based on the pattern of the horse back 

force which is a multifactorial variable. These values help in changing the oscillations of the 

system which can affect the horse back force patterns. 

  Horse 1    Horse 2   Horse 3

   

    

 

Figure 24: Measured and simulated forces under 12kg weigh on horse back  of quarter horses 
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Horse 1 

 

 

Figure 25: Measured and simulated forces under 12kg weigh on horse back  of paso fino 

 

Figure 26: Simulated net joint reaction forces using MATLAB program for thoroughbred H1 
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 Approximate Model 

It is observed that the net joint reaction forces follow the similar pattern of GRFs with reduced 

amplitude in stance and raised amplitude in swing. It is a thought applied to test the horse back 

spring-damper model with GRFs. The GRFs from all four limbs fed to the spring-damper model 

instead of net JRFs from shoulder and hip joints. The horse back forces from this approximate 

model for all the horses are shown in Figure 27. It is observed that the approximate model forces 

follow the approximately similar patterns of accurate model forces with shifted amplitude. This 

model can be used in the applications that do not need accurate patterns and amplitudes.  

  Horse 1   Horse 2   Horse 3 

(a)  

(b)     

(c)  

Figure 27: simulated horse back forces with the approximate model. a) Thoroughbreds; b) 

Quarter horses; c) Paso fino. 
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7. Discussion and Conclusion 

Therapeutic horseback riding is an effective form of physical and emotional therapy that has 

been widely used for centuries. Since the effectiveness of the therapy is dependent on what the 

rider experiences, appropriate horse-rider matching is necessary for successful therapy (Hammer, 

Nilsagård et al. 2005; Lessick, Shinaver et al. 2006). Body models and computer simulations are 

viable methods to study the mechanical aspects of systems and are widely used to develop better 

safety procedures and strategies (Crispino, Tasora et al. 2005). Quantification of the forces at 

horse‟s back is valuable for therapists as the analysis of these forces yields better therapy quality 

and an overall better experience for the rider. This study focused on developing a computer 

model to simulate the horse back forces using horse GRFs and kinematics. To the author‟s 

knowledge, this type of analysis of the horse back forces has not been attempted before, and the 

model is the first to offer an explanation of the relationship between the horse motion and the 

horse back forces. The model can expedite the process of matching a horse to a rider, since the 

specific rider needs yield a certain horse size, weight, and gait pattern. The simulation model 

serves as a solid foundation for the development of a horse database for therapeutic riding.  

The horse is a complex biomechanical machine. This study focused on reducing the equine 

limbs and back into a simple model that would represent the underlying biomechanical principles 

of horse locomotion. In order to do this, two separate models were integrated together to form a 

system. The limbs are represented with an open-chain link model while the back is modeled with 

two sets of springs and dampers (Clayton, Hodson et al. 2000; Hodson, Clayton et al. 2001; 

Peham and Schobesberger 2004). 2-D conventional inverse dynamic analysis was performed on 

kinematic and kinetic data from seven horses in order to determine the physical coefficients for 

the model of horse locomotion at the walk. Inverse dynamics was used over forward dynamics to 
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simplify the mathematical complexity. Since forward dynamics calculates the motion of the body 

based on given forces and moments. But human motion can be captured non-invasively than the 

forces and torques. Thus the inverse dynamics can reduce the complexity of the model. The 

mathematical model developed describes the back of the horse as a series of springs and dampers 

in order to more accurately represent the physical action of the muscles and spine in this area. 

These two systems together allow for a comprehensive analysis of the relationship between the 

GRFs and horse back forces. This simple model structure reflects essential aspects of the 

biomechanics of the limb segments and equine back and also it is mathematically tractable. One 

should not mistake the model for an anatomically realistic simulation of the equine back. This 

model is not anatomically accurate, but solely mimics the biomechanical behavior of the limbs 

and equine back.  

Seven horses were used in this study, specifically three thoroughbreds, three quarter horses, 

and one paso fino. The size of the sample does not have the statistical power to generate a 

complete database as reference for the mechanical coefficients of the system based on horse 

weight, size, and age. However, it is possible to predict the effects of weight on the coefficients. 

