
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2011

Cost and performance modeling of the MU-
Decoder
Raghavendra Kongari
Louisiana State University and Agricultural and Mechanical College, rkonga1@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Kongari, Raghavendra, "Cost and performance modeling of the MU-Decoder" (2011). LSU Master's Theses. 795.
https://digitalcommons.lsu.edu/gradschool_theses/795

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/795?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F795&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

COST AND PERFORMANCE MODELING OF THE
MU-DECODER

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering

in
The Department of Electrical and Computer Engineering

by
Raghavendra Kongari

B.E. in Electronics and Communication Engineering,
Osmania University, India, 2007

May 2011

Acknowledgements

I am indebted to my advisor, Dr. Ramachandran Vaidyanathan, for his exemplary patience,
guidance, and support. He taught me the approaches to solve research problems at every
obstacle on my way towards completing my thesis. I would also like to extend my gratitude
to my committee members, Dr. Bahadir K. Gunturk and Dr. Alexander Skavantzos, for
their valuable suggestions and kind support. I also like to thank Dr. Ashok Srivastava for
permitting me to use his lab facilities.

I also want to convey my sincere gratitude to Dr. J. Matthew Fannin, and Department
of Electrical Engineering, for supporting me financially and making me to concentrate on
completion of my thesis. Dr. J. Matthew Fannin has also helped me to build my professional
work experience and introduced me to several conference meetings.

I want to thank all my friends who assisted me in my endeavors, with a special thanks
to Leeladhar, Bhargav, Upender, Rajkiran, Naga S. Korivi, Pradeep, Dilip, Kalyan, Venu,
and Phaneendra for their invaluable support rendered during the progress of this thesis.

I wish to endow my earnest gratitude to my father, Anjaiah Kongari, and my mother,
Bhagyamma Kongari, who believed in me and have been through all my rough times. I
also want to express special thanks to my entire family for their affection, support and
compassion. Finally, I dedicate this thesis to my parents, Anjaiah and Bhagyamma, without
whose blessings, this would not have been a reality.

ii

Table of Contents

Acknowledgements . ii

List of Tables . v

List of Figures . vi

Abstract . ix

1 Introduction . 1

2 Preliminaries . 5
2.1 Binary Sequences as Sets . 5
2.2 MU Decoder . 6
2.3 Design Flow . 8

2.3.1 Design Entry and Functional Verification 9
2.3.2 Synthesis . 10
2.3.3 Place and Route (PAR) . 12

3 Methodology . 18
3.1 Granularity-Based Module Representation 18
3.2 Module Implementation . 19

3.2.1 Synthesis Methodology . 20
3.2.2 Place and Route (PAR) Methodology 24

3.3 Modeling . 26

4 Theoretical Estimation of Time and Area 29
4.1 Fan-Out . 30
4.2 Multicast Hardwiring . 31
4.3 Fan-In . 33
4.4 One-Hot Decoder . 34
4.5 Multiplexer . 35
4.6 Look-Up Table (LUT) . 36

5 Performance Modeling . 41

iii

5.1 Mulitplexer . 42
5.1.1 Granularity-Based Multiplexer Representation 42
5.1.2 Multiplexer Implementation Results and Analysis 43
5.1.3 Multiplexer Model . 47

5.2 One-Hot Decoder . 49
5.2.1 Granularity-Based One-Hot Decoder Representation 50
5.2.2 One-Hot Decoder Implementation Results and Model 51

5.3 Multicast Hardwiring . 52
5.3.1 Multicast Hardwiring Implementation Results and Model 52

5.4 Look-Up Table . 56
5.4.1 Granularity-Based LUT Representation 56
5.4.2 Implementation Results and Model 56

6 The MU-Decoder . 59
6.1 The MU-Decoder Structure and Model . 59
6.2 Basis for Comparing LUT- and MU-Decoders 61

6.2.1 MU-Decoder Configuration for Arbitrary Subsets 62
6.2.2 MU-Decoder Configuration for Total-Order Subsets 63
6.2.3 Delay and Power . 68

7 Concluding Remarks . 85

Bibliography . 87

Vita . 90

iv

List of Tables

2.1 Sets corresponding to 3-bit binary sequences 5

4.1 A 1-to-`o fanout order terms . 31

4.2 A w-to-w2x multicast hardwiring time and area order terms 32

4.3 A `i-to-1 fan-in order terms . 33

4.4 A x-to-2x one-hot decoder time and area order terms 35

4.5 A 2x-to-1 multiplexer time and area order terms 36

4.6 A 2x-to-1 multiplexer time and area order terms 38

5.1 Percentage error for multiplexer time coefficients 48

5.2 Multiplexer time coefficients for each range of x. 49

v

List of Figures

2.1 MU-Decoder block diagram. 7

2.2 Mapping unit structure. 8

2.3 Block level digital implementation design flow. 9

2.4 Detailed digital implemenatation design flow. 10

2.5 Example Verilog code for the 2-to-4 one-hot decoder. 11

2.6 Functional verification design flow. 12

2.7 Synthesis flow. 14

2.8 Example schematic for the 2-to-4 one-hot decoder. 15

2.9 PAR design flow. 16

2.10 Example layout for the 2-to-4 one-hot decoder. 17

3.1 Synthesis controlling script . 20

3.2 Time-optimization flow chart for the MCG. 22

3.3 Area-optimization flow chart for the MCG. 23

3.4 Power-optimization flow chart for the MCG. 24

3.5 Place and Route controlling script . 25

4.1 Example of a 1-to-27 fan-out ternary tree for fo = 3 30

4.2 Block diagram of a w-to-w2x multicast hardwiring module. 32

4.3 Example of a 3-to-(3× 9) multicast hardwiring module 32

vi

4.4 Example of a 16-to-1 fan-in binary tree for fi = 3 33

4.5 Block diagram of a x-to-2x one-hot decoder. 34

4.6 Block diagram of a 2x-to-1 multiplexer. 35

4.7 Block diagram of a 2x-to-w LUT. 39

4.8 Structure of a 2x-to-w LUT, Bit bi block and AND-OR logic block. 40

5.1 A 2x-to-1 multiplexer block diagram and its behavioral Verilog code. 42

5.2 Implementations of a 2-to-1 multiplexer. 43

5.3 Implementation of an 8-to-1 multiplexer using 2-to-1 multiplexers. 44

5.4 Granularity-based multiplexer implementations. 45

5.5 Multiplexer time- and area-optimized results 46

5.6 Multiplexer power-optimized results . 47

5.7 A x-to-2x one-hot decoder block diagram and its behavioral Verilog code. . . 50

5.8 Implementations of a 1-to-2 one-hot decoder. 51

5.9 Implementation of a 3-to-8 one-hot decoder using 1-to-2 decoders. 52

5.10 Granularity-based one-hot decoder implementations. 53

5.11 One-hot decoder time- and area-optimized results 54

5.12 Multicast hardwiring time- and area-optimized implementation results 55

5.13 LUT time- and area-optimized implementation results 57

6.1 Structure of MU-Decoder MU(m, y, z, n). 60

6.2 Contribution of building blocks for arbitrary subsets. 64

6.3 Ratio of MU- to LUT-Decoder areas for arbitrary subsets (5000 ≤ n ≤ 1011). 65

6.4 Ratio of MU- to LUT-Decoder areas for arbitrary subsets (5000 ≤ n ≤ 106). 66

6.5 Contribution of building blocks for totally ordered subsets (γ = 0). 68

vii

6.6 Contribution of building blocks for totally ordered subsets (γ = y
2
). 69

6.7 Contribution of building blocks for totally ordered subsets (γ = y). 70

6.8 Ratio of LUT- to MU-Decoder areas for (γ = 0) totally ordered subsets
(5000 ≤ n ≤ 1011). 71

6.9 Ratio of LUT- to MU-Decoder areas for (γ = 0) totally ordered subsets
(5000 ≤ n ≤ 106). 72

6.10 Ratio of LUT- to MU-Decoder areas (γ = y
2
) totally ordered subsets (5000 ≤

n ≤ 1011). 73

6.11 Ratio of LUT- to MU-Decoder areas for (γ = y
2
) totally ordered subsets

(5000 ≤ n ≤ 106). 74

6.12 Ratio of LUT- to MU-Decoder areas (γ = y) totally ordered subsets (5000 ≤
n ≤ 1011). 75

6.13 Ratio of LUT- to MU-Decoder areas for (γ = y) totally ordered subsets
(5000 ≤ n ≤ 106). 76

6.14 Ratio of LUT- to MU-Decoder time for arbitrary subsets (5000 ≤ n < 1011). 77

6.15 Ratio of LUT- to MU-Decoder time for (γ = 0) totally ordered subsets (5000 ≤
n < 1011). 78

6.16 Ratio of LUT- to MU-Decoder time for (γ = y
2
) totally ordered subsets

(5000 ≤ n < 1011). 79

6.17 Ratio of LUT- to MU-Decoder time for (γ = y) totally ordered subsets
(5000 ≤ n < 1011) . 80

6.18 Ratio of LUT- to MU-Decoder power for arbitrary subsets (5000 ≤ n < 1011). 81

6.19 Ratio of LUT- to MU-Decoder power for (γ = 0) totally ordered subsets
(5000 ≤ n < 1011). 82

6.20 Ratio of LUT- to MU-Decoder power for (γ = y
2
) totally ordered subsets

(5000 ≤ n < 1011). 83

6.21 Ratio of LUT- to MU-Decoder power for (γ = y) totally ordered subsets
(5000 ≤ n < 1011). 84

viii

Abstract

In this thesis we study the implementation details of the MU-Decoders, a recently proposed
hardware module that has been theoretically shown to be superior to other methods for
generating subsets of large sets. Our study confirms this advantage.

Specifically, we compare the performance of implementations of the LUT-Decoder (the
most common configurable decoder) to the MU-Decoder. We show that for while the
LUT-Decoder is slightly better than the MU-Decoder for arbitrary (and artifical) inputs,
for a large class of inputs called totally ordered subsets, that have practical significance, the
MU-Decoder is vastly superior in area than the LUT-Decoder. In terms of delay and power
too, the MU-Decoder performs better than the LUT-Decoder.

This work is based on a series of time-optimized and area-optimized implementations of
key building blocks of the MU-Decoder that help construct models for both the LUT-Decoder
and the MU-Decoder. These models serve to predict the delay, area and power of these
decoders at sizes that may not be practical to implement in an academic setting.

As part of the work, multiplexers, one-hot decoders, multicast hard-wiring, and memory
modules are implemented and modeled. These are all commonly used elements of digital
systems. Therefore this work may also be of independent interest, beyond MU-Decoders.

ix

Chapter 1

Introduction

Technological advances have dramatically reduced the speed of digital systems, particularly
computing systems (Moore’s Law). However input/output bandwidth has not increased at
the same pace. Jordan [9] illustrates this with an example of Intel processors from 1976 to
2006 for which the number of transistors per chip has increased by a factor of 20,000, while
the number of pins has increased only by a factor of 30. Thus, pin-limitation is an important
issue that could seriously affect the performance of modern systems.

One area where pin-limitation has an important effect is in dynamically reconfigurable
systems such as Field Programmable Gate Arrays (FPGAs) [7, 27, 30, 31]. Broadly speaking,
an FPGA consists of an array of configurable elements (logic blocks) whose internal and
external connections and logic can be configured to suit the problem at hand. Typically,
there are hundreds of thousands of such logic blocks in an FPGA, each requiring multiple
configuration bits. For example the Xilinx 7-series FPGA (XC7V20002) has 1.9 million
configurable logic blocks [31].

Typically one could configure the FPGA partially [7, 27, 28, 30], altering only one part,
while leaving the rest unchanged and free to operate. A key part of this partial reconfigura-
tion is selecting the elements to be reconfigured. A focused selection of only those elements
requiring reconfiguration entails sending in few configuration bits, however it also increases
the number of elements from which this selection is to be made. Consider an FPGA with C
configurable logic blocks. Let each block require b bits to configure. Group these configurable
blocks into F groups called “frames,” each with C

F
blocks. A frame is the smallest unit that

can be separately addressed for reconfiguration. The role of a “configurable decoder” (that
we study in this thesis) is to select a subset of these F frames to reconfigure. Here the
decoder can be viewed as a subset generator. If c of the C configurable blocks distributed
over f of the F frames need to be reconfigured, then cF

C
≤ f ≤ c. The number of bits B

needed to configure these f frames is fb
(
C
F

)
, so cb ≤ B ≤ cb

(
C
F

)
. To keep B small it is

essential to make C
F

small, or F large. This implies that the set of frames to chose from is
now large and the decoder needs to produce subsets of large sets. Selecting from a large set,

1

2

though beneficial computationally, can lose this benefit to the cost of the selecting hardware
itself.

As argued in Jordan [9] this problem can be circumvented with a configurable decoder
(or subset generator1) with low cost and high flexibility. In this thesis we study the imple-
mentation of one such decoder called the MU-Decoder and validate the assertion [9, 10] that
a MU-Decoder performs better than a LUT-Decoder for structured subsets.

Current solutions for selection of frames that use a one-hot decoder are too slow for
dynamic reconfiguration. Using a LUT based decoder (described below) is flexible but too
expensive in area. The MU-Decoder has much of the flexibility of the LUT-Decoder but can
exploit problem structure to considerably reduce the area cost.

The simplest configurable decoder is a LUT-Decoder, which is simply a 2m × n look-up
table, or a 2m location memory of word size n. Neither does it have any constraints on the
contents of the memory, nor can it exploit them, if constraints are placed. On the other hand
a MU-Decoder [10] can exploit constraints of the subsets to be generated and offers, in a
sense, more flexibility than the LUT-Decoder for practical situations (where subsets are non-
arbitrary). In this thesis we perform a detailed modeling of MU-Decoder implementations
and establish this advantage. Previous work on the MU-Decoder [9, 10], were primarily
at the theoretical level that established complexity advantages without considering effects
of implementation, such as complexity constants, wire area, delay, and parasitic effects in
low feature size technologies [16]; we use 45 nm technology for this work. Unlike earlier
results [9], our work allows the MU-Decoder and LUT-Decoder to be compared without the
assumption that subsets are fixed before the decoder is manufactured.

This work has several contributions. We first identify a few key building blocks of the
MU-Decoder. Next, we express each of these building blocks in terms of its “granularity”
that affords a level of flexibility in exploring the design space systematically. For each
selected design, we synthesize, place and route the design using the Cadence Suite of CAD
tools [4] on a virtual chip to estimate its delay, area and power. We use these experimental
observations to derive model equations for the MU-Decoder building blocks. These, in turn,
lead to models of the LUT-Decoder and the MU-Decoder. These models are used to establish
the advantage of the MU-Decoder over the LUT-Decoder for a class of subsets called totally-
ordered subsets.

Four key parameters of configurable decoders that are relevant to this thesis are (i) n,
the number of elements (or frames) in a set Zn = {0, 1, · · · , n− 1}, whose subsets are being
generated, (ii) S, the set of subsets of Zn being generated, (iii) ` = |S|, the number of subsets
being generated and (iv) AD(n,S, `) the area of the configurable decoder “D”; here D ∈
{L,M}, for LUT- and MU-Decoder, represents the decoder whose area is being considered.
We compare the MU-Decoder and LUT-Decoder for a fixed n,S and ` and use the ratio

1It has been shown [9, 10] that a 2m-to-n decoder is a combinational circuit that generates a set of subsets
of Zn = {0, 1, · · · , n− 1}.

3

ρ(n,S, `) = AL(n,S,`)
AM (n,S,`) as a measure of the performance. If ρ(n,S, `) > 1 then the MU-Decoder

has lower area, otherwise the LUT-Decoder has lower area. Since the same technology
(45 nm) is used for both implementations, the ratio ρ is more meaningful than absolute
areas, and extends (in large measure) to future technologies as well.