Different breeds differed in the mechanical coefficients required for a successful simulation. 

Weight increased the spring coefficients, and thoroughbreds required the highest values 

compared to the other horses. The use of k and b values is implemented to simulate the barrel of 

the horse. The specific relationship between k and b values and horse breed and gait cannot be 

determined from this study alone. Further analysis of the movement characteristics is necessary 

to establish a concrete relationship between suitable k and b values and horse gait and 

physiology. This idea relates to the fact that the paso fino horse presented the highest horse back 

forces. It is well known that paso finos are horses with a steady and stabilized gait that does not 
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affect the rider (paso fino is Spanish for „fine gait‟), which points to the conclusion that the 

specific movements of the gait of a paso fino distribute forces through the horse back away from 

the rider, instead of terminating at the back. There is only one sample paso fino horse, which 

limits the confidence that can be had when drawing conclusions based on horse breed.  

Other studies demonstrated that GRFs changed with the weight of the horse and the load on 

the horse back (Clayton, Lanovaz et al. 1999). The results of this study showed no appreciable 

change in GRFs with the applied load. This is due to the relative small size of the mass of the 

load when compared to the mass of the horse. The results show that the relationship between 

weight and the spring constant (k) is proportional, with the mean coefficient value determined by 

the breed.  

The inertial properties of the horses used in this study were estimated from recorded values 

for Dutch warmblood horses (Buchner, Savelberg et al. 1997). The method to use the inertial 

properties of Dutch warmblood  is described in this study, but to the author‟s knowledge, this is 

the first time the pertinent model to compute the inertial properties from given data of a reference 

horse is described in detail. It was assumed that the mass, length, and size of the horses used 

were directly proportional to the reference horse.  

It was also assumed that the gait of the horses studied is symmetrical, as shown in previous 

studies involving gait analysis (Pourcelot, Audigie et al. 1997). The data was obtained in a 

sequential fore to hind cycle; however, detailed analysis of the horse walk reveals that there are 

three limbs on the ground at any point in time. The fore and hind limbs for the same side are on 

the ground for a specified period of the stride cycle. The measured fore to hind cycle was 

calculated according to the horse gait cycle to obtain the real GRF results as the GRFs are 

consistent over many strides.   
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The procedure used to analyze equine motion is similar to the current procedures established 

to analyze human gaits. It compares to the high-order human analysis as described by J. K. 

Aggarwal (Aggarwal and Cai 1997). It differs, however, by the fact that human motion analysis 

involves studying a biped with alternating steps, while the horse gait involves a more complex 

quadruped gait with 2 and 3 beat alternations at the walk, and more complicated motion at the 

trot and canter. It also differs anatomically as the horse body cannot be modeled with rigid chain-

links, since the shoulder of the horse is not connected to the forelimbs with a bone joint. 

Joint reaction forces are important for prevention of equine injury (Merritt, Davies et al. 

2007). This model solves for JRFs at nine joints from the hoof to the back using GRFs. It is 

noteworthy that the calculated JRFs in this case are similar in magnitude to the GRF minus the 

weight of the limbs, especially when the magnitude of the limb acceleration is small. Information 

related to JRFs can be used to implement more effective protocols for injury prevention. 

Computer simulation models of various transportation vehicles like bicycles and motorcycles are 

used to improve the safety of the rider (Crispino, Tasora et al. 2005). Similarly, specific athletic 

requirements and protective gear for both the horse and the rider can be customized using this 

model (Von Peinen, Wiestner et al. 2010). Since this model is proven to work with different 

breeds of horses, it is expected that its advantages will not be limited by the user‟s lack of 

experience with or the availability of other breeds. 

The biomechanical model proved to be satisfactorily accurate in simulating horse back forces. 

The correlation test results between measured and the simulated output showed a minimum of 

75% and a maximum of 86.3%, with the minimum correlation being related to the lame horse. 

The correlation test results show that the model is rigorous enough to account for a limited 

amount of variability due to injury or small differences in the horse gait.  
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C. Peham (Peham and Schobesberger 2004) performed a study using a force sensor mat to 

measure the pressure forces from the rider onto the horse back. This method had the limitation 

that the force component from the horse or the rider cannot be determined. Instead, the net 

action-reaction forces are calculated which occur on the horse back. This model goes a step 

beyond and allows for the calculation of the horse back forces coming from the horse. Future 

work could involve the application of a force sensing mat to determine the force component from 

the horse and rider, and lead to greater insight of the effect of the rider on the horse. The 

measured vertical horse back forces at the walk are also similar to results presented by C. Peham 

(Peham and Schobesberger 2004). Variation between the results cannot be explained because 

horse breed is not defined in the study by C. Peham (Peham and Schobesberger 2004).  

To the author‟s knowledge, there is no study that explains the relationship between the GRFs 

and the forces at horse‟s back. (Clayton, Hodson et al. 2000; Hodson, Clayton et al. 2001) used 

inverse dynamics to calculate the JRFs from GRFs; this study however, focuses on calculating 

the horse back forces. These forces are coupled with a physical model that implements springs 

and dampers to estimate the forces experienced by a load. C. Peham (Peham and Schobesberger 

2004) developed a biomechanical model of the equine spine using interconnected cylindrical 

segments and the long back muscles using springs. This study also uses springs to represent the 

muscular equine back, and couples this system with an open-chain link model for the horse's 

limbs. The model system was used to simulate equine locomotion and help explain the 

relationship between the GRFs and the forces experienced at the saddle.  

This biomechanical model can be simplified using impulse response functions. It was found 

that the impulse response functions were exponential in nature. The characteristic impulse 

response function of the simulation is useful for the widespread application and flexibility of the 
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model, while it enables the end-user to obtain results with a small amount of data processing. 

This is important for future program design and optimization, and allows for different 

approaches to be considered when designing data collection protocols for GRFs.  

The methods implemented in this study are novel to the study of equine motion analysis and 

future studies can gain from and improve on the proposed methods. This model can also be 

implemented in future studies that attempt to model equine motion with a saddle rider. This same 

method can also be used as a baseline 

 in the study of motion and forces of other quadruped animals and machines. The motion 

capture data and joint forces can also be applied in computer animation to develop more accurate 

animated models (James and Twigg 2005).   

This study focused on locomotion horse data at the walk. The mathematical model was 

developed to utilize 2-dimensional data to simulate the horse walk. A database was developed 

that pursued 3-D inverse dynamic analysis, but this aspect of the study had to be dropped 

because of the fact that the Codamotion software does not currently support the necessary 

kinematic data output to be used in a segmental coordinate system for the application of the 

inverse dynamic analysis. In addition, the Codamotion manual and website do not clearly explain 

the technology behind the sensors to support the specified resolution values, and due to lack of 

time the resolution specifications of the system could not be corroborated experimentally. The 

study was also limited to the analysis of a single equine gait, namely the walk. This is limited 

from the three distinguishable gaits, the others being the trot and the canter. It was not possible to 

work with many different horse breeds and further study is needed on this matter. Additionally, 

the study was performed with a static weight on the back of the horse. Future work should 

consider the functional dynamic forces from the rider on this system.   
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In summary, the goal of this study was simulating the horse back forces of various breeds. A 

biomechanical model in conjunction with mechanical components was developed to solve the 

system equations with various coefficients. This model will set a solid foundation for the 

development of a horse database that will aid therapeutic riding in the process of horse and rider 

pairing. The model however, is not anatomically faithful, but rather a biomechanical 

simplification of the horse limbs and back. The spring and damper coefficients implemented in 

the model are determined by the physiology of the horse, but further study is required to 

establish the relationship between horse characteristic gait, physiology, and coefficients. It is 

possible to say, however, that spring coefficients are proportional to horse weight within breeds.  
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Appendix: Computer Program 