We show that when S is an arbitrary (unconstrained) set of subsets then ρ(n,S, `) < 1,
showing the LUT-Decoder to be better. For example, when ` = n and n = 5000, then ρ = 1

1.8
,

whereas when n increases to 106, ρ decreases to 1
3.4

. This behavior is less pronounced for
larger `. For example when ` = n2 and n = 106, we have ρ = 1

1.1
.

While these result samples seem to indicate that the LUT-Decoder may be better than
the MU-Decoder, this is not the case in practice where subsets are not as arbitrary as the
above results assume. In fact, the subsets generated for use in most algorithms are related
to each other. For example in reduction (or other tree based algorithms) the subsets could
form a total order (in which all subsets are pairwise comparable). We also applied our model
to a MU-Decoder geared to generate totally ordered subsets. For the same data illustrated
above we have the following for the totally-ordered subsets. When ` = n and n = 5000,
then ρ = 3.5, whereas when n increases to 106, ρ increases to 33. In simple terms, the last
case translates to, for subsets of a 106 element set, the MU-Decoder is 33 times lower in area
than the LUT-Decoder. As we noted earlier for current FPGAs, a million logic blocks to
choose from is not unreasonable. For ` = n2 and n = 106, we have ρ = 110. Not only is
the MU-Decoder more economical in area, but it also is better by a larger factor than the
LUT-Decoder was for unconstrained subsets.

Since the MU-Decoder building blocks (one-hot decoder, multiplexer, LUT, and broad-
cast hardwiring) are commonly used digital logic blocks, the methodology used in this thesis
to implement the building blocks along with the building block models may also be of inde-
pendent interest.

The idea of validating theoretical results (that we undertake in this thesis) is not new
(for example [11, 13, 19], illustrating a wide range of models, applications, and levels of
abstraction). The building blocks for the MU-Decoder are multiplexers, one-hot decoders,
LUTs (SRAM arrays) and hardwiring to broadcast z bits to zn places. These are standard
“folklore” elements most of which are taught in the typical first digital logic courses [29]. To
our knowledge, there is no separate recent study of these building blocks. Any earlier studies
are for older technologies (above 1 µm) that ignore effects in newer technologies (45 nm or
below). Most recent simulations and modeling of combinational logic is in the areas of power
management and fault-tolerance [11, 18, 19, 21]. We need to study the MU-Decoder blocks
separately to ensure that the same technological constraints are applied to all blocks. For
the LUT-Decoder (SRAM array that had to be implemented as a sequential circuit) we used
a hand made cell layout and the CACTI tool [3] to further adjust our findings to bring them
in line with actual implementations that use the standard 6 transistor-based cells [18] rather
than latches.

In the Chapter 2, we discuss some preliminary ideas including the MU-Decoder structure.

4

Chapter 3 details the methodology used to implement and model the MU-Decoder building
blocks. One aspect of the modeling process is to theoretically estimate the growth terms in
the models for the building blocks (Chapter 4). Chapter 5 derives performance equations for
the building blocks and Chapter 6 puts them together and comparatively studies the LUT-
and MU-Decoders. Finally in Chapter 7, we summarize our results and identify directions
for future research.

Chapter 2

Preliminaries

This chapter introduces the main concepts that needed for the work in subsequent chapters.
We start with a set representation of binary sequences in Section 2.1, followed by a brief
introduction (Section 2.2) to the “Mapping Unit Decoder or MU-Decoder,” its structure
and its key elements. Then in Section 2.3, we proceed to explain a top-level design flow of
implementation, which provides the basis for work in the Chapter 3.

2.1 Binary Sequences as Sets

Any n-bit binary sequence can be viewed as a subset of Zn = {0, 1, · · · , n − 1}. This view
of an n-bit sequence will be useful in describing decoders, in general, and the MU-Decoder
in particular. Let each of the n elements of Zn, represent the position of a bit in an n-bit
binary sequence bn−1· · ·b1b0, where bi ∈ {0, 1}. Let B ⊆ Zn. Subset B corresponds to an
n-bit binary sequence bn−1· · ·b1b0, such that for 0 ≤ j < n, bit bj = 1 iff j ∈ B. For n = 3,
Table 2.1 shows an example of all 2n = 8 possible subsets and their corresponding 3-bit
binary sequences.

Table 2.1: Sets corresponding to 3-bit binary sequences
Name Binary Sequence Set
B0 000 { }
B1 001 {0}
B2 010 {1}
B3 011 {1,0}
B4 100 {2}
B5 101 {2,0}
B6 110 {2,1}
B7 111 {2,1,0}

5

6

2.2 MU Decoder

In general, a decoder is a hardware module that maps a small number m of inputs to a larger
number n of outputs. In other words, the decoder generates an n-bit output sequence for
a given m-bit input sequence, where m � n. In the notation developed in Section 2.1, an
output of an m-to-n decoder is a subset of Zn = {0, 1, · · · , n− 1}. The set of all possible (at
most 2m) outputs of a decoder is the set of subsets P = {Bi ⊆ Zn : 0 ≤ i < 2m}, where Bi

is the subset corresponding to input sequence of binary value i. If this mapping between the
input and output sequences is fixed, that is if P is fixed, then the decoder is called a fixed
decoder. If the decoder hardware allows P to be altered then the decoder is said to be a
configurable decoder ; that is, a configurable decoder can have different P ’s at different times
(an example appears later in this section).

One of the most commonly used fixed decoders is the logn-to-n one-hot decoder. In-fact,
the term “decoder” normally refers to a one-hot decoder. In the one-hot decoder, the output
sequence has only one active output. Thus for a one-hot decoder, P = {{0}, {1}, · · · , {n−1}}
is the set of all one-element subsets of Zn. Other fixed decoders are possible as well.

An m-to-n look-up-table (LUT)1 is a memory of 2m locations, each n-bits wide. This
memory can be loaded (configured) with any set of min(2n, 2m) distinct binary sequences.
We can consider a LUT as one of the most flexible and simplest examples of an m-to-
n configurable decoder, where each location can be configured arbitrarily and indepen-
dently of others. That is, set P is unconstrained other than to size min(2n, 2m). As an
example, suppose we have a 22×5 LUT, that is to be used as a 2-to-5 decoder. Then
in one case one could load binary strings 00000, 00001, 00010, 00011 in the LUT for which
P = {φ, {0}, {1}, {2, 3}}. Here an input of 00 will produce the empty set φ, for example.
On the other hand at a different time, one could load strings 00110, 11001, 11111, 01101 for
which P = {{2, 1}, {4, 3, 0}, {4, 3, 2, 1, 0}, {3, 2, 0}}. Now the same input 00 produces subset
{2, 1}.

Jordan and Vaidyanathan [9, 10] have proposed a new configurable decoder called the
Mapping Unit Decoder (MU-Decoder) that is the main subject of study of this thesis. The
basic structure of the MU-Decoder is shown in Figure 2.1.

On whole the MU-Decoder is anm-to-n decoder with y control lines; generally y � m� n.
As Figure 2.1 shows, the MU-Decoder structure has two main stages, the first of which is
an m-to-z LUT. We now describe the second stage called the mapping unit. The mapping
unit is a module that multicasts the z-bit (source word Z) input to the n-bit output N.
The mapping unit structure consists of a fixed hardwiring, a selector unit and multiplexers
connected as shown in the Figure 2.2. The y-bit control lines (or selector word Y) is used
to determine the nature of the multicast. The selector unit uses the selector word to control
the multiplexers. Each multiplexer can select from z possible inputs, bits multicast by the

1The LUT described here is usually called a 2m×n LUT.

7

source
word

Z

n

word
output

Nz mapping unitm

input
word

M

y

address
selector

MU−Decoder

look−up−table

Y

Figure 2.1: A m-to-n MU-Decoder block structure where signals are named (in upper case)
corresponding to their widths (in lower case).

fixed hardwiring from a source word to the multiplexers.

The function of the MU-Decoder is described by Jordan and Vaidyanathan [9, 10]. Here
we primarily consider its structure from the point of view of distilling its building blocks into
key hardware elements and their implementation. As noted earlier, the first stage is simply
a LUT. The second stage has multiplexers and the selector unit, which again is a (collection
of) LUT(s) [9]. The LUT itself consist of (one or two) one-hot decoder(s) followed by an
array of memory cells. Thus the MU-Decoder, and other conventional decoders of interest
in this work (one-hot decoder and LUT) can all be studied by examining the following core
modules.

• x-to-xn multicast hardwiring

• 2x-to-1 multiplexer

• 2x-to-w LUT

– Array of Static Random Access Memory (SRAM) cells

– Row and Column one-hot decoders (x-to-2x)

8

z

log(z)

z

log(z)

z

z

log(z)

y

n

source
word

Z

selector
address

Y

output
word

N

multiplexers

mapping−unit

Hardwiring

Selector

Figure 2.2: Mapping unit structure.

2.3 Design Flow

As noted in Section 2.2, to study and model the MU-Decoder, one needs to understand the
implementation of multicast hardwiring, multiplexers, one-hot decoders and LUTs (including
one-bit memory cells). This section discusses the Electronic Design Automation (EDA)
implementation steps (or design flow) used, all the way from module description to its chip
layout. The design flow is broadly classified into three phases, (a) design entry and functional
verification, (b) synthesis, and (c) place and route, as shown in Figure 2.3 [5] (with details in
Figure 2.4). For these phases we use the Digital Integrated Circuits Bundle of the University
Program Software Selection from the Cadence [4] (henceforth called the Cadence Tools in
this thesis).

9

OK

OK

Synthesis
(RTL Compiler)

Place and Route
(EDI system)

Functional verification
(nclaunch & simvision)

Design
specification

Layout

OK

Figure 2.3: Block level digital implementation design flow.

2.3.1 Design Entry and Functional Verification

A design specification for a hardware module relates its inputs to outputs. For example, in
a logn-to-n one-hot decoder, the design specification is equivalent to stating that an input
of binary value 0 ≤ i < n produces output subset {i}, where {i} denotes an n-bit binary
sequence with only bit i being 1. One common method of specifying a design is to use a
hardware description language (HDL). In our case Verilog HDL [5, 8] has been used. As an
example, the Verilog code for a one-hot decoder is shown in Figure 2.5. We will use this as
a running example to illustrate ideas in this section.

To test the functionality of the Verilog description we create a Verilog test-bench [5]
that generates (in our case) all possible input patterns and verifies the output. The tools
NC-Launch [14] (a compiler and elaborator), and SimVision [20] (a waveform viewer), both
included in the Cadence Tools, are used for functional verification as shown in Figure 2.6.
As a part of the verification the Verilog description is corrected, if needed, and the process
is repeated until a correct code results. This phase of the flow ensures a functionally verified
Verilog specification of the module which is used in the next synthesis phase.

10

Verilog
source
file

Design
specification

Verilog
test
bench

NC launch &
simvision

Synthesis
(RTL compiler)

RTL
compiler
tcl script

0 01Out

1 0 1In

Test logic

Timing report,
area report &
power report

Place & Route
(EDI system)

Layout in
GDSII
format

Circuit netlist
and timing
constraint

Timing report,
area report &
power report

Encounter
tcl script &
configuration
file

Standard
cell library

Place and route

Synthesis

Functional verification

Figure 2.4: Detailed digital implemenatation design flow.

2.3.2 Synthesis

A given hardware module specification can be realized in many different ways. Synthesis [2]
selects a suitable realization for the specified constraints and parameters. Synthesis generates
a gate-level netlist, which is a schematic of circuit elements (gates for the most part here) and
their interconnection. A gate itself can be realized in many ways according to the technology
used and constraints such as fan-in, fan-out, speed, area and power. A set of commonly used
gates realizations are made available as a standard-cell library. The libraries we used are
from North Carolina State University (NCSU) and are called the Cadence Design Kit (cdk)
and the Process Design Kit (pdk) [15]. These standard-cell libraries are avialable for free
public download. In this work we used 45 nm technology standard-cell library available as

11

module dec 2 to 4 behav(Y, U, En);

input [1:0] U;

input En;

output [3:0] Y;

reg [3:0] Y;

always @(U or En)

begin
if (En == 1 && U == 0) Y = 4’b0001; else
if (En == 1 && U == 1) Y = 4’b0010; else
if (En == 1 && U == 2) Y = 4’b0100; else
if (En == 1 && U == 3) Y = 4’b1000; else
if (En == 0) Y = 4’b0000; else Y = 4b́x;

end
endmodule

Figure 2.5: Example Verilog code for the 2-to-4 one-hot decoder.

FreePDK45 [15]. Figure 2.7 shows a broad outline of the synthesis phase.

The Cadence Tools includes a synthesizer called the RTL Compiler [24] which performs
the synthesis of the hardware module described in Verilog by using modules that are either
user defined or from the standard-cell library. The RTL compiler performs the synthesis by
executing commands from a script written in the Tool Command Language (tcl) script [23] to
generate the following: (a) synthesized netlist, (b) estimated time of operation, (c) estimated
area, (d) estimated power consumption and (e) timing constraints for all signals in Synopsis
Design Constraint (sdc) format. An associated graphical user interface (GUI) window can
also be used to view the synthesized circuit but cannot be used to perform the synthesis [24]
itself. The schematic view of the synthesized circuit of the 2× 22 one-hot decoder example
described in Figure 2.5 is shown in Figure 2.8.

Timing: The tcl script that drives synthesis by the RTL Compiler specifies the technology
library to use, Verilog module to synthesize, and timing constraints for the realization. We
elaborate on the timing constraints now, as it plays an important part in this work. Let
a module input to the RTL Compiler have a timing constraint of Tm; that is, we require
the synthesized module (or a part of it, in general) to work with a delay of at most Tm.
Suppose the RTL Compiler is unable to synthesize the module within the specified timing
constraint, then it estimates a time Te > Tm for which a synthesis (with timing violation)
may be possible. This is specified as a negative slack of Tm − Te . This slack is a hint to
the user that perhaps a constraint of Te may work. However, it is not a guarantee that a
constraint of Te will work.

On the other hand, if the specified constraint Tm is quite loose and a synthesis in time

12

Verilog
source
file

Verilog
test
bench

NC launch &
simvision

0 01Out

1 0 1In

Test logic

Design
specification

Synthesis
(RTL compiler)

Functional verification

Figure 2.6: Functional verification design flow.

Ts < Tm is possible, then the RTL Compiler generates a synthesized netlist without any
timing violation and a positive slack of Tm−Ts. Here too, setting Tm to Ts is not a guarantee
of a successful synthesis (without timing violation). Again it is only a hint. Hence we perform
an iterative process to determine the best possible minimum timing constraint as described
in the Section 3.2.1.

2.3.3 Place and Route (PAR)

The process of making a physical circuit from a synthesized netlist is known as Place and
Route (PAR) [2]. This process invloves placing circuit elements (such as standard-cells) in
some physical location on the layout, and routing interconnects between cells as described
in the netlist. We use the Encounter Digital Implementation (EDI) System [6], again part
of the Cadence Tools, for this process. This requires the standard-cell libraries, synthesized
netlist and timing constraints in sdc format as shown in Figure 2.9.

13

Unlike the RTL compiler that cannot work through a GUI [24], the EDI tool can be
driven both through a GUI and by tcl scripts [6]. However, to automate the flow for all of
our designs, we use the tcl script approach. This approach requires two basic files to perform
the place and route process (see Figure 2.9). The first is the configuration file that primarily
specifies the design netlist, standard-cell library and timing constraints. The second, a tcl
script, is needed to specify the commands for the place and route process and floorplan of
the circuit layout, including aspect ratio, core utilization factor, and power planning. It also
performs other operations such as clock tree synthesis and chip fabrication details that are
not useful for this work and are not discussed further.

Like the synthesis phase, the place and route phase also produces data on delay, area
and power consumption associated with the circuit implemented. Unlike the synthesis phase
that focuses on selecting a good circuit, however, this phase deals with implementing a fixed
circuit and accounts for additional details such as parasitic elements due to resistors and
capacitors from the interconnects and cells. This phase produces a much more realistic
estimate of delay and cost by physically laying cells out and considering the effect of routing
in estimating the area. The power consumption is also estimated more accurately.