Computing the CoM  axis components of each segment of  horse limbs to represent the CoM as 

virtual markers in Codamotion software 

% Computing the center of mass and weights for codamotion system of eachsegment 

clear all; 

clc; 

% storing the marker position ratio obtained from dutch warm blood horses of complete 9 

segments 

  

ratio = [33,-11,46;17.4,-1.0,44;14.2,-2.1,35;30,-5.0,51;21.0,-12,27;29,-13,43;13.3,-6.7,32;14,-

8.4,37.9;20.6,-12,59]; % reference ratio wrt length of each segment 

Num = 

xlsread('E:\ThesisRelated\HORSE_MOTION_DATA\Computer_programs\CoM_Computation.x

lsx', 1); % read the excel sheet 

[Num_rows, Num_columns] = size(Num); % computes number of rows and columns in the 

excel sheet 

Num_segments = Num_columns/6; % computes number of segmnets from number of columns 

in the sheet 

Segment_length = zeros(Num_rows, Num_segments); 

x = zeros(Num_rows, 2 * Num_segments); 

y = zeros(Num_rows, 2 * Num_segments); 

z = zeros(Num_rows, 2 * Num_segments); 

CoM_X = zeros(Num_rows, Num_segments); 

CoM_Y = zeros(Num_rows, Num_segments); 

CoM_Z = zeros(Num_rows, Num_segments); 

ProxCoMdist = zeros(Num_rows, Num_segments); 

Weight = zeros(Num_rows,Num_segments); 

disp(Num_segments); 

  

% storing the x, y, z position of each marker in all segments 

for i = 1: Num_rows 

      k = 1; 

      for j = 1: 2 * Num_segments 

        x(i,j) = Num(i,k); 

        k = k+1; 

        y(i,j) = Num(i,k); 

        k = k+1; 

        z(i,j) = Num(i,k); 

        k = k+1; 

      end 

end 

disp(x); 
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% computes the length, Center of Mass and weight for codamotion from the proximal end of 

each segment 

for i = 1: Num_rows 

    for j = 1 : 2 : 2 * Num_segments 

        k = 1; 

        Segment_length(i,(j+1)/2) = realsqrt((x(i,j)-x(i,j+1))*(x(i,j)-x(i,j+1))+(y(i,j)-

y(i,j+1))*(y(i,j)-y(i,j+1))+(z(i,j)-z(i,j+1))*(z(i,j)-z(i,j+1))); 

        CoM_X(i,(j+1)/2) = x(i,j+1)+ ratio((j+1)/2,k)* Segment_length(i, (j+1)/2)* 1/100;   

        CoM_Y(i,(j+1)/2) = y(i,j+1)+ ratio((j+1)/2,k+1)* Segment_length(i, (j+1)/2)* 1/100;  

        CoM_Z(i,(j+1)/2) = z(i,j+1)- ratio((j+1)/2,k+2)* Segment_length(i, (j+1)/2) * 1/100;   

        ProxCoMdist(i,(j+1)/2) = realsqrt((CoM_X(i,(j+1)/2)-x(i,j+1))*(CoM_X(i,(j+1)/2)-

x(i,j+1))+(CoM_Y(i,(j+1)/2)-y(i,j+1))*(CoM_Y(i,(j+1)/2)-y(i,j+1))+(CoM_Z(i,(j+1)/2)-

z(i,j+1))*(CoM_Z(i,(j+1)/2)-z(i,j+1))); 

        Weight(i,(j+1)/2) = ProxCoMdist(i,(j+1)/2)/ Segment_length(i,(j+1)/2); 

    end 

end 

%disp(Segment_length); 

%disp(ProxCoMdist); 

disp(CoM_X); 

disp(CoM_Y); 

disp(CoM_Z); 

disp(Weight); 

SUCCESS = 

xlswrite('E:\ThesisRelated\HORSE_MOTION_DATA\Computer_programs\CoM_Computation.

xlsx', Weight, 2,'B2'); 

SUCCESS1 = 

xlswrite('E:\ThesisRelated\HORSE_MOTION_DATA\Computer_programs\CoM_Computation.