Unlike the synthesis phase that requires several iterations to arrive an “optimal” circuit
for the given constraints, the EDI system requires at most 3 iterations to converge on the
design. Results and additional details appear in Section 3.2.2. Figure 2.10 shows the layout
of the example schematic of 2× 22 one-hot decoder in Figure 2.8

14

Synthesis
(RTL compiler)

Standard
cell library

Verilog
source
file

Timing report,
area report &
power report

Circuit netlist
and timing
constraint

Place & Route
(EDI system)

RTL
compiler
tcl script

Functional verification

Synthesis

Figure 2.7: Synthesis flow.

15

Figure 2.8: Example schematic for the 2-to-4 one-hot decoder.

16

Place & Route
(EDI system)

Timing report,
area report &
power report

Layout in
GDSII
format

Encounter
tcl script &
configuration
file

Standard
cell library

Circuit netlist
and timing
constraint

Place and route

Synthesis

Figure 2.9: PAR design flow.

17

Figure 2.10: Example layout for the 2-to-4 one-hot decoder.

Chapter 3

Methodology

As noted in Section 2.2 in order to model the MU-Decoder we need to study and model four
basic modules, one-hot decoder, multiplexer, multicast hardwiring, and LUT. Since there
are many different ways to implement each of these modules, we need a systematic approach
that captures these implementations. In this chapter we provide the details of the methods
and steps used towards this end. This involves (a) identifying a generic way of expressing
a module’s structure (module representation), (b) examining modules of different sizes for
each module representation, (c) selecting an approach for implementing a module and (d)
modeling the module’s cost/performance by equations.

In the next section we provide an overall view of the methodology and subsequent sections
(Section 3.2 and 3.3) detail parts of the methodology.

3.1 Granularity-Based Module Representation

Three of the modules (multiplexer, one-hot decoder and LUT) have different methods of
implementation with different levels of submodule definition. In particularly, a Verilog spec-
ification of a hardware module can be described in many different ways such as behavioral
description, structural description, gate-level description, and so on. We need a systematic
method of module description that lends itself to automation, without which it is not possi-
ble to cover the large design space in reasonable time. We derive a partially structural and a
partially behavioral description of the basic modules of the MU-Decoder. We define a term,
granularity, for each of those modules; that describes the level of structural specification of
that module. In this section we briefly describe the way we approach a granularity-based
representation of a multiplexer, one-hot decoder and LUT. Details of these representation
appears in Section 5.1.1 , Section 5.2.1 and Section 5.4.1.

18

19

Multiplexer: A 2x-to-1 multiplexer can either be constructed at the gate-level (resulting
from a totally behavioral specification) or, at the other extreme, in terms of two (2x−1)-to-1
multiplexers. There are many shades in between. Here, granularity indicates the size of the
building blocks used to make the 2x-to-1 multiplexer. These building blocks can be at the
gate level or in terms of (2x−1)-to-1 multiplexers or something else in between.

One-Hot Decoder: This is similar to a multiplexer in the sense that a x-to-2x one-hot
decoder can be built out of smaller one-hot decoders. Again the granularity is reflective of
the building block size.

LUT: Here granularity has a slightly different meaning. A 2x×w LUT can be implemented
to treat the memory as a 2x×w array of one-bit cells. This requires an x-to-2x decoder that
selects a row of the array. At the other extreme, the memory can be organized as a 1×w2x

array that requires no decoder but whose columns, bundled as w-bit words are multiplexed
through a 2x-to-1 w-bit multiplexer. Clearly, there are many (better) options in between.
So granularity here is roughly a measure of cell array organization. For this illustration we
have focused on the main concept of granularity and ignored some important details that
are explained in Section 5.4.1.

The output of this (module representation) part of the methodology is a Verilog template
with size and granularity as parameters. It is used by the module implementation part
(Section 3.2).

Before we end this section, it should be noted that granularity is a measure of what is
left to the RTL compiler (synthesis tool) to do on its own, rather than the structure of the
resulting circuit itself. For example, suppose a high granularity constraints a multiplexer to
be built out of two smaller multiplexers, then the compiler will follow this directive. However,
giving the compiler full freedom to synthesize any way it deems suitable (low granularity)
may still yield the same circuit.

3.2 Module Implementation

As indicated earlier (see parts (b) and (c) on page 18) the module in question is implemented
for different sizes and granularity-based representation. This stage deals with these imple-
mentations. Module implementation has two stages (i) Synthesis and (ii) Place and Route
(PAR).

In general, the number of designs that we study is in the order of thousands and on
an average each design has 16 iterations for synthesis stage and around 3 for PAR stage.
This makes it virtually impossible to perform the implementations without automation. We

20

developed shell scripts for automation. The following Sections 3.2.1 and 3.2.2 describe the
sythesis and PAR stage including the automation of various phases of the implementation.

3.2.1 Synthesis Methodology

The entire synthesis flow of all required module sizes and granularity, as well as archiving
of results is performed by a script written in C shell [17]. Figure 3.1 shows a global view of
the script. The numbers on the edges indicates the sequence in which various interactions
take place. We now explain the main parts of this script, namely the Controller, Minimum
Constraint Generator and Archive Manager.

2

5

Verilog
template

6

Verilog file
(fixed size,
granularity)

Optimized
circuit netlist,
timing constraint,
timing report,
area report &
power report

RTL
compiler
tcl script

Controller

Archive
Manager

(size, granularity,
Output file

delay, area,
power)

Database
directory

2

1

3

3

4

5 6

Minimum Constraint
Generator

5

3

Figure 3.1: Synthesis controlling script

21

3.2.1.1 Controller

The controller, as the name indicates, orchestrates the flow within the synthesis script. It is
responsible for three main tasks: (a) producing a Verilog source file for an appropriate (fixed)
module size and granularity, (b) initiating the minimum constraint generator to produce a
design with optimized performance and (c) initiating the archive manager to save results in
archival files.

Specifically, the controller takes the Verilog source template of the module (from the
Module Representation stage of Section 3.1) that has module size and granularity as param-
eters. It sets these parameter values (in a systematic way) to produce a series of Verilog
source files with a good coverage of the design space.

Each time it produces a Verilog source file, it calls the Minimum Constraint Generator
with this file. The minimum constraint generator produces a set of optimal designs for the
Verilog file (details in Section 3.2.1.2) and returns to the controller. The controller now
initiates the Archive Manager to save this information for later use in the PAR stage. The
controller now moves to the next design and calls the minimum constraint generator again.

3.2.1.2 Minimum Constraint Generator

As described in Section 2.3.2, the RTL compiler is used to perform the synthesis of a hardware
module. It generates a netlist (a circuit of components and connections between them) and
an output timing constraint file. The RTL compiler also estimates the speed at which the
module may operate, and its area and power consumption for this speed. The reader is
referred to Section 2.3.2 for a detailed description of the RTL compiler; we explain the
sailent features here, however. Our methodology seeks to model modules where designs are
optimized for speed, area or power. Thus the minimum constraint generator runs the RTL
compiler three times for each Verilog source file to examine circuits optimized to the three
criteria.

For a given timing constraint Tm of the module, let the RTL compiler estimate a time
Te of operation, where Te < Tm. This indicates a positive slack of Te − Tm; that is the RTL
compiler estimates that the module can operate faster than the specified constraint. If we
apply this estimated time (Te) as the timing constraint, then the synthesis may not result in a
zero slack synthesized netlist. As noted earlier in under “Timing” on page 11, the estimated
time of operation is only a hint to the user to determine a zero slack or a small positive slack.
Therefore, we perform an iterative binary search between positive and negative slacks until
is converges to a zero slack or a small positive slack. The goal of this iterative method is to
determine the timing constraint at which the RTL compiler can actually realize a netlist for
a zero or a small positive slack. This approach results in a synthesis netlist optimized for
time. Figure 3.2 illustrates the flow chart for this part of the script.

22

If
Slack > 0?

Initialize
delay_pass = delay

delay_fail = 0
delay = delay_pass/2

Set
delay = 10*delay

Initailize
Timing Constraint
Delay = 50000psec

using RTL Compiler with
Timing constraint = delay

Synthesize module

Start

using RTL Compiler with
Timing constraint = delay

Synthesize module

If
Slack > 0?

Set
delay_fail = delay

delay = (delay_pass + delay_fail)/2

using RTL Compiler with
Timing constraint = delay_pass

Synthesize module

Stop

if
delay_fail == delay?

Set
delay_pass = delay

delay = (delay_pass + delay_fail)/2

Y

N

YN

N

Y

Figure 3.2: Time-optimization flow chart for the MCG.

Note that since the modules that we study are combinational, we use a virtual clock to
impose an input timing constraint on the synthesis. Thus, an input timing constraint refers
to the clock period of the virtual clock applied on the module. Also note the difference
between the input timing constraint (which is a specification of a virtual clock in a tcl
script) and output timing constraint (which is a RTL compiler generated timing data file in
sdc format for use in the PAR stage).

In the RTL compiler there is no constraint for area optimization [24]. The only constraint
that we can change is the timing constraint. The RTL compiler automatically selects the
optimal area for a given timing constraint. The priority in deciding/realizing a circuit is
given to time and then to area. Thus, a loose (large) timing constraint will result in an
optimized area design. That is, a very large timing constraint, say T∞, produces an optimal
area A∞. The aim here is to generate a timing constraint TO such that the corresponding area
AO = A∞ and for time T < TO, the area AT > AO. Again the minimum constraint generator
performs this iteratively using a binary search. Figure 3.3 shows the area optimization flow

23

If
Slack > 0?

Set
delay = 10*delay

Initailize
Timing Constraint
Delay = 50000psec

using RTL Compiler with
Timing constraint = delay

Synthesize module

Start

Y

N

Save Area to Min_Area

Initialize
delay_pass = delay

delay_fail = 0
delay = delay_pass/2

Update
delay_fail = delay

delay = (delay_pass + delay_fail)/2

using RTL Compiler with
Timing constraint = delay

Synthesize module

If

Slack > 0?
Area <= Min_Area?

using RTL Compiler with
Timing constraint = delay_pass

Synthesize module

Stop

Update
delay_pass = delay

delay = (delay_pass + delay_fail)/2
Min_Area = Area

if
delay_fail == delay?

YN

N

Y

Figure 3.3: Area-optimization flow chart for the MCG.

chart.

It is observed that for some rare cases, the binary search produced an area smaller than
AO but these were very close to AO.

The RTL compiler has no separate switch to realize a power optimized netlist as well.
Power optimized design follows along the same lines as area optimization. Figure 3.4 shows
a power optimization flow chart.

3.2.1.3 Archive Manager

This script is responsible for creating a database of optimized design files including Verilog
source used (produced by the controller in sequence 2 of Figure 3.1), gate-level netlist, timing
constraint in sdc format, area report and power consumption report (sequence 5). It also

24

Initialize
delay_pass = delay

delay_fail = 0
delay = delay_pass/2

Update
delay_fail = delay

delay = (delay_pass + delay_fail)/2

using RTL Compiler with
Timing constraint = delay

Synthesize module

If

Slack > 0?
Power <= Min_Pow?

If
Slack > 0?

Set
delay = 10*delay

Initailize
Timing Constraint
Delay = 50000psec

using RTL Compiler with
Timing constraint = delay

Synthesize module

Start

Y

N

using RTL Compiler with
Timing constraint = delay_pass

Synthesize module

Stop

Update
delay_pass = delay

delay = (delay_pass + delay_fail)/2
Min_Pow = Power

if
delay_fail == delay?

YN

N

Save Power to Min_Pow

Y

Figure 3.4: Power-optimization flow chart for the MCG.

lists all parameters (module name, size, granularity, timing constraint, area and power) in
a spreadsheet compatible file in comma separated value (csv) format. The archive manager
also assigns a suitable set of filenames for each implementation to facilitate easy access later.

3.2.2 Place and Route (PAR) Methodology

In this section we explain the Place and Route (PAR) process that places the modules of a
design output by the RTL compiler (netlist and output constraint file) on a chip layout and
routes connections between these modules. In the process, it considers additional details
such as parasitic elements due to resistors and capacitors from the interconnects and cells.
Consequently this phase of the implementation accurately measures the model’s performance
metrics.

As mentioned in Section 2.3.3, we use automated scripts for this phase. The following

25

section details the PAR phase, including shell scripts.

6

5

3

2

2 6

3

Controller

Output file
(adjusted delay,

estimated power)
estimated area &

adjusted timing

area report &
power report

Circuit netlist,

constraint,

Timing Constraint
Adjuster

timing constraint
(fixed size &
granularity)

optimized netlist,
Synthesis

Synthesis
database
directory

PAR
database
directory

1

Encounter
configuration

tcl script
file and

4

3 7

Analysis

Figure 3.5: Place and Route controlling script

3.2.2.1 Controller

On the whole the controller here and that in the synthesis part have very similar functions
(see Figure 3.5). Unlike the synthesis controller, however, the PAR controller copies a design
netlist and output timing constraint file and sets up the tcl scripts for the design. It is
also responsible for initiating the Timing Constraint Adjuster script that zeros in an module
speed, based on the estimate from the EDI tool. Here the controller also performs the
function of the archive manager of Figure 3.1.

26

3.2.2.2 Timing Constraint Adjuster

The goal of the timing constraint adjuster is to determine the best speed at which the
synthesized netlist can operate within the specified constraints (floorplan and powerplan -
see Section 2.3.3). Suppose Tc is the timing constraint produced by the minimum constraint
generator (synthesis phase) for a design. The netlist and output timing constraint file of
this design are input to the EDI tool. Let Te be the estimated time given by the EDI tool.
The quantity Tc − Te is the slack. Running the design again with the constraint Tc in the
synthesis output constraint file changed to Te results in a new estimate of speed, and power.
Typically this second try results in a zero slack; that is, with the highest speed that the EDI
tool can find for the given design and set of constraints. It should be noted that the binary
search type of iteration is not needed here (the convergence is rapid in 2, at most 3, tries).
Also these iterations are needed only to find the time and power. The area for the first EDI
run does not change in subsequent runs.

The output of the PAR stage produces the data used for modeling the module.

3.3 Modeling

For each module, determine a design methodology (expressed, for example, in terms of
granularity g (see Section 3.1)) to use to derive the model. Let B(n) refer to the module
of size n designed with this methodology. For example, B could be a one-hot decoder, a
multiplexer etc. For B(n) there are three possible designs Bt(n), Ba(n), and Bp(n) based on
time optimization, area optimization and power optimization. For LUT designs it was not
possible to obtain power-optimized designs (see Section 5.4.2). Consequently other power
optimized design, although studied, could not be used. Therefore Bp(n) is not considered
for the remainder of this thesis.

Each design has three model equations for the three performance metrics (time, area
and power). Thus, there are nine functions T Bt (n), ABt (n), PBt (n), T Ba (n), ABa (n), PBa (n),
T Bp (n), ABp (n), and PBp (n) that should be discussed. Where the module B is obvious we will
omit B from this notation. That is for example, the equation for area in a time optimized
design will be written as At(n).

The aim is to obtain each of the functions Tt(n), At(n), Pt(n), Ta(n), Aa(n), and Pa(n)
for the module in question based on the experimental data. We explain the methodology for
At(n). The discussion readily extends to others. The overall methodology consists of four
broad steps, not all of which are used with every module. Module-specific details appear in
Chapters 5.

• Identification of growth terms

• Regression constraints

27

• Identification of largest good-fit set

• Post processing

Growth Terms: Recall that discussion here is in the context of the area of a time-
optimized design of some module. The function At(n) is calculated theoretically. For
example, the area of a n-to-2n one-hot decoder can be theoretically determined to be
a1n2n + a22n + a3n + a4 + a5n

32n, assumes fi fan-in, fo fan-out and unit gate area. While
wiring area is not significant here, in other cases it may be. Based on this function one may
guess that At(n) = a1n2n+a22n+a3n+a4 +a5n

32n. Thus, we have identified functions n2n,
2n, n and, 1 as candidates for describing At(n). The overall aim is to identify coefficients
a1, a2, a3, a4 and a5. In general this part identifies the k (say) function candidates needed
to describe At(n).

Regression constraints: We now consider two constraints on the coefficients a1, a2, · · · , ak.
The first constraint restricts to have positive coefficients. This bound constraint ensures
non-negative values for the time, area and power. The second error constraint allows the
regression to favor larger values of n, as the aim of this exercise is to use At(n) for large n
values that we could not determine by simulation. Quantitatively the constraint is specified
in terms of the percentage error to which the regression should restrict its solution. This
percentage error is specified as a function such as 1/an that decreases with n. So a larger
instanse is restricted to have a smaller error. The constant a is selected so that if nmax is
the largest data point then a ∼= 20/nmax sets an approximate 5% error bound. Here we use
a = 2 as in many cases nmax

∼= 15.

Good-fit set: Implementation results sometime indicate discontinuities that could be mod-
eled piecewise by a set of equations rather than just one. Our interest is primarily on the
piece that accurately models large values of n. Restricting the regression to just a few large
values could also impact accuracy due to insufficient variation of the data along n to capture
its trend. We select the largest set of data for which the regression with the identified growth
terms produce acceptably low error.

In general, suppose data is available for n ∈ {a, a+ 1, · · · , b} = Sa then the methodology
check sets Sc = {c, c + 1, · · · , b} for every a ≤ c ≤ b − k − 1, where k is the number of
growth terms identified. The value of c that is most suitable is determined by inspection on
a case-by-case basis as explained in Chapter 5.

Regression details: We use MATLAB for the regression analysis. The MATLAB [22]
constrained linear least-squares function used is

x = lsqlin(C, d, A, b, Aeq, beq, lb, ub, X0, options)

28

.

The function solves for x in the equation Cx = d, subject to constraints specified by
A, b, Aeq, beq, lb, and ub. Some or all of these constraints may be omitted.

Constraints lb and ub require the solution to satisfy lb ≤ x ≤ ub. Constraints A and b
require A ≤ b. The constraint Aeq and beq are not used in this work and are not discussed
further.

As noted earlier the function solves for [x]k×1 in the equation

[C]r×k[x]k×1 = [d]r×1

Two constraint coefficients to be positive we set [lb]k×1 = [0]k×1 and [ub]k×1 = [∞]k×1. To
favor solutions for larger values of n we set [A]r×k = [C]r×k and [b]r×1 = [d]r×1 + [error]r×1.
Here we set [error]r×1 = 1

2n
[d]r×1 as discussed earlier.

If r data points are available d is an r× 1 vector representing data points. If k functions
fj(n) for 0 ≤ j < k have been identified to model At(n), then C is r × k matrix with each
element Cij set to the value of fj(ni), where ni is the size of the module for the ith data
point.

MATLAB does not allow the constraint such as error e ≤ 1/an to be specified as a ≥
inequality (or use non-linear terms). Therefore the constraint described here only directs the
program to reduce positive errors for large n. Negative error are uncostrained. To account
for this, we repeat the procedure with −e ≤ 1/an. Thus, for the negative error constraint on
coeffiecient [A]r×k = −[C]r×k and [b]r×1 = −[d]r×1 + 1

2n
[d]r×1. We select among the positive,

negative and the one without any constraints favoring higher values of n.

Post Processing: Typically, at this point we would have an equation for At(n). In some
cases, where the function shows major discontinuities (such as due to fan-in or fan-out
constraints) additional steps may be used to account for them. In the LUT case we also
adjust memory-cell parameters, based on independent experiment conducted on individual
cells.

Chapter 4

Theoretical Estimation of Time and
Area

As noted in Section 3.3 one of the key steps in modeling the building blocks of a MU-Decoder
is identifying the growth terms associated with the time, area and power of that building
block. That is, for example in order to model the area of a module, we need to theoreti-
cally estimate the area, expressed as a function of its size. The modeling then performs a
curve-fitting of the module’s performance data (time, area and power) by determining the
coefficients associated with the growth terms.

Each module’s performance metrics (time, area and power) has two contributions (a) due
to gates and (b) due to wires (interconnects). These drive the curve characteristics of the
quantities that seek to model. Though, in general, the wire part is small, we consider it for
an accurate modeling. In this chapter, we derive the order terms in the time and area for the
modules required for a MU-Decoder. We consider that the behavior of power to be similar
to the that of the area and so no separate terms are identified.

In Section 4.1, we derive the order terms associated with fanning one bit out to `o places.
As an extension of this idea we describe the hardwired multicast from w-bits to w2x bits
in Section 4.2. This is required for the MU-Decoder (see Section 2.2). Though a hardwire
module to fan-in `i bits to 1 bit is not a building block of the MU-Decoder we consider it in
Section 4.3, as it plays an important role in deriving order terms for the multiplexer, one-hot
decoder and look-up table (LUT). Subsequent Sections 4.4, 4.5, and 4.6 derive the growth
terms for one-hot decoder, multiplexer, and LUT respectively.

29

30

4.1 Fan-Out

Every gate has a limitation on the number of gates that it can drive. This limitation (that
depend on the technology) is called the fan-out of the gate [29] and denoted here by fo.
We used fo = 128 based on experimental study to check when buffers usage starts. If the
number of gates that a given gate needs to drive is more than fo then the circuit may
not function as expected. This situation calls for additional buffers to drive the excess
gates and ensure a valid/correct circuit operation. That is, to drive `o > fo outputs, the
implementation requires an fo-ary tree starting from the source gate to `o sink gates. For
example, Figure 4.1 shows an implementation of fanout for fo = 3 and `o = 27. Clearly for
this example it requires 3 levels of a ternary tree to drive 33 = 27 outputs. The number of
gates used is 1+3+32 = 13. Figure 4.1 shows a grid that can be used to estimate the length
of the wires. In the example shown, the length of the longest wire (thick lines in Figure 4.1)
is given by 0.5 + 9 + 0.5 + 0.5 + 3 + 0.5 + 0.5 + 1 + 0.5 = 13 + 3 (units) when traversing along
the line from top to bottom. Where the length 13 corresponds to horizontal sections of the
wire and the length 3 to vertical sections.

1 2 3 4 5 6 7 8 90
0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 90
1 1 11 1 11 1 11

0 1 2 3 4 5 6
2 22 2 2 2 2

1

Figure 4.1: Example of a 1-to-27 fan-out ternary tree for fo = 3

In general the number of levels to fan-out to `o outputs is βo = dlogfo `oe, in other words
fβo−1
o < ` ≤ fβoo . If each buffer has a delay of τG, then the gate delay of the fanout circuit

is given by βoτG = Θg(βo) = Θg

(
log `o
log fo

)
. The wire delay is dependent on the length of the

longest wire which is given by (fβo−1
o + · · · + f 2

o + fo + 1) + βo = fβoo −1
fo−1

+ βo; here βo is the
vertical length. Let τW be wire delay per unit length then the wire delay of the fanout circuit

is approximately fβo−1
o τW u

(
lo
fo

)
τW = Θw

(
`o
fo

)
.

The area of the fan-out structure is derived as follows. For clarity we have separated the
gate and wire areas using square brackets. Let αG be the area of a buffer (or gate). Then an
(fo)-ary tree of depth d can be decomposed into a root and fo subtree each of depth d− 1.

31

Thus the area of an `o fanout fo-ary tree is,

A(`o) = [A(`o/fo)fo + αG] + [`o]
= [(A(`o/f

2
o)fo + αG + `o/fo])fo + αG] + [`o]

= [A(`o/f
2
o)f 2

o + αG(fo + 1)] + [2`o]
= [A(`o/f

3
o)f 3

o + αG(f 2
o + fo + 1)] + [3`o]

...
= [A(fo)f

βo−1
o + αG(fβo−2

o + · · ·+ f 2
o + fo + 1)] + [(βo − 1)`o]

= [(αG + `o/f
βo−1
o)fβo−1

o + αG(fβo−2
o + · · ·+ f 2

o + fo + 1)] + [(βo − 1)`o]
= [αG(fβo−1

o + fβo−2
o + · · ·+ f 2

o + fo + 1)] + [βo`o]

= [αG
fβoo −1
fo−1

] + [βo`o]

= Θg(`o/fo) + Θw(`o
log `o
log fo

)

The derived order terms are summarized in the Table 4.1.

Table 4.1: A 1-to-`o fanout order terms
Quantity Gate Wire

Time Θg

(
log `o
log fo

)
Θw

(
`o
fo

)
Area Θg

(
`o
fo

)
Θw

(
lo

log `o
log fo

)

4.2 Multicast Hardwiring

As noted in Section 2.2, hardwiring in the mapping unit of the MU-Decoder multicasts
a z-bit source word to n multiplexers. This multicast hardwiring makes the source word
bits available for each multiplexer to select. In this section we estimate the time and area
of a w-to-w2x multicast hardwiring. A general block level structure of w-to-w2x multicast
hardwiring is shown in Figure 4.2.

This multicast requires each of the w-bit data to fan-out to 2x places. Since the w-bit
lines (or vector) needs to go to all 2x places, the data lines will cross each other. For example,
Figure 4.3 shows a 3-to-(3× 9) multicast. From the example structure, one can clearly note
that the gate delay of the multicast circuit is independent of w the width of each data line.
However, the wire length here increases by a factor of w both horizontally and vertically
(with respect to the w = 1 case). This affect the area as described below.

The length of the longest wire is now w = 3 times that of 1-bit fanout. We can also note
that the total number of gates has increased by a factor of w = 3. In general, for w-to-w2x

multicast hardwiring circuit the gate delay is equal to the gate delay of the 1-to-2x fan-out.

32

w

w

w

w2x Y2x
wC

multicast hardwiring

Figure 4.2: Block diagram of a w-to-w2x multicast hardwiring module.

www
0 1 2 www

0 1 2
www
0 1 2

www
0 1 2

Figure 4.3: Example of a 3-to-(3× 9) multicast hardwiring module

That is the gate delay of multicast is logfo(2
x))τG = x

log fo
τG. However, the wire length is w

times that of the 1-to-2x fanout; thus the wire delay is w2xτW .

The number of gates is now increased by a factor of w than that of a 1-to-2x fanout, thus
the gate area is given by w2x

fo
αG. However, the wire length is increased by a factor of w in

each of the horizontal and vertical directions, hence the wire area is w2(x2x

log fo
αW) = w2x2x

log fo
αW .

Thus, the time and area order terms for the w-to-w2x multicast circuit can be summarized
as shown in the Table 4.2. Table tab : FanoutOrder is a special case with w = 1 and 2x = `o.

Table 4.2: A w-to-w2x multicast hardwiring time and area order terms
Quantity Gate Wire

Time Θg(
x

log fo
) Θw(w2x)

Area Θg(
w2x

fo
) Θw(w

2x2x

log fo
)

33

4.3 Fan-In

A gate has a limitation on the maximum number of inputs that it can have for a given
specification. The number of inputs to a gate is technology dependent and we denote this
number by fi in the work. Typically fi ∼= 3 for CMOS [29]. To fan-in of `i > fi inputs, it
requires each of fi-input gates arranged in an fi-ary tree. An example for fi = 2 and `i = 16
is shown in Figure 4.4 which has 4 levels in the binary tree. The number of gates used is
23 + 22 + 2 + 1 = 15. The length of the longest wire is 1 + 2 + 22 + 23 = 15 horizontal lengths
and 2 + 2 + 2 + 2 = 2× 4 vertical lengths.

1 1 1 1 1 1
0 1 2 3 4 51 2 3 4 5 6 7 8 90

0 0 0 0 0 0 0 0 0 0

1

Figure 4.4: Example of a 16-to-1 fan-in binary tree for fi = 3

In general the number of levels to fan-in `i inputs is βi = dlogfi `ie, in other words

fβi−1
i < li ≤ fβii . The fan-in structure is very similar to the fan-out structure except the fact

that it uses an fi-ary tree instead of an fo-ary tree. Therefore, the gate delay of the fan-in

circuit is βiτG = log(li)
log(fi)

τG, and the wire delay is given by
f
βi
i −1

fi−1
τW due to the horizontal length

and βiτW due to the vertical length. The net wire delay is approximately fβi−1
i τW = Θw

(
`i
fi

)
.

Derivation of the area of the fan-in circuit is along the same lines as the fan-out structure.

Thus the area for the fan-in is

[
αG

f
βi
i −1

fi−1

]
+ [βi`i] for the gate and wire term. This is

summarized as shown in the Table 4.3.

Table 4.3: A `i-to-1 fan-in order terms
Quantity Gate Wire

Time Θg

(
log `i
log fi

)
Θw

(
`i
fi

)
Area Θg

(
`i
fi

)
Θw

(
`i

log(`i)
log(fi)

)

34

4.4 One-Hot Decoder

A general structure of an x-to-2x one-hot decoder is shown in Figure 4.5.

2x
x

x

x

En

xC 2x Y

one−hot decoder

Figure 4.5: Block diagram of a x-to-2x one-hot decoder.

From the block diagram one can clearly note that the one-hot decoder has an x-to-x2x

hardwiring (from C to the gate inputs), 1-to-2x fan-out and (x+1)-to-1 fan-in to AND gates;
there are 2x such AND gates. Though the 1-to-2x fan-out is shown in the block diagram
(from enable to gate inputs), we will not consider it in the derivation. This fanout runs
parallel to the x-to-2x hardwiring, so its delay will not be a factor. Its area (in order terms)
will be consumed by the hardwiring area.

Since the 2x AND gates are in parallel, the delay of the one-hot decoder is equal to the
sum of the delays of the x-to-x2x multicast hardwiring and a single (x + 1)-to-1 fan-in (or
approximately x-to-1 fan-in). Therefore, the one-hot decoder has delay,

T =
(

x
log fo

τG + x2xτW

)
+
(

log(x)
log fi

τG + x
fi
τW

)
=

[(
x

log fo
+ log x

log fi

)
τG

]
+
[(
x2x + x

fi

)
τW

]
The area of the one-hot decoder is given by the sum of all blocks in its structure, namely

the sum of the area of hardwiring and 2x times the area of x-to-1 fan-in. Therefore the area
of the one-hot decoder is,

A =
(
x2x

fo
αG + x2x2x

log fo
αW

)
+
(

2x ×
(
x
fi
αG + x log x

fi
αW

))
=

[(
x2x

fo
+ x2x

fi

)
αG

]
+
[(

x2x2x

log fo
+ x2x log x

fi

)
αW

]
The time and area order terms for the x-to-2x can be summarized as shown in the Table 4.4.

35

Table 4.4: A x-to-2x one-hot decoder time and area order terms
Quantity Gate Wire

Time Θg

(
x

log fo
+ log x

log fi

)
Θw

(
x2x + x

fi

)
Area Θg

(
x2x

fo
+ x2x

fi

)
Θw

(
x2x2x

log fo
+ x2x log x

fi

)

4.5 Multiplexer

A block structure of 2x-to-1 multiplexer is shown in Figure 4.6.

Y
2x

x

x

x

U[0]

U[1]

2xU[]

x 2xC

multiplexer

Figure 4.6: Block diagram of a 2x-to-1 multiplexer.

The building elements of the 2x-to-1 multiplexer are a x-to-x2x hardwiring block, an
x-to-1 fan-in for 2x-AND gates and a 2x-to-1 fan-in OR gate. Notice that the multiplexer’s
only difference from a one-hot decoder is the final 2x-to-1 fan-in to an OR gate. Thus the
multiplexer time and area can be determined by the addition of the terms of one-hot decoder
and the 2x-to-1 fan-in.