xlsx', CoM_X, 2,'L2'); 

SUCCESS2 = 

xlswrite('E:\ThesisRelated\HORSE_MOTION_DATA\Computer_programs\CoM_Computation.

xlsx', CoM_Y, 2,'U2'); 

SUCCESS3 = 

xlswrite('E:\ThesisRelated\HORSE_MOTION_DATA\Computer_programs\CoM_Computation.

xlsx', CoM_Z, 2,'AD2'); 

disp(SUCCESS); 

%disp(Num); 

%disp(x); 

%disp(y); 

%disp(z);  

 

Computing the joint reaction forces  

% calculation of Joint forces 

clear all; 

clc; 

  

% storing the mass ratio obtained from dutch warm blood horses of complete 9 segments 
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Horse_mass = input('Enter the weight of the horse:'); 

Excelsheet_name = input('Enter the file name:', 's'); 

Number_sheets = input('Enter number of sheets in the file:'); 

mass_ratio = [0.1357 0.29 1.24 1.59 2.13 0.165 0.528 1.543 3.45]; 

global Ref_mass; 

Ref_mass= [0.73 1.59 6.7 8.6 11.5 0.89 2.84 8.3 18.6]; 

global Ref_len; 

Ref_len= [0.135 0.287 0.434 0.25 0.274 0.141 0.353 0.434 0.36]; 

global Ref_minertia;  

Ref_minertia= [0.001216 0.0148 0.1220 0.0990 0.2081 0.0020 0.0481 0.1360 0.3536]; 

number_of_segments = size(mass_ratio,2); 

disp(number_of_segments); 

global segment_mass; 

segmnet_mass= zeros(1,number_of_segments); 

  

% each segment mass computed throgh mass ratio 

  

    for i= 1:number_of_segments 

    segment_mass = Horse_mass * mass_ratio/100; 

    end 

disp(segment_mass); 

% reading the data from excel sheets 

 for i = 2:Number_sheets 

     Read_data=xlsread(Excelsheet_name,i); 

     % disp(Read_data); 

     [data_rows,data_cols]=size(Read_data); 

     [jointforce_Y, jointforce_Z,joint_force, Moment_Mp] = 

compute_forcesmoments(Read_data,data_rows,number_of_segments); 

     %plot(Moment_Mp); 

 end 

  

function [jointforce_Y, jointforce_Z,joint_force, Moment_Mp ] = 

compute_forcesmoments(data,num_rows,num_of_segments) 

     

%Reading  Ground Reaction Forces and segment accelerations and vector 

%angles from excel spreadsheet 

% Zeroing the allocated rows and columns for the output  

jointforce_Y= zeros(num_rows,num_of_segments+2); 

jointforce_Z= zeros(num_rows,num_of_segments+2); 

Moment_Mp   = zeros(num_rows,num_of_segments); 

Markerposition_X = zeros(num_rows,2*num_of_segments); 

Markerposition_Y= zeros(num_rows,2*num_of_segments); 

Markerposition_Z= zeros(num_rows,2*num_of_segments); 

CoMposition_X = zeros(num_rows,num_of_segments); 

CoMposition_Y = zeros(num_rows,num_of_segments); 

CoMposition_Z = zeros(num_rows,num_of_segments); 
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CoMacc_X = zeros(num_rows, num_of_segments); 

CoMacc_Y = zeros(num_rows, num_of_segments); 

CoMacc_Z = zeros(num_rows, num_of_segments); 

Vectorangle = zeros(num_rows,num_of_segments); 

Ang_acc = zeros(num_rows,num_of_segments); 

Perpend_dist_Z = zeros(num_rows, num_of_segments); 

Perpend_dist_Y = zeros(num_rows, num_of_segments); 

Perpend_prox_Z = zeros(num_rows, num_of_segments); 

Perpend_prox_Y = zeros(num_rows, num_of_segments); 

joint_force = zeros(num_rows, 1); 