The time for the multiplexer is given by,

T =
((

x
log fo

+ log x
log fi

)
τG +

(
x2x + x

fi

)
τW

)
+
((

logfi(2
x)
)
τG +

(
2x

fi

)
τW

)
=

[(
x

log fo
+ log(x)

log(fi)
+ x

log(fi)

)
τG

]
+
[(
x2x + x

fi
+ 2x

fi

)
τW

]
The area is given by,

A =
((

x2x

fo
+ x2x

fi

)
αG +

(
x2x2x

log fo
+ x2x log(x)

fi

)
αW

)
+
((

2x

fi

)
αG +

(
2x log(2x)

log fi

)
αW

)
=

[(
x2x

fo
+ x2x

fi
+ 2x

fi

)
αG

]
+
[(

x2x2x

log fo
+ x2x log(x)

fi
+ x2x

log fi

)
αW

]
The order terms for the 2x-to-1 multiplexer are summarized in the Table 4.5.

36

Table 4.5: A 2x-to-1 multiplexer time and area order terms
Quantity Gate Wire

Time Θg

(
x

log fo
+ log x

log fi
+ x

log fi

)
Θw

(
x2x + x

fi
+ 2x

fi

)
Area Θg

(
x2x

fo
+ x2x

fi
+ 2x

fi

)
Θw

(
x2x2x

log fo
+ x2x log x

log fi
+ x2x

log fi

)

4.6 Look-Up Table (LUT)

As described in Section 2.2, an x-to-w look-up table (LUT) is a memory of 2x locations,
each w-bits wide. A LUT has many different implementations such as using a static RAM
(SRAM) or, dynamic RAM (DRAM). In our study we considered SRAM implementation for
modeling a LUT. In this implementation, it is general practice to organize one-bit cells in
rows and columns to form an array (memory core). Then, row and column one-hot decoders
enable (activate) a w-bit data word of SRAM cells for read or write [18].

One such structure of a 2x × w LUT and its building blocks is shown in the Figure 4.7.
In this structure the three main building blocks are row one-hot decoder, column one-hot
decoder and memory core.

The memory core in turn has two main logic blocks (a) bit-bi block and (b) AND-OR
block. The structures of these two logic blocks are shown in the Figure 4.8. In this or-
ganization of memory cells, 2g column one-hot decoder output is multicast to each bit-bi
blocks. Since there are w of bit-bi blocks the column outputs need to drive w gates. Hence
a column incurs an overhead due to the 2g-to-2gw multicast hardwiring. However each row
is controlled by one of the 2x−g row one-hot decoder outputs. This one output needs to
drive w bits in that row, so it requires a 1-to-w fanout structure for each row. It is also
important to note that the 1-bit SRAM cell has tristate output, hence the 2x−g cell outputs
in a column are short circuited. The AND-OR logic block combines the 2x−g short circuited
tristate wiring of 2g cell outputs of the bit-bi block to produce the data output bit bi of the
LUT.

On the whole, the 2x × w LUT has 2xw memory-cells, a (x − g)-to-2x−g row one-hot
decoder, 2x−g fanout (each a 1-to-w fanout), g-to-2g column decoder, 2g-to-2gw multicast
hardwiring, w AND-OR logic blocks (each of 2g-to-1).

In order to estimate the delay of the 2x × w LUT, we need to consider delay in the
two paths from a row and from a column to the 1-bit cells, the delay due to the tristated
cell-output and the delay due to the AND-OR logic. That is, the time of the LUT is given
by the sum of a 1-bit cell delay, tristate delay and AND-OR logic delay and the maximum
of (a) sum of the delay of the row one-hot decoder, 1-to-w fanout and longest horizontal
wire, (b) sum of the delay of column one-hot decoder, 2g-to-2gw multicast hardwiring and
the longest vertical wire.

37

The delay for the one-hot decoder, fanout, and multicast hardwiring modules are derived
in the earlier sections. Now let us consider the tristate output delay. The tristate output
delay can be approximated as delay to drive parallel capacitors, which is proportional to
the number of parallel capacitors. In the LUT organization, there are 2x−g rows of tristate
outputs are shorted, thus the delay is given by 2x−gτW . We have used the same constant τW
as to wire delay mainly to indicate that it is small.

From Figure 4.8 (b) the AND-OR logic delay is given by the sum of AND gate delay
and the 2g-to-1 fan-in OR gate delay. Therefore, the AND-OR logic block has a delay of[(

g
log fi

+ 1
)
τG

]
+
[

2g

fi
τW

]
.

On the whole, the LUT delay is given by

T = max({
(
x−g

log fo
+ log(x−g)

log fi

)
τG + (x−g)2x−g

fo
τW + logw

log fo
τG + w

fo
τW + +w2gτW},

{(g
log(fo)

+ log(g)
log(fi)

)τG + g2g

fo
τW + log(w)

log(fo)
τG + w2g

fo
τW + +w2x−gτW})+

τG + 2x−gτW + (1 + g
log fi

)τG + 2g

fi
τW

Now consider the area of the 2x × w LUT. The LUT area is the sum of all the building
blocks. The area of the one-hot decoder, fan-out, multicast hardwiring are derived in the
earlier sections. The two building blocks that we need to find the area are memory-cells and
the AND-OR logic. Now let us consider the memory-cells organization block. Let us say
that each 1-bit cell has ` × b size. Then the bit-bi block has 2g of such 1-bit cells arranged
horizontally (see Figure 4.8 (a)). Thus each each bit-bi block has `2g×b area. In the memory
cell arrangement each row has w wires interleaved by (say) q units of gap. Thus the memory
cell arrangement, has vertical length = (b + qw)2x−g and the horizontal length = `2gw.
Therefore the area of the memory cells is,

A = ((b+ qw)2x−g)× (`2gw)
= (`b)w2x + (`q)w22x

= w2xAg + w22xAw

The area of the AND-OR logic is given by sum of 2g AND-gates area and 2g-to-1 fan-in OR
gate area. Therefore, the area for the w AND-OR logic blocks is w2gαG + w2g

fi
αG + wg2g

log fi
αW .

Overall the area of the 2x × x LUT is,

A = w2xαG + w22xαW + (x−g)2x−g
fi

αG + ((x−g)32x−g

log(fo)
+ (x−g)2x−g log(x−g)

log(fi)
)αW+

(w
fo
αG + w log(w)

log(fo)
αW)2x−g + g2g

fi
αG + (g32g

log(fo)
+ g2g log(g)

log(fi)
)αW+

2gw
fo
αG + (2g)2w log(w)

log(fo)
αW + (w2g + w2g

fi
)αG + wg2g

log fi
αW

In general the g ∼= x/2 is the best granularity, with this case the time and gate order
terms are summarized in Table 4.6

38

Table 4.6: A 2x-to-1 multiplexer time and area order terms
Quantity Gate Wire

Time Θg

(
x

log fo
+ log x

log fi
+ logw

log fo

)
Θw

(
w2x

log fo
+ x2x

log fi
+ 2x + x

log fi

)
Area Θg

(
w2x + x2x

fo

)
Θw

(
w22x + 2xw logw

log fo
+ x32x

log fo

)

39

bwb1b0

bwb1b0

bwb1b0

2a−g

R / W

AND−OR AND−OR AND−OR

memory
cells

w

w

w

2g 2g 2g

2g
2g

Column One−Hot Decoder

R
ow

 O
ne

−
H

ot
 D

ec
od

er

a−g

g

w

2gcol

2g

w

Y

En
memory core

U[a−g:0] row

U[a−1:a−g]

look−up table (static RAM)

Figure 4.7: Block diagram of a 2x-to-w LUT.

40

rowj

0 1 g2 −1

2g

col

2g

b i

0 1 g2 −1

cell−array (b)i

1−bit sram cell

R / W

(a)

2g

Yi

ib [0]

2gcol[−1]

b [1]i 2gi
col[1]col[0]

b [−1]

LUT −− AND−OR

(b)

Figure 4.8: Structure of a 2x-to-w LUT (a) Bit bi block, (b) AND-OR logic block.

Chapter 5

Performance Modeling

In Section 2.2 we have described the structure of a MU-Decoder and identified its basic
building blocks as multicast hardwiring, multiplexers, one-hot decoder, and LUT. In this
chapter we examine different designs of the building blocks and construct models (equations)
for time, area and power for time- and area-optimized designs. These expressions are then
used to model the MU-Decoder. All these modules are also frequently used in digital systems,
so the study in this chapter may be of independent interest.

The general modeling methodology was explained in Chapter 3. Here we provide ad-
ditional details that are particular to each of the building blocks of the MU-Decoder. For
clarity, each section of this chapter is organized along the same lines as Chapter 3. In each
section, we discuss some basic ideas of the module (including definitions and implementa-
tions), then we define granularity for that module (except for hardwiring). This is followed
by the implementation details and results from the place and route (PAR) phase. Finally
we present the modeling details of the module.

In the Chapter 4 we have theoretically estimated growth terms that could constitute to
the time and area of each of the building blocks. These terms were classified as gate growth
term and the (lower coefficient) wire term. We use all the gate growth terms and the highest
order wire growth term to obtain equations that model cost and performance of the module.

As mentioned in Section 3.2 our experiments are limited by computational resources,
and the time taken to implement large sized modules. Broadly speaking, our strategy for
modeling a module is to (a) implement all possible sizes and granularities then (b) obtain
coefficients to the growth terms based on the implementation data.

In the next few sections we detail the modeling of multiplexers, one-hot decoders, multi-
cast hardwiring and LUTs. Section 5.1 for the multiplexer is more detailed than the rest to
provide the reader with a clear view of the methodology. Adding these details (particularly
the implementation data)for all building blocks will be unnecessarily cumbersome and will
not add any new sight.

41

42

5.1 Mulitplexer

As noted in Section 2.2, the multiplexer is one of the basic MU-Decoder modules. Specifi-
cally, the mapping unit of the MU-Decoder implements several multicasts. Rolling all these
multicasts into the one circuit to use the same n-bit output, requires multiplexers. In this
section we examine different multiplexer designs and construct model equations.

A 2x-to-1 multiplexer is a module that selects one of 2x inputs to (virtually) connect
to a single output. It uses x control bits to determine which of the 2x inputs to connect
to the output. Let the 2x data bits of the multiplexer be u2x−1, u2x−2, · · ·, u1, u0. Let the
control bits be cx−1, cx−2, · · ·, c1, c0. Let the binary number cx−1cx−2· · ·c1c0 have value i
(where 0 ≤ i < 2x). Then the multiplexer output is ui. Figure 5.1 shows the block diagram
of a 2x-to-1 multiplexer and its behavioral Verilog code.

x2

output

Multiplexer

U Y

C

input

control

x

module mux behav(Y, U, C);

parameter x = 2;

parameter pow2x = 1<<x;

input [pow2x -1:0] U;

input [x-1:0] C;

output Y;

wire Y;

assign Y = U[C];

endmodule

Figure 5.1: A 2x-to-1 multiplexer block diagram (left), its behavioral Verilog code (right).

There are many different ways to implement a multiplexer. These include approaches
based on (a) AND-OR logic, (b) transmission gates, (c) NAND or NOR logic, (d) tristate
buffers, and (e) granularity. We use the granularity-based approach which is elaborated upon
in the next section. Figure 5.2 shows a 2-to-1 multiplexer implementation using the above
approaches.

5.1.1 Granularity-Based Multiplexer Representation

A 2x-to-1 multiplexer can either be constructed at the gate-level or, at the extreme, in terms
of two (2x−1)-to-1 multiplexers and a 2-to-1 multiplexer. There are many shades in between.
Figure 5.3 shows a 23-to-1 multiplexer built out of seven 2-to-1 multiplexers. This can be
generalized to build a 2kg-to-1 multiplexer out of 2g-to-1 multiplexers [5]. Figure 5.4 shows
one way to build a 2x-to-1 multiplexer out of multiplexers of size at most 2g-to-1. Here x
need not be an integer multiple of g. We will refer to the implementation in Figure 5.4

43

U0

U1 U1

U0

U1

U0
U0

U1

Y

Y

Y

C C

C C

Y

(a) (b)

(c) (d)

Figure 5.2: Implementations of a 2-to-1 multiplexer, (a) AND-OR logic, (b) NAND logic,
(c) transmission gate and (d) tristate buffer.

as a granularity-g implementation of a 2x-to-1 multiplexer. This implementation amounts
to a 2g-ary tree of 2g-to-1 multiplexers with the root using a 2g

′
-to-1 multiplexer, where

g′ = x(mod g).

5.1.2 Multiplexer Implementation Results and Analysis

As described Section 3.2, the synthesis controller and PAR controller were used to implement
multiplexers of various sizes and granularities. In this section we provide the details of
the multiplexer implementation results from the synthesis and PAR stages. This section is
organised along the lines of Section 3.2 that describes the general implementation procedure.
The reader may benefit from refering to Section 3.2 before proceeding with this section.

A multiplexer has two design parameters, size (x) and granularity (g). The synthesis con-
troller systematically sets these parameters for all combinations such that x ∈ {1, 2, · · · , 15}
and g ∈ {1, 2, · · · , x}. The minimum constraint generator (MCG) is then initiated for a fixed

44

U3

C2

U2

U0
U1

U4
U5
U6
U7

C0 C1

Y

Figure 5.3: Implementation of an 8-to-1 multiplexer using 2-to-1 multiplexers.

x and g. The three optimized designs (time optimized, area optimized and power optimized)
are stored in a database directory for further use. Although this work does not consider
power optimization, we obtain power optimization data for some modules, the multiplexer
is one of those.

The name of the files in which the simulation data is stored is such that it indicates the
module name (for this case “mux”), size x, granularity g, file type indicator (synthesis file (s),
time report (t), area report (a), power report (p) and timing constraint output file (c)), and
the timing constraint value determined by MCG. For example, consider the case where the
script (MCG) implements a multiplexer of size x = 3 and granularity g = 2 and optimizes
this design for time. Suppose also that this design has a minimum timing constraint of
250 ps. Then the synthesis related to this design is saved in file “mux 3 2 s 250.vh”.

Each of the synthesized designs is now processed through the PAR phase as described
in the Section 3.2.2. This process adjusts the timing constraint and determines the time,
area and power at the layout level. It was observed that the RTL compiler uses a 22-to-1
multiplexer circuit to produce a non-inverted output. A 2-to-1 multiplexer requires additional
inverters. Therefore, the lowest granularity that our design benefits from is g = 2.

Figures 5.5, and 5.6 shows the time, area and power for different design optimizations
(time, area and power) and various values of x and g. Each of these figures has three
sets of data, corresponding to time, area and power. For example, Figure 5.5 (a) shows
data for time optimized design. There are three sets of curves. The first one is the delay
of time-optimized designs for various sizes x. The second curve shows the designs’ area,
however the designs themselves are time-optimized. The third set of curves is the power
for time-optimized design. Each of these sets has three curves (solid, dashed and dotted).
The solid curve is for a design with granularity g = x. The dotted curve is for g = 2.
The dashed curve represents designs with the best possible (AbsTmin) time-optimization
and may include several granularities. For example for the area of time-optimized design

45

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g

2g U[− 1: 0]

2g+1 2g U[−1:]

2g2 2g2 −2g

gg

2g

2g

2g

1

2g

2

2g
Y

g g

g gC[x− −1: x−g−] g

x2 x2 − 2g

1

2

1

2

1

2

 U[−1:]

C[g−1 : 0] C[2g −1: g] C[x −1: x−]]

 U[−1:]

Figure 5.4: Granularity-based multiplexer implementations.

(Figure 5.5 (a)) when n = 4 and 7 the g = 2 designs have 219µm2 and 2309µm2 area, g = 4
and 7 (that is g = x) have 163.5µm2 and 1393.8µm2 area and the AbsTmin curve gives area
163.5µm2 and 1161µm2. For these AbsTmin area g = 1 and 4. The same ideas apply to
area-optimized designs (Figure 5.5 (b)) and power-optimized design (Figure 5.6). The three
graphs correspond to g = 2 (low granularity), g = x (highest granularity) and the AbsMin.
The last curve uses the value of g that gives the best optimized design. This g could be
different for different values of x. Although these graph show three curves, it should be noted
that data was obtained for x granularities.

For the time optimized designs (Figure 5.5 (a)), clearly AbsTmin time gives the best
designs. Although the g = 2 case is not as good as AbsTmin, it represents a consistent
design methodology. Clearly, g = x is not competitive with g = 2 or AbsTmin. Therefore,
we will use AbsTmin for modeling time optimized multiplexer designs.

46

(a) (b)

Figure 5.5: Multiplexer (a) time- and (b) area-optimized results

For area optimized designs (Figure 5.5 (b)) there is no significant difference in the area
of various approaches, so we consider the curves for time. This clearly shows that AbsAmin
and g = 2 coincide and they are both better than g = x. Therefore we will use AbsAmin for
modeling area optimized multiplexer designs.

For power optimization (Figure 5.6) again g = 2 and AbsPmin are the best for the
same reasons as area optimizations. We present this data but do not use it to model the
MU-Decoder.

47

Figure 5.6: Multiplexer power optimized results

5.1.3 Multiplexer Model

A 2x-to-1 multiplexers time and area growth terms are identified in Section 4.5 and the order
terms tabulated in Table 4.5. From these order terms we will pick all gate growth terms and
the highest wire growth term.

For the multiplexer time, gate growth terms are x, log x, and 1, and the highest order
wire term is x2x. The area growth terms x2x, 2x, x, 1 (for gate) and x32x (for wire). The area
growth terms are also used for power modeling. The experimental data for time-optimization
and area-optimization are now used to determine the coefficients of the growth terms.

The curves in Figure 5.5 represent our best design with respect to time- and area-
optimizations. The aim now is to obtain an equation that accurately models these curves,
particularly for large values of x. We use linear regression to determine these equations. As

48

mentioned earlier, our theoretical analysis (see Table 4.5) identifies the growth terms that
contribute to the time and area (and hence power) of a multiplexer. What remains is finding
the coefficients in these equations.

Recall that for G ∈ {T ,A,P} (for measure of time, area and power), ω ∈ {t, a} (for time-
and area-optimization) and B ∈ {M, 1, H, L} (for multiplexer, one-hot decoder, multicast
hardwiring and LUT), the quantity GBω (x) denotes the measure G for building block B of
size x optimized with respect to ω. For example consider T Mt (x), representing the time for
a time-optimized multiplexer of size x.

Table 5.1: Percentage error of time coefficients for time-optimized multiplexers.
Range of values for x

x (1, 15) (2, 15) (3, 15) (4, 15) (5, 15) (6, 15) (7, 15) (8, 15) (9, 15) (10, 15) (11, 15)

4 40.8 40.8 41.0 41.3 – – – – – – –
5 56.3 56.2 56.4 56.8 57.9 – – – – – –
6 68.1 68.1 68.2 68.7 69.9 72.3 – – – – –
7 8.9 8.9 9.0 9.3 10.0 11.6 14.4 – – – –
8 21.0 21.0 21.1 21.4 22.3 24.0 27.1 28.4 – – –
9 12.7 12.6 12.8 13.1 13.8 15.4 18.2 19.4 22.7 – –
10 7.7 7.7 7.8 8.0 8.7 10.2 12.8 13.9 16.9 20.8 –
11 5.8 5.8 5.7 5.5 5.0 3.8 1.7 0.8 1.7 4.8 9.6
12 10.5 10.5 10.4 10.3 9.8 8.9 7.2 6.4 4.4 1.9 2.0
13 7.3 7.3 7.2 7.1 6.8 6.1 4.8 4.3 2.8 1.0 1.9
14 14.1 14.1 14.1 14.0 13.9 13.7 13.2 13.0 12.5 11.8 10.7
15 7.1 7.1 7.1 7.1 6.9 6.7 6.2 6.0 5.4 4.7 3.7

The methodology of Section 3.3 is used to determine the largest possible data set that fits
the higher end of x. Table 5.1 shows these sets for T Mt (x). Similar tables exist for AMt (x),
PMt (x) and T Ma (x), AMa (x), PMa (x). Notice in Table 5.1, in general, that as the range of x
decreases, so does the error (on the right end of the table). However, a small data set also
reduces the reliability of the model as it is based on fewer points. A balance must be struck.
Here we selected the (7, 15) range as all its error values (except x = 8, that appear to be an
outlier) are less than 20%. In general this a determination is done by inspection.

From Table 4.5 we know that T Mt = c1x + c2 log x + c3 + c4x2x, the last term being the
wire term. Along with the data of Table 5.1 we also compute these coefficients c1–c4 for the
various ranges of x. These are shown in Table 5.2. As noted earlier, the range x ∈ [7, 15]
was selected and this corresponds to the coefficients in bold in Table 5.2. Thus,

T Mt = [0.0843x+ 5.76× 10−08 log(x) + 1.35× 10−08] + [2.55× 10−06x2x]

We have used the box brackets to delimit the gate terms and the last wire term. The area
and power terms are determined similarly.

49

Table 5.2: Multiplexer time coefficients for each range of x.
x log(x) 1 x2x

(1,15) 0.0802 2.60E-11 1.33E-09 2.72E-06
(2,15) 0.0802 3.97E-12 5.37E-12 2.72E-06
(3,15) 0.0803 3.87E-07 8.95E-09 2.72E-06
(4,15) 0.0805 6.12E-11 9.23E-10 2.71E-06
(5,15) 0.0811 9.98E-11 1.63E-10 2.68E-06
(6,15) 0.0822 3.89E-13 4.60E-13 2.64E-06
(7,15) 0.0843 5.76E-08 1.35E-08 2.55E-06
(8,15) 0.0852 7.58E-08 2.18E-09 2.51E-06
(9,15) 0.0877 8.58E-09 1.34E-09 2.41E-06
(10,15) 0.0908 3.19E-06 5.95E-06 2.28E-06
(11,15) 0.0956 9.66E-06 5.65E-07 2.09E-06

In summary, the model equations for a multiplexer are

Multiplexer time optimization model equations

T Mt = [0.0843x+ 5.76× 10−08 log(x) + 1.35× 10−08] + [2.55× 10−06x2x] (5.1)

AMt = [3.692x + 36.66x] + [1.90× 10−03x32x] (5.2)

PMt = [1.05× 10−05x2x + 0.772x + 260.48x+ 0.77] + [8.51× 10−05x32x] (5.3)

Multiplexer area optimization model equations

T Ma = [0.1574x+ 6.62× 10−08 log(x) + 2.64× 10−06] + [1.05× 10−05x2x] (5.4)

AMa = [2.8× 10−05x2x + 6.27632x] + [0× x32x] (5.5)

PMa = [4.38× 10−09x2x + 0.29392x + 224x+ 0.0034] + [5.1× 10−13x32x] (5.6)

5.2 One-Hot Decoder

As noted in Section 2.2, the one-hot decoder is one of the basic modules of the MU-Decoder.
Specifically, we use one-hot decoder in building a LUT. It is also one of the conventional
decoders. In this section we examine different one-hot decoder designs following the same

50

general approach and structure used for the multiplexer. We detail only those where it differs
from the multiplexer.

A x-to-2x one-hot decoder is a module that activates (high) one of the 2x outputs accord-
ing to the x-bit input. Let the 2x output bits of the one-hot decoder be y2x−1, y2x−2, · · · , y1, y0.
Let the input bits be ux−1, ux−2, · · · , u1, u0. Let the binary number ux−1ux−2· · ·u1u0 have
value i (where 0 ≤ i < 2x). Then output line yi is active. Figure 5.7 shows the a x-to-2x

one-hot decoder block diagram and its behavioral Verilog code.

x2
U Y

input

x

output

enable
En

One−Hot Decoder

module dec behav(Y, U, En);

parameter x = 2;

parameter pow2x = 1<<x;

input [x - 1:0] U;

input En;

output [pow2x-1:0] Y;

reg [pow2x-1:0] Y;

reg [pow2x-1:0] Yi;

always @(U or En)

begin
Yi = 1<<U;

Y = Yi&{pow2x{En}};
endendmodule

Figure 5.7: A x-to-2x one-hot decoder block diagram (left) and its behavioral Verilog code
(right).

The most common ways of implementing a one-hot decoder are based on (a) AND-NOT
logic, (b) NAND/NOR logic, and (c) granularity.

5.2.1 Granularity-Based One-Hot Decoder Representation

As in multiplexers, a x-to-2x one-hot decoder can be built out of smaller one-hot decoders.
Figure 5.9 shows a 3-to-23 one-hot decoder built out of seven 1-to-2 one-hot decoders. This
can be generalized to build a kg-to-2kg one-hot decoder out of g-to-2g one-hot decoders [29].
Figure 5.10 shows one way to build a x-to-2x one-hot decoder out of one-hot decoders of
size at most g-to-2g. Here x need not be an integral multiple of g. We will refer to the
implantation in Figure 5.10 as a granularity g implementation of a x-to-2x one-hot decoder.
This implementation amounts to a 2g tree of g-to-2g one-hot decoder with the root using a
h-to-2h one-hot decoder, where h = x(mod g).

51

(a) (b)

En En

0

1

0

1

Y

Y

U
U Y

Y

Figure 5.8: Implementations of a 1-to-2 one-hot decoder.

5.2.2 One-Hot Decoder Implementation Results and Model

Figures 5.11 shows the time, area and power for one-hot decoder designs that are time- and
area-optimized. As in multiplexer case here too we use the AbsTmin data for time-optimized
model and AbsAmin data for the area-optimized one-hot decoder model.

The growth terms identified (see Table 4.4) for the one-hot decoder time are x, log x, 1 (for
gate) and x2x (for wire) and the area growth terms are x2x, 2x, x, 1 and x32x. In a manner
similar to Table 5.1 we determined the best range of x to model T 1

t ,A1
t ,P1

t , T 1
a ,A1

a,P1
a . This

results in the following model equations

One-hot decoder time-optimization model equations

T 1
t = [0.0657x+ 1.9× 10−10 log(x) + 1.9× 10−10] + [1.7× 10−06x2x] (5.7)

A1
t = [0.1685x2x + 3.852x + 9× 10−18x] + [0.001x32x] (5.8)

P1
t = [9.35× 10−4x2x + 0.65262x + 859] + [0× x32x] (5.9)

One-hot decoder area-optimization model equations

T 1
a = [0.1647x+ 6.54× 10−10 log(x) + 3.8× 10−10] + [1.96× 10−6x2x] (5.10)

A1
a = [6.052x + 1.8x] + [1.82× 10−06x32x] (5.11)

P1
a = [6.6× 10−10x2x + 5.33× 10−092x + 75.8x+ 120.2] + [9.4×−05x32x] (5.12)

52

U0U1U2

En

0

1

2

3
4

5

6

7

Y

Y

Y

Y
Y

Y

Y

Y

Figure 5.9: Implementation of a 3-to-8 one-hot decoder using 1-to-2 decoders.

5.3 Multicast Hardwiring

The multicast hardwiring building block of a MU-Decoder broadcasts each of the z-bit source
words to n output multiplexers. That is, it is a z-to-zn multicast hardwiring. The main idea
of the hardwiring unit is to appropriately use buffers to manage fan-outs and route wires to
their distribution. Section 4.2 details ideas related to this.

5.3.1 Multicast Hardwiring Implementation Results and Model

To implement a w-to-w2x hardwiring we need to (i) define a fanout for the input 27 was
used here and (ii) connect the w2x outputs to some logic to ensure that the CAD tool uses
buffers as needed; we use a AND gate for each of the 2x output. Subsequently the delay and
area of these AND gates were subtracted from the experimentally obtained values to reflect
the delay and area for the hardwiring. Figure 5.12 shows the time, area and power for the
time-and area-optimized multicast hardwiring designs. We use a different approach for the
time compared to the multiplexer and decoder approaches.

Time modeling: Notice from Figure 5.12 that the time graphs are discrete between x = 7
and x = 10. This is when new buffers are likely added; note that for a given x, the circuit
has a 2x fanout and the assumed limit for fanout was 27. We use the growth terms of the
multicast hardwiring identified in Table 4.2 to model the time. We first separately model the
x ≤ 7 and x ≥ 10 cases. Let these yield equations T (x, z) and T ′(x, z). We use T (x, z) as

53

2g

2g

1

2

g

g

g
2g

2g

1

2

2g

2g

2g

2g

2g

2g

h2

En

2g

2h

1

2

2g

2g

h

2g2 2g2 −2g Y[−1:]

x2 x2 − 2g Y[−1:]

2g+1 2g

2g Y[− 1: 0]

 Y[−1:]

U[g−1 : 0]

U[2g −1: g]

U[x− h −1: x−g− h]

U[x −1: x− h]

Figure 5.10: Granularity-based one-hot decoder implementations.

the wire delay model by extending T to x ∈ {8, 9, 10} and T ′ to x ∈ {7, 8, 9}, we now have
T and T ′ for x ∈ {7, 8, 9, 10}, for all values of w. The difference d(x, z) = T ′(x, z)−T (x, z)
for x ∈ {7, 8, 9, 10} gives the data to model buffer delay d(x, z) (with same growth terms as
T) which turn out to be independent of x, In fact for time optimized design

dt(x, z) = [2.22× 10−15x+ 0.8311] + [2.22× 10−15w2x] (5.13)

and for the area-optimized design

da(x, z) = [2.22× 10−15x+ 0.9236] + [2.22× 10−15w2x] (5.14)

Notice that dt(x, z), da(x, z) are both nearly independent of w and x. So the gate delay could
be written as dω for ω ∈ {t, a}. The overall time for a w-to-w2x multicast hardwiring is given
by

T Hω = Tω(x, z) +
⌈x

7

⌉
dω

For our data Tt(x, z) = [0.0015x+ 1.1× 10−12] + [2.38× 10−5w2x] and Ta(x, z) = [0.0015x+
1.1×10−12]+[2.38×10−5w2x]. Those along with Equations 5.13 and 5.14 gives the following
model equations for the time model of multicast hardwiring

54

(a) (b)

Figure 5.11: One-hot decoder (a) time-and (b) area-optimized results

Time model equations for multicast hardwiring

T Ht = [0.0015x+ 1.1× 10−12] + [2.38× 10−5w2x] +
⌈x

7

⌉
[0.8311] (5.15)

T Ha = [0.0015x+ 1.1× 10−12] + [2.38× 10−5w2x] +
⌈x

7

⌉
[0.9236] (5.16)

Area and power curves in Figure 5.12 shows the area and power of the time- and area-
optimized designs. The growth terms of the area are shown in Table 4.2. Here as buffers
are gradually included as required and the jump at x = 7 is more gradual. Here we model

55

(a) (b)

Figure 5.12: Multicast hardwiring time- and area-optimized implementation results

AHt ,AHa ,PHt ,PHa in the usual way for x > 7 (as in the multiplexer) to obtain the following
model equations.

Area for multicast hardwiring

AHt = [0.2036w2x + 1.96× 10−052x + 2.06× 10−04w + 1.5× 10−04] + [9.6× 10−04w2x2x] (5.17)

AHa = [0.0106w2x + 3.25× 10−062x + 4.584w + 3.18] + [1.9× 10−06w2x2x] (5.18)

56

Power for multicast hardwiring

PHt = [0.7053w2x + 0.75362x + 805.5w + 892.8] + [9.24× 10−11w2x2x] (5.19)

PHa = [0.7232w2x + 0.6852x + 849.4w + 885] + [1.81× 10−08w2x2x] (5.20)

5.4 Look-Up Table

The look-up table was described in Section 2.2 and 4.6. It’s use in this work is twofold. It is
an important building block of the MU-Decoder and it is also to be used as a LUT-Decoder
against which the MU-Decoder is compared.

The basic building block of a LUT (or SRAM memory) is a single bit storage element.
Figure 4.7 shows the standard 6-transistor–(6T) based implementation [18] and its logic
diagram. While our cell implementation as a latch is considerably more expensive than the
6T configuration, we account for this in the model as explained in Section 5.4.2.