Moment_Inertia = zeros(1,num_of_segments); 

len_segment = zeros(1,num_of_segments); 

global segment_mass; 

global Ref_mass; 

global Ref_len; 

global Ref_minertia; 

  

% Read Ground reaction forces into the array 

for i=1:num_rows 

    jointforce_Y(i,1) = data(i,2); 

    jointforce_Z(i,1) = data(i,3); 

    jointforce_Y(i,7) = data(i,4); 

    jointforce_Z(i,7) = data(i,5); 

     

end 

% Read marker postion into the array 

for i = 1:num_rows 

     temp1 = 6; 

     temp2 = 71; 

    for j= 1:2 * num_of_segments 

        if(j<=10) 

         Markerposition_X(i,j)= data(i,temp1); 

         Markerposition_Y(i,j)=data(i,temp1+1); 

         Markerposition_Z(i,j)= data(i,temp1+2); 

         temp1= temp1+3; 

        elseif(j>10) 

         Markerposition_Z(i,j)= data(i,temp2); 

         Markerposition_Y(i,j)=data(i,temp2-1); 

         Markerposition_X(i,j)= data(i,temp2-2); 

         temp2 = temp2-3; 

        end 

                

    end 

end 

%disp(Markerposition_X); 

% CoM position,CoM Acceleration, Vector angle and Angular acceleration into 
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% the arrays 

for i= 1:num_rows 

     temp3 = 70; 

     temp4 = 99; 

     temp5 = 126; 

    for j = 1: num_of_segments 

        CoMposition_X(i,j)= data(i,temp3); 

        CoMposition_Y(i,j)= data(i,temp3+1); 

        CoMposition_Z(i,j)= data(i,temp3+2); 

        CoMacc_X(i,j)= data(i,temp4); 

        CoMacc_Y(i,j)= data(i,temp4+1); 

        CoMacc_Z(i,j)= data(i,temp4+2); 

        Vectorangle(i,j)= data(i, temp5); 

        Ang_acc(i,j)= data(i,temp5+9); 

        temp3 = temp3+3; 

        temp4 = temp4+3; 

        temp5 = temp5+1; 

    end 

end 

g =9.8; 

disp(segment_mass); 

% joint forces of fore and hind limbs 

for i= 1:num_rows 

     

    for j=1:5 

            if(j==1) 

             

            jointforce_Y(i,j+1)= segment_mass(j)*CoMacc_Y(i,j)- jointforce_Y(i,j); 

            jointforce_Z(i,j+1) = segment_mass(j)*CoMacc_Z(i,j)- jointforce_Z(i,j)+ 

segment_mass(j)* g ; 

            else 

            jointforce_Y(i,j+1)= segment_mass(j)*CoMacc_Y(i,j)+jointforce_Y(i,j); 

            jointforce_Z(i,j+1) = segment_mass(j)*CoMacc_Z(i,j)+ jointforce_Z(i,j)+ 

segment_mass(j)* g ; 

            end 

            

    end 

end 

%disp(jointforce_Y); 

  

  

% Joint force calulations of hind limb 

for i= 1:num_rows 

    for j = 6:9 

           if(j==6) 
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            jointforce_Y(i,j+2)= segment_mass(j)*CoMacc_Y(i,j)- jointforce_Y(i,j+1); 

            jointforce_Z(i,j+2) = segment_mass(j)*CoMacc_Z(i,j)- jointforce_Z(i,j+1)+ 

segment_mass(j)* g ; 

           else 

           jointforce_Y(i,j+2)= segment_mass(j)*CoMacc_Y(i,j)+jointforce_Y(i,j+1); 

           jointforce_Z(i,j+2) = segment_mass(j)*CoMacc_Z(i,j)+ jointforce_Z(i,j+1)+ 

segment_mass(j)* g ; 

           end 

         

    end 

end 

   

%plot(jointforce_Z); 

%disp(jointforce_Z); 

% computing moment of inertia of each segment 

        % computing length of each segment and Rp & Rd  

         

for i = 1:2:2*num_of_segments 

    sum_dist = 0; 

    for j = 1:5 

        dist = sqrt((Markerposition_X(j,i) - Markerposition_X(j,i+1))^2 + (Markerposition_Y(j,i) - 