5.4.1 Granularity-Based LUT Representation

A 2x-to-w LUT can be implemented using a 2x×w cell array with a x− to− 2x decoder for
the address. One could also arrange the w2x cells as a 2x−g×w2g array with a (x−g)-to-2x−g

row one-hot decoder and g-to-2g one-hot column decoder where outputs are broadcast to w
columns (Figure 4.7). We use g as a measure of the granularity of the LUT.

5.4.2 Implementation Results and Model

Figure 5.13 shows the LUT time, area and power for the time- and area-optimized designs.
These when modeled using the growth terms of Table 4.6 yield the following equations for
time

Time model equations for LUT

T Lt = [0.3171x+ 0× log2 x+ 0.0984 log2 w + 0.4958] + [5.6× 10−05w2x] (5.21)

T La = [1.11x+ 3.86× 10−15 log2 x+ 0.2976 log2 w + 2.25× 10−15] + [3.86× 10−05w2x] (5.22)

57

(a) (b)

Figure 5.13: Multicast hardwiring (a) time- and (b) area-optimized implementation results

For area we have the following preliminary equations

ALt = [34.38w2x + 0.03472x + 0× w + 0] + [0× w22x] (5.23)

ALa = [32.79w2x + 0.36912x + 0× w + 0] + [0× w22x] (5.24)

Notice that the w22x, w and 1 terms suggested by the theoretical model have 0 coefficients.
That is, the area (and power as shown later) are directly proportional to the cell area w2x.
The coefficient w2x must be adjusted, however, as our latch-based implementation is much
larger than the 6T implementation.

58

We used a hand made design with 500 nm technology for a 6T implementation of a single
cell. We compared this with a 500 nm latch implementation of a cell and the hand made
design had an area that was 23 times smaller. In translating this to the 45 nm technology
that we use for the LUT and to factor in a margin of advantage for the LUT-Decoder due to
newer technologies [16] we used a conservative factor of 50 to reduce the LUT area. Thus,
the model equations for the LUT area are

Area model equations for LUT

ALt =

[
1

50
(34.38w2x) + 0.03472x

]
+ [0] = [0.6876w2x + 0.03472x] + [0] (5.25)

ALa =

[
1

50
(32.79w2x) + 0.36912x

]
+ [0] = [0.6557w2x + 0.36912x] + [0] (5.26)

Notice that ALt ∼= ALa that is there is no difference in area due to time and area opti-
mizations.

This factor of 50 was further verified using CACTI tool [3] that has an option for RAMs,
for w = 8 and 16.

We did not find the power for the hand made design. A comparison using CACTI showed
a difference by a factor of about 2, mostly in favor of our design. Therefore we use the power
model as it is without an adjustment factor.

power model equations for LUT

PLt = [1.18w2x + 0.22362x + 55.6w + 1005] + [9.5487× 10−08w22x] (5.27)

PLa = [0w2x + 0.652x + 62.4w + 0] + [0.02w22x] (5.28)

Chapter 6

The MU-Decoder

Recall the MU-Decoder introduced in Section 2.2. In this chapter, we use the models for
the multiplexers, multicast hardwiring and look-up table (LUT) developed in Chapter 5 to
construct a model for the MU-Decoder.

Recall that anm-to-n decoder’s output can be viewed as a subset of Zn = {0, 1, 2, · · · , n− 1}
(Section 2.2). We will use this idea to compare the performance of the MU-Decoder to
the LUT-Decoder; a m-to-n LUT-Decoder is simply a 2m × n LUT. We show that the
LUT-Decoder performs better than the MU-Decoder when the set of subsets to be gener-
ated is totally arbitrary (this entails extremely conservative assumptions on the nature of
the subsets used). Most problems in practice display some structure, so the subsets used
by them are not arbitrary and unrelated. Therefore, the above “better performance” of the
LUT-Decoder may be misleading. To establish this assertion, we examine a class of subsets
called “totally ordered subsets” that have practical applications in problem such as reduc-
tions. For totally ordered subsets the MU-Decoder now outperforms the LUT-Decoder by a
much larger margin.

In the next section we revisit the structure of the MU-Decoder and cast it in terms of the
three building blocks, multiplexers, multicast hardwiring, and LUTs. We also derive equa-
tions that model the delay, area and power of the MU-Decoder, in terms of the corresponding
quantities derived in Sections 5.1–5.4. In Section 6.2 we compare the LUT-Decoder and the
MU-Decoder based on the number of subsets they can generate.

6.1 The MU-Decoder Structure and Model

Recall the structure of the MU-Decoder in Figure 2.1 (page 7). This figure shows the selector
as a single monolithic collection of LUTs. Here we separate this collection and pair each
output multiplexer with one small LUT from this collection. The resulting structure is shown

59

60

in Figure 6.1. For easier reference, the 2m-to-z LUT will be called LUT1 and the collection
of LUTs in the selector unit as LUT2 (each LUT2(i) is a 2y-to-log z LUT). Individual LUTs
in this collection may be called LUT2(i) with some appropriate value of 0 ≤ i < n. The z-to-
zn multicast hardwiring unit will be called HW1, whereas the y-to-yn multicast hardwiring
unit in the selector unit will be called as HW2. As in the case of LUT2(i), each individual
z-to-1 multiplexer will be called MUX(i). In fact, MUX(i) and LUT2(i), will be paired to
form output i. Notice that while the area of the MU-Decoder is the sum of the areas of its
building blocks, the time is due to longer of the two paths (from inputs M and Y) to the
output N .

z

y

selector
address

Y
y

y

z

z
y

n

LUT2

log(z)

source
word

Z

z

output
word

word
input

mapping−unit

Hardwiring2

N

Hardwiring1

n

2

1

LUT1mM

Figure 6.1: Structure of MU-Decoder MU(m, y, z, n).

Thus the area of the MU-Decoder is

A = AL1 + AH1 + AH2 + (AL2 + AM)n

and the time is
T = max(tL1 + tH1, tL2 + tH2) + tM

61

and the power is modeled similar to the area, therefore power is

P = PL1 + PH1 + PH2 + (PL2 + PM)n

Notice that in Figure 6.1 different modules could be optimized for different performance
measures. For example, if the path from M to N is longer (that is, with higher delay) than
that from Y to N , then each LUT2(i) and HW2 can be area-optimized, without significant
change in delay of the MU-Decoder. This sort of optimization is possible within a path as
well. For example if the HW1 takes less time than LUT1, then LUT1 could be time-optimized
while HW1 is area-optimized.

The theoretical analysis of the LUT- and MU-Decoder [10] has shown that their delays
are all O(log n). It is in the area that large differences can appear. We will therefore consider
reduction in areas of the decoder as the primary objective. Subject to this objective, we will
use time-optimized designs.

It was observed in Section 5.4 that the area of time-optimized and area-optimized LUT
implementation are nearly the same. Therefore, we use area-optimized LUTs in all cases
(including for the LUT-Decoder). Figure 6.2 shows a typical contribution of various modules
of the MU-Decoder. It can be seen that HW1 is the main non-LUT contributor of the
MU-Decoder area. We will use area-optimized designs for the HW1. All other non-LUT
components (namely multiplexers and HW2) will be time-optimized.

Because of variations in technology and other local parameters, the results are more
meaningful when presented relative to each other, rather than as absolute values. We present
our data for 5000 ≤ n ≤ 1011. However, n = 1011 is of purely academic interest. Current
FPGAs (for example XILINX Virtex 7series [31]) use around two million logic blocks. Here
n ∼= 2× 106. Therefore we present two sets of results, one for 5000 ≤ n ≤ 106 and the other
for 5000 ≤ n ≤ 1011.

6.2 Basis for Comparing LUT- and MU-Decoders

The two configurable decoders that are compared are (a) LUT-Decoder and (b) MU-Decoder.
We will use the subsets that each decoder can generate as a basis for the comparison;
that is, we will compare decoders that are guaranteed to generate the same set of sub-
sets. To make these ideas specific let LUT(m,n) denote a 2m × n LUT-Decoder, and let
MU(m, y, z, n) denote a MU-Decoder as described in Figure 6.1. Suppose we are given a set
S = {S0, S1, · · · , S`−1} of subsets of Zn. Let LUT(m,n) and MU(m, y, z, n) be the “small-
est” LUT- and MU-Decoder that can generate S; while the idea of smallest is clear for a
LUT-Decoder, it need further clarification for a MU-Decoder (see next two sections). We
now consider two classes of subsets of Zn.

62

6.2.1 MU-Decoder Configuration for Arbitrary Subsets

Let S = {S0, S1, · · · , S`−1} be a set of arbitrary (unrelated) subsets of Zn. The following
results have been established in Jordan and Vaidyanathan [9, 10].

Theorem 6.2.1 [9, 10] For any 1 ≤ m < 2n − 1, a LUT(m,n) can produce 2m arbitrarily
selected subsets of Zn. The gate cost of the LUT is O(2m(m+ n)).

Notice that to produce 2m1 subsets of Zn a 2m1×n LUT-Decoder is required. We consider
three values of m1 ∈ {log n−log log n, log n and 2 log n} that produce n

logn
, n and n2 subsets of

Zn. These values represent a reasonable range of operation and will largely be representative
of other values that we could consider.

Theorem 6.2.2 [9, 10] For any 1 ≤ m < 2n − 1, z ≤ n and y ≥ 0, a MU(m, y, z, n) can
produce at least min(2n, 2yblog2 zc) arbitrary subsets of Zn. The MU-Decoder has a gate
cost of O(2m(m+ z) + n log z(z + 2y)).

This theorem, although accurate, is reflective of a worst case scenario in which each
source word of the MU-Decoder with all 2y values of Y produces only one subset of S; That
is although it could produce as many as 2y subsets, only one which belongs to S is considered
of interest. We show in Section 6.2.2 that the MU −Decoder can do much better.

We now use the results of Theorems 6.2.1 and 6.2.2 to determine appropriate values for
m2, y and z for a given set of 2m1 arbitrary subsets of Zn.

From Theorems 6.2.1 and 6.2.2, in order to make the subsets equal for both decoders,

2m1 = min{2m2 , 2y blog2 zc} (6.1)

Since m1 = m2, we will select 2y blog2 zc to be no less than 2m1 . In fact we should set

2y blog2 zc = 2m1 (6.2)

From Theorem 6.2.2, the gate cost of the MU-Decoder is O(2m2(m2 + z) + n log z(z + 2y)).
To make the last term optimal we will set z ∼= 2y. This implies that y ∼= log2 z. Then
2m2 = 2m1 = 2y blog2 zc ∼= y2y = z log z.

Observe that if a = b
log b

then a log a = Θ(b). Here we have a requirement that z log z =

2m1 , so we select z =
⌈

2m1

m1

⌉
. Since 2m1 = 2yblog zc, we have y = m1−blogblog2 zcc. The floor

on the outer log ensures a slightly larger value of y to ensure the condition of Equation 6.1.
Finally to ensure that z < n we select a constant c = 16 and require z ≤ n

c
. In summary,

63

for arbitrary subset,
m1 ∈ {log n− log log n, log n, 2 log n}

m2 = m1

z =

⌈
min

(
n

c
,
2m1

m1

)⌉
y = m1 − blogblog zcc

Figure 6.2 shows the contribution of the MU-Decoder building blocks for m1 = log n −
log log n, log n, 2 log n and 5000 ≤ n ≤ 1011. Clearly, HW1 is the main contribution to the
MU-Decoder area, particularly as n becomes larger. Figure 6.3, and 6.4 show the ratio of
the areas of the MU-Decoder to that of the LUT-Decoder, plotted against n. This ratio is
small for a while (around 2) and then reises rapidly. This rapid rise is due to the high cost
of HW1 (see Figure 6.2). The choice of values for m1 simply dictates when contribution of
HW1 predominates. In general, the larger the value of m1, the longer the MU-Decoder area
is closer to that of the LUT-Decoder.

At this point one may ask what the use of the MU-Decoder is, when its area is always
greater than that of the LUT-Decoder. To see this, it may be instructive to see how a
MU-Decoder produces subsets; details appear in Jordan and Vaidyanathan [10].

A MU(m, y, z, n) produces 2m different source words each z-bit long. The y-bit selector
address generates 2y different ways to multicast a source word. The multicasts have been
selected in such a way that each multicast can to generate at least blog zc arbitrary subsets.
In the process it uses up at most blog zc of the 2m source words available to it. Thus, each
source word (in the worst case) is used with exactly one multicast to produce exactly one
subset of interest. Since there are 2m source words, 2x interesting subsets are generated.

What is missed in this worst case analysis is that (a) a multicast may generate more than
blog zc subsets and (b) each source word may generate an interesting subset with more than
one multicast. This greatly improves the utility of the MU-Decoder.

In the next section we consider “Totally-Ordered subsets” whose structure the MU-Decoder
exploits, and which the LUT-Decoder fails to use.

6.2.2 MU-Decoder Configuration for Total-Order Subsets

The following definitions and results are from Jordan and Vaidyanathan [10].

Definition 6.2.1 [10] A set S = {Si ⊂ Zn : 0 ≤ i < k} is said to be totally-ordered, iff
Si ⊂ Si+1 for all 0 ≤ i < k − 1.

64

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.2: Contribution of building blocks for arbitrary subsets.

A totally-ordered subset may be encountered in several computations including fan-in
converge-cast or broadcast/multicast.

Definition 6.2.2 [10] Two sets of subsets S1, and S2 are isomorphic iff |S1| = |S2| and for
each Si ∈ S1 there is a unique Sj ∈ S2 such that |Si| = |Sj|

For 0 ≤ i < Γ, let Si = {Si,0, Si,1, · · · , Si,`−1} be a set of subsets of Zn. For any i, i′ let
Si and Si′ be isomorphic. In fact let |Si,j| = |Si′,j|. If each Si is totally-ordered, then set

S =
Γ−1⋃
i=0

Si is a set of Γ isomorphic set of subsets, each a totally-ordered set of ` subsets of

Zn. We call such an S as a (Γ, `) totally ordered set. In this notation a single totally-ordered

65

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.3: Ratio of MU- to LUT-Decoder areas for arbitrary subsets (5000 ≤ n ≤ 1011).

set is a (1, `) totally ordered set and an arbitrary set of subsets is a (Γ, 1) totally ordered set.

The following theorem is a small extension to the results of Jordan and Vaidyanathan
[10].

Theorem 6.2.3 For any 1 < m ≤ 2n − 1, z ≤ n, y ≥ 0, Γ ≥ 1, and` ≥ 2, a MU-Decoder,
MU(m, y, z, n) can produce a (Γ, `) totally ordered set of Zn if Γ` = min{2mΓ, 2y(z − 1)}.

For our analysis we assume Γ = 2γ and ` = 2λ. There are 2γ sets of isomorphic subsets,
each containing 2λ totally-ordered subsets. To generate these 2γ+λ subsets on a LUT (m,n)

66

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.4: Ratio of MU- to LUT-Decoder areas for arbitrary subsets (5000 ≤ n ≤ 106).

we require m1 = γ + λ. That is a LUT simply uses the fact that there are 2γ+λ subsets of
interest and fails to exploit the structure of these subsets.

On a MU-Decoder, MU(m, y, z, n), the number of subsets 2γ+λ satisfies (by Theorem 6.2.3)

2m1 = 2γ+λ = min{2m2γ, (z − 1)2y} = min{2m1 , (z − 1)2y}

The idea is to set 2m2+γ = 2γ+λ; that is m2 = λ. Since m1 = γ + λ, we have m2 = m1 − γ.
We then select z and y, so that (z − 1)2y ≥ 2m2+γ = 2m1 . As before, let z = 2y (to balance

the gate cost of the MU-Decoder). Then (z − 1)2y ∼= z2 ≥ 2m1 . We select z =
⌈
2
m1
2

⌉
and

y = dlog ze.

67

With this selection z < n results in m1 < 2 log n. For the m1 ∈ {log n− log log n, log n}
cases we can select z =

⌈
2
m1
2

⌉
. However when m1 = 2 log n, selecting z =

⌈
2
m1
2

⌉
will set

z = n (or n
c

if it is upper bounded as in the arbitrary case). This will not let the MU-Decoder
fully exploit the structure of totally-ordered sets. Here we take a different approach for the
m1 = 2 log n.

Select y =
⌈
m1ε
1+ε

⌉
for some constant ε > 1 and z = 1 +

⌈
2
y
ε

⌉
. Now (z − 1)2y =

⌈
2
y
ε

⌉
2y ≥

2y(1+ 1
ε
). Since y =

⌈
m1ε
1+ε

⌉
, we have (z − 1)2y ≥ 2y(1+ 1

ε
) = 2d

m1ε
1+ε e(1+ε

ε) ≥ 2m1 as required to
satisfy equation. For our implementation ε = 2.5 worked the best.

In summary,

for totally ordered subset,

m1 ∈ {log n− log log n, log n, 2 log n}

m2 = m1 − γ

z =

{ ⌈
2
m1
2

⌉
, if m1 < 2 log n

2
y
ε , if m1 = 2 log n

y =

{
dlog ze, if m1 < 2 log n⌈
m1ε
1+ε

⌉
, if m1 = 2 log n

We consider three values for γ, 0,
⌈
y
2

⌉
, and y, representing a single total-ordered set at

one extreme and 2y totally ordered sets are the other extreme.

In all these cases m2 = m1 − γ is reduced compared to the arbitrary subset case. The
quantity z ∼=

√
2m1 is again smaller than the z ∼= 2m1

m1
in the arbitrary case. Consequently

y = log z is also reduced. As a results all building blocks are much smaller now.

Figures 6.5 show the contributions of the building blocks for γ = 0. Clearly multiplexer
is the predominant contributor for the range of values of n that are of interest. Figures 6.6
and 6.7 show similar behavior for γ = y

2
and y. Even for the m1 ∈ {log n, 2 log n} cases, the

MU-Decoder is superior (see Figure 6.8). Here the cost HW1 slowly creeps up but is still
small enough to not make a big difference.

Figures 6.8, – 6.13 show the ratio of the areas of the LUT-Decoder to that of the
MU-Decoder. Clearly there is a marked improvement in the MU-Decoder’s performance.
For the n = 106, m1 = log n case and γ = 0 (the most conservative case) the MU-Decoder
has 33 times less area than the LUT-Decoder. At the other extreme for n = 106,m1 = 2 log n
and γ = y, MU-Decoder area is 164 times better.

68

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.5: Contribution of building blocks for totally ordered subsets (γ = 0).

6.2.3 Delay and Power

To complete the comparison, we also plot relative delays and power of the two decoders for
the various cases. In all cases, the MU-Decoder seems faster. However, this result is less
reliable as we could not accurately assertion the delay of memory cells. The estimate of area,
however, of Section 6.2 are accurate. Figures 6.14–6.17 show the ratio of delays of the LUT-
and MU-Decoders. Similar graphs for the power are shown in Figure 6.18–6.21. Overall
MU-Decoder requires less power than the LU-Decoder even for the arbitrary case, as the
area bottleneck (hardwiring) contributes very little to the power budget.

69

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.6: Contribution of building blocks for totally ordered subsets (γ = y
2
).

70

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.7: Contribution of building blocks for totally ordered subsets (γ = y).

71

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.8: Ratio of LUT- to MU-Decoder areas for (γ = 0) totally ordered subsets (5000 ≤
n ≤ 1011).

72

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.9: Ratio of LUT- to MU-Decoder areas for (γ = 0) totally ordered subsets (5000 ≤
n ≤ 106).

73

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.10: Ratio of LUT- to MU-Decoder areas (γ = y
2
) totally ordered subsets (5000 ≤

n ≤ 1011).

74

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.11: Ratio of LUT- to MU-Decoder areas for (γ = y
2
) totally ordered subsets (5000 ≤

n ≤ 106).

75

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.12: Ratio of LUT- to MU-Decoder areas (γ = y) totally ordered subsets (5000 ≤
n ≤ 1011).

76

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.13: Ratio of LUT- to MU-Decoder areas for (γ = y) totally ordered subsets (5000 ≤
n ≤ 106).

77

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.14: Ratio of LUT- to MU-Decoder time for arbitrary subsets (5000 ≤ n < 1011).

78

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.15: Ratio of LUT- to MU-Decoder time for (γ = 0) totally ordered subsets (5000 ≤
n < 1011).

79

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.16: Ratio of LUT- to MU-Decoder time for (γ = y
2
) totally ordered subsets (5000 ≤

n < 1011).

80

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.17: Ratio of LUT- to MU-Decoder time for (γ = y) totally ordered subsets (5000 ≤
n < 1011)

81

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.18: Ratio of LUT- to MU-Decoder power for arbitrary subsets (5000 ≤ n < 1011).

82

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.19: Ratio of LUT- to MU-Decoder power for (γ = 0) totally ordered subsets
(5000 ≤ n < 1011).

83

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.20: Ratio of LUT- to MU-Decoder power for (γ = y
2
) totally ordered subsets

(5000 ≤ n < 1011).

84

(a) m1 = log n− log log n (b) m1 = log n

(c) m1 = 2 log n

Figure 6.21: Ratio of LUT- to MU-Decoder power for (γ = y) totally ordered subsets
(5000 ≤ n < 1011).

Chapter 7

Concluding Remarks

In this thesis, we have studied implementations of the MU-Decoder proposed by Jordan and
Vaidyanathan [9, 10] and compared it to the standard LUT-(based) Decoder. We have shown
that while the LUT-Decoder may appear more versatile than the MU-Decoder at first sight,
these advantages are based on the worst case that rely on the existence of certain (rare, in
our opinion) inputs that tend to mask the potential of the MU-Decoder. For most practical
algorithms that exhibit some structure, the MU-Decoder performs much better than the
LUT-Decoder.

Quantitatively, for the worst case the MU-Decoder with n output bits requires 3.4 more
area than the LUT-Decoder for n = 106, this ratio is 1.8 for n = 5000. However if we add
structure to the decoder output (in the form of totally-ordered subsets) we show that the
MU-Decoder requires less than 3.5 times area for n = 5000 and less than 33 times area for
n = 106. The time and power performance of the MU-Decoder is also better than those of
the LUT-Decoder.

The above results were possible through models that we derived for the performance
of LUT- and MU-Decoders. To obtain these models, we identified building blocks of the
MU-Decoder (one of which is also a LUT). Then we implemented (by synthesis, place and
route) various designs of the building blocks, theoretically identified growth terms for their
delay and area, and used linear interpolation to curve-fit the implementation data. This gave
us equations for the delay, area and power for time-optimized and area-optimized designs
for each of the building blocks which, in turn, allowed us to extrapolate these results to
sizes that were not possible to implement with the available computational resources. It also
allowed us to predict the performance of the LUT- and MU-decoders.

In the process we developed a design methodology. We also identified MU-Decoder
parameters that allow for a fair comparison of the LUT- and MU-Decoders. These and the
building block models may also be of independent interest.

The work in this thesis has opened up several additional directions for future research.

85

86

An immediate validation of our MU-Decoder model could be through the implementation
of MU-Decoders of reasonable size. We did not follow up on this direction due to limits
on computational resources; most basic building blocks themselves ran for weeks before a
reasonably large module could be implemented. One avenue for alleviating this problem is
to use the Cadence tools with super-threading [24].

We determined power-optimized designs for all building blocks, except the memory cell
used in a LUT. This was because the memory cell was implemented as a latch, where power
consumption can be reduced almost arbitrarily by slowing the circuit operation. Unlike the
combinational logic, the operating speed of sequential logic is defined by the clock or gate
(enable) which need not be as fast as that allowed by the gate and latch timing parameters
(set-up and hold time). An interesting addition to this work could be to obtain power-
optimized LUT designs that would also enable us to model power-optimized MU-Decoder.

Jordan and Vaidyanathan [9, 10] identified totally ordered subsets as one of the struc-
tured outputs that MU-Decoder are suited to. Jordan [9] also identified the class of AS-
CEND/DESCEND subsets (representing hypercube and butterfly-like topologies) [1, 26]
that could also benefit from the use of the MU-Decoder. A study of this, and other subset
classes, would be of interest.

One of the most expensive parts of the MU-Decoder for unconstrained subsets is the
multicast hardwiring. Its cost could be reduced somewhat as indicated in Vaidyanathan
and Jordan [25]. A totally different implementation of the hardwiring is required here.
Technological improvements such as 3-D packaging [12] and optical interconnects may also
help.

The version of the MU-Decoder used in this thesis is called the universal MU-Decoder
which is versatile, but is also the most expensive. Jordan [9] has considered a very restrictive
hardwiring with which the MU-Decoder (given an arbitrary but fixed subset that is specified

pre-manufacture) outperforms the LUT by a Ω
(

logn
log logn

)
factor. Are there other restriction

on hardwiring that the MU-Decoder can benefit from, for example, subsets in which element
pair are always together or never together?

Bibliography

[1] A. Ali and R. Vaidyanathan, “Exact Bounds on Running ASCEND/DESCEND and
FAN-IN Algorithms on Synchronous Multiple Bus Networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 8, pp. 783–790, August 1996.

[2] E. Brunvand, “Digital VLSI Chip Design with Cadence and Synopsis CAD Tools,”
Addison-Wesley, Pearson Edition, Boston, USA, 2010.

[3] CACTI,
http://quid.hpl.hp.com:9081/cacti/sram.y [Last retrieved: April 22, 2011].

[4] Cadence University Program Software Selection, 2010.

[5] M. D. Ciletti, “Advanced Digital Design with the Verilog HDL,” Prentice Hall, Pearson
Education, Inc. NJ, USA, 2002.

[6] Encounter Digital Implementation System User Guide, Product Version 9.1.1, 2010.

[7] M. B. Gokhale and P. S. Graham, “Reconfigurable Computing-Accelerating Computing
with Field Programmable Gate Arrays,” Springer Verlag, First edition, The Nether-
lands, 2005.

[8] IEEE SA–1364–1995–IEEE Standard Hardware Description Language Based on the
Verilog(R) Hardware Description Language,
http://standards.ieee.org/findstds/standard/1364-1995.html [Last retrieved:
April 22, 2011].

[9] M. C. Jordan, “A Configurable Decoder for Pin-Limited Applications,” Master’s The-
sis, Department of Electrical and Computer Engineering, Louisiana State University,
2006.

[10] M. C. Jordan, R. Vaidyanathan, “MU-Decoders: A class of fast and efficient con-
figurable decoders,” Proceedings of IEEE International Symposium on Parallel and
Distributed Processing, workshops and PhD Forum, Atlanta, GA, 19-23 April 2010.

87

88

[11] A. B. Kahng, B. Lin, K. Samadi, “Improved on-chip router analytical power and
area modeling,” Proceedings of 2010 15th Asia and South Pacific Design Automation
Conference (ASP-DAC), Taipei, Taiwan, 18-21 January 2010.

[12] M. Karnezos, “3D packaging: Where all Technologies Come Together,” Proceedings
of IEEE/CPMT/SEMI 29th International Symposium on Electronics Manufacturing
Technology, pp. 64-67, 2004.

[13] S. Krishnaswamy, S. M. Plaza, I. L. Markov, J. P. Hayes, “Enhancing Design Ro-
bustness with Reliability-aware Resynthesis and Logic Simulation,” Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2007, pp.
149-154, 2007.

[14] NC-Launch User Guide, Product Version 8.2, 2008.

[15] Free PDK45:Contents-NCSU EDA Wiki,
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[Last retrieved: April 22, 2011].

[16] B. D. Olson, O. A. Amusan, S. Dasgupta, L. W. Massengill, A. F. Witulski, B. L. Alles,
K. M. Warren, D. R. Ball, “Analysis of Parasitic PNP Bipolar Transistor Mitigation
Using Well Contacts in 130 nm and 90 nm CMOS Technology,” Proceedings of IEEE
Transactions on Nuclear Science, pp. 894-897, August 2007.

[17] E. Quigley, “UNIX Shells by Example,” Prentice Hall PTR, New Jersey, 1997.

[18] K. Roy, S. C. Prasad, “Low Power VLSI Circuit Design,” John Willey & Sons, New
York, 2000.

[19] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L. Alvisi, “Modeling the effect
of Technology Trends on the Soft Error rate of Combinational Logic,” Proceedings of
the International Conference on Dependable Systems and Networks, 2002.

[20] SimVision User Guide, Product Version 8.2, 2008.

[21] J. Singh, D. K. Pradhan, S. Hollis, S. P. Mohanty, J. Mathew, “Single Ended 6T SRAM
with Isolated Read-Port for Low-Power Embedded Systems,” Proceedings of Design,
Automation and Test in Europe Conference and Exhibition, Nice, France, 20-24 April
2009.

[22] The MathWorks, Optimization ToolBox,
http://www.mathworks.com/help/toolbox/optim/ug/lsqlin.html [Last retrieved:
April 22, 2011].

[23] Tcl Developer Site, http://www.tcl.tk/ [Last retrieved: April 22, 2011].

[24] Using Encounter RTL Complier, Product Version 10.1, 2010.

89

[25] R. Vaidyanathan and M. C. Jordan, “Configurable Decoder with Applications in FP-
GAs,” United States Patent Application 20100180098, July 15, 2010.

[26] R. Vaidyanathan and A. Padmanabhan, “Bus-Based Networks for Fan-In and Uniform
Hypercube Algorithms,” Parallel Computing, vol. 21, pp. 1807-1821, 1995.

[27] R. Vaidyanathan and J. L. Trahan, “Dynamic Reconfiguration on the R-Mesh,” Hand-
book of Parallel Computing: Models, Algorithms and Applications, S. Rajasekaran
and J. Reif, eds., CRC Press, 2007.

[28] R. Vaidyanathan and J. L. Trahan, “Dynamic Reconfiguration: Architectures and Al-
gorithms,” Kluwer Academic/Plenum Publishers, January 2004.

[29] J. F. Wakerly, “Digital Design Principles and Practices,” Prentice Hall, Third edition
updated, Upper Saddle River, New Jersey, 2001.

[30] M. J. Wirthlin and B. L. Hutchings, “DISC: The Dynamic Instruction Set Computer,”
Field Programmable Gate Arrays (FPGAs) for Fast Board Development and Recon-
figurable Computing, J. Schewel, ed., Proceedings of SPIE, vol. 2607, 1995, pp. 92-103.

[31] XILINX, 7 Series FPGAs Overview, Advance Product Specification, DS180 (v1.6)
March 28, 2011.

Vita

Raghavendra Kongari was born in February of 1986, in Hyderabad, Andhra Pradesh, India.
He attended primary education in Pochampally Public School and received his secondary
education in Sri Santhosh Vidyaniketan High School in Bhoodhan Pochampally. After high
school, Kongari received admission to the Department of Electronics and Communication
Engineering, at the Chaitanya Bharathi Institute of Technology, one of the prestigious in-
stitute in Andhra Pradesh, India. In June 2007, he received his Bachelor of Engineering in
Electronics and Communication Engineering degree from Osmania University, Hyderabad,
India. After his graduation, he joined Medha Servo Drives pvt. Ltd., India, where he served
as design engineer in Control Electronics Department. After working for one year he came
to the United States of America to pursue master’s degree. He then joined the Department
of Electrical Engineering in Louisiana State University, Baton Rouge, in August 2008. He
worked as teaching assistant in the Department of Electrical Engineering from August 2008
to May 2011. And also worked under Dr. J. Matthew Fannin as graduate research assistant
from August 2009 to May 2011. He will attain his Master of Science in Electrical Engineering
degree in the spring of 2011.

90

	Louisiana State University
	LSU Digital Commons
	2011

	Cost and performance modeling of the MU-Decoder
	Raghavendra Kongari
	Recommended Citation

	tmp.1483774927.pdf.SntDV