Markerposition_Y(j,i+1))^2 + (Markerposition_Z(j,i) - Markerposition_Z(j,i+1))^2); 

        %disp(dist); 

        sum_dist= sum_dist + dist; 

    end 

    len_segment((i+1)/2) = sum_dist/5000; 

     

end 

  

       % Moment of inertia 

       for i = 1: num_of_segments 

           Moment_Inertia(1,i) = Ref_minertia(i) * segment_mass(i) * len_segment(i)* 

len_segment(i)/(Ref_mass(i) * Ref_len(i)); 

       end 

       %disp(Moment_Inertia); 

       % computing the perpendicular distance 

for i = 1:2:2*num_of_segments 

    for j = 1:num_rows 

        Perpend_dist_Y(j,(i+1)/2) = abs(Markerposition_Y(j,i)- CoMposition_Y(j,(i+1)/2))/1000; 

        Perpend_dist_Z(j,(i+1)/2) = abs(Markerposition_Z(j,i)- CoMposition_Z(j,(i+1)/2))/1000; 

        Perpend_prox_Y(j,(i+1)/2) = abs(Markerposition_Y(j,i+1)- 

CoMposition_Y(j,(i+1)/2))/1000; 

        Perpend_prox_Z(j,(i+1)/2) = abs(Markerposition_Z(j,i+1)- 

CoMposition_Z(j,(i+1)/2))/1000; 

    end 
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end 

  

% Joint moment calculations of fore and hind limbs 

for i= 1:num_rows 

     

    for j=1:9 

            if (j==1 || j==6) 

            Moment_Mp(i,j) = Moment_Inertia(1,j)* Ang_acc(i,j)- jointforce_Y(i,j) * 

Perpend_dist_Z(i,j) - jointforce_Z(i,j)* Perpend_dist_Y(i,j) - jointforce_Z(i,j+1) * 

Perpend_prox_Y(i,j) + jointforce_Y(i,j+1) * Perpend_prox_Z(i,j);  

            else  

            Moment_Mp(i,j) = Moment_Inertia(1,j)* Ang_acc(i,j)+jointforce_Y(i,j+1) * 

Perpend_dist_Z(i,j) + jointforce_Z(i,j+1)* Perpend_dist_Y(i,j) + jointforce_Z(i,j+2) * 

Perpend_prox_Y(i,j) + jointforce_Y(i,j+2) * Perpend_prox_Z(i,j)+Moment_Mp(i,j-1);  

            end 

    end 

end 

for i = 1:num_rows 

    for j = 1:num_of_segments+2 

        joint_force(i,j)= sqrt(jointforce_Y(i,j) * jointforce_Y(i,j) + jointforce_Z(i,j) * 

jointforce_Z(i,j)); 

    end 

end                 

plot(joint_force); 

disp(joint_force); 

%plot(jointforce_Y); 

%plot(jointforce_Z); 

%plot(Moment_Mp); 

end 
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Simulink2010a model of the spring damper system to generate horse back forces with direct application of input to system transfer 

function 
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Entity- Relation diagram of the database for 3D inverse dynamic model 



 

  

71 

 

Vita 

 

Laxmi Raghunandana Kaidapuram was born in March, 1986 in Nizamabad, Andhra Pradesh, 

India. She received her Bachelor of Technology in Electronics and Communication Engineering 

from Jawaharlal Nehru Technological University, Hyderabad, India, in the year 2007. After her 

graduation, she worked as a faculty member at Vignan Institute of Technological Sciences, 

Hyderabad, for one year. She then came to United States to pursue a Master of Science in 

Electrical Engineering degree at Louisiana State University (LSU). She worked as a graduate 

assistant from September 2008 to March 2011 in Laboratory of Equine and Comparative 

Orthopedic Research at School of Veterinary Medicine, LSU. She is expecting to graduate from 

electrical engineering in December of 2011.  

 


